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General information

1 Overview
The objective of this course is to understand the theoretical and
practical aspects of asset management

2 Prerequisites
M1 Finance or equivalent

3 ECTS
3

4 Keywords
Finance, Asset Management, Optimization, Statistics

5 Hours
Lectures: 24h, HomeWork: 30h

6 Evaluation
Project + oral examination

7 Course website
www.thierry-roncalli.com/AssetManagementCourse.html
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Objective of the course

The objective of the course is twofold:

1 having a financial culture on asset management

2 being proficient in quantitative portfolio management
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Class schedule

Course sessions

January 12 (6 hours, AM+PM)

January 19 (6 hours, AM+PM)

January 26 (6 hours, AM+PM)

February 2 (6 hours, AM+PM)

Class times: Fridays 9:00am-12:00pm, 1:00pm–4:00pm, University of Evry
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Agenda

Lecture 1: Portfolio Optimization

Lecture 2: Risk Budgeting

Lecture 3: Smart Beta, Factor Investing and Alternative Risk Premia

Lecture 4: Equity Portfolio Optimization with ESG Scores

Lecture 5: Climate Portfolio Construction

Lecture 6: Equity and Bond Portfolio Optimization with Green
Preferences

Lecture 7: Machine Learning in Asset Management
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Textbook (Asset Management)

Roncalli, T. (2013), Introduction to Risk Parity and Budgeting,
Chapman & Hall/CRC Financial Mathematics Series.
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Textbook (Sustainable Finance)

Roncalli, T. (2024), Handbook of Sustainable Finance.
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Additional materials

Slides, tutorial exercises and past exams can be downloaded at the
following address:

www.thierry-roncalli.com/AssetManagementCourse.html

Solutions of exercises can be found in the companion book, which can
be downloaded at the following address:

http://www.thierry-roncalli.com/RiskParityBook.html

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 15 / 1420

www.thierry-roncalli.com/AssetManagementCourse.html
http://www.thierry-roncalli.com/RiskParityBook.html


Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Course 2023-2024 in Portfolio Allocation
and Asset Management

Lecture 1. Portfolio Optimization
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meant to represent the opinions or official positions of Amundi Asset Management.
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Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Agenda

Lecture 1: Portfolio Optimization

Lecture 2: Risk Budgeting

Lecture 3: Smart Beta, Factor Investing and Alternative Risk Premia

Lecture 4: Equity Portfolio Optimization with ESG Scores

Lecture 5: Climate Portfolio Construction

Lecture 6: Equity and Bond Portfolio Optimization with Green
Preferences

Lecture 7: Machine Learning in Asset Management
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Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Notations

We consider a universe of n assets

x = (x1, . . . , xn) is the vector of weights in the portfolio

The portfolio is fully invested:

n∑
i=1

xi = 1>n x = 1

R = (R1, . . . ,Rn) is the vector of asset returns where Ri is the return
of asset i

The return of the portfolio is equal to:

R (x) =
n∑

i=1

xiRi = x>R

µ = E [R] and Σ = E
[
(R − µ) (R − µ)>

]
are the vector of expected

returns and the covariance matrix of asset returns
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Practice of portfolio optimization

Tutorial exercises

The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Computation of the first two moments

The expected return of the portfolio is:

µ (x) = E [R (x)] = E
[
x>R

]
= x>E [R] = x>µ

whereas its variance is equal to:

σ2 (x) = E
[
(R (x)− µ (x)) (R (x)− µ (x))>

]
= E

[(
x>R − x>µ

) (
x>R − x>µ

)>]
= E

[
x> (R − µ) (R − µ)> x

]
= x>E

[
(R − µ) (R − µ)>

]
x

= x>Σx
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Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Efficient frontier

Two equivalent optimization problems

1 Maximizing the expected return of the portfolio under a volatility
constraint (σ-problem):

maxµ (x) u.c. σ (x) ≤ σ?

2 Or minimizing the volatility of the portfolio under a return constraint
(µ-problem):

minσ (x) u.c. µ (x) ≥ µ?
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Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Efficient frontier

Example 1

We consider four assets. Their expected returns are equal to 5%, 6%, 8%
and 6% while their volatilities are equal to 15%, 20%, 25% and 30%. The
correlation matrix of asset returns is given by the following matrix:

C =


1.00
0.10 1.00
0.40 0.70 1.00
0.50 0.40 0.80 1.00
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Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Efficient frontier

Figure 1: Optimized Markowitz portfolios (1 000 simulations)
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Tutorial exercises

The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Markowitz trick

Markowitz transforms the two original non-linear optimization problems
into a quadratic optimization problem:

x? (φ) = arg max x>µ− φ

2
x>Σx

u.c. 1>n x = 1

where φ is a risk-aversion parameter:

φ = 0 ⇒ we have µ (x? (0)) = µ+

If φ =∞, the optimization problem becomes:

x? (∞) = arg min
1

2
x>Σx

u.c. 1>n x = 1

⇒ we have σ (x? (∞)) = σ−. This is the minimum variance (or MV)
portfolio
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The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

The γ-problem

The previous problem can also be written as follows:

x? (γ) = arg min
1

2
x>Σx − γx>µ

u.c. 1>n x = 1

with γ = φ−1

⇒ This is a standard QP problem

The minimum variance portfolio corresponds to γ = 0

Generally, we use the γ-problem, not the φ-problem
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Tutorial exercises
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Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Quadratic programming problem

Definition

This is an optimization problem with a quadratic objective function and
linear inequality constraints:

x? = arg min
1

2
x>Qx − x>R

u.c. Sx ≤ T

where x is a n × 1 vector, Q is a n × n matrix and R is a n × 1 vector

⇒ Sx ≤ T allows specifying linear equality constraints Ax = B (Ax ≥ B
and Ax ≤ B) or weight constraints x− ≤ x ≤ x+
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Portfolio optimization in the presence of a benchmark
Black-Litterman model

Quadratic programming problem

Mathematical softwares consider the following formulation:

x? = arg min
1

2
x>Qx − x>R

u.c.

 Ax = B
Cx ≤ D
x− ≤ x ≤ x+

because:

Sx ≤ T ⇔


−A
A
C
−In
In

 x ≤


−B
B
D
−x−
x+
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The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Efficient frontier

The efficient frontier is the parametric function (σ (x? (φ)) , µ (x? (φ)))
with φ ∈ R+
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Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Optimized portfolios

Table 1: Solving the φ-problem

φ +∞ 5.00 2.00 1.00 0.50 0.20
x?1 72.74 68.48 62.09 51.44 30.15 −33.75
x?2 49.46 35.35 14.17 −21.13 −91.72 −303.49
x?3 −20.45 12.61 62.21 144.88 310.22 806.22
x?4 −1.75 −16.44 −38.48 −75.20 −148.65 −368.99

µ (x?) 4.86 5.57 6.62 8.38 11.90 22.46
σ (x?) 12.00 12.57 15.23 22.27 39.39 94.57
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Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Solving µ- and σ-problems

This is equivalent to finding the optimal value of γ such that:

µ (x? (γ)) = µ?

or:
σ (x? (γ)) = σ?

We know that:

the functions µ (x? (γ)) and σ (x? (γ)) are increasing with respect to γ

the functions µ (x? (γ)) and σ (x? (γ)) are bounded:

µ− ≤ µ (x? (γ)) ≤ µ+

σ− ≤ σ (x? (γ)) ≤ σ+

⇒ The optimal value of γ can then be easily computed using the bisection
algorithm
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The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Solving µ- and σ-problems

We want to solve f (γ) = c where:

f (γ) = µ (x? (γ)) and c = µ?

or f (γ) = σ (x? (γ)) and c = σ?

Bisection algorithm

1 We assume that γ? ∈ [γ1, γ2]

2 If γ2 − γ1 ≤ ε, then stop

3 We compute:

γ̄ =
γ1 + γ2

2

and f (γ̄)
4 We update γ1 and γ2 as follows:

1 If f (γ̄) < c, then γ? ∈ [γc , γ2] and γ1 ← γc

2 If f (γ̄) > c, then γ? ∈ [γ1, γc ] and γ2 ← γc

5 Go to Step 2
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The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Solving µ- and σ-problems

Table 2: Solving the unconstrained µ-problem

µ? 5.00 6.00 7.00 8.00 9.00
x?1 71.92 65.87 59.81 53.76 47.71
x?2 46.73 26.67 6.62 −13.44 −33.50
x?3 −14.04 32.93 79.91 126.88 173.86
x?4 −4.60 −25.47 −46.34 −67.20 −88.07

σ (x?) 12.02 13.44 16.54 20.58 25.10
φ 25.79 3.10 1.65 1.12 0.85

Table 3: Solving the unconstrained σ-problem

σ? 15.00 20.00 25.00 30.00 35.00
x?1 62.52 54.57 47.84 41.53 35.42
x?2 15.58 −10.75 −33.07 −54.00 −74.25
x?3 58.92 120.58 172.85 221.88 269.31
x?4 −37.01 −64.41 −87.62 −109.40 −130.48

µ (x?) 6.55 7.87 8.98 10.02 11.03
φ 2.08 1.17 0.86 0.68 0.57
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The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Adding some constraints

We have:

x? (γ) = arg min
1

2
x>Σx − γx>µ

u.c.

{
1>n x = 1
x ∈ Ω

where x ∈ Ω corresponds to the set of restrictions

Two classical constraints:

no short-selling restriction
xi ≥ 0

upper bound
xi ≤ c
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Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Adding some constraints

Figure 2: The efficient frontier with some weight constraints
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The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Adding some constraints

Table 4: Solving the σ-problem with weight constraints

xi ∈ R xi ≥ 0 0 ≤ xi ≤ 40%
σ? 15.00 20.00 15.00 20.00 15.00 20.00
x?1 62.52 54.57 45.59 24.88 40.00 6.13
x?2 15.58 −10.75 24.74 4.96 34.36 40.00
x?3 58.92 120.58 29.67 70.15 25.64 40.00
x?4 −37.01 −64.41 0.00 0.00 0.00 13.87

µ (x?) 6.55 7.87 6.14 7.15 6.11 6.74
φ 2.08 1.17 1.61 0.91 1.97 0.28
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The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Analytical solution

The Lagrange function is:

L (x ;λ0) = x>µ− φ

2
x>Σx + λ0

(
1>n x − 1

)
The first-order conditions are:{

∂x L (x ;λ0) = µ− φΣx + λ01n = 0n

∂λ0 L (x ;λ0) = 1>n x − 1 = 0

We obtain:
x = φ−1Σ−1 (µ+ λ01n)

Because 1>n x − 1 = 0, we have:

1>n φ
−1Σ−1µ+ λ0

(
1>n φ

−1Σ−11n

)
= 1

It follows that:

λ0 =
1− 1>n φ

−1Σ−1µ

1>n φ
−1Σ−11n
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Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Analytical solution

The solution is then:

x? (φ) =
Σ−11n

1>n Σ−11n
+

1

φ
·
(
1>n Σ−11n

)
Σ−1µ−

(
1>n Σ−1µ

)
Σ−11n

1>n Σ−11n

Remark

The global minimum variance portfolio is:

xmv = x? (∞) =
Σ−11n

1>n Σ−11n
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The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Analytical solution

In the case of no short-selling, the Lagrange function becomes:

L (x ;λ0, λ) = x>µ− φ

2
x>Σx + λ0

(
1>n x − 1

)
+ λ>x

where λ = (λ1, . . . , λn) ≥ 0n is the vector of Lagrange coefficients
associated with the constraints xi ≥ 0

The first-order condition is:

µ− φΣx + λ01+λ = 0n

The Kuhn-Tucker conditions are:

min (λi , xi ) = 0
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The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

The tangency portfolio

Markowitz

There are many optimized portfolios
⇒ there are many optimal portfolios

Tobin

One optimized portfolio dominates all
the others if there is a risk-free asset
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The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

The tangency portfolio

We consider a combination of the risk-free asset and a portfolio x :

R (y) = (1− α) r + αR (x)

where:

r is the return of the risk-free asset

y =

(
αx

1− α

)
is a vector of dimension (n + 1)

α ≥ 0 is the proportion of the wealth invested in the risky portfolio

It follows that:

µ (y) = (1− α) r + αµ (x) = r + α (µ (x)− r)

and:
σ2 (y) = α2σ2 (x)

We deduce that:

µ (y) = r +
(µ (x)− r)

σ (x)
σ (y)
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Black-Litterman model

The tangency portfolio

Figure 3: The capital market line (r = 1.5%)
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Portfolio optimization in the presence of a benchmark
Black-Litterman model

The tangency portfolio

Let SR (x | r) be the Sharpe ratio of portfolio x :

SR (x | r) =
µ (x)− r

σ (x)

We obtain:

µ (y)− r

σ (y)
=
µ (x)− r

σ (x)
⇔ SR (y | r) = SR (x | r)

The tangency portfolio is the one that maximizes the angle θ or
equivalently tan θ:

tan θ = SR (x | r) =
µ (x)− r

σ (x)

The tangency portfolio is the risky portfolio
corresponding to the maximum Sharpe ratio
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Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

The tangency portfolio

Example 2

We consider Example 1 and r = 1.5%

The composition of the tangency portfolio x? is:

x? =


63.63%
19.27%
50.28%
−33.17%


We have:

µ (x?) = 6.37%

σ (x?) = 14.43%

SR (x? | r) = 0.34

θ (x?) = 18.64 degrees
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The tangency portfolio

Let us consider a portfolio x of risky assets and a risk-free asset r . We
denote by x̃ the augmented vector of dimension n + 1 such that:

x̃ =

(
x
xr

)
and Σ̃ =

(
Σ 0n

0>n 0

)
and µ̃ =

(
µ
r

)
If we include the risk-free asset, the Markowitz γ-problem becomes:

x̃? (γ) = arg min
1

2
x̃>Σ̃x̃ − γx̃>µ̃

u.c. 1>n x̃ = 1

Two-fund separation theorem

We can show that (RPB, pages 13-14):

x̃? = α ·
(

x?0
0

)
︸ ︷︷ ︸

risky assets

+ (1− α) ·
(

0n

1

)
︸ ︷︷ ︸

risk-free asset
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The tangency portfolio

Figure 4: The efficient frontier with a risk-free asset
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Portfolio optimization in the presence of a benchmark
Black-Litterman model

Market equilibrium and CAPM

x? is the tangency portfolio

On the efficient frontier, we have:

µ (y) = r +
σ (y)

σ (x?)
(µ (x?)− r)

We consider a portfolio z with a proportion w invested in the asset i
and a proportion (1− w) invested in the tangency portfolio x?:

µ (z) = wµi + (1− w)µ (x?)

σ2 (z) = w2σ2
i + (1− w)2

σ2 (x?) + 2w (1− w) ρ (ei , x
?)σiσ (x?)

It follows that:

∂ µ (z)

∂ σ (z)
=

µi − µ (x?)

(wσ2
i + (w − 1)σ2 (x?) + (1− 2w) ρ (ei , x?)σiσ (x?))σ−1 (z)
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Market equilibrium and CAPM

1 When w = 0, we have:

∂ µ (z)

∂ σ (z)
=

µi − µ (x?)

(−σ2 (x?) + ρ (ei , x?)σiσ (x?))σ−1 (x?)

2 When w = 0, the portfolio z is the tangency portfolio x? and the
previous derivative is equal to the Sharpe ratio SR (x? | r)

We deduce that:

(µi − µ (x?))σ (x?)

ρ (ei , x?)σiσ (x?)− σ2 (x?)
=
µ (x?)− r

σ (x?)

which is equivalent to:

πi = µi − r = βi (µ (x?)− r)

with πi the risk premium of the asset i and:

βi =
ρ (ei , x

?)σi

σ (x?)
=

cov (Ri ,R (x?))

var (R (x?))
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Market equilibrium and CAPM

CAPM

The risk premium of the asset i is equal to its beta times the excess return
of the tangency portfolio

⇒ We can extend the previous result to the case of a portfolio x (and not
only to the asset i):

z = wx + (1− w) x?

In this case, we have:

π (x) = µ (x)− r = β (x | x?) (µ (x?)− r)
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Computation of the beta

The least squares method

Ri,t and Rt (x) be the returns of asset i and portfolio x at time t

βi is estimated with the linear regression:

Ri,t = αi + βiRt (x) + εi,t

For a portfolio y , we have:

Rt (y) = α + βRt (x) + εt
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Computation of the beta

The covariance method

Another way to compute the beta of portfolio y is to use the following
relationship:

β (y | x) =
σ (y , x)

σ2 (x)
=

y>Σx

x>Σx

We deduce that the expression of the beta of asset i is also:

βi = β (ei | x) =
e>i Σx

x>Σx
=

(Σx)i

x>Σx

The beta of a portfolio is the weighted average of the beta of the assets
that compose the portfolio:

β (y | x) =
y>Σx

x>Σx
= y>

Σx

x>Σx
=

n∑
i=1

yiβi
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Market equilibrium and CAPM

We have x? = (63.63%, 19.27%, 50.28%,−33.17%) and µ (x?) = 6.37%

Table 5: Computation of the beta and the risk premium (Example 2)

Portfolio y µ (y) µ (y)− r β (y | x?) π (y | x?)
e1 5.00 3.50 0.72 3.50
e2 6.00 4.50 0.92 4.50
e3 8.00 6.50 1.33 6.50
e4 6.00 4.50 0.92 4.50
xew 6.25 4.75 0.98 4.75

Example 2

We consider four assets. Their expected returns are equal to 5%, 6%, 8% and 6% while their volatilities are
equal to 15%, 20%, 25% and 30%. The correlation matrix of asset returns is given by the following matrix:

C =


1.00
0.10 1.00
0.40 0.70 1.00
0.50 0.40 0.80 1.00


The risk free rate is equal to r = 1.5%
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From active management to passive management

Active management

Sharpe (1964)
π (x) = β (x | x?)π (x?)

Jensen (1969)
Rt (x) = α + βRt (b) + εt

where Rt (x) is the fund return and Rt (b) is the benchmark return

Passive management (John McQuown, WFIA, 1971)

Active management = Alpha

Passive management = Beta
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Impact of the constraints

If we impose a lower bound xi ≥ 0, the tangency portfolio becomes
x? = (53.64%, 32.42%, 13.93%, 0.00%) and we have µ (x?) = 5.74%

Table 6: Computation of the beta with a constrained tangency portfolio

Portfolio µ (y)− r β (y | x?) π (y | x?)
e1 3.50 0.83 3.50
e2 4.50 1.06 4.50
e3 6.50 1.53 6.50
e4 4.50 1.54 6.53
xew 4.75 1.24 5.26

⇒ µ4 − r = β4 (µ (x?)− r) + π−4 where π−4 ≤ 0 represents a negative
premium due to a lack of arbitrage on the fourth asset

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 52 / 1420



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Tracking error

Portfolio x = (x1, . . . , xn)

Benchmark b = (b1, . . . , bn)

The tracking error between the active portfolio x and its benchmark b
is the difference between the return of the portfolio and the return of
the benchmark:

e = R (x)− R (b) =
n∑

i=1

xiRi −
n∑

i=1

biRi = x>R − b>R = (x − b)> R

The expected excess return is:

µ (x | b) = E [e] = (x − b)> µ

The volatility of the tracking error is:

σ (x | b) = σ (e) =

√
(x − b)> Σ (x − b)
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Markowitz optimization problem

The expected return of the portfolio is replaced by the expected excess
return and the volatility of the portfolio is replaced by the volatility of the
tracking error

σ-problem

The objective of the investor is to maximize the expected tracking error
with a constraint on the tracking error volatility:

x? = arg maxµ (x | b)

u.c.

{
1>n x = 1
σ (x | b) ≤ σ?
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Equivalent QP problem

We transform the σ-problem into a γ-problem:

x? (γ) = arg min f (x | b)

with:

f (x | b) =
1

2
(x − b)>Σ (x − b)− γ (x − b)> µ

=
1

2
x>Σx − x> (γµ+ Σb) +

(
1

2
b>Σb + γb>µ

)
=

1

2
x>Σx − x> (γµ+ Σb) + c

where c is a constant which does not depend on Portfolio x

QP problem with Q = Σ and R = γµ+ Σb

Remark

The efficient frontier is the parametric curve (σ (x? (γ) | b) , µ (x? (γ) | b))
with γ ∈ R+
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Efficient frontier with a benchmark

Example 3

We consider four assets. Their expected returns are equal to 5%, 6%, 8%
and 6% while their volatilities are equal to 15%, 20%, 25% and 30%. The
correlation matrix of asset returns is given by the following matrix:

C =


1.00
0.10 1.00
0.40 0.70 1.00
0.50 0.40 0.80 1.00


The benchmark of the portfolio manager is equal to
b = (60%, 40%, 20%,−20%)

1st case: No constraint

2nd case: x−i ≤ xi with x−i = −10%

3rd case: x−i ≤ xi ≤ x+
i with x−1 = x−2 = x−3 = 0%, x−4 = −20% and x+

i = 50%
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Efficient frontier with a benchmark

Figure 5: The efficient frontier with a benchmark (Example 3)
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Information ratio

Definition

The information ratio is defined as follows:

IR (x | b) =
µ (x | b)

σ (x | b)
=

(x − b)> µ√
(x − b)>Σ (x − b)
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Information ratio

If we consider a combination of the benchmark b and the active portfolio
x , the composition of the portfolio is:

y = (1− α) b + αx

with α ≥ 0 the proportion of wealth invested in the portfolio x . It follows
that:

µ (y | b) = (y − b)> µ = αµ (x | b)

and:
σ2 (y | b) = (y − b)>Σ (y − b) = α2σ2 (x | b)

We deduce that:
µ (y | b) = IR (x | b) · σ (y | b)

The efficient frontier is a straight line
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Tangency portfolio

If we add some constraints, the portfolio optimization problem becomes:

x? (γ) = arg min
1

2
x>Σx − x> (γµ+ Σb)

u.c.

{
1>n x = 1
x ∈ Ω

The efficient frontier is no longer a straight line

Tangency portfolio

One optimized portfolio dominates all the other portfolios. It is the
portfolio which belongs to the efficient frontier and the straight line which
is tangent to the efficient frontier. It is also the portfolio which maximizes
the information ratio
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Constrained efficient frontier with a benchmark

Figure 6: The tangency portfolio with respect to a benchmark (Example 3, 3rd

case)
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Tangency portfolio

If x−i ≤ xi ≤ x+
i with x−1 = x−2 = x−3 = 0%, x−4 = −20% and x+

i = 50%,
the tangency portfolio is equal to:

x? =


49.51%
29.99%
40.50%
−20.00%


If r = 1.5%, we recall that the MSR (maximum Sharpe ratio) portfolio is
equal to:

x? =


63.63%
19.27%
50.28%
−33.17%
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When the benchmark is the risk-free rate

The Markowitz-Tobin-Sharpe approach is obtained when the benchmark is
the risk-free asset r . We have:

x̃ =

(
x
0

)
and b̃ =

(
0n

1

)
It follows that:

Σ̃ =

(
Σ 0n

0>n 0

)
and µ̃ =

(
µ
r

)
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When the benchmark is the risk-free rate

The objective function is then defined as follows:

f
(
x̃ | b̃

)
=

1

2

(
x̃ − b̃

)>
Σ
(
x̃ − b̃

)
− γ

(
x̃ − b̃

)>
µ

=
1

2
x̃>Σ̃x̃ − x̃>

(
γµ̃+ Σ̃b̃

)
+

(
1

2
b̃>Σ̃b̃ + γb̃>µ̃

)
=

1

2
x>Σx − γ

(
x>µ− r

)
=

1

2
x>Σx − γx> (µ− r1n)
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When the benchmark is the risk-free rate

The solution of the QP problem x̃? (γ) = arg min f
(
x̃ | b̃

)
is related to

the solution x? (γ) of the Markowitz γ-problem in the following way:

x̃? (γ) =

(
x? (γ)

0

)
We have σ

(
x̃? (γ) | b̃

)
= σ (x? (φ))

Remark

⇒The MSR portfolio is obtained by replacing the vector µ of expected
returns by the vector µ− r1n of expected excess returns. We have:

SR (x? (γ) | r) = IR
(
x̃? (γ) | b̃

)
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Black-Litterman model

Tactical asset allocation (TAA) model

How to incorporate portfolio manager’s views in a strategic asset
allocation (SAA)?

Two-step approach:

1 Initial allocation ⇒ implied risk premia (Sharpe)

2 Portfolio optimization ⇒ coherent with the bets of the portfolio
manager (Markowitz)
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Implied risk premium

x? = arg min
1

2
x>Σx − γx> (µ− r1n)

u.c.

{
1>n x = 1
x ∈ Ω

If the constraints are satisfied, the first-order condition is:

Σx − γ (µ− r1n) = 0n

The solution is:
x? = γΣ−1 (µ− r1n)

In the Markowitz model, the unknown variable is the vector x
If the initial allocation x0 is given, it must be optimal for the investor,
implying that:

µ̃ = r1n +
1

γ
Σx0

µ̃ is the vector of expected returns which is coherent with x0
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Implied risk premium

We deduce that:

π̃ = µ̃− r

=
1

γ
Σx0

The variable π̃ is:

the risk premium priced by the portfolio manager

the ‘implied risk premium’ of the portfolio manager

the ‘market risk premium’ when x0 is the market portfolio
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Implied risk aversion

The computation of µ̃ needs to the value of the parameter γ or the risk
aversion φ = γ−1

Since we have Σx0 − γ (µ̃− r1n) = 0n, we deduce that:

(∗) ⇔ γ (µ̃− r1n) = Σx0

⇔ γ
(
x>0 µ̃− rx>0 1n

)
= x>0 Σx0

⇔ γ
(
x>0 µ̃− r

)
= x>0 Σx0

⇔ γ =
x>0 Σx0

x>0 µ̃− r

It follows that

φ =
x>0 µ̃− r

x>0 Σx0
=

SR (x0 | r)√
x>0 Σx0

=
SR (x0 | r)

σ (x0)

where SR (x0 | r) is the portfolio’s expected Sharpe ratio
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Implied risk aversion

We have:

µ̃ = r + SR (x0 | r)
Σx0√
x>0 Σx0

and:

π̃ = SR (x0 | r)
Σx0√
x>0 Σx0
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Implied risk premium

Example 4

We consider Example 1 and we suppose that the initial allocation x0 is
(40%, 30%, 20%, 10%)

The volatility of the portfolio is equal to:

σ (x0) = 15.35%

The objective of the portfolio manager is to target a Sharpe ratio
equal to 0.25

We obtain φ = 1.63

If r = 3%, the implied expected returns are:

µ̃ =


5.47%
6.68%
8.70%
9.06%
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Specification of the bets

Black and Litterman assume that µ is a Gaussian vector with expected
returns µ̃ and covariance matrix Γ:

µ ∼ N (µ̃, Γ)

The portfolio manager’s views are given by this relationship:

Pµ = Q + ε

where P is a (k × n) matrix, Q is a (k × 1) vector and ε ∼ N (0,Ω) is a
Gaussian vector of dimension k

If the portfolio manager has two views, the matrix P has two rows ⇒
k is then the number of views

Ω is the covariance matrix of Pµ− Q, therefore it measures the
uncertainty of the views
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Absolute views

We consider the three-asset case:

µ =

 µ1

µ2

µ3


The portfolio manager has an absolute view on the expected return of
the first asset:

µ1 = q1 + ε1

We have:

P =
(

1 0 0
)

, Q = q1, ε = ε1 and Ω = ω2
1

If ω1 = 0, the portfolio manager has a very high level of confidence. If
ω1 6= 0, his view is uncertain
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Absolute views

The portfolio manager has an absolute view on the expected return of
the second asset:

µ2 = q2 + ε2

We have:

P =
(

0 1 0
)

, Q = q2, ε = ε2 and Ω = ω2
2

The portfolio manager has two absolute views:

µ1 = q1 + ε1

µ2 = q2 + ε2

We have:

P =

(
1 0 0
0 1 0

)
, Q =

(
q1

q2

)
, ε =

(
ε1

ε2

)
and Ω =

(
ω2

1 0
0 ω2

2

)
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Relative views

The portfolio manager thinks that the outperformance of the first
asset with respect to the second asset is q:

µ1 − µ2 = q1|2 + ε1|2

We have:

P =
(

1 −1 0
)

, Q = q1|2, ε = ε1|2 and Ω = ω2
1|2
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Portfolio optimization

The Markowitz optimization problem becomes:

x? (γ) = arg min
1

2
x>Σx − γx> (µ̄− r1n)

u.c. 1>n x = 1

where µ̄ is the vector of expected returns conditional to the views:

µ̄ = E [µ | views]

= E [µ | Pµ = Q + ε]

= E [µ | Pµ− ε = Q]

To compute µ̄, we consider the random vector:(
µ

ν = Pµ− ε

)
∼ N

((
µ̃
Pµ̃

)
,

(
Γ ΓP>

PΓ PΓP> + Ω

))

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 76 / 1420



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Conditional distribution in the case of the normal
distribution

Let us consider a Gaussian random vector defined as follows:(
X
Y

)
∼ N

((
µx

µy

)
,

(
Σx,x Σx,y

Σy ,x Σy ,y

))
We have:

Y | X = x ∼ N
(
µy |x ,Σy ,y |x

)
where:

µy |x = E [Y | X = x ] = µy + Σy ,x Σ−1
x,x (x − µx )

and:
Σy ,y |x = cov (Y | X = x) = Σy ,y − Σy ,x Σ−1

x,x Σx,y
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Computation of the conditional expectation

We apply the conditional expectation formula:

µ̄ = E [µ | ν = Q]

= E [µ] + cov (µ, v) var (v)−1 (Q − E [v ])

= µ̃+ ΓP>
(
PΓP> + Ω

)−1
(Q − Pµ̃)

The conditional expectation µ̄ has two components:

1 The first component corresponds to the vector of implied expected
returns µ̃

2 The second component is a correction term which takes into account
the disequilibrium (Q − Pµ̃) between the manager views and the
market views
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Computation of the conditional covariance matrix

The condition covariance matrix is equal to:

Σ̄ = var (µ | ν = Q)

= Γ− ΓP>
(
PΓP> + Ω

)−1
PΓ

Another expression is:

Σ̄ =
(
In + ΓP>Ω−1P

)−1
Γ

=
(
Γ−1 + P>Ω−1P

)−1

The conditional covariance matrix is a weighted average of the covariance
matrix Γ and the covariance matrix Ω of the manager views.
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Choice of covariance matrices

Choice of Σ

From a theoretical point of view, we
have:

Σ = Σ̄ =
(
Γ−1 + P>Ω−1P

)−1

In practice, we use:

Σ = Σ̂

Choice of Γ

We assume that:

Γ = τΣ

We can also target a tracking error
volatility and deduce τ
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Numerical implementation of the model

The five-step approach to implement the Black-Litterman model is:

1 We estimate the empirical covariance matrix Σ̂ and set Σ = Σ̂

2 Given the current portfolio, we compute the implied risk aversion
φ = γ−1 and we deduce the vector µ̃ of implied expected returns

3 We specify the views by defining the P, Q and Ω matrices

4 Given a matrix Γ, we compute the conditional expectation µ̄

5 We finally perform the portfolio optimization with Σ̂, µ̄ and γ
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Illustration

We use Example 4 and impose that the optimized weights are positive

The portfolio manager has an absolute view on the first asset and a
relative view on the second and third assets:

P =

(
1 0 0 0
0 1 −1 0

)
, Q =

(
q1

q2−3

)
and Ω =

(
$2

1 0
0 $2

2−3

)
q1 = 4%, q2−3 = −1%, $1 = 10% and $2−3 = 5%
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Illustration

Case #1: τ = 1

Case #2: τ = 1 and q1 = 7%

Case #3: τ = 1 and $1 = $2−3 = 20%

Case #4: τ = 10%

Case #5: τ = 1%
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Illustration

Table 7: Black-Litterman portfolios

#0 #1 #2 #3 #4 #5
x?1 40.00 33.41 51.16 36.41 38.25 39.77
x?2 30.00 51.56 39.91 42.97 42.72 32.60
x?3 20.00 5.46 0.00 10.85 9.14 17.65
x?4 10.00 9.58 8.93 9.77 9.89 9.98

σ (x? | x0) 0.00 3.65 3.67 2.19 2.18 0.45
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Illustration

To calibrate the parameter τ , we could target a tracking error volatility σ?:

If σ? = 2%, the optimized portfolio is between portfolios #4
(σ (x? | x0) = 2.18%) and #5 (σ (x? | x0) = 0.45%)

The optimal value of τ is between 10% and 1%

Using a bisection algorithm, we obtain τ = 5.2%

The optimal portfolio is:

x? =


36.80%
41.83%
11.58%
9.79%
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Empirical estimator

We have:

Σ̂ =
1

T

T∑
t=1

(
Rt − R̄

) (
Rt − R̄

)>
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Asynchronous markets'
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Figure 7: Trading hours of asynchronous markets (UTC time)
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Asynchronous markets

Figure 8: Density of the estimator ρ̂ with asynchronous returns (ρ = 70%)
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Asynchronous markets

Figure 9: Hayashi-Yoshida estimator
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Hayashi-Yoshida estimator

We have:

Σ̃i,j =
1

T

T∑
t=1

(
Ri,t − R̄i

) (
Rj,t − R̄j

)
+

1

T

T∑
t=1

(
Ri,t − R̄i

) (
Rj,t−1 − R̄j

)
where j is the equity index which has a closing time after the equity index
i . In our case, j is necessarily the S&P 500 index whereas i can be the
Topix index or the Eurostoxx index. This estimator has two components:

1 The first component is the classical covariance estimator Σ̂i,j

2 The second component is a correction to take into account the lag
between the two closing times
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Other statistical methods

EWMA methods

GARCH models

Factor models

Uniform correlation
ρi,j = ρ

Sector approach (inter-correlation and intra-correlation)
Linear factor models:

Ri,t = A>i Ft + εi,t
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Economic/econometric approach

Market timing (MT)

Tactical asset allocation (TAA)

Strategic asset allocation (SAA)

�

�

�

�
-‖ ‖

MT TAA SAA

1 Day – 1 Month 3 Months – 3 Years 7 Years – 50 Years

Figure 10: Time horizon of MT, TAA and SAA
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Statistical/scoring approach

Stock picking models: fundamental scoring, value, quality, sector
analysis, etc.

Bond picking models: fundamental scoring, structural model, credit
arbitrage model, etc.

Statistical models: mean-reverting, trend-following, cointegration, etc.

Machine learning: return forecasting, scoring model, etc.

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 93 / 1420



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Covariance matrix
Expected returns
Regularization of optimized portfolios
Adding constraints

Stability issues

Example 5

We consider a universe of 3 assets. The parameters are: µ1 = µ2 = 8%,
µ3 = 5%, σ1 = 20%, σ2 = 21%, σ3 = 10% and ρi,j = 80%. The objective
is to maximize the expected return for a 15% volatility target. The optimal
portfolio is (38.3%, 20.2%, 41.5%).

Table 8: Sensitivity of the MVO portfolio to input parameters

ρ 70% 90% 90%
σ2 18% 18%
µ1 9%
x1 38.3 38.3 44.6 13.7 −8.0 60.6
x2 20.2 25.9 8.9 56.1 74.1 −5.4
x3 41.5 35.8 46.5 30.2 34.0 44.8
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Solutions

In order to stabilize the optimal portfolio, we have to introduce some
regularization techniques:

Resampling techniques

Factor analysis

Shrinkage methods

Random matrix theory

Norm penalization

Etc.
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Resampling techniques

Jacknife

Cross validation

Hold-out
K-fold

Bootstrap

Resubstitution
Out of the bag
.632
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Resampling techniques

Example 6

We consider a universe of four assets. The expected returns are µ̂1 = 5%,
µ̂2 = 9%, µ̂3 = 7% and µ̂4 = 6% whereas the volatilities are equal to
σ̂1 = 4%, σ̂2 = 15%, σ̂3 = 5% and σ̂4 = 10%. The correlation matrix is
the following:

Ĉ =


1.00
0.10 1.00
0.40 0.20 1.00
−0.10 −0.10 −0.20 1.00
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Resampling techniques

Figure 11: Uncertainty of the efficient frontier
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Resampling techniques

Figure 12: Resampled efficient frontier
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Resampling techniques

Figure 13: S&P 100 resampled efficient frontier (Bootstrap approach)

Source: Bruder et al. (2013)
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How to denoise the covariance matrix?

1 Factor analysis by imposing a correlation structure (MSCI Barra)

2 Factor analysis by filtering the correlation structure (APT)

3 Principal component analysis

4 Random matrix theory

5 Shrinkage methods
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How to denoise the covariance matrix?

The eigendecomposition Σ̂ of is

Σ̂ = VΛV>

where Λ = diag (λ1, . . . , λn) is the diagonal matrix of eigenvalues
with λ1 > λ2 > . . . > λn and V is an orthonormal matrix

The endogenous factors are Ft = Λ−1/2V>Rt

By considering only the m first components, we can build an
estimation of Σ with less noise
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How to denoise the covariance matrix?

Choice of m

1 We keep factors that explain more than 1/n of asset variance:

m = sup {i : λi ≥ (λ1 + . . .+ λn) /n}

2 Laloux et al. (1999) propose to use the random matrix theory (RMT)

1 The maximum eigenvalue of a random matrix M is equal to:

λmax = σ2
(

1 + n/T + 2
√

n/T
)

where T is the sample size
2 We keep the first m factors such that:

m = sup {i : λi > λmax}
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How to denoise the covariance matrix?

Shrinkage methods

Σ̂ is an unbiased estimator, but its convergence is very slow

Φ̂ is a biased estimator that converges more quickly

Ledoit and Wolf (2003) propose to combine Σ̂ and Φ̂:

Σ̂α = αΦ̂ + (1− α) Σ̂

The value of α is estimated by minimizing a quadratic loss:

α? = arg minE
[∥∥∥αΦ̂ + (1− α) Σ̂− Σ

∥∥∥2
]

They find an analytical expression of α? when:

Φ̂ has a constant correlation structure

Φ̂ corresponds to a factor model or is deduced from PCA
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How to denoise the covariance matrix?

Example 7 (equity correlation matrix)

We consider a universe with eight equity indices: S&P 500, Eurostoxx,
FTSE 100, Topix, Bovespa, RTS, Nifty and HSI. The study period is
January 2005–December 2011 and we use weekly returns.

The empirical correlation matrix is:

Ĉ =



1.00
0.88 1.00
0.88 0.94 1.00
0.64 0.68 0.65 1.00
0.77 0.76 0.78 0.61 1.00
0.56 0.61 0.61 0.50 0.64 1.00
0.53 0.61 0.57 0.53 0.60 0.57 1.00
0.64 0.68 0.67 0.68 0.68 0.60 0.66 1.00
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How to denoise the covariance matrix?

Uniform correlation
ρ̂ = 66.24%

One common factor + two specific factors

Ĉ =



1.00
0.77 1.00
0.77 0.77 1.00
0.77 0.77 0.77 1.00
0.50 0.50 0.50 0.50 1.00
0.50 0.50 0.50 0.50 0.59 1.00
0.50 0.50 0.50 0.50 0.59 0.59 1.00
0.50 0.50 0.50 0.50 0.59 0.59 0.59 1.00
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How to denoise the covariance matrix?

Two-linear factor model

Ĉ =



1.00
0.88 1.00
0.88 0.94 1.00
0.63 0.67 0.66 1.00
0.73 0.78 0.78 0.63 1.00
0.58 0.62 0.60 0.54 0.59 1.00
0.56 0.59 0.58 0.56 0.60 0.54 1.00
0.64 0.68 0.66 0.65 0.69 0.62 0.67 1.00
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How to denoise the covariance matrix?

RMT estimation

Ĉ =



1.00
0.73 1.00
0.72 0.76 1.00
0.61 0.64 0.64 1.00
0.72 0.76 0.75 0.64 1.00
0.71 0.75 0.74 0.63 0.74 1.00
0.63 0.66 0.65 0.56 0.66 0.65 1.00
0.68 0.72 0.71 0.60 0.71 0.70 0.62 1.00
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How to denoise the covariance matrix?

Ledoit-Wolf shrinkage estimation (constant correlation matrix)

Ĉ =



1.00
0.77 1.00
0.77 0.80 1.00
0.65 0.67 0.65 1.00
0.72 0.71 0.72 0.63 1.00
0.61 0.64 0.63 0.58 0.65 1.00
0.60 0.64 0.62 0.60 0.63 0.62 1.00
0.65 0.67 0.67 0.67 0.67 0.63 0.66 1.00


We obtain:

α? = 51.2%

What does this result become in the case of a multi-asset-class
universe?

α? ' 0
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Why standard regularization techniques are not sufficient

Optimized portfolios are solutions of the following quadratic program:

x? (γ) = arg min
1

2
x>Σx − γx>µ

u.c.

{
1>n x = 1
x ∈ Rn

We have:

x? (γ) =
Σ−11n

1>n Σ−11n
+ γ ·

(
1>n Σ−11n

)
Σ−1µ−

(
1>n Σ−1µ

)
Σ−11n

1>n Σ−11n
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Why standard regularization techniques are not sufficient

Optimal solutions are of the following form:

x? ∝ f
(
Σ−1

)

The important quantity is then the precision matrix I = Σ−1,
not the covariance matrix Σ
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Why standard regularization techniques are not sufficient

For the covariance matrix Σ, we have:

Σ = VΛV>

where V−1 = V> and Λ = (λ1, . . . , λn) with λ1 ≥ . . . ≥ λn the
ordered eigenvalues

The decomposition for the precisions matrix is

I = U∆U>

We have:

Σ−1 =
(
VΛV>

)−1

=
(
V>
)−1

Λ−1V−1

= VΛ−1V>

We deduce that U = V and δi = 1/λn−i+1
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Why standard regularization techniques are not sufficient

Remark

The eigenvectors of the precision matrix are the same as those of the
covariance matrix, but the eigenvalues of the precision matrix are the
inverse of the eigenvalues of the covariance matrix. This means that the
risk factors are the same, but they are in the reverse order
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Why standard regularization techniques are not sufficient

Example 8

We consider a universe of 3 assets, where µ1 = µ2 = 8%, µ3 = 5%,
σ1 = 20%, σ2 = 21%, σ3 = 10% and ρi,j = 80%.

The eigendecomposition of the covariance and precision matrices is:

Covariance matrix Σ Information matrix I
Asset / Factor 1 2 3 1 2 3

1 65.35% −72.29% −22.43% −22.43% −72.29% 65.35%
2 69.38% 69.06% −20.43% −20.43% 69.06% 69.38%
3 30.26% −2.21% 95.29% 95.29% −2.21% 30.26%

Eigenvalue 8.31% 0.84% 0.26% 379.97 119.18 12.04
% cumulated 88.29% 97.20% 100.00% 74.33% 97.65% 100.00%

⇒ It means that the first factor of the information matrix corresponds to
the last factor of the covariance matrix and that the last factor of the
information matrix corresponds to the first factor.

⇒ Optimization on arbitrage risk factors, idiosyncratic risk factors and
(certainly) noise factors!
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Why standard regularization techniques are not sufficient

Example 9

We consider a universe of 6 assets. The volatilities are respectively equal to
20%, 21%, 17%, 24%, 20% and 16%. For the correlation matrix, we have:

ρ =


1.00
0.40 1.00
0.40 0.40 1.00
0.50 0.50 0.50 1.00
0.50 0.50 0.50 0.60 1.00
0.50 0.50 0.50 0.60 0.60 1.00


⇒ We compute the minimum variance (MV) portfolio with a shortsale
constraint
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Why standard regularization techniques are not sufficient

Table 9: Effect of deleting a PCA factor

x? MV λ1 = 0 λ2 = 0 λ3 = 0 λ4 = 0 λ5 = 0 λ6 = 0
x?1 15.29 15.77 20.79 27.98 0.00 13.40 0.00
x?2 10.98 16.92 1.46 12.31 0.00 8.86 0.00
x?3 34.40 12.68 35.76 28.24 52.73 53.38 2.58
x?4 0.00 22.88 0.00 0.00 0.00 0.00 0.00
x?5 1.01 17.99 2.42 0.00 15.93 0.00 0.00
x?6 38.32 13.76 39.57 31.48 31.34 24.36 97.42
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Why standard regularization techniques are not sufficient

Figure 14: PCA applied to the stocks of the FTSE index (June 2012)
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Arbitrage factors, hedging factors or risk factors

We consider the following linear regression model:

Ri,t = β0 + β>i R
(−i)
t + εi,t

R
(−i)
t denotes the vector of asset returns Rt excluding the i th asset

εi,t ∼ N (0, s2
i )

R2
i is the R-squared of the linear regression

Precision matrix

Stevens (1998) shows that the precision matrix is given by:

Ii,i =
1

σ̂2
i (1−R2

i )
and Ii,j = − β̂i,j

σ̂2
i (1−R2

i )
= − β̂j,i

σ̂2
j

(
1−R2

j

)
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Arbitrage factors, hedging factors or risk factors

Example 10

We consider a universe of four assets. The expected returns are µ̂1 = 7%,
µ̂2 = 8%, µ̂3 = 9% and µ̂4 = 10% whereas the volatilities are equal to
σ̂1 = 15%, σ̂2 = 18%, σ̂3 = 20% and σ̂4 = 25%. The correlation matrix is
the following:

Ĉ =


1.00
0.50 1.00
0.50 0.50 1.00
0.60 0.50 0.40 1.00


We do not impose that the sum of weights are equal to 100%
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Arbitrage factors, hedging factors or risk factors

Table 10: Hedging portfolios when ρ3,4 = 40%

Asset β̂i R2
i ŝi µ̄i x?

1 0.139 0.187 0.250 45.83% 11.04% 1.70% 69.80%
2 0.230 0.268 0.191 37.77% 14.20% 2.06% 51.18%
3 0.409 0.354 0.045 33.52% 16.31% 2.85% 53.66%
4 0.750 0.347 0.063 41.50% 19.12% 1.41% 19.28%

Table 11: Hedging portfolios when ρ3,4 = 95%

Asset β̂i R2
i ŝi µ̄i x?

1 0.244 −0.595 0.724 47.41% 10.88% 3.16% 133.45%
2 0.443 0.470 −0.157 33.70% 14.66% 2.23% 52.01%
3 −0.174 0.076 0.795 91.34% 5.89% 1.66% 239.34%
4 0.292 −0.035 1.094 92.38% 6.90% −1.61% −168.67%
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Arbitrage factors, hedging factors or risk factors

Table 12: Hedging portfolios (in %) at the end of 2006

SPX SX5E TPX RTY EM US HY EMBI EUR JPY GSCI
SPX 58.6 6.0 150.3 -30.8 -0.5 5.0 -7.3 15.3 -25.5
SX5E 9.0 -1.2 -1.3 35.2 0.8 3.2 -4.5 -5.0 -1.5
TPX 0.4 -0.6 -2.4 38.1 1.1 -3.5 -4.9 -0.8 -0.3
RTY 48.6 -2.7 -10.4 26.2 -0.6 1.9 0.2 -6.4 5.6
EM -4.1 30.9 69.2 10.9 0.9 4.6 9.1 3.9 33.1
US HY -5.0 53.5 160.0 -18.8 69.5 95.6 48.4 31.4 -211.7
EMBI 10.8 44.2 -102.1 12.3 73.4 19.4 -5.8 40.5 86.2
EUR -3.6 -14.7 -33.4 0.3 33.8 2.3 -1.4 56.7 48.2
JPY 6.8 -14.5 -4.8 -8.8 12.7 1.3 8.4 50.4 -33.2
GSCI -1.1 -0.4 -0.2 0.8 10.7 -0.9 1.8 4.2 -3.3
ŝi 0.3 0.7 0.9 0.5 0.7 0.1 0.2 0.4 0.4 1.2
R2

i 83.0 47.7 34.9 82.4 60.9 39.8 51.6 42.3 43.7 12.1

Source: Bruder et al. (2013)
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Arbitrage factors, hedging factors or risk factors

We finally obtain:

x?i (γ) = γ
µi − β̂>i µ(−i)

ŝ2
i

From this equation, we deduce the following conclusions:

1 The better the hedge, the higher the exposure. This is why highly
correlated assets produces unstable MVO portfolios

2 The long/short position is defined by the sign of µi − β̂>i µ(−i). If the
expected return of the asset is lower than the conditional expected
return of the hedging portfolio, the weight is negative

�
�

�
Markowitz diversification 6= Diversification of risk factors

= Concentration on arbitrage factors
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QP problem

We use the following formulation of the QP problem:

x? = arg min
1

2
x>Qx − x>R

u.c.

 Ax = B
Cx ≤ D
x− ≤ x ≤ x+
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Standard constraints

γ-problem

arg min
1

2
x>Σx − γx> (µ− r1n)⇒

{
Q = Σ
R = γµ

Full allocation

1>n x = 1⇒
{

A = 1>n
B = 1

No short selling
xi ≥ 0⇒ x− = 0n

Cash neutral (and portfolio optimization with unfunded strategies)

1>n x = 0⇒
{

A = 1>n
B = 0

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 124 / 1420



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Covariance matrix
Expected returns
Regularization of optimized portfolios
Adding constraints

Asset class constraints

Example 11

We consider a multi-asset universe of eight asset classes represented by the
following indices:

four equity indices: S&P 500, Eurostoxx, Topix, MSCI EM

two bond indices: EGBI, US BIG

two alternatives indices: GSCI, EPRA

The portfolio manager wants the following exposures:

at least 50% bonds

less than 10% commodities

Emerging market equities cannot represent more than one third of the
total exposure on equities
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Asset class constraints

The constraints are then expressed as follows:
x5 + x6 ≥ 50%
x7 ≤ 10%
x4 ≤ 1

3 (x1 + x2 + x3 + x4)

The corresponding formulation Cx ≤ D of the QP problem is:

 0 0 0 0 −1 −1 0 0
0 0 0 0 0 0 1 0

−1/3 −1/3 −1/3 2/3 0 0 0 0





x1

x2

x3

x4

x5

x6

x7

x8


≤

 −0.50
0.10
0.00
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Non-standard constraints (turnover management)

We want to limit the turnover of the long-only optimized portfolio
with respect to a current portfolio x0:

Ω =

{
x ∈ [0, 1]n :

n∑
i=1

∣∣xi − x0
i

∣∣ ≤ τ+

}

where τ+ is the maximum turnover

Scherer (2007) proposes to introduce some additional variables x−i
and x+

i such that:
xi = x0

i + ∆x+
i −∆x−i

with ∆x−i ≥ 0 and ∆x+
i ≥ 0

∆x+
i indicates a positive weight change with respect to the initial

weight x0
i

∆x−i indicates a negative weight change with respect to the initial
weight x0

i
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Non-standard constraints (turnover management)

The expression of the turnover becomes:

n∑
i=1

∣∣xi − x0
i

∣∣ =
n∑

i=1

∣∣∆x+
i −∆x−i

∣∣ =
n∑

i=1

∆x+
i +

n∑
i=1

∆x−i

We obtain the following γ-problem:

x? = arg min
1

2
x>Σx − γx>µ

u.c.



∑n
i=1 xi = 1

xi = x0
i + ∆x+

i −∆x−i∑n
i=1 ∆x+

i +
∑n

i=1 ∆x−i ≤ τ+

0 ≤ xi ≤ 1
0 ≤ ∆x−i ≤ 1
0 ≤ ∆x+

i ≤ 1
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Non-standard constraints (turnover management)

We obtain an augmented QP problem of dimension 3n instead of n:

X ? = arg min
1

2
X>QX − X>R

u.c.

 AX = B
CX ≤ D
03n ≤ X ≤ 13n

where X is a 3n × 1 vector:

X =
(
x1, . . . , xn,∆x−1 , . . . ,∆x−n ,∆x+

1 , . . . ,∆x+
n

)
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Non-standard constraints (turnover management)

The augmented QP matrices are:

Q3n×3n =

 Σ 0n×n 0n×n

0n×n 0n×n 0n×n

0n×n 0n×n 0n×n

 , R3n×1 =

 γµ
0n

0n

 ,

A(n+1)×3n =

(
1>n 0>n 0>n
In In −In

)
, B(n+1)×1 =

(
1
x0

)
,

C1×3n =
(

0>n 1>n 1>n
)

and D1×1 = τ+
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Non-standard constraints (turnover management)

Example 12

We consider four assets. Their expected returns are equal to 5%, 6%, 8%
and 6% while their volatilities are equal to 15%, 20%, 25% and 30%. The
correlation matrix of asset returns is given by the following matrix:

ρ =


1.00
0.10 1.00
0.40 0.70 1.00
0.50 0.40 0.80 1.00


We impose that the weights are positive

The optimal portfolio x? for a 15% volatility target is
(45.59%, 24.74%, 29.67%, 0.00%)

We assume that the current portfolio x0 is (30%, 45%, 15%, 10%)

If we move directly from portfolio x0 to portfolio x?, the turnover is
equal to 60.53%
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Non-standard constraints (turnover management)

Table 13: Limiting the turnover of MVO portfolios

τ+ 5.00 10.00 25.00 50.00 75.00 x0

x?1 35.00 36.40 42.34 45.59 30.00
x?2 45.00 42.50 30.00 24.74 45.00
x?3 15.00 21.10 27.66 29.67 15.00
x?4 5.00 0.00 0.00 0.00 10.00

µ (x?) 5.95 6.06 6.13 6.14 6.00
σ (x?) 15.00 15.00 15.00 15.00 15.69

τ
(
x? | x0

)
10.00 25.00 50.00 60.53
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Non-standard constraints (transaction cost management)

Let c−i and c+
i be the bid and ask transactions costs. The net expected

return is equal to:

µ (x) =
n∑

i=1

xiµi −
n∑

i=1

∆x−i c−i −
n∑

i=1

∆x+
i c+

i

The γ-problem becomes:

x? = arg min
1

2
x>Σx − γ

(
n∑

i=1

xiµi −
n∑

i=1

∆x−i c−i −
n∑

i=1

∆x+
i c+

i

)

u.c.



∑n
i=1

(
xi + ∆x−i c−i + ∆x+

i c+
i

)
= 1

xi = x0
i + ∆x+

i −∆x−i
0 ≤ xi ≤ 1
0 ≤ ∆x−i ≤ 1
0 ≤ ∆x+

i ≤ 1
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Non-standard constraints (transaction cost management)

The augmented QP problem becomes:

X ? = arg min
1

2
X>QX − X>R

u.c.

{
AX = B
03n ≤ X ≤ 13n

where X is a 3n × 1 vector:

X =
(
x1, . . . , xn,∆x−1 , . . . ,∆x−n ,∆x+

1 , . . . ,∆x+
n

)
and:

Q3n×3n =

 Σ 0n×n 0n×n

0n×n 0n×n 0n×n

0n×n 0n×n 0n×n

 , R3n×1 =

 γµ
−c−
−c+

 ,

A(n+1)×3n =

(
1>n (c−)

>
(c+)

>

In In −In

)
and B(n+1)×1 =

(
1
x0

)
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Index sampling

Index sampling

The underlying idea is to replicate an index b with n stocks by a portfolio
x with nx stocks and nx � n

From a mathematical point of view, index sampling can be written as a
portfolio optimization problem with a benchmark:

x? = arg min
1

2
(x − b)>Σ (x − b)

u.c.

 1>n x = 1
x ≥ 0n∑n

i=1 1 {xi > 0} ≤ nx

where b is the vector of index weights

We obtain a mixed integer non-linear optimization problem
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Index sampling

Three stepwise algorithms:

1 The backward elimination algorithm starts with all the stocks,
computes the optimized portfolio, deletes the stock which presents
the highest tracking error variance, and repeats this process until the
number of stocks in the optimized portfolio reaches the target value
nx

2 The forward selection algorithm starts with no stocks in the portfolio,
adds the stock which presents the smallest tracking error variance,
and repeats this process until the number of stocks in the optimized
portfolio reaches the target value nx

3 The heuristic algorithm is a variant of the backward elimination
algorithm, but the elimination process of the heuristic algorithm uses
the criterion of the smallest weight
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Heuristic algorithm

1 The algorithm is initialized with N(0) = ∅ and x?(0) = b.
2 At the iteration k, we define a set I(k) of stocks having the smallest

positive weights in the portfolio x?(k−1). We then update the set N(k)

with N(k) = N(k−1) ∪ I(k) and define the upper bounds x+
(k):

x+
(k),i =

{
0 if i ∈ N(k)

1 if i /∈ N(k)

3 We solve the QP problem by using the new upper bounds x+
(k):

x?(k) = arg min
1

2

(
x(k) − b

)>
Σ
(
x(k) − b

)
u.c.

{
1>n x(k) = 1
0n ≤ x(k) ≤ x+

(k)

4 We iterate steps 2 and 3 until the convergence criterion:
n∑

i=1

1
{
x∗(k),i > 0

}
≤ nx
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Complexity of the three numerical algorithms

The number of solved QP problems is respectively equal to:

nb − nx for the heuristic algorithm

(nb − nx ) (nb + nx + 1) /2 for the backward elimination algorithm

nx (2nb − nx + 1) /2 for the forward selection algorithm

Number of solved QP problems
nb nx Heuristic Backward Forward

50
10 40 1 220 455
40 10 455 1 220

500
50 450 123 975 23 775

450 50 23 775 123 975

1 500
100 1 400 1 120 700 145 050

1 000 500 625 250 1 000 500
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Index sampling (Eurostoxx 50, June 2012)

Table 14: Sampling the SX5E index with the heuristic algorithm

k Stock bi σ
(
x(k) | b

)
1 Nokia 0.45 0.18
2 Carrefour 0.60 0.23
3 Repsol 0.71 0.28
4 Unibail-Rodamco 0.99 0.30
5 Muenchener Rueckver 1.34 0.32
6 RWE 1.18 0.36
7 Koninklijke Philips 1.07 0.41
8 Generali 1.06 0.45
9 CRH 0.82 0.51

10 Volkswagen 1.34 0.55
42 LVMH 2.39 3.67
43 Telefonica 3.08 3.81
44 Bayer 3.51 4.33
45 Vinci 1.46 5.02
46 BBVA 2.13 6.53
47 Sanofi 5.38 7.26
48 Allianz 2.67 10.76
49 Total 5.89 12.83
50 Siemens 4.36 30.33
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Index sampling (Eurostoxx 50, June 2012)

Table 15: Sampling the SX5E index with the backward elimination algorithm

k Stock bi σ
(
x(k) | b

)
1 Iberdrola 1.05 0.11
2 France Telecom 1.48 0.18
3 Carrefour 0.60 0.22
4 Muenchener Rueckver 1.34 0.26
5 Repsol 0.71 0.30
6 BMW 1.37 0.34
7 Generali 1.06 0.37
8 RWE 1.18 0.41
9 Koninklijke Philips 1.07 0.44

10 Air Liquide 2.10 0.48
42 GDF Suez 1.92 3.49
43 Bayer 3.51 3.88
44 BNP Paribas 2.26 4.42
45 Total 5.89 4.99
46 LVMH 2.39 5.74
47 Allianz 2.67 7.15
48 Sanofi 5.38 8.90
49 BBVA 2.13 12.83
50 Siemens 4.36 30.33
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Index sampling (Eurostoxx 50, June 2012)

Table 16: Sampling the SX5E index with the forward selection algorithm

k Stock bi σ
(
x(k) | b

)
1 Siemens 4.36 12.83
2 Banco Santander 3.65 8.86
3 Bayer 3.51 6.92
4 Eni 3.32 5.98
5 Allianz 2.67 5.11
6 LVMH 2.39 4.55
7 France Telecom 1.48 3.93
8 Carrefour 0.60 3.62
9 BMW 1.37 3.35

41 Société Générale 1.07 0.50
42 CRH 0.82 0.45
43 Air Liquide 2.10 0.41
44 RWE 1.18 0.37
45 Nokia 0.45 0.33
46 Unibail-Rodamco 0.99 0.28
47 Repsol 0.71 0.24
48 Essilor 1.17 0.18
49 Muenchener Rueckver 1.34 0.11
50 Iberdrola 1.05 0.00
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Index sampling

Figure 15: Sampling the SX5E and SPX indices (June 2012)
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The impact of weight constraints

We specify the optimization problem as follows:

min
1

2
x>Σx

u.c.

 1>n x = 1
µ>x ≥ µ?
x ∈ C

where C is the set of weights constraints. We define:

the unconstrained portfolio x? or x? (µ,Σ):

C = Rn

the constrained portfolio x̃ :

C
(
x−, x+

)
=
{
x ∈ Rn : x−i ≤ xi ≤ x+

i

}
Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 143 / 1420



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Covariance matrix
Expected returns
Regularization of optimized portfolios
Adding constraints

The impact of weight constraints

Theorem

Jagannathan and Ma (2003) show that the constrained portfolio is the
solution of the unconstrained problem:

x̃ = x?
(
µ̃, Σ̃

)
with: {

µ̃ = µ

Σ̃ = Σ + (λ+ − λ−) 1>n + 1n (λ+ − λ−)
>

where λ− and λ+ are the Lagrange coefficients vectors associated to the
lower and upper bounds.

⇒ Introducing weights constraints is equivalent to introduce a shrinkage
method or to introduce some relative views (similar to the Black-Litterman
approach).
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The impact of weight constraints

Proof (step 1)

Without weight constraints, the expression of the Lagrangian is:

L (x ;λ0, λ1) =
1

2
x>Σx − λ0

(
1>n x − 1

)
− λ1

(
µ>x − µ?

)
with λ0 ≥ 0 and λ1 ≥ 0. The first-order conditions are:

Σx − λ01n − λ1µ = 0n

1>n x − 1 = 0
µ>x − µ? = 0

We deduce that the solution x? depends on the vector of expected return
µ and the covariance matrix Σ and we note x? = x? (µ,Σ)
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The impact of weight constraints

Proof (step 2)

If we impose now the weight constraints C (x−, x+), we have:

L
(
x ;λ0, λ1, λ

−, λ+
)

=
1

2
x>Σx − λ0

(
1>n x − 1

)
− λ1

(
µ>x − µ?

)
−

λ−>
(
x − x−

)
− λ+> (x+ − x

)
with λ0 ≥ 0, λ1 ≥ 0, λ−i ≥ 0 and λ+

i ≥ 0. In this case, the Kuhn-Tucker
conditions are: 

Σx − λ01n − λ1µ− λ− + λ+ = 0n

1>n x − 1 = 0
µ>x − µ? = 0
min

(
λ−i , xi − x−i

)
= 0

min
(
λ+

i , x
+
i − xi

)
= 0
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The impact of weight constraints

Proof (step 3)

Given a constrained portfolio x̃ , it is possible to find a covariance matrix Σ̃
such that x̃ is the solution of unconstrained mean-variance portfolio. Let

E =
{

Σ̃ > 0 : x̃ = x?
(
µ, Σ̃

)}
denote the corresponding set:

E =
{

Σ̃ > 0 : Σ̃x̃ − λ01n − λ1µ = 0n

}
Of course, the set E contains several solutions. From a financial point of
view, we are interested in covariance matrices Σ̃ that are close to Σ.
Jagannathan and Ma note that the matrix Σ̃ defined by:

Σ̃ = Σ +
(
λ+ − λ−

)
1>n + 1n

(
λ+ − λ−

)>
is a solution of E
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The impact of weight constraints

Proof (step 4)

Indeed, we have:

Σ̃x̃ = Σx̃ +
(
λ+ − λ−

)
1>n x̃ + 1n

(
λ+ − λ−

)>
x̃

= Σx̃ +
(
λ+ − λ−

)
+ 1n

(
λ+ − λ−

)>
x̃

= λ01n + λ1µ+ 1n (λ01n + λ1µ−Σx̃)> x̃

= λ01n + λ1µ+ 1n

(
λ0 + λ1µ

? − x̃>Σx̃
)

=
(
2λ0 − x̃>Σx̃ + λ1µ

?
)

1n + λ1µ

It proves that x̃ is the solution of the unconstrained optimization problem.
The Lagrange coefficients λ?0 and λ?1 for the unconstrained problem are
respectively equal to 2λ̃0 − x̃>Σx̃ + λ̃1µ

? and λ̃1 where λ̃0 and λ̃1 are the
Lagrange coefficient for the constrained problem. Moreover, Σ̃ is generally
a positive definite matrix
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The impact of weight constraints

Example 13

We consider four assets. Their expected returns are equal to 5%, 6%, 8%
and 6% while their volatilities are equal to 15%, 20%, 25% and 30%. The
correlation matrix of asset returns is given by the following matrix:

C =


1.00
0.10 1.00
0.40 0.70 1.00
0.50 0.40 0.80 1.00


Given these parameters, the global minimum variance portfolio is equal to:

x? =


72.742%
49.464%
−20.454%
−1.753%
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The impact of weight constraints

Table 17: Minimum variance portfolio when xi ≥ 10%

x?i x̃i λ−i λ+
i σ̃i ρ̃i,j

72.742 56.195 0.000 0.000 15.00 100.00
49.464 23.805 0.000 0.000 20.00 10.00 100.00
−20.454 10.000 1.190 0.000 19.67 10.50 58.71 100.00
−1.753 10.000 1.625 0.000 23.98 17.38 16.16 67.52 100.00

Table 18: Minimum variance portfolio when 10% ≤ xi ≤ 40%

x?i x̃i λ−i λ+
i σ̃i ρ̃i,j

72.742 40.000 0.000 0.915 20.20 100.00
49.464 40.000 0.000 0.000 20.00 30.08 100.00
−20.454 10.000 0.915 0.000 21.02 35.32 61.48 100.00
−1.753 10.000 1.050 0.000 26.27 39.86 25.70 73.06 100.00
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The impact of weight constraints

Table 19: Mean-variance portfolio when 10% ≤ xi ≤ 40% and µ? = 6%

x?i x̃i λ−i λ+
i σ̃i ρ̃i,j

65.866 40.000 0.000 0.125 15.81 100.00
26.670 30.000 0.000 0.000 20.00 13.44 100.00
32.933 20.000 0.000 0.000 25.00 41.11 70.00 100.00
−25.470 10.000 1.460 0.000 24.66 23.47 19.06 73.65 100.00

Table 20: MSR portfolio when 10% ≤ xi ≤ 40%

x?i x̃i λ−i λ+
i σ̃i ρ̃i,j

51.197 40.000 0.000 0.342 17.13 100.00
50.784 39.377 0.000 0.000 20.00 18.75 100.00
−21.800 10.000 0.390 0.000 23.39 36.25 66.49 100.00

19.818 10.623 0.000 0.000 30.00 50.44 40.00 79.96 100.00
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Exercise

We consider an investment universe of four assets. We assume that their
expected returns are equal to 5%, 6%, 8% and 6%, and their volatilities
are equal to 15%, 20%, 25% and 30%. The correlation matrix is:

ρ =


100%

10% 100%
40% 70% 100%
50% 40% 80% 100%


We note xi the weight of the i th asset in the portfolio. We only impose
that the sum of the weights is equal to 100%.
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Question 1

Represent the efficient frontier by considering the following values of γ:
−1, −0.5, −0.25, 0, 0.25, 0.5, 1 and 2.
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We deduce that the covariance matrix is:

Σ =


2.250 0.300 1.500 2.250
0.300 4.000 3.500 2.400
1.500 3.500 6.250 6.000
2.250 2.400 6.000 9.000

× 10−2

We then have to solve the γ-formulation of the Markowitz problem:

x? (γ) = arg min
1

2
x>Σx − γx>µ

u.c. 1>n x = 1

We obtain the results3 given in Table 21. We represent the efficient
frontier in Figure 16.

3The weights, expected returns and volatilities are expressed in %.
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Table 21: Solution of Question 1

γ −1.00 −0.50 −0.25 0.00 0.25 0.50 1.00 2.00
x?1 94.04 83.39 78.07 72.74 67.42 62.09 51.44 30.15
x?2 120.05 84.76 67.11 49.46 31.82 14.17 −21.13 −91.72
x?3 −185.79 −103.12 −61.79 −20.45 20.88 62.21 144.88 310.22
x?4 71.69 34.97 16.61 −1.75 −20.12 −38.48 −75.20 −148.65

µ (x?) 1.34 3.10 3.98 4.86 5.74 6.62 8.38 11.90
σ (x?) 22.27 15.23 12.88 12.00 12.88 15.23 22.27 39.39
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Figure 16: Markowitz efficient frontier
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Question 2

Calculate the minimum variance portfolio. What are its expected return
and its volatility?
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We solve the γ-problem with γ = 0. The minimum variance portfolio is
then x?1 = 72.74%, x?2 = 49.46%, x?3 = −20.45% and x?4 = −1.75%. We
deduce that µ (x?) = 4.86% and σ (x?) = 12.00%.
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Question 3

Calculate the optimal portfolio which has an ex-ante volatility σ? equal to
10%. Same question if σ? = 15% and σ? = 20%.
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There is no solution when the target volatility σ? is equal to 10% because
the minimum variance portfolio has a volatility larger than 10%. Finding
the optimized portfolio for σ? = 15% or σ? = 20% is equivalent to solving
a σ-problem. If σ? = 15% (resp. σ? = 20%), we obtain an implied value
of γ equal to 0.48 (resp. 0.85). Results are given in the following Table:

σ? 15.00 20.00
x?1 62.52 54.57
x?2 15.58 −10.75
x?3 58.92 120.58
x?4 −37.01 −64.41

µ (x?) 6.55 7.87
γ 0.48 0.85
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Question 4

We note x (1) the minimum variance portfolio and x (2) the optimal
portfolio with σ? = 20%. We consider the set of portfolios x (α) defined by
the relationship:

x (α) = (1− α) x (1) + αx (2)

In the previous efficient frontier, place the portfolios x (α) when α is equal
to −0.5, −0.25, 0, 0.1, 0.2, 0.5, 0.7 and 1. What do you observe?
Comment on this result.
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Let x (α) be the portfolio defined by the relationship
x (α) = (1− α) x (1) + αx (2) where x (1) is the minium variance portfolio and
x (2) is the optimized portfolio with a 20% ex-ante volatility. We obtain the
following results:

α σ
(
x (α)

)
µ
(
x (α)

)
−0.50 14.42 3.36
−0.25 12.64 4.11

0.00 12.00 4.86
0.10 12.10 5.16
0.20 12.41 5.46
0.50 14.42 6.36
0.70 16.41 6.97
1.00 20.00 7.87

We have reported these portfolios in Figure 17. We notice that they are
located on the efficient frontier. This is perfectly normal because we know
that a combination of two optimal portfolios corresponds to another
optimal portfolio.
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Figure 17: Mean-variance diagram of portfolios x (α)

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 163 / 1420



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Variations on the efficient frontier
Beta coefficient
Black-Litterman model

Variations on the efficient frontier

Question 5

Repeat Questions 3 and 4 by considering the constraint 0 ≤ xi ≤ 1.
Explain why we do not retrieve the same observation.
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If we consider the constraint 0 ≤ xi ≤ 1, the γ-formulation of the
Markowitz problem becomes:

x? (γ) = arg min
1

2
x>Σx − γx>µ

u.c.

{
1>n x = 1
0n ≤ x ≤ 1n
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We obtain the following results:

σ? MV 12.00 15.00 20.00
x?1 65.49 X 45.59 24.88
x?2 34.51 X 24.74 4.96
x?3 0.00 X 29.67 70.15
x?4 0.00 X 0.00 0.00

µ (x?) 5.35 X 6.14 7.15
σ (x?) 12.56 X 15.00 20.00
γ 0.00 X 0.62 1.10

We observe that we cannot target a volatility σ? = 10%. Moreover, the
expected return µ (x?) of the optimal portfolios are reduced due to the
additional constraints.
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Question 6

We now include in the investment universe a fifth asset corresponding to
the risk-free asset. Its return is equal to 3%.
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Question 6.a

Define the expected return vector and the covariance matrix of asset
returns.
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We have:

µ =


5.0
6.0
8.0
6.0
3.0

× 10−2

and:

Σ =


2.250 0.300 1.500 2.250 0.000
0.300 4.000 3.500 2.400 0.000
1.500 3.500 6.250 6.000 0.000
2.250 2.400 6.000 9.000 0.000
0.000 0.000 0.000 0.000 0.000

× 10−2
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Question 6.b

Deduce the efficient frontier by solving directly the quadratic problem.

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 170 / 1420



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Variations on the efficient frontier
Beta coefficient
Black-Litterman model

Variations on the efficient frontier

We solve the γ-problem and obtain the efficient frontier given in Figure 18.
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Figure 18: Efficient frontier when the risk-free asset is introduced
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Question 6.c

What is the shape of the efficient frontier? Comment on this result.
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This efficient frontier is a straight line. This line passes through the
risk-free asset and is tangent to the efficient frontier of Figure 16. This
question is a direct application of the Separation Theorem of Tobin.
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Question 6.d

Choose two arbitrary portfolios x (1) and x (2) of this efficient frontier.
Deduce the Sharpe ratio of the tangency portfolio.
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We consider two optimized portfolios of this efficient frontier. They
corresponds to γ = 0.25 and γ = 0.50. We obtain the following results:

γ 0.25 0.50
x?1 18.23 36.46
x?2 −1.63 −3.26
x?3 34.71 69.42
x?4 −18.93 −37.86
x?5 67.62 35.24

µ (x?) 4.48 5.97
σ (x?) 6.09 12.18
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The first portfolio has an expected return equal to 4.48% and a volatility
equal to 6.09%. The weight of the risk-free asset is 67.62%. This explains
the low volatility of this portfolio. For the second portfolio, the weight of
the risk-free asset is lower and equal to 35.24%. The expected return and
the volatility are then equal to 5.97% and 12.18%. We note x (1) and x (2)

these two portfolios. By definition, the Sharpe ratio of the market portfolio
x? is the tangency of the line. We deduce that:

SR (x? | r) =
µ
(
x (2)
)
− µ

(
x (1)
)

σ
(
x (2)
)
− σ

(
x (1)
)

=
5.97− 4.48

12.18− 6.09
= 0.2436

The Sharpe ratio of the market portfolio x? is then equal to 0.2436.

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 177 / 1420



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Variations on the efficient frontier
Beta coefficient
Black-Litterman model

Variations on the efficient frontier

Question 6.e

Calculate then the composition of the tangency portfolio from x (1) and
x (2).
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By construction, every portfolio x (α) which belongs to the tangency line is
a linear combination of two portfolios x (1) and x (2) of this efficient frontier:

x (α) = (1− α) x (1) + αx (2)

The market portfolio x? is the portfolio x (α) which has a zero weight in
the risk-free asset. We deduce that the value α? which corresponds to the
market portfolio satisfies the following relationship:

(1− α?) x
(1)
5 + α?x

(2)
5 = 0

because the risk-free asset is the fifth asset of the portfolio.
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It follows that:

α? =
x

(1)
5

x
(1)
5 − x

(2)
5

=
67.62

67.62− 35.24
= 2.09

We deduce that the market portfolio is:

x? = (1− 2.09) ·


18.23
−1.63
34.71
−18.93

67.62

+ 2.09 ·


36.46
−3.26
69.42
−37.86

35.24

 =


56.30
−5.04
107.21
−58.46

0.00


We check that the Sharpe ratio of this portfolio is 0.2436.
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Question 7

We consider the general framework with n risky assets whose vector of
expected returns is µ and the covariance matrix of asset returns is Σ while
the return of the risk-free asset is r . We note x̃ the portfolio invested in
the n + 1 assets. We have:

x̃ =

(
x
xr

)
with x the weight vector of risky assets and xr the weight of the risk-free
asset. We impose the following constraint:

n∑
i=1

x̃i =
n∑

i=1

xi = 1
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Question 7.a

Define µ̃ and Σ̃ the vector of expected returns and the covariance matrix
of asset returns associated with the n + 1 assets.
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We have:

µ̃ =

(
µ
r

)
and:

Σ̃ =

(
Σ 0n

0>n 0

)
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Question 7.b

By using the Markowitz φ-problem, retrieve the Separation Theorem of
Tobin.

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 184 / 1420



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Variations on the efficient frontier
Beta coefficient
Black-Litterman model

Variations on the efficient frontier

If we include the risk-free asset, the Markowitz φ-problem becomes:

x̃? (φ) = arg max x̃>µ̃− φ

2
x̃>Σ̃x̃

u.c. 1>n x̃ = 1

We note that the objective function can be written as follows:

f (x̃) = x̃>µ̃− φ

2
x̃>Σ̃x̃

= x>µ+ xr r −
φ

2
x>Σx

= g (x , xr )

The constraint becomes 1>n x + xr = 1. We deduce that the Lagrange
function is:

L (x , xr ;λ0) = x>µ+ xr r −
φ

2
x>Σx − λ0

(
1>n x + xr − 1

)
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The first-order conditions are: ∂x L (x , xr ;λ0) = µ− φΣx − λ01n = 0n

∂xr L (x , xr ;λ0) = r − λ0 = 0
∂λ0 L (x , xr ;λ0) = 1>n x + xr − 1 = 0

The solution of the optimization problem is then: x? = φ−1Σ−1 (µ− r1n)
λ?0 = r
x?r = 1− φ−11>n Σ−1 (µ− r1n)

Let x?0 be the following portfolio:

x?0 =
Σ−1 (µ− r1n)

1>n Σ−1 (µ− r1n)
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We can then write the solution of the optimization problem in the
following way: 

x? = αx?0
λ?0 = r
x?r = 1− α
α = φ−11>n Σ−1 (µ− r1n)

The first equation indicates that the relative proportions of risky assets in
the optimized portfolio remain constant. If φ = φ0 = 1>n Σ−1 (µ− r1n),
then x? = x?0 and x?r = 0. We deduce that x?0 is the tangency portfolio. If
φ 6= φ0, x? is proportional to x?0 and the wealth invested in the risk-free
asset is the complement (1− α) to obtain a total exposure equal to 100%.
We retrieve then the separation theorem:

x̃? = α ·
(

x?0
0

)
︸ ︷︷ ︸

risky assets

+ (1− α) ·
(

0n

1

)
︸ ︷︷ ︸

risk-free asset
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Question 1

We consider an investment universe of n assets with:

R =

 R1

...
Rn

 ∼ N (µ,Σ)

The weights of the market portfolio (or the benchmark) are
b = (b1, . . . , bn).
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Question 1.a

Define the beta βi of asset i with respect to the market portfolio.
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The beta of an asset is the ratio between its covariance with the market
portfolio return and the variance of the market portfolio return. In the
CAPM theory, we have:

E [Ri ] = r + βi (E [R (b)]− r)

where Ri is the return of asset i , R (b) is the return of the market portfolio
and r is the risk-free rate. The beta βi of asset i is:

βi =
cov (Ri ,R (b))

var (R (b))

Let Σ be the covariance matrix of asset returns. We have
cov (R,R (b)) = Σb and var (R (b)) = b>Σb. We deduce that:

βi =
(Σb)i

b>Σb
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Question 1.b

Let X1, X2 and X3 be three random variables. Show that:

cov (c1X1 + c2X2,X3) = c1 cov (X1,X3) + c2 cov (X2,X3)
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We recall that the mathematical operator E is bilinear. Let c be the
covariance cov (c1X1 + c2X2,X3). We then have:

c = E [(c1X1 + c2X2 − E [c1X1 + c2X2]) (X3 − E [X3])]

= E [(c1 (X1 − E [X1]) + c2 (X2 − E [X2])) (X3 − E [X3])]

= c1E [(X1 − E [X1]) (X3 − E [X3])] + c2E [(X2 − E [X2]) (X3 − E [X3])]

= c1 cov (X1,X3) + c2 cov (X2,X3)
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Question 1.c

We consider the asset portfolio x = (x1, . . . , xn) such that
∑n

i=1 xi = 1.
What is the relationship between the beta β (x | b) of the portfolio and the
betas βi of the assets?
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We have:

β (x | b) =
cov (R (x) ,R (b))

var (R (b))
=

cov
(
x>R, b>R

)
var (b>R)

=
x>E

[
(R − µ) (R − µ)>

]
b

b>E
[
(R − µ) (R − µ)>

]
b

=
x>Σb

b>Σb
= x>

Σb

b>Σb
= x>β =

n∑
i=1

xiβi

with β = (β1, . . . , βn). The beta of portfolio x is then the weighted mean
of asset betas. Another way to show this result is to exploit the result of
Question 1.b. We have:

β (x | b) =
cov

(∑n
i=1 xiRi ,R (b)

)
var (R (b))

=
n∑

i=1

xi
cov (Ri ,R (b))

var (R (b))
=

n∑
i=1

xiβi
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Question 1.d

Calculate the beta of the portfolios x (1) and x (2) with the following data:

i 1 2 3 4 5
βi 0.7 0.9 1.1 1.3 1.5

x
(1)
i 0.5 0.5

x
(2)
i 0.25 0.25 0.5 0.5 −0.5

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 195 / 1420



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Variations on the efficient frontier
Beta coefficient
Black-Litterman model

Beta coefficient

We obtain β
(
x (1) | b

)
= 0.80 and β

(
x (2) | b

)
= 0.85.
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Question 2

We assume that the market portfolio is the equally weighted portfolioa.

aWe have bi = n−1.

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 197 / 1420



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Variations on the efficient frontier
Beta coefficient
Black-Litterman model

Beta coefficient

Question 2.a

Show that
∑n

i=1 βi = n.
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The weights of the market portfolio are then b = n−11n. We have:

β =
cov (R,R (b))

var (R (b))
=

Σb

b>Σb
=

n−1Σ1n

n−2 (1>n Σ1n)
= n

Σ1n

(1>n Σ1n)

We deduce that:

n∑
i=1

βi = 1>n β = 1>n n
Σ1n

(1>n Σ1n)
= n

1>n Σ1n

(1>n Σ1n)
= n
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Question 2.b

We consider the case n = 3. Show that β1 ≥ β2 ≥ β3 implies
σ1 ≥ σ2 ≥ σ3 if ρi,j = 0.
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If ρi,j = 0, we have:

βi = n
σ2

i∑n
j=1 σ

2
j

We deduce that:

β1 ≥ β2 ≥ β3 ⇒ n
σ2

1∑3
j=1 σ

2
j

≥ n
σ2

2∑3
j=1 σ

2
j

≥ n
σ2

3∑3
j=1 σ

2
j

⇒ σ2
1 ≥ σ2

2 ≥ σ2
3

⇒ σ1 ≥ σ2 ≥ σ3
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Question 2.c

What is the result if the correlation is uniform ρi,j = ρ?
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If ρi,j = ρ, it follows that:

βi ∝ σ2
i +

∑
j 6=i

ρσiσj

= σ2
i + ρσi

∑
j 6=i

σj + ρσ2
i − ρσ2

i

= (1− ρ)σ2
i + ρσi

n∑
j=1

σj

= f (σi )

with:

f (z) = (1− ρ) z2 + ρz
n∑

j=1

σj
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The first derivative of f (z) is:

f ′ (z) = 2 (1− ρ) z + ρ
n∑

j=1

σj

If ρ ≥ 0, then f (z) is an increasing function for z ≥ 0 because (1− ρ) ≥ 0
and ρ

∑n
j=1 σj ≥ 0. This explains why the previous result remains valid:

β1 ≥ β2 ≥ β3 ⇒ σ1 ≥ σ2 ≥ σ3 if ρi,j = ρ ≥ 0

If − (n − 1)−1 ≤ ρ < 0, then f ′ is decreasing if

z < −2−1ρ (1− ρ)−1∑n
j=1 σj and increasing otherwise. We then have:

β1 ≥ β2 ≥ β3 ; σ1 ≥ σ2 ≥ σ3 if ρi,j = ρ < 0

In fact, the result remains valid in most cases. To obtain a
counter-example, we must have large differences between the volatilities
and a correlation close to − (n − 1)−1. For example, if σ1 = 5%, σ2 = 6%,
σ3 = 80% and ρ = −49%, we have β1 = −0.100, β2 = −0.115 and
β3 = 3.215.
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Question 2.d

Find a general example such that β1 > β2 > β3 and σ1 < σ2 < σ3.

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 205 / 1420



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Variations on the efficient frontier
Beta coefficient
Black-Litterman model

Beta coefficient

We assume that σ1 = 15%, σ2 = 20%, σ3 = 22%, ρ1,2 = 70%,
ρ1,3 = 20% and ρ2,3 = −50%. It follows that β1 = 1.231, β2 = 0.958 and
β3 = 0.811. We thus have found an example such that β1 > β2 > β3 and
σ1 < σ2 < σ3.
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Question 2.e

Do we have
∑n

i=1 βi < n or
∑n

i=1 βi > n if the market portfolio is not
equally weighted?
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There is no reason that we have either
∑n

i=1 βi < n or
∑n

i=1 βi > n. Let
us consider the previous numerical example. If b = (5%, 25%, 70%), we

obtain
∑3

i=1 βi = 1.808 whereas if b = (20%, 40%, 40%), we have∑3
i=1 βi = 3.126.
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Question 3

We search a market portfolio b ∈ Rn such that the betas are the same for
all the assets: βi = βj = β.
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Question 3.a

Show that there is an obvious solution which satisfies β = 1.
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We have:

n∑
i=1

biβi =
n∑

i=1

bi
(Σb)i

b>Σb

= b>
Σb

b>Σb
= 1

If βi = βj = β, then β = 1 is an obvious solution because the previous
relationship is satisfied:

n∑
i=1

biβi =
n∑

i=1

bi = 1
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Question 3.b

Show that this solution is unique and corresponds to the minimum
variance portfolio.
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If βi = βj = β, then we have:

n∑
i=1

biβ = 1⇔ β =
1∑n

i=1 bi
= 1

β can only take one value, the solution is then unique. We know that the
marginal volatilities are the same in the case of the minimum variance
portfolio x (TR-RPB, page 173):

∂ σ (x)

∂ xi
=
∂ σ (x)

∂ xj

with σ (x) =
√
x>Σx the volatility of the portfolio x .
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It follows that:
(Σx)i√
x>Σx

=
(Σx)j√
x>Σx

By dividing the two terms by
√
x>Σx , we obtain:

(Σx)i

x>Σx
=

(Σx)j

x>Σx

The asset betas are then the same in the minimum variance portfolio.
Because we have: {

βi = βj∑n
i=1 xiβi = 1

we deduce that:
βi = 1
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Question 4

We assume that b ∈ [0, 1]n.
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Question 4.a

Show that if one asset has a beta greater than one, there exists another
asset which has a beta smaller than one.
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We have:

n∑
i=1

biβi = 1

⇔
n∑

i=1

biβi =
n∑

i=1

bi

⇔
n∑

i=1

biβi −
n∑

i=1

bi = 0

⇔
n∑

i=1

bi (βi − 1) = 0
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We obtain the following system of equations:{ ∑n
i=1 bi (βi − 1) = 0

bi ≥ 0

Let us assume that the asset j has a beta greater than 1. We then have:{
bj (βj − 1) +

∑
i 6=j bi (βi − 1) = 0

bi ≥ 0

It follows that bj (βj − 1) > 0 because bj > 0 (otherwise the beta is zero).
We must therefore have

∑
i 6=j xi (βi − 1) < 0. Because bi ≥ 0, it is

necessary that at least one asset has a beta smaller than 1.
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Question 4.b

We consider the case n = 3. Find a covariance matrix Σ and a market
portfolio b such that one asset has a negative beta.
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We use standard notations to represent Σ. We seek a portfolio such that
β1 > 0, β2 > 0 and β3 < 0. To simplify this problem, we assume that the
three assets have the same volatility. We also obtain the following system
of inequalities:  b1 + b2ρ1,2 + b3ρ1,3 > 0

b1ρ1,2 + b2 + b3ρ2,3 > 0
b1ρ1,3 + b2ρ2,3 + b3 < 0

It is sufficient that b1ρ1,3 + b2ρ2,3 is negative and b3 is small. For example,
we may consider b1 = 50%, b2 = 45%, b3 = 5%, ρ1,2 = 50%, ρ1,3 = 0%
and ρ2,3 = −50%. We obtain β1 = 1.10, β2 = 1.03 and β3 = −0.27.
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Question 5

We report the return Ri,t and Rt (b) of asset i and market portfolio b at
different dates:

t 1 2 3 4 5 6
Ri,t −22 −11 −10 −8 13 11

Rt (b) −26 −9 −10 −10 16 14
t 7 8 9 10 11 12

Ri,t 21 13 −30 −6 −5 −5
Rt (b) 14 15 −22 −7 −11 2

t 13 14 15 16 17 18
Ri,t 19 −17 2 −24 25 −7

Rt (b) 15 −15 −1 −23 15 −6
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Question 5.a

Estimate the beta of the asset.
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We perform the linear regression Ri,t = αi + βiRt (b) + εi,t and we obtain

β̂i = 1.06.
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Question 5.b

What is the proportion of the asset volatility explained by the market?
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We deduce that the contribution ci of the market factor is (TR-RPB, page
16):

ci =
β2

i var (R (b))

var (Ri )
= 90.62%
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Exercise

We consider a universe of three assets. Their volatilities are 20%, 20% and
15%. The correlation matrix of asset returns is:

ρ =

 1.00
0.50 1.00
0.20 0.60 1.00


We would like to implement a trend-following strategy. For that, we
estimate the trend of each asset and the volatility of the trend. We obtain
the following results:

Asset 1 2 3
µ̂ 10% −5% 15%

σ (µ̂) 4% 2% 10%

We assume that the neutral portfolio is the equally weighted portfolio.
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Question 1

Find the optimal portfolio if the constraint of the tracking error volatility is
set to 1%, 2%, 3%, 4% and 5%.
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We consider the portfolio optimization problem in the presence of a
benchmark (TR-RPB, page 17). We obtain the following results
(expressed in %):

σ (x? | b) 1.00 2.00 3.00 4.00 5.00
x?1 35.15 36.97 38.78 40.60 42.42
x?2 26.32 19.30 12.28 5.26 −1.76
x?3 38.53 43.74 48.94 54.14 59.34

µ (x? | b) 1.31 2.63 3.94 5.25 6.56
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Question 2

In order to tilt the neutral portfolio, we now consider the Black-Litterman
model. The risk-free rate is set to 0.
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Question 2.a

Find the implied risk premium of the assets if we target a Sharpe ratio
equal to 0.50. What is the value of φ?
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Let b be the benchmark (that is the equally weighted portfolio). We recall
that the implied risk aversion parameter is:

φ =
SR (b | r)√

b>Σb

and the implied risk premium is:

µ̃ = r + SR (b | r)
Σb√
b>Σb

We obtain φ = 3.4367 and:

µ̃ =

 µ̃1

µ̃2

µ̃3

 =

 7.56%
8.94%
5.33%
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Question 2.b

How does one incorporate a trend-following strategy in the
Black-Litterman model? Give the P, Q and Ω matrices.
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In this case, the views of the portfolio manager corresponds to the trends
observed in the market. We then have4:

P = I3

Q = µ̂

Ω = diag
(
σ2 (µ̂1) , . . . , σ2 (µ̂n)

)
The views Pµ = Q + ε become:

µ = µ̂+ ε

with ε ∼ N (03,Ω).

4If we suppose that the trends are not correlated.
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Question 2.c

Calculate the conditional expectation µ̄ = E [µ | Pµ = Q + ε] if we
assume that Γ = τΣ and τ = 0.01.
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We have (TR-RPB, page 25):

µ̄ = E [µ | Pµ = Q + ε]

= µ̃+ ΓP>
(
PΓP> + Ω

)−1
(Q − Pµ̃)

= µ̃+ τΣ (τΣ + Ω)−1 (µ̂− µ̃)

We obtain:

µ̄ =

 µ̄1

µ̄2

µ̄3

 =

 5.16%
2.38%
2.47%
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Question 2.d

Find the Black-Litterman optimized portfolio.
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We optimize the quadratic utility function with φ = 3.4367. The
Black-Litterman portfolio is then:

x? =

 x?1
x?2
x?3

 =

 56.81%
−23.61%

66.80%


Its volatility tracking error is σ (x? | b) = 8.02% and its alpha is
µ (x? | b) = 10.21%.
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Question 3

We would like to compute the Black-Litterman optimized portfolio,
corresponding to a 3% tracking error volatility.
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Question 3.a

What is the Black-Litterman portfolio when τ = 0 and τ = +∞?
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If τ = 0, µ̄ = µ̃. The BL portfolio x is then equal to the neutral
portfolio b.

We also have:

lim
τ→∞

µ̄ = µ̃+ lim
τ→∞

τΣ> (τΣ + Ω)−1 (µ̂− µ̃)

= µ̃+ (µ̂− µ̃)

= µ̂

In this case, µ̄ is independent from the implied risk premium µ̂ and is
exactly equal to the estimated trends µ̂. The BL portfolio x is then
the Markowitz optimized portfolio with the given value of φ.
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Question 3.b

Using the previous results, apply the bisection algorithm and find the
Black-Litterman optimized portfolio, which corresponds to a 3% tracking
error volatility.
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We would like to find the BL portfolio such that σ (x | b) = 3%. We know
that σ (x | b) = 0 if τ = 0. Thanks to Question 2.d, we also know that
σ (x | b) = 8.02% if τ = 1%. It implies that the optimal portfolio
corresponds to a specific value of τ which is between 0 and 1%. If we
apply the bi-section algorithm, we find that:

τ? = 0.242%

. The composition of the optimal portfolio is then

x? =

 x?1
x?2
x?3

 =

 41.18%
11.96%
46.85%


We obtain an alpha equal to 3.88%, which is a little bit smaller than the
alpha of 3.94% obtained for the TE portfolio.
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Question 3.c

Compare the relationship between σ (x | b) and µ (x | b) of the
Black-Litterman model with the one of the tracking error model.
Comment on these results.
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We have reported the relationship between σ (x | b) and µ (x | b) in Figure
19. We notice that the information ratio of BL portfolios is very close to
the information ratio of TE portfolios. We may explain that because of the
homogeneity of the estimated trends µ̂i and the volatilities σ (µ̂i ). If we
suppose that σ (µ̂1) = 1%, σ (µ̂2) = 5% and σ (µ̂3) = 15%, we obtain the
relationship #2. In this case, the BL model produces a smaller information
ratio than the TE model. We explain this because µ̄ is the right measure
of expected return for the BL model whereas it is µ̂ for the TE model. We
deduce that the ratios µ̄i/µ̂i are more volatile for the parameter set #2, in
particular when τ is small.
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Figure 19: Efficient frontier of TE and BL portfolios
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Portfolio optimization & portfolio diversification

Example 1

We consider an investment universe of 5 assets

(µi , σi ) are respectively equal to (8%, 12%), (7%, 10%), (7.5%, 11%),
(8.5%, 13%) and (8%, 12%)

The correlation matrix is C5 (ρ) with ρ = 60%

The optimal portfolio x? such that σ (x?) = 10% is equal to:

x? =


23.97%

6.42%
16.91%
28.73%
23.97%
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Portfolio optimization & portfolio diversification

8.5 9 9.5 10 10.5 11 11.5 12 12.5 13

7

7.25

7.5

7.75

8

8.25

8.5

Figure 20: Optimized portfolios versus optimal diversified portfolios
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Portfolio optimization & portfolio diversification

Table 22: Some equivalent mean-variance portfolios

x1 23.97 5 5 35 35 50 5 5 10
x2 6.42 25 25 10 25 10 30 25
x3 16.91 5 40 10 5 15 45 10
x4 28.73 35 20 30 5 35 10 35 20 45
x5 23.97 35 35 40 40 15 30 30 10
µ (x) 7.99 7.90 7.90 7.90 7.88 7.90 7.88 7.88 7.88 7.93
σ (x) 10.00 10.07 10.06 10.07 10.01 10.07 10.03 10.00 10.03 10.10

⇒ These portfolios have very different compositions, but lead to very close
mean-variance features

Some of these portfolios appear more balanced
and more diversified than the optimized portfolio
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Other methods to build a portfolio

1 Weight
budgeting (WB)

2 Risk budgeting
(RB)

3 Performance
budgeting (PB)

Ex-ante analysis
6=

Ex-post analysis

Important result

RB = PB
Figure 21: The 30/70 rule
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Weight budgeting versus risk budgeting

Let x = (x1, . . . , xn) be the weights of n assets in the portfolio. Let
R (x1, . . . , xn) be a coherent and convex risk measure. We have:

R (x1, . . . , xn) =
n∑

i=1

xi ·
∂R (x1, . . . , xn)

∂ xi

=
n∑

i=1

RC i (x1, . . . , xn)

Let b = (b1, . . . , bn) be a vector of budgets such that bi ≥ 0 and∑n
i=1 bi = 1. We consider two allocation schemes:

1 Weight budgeting (WB)
xi = bi

2 Risk budgeting (RB)

RC i = bi · R (x1, . . . , xn)
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Importance of the coherency and convexity properties

Figure 22: Risk Measure = 20 with a 50/30/20 budget rule
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Application to the volatility risk measure

Let Σ be the covariance matrix of the assets returns. We note x the vector
of the portfolio’s weights:

x =

 x1

...
xn


It follows that the portfolio volatility is equal to:

σ (x) =
√
x>Σx
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Computation of the marginal volatilities

The vector of marginal volatilities is equal to:

∂ σ (x)

∂ x
=


∂ σ (x)

∂ x1
...

∂ σ (x)

∂ xn


=

∂

∂ x

(
x>Σx

)1/2

=
1

2

(
x>Σx

)1/2−1
(2Σx)

=
Σx√
x>Σx

It follows that the marginal volatility of Asset i is given by:

∂ σ (x)

∂ xi
=

(Σx)i√
x>Σx

=
n∑

j=1

ρi,jσiσjxj

σ (x)
= σi

n∑
j=1

xj
ρi,jσj

σ (x)
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Computation of the risk contributions

We deduce that the risk contribution of the i th asset is then:

RC i = xi ·
∂ σ (x)

∂ xi

=
xi · (Σx)i√

x>Σx

= σixi

n∑
j=1

xj
ρi,jσj

σ (x)
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The Euler allocation principle

We verify that the volatility satisfies the full allocation property:

n∑
i=1

RC i =
n∑

i=1

σixi

n∑
j=1

xj
ρi,jσj

σ (x)
=

1

σ (x)

n∑
i=1

n∑
j=1

xixjρi,jσiσj

=
σ2 (x)

σ (x)
= σ (x)

An alternative proof uses the definition of the dot product:

a · b =
n∑

i=1

aibi = a>b

Indeed, we have:

n∑
i=1

RC i =
n∑

i=1

xi · (Σx)i√
x>Σx

=
1√

x>Σx

n∑
i=1

xi ·(Σx)i =
1√

x>Σx
x>Σx = σ (x)
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Definition of the risk contribution

Definition

The marginal risk contribution of Asset i is:

MRi =
∂ σ (x)

∂ xi
=

(Σx)i√
x>Σx

The absolute risk contribution of Asset i is:

RC i = xi
∂ σ (x)

∂ xi
=

xi · (Σx)i√
x>Σx

The relative risk contribution of Asset i is:

RC?i =
RC i

σ (x)
=

xi · (Σx)i

x>Σx
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The Euler allocation principle

Remark

We have
∑n

i=1RC i = σ (x) and
∑n

i=1RC
?
i = 100%.
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Application

Example 2

We consider three assets. We assume that their expected returns are equal
to zero whereas their volatilities are equal to 30%, 20% and 15%. The
correlation of asset returns is given by the following matrix:

ρ =

 1.00
0.80 1.00
0.50 0.30 1.00


We consider the portfolio x , which is given by:

x =

 50%
20%
30%
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Application

Using the relationship Σi,j = ρi,jσiσj , we deduce that the covariance
matrix is6:

Σ =

 9.00 4.80 2.25
4.80 4.00 0.90
2.25 0.90 2.25

× 10−2

It follows that the variance of the portfolio is:

σ2 (x) = 0.502 × 0.09 + 0.202 × 0.04 + 0.302 × 0.0225 +

2× 0.50× 0.20× 0.0480 + 2× 0.50× 0.30× 0.0225 +

2× 0.20× 0.30× 0.0090

= 4.3555%

The volatility is then σ (x) =
√

4.3555% = 20.8698%.

6The covariance term between assets 1 and 2 is equal to Σ1,2 = 80%× 30%× 20%
or Σ1,2 = 4.80%
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Application

The computation of the marginal volatilities gives:

Σx√
x>Σx

=
1

20.8698%

 6.1350%
3.4700%
1.9800%

 =

 29.3965%
16.6269%

9.4874%
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Application

Finally, we obtain the risk contributions by multiplying the weights by the
marginal volatilities:

x ◦ Σx√
x>Σx

=

 50%
20%
30%

 ◦
 29.3965%

16.6269%
9.4874%

 =

 14.6982%
3.3254%
2.8462%


We verify that the sum of risk contributions is equal to the volatility:

3∑
i=1

RC i = 14.6982% + 3.3254% + 2.8462% = 20.8698%
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Application

Table 23: Risk decomposition of the portfolio’s volatility (Example 2)

Asset xi MRi RC i RC?i
1 50.00 29.40 14.70 70.43
2 20.00 16.63 3.33 15.93
3 30.00 9.49 2.85 13.64

σ (x) 20.87
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The ERC portfolio

Definition

Let Σ be the covariance matrix of asset returns

The risk measure corresponds to the volatility risk measure

The ERC portfolio is the unique portfolio x such that the risk
contributions are equal:

RC i = RCj ⇔
xi · (Σx)i√

x>Σx
=

xj · (Σx)j√
x>Σx

ERC = Equal Risk Contribution
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The concept of risk budgeting

Example 3

3 assets

Volatilities are respectively equal to
20%, 30% and 15%

Correlations are set to 60% between
the 1st asset and the 2nd asset and
10% between the first two assets
and the 3rd asset

Budgets are set to 50%, 25% and
25%

For the ERC (Equal Risk
Contribution) portfolio, all the
assets have the same risk budget

Absolute Relative

1 50.00% 17.99% 9.00% 54.40%

2 25.00% 25.17% 6.29% 38.06%

3 25.00% 4.99% 1.25% 7.54%

Volatility 16.54%

Absolute Relative

1 41.62% 16.84% 7.01% 50.00%

2 15.79% 22.19% 3.51% 25.00%

3 42.58% 8.23% 3.51% 25.00%

Volatility 14.02%

Absolute Relative

1 30.41% 15.15% 4.61% 33.33%

2 20.28% 22.73% 4.61% 33.33%

3 49.31% 9.35% 4.61% 33.33%

Volatility 13.82%

Asset Weight
Marginal 

Risk

Risk Contribution

ERC approach

Asset Weight
Marginal 

Risk

Risk Contribution

Weight budgeting (or traditional approach)

Asset Weight
Marginal 

Risk

Risk Contribution

Risk budgeting approach
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The concept of risk budgeting

We have:
σ (50%, 25%, 25%) = 16.54%

The marginal risk for the first asset is:

∂ σ (x)

∂ x1
= lim
ε→0

σ (x1 + ε, x2, x3)− σ (x1, x2, x3)

(x1 + ε)− x1

If ε = 1%, we have:

σ (0.51, 0.25, 0.25) = 16.72%

We deduce that:

∂ σ (x)

∂ x1
' 16.72%− 16.54%

1%
= 18.01%

whereas the true value is equal to:

∂ σ (x)

∂ x1
= 17.99%
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The concept of risk budgeting

Example 4

3 assets

Volatilities are respectively 30%,
20% and 15%

Correlations are set to 80% between
the 1st asset and the 2nd asset, 50%
between the 1st asset and the 3rd

asset and 30% between the 2nd

asset and the 3rd asset

Absolute Relative

1 50.00% 29.40% 14.70% 70.43%

2 20.00% 16.63% 3.33% 15.93%

3 30.00% 9.49% 2.85% 13.64%

Volatility 20.87%

Absolute Relative

1 31.15% 28.08% 8.74% 50.00%

2 21.90% 15.97% 3.50% 20.00%

3 46.96% 11.17% 5.25% 30.00%

Volatility 17.49%

Absolute Relative

1 19.69% 27.31% 5.38% 33.33%

2 32.44% 16.57% 5.38% 33.33%

3 47.87% 11.23% 5.38% 33.33%

Volatility 16.13%

ERC approach

Asset Weight
Marginal 

Risk

Risk Contribution

Asset Weight
Marginal 

Risk

Risk Contribution

Weight budgeting (or traditional) approach

Asset Weight
Marginal 

Risk

Risk Contribution

Risk budgeting approach
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The concept of risk budgeting

Question

We assume that the portfolio’s wealth is set to $1 000. Calculate the
nominal volatility of the previous WB, RB and ERC portfolios.
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The concept of risk budgeting

We have:

σ (xwb) = 103 × 20.87% = $208.7

σ (xrb) = 103 × 17.49% = $174.9

σ (xerc) = 103 × 16.13% = $161.3
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The concept of risk budgeting

Question

We increase the exposure of the 3 portfolios by $10 as follows:

∆x =

 ∆x1

∆x2

∆x3

 =

 $1
$5
$4


Calculate the nominal volatility of these new portfolios.
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The concept of risk budgeting

By assuming that ∆x ' 0, we have:

σ (xwb + ∆x) ≈ ($500 + $1)× 0.2940 +

($200 + $5)× 0.1663 +

($300 + $4)× 0.0949

≈ $210.2

σ (xrb + ∆x) ≈ $176.4 and σ (xerc + ∆x) ≈ $162.9.
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Uniform correlation

We assume a constant correlation matrix Cn (ρ), meaning that
ρi,j = ρ for all i 6= j
We have:

(Σx)i =
n∑

k=1

ρi,kσiσkxk

= σ2
i xi + ρσi

∑
k 6=i

σkxk

= σ2
i xi + ρσi

n∑
k=1

σkxk − ρσ2
i xi

= (1− ρ) xiσ
2
i + ρσi

n∑
k=1

xkσk

= σi

(
(1− ρ) xiσi + ρ

n∑
k=1

xkσk

)
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Uniform correlation

Since we have:

RC i =
xi (Σx)i

σ (x)

we deduce that RC i = RCj is equivalent to:

xiσi

(
(1− ρ) xiσi + ρ

n∑
k=1

xkσk

)
= xjσj

(
(1− ρ) xjσj + ρ

n∑
k=1

xkσk

)

It follows that xiσi = xjσj . Because
∑n

i=1 xi = 1, we deduce that:

xi =
σ−1

i∑n
j=1 σ

−1
j

Result

The weight allocated to Asset i is inversely proportional to its volatility
and does not depend on the value of the correlation
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Minimum uniform correlation

The global minimum variance portfolio is equal to:

xgmv =
Σ−11n

1>n Σ−11n

Let Σ = σσ> ◦ Cn (ρ) be the covariance matrix with Cn (ρ) the
constant correlation matrix

We have:
Σ−1 = Γ ◦ C−1

n (ρ)

with Γi,j = σ−1
i σ−1

j and:

C−1
n (ρ) =

ρ1n1>n − ((n − 1) ρ+ 1) In
(n − 1) ρ2 − (n − 2) ρ− 1
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Minimum uniform correlation

We deduce that the expression of the GMV weights are:

xgmv,i =
− ((n − 1) ρ+ 1)σ−2

i + ρ
∑n

j=1 (σiσj )
−1∑n

k=1

(
− ((n − 1) ρ+ 1)σ−2

k + ρ
∑n

j=1 (σkσj )
−1
)

The lower bound of Cn (ρ) is achieved for ρ = − (n − 1)−1

In this case, the solution becomes:

xgmv,i =

∑n
j=1 (σiσj )

−1∑n
k=1

∑n
j=1 (σkσj )

−1 =
σ−1

i∑n
k=1 σ

−1
k

Result

The ERC portfolio is equal to the GMV portfolio when the correlation is at
its lowest possible value:

lim
ρ→−(n−1)−1

xgmv = xerc
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Uniform volatility

If all volatilities are equal, i.e. σi = σ for all i , the risk contribution
becomes:

RC i =

(∑n
k=1 xixkρi,k

)
σ2

σ (x)

The ERC portfolio verifies then:

xi

(
n∑

k=1

xkρi,k

)
= xj

(
n∑

k=1

xkρj,k

)

We deduce that:

xi =

(∑n
k=1 xkρi,k

)−1∑n
j=1

(∑n
k=1 xkρj,k

)−1
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Uniform volatility

Result

The weight of asset i is inversely proportional to the weighted average of
correlations of Asset i

Remark

Contrary to the previous case, this solution is endogenous since xi is a
function of itself directly
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General case

In the general case, we have:

βi = β (ei | x) =
e>i Σx

x>Σx
=

(Σx)i

σ2 (x)

and:

RC i =
xi (Σx)i

σ (x)
= σ (x) xiβi

We deduce that RC i = RCj is equivalent to:

xiβi = xjβj

It follows that:

xi =
β−1

i∑n
j=1 β

−1
j
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General case

We notice that:

n∑
i=1

xiβi =
n∑

i=1

RC i

σ (x)
=

1

σ (x)

n∑
i=1

RC i = 1

and:
n∑

i=1

xiβi =
n∑

i=1

(
1∑n

j=1 β
−1
j

)
= 1

It follows that:
1∑n

j=1 β
−1
j

=
1

n

We finally obtain:

xi =
1

nβi
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General case

Result

The weight of Asset i is proportional to the inverse of its beta:

xi ∝ β−1
i

Remark

This solution is endogenous since xi is a function of itself because
βi = β (ei | x).
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General case

Example 5

We consider an investment universe of four assets with σ1 = 15%,
σ2 = 20%, σ3 = 30% and σ4 = 10%. The correlation of asset returns is
given by the following matrix:

ρ =


1.00
0.50 1.00
0.00 0.20 1.00
−0.10 0.40 0.70 1.00
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General case

Table 24: Composition of the ERC portfolio (Example 5)

Asset xi MRi βi RC i RC?i
1 31.34% 8.52% 0.80 2.67% 25.00%
2 17.49% 15.27% 1.43 2.67% 25.00%
3 13.05% 20.46% 1.92 2.67% 25.00%
4 38.12% 7.00% 0.66 2.67% 25.00%

Volatility 10.68%

We verify that:

x1 =
1

(4× 0.7978)
= 31.34%

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 287 / 1420



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Definition
Special cases
Properties
Numerical solution

Existence and uniqueness

We consider the following optimization problem:

y? (c) = arg min
1

2
y>Σy

u.c.
n∑

i=1

ln yi ≥ c

The Lagrange function is equal to:

L (y ;λc ) =
1

2
y>Σy − λc

(
n∑

i=1

ln yi − c

)

At the optimum, we have:

∂ L (y ;λc , λ)

∂ y
= 0n ⇔ (Σy)i −

λc

yi
= 0
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Existence and uniqueness

It follows that:
yi (Σy)i = λc

or equivalently:
RC i = RCj

Since we minimize a convex function subject to a lower convex
bound, the solution y? (c) exists and is unique

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 289 / 1420



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Definition
Special cases
Properties
Numerical solution

Existence and uniqueness

Question

What is the difference between y? (c) and y? (c ′)?

Let y ′ = αy? (c). The first-order conditions are:

y?i (c) (Σy? (c))i = λc

and:
y ′i (Σy ′)i = α2λc = λc′

Since λc 6= 0, the Kuhn-Tucker condition becomes:

min

(
λc ,

n∑
i=1

ln y?i (c)− c

)
= 0⇔

n∑
i=1

ln y?i (c)− c = 0
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Existence and uniqueness

It follows that:
n∑

i=1

ln
y ′i (c)

α
= c

or:
n∑

i=1

ln y ′i (c) = c + n lnα = c ′

We deduce that:

α = exp

(
c ′ − c

n

)
y? (c ′) is a scaled solution of y? (c):

y? (c ′) = exp

(
c ′ − c

n

)
y? (c)
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Existence and uniqueness

The ERC portfolio is the solution y? (c) such that
∑n

i=1 y
?
i (c) = 1:

xerc =
y? (c)∑n

i=1 y
?
i (c)

and corresponds to the following value of the logarithmic barrier:

cerc = c − n ln
n∑

i=1

y?i (c)
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Existence and uniqueness

Theorem

Because of the previous results, xerc exists and is unique. This is the
solution of the following optimization problema:

xerc = arg min
1

2
x>Σx

u.c.


∑n

i=1 ln xi ≥ cerc
1>n x = 1
0n ≤ x ≤ 1n

aWe can add the last two constraints because they do not change the solution
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Location of the ERC portfolio

The global global minimum variance portfolio is defined by:

xgmv = arg minσ (x)

u.c. 1>n x = 1

We have:
L (x ;λ0) = σ (x)− λ0

(
1>n x − 1

)
The first-order condition is:

∂ L (x ;λ0)

∂ x
= 0n ⇔

∂ σ (x)

∂ x
− λ01n = 0n
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Location of the ERC portfolio

Theorem

The global minimum variance portfolio satisfies:

∂ σ (x)

∂ xi
=
∂ σ (x)

∂ xj

The marginal volatilities are then the same.
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Location of the ERC portfolio

The equally-weighted portfolio is defined by:

xi =
1

n

We deduce that:
xi = xj
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Location of the ERC portfolio

We have:
xi = xj (EW)

∂ σ (x)

∂ xi
=
∂ σ (x)

∂ xj
(GMV)

xi
∂ σ (x)

∂ xi
= xj

∂ σ (x)

∂ xj
(ERC)

The ERC portfolio is a combination of GMV and EW portfolios
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Volatility of the ERC portfolio

We consider the following optimization problem:

x? (c) = arg min
1

2
x>Σx

u.c.


∑n

i=1 ln xi ≥ c
1>n x = 1
0n ≤ x ≤ 1n

We know that there exists a scalar cerc such that:

x? (cerc) = xerc

If c = −∞, the logarithmic barrier constraint vanishes and we have:

x? (−∞) = xmv

where xmv is the long-only minimum variance portfolio
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Volatility of the ERC portfolio

We notice that the function f (x) =
∑n

i=1 ln xi such that 1>n x = 1
reaches its maximum when:

1

xi
= λ0

implying that xi = xj = n−1. In this case, we have:

cmax =
n∑

i=1

ln
1

n
= −n ln n

If c = −n ln n, we have:

x? (−n ln n) = xew

Because we have a convex minimization problem and a lower convex
bound, we deduce that:

c2 ≥ c1 ⇔ σ (x? (c2)) ≥ σ (x? (c1))
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Volatility of the ERC portfolio

Theorem

We obtain the following inequality:

σ (xmv) ≤ σ (xerc) ≤ σ (xew)

The ERC portfolio may be viewed as a portfolio “between” the MV
portfolio and the EW portfolio.

Remark

The ERC portfolio is a form of variance-minimizing portfolio subject to a
constraint of sufficient diversification in terms of weights

Relationship with naive diversification (1/n)
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Optimality of the ERC portfolio

Let us consider the tangency (or maximum Sharpe ratio) portfolio defined
by:

xmsr = arg max
µ (x)− r

σ (x)

where µ (x) = x>µ and σ (x) =
√
x>Σx . We recall that the portfolio is

MSR if and only if:
∂xi µ (x)− r

∂xi σ (x)
=
µ (x)− r

σ (x)

Therefore, the MSR portfolio xmsr verifies the following relationship:

µ− r1n =

(
µ (xmsr)− r

σ2 (xmsr)

)
Σxmsr

= SR (xmsr | r)
Σxmsr

σ (xmsr)
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Optimality of the ERC portfolio

If we assume a constant correlation matrix, the ERC portfolio is
defined by:

xi =
c

σi

where c =
(∑n

j=1 σ
−1
j

)−1

We have:

(Σx)i =
n∑

j=1

ρi,jσiσjxj = cσi

n∑
j=1

ρi,j = cσi (1 + ρ (n − 1))

We deduce that:

∂ σ (x)

∂ xi
= c

σi ((1− ρ) + ρn)

σ (x)
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Optimality of the ERC portfolio

The portfolio volatility is equal to:

σ2 (x) = σ (x)
∑n

i=1
xi
∂ σ (x)

∂ xi

= σ (x)
∑n

i=1

c

σi
· c σi ((1− ρ) + ρn)

σ (x)

= nc2 ((1− ρ) + ρn)

The ERC portfolio is the MSR portfolio if and only if:

µi − r =

(∑n
j=1 (µj − r) xj

σ2 (x)

)
(Σx)i

=

(∑n
j=1 (µj − r) cσ−1

j

nc2 ((1− ρ) + ρn)

)
cσi (1 + ρ (n − 1))

=

1

n

n∑
j=1

µj − r

σj

σi
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Optimality of the ERC portfolio

We can write this condition as follows:

µi = r + SR ·σi

where:

SR =
1

n

n∑
j=1

µj − r

σj

Theorem

The ERC portfolio is the tangency or MSR portfolio if and only if the
correlation is uniform and the Sharpe ratio is the same for all the assets
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Optimality of the ERC portfolio

Example 6

We consider an investment universe of five assets. The volatilities are
respectively equal to 5%, 7%, 9%, 10% and 15%. The risk-free rate is
equal to 2%. The correlation is uniform.
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Optimality of the ERC portfolio

Figure 23: Location of the ERC portfolio in the mean-variance diagram when the
Sharpe ratios are the same (Example 6)
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Optimality of the ERC portfolio

Example 7

We consider an investment universe of five assets. The volatilities are
respectively equal to 5%, 7%, 9%, 10% and 15%. The correlation matrix
is equal to:

ρ =


1.00
0.50 1.00
0.25 0.25 1.00
0.00 0.00 0.00 1.00
−0.25 −0.25 −0.25 0.00 1.00
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Optimality of the ERC portfolio

Figure 24: Location of the ERC portfolio in the mean-variance diagram when the
Sharpe ratios are the same (Example 7)
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The SQP approach

The ERC portfolio satisfies:

xi · (Σx)i = xj · (Σx)j

or:

xi · (Σx)i =
x>Σx

n
We deduce that:

xerc = arg min f (x)

u.c.

{
1>n x = 1
0n ≤ x ≤ 1n

and f (xerc) = 0

Remark

The optimization problem is solved using the sequential quadratic
programming (or SQP) algorithm
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The SQP approach

We can choose:

f (x) =
n∑

i=1

(
xi · (Σx)i −

1

n
x>Σx

)2

or:

f (x ; b) =
n∑

i=1

n∑
j=1

(
xi · (Σx)i − xj · (Σx)j

)2
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The Jacobi approach

We have:

βi (x) =
(Σx)i

x>Σx

The ERC portfolio satisfies:

xi =
β−1

i (x)∑n
j=1 β

−1
j (x)

or:

xi ∝
1

(Σx)i
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The Jacobi approach

The Jacobi algorithm consists in finding the fixed point by considering the
following iterations:

1 We set k ← 0 and we note x (0) the vector of starting values7

2 At iteration k + 1, we compute:

y
(k+1)
i ∝ 1

βi

(
x (k)

) =
1(

Σx (k)
)

i

and:

x
(k+1)
i =

y
(k+1)
i∑n

j=1 y
(k+1)
j

3 We iterate Step 2 until convergence
7For instance, we can use the following rule:

x
(0)
i =

σ−1
i∑n

j=1 σ
−1
j
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The Newton-Raphson approach

We consider the following optimization problem:

x∗ = arg min f (x)

The Newton-Raphson iteration is defined by:

x (k+1) = x (k) −∆x (k)

where ∆x (k) is the inverse of the Hessian matrix of f
(
x (k)

)
times the

gradient vector of f
(
x (k)

)
:

∆x (k) =
[
∂2

x f
(
x (k)

)]−1

∂x f
(
x (k)

)
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The Newton-Raphson approach

We consider the Lagrange function:

f (y) =
1

2
y>Σy − λc

n∑
i=1

ln yi

We choose a value of λc (e.g. λc = 1)

We note y−m the vector n × 1 matrix with elements
(
y−m

1 , . . . , y−m
n

)
and diag (y−m) the n × n diagonal matrix with elements(
y−m

1 , . . . , y−m
n

)
:

diag
(
y−m

)
=


y−m

1 0 0
0 y−m

2
. . . 0

0 0 y−m
n
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The Newton-Raphson approach

We apply the Newton-Raphson algorithm with:

∂y f (y) = Σy − λcy
−1

and:
∂2

y f (y) = Σ + λc diag
(
y−2

)
The solution is given by:

xerc =
y?∑n

i=1 y
?
i
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The Newton-Raphson approach

For the starting value y
(0)
i , we can assume that the correlations are

uniform:

y
(0)
i =

σ−1
i∑n

j=1 σ
−1
j

At the optimum, we recall that λc = y?i · (Σy?)i . We deduce that:

λc =
1

n

n∑
i=1

y?i · (Σy?)i =
σ2 (y?)

n

Therefore, we can choose:

λc =
σ2
(
y (0)
)

n
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The Newton-Raphson approach

From a numerical point of view, it may be important to control the
magnitude order α of y? (e.g. α = 10%, α = 1 or α = 10). For
instance, we don’t want that the magnitude order is 10−5 or 105. In
this case, we can use the following rule:

λc = nα2σ2 (xerc)

For example, if n = 10 and α = 5, and we guess that the volatility of
the ERC portfolio is around 10%, we set:

λc = 10× 52 × 0.102 = 2.5
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The CCD approach

Table 25: Cyclical coordinate descent algorithm

The goal is to find the solution x? = arg min f (x)
We initialize the vector x (0)

Set k ← 0
repeat

for i = 1 : n do
x

(k+1)
i = arg minκ f

(
x

(k+1)
1 , . . . , x

(k+1)
i−1 ,κ, x (k)

i+1, . . . , x
(k)
n

)
end for
k ← k + 1

until convergence
return x? ← x (k)
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The CCD approach

We have:

L (y ;λc ) = arg min
1

2
y>Σy − λc

n∑
i=1

ln yi

The first-order condition is equal to:

∂ L (y ;λ)

∂ yi
= (Σy)i −

λc

yi
= 0

or:
yi · (Σy)i − λc = 0

It follows that:

σ2
i y

2
i +

σi

∑
j 6=i

ρi,jσjyj

 yi − λc = 0
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The CCD approach

We recognize a second-degree equation:

αiy
2
i + βiyi + γi = 0

1 The polynomial function is convex because we have αi = σ2
i > 0

2 The product of the roots is negative:

y ′i y
′′
i =

γi

αi
= −λc

σ2
i

< 0

3 The discriminant is positive:

∆ = β2
i − 4αiγi =

σi

∑
j 6=i

ρi,jσjyj

2

+ 4σ2
i λc > 0

We always have two solutions with opposite signs. We deduce that the
solution is the positive root of the second-degree equation:

y?i = y ′′i =
−βi +

√
β2

i − 4αiγi

2αi
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The CCD approach

The CCD algorithm consists in iterating the following formula:

y
(k+1)
i =

−β(k+1)
i +

√(
β

(k+1)
i

)2

− 4α
(k+1)
i γ

(k+1)
i

2α
(k+1)
i

where:

α
(k+1)
i = σ2

i

β
(k+1)
i = σi

(∑
j<i

ρi,jσjy
(k+1)
j +

∑
j>i

ρi,jσjy
(k)
j

)
γ

(k+1)
i = −λc

The ERC portfolio is the scaled solution y?:

xerc =
y?∑n

i=1 y
?
i
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Efficiency of the algorithms

CCD � NR � SQP � Jacobi
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Definition of RB portfolios

Definition

A risk budgeting (RB) portfolio x satisfies the following conditions:

RC1 = b1R (x)
...

RC i = biR (x)
...

RCn = bnR (x)

where R (x) is a coherent and convex risk measure and b = (b1, . . . , bn) is
a vector of risk budgets such that bi ≥ 0 and

∑n
i=1 bi = 1
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Definition of RB portfolios

Remark

The ERC portfolio is a particular case of RB portfolios when R (x) = σ (x)

and bi =
1

n
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Coherent risk measure

1 Subadditivity
R (x1 + x2) ≤ R (x1) +R (x2)

2 Homogeneity
R (λx) = λR (x) if λ ≥ 0

3 Monotonicity
if x1 ≺ x2, then R (x1) ≥ R (x2)

4 Translation invariance

if m ∈ R, then R (x + m) = R (x)−m
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Convex risk measure

The convexity property is defined as follows:

R (λx1 + (1− λ) x2) ≤ λR (x1) + (1− λ)R (x2)

This condition means that diversification should not increase the risk

Euler allocation principle

This property is necessary for the Euler allocation principle:

R (x) =
n∑

i=1

xi
∂R (x)

∂ xi
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Some risk measures

The portfolio loss is L (x) = −R (x) where R (x) is the portfolio return.
We consider then different risk measures:

Volatility of the loss

R (x) = σ (L (x)) = σ (x)

Standard deviation-based risk measure

R (x) = SDc (x) = E [L (x)] + c · σ (L (x)) = −µ (x) + c · σ (x)

Value-at-risk

R (x) = VaRα (x) = inf {` : Pr {L (x) ≤ `} ≥ α}

Expected shortfall

R (x) = ESα (x) = E [L (x) | L (x) ≥ VaRα (x)] =
1

1− α

∫ 1

α

VaRu (x) du
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Gaussian risk measures

We assume that the asset returns are normally distributed: R ∼ N (µ,Σ)

We have:

σ (x) =
√
x>Σx

SDc (x) = −x>µ+ c ·
√
x>Σx

VaRα (x) = −x>µ+ Φ−1 (α)
√
x>Σx

ESα (x) = −x>µ+

√
x>Σx

(1− α)
φ
(
Φ−1 (α)

)
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Gaussian risk contributions

Volatility σ (x)

RC i = xi ·
(Σx)i√
x>Σx

Standard deviation-based risk measure SDc (x)

RC i = xi ·
(
−µi + c

(Σx)i√
x>Σx

)
Value-at-risk VaRα (x)

RC i = xi ·
(
−µi + Φ−1 (α)

(Σx)i√
x>Σx

)
Expected shortfall ESα (x)

RC i = xi ·

(
−µi +

(Σx)i

(1− α)
√
x>Σx

φ
(
Φ−1 (α)

))
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Gaussian risk contributions

Example 8

We consider three assets. We assume that their expected returns are equal
to zero whereas their volatilities are equal to 30%, 20% and 15%. The
correlation of asset returns is given by the following matrix:

ρ =

 1.00
0.80 1.00
0.50 0.30 1.00


The portfolio is equal to (50%, 20%, 30%).
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Gaussian risk contributions

Table 26: Risk decomposition of the portfolio (Example 8)

R (x) Asset xi MRi RC i RC?i

Volatility

1 50.00 29.40 14.70 70.43
2 20.00 16.63 3.33 15.93
3 30.00 9.49 2.85 13.64

σ (x) 20.87

Value-at-risk

1 50.00 68.39 34.19 70.43
2 20.00 38.68 7.74 15.93
3 30.00 22.07 6.62 13.64

VaR99% (x) 48.55

Expected shortfall

1 50.00 78.35 39.17 70.43
2 20.00 44.31 8.86 15.93
3 30.00 25.29 7.59 13.64

ES99% (x) 55.62
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Gaussian risk contributions

Example 9

We consider three assets. We assume that their expected returns are equal
to 10%, 5% and 8% whereas their volatilities are equal to 30%, 20% and
15%. The correlation of asset returns is given by the following matrix:

ρ =

 1.00
0.80 1.00
0.50 0.30 1.00


The portfolio is equal to (50%, 20%, 30%).
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Gaussian risk contributions

Table 27: Risk decomposition of the portfolio (Example 9)

R (x) Asset xi MRi RC i RC?i

Volatility

1 50.00 29.40 14.70 70.43
2 20.00 16.63 3.33 15.93
3 30.00 9.49 2.85 13.64

σ (x) 20.87

Value-at-risk

1 50.00 58.39 29.19 72.71
2 20.00 33.68 6.74 16.78
3 30.00 14.07 4.22 10.51

VaR99% (x) 40.15

Expected shortfall

1 50.00 68.35 34.17 72.37
2 20.00 39.31 7.86 16.65
3 30.00 17.29 5.19 10.98

ES99% (x) 47.22
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Non-Gaussian risk contributions

They are not frequently used in asset management and portfolio
allocation, except in the case of skewed assets (Bruder et al., 2016; Lezmi
et al., 2018)

Non-parametric risk contributions are given in Chapter 2 in Roncalli (2013)
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Gaussian RB portfolios

Example 10

We consider three assets. We assume that their expected returns are equal
to 10%, 5% and 8% whereas their volatilities are equal to 30%, 20% and
15%. The correlation of asset returns is given by the following matrix:

ρ =

 1.00
0.80 1.00
0.50 0.30 1.00


The risk budgets are equal to (50%, 20%, 30%).
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Gaussian RB portfolios

Table 28: Risk budgeting portfolios (Example 10)

R (x) Asset xi MRi RC i RC?i

Volatility

1 31.14 28.08 8.74 50.00
2 21.90 15.97 3.50 20.00
3 46.96 11.17 5.25 30.00

σ (x) 17.49

Value-at-risk

1 29.18 54.47 15.90 50.00
2 20.31 31.30 6.36 20.00
3 50.50 18.89 9.54 30.00

VaR99% (x) 31.79

Expected shortfall

1 29.48 64.02 18.87 50.00
2 20.54 36.74 7.55 20.00
3 49.98 22.65 11.32 30.00

ES99% (x) 37.74
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Special cases

The case of uniform correlation8 ρi,j = ρ
1 Minimum correlation

xi

(
− 1

n − 1

)
=

σ−1
i∑n

j=1 σ
−1
j

2 Zero correlation

xi (0) =

√
biσ
−1
i∑n

j=1

√
bjσ
−1
j

3 Maximum correlation

xi (1) =
biσ
−1
i∑n

j=1 bjσ
−1
j

The general case

xi =
biβ
−1
i∑n

j=1 bjβ
−1
j

where βi is the beta of Asset i with respect to the RB portfolio
8The solution is noted xi (ρ).
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Existence and uniqueness

We have:
∂ σ (x)

∂ xi
=

xiσ
2
i + σi

∑
j 6=i xjρi,jσj

σ (x)

Suppose that the risk budget bk is equal to zero. This means that:

xk

xkσ
2
k + σk

∑
j 6=k

xjρk,jσj

 = 0

We obtain two solutions:

1 The first one is:
x ′k = 0

2 The second one verifies:

x ′′k = −
∑

j 6=k xjρk,jσj

σk
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Existence and uniqueness

If ρk,j ≥ 0 for all j , we have
∑

j 6=k xjρk,jσj ≥ 0 because xj ≥ 0 and
σj > 0. This implies that x ′′k ≤ 0 meaning that x ′k = 0 is the unique
positive solution

The only way to have x ′′k > 0 is to have some negative correlations
ρk,j . In this case, this implies that:∑

j 6=k

xjρk,jσj < 0

If we consider a universe of three assets, this constraint is verified for
k = 3 and a covariance matrix such that ρ1,3 < 0 and ρ2,3 < 0
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Existence and uniqueness

Example 11

We have σ1 = 20%, σ2 = 10%, σ3 = 5%, ρ1,2 = 50%, ρ1,3 = −25% and
ρ2,3 = −25%

If the risk budgets are equal to (50%, 50%, 0%), the two solutions are:

(33.33%, 66.67%, 0%)

and:
(20%, 40%, 40%)

Two questions

1 How many solutions do we have in the general case?

2 Which solution is the best?
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Existence and uniqueness

Table 29: First solution (Example 11)

Asset xi MRi RC i RC?i
1 33.33 17.32 5.77 50.00
2 66.67 8.66 5.77 50.00
3 0.00 −1.44 0.00 0.00

Volatility 11.55

Table 30: Second solution (Example 11)

Asset xi MRi RC i RC?i
1 20.00 16.58 3.32 50.00
2 40.00 8.29 3.32 50.00
3 40.00 0.00 0.00 0.00

Volatility 6.63

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 341 / 1420



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Definition of RB portfolios
Properties of RB portfolios
Diversification measures
Using risk factors instead of assets

Existence and uniqueness
The case with strictly positive risk budgets

We consider the following optimization problem:

y? = arg minR (y)

u.c.

{ ∑n
i=1 bi ln yi ≥ c

y ≥ 0n

where c is an arbitrary constant

The associated Lagrange function is:

L (y ;λ, λc ) = R (y)− λ>y − λc

(
n∑

i=1

bi ln yi − c

)

where λ ∈ Rn and λc ∈ R
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Existence and uniqueness
The case with strictly positive risk budgets

The solution y? verifies the following first-order condition:

∂ L (y ;λ, λc )

∂ yi
=
∂R (y)

∂ yi
− λi − λc

bi

yi
= 0

The Kuhn-Tucker conditions are:{
min (λi , yi ) = 0
min

(
λc ,
∑n

i=1 bi ln yi − c
)

= 0
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Existence and uniqueness
The case with strictly positive risk budgets

Because ln yi is not defined for yi = 0, it follows that yi > 0 and
λi = 0

We note that the constraint
∑n

i=1 bi ln yi = c is necessarily reached
(because the solution cannot be y? = 0n), then λc > 0 and we have:

yi
∂R (y)

∂ yi
= λcbi

We verify that the risk contributions are proportional to the risk
budgets:

RC i = λcbi
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Existence and uniqueness
The case with strictly positive risk budgets

Theorem

The optimization program has a unique solution and the RB portfolio is
equal to:

xrb =
y?∑n

i=1 y
?
i

Remark

We note that the convexity property of the risk measure is essential to the
existence and uniqueness of the RB portfolio. If R (x) is not convex, the
preceding analysis becomes invalid.
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Existence and uniqueness
Effect on the solution of setting risk budgets to zero

Let N be the set of assets such that bi = 0

The Lagrange function becomes:

L (y ;λ, λc ) = R (y)− λ>y − λc

(∑
i /∈N

bi ln yi − c

)
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Existence and uniqueness
Effect on the solution of setting risk budgets to zero

The solution y? verifies the following first-order conditions:

∂ L (y ;λ, λc )

∂ yi
=

{
∂yi R (y)− λi − λcbiy

−1
i = 0 if i /∈ N

∂yi R (y)− λi = 0 if i ∈ N

If i /∈ N , the previous analysis is valid and we verify that risk
contributions are proportional to the risk budgets:

yi
∂R (y)

∂ yi
= λcbi

If i ∈ N , we must distinguish two cases:

1 If yi = 0, it implies that λi > 0 and ∂yi R (y) > 0
2 In the other case, if yi > 0, it implies that λi = 0 and ∂yi R (y) = 0

The solution yi = 0 or yi > 0 if i ∈ N will then depend on the
structure of the covariance matrix Σ (in the case of a Gaussian risk
measure)

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 347 / 1420



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Definition of RB portfolios
Properties of RB portfolios
Diversification measures
Using risk factors instead of assets

Existence and uniqueness
Effect on the solution of setting risk budgets to zero

Theorem

We conclude that the solution y? of the optimization problem exists and is
unique even if some risk budgets are set to zero. As previously, we deduce
the normalized RB portfolio xrb by scaling y?. This solution, noted S1,
satisfies the following relationships:

RC i = xi · ∂xi R (x) = bi if i /∈ N xi = 0 and ∂xi R (x) > 0 (i)
or

xi > 0 and ∂xi R (x) = 0 (ii)
if i ∈ N

The conditions (i) and (ii) are mutually exclusive for one asset i ∈ N , but
not necessarily for all the assets i ∈ N .
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Existence and uniqueness
Effect on the solution of setting risk budgets to zero

The previous analysis implies that there may be several solutions to the
following non-linear system when bi = 0 for i ∈ N :

RC1 = b1R (x)
...

RC i = biR (x)
...

RCn = bnR (x)

Let N = N1

⊔
N2 where N1 is the set of assets verifying the

condition (i) and N2 is the set of assets verifying the condition (ii)

The number of solutions is equal to 2m where m = |N2| is the
cardinality of N2
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Existence and uniqueness
Effect on the solution of setting risk budgets to zero

We note S2 the solution with xi = 0 for all assets such that bi = 0. Even if
S2 is the solution expected by the investor, the only acceptable solution is
S1. Indeed, if we impose bi = εi where εi > 0 is a small number for
i ∈ N , we obtain:

lim
εi→0
S = S1

The solution converges to S1, and not to S2 or the other solutions
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Remark

The non-linear system is not well-defined, whereas the optimization
problem is the right approach to define a RB portfolio

Definition

A RB portfolio is a minimum risk portfolio subject to a diversification
constraint, which is defined by the logarithmic barrier function
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Existence and uniqueness

Example 12

We consider a universe of three assets with σ1 = 20%, σ2 = 10% and
σ3 = 5%. The correlation of asset returns is given by the following matrix:

ρ =

 1.00
0.50 1.00
ρ1,3 ρ2,3 1.00


We would like to build a RB portfolio such that the risk budgets with
respect to the volatility risk measure are (50%, 50%, 0%). Moreover, we
assume that ρ1,3 = ρ2,3.
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Table 31: RB solutions when the risk budget b3 is equal to 0 (Example 12)

ρ1,3 = ρ2,3 Solution 1 2 3 σ (x)

−25%

xi 20.00% 40.00% 40.00%
S1 MRi 16.58% 8.29% 0.00% 6.63%

RC i 50.00% 50.00% 0.00%
xi 33.33% 66.67% 0.00%

S2 MRi 17.32% 8.66% −1.44% 11.55%
RC i 50.00% 50.00% 0.00%
xi 19.23% 38.46% 42.31%

S ′1 MRi 16.42% 8.21% 0.15% 6.38%
RC i 49.50% 49.50% 1.00%

25%
xi 33.33% 66.67% 0.00%

S1 MRi 17.32% 8.66% 1.44% 11.55%
RC i 50.00% 50.00% 0.00%
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Figure 25: Evolution of the portfolio’s volatility with respect to x3
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Location of the RB portfolio

We have:
xi

bi
=

xj

bj
(WB)

∂R (x)

∂ xi
=
∂R (x)

∂ xj
(MR)

1

bi

(
xi
∂R (x)

∂ xi

)
=

1

bj

(
xj
∂R (x)

∂ xj

)
(ERC)

The RB portfolio is a combination of MR (long-only minimum risk)
and WB (weight budgeting) portfolios
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Risk of the RB portfolio

Theorem

We obtain the following inequality:

R (xmr) ≤ R (xrb) ≤ R (xwb)

The RB portfolio may be viewed as a portfolio “between” the MR portfolio
and the WB portfolio
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Diversification index

Definition

The diversification index is equal to:

D (x) =
R
(∑n

i=1 Li

)∑n
i=1R (Li )

=
R (x)∑n

i=1 xiR (ei )
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Diversification index

The diversification index is the ratio between the risk measure of
portfolio x and the weighted risk measure of the assets

If R is a coherent risk measure, we have D (x) ≤ 1

If D (x) = 1, it implies that the losses are comonotonic

If R is the volatility risk measure, we obtain:

D (x) =

√
x>Σx∑n
i=1 xiσi

It takes the value one if the asset returns are perfectly correlated
meaning that the correlation matrix is Cn (1)
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Concentration index

Let π ∈ Rn
+ such that 1>n π = 1 ⇒ π is a probability distribution

The probability distribution π+ is perfectly concentrated if there exists
one observation i0 such that π+

i0
= 1 and π+

i = 0 if i 6= i0

When n tends to +∞, the limit distribution is noted π+
∞

On the opposite, the probability distribution π− such that π−i = 1/n
for all i = 1, . . . , n has no concentration
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Concentration index

Definition

A concentration index is a mapping function C (π) such that C (π)
increases with concentration and verifies:

C
(
π−
)
≤ C (π) ≤ C

(
π+
)

For instance, if π represents the weights of the portfolio, C (π)
measures then the weight concentration

By construction, C (π) reaches the minimum value if the portfolio is
equally weighted

To measure the risk concentration of the portfolio, we define π as the
distribution of the risk contributions. In this case, the portfolio
corresponding to the lower bound C (π−) = 0 is the ERC portfolio
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Herfindahl index

Definition

The Herfindahl index associated with π is defined as:

H (π) =
n∑

i=1

π2
i

This index takes the value 1 for the probability distribution π+ and
1/n for the distribution with uniform probabilities π−

To scale the statistics onto [0, 1], we consider the normalized index
H? (π) defined as follows:

H? (π) =
nH (π)− 1

n − 1
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Gini index

The Gini index is based on the Lorenz curve of inequality

Let X and Y be two random variables. The Lorenz curve y = L (x) is
defined by the following parameterization:{

x = Pr {X ≤ x}
y = Pr {Y ≤ y | X ≤ x}

The Lorenz curve admits two limit cases

1 If the portfolio is perfectly concentrated, the distribution of the
weights corresponds to π+

∞
2 On the opposite, the least concentrated portfolio is the equally

weighted portfolio and the Lorenz curve is the bisecting line y = x
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Gini index

Figure 26: Geometry of the Lorenz curve
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Gini index

Definition

The Gini index is then defined as:

G (π) =
A

A + B

with A the area between L (π−) and L (π), and B the area between L (π)
and L (π+

∞)
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Gini index

By construction, we have G (π−) = 0, G (π+
∞) = 1 and:

G (π) =
(A + B)− B

A + B

= 1− 1

A + B
B

= 1− 2

∫ 1

0

L (x) dx

In the case when π is a discrete probability distribution, we obtain:

G (π) =
2
∑n

i=1 iπi :n

n
∑n

i=1 πi :n
− n + 1

n

where {π1:n, . . . , πn:n} are the ordered statistics of {π1, . . . , πn}.
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Shannon entropy

Definition

The Shannon entropy is equal to:

I (π) = −
n∑

i=1

πi lnπi

The diversity index corresponds to the statistic:

I? (π) = exp (I (π))

We have I? (π−) = n and I? (π+) = 1
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Impact of the reparametrization on the asset universe

We consider a set of m primary assets (A′1, . . . ,A′m) with a
covariance matrix Ω

We define n synthetic assets (A1, . . . ,An) which are composed of the
primary assets

We denote W = (wi,j ) the weight matrix such that wi,j is the weight
of the primary asset A′j in the synthetic asset Ai (we have∑m

j=1 wi,j = 1)

The covariance matrix of the synthetic assets Σ is equal to WΩW>

The synthetic assets can be interpreted as portfolios of the primary
assets

For example, A′j may represent a stock whereas Ai may be an index
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Impact of the reparametrization on the asset universe

1 We consider a portfolio x = (x1, . . . , xn) defined with respect to the
synthetic assets. We have:

RC i = xi ·
(Σx)i√
x>Σx

2 We also define the portfolio with respect to the primary assets. In this
case, the composition is y = (y1, . . . , ym) where yj =

∑n
i=1 xiwi,j (or

y = W>x). We have:

RCj = yj ·
(Ωy)j√
y>Ωy
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Impact of the reparametrization on the asset universe

Example 13

We have six primary assets. The volatility of these assets is respectively
20%, 30%, 25%, 15%, 10% and 30%. We assume that the assets are not
correlated. We consider two equally weighted synthetic assets with:

W =

(
1/4 1/4 1/4 1/4

1/4 1/4 1/4 1/4

)
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Table 32: Risk decomposition of Portfolio #1 with respect to the synthetic
assets (Example 13)

Asset i xi MRi RC i RC?i
A1 36.00 9.44 3.40 33.33
A2 38.00 8.90 3.38 33.17
A3 26.00 13.13 3.41 33.50

Table 33: Risk decomposition of Portfolio #1 with respect to the primary assets
(Example 13)

Asset j yj MRj RCj RC?j
A′1 9.00 3.53 0.32 3.12
A′2 9.00 7.95 0.72 7.02
A′3 31.50 19.31 6.08 59.69
A′4 31.50 6.95 2.19 21.49
A′5 9.50 0.93 0.09 0.87
A′6 9.50 8.39 0.80 7.82
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Table 34: Risk decomposition of Portfolio #2 with respect to the synthetic
assets (Example 13)

Asset i xi MRi RC i RC?i
A1 48.00 9.84 4.73 49.91
A2 50.00 9.03 4.51 47.67
A3 2.00 11.45 0.23 2.42

Table 35: Risk decomposition of Portfolio #2 with respect to the primary assets
(Example 13)

Asset j yj MRj RCj RC?j
A′1 12.00 5.07 0.61 6.43
A′2 12.00 11.41 1.37 14.46
A′3 25.50 16.84 4.29 45.35
A′4 25.50 6.06 1.55 16.33
A′5 12.50 1.32 0.17 1.74
A′6 12.50 11.88 1.49 15.69

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 371 / 1420



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Definition of RB portfolios
Properties of RB portfolios
Diversification measures
Using risk factors instead of assets

Impact of the reparametrization on the asset universe

Figure 27: Lorenz curve of risk contributions (Example 13)
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Risk decomposition with respect to the risk factors

We consider a set of n assets {A1, . . . , An} and a set of m risk
factors {F1, . . . , Fm}
Rt is the (n × 1) vector of asset returns at time t

Σ is the covariance matrix of asset returns

Ft is the (m × 1) vector of factor returns at time t

Ω is the covariance matrix of factor returns
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Risk decomposition with respect to the risk factors

Linear factor model

We consider the linear factor model:

Rt = AFt + εt

where Ft and εt are two uncorrelated random vectors, εt is a centered
random vector (n × 1) of covariance D and A is the (n ×m) loadings
matrix

We have the following relationship:

Σ = AΩA> + D
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Risk decomposition with respect to the risk factors

We decompose the portfolio’s asset exposures x by the portfolio’s risk
factors exposures y in the following way:

x = B+y + B̃+ỹ

where:

B+ is the Moore-Penrose inverse of A>

B̃+ is any n × (n −m) matrix that spans the left nullspace of B+

ỹ corresponds to n −m residual (or additional) factors that have no
economic interpretation

It follows that: {
y = A>x

ỹ = B̃x

where B̃ = ker
(
A>
)>
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Risk decomposition with respect to the risk factors

Risk decomposition I

We can show that the marginal risk of the jth factor exposure is given
by:

MR (Fj ) =
∂ σ (x)

∂ yj
=

(A+Σx)j

σ (x)

whereas its risk contribution is equal to:

RC (Fj ) = yj
∂ σ (x)

∂ yj
=

(
A>x

)
j
· (A+Σx)j

σ (x)
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Risk decomposition II

For the residual factors, we have:

MR
(
F̃j

)
=
∂ σ (x)

∂ ỹj
=

(
B̃Σx

)
j

σ (x)

and:

RC
(
F̃j

)
= ỹj

∂ σ (x)

∂ ỹj
=

(
B̃x
)

j
·
(
B̃Σx

)
j

σ (x)
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Remark

We can show that these risk contributions satisfy the allocation principle:

σ (x) =
m∑

j=1

RC (Fj ) +
n−m∑
j=1

RC
(
F̃j

)
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Risk decomposition with respect to the risk factors

Let pinv (C ) and null (C ) be the Moore-Penrose pseudo-inverse and the
orthonormal basis for the right null space of C

1 Computation of A+

A+ = pinv (A) =
(
A>A

)−1
A>

2 Computation of B
B = A>

3 Computation of B+

B+ = pinv (B) = B>
(
BB>

)−1

4 Computation of B̃

B̃ = pinv
(
null

(
B+>

))
·
(
In − B+A>

)
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Remark

The previous results can be extended to other coherent and convex risk
measures (Roncalli and Weisang, 2016)
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Example 14

We consider an investment universe with four assets and three factors.
The loadings matrix A is:

A =


0.9 0.0 0.5
1.1 0.5 0.0
1.2 0.3 0.2
0.8 0.1 0.7


The three factors are uncorrelated and their volatilities are 20%, 10% and
10%. We assume a diagonal matrix D with specific volatilities 10%, 15%,
10% and 15%.
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The correlation matrix of asset returns is (in %):

ρ =


100.0

69.0 100.0
79.5 76.4 100.0
66.2 57.2 66.3 100.0


and their volatilities are respectively equal to 21.19%, 27.09%, 26.25% and
23.04%.
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We obtain that:

A+ =

 1.260 −0.383 1.037 −1.196
−3.253 2.435 −1.657 2.797
−0.835 0.208 −1.130 2.348


and:

B̃ =
(

0.533 0.452 −0.692 −0.183
)
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Risk decomposition with respect to the risk factors

Table 36: Risk decomposition of the EW portfolio with respect to the assets
(Example 14)

Asset xi MRi RC i RC?i
1 25.00 18.81 4.70 21.97
2 25.00 23.72 5.93 27.71
3 25.00 24.24 6.06 28.32
4 25.00 18.83 4.71 22.00

Volatility 21.40

Table 37: Risk decomposition of the EW portfolio with respect to the risk
factors (Example 14)

Factor yj MRj RCj RC?j
F1 100.00 17.22 17.22 80.49
F2 22.50 9.07 2.04 9.53
F3 35.00 6.06 2.12 9.91

F̃1 2.75 0.52 0.01 0.07
Volatility 21.40
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Risk factor parity (or RFP) portfolios

RFP portfolios are defined by:

RC (Fj ) = bjR (x)

They are computed using the following optimization problem:

(y?, ŷ?) = arg min
m∑

j=1

(RC (Fj )− bjR (x))2

u.c. 1>n

(
B+y + B̃+ỹ

)
= 1
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Risk factor parity (or RFP) portfolios

Example 15

We consider an investment universe with four assets and three factors.
The loadings matrix A is:

A =


0.9 0.0 0.5
1.1 0.5 0.0
1.2 0.3 0.2
0.8 0.1 0.7


The three factors are uncorrelated and their volatilities are 20%, 10% and
10%. We assume a diagonal matrix D with specific volatilities 10%, 15%,
10% and 15%. We consider the following factor risk budgets:

b = (49%, 25%, 25%)
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Risk factor parity (or RFP) portfolios

Table 38: Risk decomposition of the RFP portfolio with respect to the risk
factors (Example 15)

Factor yj MRj RCj RC?j
F1 93.38 11.16 10.42 49.00
F2 24.02 22.14 5.32 25.00
F3 39.67 13.41 5.32 25.00

F̃1 16.39 1.30 0.21 1.00
Volatility 21.27

Table 39: Risk decomposition of the RFP portfolio with respect to the assets
(Example 15)

Asset xi MRi RC i RC?i
1 15.08 17.44 2.63 12.36
2 38.38 23.94 9.19 43.18
3 0.89 21.82 0.20 0.92
4 45.65 20.29 9.26 43.54

Volatility 21.27
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Minimizing the risk concentration between the risk factors

We now consider the following problem:

RC (Fj ) ' RC (Fk )

⇒ The portfolios are computed by minimizing the risk concentration
between the risk factors

Remark

We can use the Herfindahl index, the Gini index or the Shanon entropy
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Example 16

We consider an investment universe with four assets and three factors.
The loadings matrix A is:

A =


0.9 0.0 0.5
1.1 0.5 0.0
1.2 0.3 0.2
0.8 0.1 0.7


The three factors are uncorrelated and their volatilities are 20%, 10% and
10%. We assume a diagonal matrix D with specific volatilities 10%, 15%,
10% and 15%.
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Table 40: Risk decomposition of the balanced RFP portfolio with respect to the
risk factors (Example 16)

Factor yj MRj RCj RC?j
F1 91.97 7.91 7.28 33.26
F2 25.78 28.23 7.28 33.26
F3 42.22 17.24 7.28 33.26

F̃1 6.74 0.70 0.05 0.21
Volatility 21.88

Table 41: Risk decomposition of the balanced RFP portfolio with respect to the
assets (Example 16)

Asset xi MRi RC i RC?i
1 0.30 16.11 0.05 0.22
2 39.37 23.13 9.11 41.63
3 0.31 20.93 0.07 0.30
4 60.01 21.09 12.66 57.85

Volatility 21.88
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Minimizing the risk concentration between the risk factors

We have H? = 0, G = 0 and I? = 3
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Table 42: Balanced RFP portfolios with xi ≥ 10% (Example 16)

Criterion H (x) G (x) I (x)
x1 10.00 10.00 10.00
x2 22.08 18.24 24.91
x3 10.00 10.00 10.00
x4 57.92 61.76 55.09
H? 0.0436 0.0490 0.0453
G 0.1570 0.1476 0.1639
I? 2.8636 2.8416 2.8643
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Justification of diversified funds

Investor Profiles

1 Conservative (low risk)

2 Moderate (medium risk)

3 Aggressive (high risk)

Fund Profiles

1 Defensive (20% equities
and 80% bonds)

2 Balanced (50% equities
and 50% bonds)

3 Dynamic (80% equities
and 20% bonds)

Figure 28: The asset allocation puzzle
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What type of diversification is offered by diversified funds?

Figure 29: Equity (MSCI World) and bond (WGBI) risk
contributions

Diversified funds
=

Marketing idea?

Contrarian constant-mix
strategy

Deleverage of an equity
exposure

Low risk diversification

No mapping between
fund profiles and investor
profiles

Static weights

Dynamic risk
contributions
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Diversified funds
Risk premium
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Multi-dimensional
target volatility
strategy

Trend-following
portfolio (if negative
correlation between
return and risk)

Dynamic weights

Static risk
contributions (risk
budgeting)

High diversification

Figure 30: Equity and bond allocation
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Characterization of the stock/bond market portfolio

Figure 31: Evolution of the equity weight for United States and Japan
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Characterization of the stock/bond market portfolio

Figure 32: Evolution of the equity weight for Germany, France and UK
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Link between risk premium and risk contribution

Let πi and πM be the risk premium of Asset i and the market risk
premium. We have:

πi = βi · πM

=
cov (Ri ,RM )

σ (RM )
· πM

σ (RM )

=
∂ σ (xM )

∂ xi
· SR (xM )

The risk premium of Asset i is then proportional to the marginal volatility
of Asset i with respect to the market portfolio

Foundation of the risk budgeting approach

For the tangency portfolio, we have:

performance contribution = risk contribution
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Link between risk premium and risk contribution

Figure 33: Risk premia (in %) for the US market portfolio (SR (xM ) = 25%)
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Link between risk premium and risk contribution

Figure 34: Difference (in %) between EURO and US risk premia
(SR (xM ) = 25%)
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Sharpe theory of risk premia

The one-factor risk model

We deduce that:

Ri − Rf = αi + βi · (RM − Rf )︸ ︷︷ ︸
Systematic

Risk

+ εi︸ ︷︷ ︸
Specific

Risk

We necessarily have:

1 αi = 0

2 E [εi ] = 0

⇒ On average, only the systematic risk is rewarded, not the idiosyncratic
risk
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Sharpe theory of risk premia
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Figure 35: The security market line (SML)

Risk premium is an
increasing function of
the systematic risk

Risk premium may be
negative (meaning that
some assets can have a
return lower than the
risk-free asset!)

More risk 6= more return
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Black-Litterman theory of risk premia

In the Black-Litterman model, the expected (or ex-ante/implied) risk
premia are equal to:

π̃ = µ̃− r = SR (x | r)
Σx√
x>Σx

where SR (x | r) is the expected Sharpe ratio of the portfolio.
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Black-Litterman theory of risk premia

Example 17

We consider four assets. Their expected returns are equal to 5%, 6%, 8%
and 6% while their volatilities are equal to 15%, 20%, 25% and 30%. The
correlation matrix of asset returns is given by the following matrix:

C =


1.00
0.10 1.00
0.40 0.70 1.00
0.50 0.40 0.80 1.00


We also assume that the return of the risk-free asset is equal to 1.5%.
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Black-Litterman theory of risk premia

Table 43: Black-Litterman risk premia (Example 17)

CAPM Black-Litterman
Asset πi x?i xi π̃i xi π̃i

#1 3.50% 63.63% 25.00% 2.91% 40.00% 3.33%
#2 4.50% 19.27% 25.00% 4.71% 30.00% 4.97%
#3 6.50% 50.28% 25.00% 7.96% 20.00% 7.69%
#4 4.50% −33.17% 25.00% 9.07% 10.00% 8.18%
µ (x) 6.37% 6.25% 6.00%
σ (x) 14.43% 18.27% 15.35%
µ̃ (x) 6.37% 7.66% 6.68%
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Black-Litterman theory of risk premia

Figure 36: Equity and bond implied risk premia for diversified funds
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Performance assets versus hedging assets

We recall that:

π̃ = SR (x | r)
∂ σ (x)

∂ x

where σ (x) is the volatility of portfolio x

We have:

∂ σ (x)

∂ xi
=

(Σx)i

σ (x)

=

(
xiσ

2
i + σi

∑
j 6=i xjρi,jσj

)
σ (x)

We deduce that

π̃i = SR (x | r)

(
xiσ

2
i + σi

∑
j 6=i xjρi,jσj

)
σ (x)
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Performance assets versus hedging assets

In the two-asset case, we obtain:

π̃1 = c (x)

 x1σ
2
1︸︷︷︸

variance

+ ρσ1σ2 (1− x1)︸ ︷︷ ︸
covariance


and:

π̃2 = c (x)

 x2σ
2
2︸︷︷︸

variance

+ ρσ1σ2 (1− x2)︸ ︷︷ ︸
covariance


where c (x) is equal to SR (x | r) /σ (x) and ρ is the cross-correlation
between the two asset returns
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Performance assets versus hedging assets

In the two-asset case, the implied risk premium becomes:

π̃i =
SR (x | r)

σ (x)

xi · σ2
i︸ ︷︷ ︸

variance

+ (1− xi ) · ρσiσj︸ ︷︷ ︸
covariance


There are two components in the risk premium:

a variance risk component, which is an increasing function of the
volatility and the weight of the asset

a (positive or negative) covariance risk component, which depends on
the correlation between asset returns

Performance asset versus hedging asset

When π̃i > 0, the asset i is a performance asset for Portfolio x

When π̃i < 0, the asset i is a hedging asset for Portfolio x
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Performance assets versus hedging assets

Figure 37: Impact of the correlation on the expected risk premium (σ1 = 20%,
σ2 = 5% and SR (x) = 0.25)
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Are bonds performance or hedging assets?

Stocks are always considered as performance assets, while bonds may
be performance or hedging assets, depending on the region and the
period9

1990-2008: (Sovereign) bonds were perceived as performance assets

The 2008 GFC has strengthened the fly-to-quality characteristic of
bonds

2013-2017: Bonds are now more and more perceived as hedging
assets10

Diversified stock-bond portfolios ⇒ Deleveraged equity portfolios

9For instance bonds were hedging assets in 2008 and performance assets in 2011
10This is particular true in the US and Europe, where the implied risk premium is

negative. In Japan, the implied risk premium continue to be positive
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Diversified versus risk parity funds

Table 44: Statistics of diversified and risk parity portfolios (2000-2012)

Portfolio µ̂1Y σ̂1Y SR MDD γ1 γ2

Defensive 5.41 6.89 0.42 −17.23 0.19 2.67
Balanced 3.68 9.64 0.12 −33.18 −0.13 3.87
Dynamic 1.70 14.48 −0.06 −48.90 −0.18 5.96
Risk parity 5.12 7.29 0.36 −21.22 0.08 2.65
Static 4.71 7.64 0.29 −23.96 0.03 2.59
Leveraged RP 6.67 9.26 0.45 −23.74 0.01 0.78

The 60/40 constant mix strategy is not the right benchmark

Results depend on the investment universe (number/granularity of
asset classes)

What is the impact of rising interest rates?
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Optimality of the RB portfolio

We consider the utility function:

U (x) = (µ (x)− r)− φR (x)

Portfolio x is optimal if the vector of expected risk premia satisfies this
relationship:

π̃ = φ
∂R (x)

∂ x

If the RB portfolio is optimal, we deduce that the (excess) performance
contribution PC i of asset i is proportional to its risk budget:

PC i = xi π̃i

= φ · RC i

∝ bi
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Optimality of the RB portfolio

In the Black-Litterman approach of risk premia, we have:

π̃i = µ̃i − r = SR (x | r)
(Σx)i√
x>Σx

This implies that the (excess) performance contribution is equal to:

PC i = SR (x | r)
xi · (Σx)i√

x>Σx
= SR (x | r) · RC i

where SR (x | r) is the expected Sharpe ratio of the RB portfolio
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Optimality of the RB portfolio

Remark

From an ex-ante point of view, performance budgeting and risk budgeting
are equivalent
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Optimality of the RB portfolio

Example 18

We consider a universe of four assets. The volatilities are respectively
10%, 20%, 30% and 40%. The correlation of asset returns is given by the
following matrix:

ρ =


1.00
0.80 1.00
0.20 0.20 1.00
0.20 0.20 0.50 1.00


The risk-free rate is equal to zero
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Optimality of the RB portfolio

Table 45: Implied risk premia when b = (20%, 25%, 40%, 15%) (Example 18)

Asset xi MRi µ̃i PC i PC?i
1 40.91 7.10 3.55 1.45 20.00
2 25.12 14.46 7.23 1.82 25.00
3 25.26 23.01 11.50 2.91 40.00
4 8.71 25.04 12.52 1.09 15.00

Expected return 7.27

Table 46: Implied risk premia when b = (10%, 10%, 10%, 70%) (Example 18)

Asset xi MRi µ̃i PC i PC?i
1 35.88 5.27 2.63 0.94 10.00
2 17.94 10.53 5.27 0.94 10.00
3 10.18 18.56 9.28 0.94 10.00
4 35.99 36.75 18.37 6.61 70.00

Expected return 9.45
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Main result

There is no neutral allocation. Every portfolio corresponds to an active bet.
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Variation on the ERC portfolio

Question 1

We note Σ the covariance matrix of asset returns.
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Variation on the ERC portfolio

Question 1.a

What is the risk contribution RC i of asset i with respect to portfolio x?
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Variation on the ERC portfolio

Let R (x) be a risk measure of the portfolio x . If this risk measure satisfies
the Euler principle, we have (TR-RPB, page 78):

R (x) =
n∑

i=1

xi
∂R (x)

∂ xi

We can then decompose the risk measure as a sum of asset contributions.
This is why we define the risk contribution RC i of asset i as the product
of the weight by the marginal risk:

RC i = xi
∂R (x)

∂ xi

When the risk measure is the volatility σ (x), it follows that:

RC i = xi
(Σx)i√
x>Σx

=
xi

(∑n
k=1 ρi,kσiσkxk

)
σ (x)
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Variation on the ERC portfolio

Question 1.b

Define the ERC portfolio.
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Variation on the ERC portfolio

The ERC portfolio corresponds to the risk budgeting portfolio when the
risk measure is the return volatility σ (x) and when the risk budgets are
the same for all the assets (TR-RPB, page 119). It means that
RC i = RCj , that is:

xi
∂ σ (x)

∂ xi
= xj

∂ σ (x)

∂ xj
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Variation on the ERC portfolio

Question 1.c

Calculate the variance of the risk contributions. Define an optimization
program to compute the ERC portfolio. Find an equivalent maximization
program based on the L2 norm.
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We have:

RC =
1

n

n∑
i=1

RC i

=
1

n
σ (x)

It follows that:

var (RC) =
1

n

n∑
i=1

(
RC i −RC

)2

=
1

n

n∑
i=1

(
RC i −

1

n
σ (x)

)2

=
1

n2σ (x)

n∑
i=1

(
nxi (Σx)i − σ

2 (x)
)2
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Variation on the ERC portfolio

To compute the ERC portfolio, we may consider the following optimization
program:

x? = arg min
n∑

i=1

(
nxi (Σx)i − σ

2 (x)
)2

Because we know that the ERC portfolio always exists (TR-RPB, page
108), the objective function at the optimum x? is necessarily equal to 0.
Another equivalent optimization program is to consider the L2 norm. In
this case, we have (TR-RPB, page 102):

x? = arg min
n∑

i=1

n∑
j=1

(
xi · (Σx)i − xj · (Σx)j

)2
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Variation on the ERC portfolio

Question 1.d

Let βi (x) be the beta of asset i with respect to portfolio x . Show that we
have the following relationship in the ERC portfolio:

xiβi (x) = xjβj (x)

Propose a numerical algorithm to find the ERC portfolio.

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 427 / 1420



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Variation on the ERC portfolio
Weight concentration of a portfolio
The optimization problem of the ERC portfolio
Risk parity funds

Variation on the ERC portfolio

We have:

βi (x) =
(Σx)i

x>Σx

=
MRi

σ (x)

We deduce that:

RC i = xi · MRi

= xiβi (x)σ (x)

The relationship RC i = RCj becomes:

xiβi (x) = xjβj (x)

It means that the weight is inversely proportional to the beta:

xi ∝
1

βi (x)
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We can use the Jacobi power algorithm (TR-RPB, page 308). Let x (k) be
the portfolio at iteration k. We define the portfolio x (k+1) as follows:

x (k+1) =
β−1

i

(
x (k)

)∑n
j=1 β

−1
j

(
x (k)

)
Starting from an initial portfolio x (0), the limit portfolio is the ERC
portfolio if the algorithm converges:

lim
k→∞

x (k) = xerc
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Question 1.e

We suppose that the volatilities are 15%, 20% and 25% and that the
correlation matrix is:

ρ =

 100%
50% 100%
40% 30% 100%


Compute the ERC portfolio using the beta algorithm.
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Starting from the EW portfolio, we obtain for the first five iterations:

k 0 1 2 3 4 5

x
(k)
1 (in %) 33.3333 43.1487 40.4122 41.2314 40.9771 41.0617

x
(k)
2 (in %) 33.3333 32.3615 31.9164 32.3529 32.1104 32.2274

x
(k)
3 (in %) 33.3333 24.4898 27.6714 26.4157 26.9125 26.7109

β1

(
x (k)

)
0.7326 0.8341 0.8046 0.8147 0.8113 0.8126

β2

(
x (k)

)
0.9767 1.0561 1.0255 1.0397 1.0337 1.0363

β3

(
x (k)

)
1.2907 1.2181 1.2559 1.2405 1.2472 1.2444
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The next iterations give the following results:

k 6 7 8 9 10 11

x
(k)
1 (in %) 41.0321 41.0430 41.0388 41.0405 41.0398 41.0401

x
(k)
2 (in %) 32.1746 32.1977 32.1878 32.1920 32.1902 32.1909

x
(k)
3 (in %) 26.7933 26.7593 26.7734 26.7676 26.7700 26.7690

β1

(
x (k)

)
0.8121 0.8123 0.8122 0.8122 0.8122 0.8122

β2

(
x (k)

)
1.0352 1.0356 1.0354 1.0355 1.0355 1.0355

β3

(
x (k)

)
1.2456 1.2451 1.2453 1.2452 1.2452 1.2452
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Finally, the algorithm converges after 14 iterations with the following
stopping criteria:

sup
i

∣∣∣x (k+1)
i − x

(k)
i

∣∣∣ ≤ 10−6

and we obtain the following results:

Asset xi MRi RC i RC?i
1 41.04% 12.12% 4.97% 33.33%
2 32.19% 15.45% 4.97% 33.33%
3 26.77% 18.58% 4.97% 33.33%
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Question 2

We now suppose that the return of asset i satisfies the CAPM model:

Ri = βiRm + εi

where Rm is the return of the market portfolio and εi is the idiosyncratic
risk. We note ε = (ε1, . . . , εn). We assume that Rm ⊥ ε, var (Rm) = σ2

m

and cov (ε) = D = diag
(
σ̃2

1 , . . . , σ̃
2
n

)
.
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Question 2.a

Calculate the risk contribution RC i .
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We have:
Σ = ββ>σ2

m + diag
(
σ̃2

1 , . . . , σ̃
2
n

)
We deduce that:

RC i =
xi

(∑n
k=1 βiβkσ

2
mxk + σ̃2

i xi

)
σ̃ (x)

=
xiβiB + x2

i σ̃
2
i

σ (x)

with:

B =
n∑

k=1

xkβkσ
2
m
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Variation on the ERC portfolio

Question 2.b

We assume that βi = βj . Show that the ERC weight xi is a decreasing
function of the idiosyncratic volatility σ̃i .
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Using Equation 2.a, we deduce that the ERC portfolio satisfies:

xiβiB + x2
i σ̃

2
i = xjβjB + x2

j σ̃
2
j

or:
(xiβi − xjβj )B =

(
x2

j σ̃
2
j − x2

i σ̃
2
i

)

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 438 / 1420



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Variation on the ERC portfolio
Weight concentration of a portfolio
The optimization problem of the ERC portfolio
Risk parity funds
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If βi = βj = β, we have:

(xi − xj )βB =
(
x2

j σ̃
2
j − x2

i σ̃
2
i

)
Because β > 0, we deduce that:

xi > xj ⇔ x2
j σ̃

2
j − x2

i σ̃
2
i > 0

⇔ xj σ̃j > xi σ̃i

⇔ σ̃i < σ̃j

We conclude that the weight xi is a decreasing function of the specific
volatility σ̃i .

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 439 / 1420



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Variation on the ERC portfolio
Weight concentration of a portfolio
The optimization problem of the ERC portfolio
Risk parity funds

Variation on the ERC portfolio

Question 2.c

We assume that σ̃i = σ̃j . Show that the ERC weight xi is a decreasing
function of the sensitivity βi to the common factor.
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If σ̃i = σ̃j = σ̃, we have:

(xiβi − xjβj )B =
(
x2

j − x2
i

)
σ̃2

We deduce that:

xi > xj ⇔ (xiβi − xjβj )B < 0

⇔ xiβi < xjβj

⇔ βi < βj

We conclude that the weight xi is a decreasing function of the sensitivity
βi .
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Question 2.d

We consider the numerical application: β1 = 1, β2 = 0.9, β3 = 0.8,
β4 = 0.7, σ̃1 = 5%, σ̃2 = 5%, σ̃3 = 10%, σ̃4 = 10%, and σm = 20%. Find
the ERC portfolio.

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 442 / 1420



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Variation on the ERC portfolio
Weight concentration of a portfolio
The optimization problem of the ERC portfolio
Risk parity funds
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We obtain the following results:

Asset xi MRi RC i RC?i
1 21.92% 19.73% 4.32% 25.00%
2 24.26% 17.83% 4.32% 25.00%
3 25.43% 17.00% 4.32% 25.00%
4 28.39% 15.23% 4.32% 25.00%
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Weight concentration of a portfolio

Question 1

We consider the Lorenz curve defined by:

[0, 1] −→ [0, 1]

x 7−→ L (x)

We assume that L is an increasing function and L (x) > x .
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Weight concentration of a portfolio

Question 1.a

Represent graphically the function L and define the Gini coefficient G
associated with L.
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Risk parity funds

Weight concentration of a portfolio

We have represented the function y = L (x) in Figure 38. It verifies
L (x) ≥ x and L (x) ≤ 1. The Gini coefficient is defined as follows
(TR-RPB, page 127):

G =
A

A + B

=

(∫ 1

0

L (x) dx − 1

2

)/
1

2

= 2

∫ 1

0

L (x) dx − 1
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Weight concentration of a portfolio

Figure 38: Lorenz curve
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Question 1.b

We set Lα (x) = xα with α ≥ 0. Is the function Lα a Lorenz curve?
Calculate the Gini coefficient G (α) with respect to α. Deduce G (0), G

(
1
2

)
and G (1).
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Figure 39: Function y = xα
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Weight concentration of a portfolio

If α ≥ 0, the function Lα (x) = xα is increasing. We have Lα (1) = 1,
Lα (x) ≤ 1 and Lα (x) ≥ x . We deduce that Lα is a Lorenz curve. For the
Gini index, we have:

G (α) = 2

∫ 1

0

xα dx − 1

= 2

[
xα+1

α + 1

]1

0

− 1

=
1− α
1 + α

We deduce that G (0) = 1, G
(

1
2

)
= 1/3 et G (1) = 0. α = 0 corresponds to

the perfect concentration whereas α = 1 corresponds to the perfect
equality.
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Weight concentration of a portfolio

Question 2

Let w be a portfolio of n assets. We suppose that the weights are sorted
in a descending order: w1 ≥ w2 ≥ . . . ≥ wn.
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Weight concentration of a portfolio

Question 2.a

We define Lw (x) as follows:

Lw (x) =
i∑

j=1

wj if
i

n
≤ x <

i + 1

n

with Lw (0) = 0. Is the function Lw a Lorenz curve ? Calculate the Gini
coefficient with respect to the weights wi . In which cases does G take the
values 0 and 1?
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Weight concentration of a portfolio

We have Lw (0) = 0 and Lw (1) =
∑n

j=1 wj = 1. If x2 ≥ x1, we have
Lw (x2) ≥ Lw (x2). Lw is then a Lorenz curve. The Gini coefficient is
equal to:

G = 2

∫ 1

0

L (x) dx − 1

=
2

n

n∑
i=1

i∑
j=1

wj − 1

If wj = n−1, we have:

lim
n→∞
G = lim

n→∞

2

n

n∑
i=1

i

n
− 1

= lim
n→∞

2

n
· n (n + 1)

2n
− 1

= lim
n→∞

1

n
= 0

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 453 / 1420



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Variation on the ERC portfolio
Weight concentration of a portfolio
The optimization problem of the ERC portfolio
Risk parity funds

Weight concentration of a portfolio

If w1 = 1, we have:

lim
n→∞
G = lim

n→∞
1− 1

n
= 1

We note that the perfect equality does not correspond to the case G = 0
except in the asymptotic case. This is why we may slightly modify the
definition of Lw (x):

Lw (x) =

{ ∑i
j=1 wj if x = n−1i∑i
j=1 wj + wi+1 (nx − i) if n−1i < x < n−1 (i + 1)

While the previous definition corresponds to a constant piecewise function,
this one defines an affine piecewise function. In this case, the computation
of the Gini index is done using a trapezoidal integration:

G =
2

n

n−1∑
i=1

i∑
j=1

wj +
1

2

− 1
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Weight concentration of a portfolio

Question 2.b

The definition of the Herfindahl index is:

H =
n∑

i=1

w2
i

In which cases does H take the value 1? Show that H reaches its
maximum when wi = n−1. What is the interpretation of this result?

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 455 / 1420



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Variation on the ERC portfolio
Weight concentration of a portfolio
The optimization problem of the ERC portfolio
Risk parity funds

Weight concentration of a portfolio

The Herfindahl index is equal to 1 if the portfolio is concentrated in only
one asset. We seek to minimize H =

∑n
i=1 w

2
i under the constraint∑n

i=1 wi = 1. The Lagrange function is then:

f (w1, . . . ,wn;λ) =
n∑

i=1

w2
i − λ

(
n∑

i=1

wi − 1

)

The first-order conditions are 2wi − λ = 0. We deduce that wi = wj . H
reaches its minimum when wi = n−1. It corresponds to the equally
weighted portfolio. In this case, we have:

H =
1

n
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Weight concentration of a portfolio

Question 2.c

We set N = H−1. What does the statistic N mean?
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Weight concentration of a portfolio

The statistic N is the degree of freedom or the equivalent number of
equally weighted assets. For instance, if H = 0.5, then N = 2. It is a
portfolio equivalent to two equally weighted assets.
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Weight concentration of a portfolio

Question 3

We consider an investment universe of five assets. We assume that their
asset returns are not correlated. The volatilities are given in the table
below:

σi 2% 5% 10% 20% 30%

w
(1)
i 10% 20% 30% 40%

w
(2)
i 40% 20% 30% 10%

w
(3)
i 20% 15% 25% 35% 5%
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Weight concentration of a portfolio

Question 3.a

Find the minimum variance portfolio w (4).
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Weight concentration of a portfolio

The minimum variance portfolio is equal to:

w (4) =


82.342%
13.175%
3.294%
0.823%
0.366%
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Weight concentration of a portfolio

Question 3.b

Calculate the Gini and Herfindahl indices and the statistic N for the four
portfolios w (1), w (2), w (3) and w (4).
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Weight concentration of a portfolio

For each portfolio, we sort the weights in descending order. For the

portfolio w (1), we have w
(1)
1 = 40%, w

(1)
2 = 30%, w

(1)
3 = 20%,

w
(1)
4 = 10% and w

(1)
5 = 0%. It follows that:

H
(
w (1)

)
=

5∑
i=1

(
w

(1)
i

)2

= 0.102 + 0.202 + 0.302 + 0.402

= 0.30

We also have:

G
(
w (1)

)
=

2

5

 4∑
i=1

i∑
j=1

w̃
(1)
j +

1

2

− 1

=
2

5

(
0.40 + 0.70 + 0.90 + 1.00 +

1

2

)
− 1

= 0.40
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For the portfolios w (2), w (3) and w (4), we obtain H
(
w (2)

)
= 0.30,

H
(
w (3)

)
= 0.25, H

(
w (4)

)
= 0.70, G

(
w (2)

)
= 0.40, G

(
w (3)

)
= 0.28 and

G
(
w (4)

)
= 0.71. We have N

(
w (2)

)
= N

(
w (1)

)
= 3.33, N

(
w (3)

)
= 4.00

and N
(
w (4)

)
= 1.44.
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Weight concentration of a portfolio

Question 3.c

Comment on these results. What differences do you make between
portfolio concentration and portfolio diversification?
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Risk parity funds

Weight concentration of a portfolio

All the statistics show that the least concentrated portfolio is w (3). The
most concentrated portfolio is paradoxically the minimum variance
portfolio w (4). We generally assimilate variance optimization to
diversification optimization. We show in this example that diversifying in
the Markowitz sense does not permit to minimize the concentration.
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The optimization problem of the ERC portfolio

Question 1

We consider four assets. Their volatilities are equal to 10%, 15%, 20%
and 25% whereas the correlation matrix of asset returns is:

ρ =


100%

60% 100%
40% 40% 100%
30% 30% 20% 100%
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The optimization problem of the ERC portfolio

Question 1.a

Find the long-only minimum variance, ERC and equally weighted
portfolios.
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The optimization problem of the ERC portfolio

The weights of the three portfolios are:

Asset MV ERC EW
1 87.51% 37.01% 25.00%
2 4.05% 24.68% 25.00%
3 4.81% 20.65% 25.00%
4 3.64% 17.66% 25.00%
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The optimization problem of the ERC portfolio

Question 1.b

We consider the following portfolio optimization problem:

x? (c) = arg min
√
x>Σx (1)

u.c.


∑n

i=1 ln xi ≥ c
1>n x = 1
x ≥ 0n

with Σ the covariance matrix of asset returns. We note λc and λ0 the
Lagrange coefficients associated with the constraints

∑n
i=1 ln xi ≥ c and

1>n x = 1. Write the Lagrange function of the optimization problem.
Deduce then an equivalent optimization problem that is easier to solve
than Problem (1).
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The optimization problem of the ERC portfolio

The Lagrange function is:

L (x ;λ, λ0, λc ) =
√
x>Σx − λ>x − λ0

(
1>n x − 1

)
− λc

(
n∑

i=1

ln xi − c

)

=

(
√
x>Σx − λc

n∑
i=1

ln xi

)
− λ>x − λ0

(
1>n x − 1

)
+ λcc

We deduce that an equivalent optimization problem is:

x̃? (λc ) = arg min
√
x̃>Σx̃ − λc

n∑
i=1

ln x̃i

u.c.

{
1>n x̃ = 1
x̃ ≥ 0n
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The optimization problem of the ERC portfolio

We notice a strong difference between the two problems because they
don’t use the same control variable. However, the control variable c of the
first problem may be deduced from the solution of the second problem:

c =
n∑

i=1

ln x̃?i (λc )

We also know that (TR-RPB, page 131):

c− ≤
n∑

i=1

ln xi ≤ c+

where c− =
∑n

i=1 ln (xmv)i and c+ = −n ln n. It follows that:{
x? (c) = x̃? (0) if c ≤ c−
x? (c) = x̃? (∞) if c ≥ c+

If c ∈ ]c−, c+[, there exists a scalar λc > 0 such that:

x? (c) = x̃? (λc )
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The optimization problem of the ERC portfolio

Question 1.c

Represent the relationship between λc and σ (x? (c)), c and σ (x? (c)) and
I? (x? (c)) and σ (x? (c)) where I? (x) is the diversity index of the
weights.
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The optimization problem of the ERC portfolio

For a given value λc ∈ [0,+∞[, we solve numerically the second problem
and find the optimized portfolio x̃? (λc ). Then, we calculate
c =

∑n
i=1 ln x̃?i (λc ) and deduce that x? (c) = x̃? (λc ). We finally obtain

σ (x? (c)) = σ (x̃? (λc )) and I? (x? (c)) = I? (x̃? (λc )). The relationships
between λc , c , I? (x? (c)) and σ (x? (c)) are reported in Figure 40.
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The optimization problem of the ERC portfolio

Figure 40: Relationship between λc , c, I? (x? (c)) and σ (x? (c))
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The optimization problem of the ERC portfolio

Question 1.d

Represent the relationship between λc and I? (RC), c and I? (RC) and
I? (x? (c)) and I? (RC) where I? (RC) is the diversity index of the risk
contributions.

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 476 / 1420



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Variation on the ERC portfolio
Weight concentration of a portfolio
The optimization problem of the ERC portfolio
Risk parity funds

The optimization problem of the ERC portfolio

If we consider I? (RC) in place of σ (x? (c)), we obtain Figure 41.
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The optimization problem of the ERC portfolio

Figure 41: Relationship between λc , c, I? (x? (c)) and I? (RC)
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The optimization problem of the ERC portfolio

Question 1.e

Draw the relationship between σ (x? (c)) and I? (RC). Identify the ERC
portfolio.
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The optimization problem of the ERC portfolio

In Figure 42, we have reported the relationship between σ (x? (c)) and
I? (RC). The ERC portfolio satisfies the equation I? (RC) = n.
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The optimization problem of the ERC portfolio

Figure 42: Relationship between σ (x? (c)) and I? (RC)
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The optimization problem of the ERC portfolio

Question 2

We now consider a slight modification of the previous optimization
problem:

x? (c) = arg min
√
x>Σx (2)

u.c.

{ ∑n
i=1 ln xi ≥ c

x ≥ 0n
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The optimization problem of the ERC portfolio

Question 2.a

Why does the optimization problem (1) not define the ERC portfolio?
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The optimization problem of the ERC portfolio

Let us consider the optimization problem when we impose the constraint
1>n x = 1. The first-order condition is:

∂ σ (x)

∂ xi
− λi − λ0 −

λc

xi
= 0

Because xi > 0, we deduce that λi = 0 and:

xi
∂ σ (x)

∂ xi
= λ0xi + λc

If this solution corresponds to the ERC portfolio, we obtain:

RC i = RCj ⇔ λ0xi + λc = λ0xj + λc

If λ0 6= 0, we deduce that:
xi = xj

It corresponds to the EW portfolio meaning that the assumption
RC i = RCj is false.
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The optimization problem of the ERC portfolio

Question 2.b

Find the optimized portfolio of the optimization problem (2) when c is
equal to −10. Calculate the corresponding risk allocation.
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The optimization problem of the ERC portfolio

If c is equal to −10, we obtain the following results:

Asset xi MRi RC i RC?i
1 12.65% 7.75% 0.98% 25.00%
2 8.43% 11.63% 0.98% 25.00%
3 7.06% 13.89% 0.98% 25.00%
4 6.03% 16.25% 0.98% 25.00%

σ (x) 3.92%
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The optimization problem of the ERC portfolio

Question 2.c

Same question if c = 0.
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The optimization problem of the ERC portfolio

If c is equal to 0, we obtain the following results:

Asset xi MRi RC i RC?i
1 154.07% 7.75% 11.94% 25.00%
2 102.72% 11.63% 11.94% 25.00%
3 85.97% 13.89% 11.94% 25.00%
4 73.50% 16.25% 11.94% 25.00%

σ (x) 47.78%
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The optimization problem of the ERC portfolio

Question 2.d

Demonstrate then that the solution to the second optimization problem is:

x? (c) = exp

(
c − cerc

n

)
xerc

where cerc =
∑n

i=1 ln xerc,i . Comment on this result.
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The optimization problem of the ERC portfolio

In this case, the first-order condition is:

∂ σ (x)

∂ xi
− λi −

λc

xi
= 0

As previously, λi = 0 because xi > 0 and we obtain:

xi
∂ σ (x)

∂ xi
= λc

The solution of the second optimization problem is then a non-normalized
ERC portfolio because

∑n
i=1 xi is not necessarily equal to 1. If we note

cerc =
∑n

i=1 ln (xerc)i , we deduce that:

xerc = arg min
√
x>Σx

u.c.

{ ∑n
i=1 ln xi ≥ cerc

x ≥ 0n
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The optimization problem of the ERC portfolio

Let x? (c) be the portfolio defined by:

x? (c) = exp

(
c − cerc

n

)
xerc

We have x? (c) > 0n,√
x? (c)>Σx? (c) = exp

(
c − cerc

n

)√
x>ercΣxerc

and:
n∑

i=1

ln x?i (c) =
n∑

i=1

ln

(
exp

(
c − cerc

n

)
xerc

)
i

= c − cerc +
n∑

i=1

ln (xerc)i

= c

We conclude that x? (c) is the solution of the optimization problem.
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The optimization problem of the ERC portfolio

x? (c) is then a leveraged ERC portfolio if c > cerc and a deleveraged ERC
portfolio if c < cerc.

In our example, cerc is equal to −5.7046. If c = −10, we have:

exp

(
c − cerc

n

)
= 34.17%

We verify that the solution of Question 2.b is such that
∑n

i=1 xi = 34.17%
and RC?i = RC?j .

If c = 0, we obtain:

exp

(
c − cerc

n

)
= 416.26%

In this case, the solution is a leveraged ERC portfolio.
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The optimization problem of the ERC portfolio

Question 2.e

Show that there exists a scalar c such that the Lagrange coefficient λ0 of
the optimization problem (1) is equal to zero. Deduce then that the
volatility of the ERC portfolio is between the volatility of the long-only
minimum variance portfolio and the volatility of the equally weighted
portfolio:

σ (xmv) ≤ σ (xerc) ≤ σ (xew)
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The optimization problem of the ERC portfolio

From the previous question, we know that the ERC optimization portfolio
is the solution of the second optimization problem if we use cerc for the
control variable. In this case, we have

∑n
i=1 x

?
i (cerc) = 1 meaning that

xerc is also the solution of the first optimization problem. We deduce that
λ0 = 0 if c = cerc. The first optimization problem is a convex problem
with a convex inequality constraint. The objective function is then an
increasing function of the control variable c :

c1 ≤ c2 ⇒ σ (x? (c1)) ≥ σ (x? (c2))
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The optimization problem of the ERC portfolio

We have seen that the minimum variance portfolio corresponds to
c = −∞, that the EW portfolio is obtained with c = −n ln n and that the
ERC portfolio is the solution of the optimization problem when c is equal
to cerc. Moreover, we have −∞ ≤ cerc ≤ −n ln n. We deduce that the
volatility of the ERC portfolio is between the volatility of the long-only
minimum variance portfolio and the volatility of the equally weighted
portfolio:

σ (xmv) ≤ σ (xerc) ≤ σ (xew)
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Risk parity funds

Question 1

We consider a universe of three asset classesa which are stocks (S), bonds
(B) and commodities (C). We have computed the one-year historical
covariance matrix of asset returns for different dates and we obtain the
following results (all the numbers are expressed in %):

31/12/1999 31/12/2002 30/12/2005
σi 12.40 5.61 12.72 20.69 7.36 13.59 7.97 7.01 16.93

100.00 100.00 100.00
ρi,j −5.89 100.00 −36.98 100.00 29.25 100.00

−4.09 −7.13 100.00 22.74 −13.12 100.00 15.75 15.05 100.00
31/12/2007 31/12/2008 31/12/2010

σi 12.94 5.50 14.54 33.03 9.73 29.00 16.73 6.88 16.93
100.00 −25.76 100.00 100.00

ρi,j −25.76 100.00 −16.26 100.00 15.31 100.00
31.91 6.87 100.00 47.31 9.13 100.00 64.13 15.46 100.00

aIn fact, we use the MSCI World index, the Citigroup WGBI index and the DJ UBS
Commodity index to represent these asset classes.
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Risk parity funds

Question 1.a

Compute the weights and the volatility of the risk paritya (RP portfolio)
portfolios for the different dates.

aHere, risk parity refers to the ERC portfolio when we do not take into account the
correlations.
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Risk parity funds

The RP portfolio is defined as follows:

xi =
σ−1

i∑n
j=1 σ

−1
j

We obtain the following results:

Date 1999 2002 2005 2007 2008 2010
S 23.89% 18.75% 38.35% 23.57% 18.07% 22.63%
B 52.81% 52.71% 43.60% 55.45% 61.35% 55.02%
C 23.29% 28.54% 18.05% 20.98% 20.58% 22.36%

σ (x) 4.83% 6.08% 6.26% 5.51% 11.64% 8.38%
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Risk parity funds

Question 1.b

Same question by considering the ERC portfolio.
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Risk parity funds

In the ERC portfolio, the risk contributions are equal for all the assets:

RC i = RCj

with:

RC i =
xi · (Σx)i√

x>Σx
(3)

We obtain the following results:

Date 1999 2002 2005 2007 2008 2010
S 23.66% 18.18% 37.85% 23.28% 17.06% 20.33%
B 53.12% 58.64% 43.18% 59.93% 66.39% 59.61%
C 23.22% 23.18% 18.97% 16.79% 16.54% 20.07%

σ (x) 4.82% 5.70% 6.32% 5.16% 10.77% 7.96%
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Risk parity funds

Question 1.c

What do you notice about the volatility of RP and ERC portfolios?
Explain these results.
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Risk parity funds

We notice that σ (xerc) ≤ σ (xrp) except for the year 2005. This date
corresponds to positive correlations between assets. Moreover, the
correlation between stocks and bonds is the highest. Starting from the RP
portfolio, it is then possible to approach the ERC portfolio by reducing the
weights of stocks and bonds and increasing the weight of commodities. At
the end, we find an ERC portfolio that has a slightly higher volatility.
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Risk parity funds

Question 1.d

Find the analytical expression of the volatility σ (x), the marginal risk
MRi , the risk contribution RC i and the normalized risk contribution RC?i
in the case of RP portfolios.
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Risk parity funds

The volatility of the RP portfolio is:

σ (x) =
1∑n

j=1 σ
−1
j

√
(σ−1)>Σσ−1

=
1∑n

j=1 σ
−1
j

√√√√ n∑
i=1

n∑
j=1

1

σiσj
ρi,jσiσj

=
1∑n

j=1 σ
−1
j

√
n + 2

∑
i>j

ρi,j

=
1∑n

j=1 σ
−1
j

√
n (1 + (n − 1) ρ̄)

where ρ̄ is the average correlation between asset returns.
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Risk parity funds

For the marginal risk, we obtain:

MRi =

(
Σσ−1

)
i

σ (x)
∑n

j=1 σ
−1
j

=
1√

n (1 + (n − 1) ρ̄)

n∑
j=1

ρi,jσiσj
1

σj

=
σi√

n (1 + (n − 1) ρ̄)

n∑
j=1

ρi,j

=
σi ρ̄i
√
n√

1 + (n − 1) ρ̄

where ρ̄i is the average correlation of asset i with the other assets
(including itself).
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Risk parity funds

The expression of the risk contribution is then:

RC i =
σ−1

i∑n
j=1 σ

−1
j

σi ρ̄i
√
n√

1 + (n − 1) ρ̄

=
ρ̄i
√
n√

1 + (n − 1) ρ̄
∑n

j=1 σ
−1
j

We deduce that the normalized risk contribution is:

RC?i =
ρ̄i
√
n

σ (x)
√

1 + (n − 1) ρ̄
∑n

j=1 σ
−1
j

=
ρ̄i

1 + (n − 1) ρ̄
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Risk parity funds

Question 1.e

Compute the normalized risk contributions of the previous RP portfolios.
Comment on these results.
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Risk parity funds

We obtain the following normalized risk contributions:

Date 1999 2002 2005 2007 2008 2010
S 33.87% 34.96% 34.52% 32.56% 34.45% 36.64%
B 32.73% 20.34% 34.35% 24.88% 24.42% 26.70%
C 33.40% 44.69% 31.14% 42.57% 41.13% 36.67%

We notice that the risk contributions are not exactly equal for all the
assets. Generally, the risk contribution of bonds is lower than the risk
contribution of equities, which is itself lower than the risk contribution of
commodities.
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Risk parity funds

Question 2

We consider four parameter sets of risk budgets:

Set b1 b2 b3

#1 45% 45% 10%
#2 70% 10% 20%
#3 20% 70% 10%
#4 25% 25% 50%
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Risk parity funds

Question 2.a

Compute the RB portfolios for the different dates.
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Risk parity funds

We obtain the following RB portfolios:

Date bi 1999 2002 2005 2007 2008 2010
S 45% 26.83% 22.14% 42.83% 27.20% 20.63% 25.92%
B 45% 59.78% 66.10% 48.77% 66.15% 73.35% 67.03%
C 10% 13.39% 11.76% 8.40% 6.65% 6.02% 7.05%
S 70% 40.39% 29.32% 65.53% 39.37% 33.47% 46.26%
B 10% 37.63% 51.48% 19.55% 47.18% 52.89% 37.76%
C 20% 21.98% 19.20% 14.93% 13.45% 13.64% 15.98%
S 20% 17.55% 16.02% 25.20% 18.78% 12.94% 13.87%
B 70% 69.67% 71.70% 66.18% 74.33% 80.81% 78.58%
C 10% 12.78% 12.28% 8.62% 6.89% 6.24% 7.55%
S 25% 21.69% 15.76% 34.47% 20.55% 14.59% 16.65%
B 25% 48.99% 54.03% 39.38% 55.44% 61.18% 53.98%
C 50% 29.33% 30.21% 26.15% 24.01% 24.22% 29.37%
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Risk parity funds

Question 2.b

Compute the implied risk premium π̃i of the assets for these portfolios if
we assume a Sharpe ratio equal to 0.40.
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Risk parity funds

To compute the implied risk premium π̃i , we use the following formula
(TR-RPB, page 274):

π̃i = SR (x | r) · MRi

= SR (x | r) ·
(Σx)i

σ (x)

where SR (x | r) is the Sharpe ratio of the portfolio.
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Risk parity funds

We obtain the following results:

Date bi 1999 2002 2005 2007 2008 2010
S 45% 3.19% 4.60% 2.49% 3.15% 8.64% 5.20%
B 45% 1.43% 1.54% 2.19% 1.29% 2.43% 2.01%
C 10% 1.42% 1.92% 2.82% 2.86% 6.58% 4.24%
S 70% 4.05% 6.45% 2.86% 4.31% 11.56% 6.32%
B 10% 0.62% 0.52% 1.37% 0.51% 1.04% 1.11%
C 20% 2.13% 2.81% 3.59% 3.61% 8.11% 5.23%
S 20% 2.06% 2.68% 1.91% 1.93% 5.61% 3.91%
B 70% 1.82% 2.10% 2.54% 1.71% 3.14% 2.42%
C 10% 1.42% 1.75% 2.79% 2.64% 5.82% 3.60%
S 25% 2.33% 3.78% 1.98% 2.74% 8.06% 5.13%
B 25% 1.03% 1.10% 1.74% 1.02% 1.92% 1.58%
C 50% 3.45% 3.95% 5.23% 4.69% 9.71% 5.82%
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Question 2.c

Comment on these results.
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Risk parity funds

We have:
xi π̃i = SR (x | r) · RC i

We deduce that:

π̃i ∝
bi

xi

xi is generally an increasing function of bi . As a consequence, the
relationship between the risk budgets bi and the risk premiums π̃i is not
necessarily increasing. However, we notice that the bigger the risk budget,
the higher the risk premium. This is easily explained. If an investor
allocates more risk budget to one asset class than another investor, he
thinks that the risk premium of this asset class is higher than the other
investor.
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Risk parity funds

However, we must be careful. This interpretation is valid if we compare
two sets of risk budgets. It is false if we compare the risk budgets among
themselves. For instance, if we consider the third parameter set, the risk
budget of bonds is 70% whereas the risk budget of stocks is 20%. It does
not mean that the risk premium of bonds is higher than the risk premium
of equities. In fact, we observe the contrary. If we would like to compare
risk budgets among themselves, the right measure is the implied Sharpe
ratio, which is equal to:

SRi =
π̃i

σi

= SR (x | r) · MRi

σi

For instance, if we consider the most diversified portfolio, the marginal risk
is proportional to the volatility and we retrieve the result that Sharpe
ratios are equal if the MDP is optimal.
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Cap-weighted indexation and modern portfolio theory

Rationale of market-cap indexation

Separation Theorem: there is one unique risky portfolio owned by
investors called the tangency portfolio (Tobin, 1958)

CAPM: the tangency portfolio is the Market portfolio, best
represented by the capitalization-weighted index (Sharpe, 1964)

Performance of active management: negative alpha in equity
mutual funds on average (Jensen, 1968)

EMH: markets are efficient (Fama, 1970)

Passive management: launch of the first index fund (John
McQuown, Wells Fargo Investment Advisors, Samsonite Luggage
Corporation, 1971)

First S&P 500 index fund by Wells Fargo and American National
Bank in Chicago (1973)

The first listed ETF was the SPDRs (Ticker: SPY) in 1993
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Index funds

Mutual Fund (MF)

A mutual fund is a collective investment fund that are regulated and
sold to the general public

Exchange Traded Fund (ETF)

It is a mutual fund which trades intra-day on a securities exchange
(thanks to market makers)

Exchange Traded Product (ETP)

It is a security that is derivatively-priced and that trades intra-day on an
exchange. ETPs includes exchange traded funds (ETFs), exchange traded
vehicles (ETVs), exchange traded notes (ETNs) and certificates.
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Pros of market-cap indexation

A convenient and recognized approach to participate to broad
equity markets

Management simplicity: low turnover & transaction costs
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Construction of an equity index

We consider an index universe composed of n stocks

Let Pi,t be the price of the i th stock and Ri,t be the corresponding
return between times t − 1 and t:

Ri,t =
Pi,t

Pi ,t−1
− 1

The value of the index Bt at time t is defined by:

Bt = ϕ
n∑

i=1

NiPi,t

where ϕ is a scaling factor and Ni is the total number of shares issued
by the company i
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Construction of an equity index

Another expression of Bt is12:

Bt = ϕ
n∑

i=1

NiPi,t−1 (1 + Ri,t)

= Bt−1

∑n
i=1 NiPi,t−1 (1 + Ri,t)∑n

i=1 NiPi,t−1

= Bt−1

n∑
i=1

wi,t−1 (1 + Ri,t)

where wi,t−1 is the weight of the i th stock in the index:

wi,t−1 =
NiPi,t−1∑n

i=1 NiPi,t−1

The computation of the index value Bt can be done at the closing
time t and also in an intra-day basis

12B0 can be set to an arbitrary value (e.g. 100, 500, 1000 or 5000)
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Construction of an equity index

Remark

The previous computation is purely theoretical because the portfolio
corresponds to all the shares outstanding of the n stocks ⇒ impossible to
hold this portfolio

Remark

Most of equity indices use floating sharesa instead of shares outstanding

aThey indicate the number of shares available for trading
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Replication of an equity index

In order to replicate this index, we must build a hedging strategy that
consists in investing in stocks

Let St be the value of the strategy (or the index fund):

St =
n∑

i=1

ni,tPi,t

where ni,t is the number of stock i held between t − 1 and t

The tracking error is the difference between the return of the strategy
and the return of the index:

et (S | B) = RS,t − RB,t
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Replication of an equity index

The quality of the replication process is measured by the volatility
σ (et (S | B)) of the tracking error. We may distinguish several cases:

1 Index funds with low tracking error volatility (less than 10 bps) ⇒
physical replication or synthetic replication

2 Index funds with moderate tracking error volatility (between 10 bps
and 50 bps) ⇒ sampling replication

3 Index funds with higher tracking error volatility (larger than 50 bps)
⇒ equity universes with liquidity problems and enhanced/tilted index
funds

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 530 / 1420



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Capitalization-weighted indexation
Risk-based portfolios
Comparison of the four risk-based portfolios
The case of bonds

Replication of an equity index

In a capitalization-weighted index, the weights are given by:

wi,t =
Ci,t∑n

j=1 Cj,t
=

Ni,tPi,t∑n
j=1 Nj,tPj,t

where Ni,t and Ci,t = Ni,tPi,t are the number of shares outstanding
and the market capitalization of the i th stock

If we have a perfect match at time t − 1:

ni,t−1Pi,t−1∑n
i=1 ni,t−1Pi,t−1

= wi,t−1

we have a perfect match at time t:

ni,t = ni,t−1
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Replication of an equity index

We do not need to rebalance the hedging portfolio because of the
relationship:

ni,tPi,t ∝ wi,tPi,t

Therefore, it is not necessarily to adjust the portfolio of the strategy
(except if there are subscriptions or redemptions)

A CW index fund remains the most efficient investment in terms of
management simplicity, turnover and transaction costs
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Cons of market-cap indexation

Trend-following strategy: momentum bias leads to bubble risk
exposure as weight of best performers ever increases
⇒ Mid 2007, financial stocks represent 40% of the Eurostoxx 50 index

Growth bias as high valuation multiples stocks weight more than
low-multiple stocks with equivalent realized earnings.
⇒ Mid 2000, the 8 stocks of the technology/telecom sectors
represent 35% of the Eurostoxx 50 index
⇒ 21/2 years later after the dot.com bubble, these two sectors
represent 12%

Concentrated portfolios
⇒ The top 100 market caps of the S&P 500 account for around 70%

Lack of risk diversification and high drawdown risk: no portfolio
construction rules leads to concentration issues (e.g. sectors, stocks).
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Cons of market-cap indexation

Some illustrations

Mid 2000: 8 Technology/Telecom stocks represent 35% of the
Eurostoxx 50 index

In 2002: 7.5% of the Eurostoxx 50 index is invested into Nokia with a
volatility of 70%

Dec. 2006: 26.5% of the MSCI World index is invested in financial
stocks

June 2007: 40% of the Eurostoxx 50 is invested into Financials

January 2013: 20% of the S&P 500 stocks represent 68% of the S&P
500 risk

Between 2002 and 2012, two stocks contribute on average to more
than 20% of the monthly performance of the Eurostoxx 50 index
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Cons of market-cap indexation

Table 47: Weight and risk concentration of several equity indices (June 29, 2012)

Weights Risk contributions
Ticker G (x)

L (x) G (x)
L (x)

10% 25% 50% 10% 25% 50%
SX5P 30.8 24.1 48.1 71.3 26.3 19.0 40.4 68.6
SX5E 31.2 23.0 46.5 72.1 31.2 20.5 44.7 73.3
INDU 33.2 23.0 45.0 73.5 35.8 25.0 49.6 75.9
BEL20 39.1 25.8 49.4 79.1 45.1 25.6 56.8 82.5
DAX 44.0 27.5 56.0 81.8 47.3 27.2 59.8 84.8
CAC 47.4 34.3 58.3 82.4 44.1 31.9 57.3 79.7
AEX 52.2 37.2 61.3 86.0 51.4 35.3 62.0 84.7

HSCEI 54.8 39.7 69.3 85.9 53.8 36.5 67.2 85.9
NKY 60.2 47.9 70.4 87.7 61.4 49.6 70.9 88.1
UKX 60.8 47.5 73.1 88.6 60.4 46.1 72.8 88.7
SXXE 61.7 49.2 73.5 88.7 63.9 51.6 75.3 90.1
SPX 61.8 52.1 72.0 87.8 59.3 48.7 69.9 86.7

MEXBOL 64.6 48.2 75.1 91.8 65.9 45.7 78.6 92.9
IBEX 64.9 51.7 77.3 90.2 68.3 58.2 80.3 91.4
SXXP 65.6 55.0 76.4 90.1 64.2 52.0 75.5 90.0
NDX 66.3 58.6 77.0 89.2 64.6 56.9 74.9 88.6

TWSE 79.7 73.4 86.8 95.2 79.7 72.6 87.3 95.7
TPX 80.8 72.8 88.8 96.3 83.9 77.1 91.0 97.3

KOSPI 86.5 80.6 93.9 98.0 89.3 85.1 95.8 98.8

G (x) = Gini coefficient, L (x) = Lorenz curve
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Cons of market-cap indexation

Figure 43: Lorenz curve of several equity indices (June 29, 2012)
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Capturing the equity risk premium

APPLE EXXON MSFT J&J IBM PFIZER CITI McDO
Cap-weighted allocation (in %)

Dec. 1999 1.05 12.40 38.10 7.94 12.20 12.97 11.89 3.46
Dec. 2004 1.74 22.16 19.47 12.61 11.00 13.57 16.76 2.70
Dec. 2008 6.54 35.03 14.92 14.32 9.75 10.30 3.15 5.98
Dec. 2010 18.33 22.84 14.79 10.52 11.29 8.69 8.51 5.02
Dec. 2012 26.07 20.55 11.71 10.12 11.27 9.62 6.04 4.61
Jun. 2013 20.78 19.80 14.35 11.64 11.36 9.51 7.79 4.77

Implied risk premium (in %)
Dec. 1999 5.96 2.14 8.51 3.61 5.81 5.91 6.19 2.66
Dec. 2004 3.88 2.66 2.79 2.03 2.32 3.90 3.02 1.86
Dec. 2008 9.83 11.97 10.48 6.24 7.28 8.06 17.15 6.28
Dec. 2010 5.38 3.85 4.42 2.29 3.66 3.76 6.52 2.54
Dec. 2012 5.87 2.85 3.58 1.44 2.80 1.77 5.91 1.88
Jun. 2013 5.59 2.79 3.60 1.55 2.92 1.91 5.24 1.82

Expected performance contribution (in %)
Dec. 1999 1.01 4.31 52.63 4.66 11.52 12.43 11.94 1.49
Dec. 2004 2.41 21.04 19.44 9.15 9.12 18.93 18.11 1.79
Dec. 2008 6.60 43.00 16.04 9.17 7.28 8.52 5.55 3.85
Dec. 2010 23.58 21.01 15.62 5.77 9.89 7.81 13.27 3.05
Dec. 2012 42.41 16.23 11.61 4.04 8.73 4.71 9.88 2.40
Jun. 2013 33.96 16.18 15.10 5.28 9.69 5.32 11.93 2.53
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Alternative-weighted indexation

Definition

Alternative-weighted indexation aims at building passive indexes where the
weights are not based on market capitalization
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Alternative-weighted indexation

Three kinds of responses:

1 Fundamental indexation (capturing alpha?)
1 Dividend yield indexation
2 RAFI indexation

2 Risk-based indexation (capturing diversification?)
1 Equally weighted portfolio
2 Minimum variance portfolio
3 Equal risk contribution portfolio
4 Most diversified portfolio

3 Factor investing (capturing normal returns or beta? abnormal returns
or alpha?)

1 The market risk factor is not the only systematic risk factor
2 Other factors: size, value, momentum, low beta, quality, etc.
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Alternative-weighted indexation

2008

Smart Beta
=

Fundamental Indexation
+

Risk-Based Indexation

Today

Smart Beta
=

Risk-Based Indexation
+

Factor Investing
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Equally-weighted portfolio

The underlying idea of the equally weighted or ‘1/n’ portfolio is to
define a portfolio independently from the estimated statistics and
properties of stocks

If we assume that it is impossible to predict return and risk, then
attributing an equal weight to all of the portfolio components
constitutes a natural choice

We have:

xi = xj =
1

n
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Equally-weighted portfolio

The portfolio volatility is equal to:

σ2 (x) =
n∑

i=1

x2
i σ

2
i + 2

∑
i>j

xixjρi,jσiσj

=
1

n2

 n∑
i=1

σ2
i + 2

∑
i>j

ρi,jσiσj


If we assume that σi ≤ σmax and 0 ≤ ρi,j ≤ ρmax, we obtain:

σ2 (x) ≤ 1

n2

 n∑
i=1

σ2
max + 2

∑
i>j

ρmaxσ
2
max


≤ 1

n2

(
nσ2

max + 2
n (n − 1)

2
ρmaxσ

2
max

)
≤

(
1 + (n − 1) ρmax

n

)
σ2

max
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Equally-weighted portfolio

We deduce that:

lim
n→∞

σ (x) ≤ σmax (x) = σmax
√
ρmax

Table 48: Value of σmax (x) (in %)

σmax (in %)
5.00 10.00 15.00 20.00 25.00 30.00

ρmax (in %)

10.00 1.58 3.16 4.74 6.32 7.91 9.49
20.00 2.24 4.47 6.71 8.94 11.18 13.42
30.00 2.74 5.48 8.22 10.95 13.69 16.43
40.00 3.16 6.32 9.49 12.65 15.81 18.97
50.00 3.54 7.07 10.61 14.14 17.68 21.21
75.00 4.33 8.66 12.99 17.32 21.65 25.98
90.00 4.74 9.49 14.23 18.97 23.72 28.46
99.00 4.97 9.95 14.92 19.90 24.87 29.85
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Equally-weighted portfolio

If the volatilities are the same (σi = σ) and the correlation matrix is
constant (ρi,j = ρ), we deduce that:

σ (x) = σ

√
1 + (n − 1) ρ

n

Correlations are more important than volatilities
to benefit from diversification (= risk reduction)
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Equally-weighted portfolio

Result

The main interest of the EW portfolio is the volatility reduction

It is called “naive diversification”
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Equally-weighted portfolio
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Figure 44: Illustration of the diversification effect (σ = 25%)
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Equally-weighted portfolio

Another interest of the EW portfolio is its good out-of-sample
performance:

“We evaluate the out-of-sample performance of the
sample-based mean-variance model, and its extensions designed
to reduce estimation error, relative to the naive 1/n portfolio. Of
the 14 models we evaluate across seven empirical datasets, none
is consistently better than the 1/n rule in terms of Sharpe ratio,
certainty-equivalent return, or turnover, which indicates that, out
of sample, the gain from optimal diversification is more than
offset by estimation error” (DeMiguel et al., 2009)
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Minimum variance portfolio

The global minimum variance (GMV) portfolio corresponds to the
following optimization program:

xgmv = arg min
1

2
x>Σx

u.c. 1>n x = 1
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Minimum variance portfolio

Figure 45: Location of the minimum variance portfolio in the efficient frontier
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Minimum variance portfolio

The Lagrange function is equal to:

L (x ;λ0) =
1

2
x>Σx − λ0

(
1>n x − 1

)
The first-order condition is:

∂ L (x ;λ0)

∂ x
= Σx − λ01n = 0n

We deduce that:
x = λ0Σ−11n

Since we have 1>n x = 1, the Lagrange multiplier satisfies:

1>n
(
λ0Σ−11n

)
= 1

or:

λ0 =
1

1>n Σ−11n
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Minimum variance portfolio

Theorem

The GMV portfolio is given by the following formula:

xgmv =
Σ−11n

1>n Σ−11n
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Minimum variance portfolio

The volatility of the GMV portfolio is equal to:

σ2 (xgmv) = x>gmvΣxgmv

=
1>n Σ−1

1>n Σ−11n
Σ

Σ−11n

1>n Σ−11n

=
1>n Σ−1ΣΣ−11n

(1>n Σ−11n)
2

=
1>n Σ−11n

(1>n Σ−11n)
2

=
1

1>n Σ−11n

Another expression of the GMV portfolio is:

xgmv = σ2 (xgmv) Σ−11n
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Minimum variance portfolio

Example 1

The investment universe is made up of 4 assets. The volatility of these
assets is respectively equal to 20%, 18%, 16% and 14%, whereas the
correlation matrix is given by:

ρ =


1.00
0.50 1.00
0.40 0.20 1.00
0.10 0.40 0.70 1.00
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Minimum variance portfolio

We have:

Σ =


400.00 180.00 128.00 28.00
180.00 324.00 57.60 100.80
128.00 57.60 256.00 156.80

28.00 100.80 156.80 196.00

× 104

It follows that:

Σ−1 =


54.35 −37.35 −50.55 51.89
−37.35 62.97 41.32 −60.11
−50.55 41.32 124.77 −113.85

51.89 −60.11 −113.85 165.60
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Minimum variance portfolio

We deduce that:

Σ−114 =


18.34

6.83
1.69

43.53


We also have 1>4 Σ−114 = 70.39, σ2 (xgmv) = 1/70.39 = 1.4206% and

σ (xgmv) =
√

1.4206% = 11.92%. Finally, we obtain:

xgmv =
Σ−114

1>4 Σ−114
=


26.05%

9.71%
2.41%

61.84%


We verify that

∑4
i=1 xgmv,i = 100% and

√
x>gmvΣxgmv = 11.92%
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Minimum variance portfolio

If we assume that the correlation matrix is constant – C = Cn (ρ), the
covariance matrix is Σ = σσ> ◦ Cn (ρ) with Cn (ρ) the constant
correlation matrix. We deduce that:

Σ−1 = Γ ◦ C−1
n (ρ)

with Γi,j = σ−1
i σ−1

j and:

C−1
n (ρ) =

ρ1n1>n − ((n − 1) ρ+ 1) In
(n − 1) ρ2 − (n − 2) ρ− 1

By using the trace property tr (AB) = tr (BA), we can show that:

xgmv,i =
− ((n − 1) ρ+ 1)σ−2

i + ρ
∑n

j=1 (σiσj )
−1∑n

k=1

(
− ((n − 1) ρ+ 1)σ−2

k + ρ
∑n

j=1 (σkσj )
−1
)
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Minimum variance portfolio

The denominator is the scaling factor such that 1>n xgmv = 1. We
deduce that the optimal weights are given by the following
relationship:

xgmv,i ∝
((n − 1) ρ+ 1)

σ2
i

− ρ

σi

n∑
j=1

1

σj
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Minimum variance portfolio

Here are some special cases:

1 The lower bound of Cn (ρ) is achieved for ρ = − (n − 1)−1 and we
have:

xgmv,i ∝ − ρ

σi

n∑
j=1

1

σj

∝ 1

σi

The weights are proportional to the inverse volatilities (GMV = ERC)

2 If the assets are uncorrelated (ρ = 0), we obtain:

xi ∝
1

σ2
i

The weights are proportional to the inverse variances
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Minimum variance portfolio

3 If the assets are perfectly correlated (ρ = 1), we have:

xgmv,i ∝
1

σi

 n

σi
−

n∑
j=1

1

σj


We deduce that:

xgmv,i ≥ 0 ⇔ n

σi
−

n∑
j=1

1

σj
≥ 0

⇔ σi ≤

1

n

n∑
j=1

σ−1
j

−1

⇔ σi ≤ H̄ (σ1, . . . , σn)

where H̄ (σ1, . . . , σn) is the harmonic mean of volatilities
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Minimum variance portfolio

Example 2

We consider a universe of four assets. Their volatilities are respectively
equal to 4%, 6%, 8% and 10%. We assume also that the correlation
matrix C is uniform and is equal to Cn (ρ).
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Minimum variance portfolio

Table 49: Global minimum variance portfolios

Asset
ρ

−20% 0% 20% 50% 70% 90% 99%
1 44.35 53.92 65.88 90.65 114.60 149.07 170.07
2 25.25 23.97 22.36 19.04 15.83 11.20 8.38
3 17.32 13.48 8.69 −1.24 −10.84 −24.67 −33.09
4 13.08 8.63 3.07 −8.44 −19.58 −35.61 −45.37

σ (x?) 1.93 2.94 3.52 3.86 3.62 2.52 0.87

Table 50: Long-only minimum variance portfolios

Asset
ρ

−20% 0% 20% 50% 70% 90% 99%
1 44.35 53.92 65.88 85.71 100.00 100.00 100.00
2 25.25 23.97 22.36 14.29 0.00 0.00 0.00
3 17.32 13.48 8.69 0.00 0.00 0.00 0.00
4 13.08 8.63 3.07 0.00 0.00 0.00 0.00

σ (x?) 1.93 2.94 3.52 3.93 4.00 4.00 4.00
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Minimum variance portfolio

In practice, we impose no short selling constraints

⇓
Smart beta products (funds and indices) corresponds

to long-only minimum variance portfolios
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Minimum variance portfolio

Remark

The minimum variance strategy is related to the low beta effect (Black,
1972; Frazzini and Pedersen, 2014) or the low volatility anomaly (Haugen
and Baker, 1991).
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Minimum variance portfolio

We consider the single-factor model of the CAPM:

Ri = αi + βiRm + εi

We have:
Σ = ββ>σ2

m + D

where:

β = (β1, . . . , βn) is the vector of betas

σ2
m is the variance of the market portfolio

D = diag
(
σ̃2

1 , . . . , σ̃
2
n

)
is the diagonal matrix of specific variances
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Minimum variance portfolio

Sherman-Morrison-Woodbury formula

Suppose u and v are two n× 1 vectors and A is an invertible n× n matrix.
We can show that:(

A + uv>
)−1

= A−1 − 1

1 + v>A−1u
A−1uv>A−1
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Minimum variance portfolio

We have:
Σ = D + (σmβ) (σmβ)>

We apply the Sherman-Morrison-Woodbury with A = D and u = v = σmβ:

Σ−1 =
(
D + (σmβ) (σmβ)>

)−1

= D−1 − 1

1 + (σmβ)>D−1 (σmβ)
D−1 (σmβ) (σmβ)> D−1

= D−1 − σ2
m

1 + σ2
m (β>D−1β)

(
D−1β

) (
D−1β

)>
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Minimum variance portfolio

We have:
D−1β = β̃

with β̃i = βi/σ̃
2
i and:

ϕ = β>D−1β

= β̃>β

=
n∑

i=1

β2
i

σ̃2
i

We obtain:

Σ−1 = D−1 − σ2
m

1 + ϕσ2
m

β̃β̃>

The GMV portfolio is equal to:

xgmv = σ2 (xgmv) Σ−11n

= σ2 (xgmv)

(
D−11n −

σ2
m

1 + ϕσ2
m

β̃β̃>1n

)
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Minimum variance portfolio

It follows that:

xgmv,i = σ2 (xgmv)

 1

σ̃2
i

−
σ2

m

(
β̃>1n

)
1 + ϕσ2

m

βi

σ̃2
i


=

σ2 (xgmv)

σ̃2
i

(
1− βi

β?

)
where:

β? =
1 + ϕσ2

m

σ2
m

(
β̃>1n

)
The minimum variance portfolio is positively exposed to stocks with low
beta: {

βi < β? ⇒ xgmv,i > 0
βi > β? ⇒ xgmv,i < 0

Moreover, the absolute weight is a decreasing function of the idiosyncratic
volatility: σ̃i ↘⇒ |xgmv,i | ↗
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Minimum variance portfolio

The previous formula has been found by Scherer (2011). Clarke et al.
(2011) have extended it to the long-only minimum variance:

xmv,i =
σ2 (xgmv)

σ̃2
i

(
1− βi

β?

)
where the threshold β? is defined as follows:

β? =
1 + σ2

m

∑
βi<β?

β̃iβi

σ2
m

∑
βi<β?

β̃i

In this case, if βi > β?, x?i = 0
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Minimum variance portfolio

Example 3

We consider an investment universe of five assets. Their beta is
respectively equal to 0.9, 0.8, 1.2, 0.7 and 1.3 whereas their specific
volatility is 4%, 12%, 5%, 8% and 5%. We also assume that the market
portfolio volatility is equal to 25%.
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Minimum variance portfolio

In the case of the GMV portfolio, we have ϕ = 1879.26 and
β? = 1.0972

In the case of the long-only MV portfolio, we have ϕ = 121.01 and
β? = 0.8307

Table 51: Composition of the MV portfolio

Asset βi β̃i
xi

Unconstrained Long-only
1 0.90 562.50 147.33 0.00
2 0.80 55.56 24.67 9.45
3 1.20 480.00 −49.19 0.00
4 0.70 109.37 74.20 90.55
5 1.30 520.00 −97.01 0.00

Volatility 11.45 19.19
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Minimum variance portfolio

In practice, we use a constrained long-only optimization program:

x? = arg min
1

2
x>Σx

u.c.

 1>n x = 1
0n ≤ x ≤ 1n

x ∈ DC

⇒ we need to impose some diversification constraints (x ∈ DC) because
Markowitz optimization leads to corner solutions that are not diversified
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Minimum variance portfolio

Three main approaches:

1 In order to reduce the concentration of a few number of assets, we
can use upper bound on the weights:

xi ≤ x+
i

For instance, we can set xi ≤ 5%, meaning that the weight of an
asset cannot be larger than 5%. We can also impose lower and upper
bounds by sector:

s−j ≤
∑
i∈Sj

xi ≤ s+
j

For instance, if we impose that 3% ≤
∑

i∈Sj
xi ≤ 20%, this implied

that the weight of each sector must be between 3% and 20%.
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Minimum variance portfolio

2 We can impose some constraints with respect to the benchmark
composition:

bi

m
≤ xi ≤ m · bi

where bi is the weight of asset i in the benchmark (or index) b. For
instance, if m = 2, the weight of asset i cannot be lower than 50% of
its weight in the benchmark. It cannot also be greater than twice of
its weight in the benchmark.

3 The third approach consists of imposing a weight diversification based
on the Herfindahl index:

H (x) =
n∑

i=1

xi
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Minimum variance portfolio

The inverse of the Herfindahl index is called the effective number of
bets (ENB):

N (x) = H−1 (x)

N (x) represents the equivalent number of equally-weighted assets.
We can impose a sufficient number of effective bets:

N (x) ≥ Nmin

During the period 2000-2020, the ENB of the S&P 500 index is
between 90 and 130:

90 ≤ N (b) ≤ 130

During the same period, the ENB of the S&P 500 minimum variance
portfolio is between 15 and 30:

15 ≤ N (x) ≤ 30

We conclude that the S&P 500 minimum variance portfolio is less
diversified than the S&P 500 index
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Minimum variance portfolio

We can impose:
N (x) ≥ m · N (b)

For instance, if m = 1.5, the ENB of the S&P 500 minimum variance
portfolio will be 50% larger than the ENB of the S&P 500 index
We notice that:

N (x) ≥ Nmin ⇔ H (x) ≤ N−1
min

⇔ x>x ≤ N−1
min

The optimization problem becomes:

x? (λ) = arg min
1

2
x>Σx + λ

(
x>x −N−1

min

)
u.c.

{
1>n x = 1
0n ≤ x ≤ 1n
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Minimum variance portfolio

We can rewrite the objective function as follows:

L (x ;λ) =
1

2
x>Σx + λx>Inx =

1

2
x> (Σ + 2λIn) x

We obtain a standard minimum variance optimization problem where the
covariance matrix is shrunk

Remark

The optimal solution is found by applying the bisection algorithm to the
QP problem in order to match the constraint:

N (x? (λ)) = Nmin

An alternative approach is to consider the ADMM algorithm (these
numerical problems are studied in Lecture 5)
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Most diversified portfolio

Definition

Choueifaty and Coignard (2008) introduce the concept of diversification
ratio:

DR (x) =

∑n
i=1 xiσi

σ (x)
=

x>σ√
x>Σx

DR (x) is the ratio between the weighted average volatility and the
portfolio volatility

The diversification ratio of a portfolio fully invested in one asset is
equal to one:

DR (ei ) = 1

In the general case, it is larger than one:

DR (x) ≥ 1
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Most diversified portfolio

The most diversified portfolio (or MDP) is defined as the portfolio which
maximizes the diversification ratio:

x? = arg max lnDR (x)

u.c.

{
1>n x = 1
0n ≤ x ≤ 1n
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Most diversified portfolio

The associated Lagrange function is equal to:

L (x ;λ0, λ) = ln

(
x>σ√
x>Σx

)
+ λ0

(
1>n x − 1

)
+ λ> (x − 0n)

= ln
(
x>σ

)
− 1

2
ln
(
x>Σx

)
+ λ0

(
1>n x − 1

)
+ λ>x

The first-order condition is:

∂ L (x ;λ0, λ)

∂ x
=

σ

x>σ
− Σx

x>Σx
+ λ01n + λ = 0n

whereas the Kuhn-Tucker conditions are:

min (λi , xi ) = 0 for i = 1, . . . , n
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Most diversified portfolio

The constraint 1>n x = 1 can always be matched because:

DR (ϕ · x) = DR (x)

We deduce that the MDP x? satisfies:

Σx?

x?>Σx?
=

σ

x?>σ
+ λ

or:

Σx? =
σ2 (x?)

x?>σ
σ + λσ2 (x?)

=
σ (x?)

DR (x?)
σ + λσ2 (x?)

If the long-only constraint is not imposed, we have λ = 0n
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Most diversified portfolio

The correlation between a portfolio x and the MDP x? is given by:

ρ (x , x?) =
x>Σx?

σ (x)σ (x?)

=
1

σ (x)DR (x?)
x>σ +

σ (x?)

σ (x)
x>λ

=
DR (x)

DR (x?)
+
σ (x?)

σ (x)
x>λ
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Most diversified portfolio

If x? is the long-only MDP, we obtain (because λ ≥ 0n and x>λ ≥ 0):

ρ (x , x?) ≥ DR (x)

DR (x?)

whereas we have for the unconstrained MDP:

ρ (x , x?) =
DR (x)

DR (x?)

The ‘core property’ of the MDP

“The long-only MDP is the long-only portfolio such that the
correlation between any other long-only portfolio and itself is
greater than or equal to the ratio of their diversification ratios”
(Choueifaty et al., 2013)
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Most diversified portfolio

The correlation between Asset i and the MDP is equal to:

ρ (ei , x
?) =

DR (ei )

DR (x?)
+
σ (x?)

σ (ei )
e>i λ

=
1

DR (x?)
+
σ (x?)

σi
λi
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Most diversified portfolio

Because λi = 0 if x?i > 0 and λi > 0 if x?i = 0, we deduce that:

ρ (ei , x
?) =

1

DR (x?)
if x?i > 0

and:

ρ (ei , x
?) ≥ 1

DR (x?)
if x?i = 0
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Most diversified portfolio

Another diversification concept

“Any stock not held by the MDP is more correlated to the MDP
than any of the stocks that belong to it. Furthermore, all stocks
belonging to the MDP have the same correlation to it. [...] This
property illustrates that all assets in the universe are effectively
represented in the MDP, even if the portfolio does not physically
hold them. [...] This is consistent with the notion that the most
diversified portfolio is the un-diversifiable portfolio” (Choueifaty
et al., 2013)
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Most diversified portfolio

Remark

In the case when the long-only constraint is omitted, we have
ρ (ei , x

?) = ρ (ej , x
?) meaning that the correlation with the MDP is the

same for all the assets
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Most diversified portfolio

Example 4

We consider an investment universe of four assets. Their volatilities are
equal to 20%, 10%, 20% and 25%. The correlation of asset returns is
given by the following matrix:

ρ =


1.00
0.80 1.00
0.40 0.30 1.00
0.50 0.10 −0.10 1.00
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Most diversified portfolio

Table 52: Composition of the MDP

Unconstrained Long-only
Asset x?i ρ (ei , x

?) x?i ρ (ei , x
?)

1 −18.15 61.10 0.00 73.20
2 61.21 61.10 41.70 62.40
3 29.89 61.10 30.71 62.40
4 27.05 61.10 27.60 62.40

σ (x?) 9.31 10.74
DR (x?) 1.64 1.60
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Most diversified portfolio

Assumption H0: all the assets have the same Sharpe ratio

µi − r

σi
= s

Under H0, the diversification ratio of portfolio x is proportional to its
Sharpe ratio:

DR (x) =
1

s

∑n
i=1 xi (µi − r)

σ (x)

=
1

s

x>µ− r

σ (x)

=
1

s
· SR (x | r)
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Most diversified portfolio

Optimality of the MDP

Under H0, maximizing the diversification ratio is then equivalent to
maximizing the Sharpe ratio:

MDP = MSR
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Most diversified portfolio

In the CAPM framework, Clarke et al. (2013) showed that:

x?i = DR (x?)
σiσ (x?)

σ̃2
i

(
1− ρi,m

ρ?

)
where σi =

√
β2

i σ
2
m + σ̃2

i is the volatility of asset i , ρi,m = βiσm/σi is the
correlation between asset i and the market portfolio and ρ? is the
threshold correlation given by this formula:

ρ? =

(
1 +

n∑
i=1

ρ2
i,m

1− ρ2
i,m

)/(
n∑

i=1

ρi,m

1− ρ2
i,m

)

The weights are then strictly positive if ρi,m < ρ?
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Most diversified portfolio

The MDP tends to be less concentrated than the MV portfolio because:

xmv,i =
1

σ̃2
i

× · · ·

xmdp,i =
σi

σ̃2
i

× · · · ≈ 1

σ̃i
× · · ·+ · · ·
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ERC portfolio

In Lecture 2, we have seen that the ERC portfolio corresponds to the
portfolio such that the risk contribution from each stock is made equal

The main advantages of the ERC allocation are the following:

1 It defines a portfolio that is well diversified in terms of risk and weights

2 Like the three previous risk-based methods, it does not depend on any
expected returns hypothesis

3 It is less sensitive to small changes in the covariance matrix than MV
or MDP portfolios (Demey et al., 2010)
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ERC portfolio

In the CAPM framework, Clarke et al. (2013) showed:

x?i =
σ2 (x?)

σ̃2
i

(√
β2

i

β?2
+

σ̃2
i

nσ2 (x?)
− βi

β?

)

where:

β? =
2σ2 (x?)

β (x?)σ2
m

It follows that:
lim

n→∞
xerc = xew
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Comparison of the 4 Methods

Equally-weighted (EW)

Weights are equal

Easy to understand

Contrarian strategy with a take-profit
scheme

The least concentrated in terms of weights

Do not depend on risks

Minimum variance (MV)

Low volatility portfolio

The only optimal portfolio not depending
on expected returns assumptions

Good out of sample performance

Concentrated portfolios

Sensitive to the covariance matrix

Most Diversified Portfolio (MDP)

Also known as the Max Sharpe Ratio
(MSR) portfolio of EDHEC

Based on the assumption that sharpe ratio
is equal for all stocks

It is the tangency portfolio if the previous
assumption is verified

Sensitive to the covariance matrix

Equal Risk Contribution (ERC)

Risk contributions are equal

Highly diversified portfolios

Less sensitive to the covariance matrix
(than the MV and MDP portfolios)

Not efficient for universe with a large
number of stocks (equivalent to the EW
portfolio)
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Some properties

In terms of bets�
�

�
∃i : wi = 0 (MV - MDP)

∀i : wi 6= 0 (EW - ERC)

In terms of risk factors�

�

�

�

xi = xj (EW)
∂ σ(x)
∂ xi

= ∂ σ(x)
∂ xj

(MV)

xi · ∂ σ(x)
∂ xi

= xj · ∂ σ(x)
∂ xj

(ERC)
1
σi
· ∂ σ(x)

∂ xi
= 1

σj
· ∂ σ(x)

∂ xj
(MDP)
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Some properties

Proof for the MDP portfolio

For the unconstrained MDP portfolio, we recall that the first-order
condition is given by:

∂ L (x ;λ0, λ)

∂ xi
=

σi

x>σ
−

(Σx)i

x>Σx
= 0

The scaled marginal volatility is then equal to the inverse of the
diversification ratio of the MDP:

1

σi
· ∂ σ (x)

∂ xi
=

1

σi
·

(Σx)i√
x>Σx

=
σ (x)

σi
·

(Σx)i

x>Σx

=
σ (x)

x>σ
=

1

DR (x)
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Application to the Eurostoxx 50 index

Table 53: Composition in % (January 2010)
MV MDP MV MDP MV MDP MV MDP

CW MV ERC MDP 1/n 10% 10% 5% 5% CW MV ERC MDP 1/n 10% 10% 5% 5%

TOTAL 6.1 2.1 2 5.0 RWE AG (NEU) 1.7 2.7 2.7 2 7.0 5.0

BANCO SANTANDER 5.8 1.3 2 ING GROEP NV 1.6 0.8 0.4 2

TELEFONICA SA 5.0 31.2 3.5 2 10.0 5.0 5.0 DANONE 1.6 1.9 3.4 1.8 2 8.7 3.3 5.0 5.0

SANOFI-AVENTIS 3.6 12.1 4.5 15.5 2 10.0 10.0 5.0 5.0 IBERDROLA SA 1.6 2.5 2 5.1 5.0 1.2

E.ON AG 3.6 2.1 2 1.4 ENEL 1.6 2.1 2 5.0 2.9

BNP PARIBAS 3.4 1.1 2 VIVENDI SA 1.6 2.8 3.1 4.5 2 10.0 5.9 5.0 5.0

SIEMENS AG 3.2 1.5 2 ANHEUSER-BUSCH INB 1.6 0.2 2.7 10.9 2 2.1 10.0 5.0 5.0

BBVA(BILB-VIZ-ARG) 2.9 1.4 2 ASSIC GENERALI SPA 1.6 1.8 2

BAYER AG 2.9 2.6 3.7 2 2.2 5.0 5.0 5.0 AIR LIQUIDE(L') 1.4 2.1 2 5.0

ENI 2.7 2.1 2 MUENCHENER RUECKVE 1.3 2.1 2.1 2 3.1 5.0 5.0

GDF SUEZ 2.5 2.6 4.5 2 5.4 5.0 5.0 SCHNEIDER ELECTRIC 1.3 1.5 2

BASF SE 2.5 1.5 2 CARREFOUR 1.3 1.0 2.7 1.3 2 3.7 2.5 5.0 5.0

ALLIANZ SE 2.4 1.4 2 VINCI 1.3 1.6 2

UNICREDIT SPA 2.3 1.1 2 LVMH MOET HENNESSY 1.2 1.8 2

SOC GENERALE 2.2 1.2 3.9 2 3.7 5.0 PHILIPS ELEC(KON) 1.2 1.4 2

UNILEVER NV 2.2 11.4 3.7 10.8 2 10.0 10.0 5.0 5.0 L'OREAL 1.1 0.8 2.8 2 5.5 5.0 5.0

FRANCE TELECOM 2.1 14.9 4.1 10.2 2 10.0 10.0 5.0 5.0 CIE DE ST-GOBAIN 1.0 1.1 2

NOKIA OYJ 2.1 1.8 4.5 2 4.8 5.0 REPSOL YPF SA 0.9 2.0 2 5.0NOKIA OYJ 2.1 1.8 4.5 2 4.8 5.0 REPSOL YPF SA 0.9 2.0 2 5.0

DAIMLER AG 2.1 1.3 2 CRH 0.8 1.7 5.1 2 5.2 5.0

DEUTSCHE BANK AG 1.9 1.0 2 CREDIT AGRICOLE SA 0.8 1.1 2

DEUTSCHE TELEKOM 1.9 3.2 2.6 2 5.7 3.7 5.0 5.0 DEUTSCHE BOERSE AG 0.7 1.5 2 1.9

INTESA SANPAOLO 1.9 1.3 2 TELECOM ITALIA SPA 0.7 2.0 2 2.5

AXA 1.8 1.0 2 ALSTOM 0.6 1.5 2

ARCELORMITTAL 1.8 1.0 2 AEGON NV 0.4 0.7 2

SAP AG 1.8 21.0 3.4 11.2 2 10.0 10.0 5.0 5.0 VOLKSWAGEN AG 0.2 1.8 7.1 2 7.4 5.0

Total of components 50 11 50 17 50 14 16 20 23
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Some examples

To compare the risk-based methods, we report:

The weights xi in %

The relative risk contributions RC i in %

The weight concentration H? (x) in % and the risk concentration
H? (RC) in % where H? is the modified Herfindahl index13

The portfolio volatility σ (x) in %

The diversification ratio DR (x)

13We have:

H? (π) =
nH (π)− 1

n − 1
∈ [0, 1]
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Some examples

Example 5

We consider an investment universe with four assets. We assume that the
volatility σi is the same and equal to 20% for all four assets. The
correlation matrix C is equal to:

C =


100%

80% 100%
0% 0% 100%
0% 0% −50% 100%
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Some examples

Table 54: Weights and risk contributions (Example 5)

Asset
EW MV MDP ERC

xi RC i xi RC i xi RC i xi RC i

1 25.00 4.20 10.87 0.96 10.87 0.96 17.26 2.32
2 25.00 4.20 10.87 0.96 10.87 0.96 17.26 2.32
3 25.00 1.17 39.13 3.46 39.13 3.46 32.74 2.32
4 25.00 1.17 39.13 3.46 39.13 3.46 32.74 2.32

H? (x) 0.00 10.65 10.65 3.20
σ (x) 10.72 8.85 8.85 9.26
DR (x) 1.87 2.26 2.26 2.16
H? (RC) 10.65 10.65 10.65 0.00
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Some examples

Example 6

We modify the previous example by introducing differences in volatilities.
They are 10%, 20%, 30% and 40% respectively. The correlation matrix
remains the same as in Example 5.
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Some examples

Table 55: Weights and risk contributions (Example 6)

Asset
EW MV MDP ERC

xi RC i xi RC i xi RC i xi RC i

1 25.00 1.41 74.48 6.43 27.78 1.23 38.36 2.57
2 25.00 3.04 0.00 0.00 13.89 1.23 19.18 2.57
3 25.00 1.63 15.17 1.31 33.33 4.42 24.26 2.57
4 25.00 5.43 10.34 0.89 25.00 4.42 18.20 2.57

H? (x) 0.00 45.13 2.68 3.46
σ (x) 11.51 8.63 11.30 10.29
DR (x) 2.17 1.87 2.26 2.16
H? (RC) 10.31 45.13 10.65 0.00
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Some examples

Example 7

We now reverse the volatilities of Example 6. They are now equal to 40%,
30%, 20% and 10%.
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Table 56: Weights and risk contributions (Example 7)

EW MV MDP ERC
Asset xi RC i xi RC i xi RC i xi RC i

1 25.00 9.32 0.00 0.00 4.18 0.74 7.29 1.96
2 25.00 6.77 4.55 0.29 5.57 0.74 9.72 1.96
3 25.00 1.09 27.27 1.74 30.08 2.66 27.66 1.96
4 25.00 0.00 68.18 4.36 60.17 2.66 55.33 1.96

H? (x) 0.00 38.84 27.65 19.65
σ (x) 17.18 6.40 6.80 7.82
DR (x) 1.46 2.13 2.26 2.16
H? (RC) 27.13 38.84 10.65 0.00
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Some examples

Example 8

We consider an investment universe of four assets. The volatility is
respectively equal to 15%, 30%, 45% and 60% whereas the correlation
matrix C is equal to:

C =


100%

10% 100%
30% 30% 100%
40% 20% −50% 100%
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Table 57: Weights and risk contributions (Example 8)

EW MV MDP ERC
Asset xi RC i xi RC i xi RC i xi RC i

1 25.00 2.52 82.61 11.50 0.00 0.00 40.53 4.52
2 25.00 5.19 17.39 2.42 0.00 0.00 22.46 4.52
3 25.00 3.89 0.00 0.00 57.14 12.86 21.12 4.52
4 25.00 9.01 0.00 0.00 42.86 12.86 15.88 4.52

H? (x) 0.00 61.69 34.69 4.61
σ (x) 20.61 13.92 25.71 18.06
DR (x) 1.82 1.27 2.00 1.76
H? (RC) 7.33 61.69 33.33 0.00
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Some examples

Example 9

Now we consider an example with six assets. The volatilities are 25%,
20%, 15%, 18%, 30% and 20% respectively. We use the following
correlation matrix:

C =


100%

20% 100%
60% 60% 100%
60% 60% 60% 100%
60% 60% 60% 60% 100%
60% 60% 60% 60% 60% 100%
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Table 58: Weights and risk contributions (Example 9)

EW MV MDP ERC
Asset xi RC i xi RC i xi RC i xi RC i

1 16.67 3.19 0.00 0.00 44.44 8.61 14.51 2.72
2 16.67 2.42 6.11 0.88 55.56 8.61 18.14 2.72
3 16.67 2.01 65.16 9.33 0.00 0.00 21.84 2.72
4 16.67 2.45 22.62 3.24 0.00 0.00 18.20 2.72
5 16.67 4.32 0.00 0.00 0.00 0.00 10.92 2.72
6 16.67 2.75 6.11 0.88 0.00 0.00 16.38 2.72

H? (x) 0.00 37.99 40.74 0.83
σ (x) 17.14 14.33 17.21 16.31
DR (x) 1.24 1.14 1.29 1.25
H? (RC) 1.36 37.99 40.00 0.00
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Some examples

Example 10

To illustrate how the MV and MDP portfolios are sensitive to specific
risks, we consider a universe of n assets with volatility equal to 20%. The
structure of the correlation matrix is the following:

C =


100%
ρ1,2 100%

0 ρ 100%
...

...
. . . 100%

0 ρ · · · ρ 100%
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Figure 46: Weight of the first two assets in AW portfolios (Example 10)

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 612 / 1420



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Capitalization-weighted indexation
Risk-based portfolios
Comparison of the four risk-based portfolios
The case of bonds

Some examples

Example 11

We assume that asset returns follow the one-factor CAPM model. The
idiosyncratic volatility σ̃i is set to 5% for all the assets whereas the
volatility of the market portfolio σm is equal to 25%.
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Figure 47: Weight with respect to the asset beta βi (Example 11)
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Smart beta products

MSCI Equal Weighted Indexes (EW)
www.msci.com/msci-equal-weighted-indexes

S&P 500 Equal Weight Index (EW)
www.spglobal.com/spdji/en/indices/equity/sp-500-equal-weight-index

FTSE UK Equally Weighted Index Series (EW)
www.ftserussell.com/products/indices/equally-weighted

FTSE Global Minimum Variance Index Series (MV)
www.ftserussell.com/products/indices/min-variance

MSCI Minimum Volatility Indexes (MV)
www.msci.com/msci-minimum-volatility-indexes

S&P 500 Minimum Volatility Index (MV)
www.spglobal.com/spdji/en/indices/strategy/sp-500-minimum-volatility-index

FTSE Global Equal Risk Contribution Index Series (ERC)
www.ftserussell.com/products/indices/erc

TOBAM MaxDiv Index Series (MDP)
www.tobam.fr/maximum-diversification-indexes
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Smart beta products

Largest ETF issuers in Europe

1 iShares (BlackRock)

2 Xtrackers (DWS)

3 Lyxor ETF

4 UBS ETF

5 Amundi ETF

Largest ETF issuers in US

1 iShares (BlackRock)

2 SPDR (State Street)

3 Vanguard

4 Invesco PowerShares

5 First Trust

Specialized smart beta ETF issuers: Wisdom Tree (US), Ossiam
(Europe), Research affiliates (US), etc.

Smart beta fund managers in Europe: Amundi, Ossiam, Quoniam,
Robeco, Seeyond, Tobam, Unigestion, etc.

ETFs, mutual funds, mandates
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The case of bonds

Two main problems:

1 Benchmarks = debt-weighted indexation (the weights are based on
the notional amount of the debt)

2 Fund management driven by the search of yield with little
consideration for credit risk (carry position 6= arbitrage position)

⇒ Time to rethink bond indexes? (Toloui, 2010)
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Bond indexation

Debt weighting

It is defined by:

xi =
DEBTi∑n

i=1 DEBTi

GDP weighting

It is defined by:

xi =
GDPi∑n

i=1 GDPi

Risk budgeting

It is defined by:

bi =
DEBTi∑n

i=1 DEBTi

or:

bi =
GDPi∑n

i=1 GDPi

⇒ The offering is very small compared to equity indices because of the
liquidity issues (see Roncalli (2013), Chapter 4 for more details)
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From CAPM to factor investing

How to define risk factors?

Risk factors are common factors that explain the cross-section variance of
expected returns

1964: Market or MKT (or BETA) factor

1972: Low beta or BAB factor

1981: Size or SMB factor

1985: Value or HML factor

1991: Low volatility or VOL factor

1993: Momentum or WML factor

2000: Quality or QMJ factor

Systematic risk factors 6= Idiosyncratic risk factors

Beta(s) 6= Alpha(s)
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Alpha or beta?

At the security level, there is a lot of idiosyncratic risk or alpha14:

Common Idiosyncratic
Risk Risk

GOOGLE 47% 53%
NETFLIX 24% 76%
MASTERCARD 50% 50%
NOKIA 32% 68%
TOTAL 89% 11%
AIRBUS 56% 44%

Carhart’s model with 4 factors, 2010-2014
Source: Roncalli (2017)

14The linear regression is:

Ri = αi +

nF∑
j=1

βj
iFj + εi

In our case, we measure the alpha as 1−R2
i where:

R2
i = 1−

σ2 (εi )

σ2 (Ri )
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The concept of alpha

Jensen (1968) – How to measure the performance of active fund
managers?

RF
t = α + βRMKT

t + εt

Fund Return Rank Beta Alpha Rank
A 12% Best 1.0 −2% Worst
B 11% Worst 0.5 4% Best

Market return = 14%

⇒ ᾱ = −fees

It is the beginning of passive management:

John McQuown (Wells Fargo Bank, 1971)
Rex Sinquefield (American National Bank, 1973)
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Active management and performance persistence

Hendricks et al. (1993) – Hot Hands in Mutual Funds

cov
(
αJensen

t , αJensen
t−1

)
> 0

where:
αJensen

t = RF
t − βMKTRMKT

t

⇒ The persistence of the performance of active management is due to the
persistence of the alpha
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Risk factors and active management

Grinblatt et al. (1995) – Momentum investors versus Value
investors

“77% of mutual funds are momentum investors”

Carhart (1997): {
cov

(
αJensen

t , αJensen
t−1

)
> 0

cov
(
αCarhart

t , αCarhart
t−1

)
= 0

where:

αCarhart
t = RF

t −βMKTRMKT
t −βSMBRSMB

t −βHMLRHML
t −βWMLRWML

t

⇒ The (short-term) persistence of the performance of active management
is due to the (short-term) persistence of the performance of risk
factors
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Diversification and alpha

David Swensen’s rule for effective stock picking

Concentrated portfolio ⇒ No more than 20 bets?

Figure 48: Carhart’s alpha decreases with the
number of holding assets

US equity markets, 2000-2014
Source: Roncalli (2017)

“If you can identify six wonderful

businesses, that is all the

diversification you need. And you will

make a lot of money. And I can

guarantee that going into the seventh

one instead of putting more money

into your first one is going to be a

terrible mistake. Very few people

have gotten rich on their seventh

best idea.” (Warren Buffett,

University of Florida, 1998).
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Diversification and alpha

Figure 49: What proportion of return variance is
explained by the 4-factor model?

Morningstar database, 880 mutual funds, European equities
Carhart’s model with 4 factors, 2010-2014
Source: Roncalli (2017)

How many bets are there in large
portfolios of institutional investors?

1986 Less than 10% of institutional
portfolio return is explained by
security picking and market
timing (Brinson et al., 1986)

2009 Professors’ Report on the
Norwegian GPFG: Risk factors
represent 99.1% of the fund
return variation (Ang et al.,
2009)
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Risk factors versus alpha

What lessons can we draw from this?

Idiosyncratic risks and specific bets disappear in (large) diversified
portfolios. Performance of institutional investors is then exposed to
(common) risk factors.

Alpha is not scalable, but risk factors are scalable

⇒ Risk factors are the only bets that are compatible with diversification

Alpha

Concentration

Scarce?
6=

Beta(s)

Diversification

Easy access?
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Factor investing and active management

Misconception about active management

Active management = α
Passive management = β

In this framework, passive management encompasses cap-weighted
indexation, risk-based indexation and factor investing because these
management styles do not pretend to create alpha
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Factor investing and active management

“The question is when is active
management good? The answer is never”

Eugene Fama, Morningstar ETF conference,
September 2014

“So people say, ‘I’m not going to try to beat
the market. The market is all-knowing.’ But
how in the world can the market be
all-knowing, if nobody is trying – well, not as
many people – are trying to beat it?”

Robert Shiller, CNBC, November 2017
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Factor investing and active management

Discretionary active management ⇒ specific/idiosyncratic risks &
rule-based management ⇒ factor investing and systematic risks?

Are common risk factors exogenous or endogenous?

Do risk factors exist without active management?

Risk factors first, active management second
or

Active management first, risk factors second

Factor investing needs active investing

Imagine a world without active managers, stock pickers, hedge funds,
etc.

⇒ Should active management be reduced to alpha management?
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Factor investing and active management

Market risk factor = average of active management

Low beta/low volatility strategies begin to be implemented in
2003-2004 (after the dot.com crisis)

Quality strategies begin to be implemented in 2009-2010 (after the
GFC crisis)

Alpha strategy ⇒ Risk Factor (or a beta strategy)
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Factor investing and active management

α or β?
“[...] When an alpha strategy is massively invested, it has an
enough impact on the structure of asset prices to become a risk
factor.
[...] Indeed, an alpha strategy becomes a common market risk
factor once it represents a significant part of investment
portfolios and explains the cross-section dispersion of asset
returns” (Roncalli, 2020)
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The factor zoo

Figure 50: Harvey et al. (2016)

“Now we have a zoo of new factors” (Cochrane, 2011).
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Factors, factors everywhere

“Standard predictive regressions fail to reject the hypothesis that
the party of the U.S. President, the weather in Manhattan,
global warming, El Niño, sunspots, or the conjunctions of the
planets, are significantly related to anomaly performance. These
results are striking, and quite surprising. In fact, some readers
may be inclined to reject some of this paper’s conclusions solely
on the grounds of plausibility. I urge readers to consider this
option carefully, however, as doing do so entails rejecting the
standard methodology on which the return predictability
literature is built.”(Novy-Marx, 2014).

⇒ MKT, SMB, HML, WML, STR, LTR, VOL, IVOL, BAB, QMJ, LIQ,
TERM, CARRY, DIV, JAN, CDS, GDP, INF, etc.
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The alpha puzzle (Cochrane, 2011)

Chaos
E [Ri ]− Rf = αi

Sharpe (1964)
E [Ri ]− Rf = βm

i (E [Rm]− Rf )

Chaos again

E [Ri ]− Rf = αi + βm
i (E [Rm]− Rf )

Fama and French (1992)

E [Ri ]− Rf = βm
i (E [Rm]− Rf ) + βsmb

i E [Rsmb] + βhml
i E [Rhml ]

This is not the end of the story...
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The alpha puzzle (Cochrane, 2011)

It’s just the beginning!

Chaos again

E [Ri ]− Rf = αi + βm
i (E [Rm]− Rf ) + βsmb

i E [Rsmb] + βhml
i E [Rhml ]

Carhart (1997)

E [Ri ]−Rf = βm
i (E [Rm]− Rf )+βsmb

i E [Rsmb]+βhml
i E [Rhml ]+β

wml
i E [Rwml ]

Chaos again

E [Ri ]− Rf = αi + βm
i (E [Rm]− Rf ) + βsmb

i E [Rsmb] +

βhml
i E [Rhml ] + βwml

i E [Rwml ]

Etc.

How can alpha always come back?
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The alpha puzzle (Cochrane, 2011)

1. Because academic backtesting is not the real life

2. Because risk factors are not independent in practice

3. Because the explanatory power of risk factors is time-varying

4. Because alpha and beta are highly related
(beta strategy = successful alpha strategy)
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The issue of backtesting

Backtesting syndrome

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

0

100

200

300

400

500

600

Backtest

Benchmark

The blue line is above the red line ⇒ it’s OK!

⇒ Analytical models are important to understand a risk factor
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The professional consensus

There is now a consensus among professionals that five factors are
sufficient for the equity markets:

1 Size

Small cap stocks 6= Large cap stocks

2 Value

Value stocks 6= Non-value stocks (including growth stocks)

3 Momentum

Past winners 6= Past loosers

4 Low-volatility

Low-vol (or low-beta) stocks 6= High-vol (or high-beta stocks)

5 Quality

Quality stocks 6= Non-quality stocks (including junk stocks)
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The example of the value risk factor

'

&

$

%

HML Factor
(Value Strategy)

Aggressive Portfolio Defensive Portfolio

Distressed Risk
(Fama and French, 1998)

Quality Stocks
(Piotroski, 2000)

2008 Financial Crisis Dot.com bubble

Q
Q
Q
Q
Qs

�
�

�
�
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?
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The example of the dividend yield risk factor

Book-to-price (value risk factor):

B2P =
B

P

Dividend yield (carry risk factor):

DY =
D

P

=
D

B
× B

P
= D2B×B2P

Value component (book and dividend = low-frequency, price =
high-frequency)

Low-volatility component (bond-like stocks)

Risk factors are not orthogonal, they are correlated
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The example of the dividend yield risk factor

Figure 51: Value, low beta and carry are not orthogonal risk factors

Source: Richard and Roncalli (2015)

Carry ' 60% Value + 40% Low-volatility
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The example of the dividend yield risk factor

Why Size + Value + Momentum + Low-volatility + Quality?

Why not Size + Carry + Momentum + Low-volatility + Quality
or Size + Carry + Momentum + Value + Quality?

Because:

Carry ' 60% Value + 40% Low-volatility

Value ' 167% Carry − 67% Low-volatility

Low-volatility ' 250% Carry − 150% Value

Question

Why Value + Momentum + Low-volatility + Quality
and not

Size + Value + Momentum + Low-volatility + Quality?
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General approach

We consider a universe U of stocks (e.g. the MSCI World Index)

We define a rebalancing period (e.g. every month, every quarter or
every year)

At each rebalancing date tτ :

We define a score Si (tτ ) for each stock i
Stocks with high scores are selected to form the long exposure L (tτ )
of the risk factor
Stocks with low scores are selected to form the short exposure S (tτ )
of the risk factor

We specify a weighting scheme wi (tτ ) (e.g. value weighted or equally
weighted)
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General approach

The performance of the risk factor between two rebalancing dates
corresponds to the performance of the long/short portfolio:

F (t) = F (tτ )·

 ∑
i∈L(tτ )

wi (tτ ) (1 + Ri (t))−
∑

i∈S(tτ )

wi (tτ ) (1 + Ri (t))


where t ∈ ]tτ , tτ+1] and F (t0) = 100.

In the case of a long-only risk factor, we only consider the long
portfolio:

F (t) = F (tτ ) ·

 ∑
i∈L(tτ )

wi (tτ ) (1 + Ri (t))
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The Fama-French approach

The SMB and HML factors are defined as follows:

SMBt =
1

3
(Rt (SV) + Rt (SN) + Rt (SG))−1

3
(Rt (BV) + Rt (BN) + Rt (BG))

and:

HMLt =
1

2
(Rt (SV) + Rt (BV))− 1

2
(Rt (SG) + Rt (BG))

with the following 6 portfolios15:

Value Neutral Growth
Small SV SN SG
Big BV BN BG

15We have:

The scores are the market equity (ME) and the book equity to market equity
(BE/ME)

The size breakpoint is the median market equity (Small = 50% and Big = 50%)

The value breakpoints are the 30th and 70th percentiles of BE/ME (Value =
30%, Neutral = 40% and Growth = 30%)
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The Fama-French approach

Homepage of Kenneth R. French

You can download data at the following webpage:

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/

data_library.html

Asia Pacific ex Japan

Developed

Developed ex US

Europe

Japan

North American

US
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Quintile portfolios

In this approach, we form five quintile portfolios:

Q1 corresponds to the stocks with the highest scores (top 20%)

Q2, Q3 and Q4 are the second, third and fourth quintile portfolios

Q5 corresponds to the stocks with the lowest scores (bottom 20%)

⇒ The long/short risk factor is the performance of Q1 − Q5, whereas the
long-only risk factor is the performance of Q1
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The construction of risk factors

Table 59: An illustrative example

Asset Score Rank Quintile Selected L/S Weight
A1 1.1 3 Q2

A2 0.5 4 Q2

A3 −1.3 9 Q5 X Short −50%
A4 1.5 2 Q1 X Long +50%
A5 −2.8 10 Q5 X Short −50%
A6 0.3 5 Q3

A7 0.1 6 Q3

A8 2.3 1 Q1 X Long +50%
A9 −0.7 8 Q4

A10 −0.3 7 Q4
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The scoring system

Variable selection

Size: market capitalization

Value: Price to book, price to earnings, price to cash flow, dividend
yield, etc.

Momentum = one-year price return ex 1 month, 13-month price
return minus one-month price return, etc.

Low volatility = one-year rolling volatility, one-year rolling beta, etc.

Quality: Profitability, leverage, ROE, Debt to Assets, etc.

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 650 / 1420



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Factor investing in equities
How many risk factors?
Construction of risk factors
Risk factors in other asset classes

The scoring system

Variable combination

Z-score averaging

Ranking system

Bottom exclusion

Etc.

⇒ Finally, we obtain one score for each stock (e.g. the value score, the
quality score, etc.)
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Single-factor exposure versus multi-factor portfolio

Single-factor

Trading bet

Tactical asset allocation (TAA)

If the investor believe that value
stocks will outperform growth
stocks in the next six months,
he will overweight value stocks
or add an exposure on the value
risk factor

Active management

Multi-factor

Long-term bet

Strategic asset allocation (SAA)

The investor believe that a
factor investing portfolio allows
to better capture the equity risk
premium than a CW index

Factor investing portfolio =
diversified portfolio (across risk
factors)
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Multi-factor portfolio

Long/short: Market + Size + Value + Momentum + Low-volatility
+ Quality

Long-only: Size + Value + Momentum + Low-volatility + Quality
(because the market risk factor is replicated by the other risk factors)
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Risk factors in sovereign bonds

“Market participants have long recognized the importance of
identifying the common factors that affect the returns on U.S.
government bonds and related securities. To explain the
variation in these returns, it is critical to distinguish the
systematic risks that have a general impact on the returns of
most securities from the specific risks that influence securities
individually and hence a negligible effect on a diversified
portfolio” (Litterman and Scheinkman, 1991, page 54).

⇒ The 3-factor model of Litterman and Scheinkman (1991) is based on
the PCA analysis:

the level of the yield curve

the steepness of the yield curve

the curvature of the yield curve
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Conventional bond model

Let Bi (t,Di ) be the zero-coupon bond price with maturity Di :

Bi (t,Di ) = e−(R(t)+Si (t)) Di

where R (t) is the risk-free interest rate and Si (t) is the credit spread

L-CAPM of Acharya and Pedersen (2005):

Ri (t) = (R (t) + Si (t)) Di︸ ︷︷ ︸
Gross return

− Li (t)

︸ ︷︷ ︸
Net return

where Li (t) is the illiquidity cost of Bond i
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Conventional bond model

We deduce that:

Bi (t,Di ) = e−((R(t)+Si (t)) Di−Li (t))

and:

d lnBi (t,Di ) = −Di dR (t)− Di dSi (t) + dLi (t)

= −Di dR (t)−DTSi (t)
dSi (t)

Si (t)
+ dLi (t)

where DTSi (t) = Di Si,t is the duration-time-spread factor
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Conventional bond model

Liquidity premia (Acharya and Pedersen, 2005)

The illiquidity premium dLi,t can be decomposed into an illiquidity level
component E [Li,t ] and three illiquidity covariance risks:

1 β (Li , LM )
An asset that becomes illiquid when the market becomes illiquid
should have a higher risk premium.

2 β (Ri , LM )
An asset that perform well in times of market illiquidity should have a
lower risk premium.

3 β (Li ,RM )
Investors accept a lower risk premium on assets that are liquid in a
bear market.
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Conventional bond model

By assuming that:

dLi,t = αi (t) + β (Li , LM ) dLM (t)

where αi is the liquidity return that is not explained by the liquidity
commonality, we obtain:

Ri (t) = αi (t)− Di dR (t)−DTSi (t)
dSi (t)

Si (t)
+ β (Li , LM ) dLM (t)

or:

Ri (t) = a (t)− Di dR (t)−DTSi (t)
dSi (t)

Si (t)
+ β (Li , LM ) dLM (t) + ui (t)
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Risk factors in corporate bonds

Conventional bond model (or the ‘equivalent’ CAPM for bonds)

The total return Ri (t) of Bond i at time t is equal to:

Ri (t) = a (t)−MDi (t) R I (t)−DTSi (t) RS (t) +LTPi (t) RL (t) +ui (t)

where:

a (t) is the constant/carry/zero intercept

MDi (t) is the modified duration

DTSi (t) is the duration-times-spread

LTPi (t) is the liquidity-time-price

ui (t) is the residual

⇒ R I (t), RS (t) and RL (t) are the return components due to interest
rate movements, credit spread variation and liquidity dynamics.
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Risk factors in corporate bonds

Figure 52: Conventional alpha decreases with the
number of holding assets
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There is less traditional
alpha in the bond market
than in the stock market
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Risk factors in corporate bonds

Since 2015

Houweling and van Zundert (2017) — HZ

Bektic, Neugebauer, Wegener and Wenzler (2017) — BNWW

Israel, Palhares and Richardson (2017) — IPR

Bektic, Wenzler, Wegener, Schiereck and Spielmann (2019) —
BWWSS

Ben Slimane, De Jong, Dumas, Fredj, Sekine and Srb (2019) —
BDDFSS

Etc.
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Risk factors in corporate bonds

Study HZ BWWSS IPR BNWW

Period 1994-2015
1996-2016 (US)

1997-2015 1999-2016
2000-2016 (EU)

Universe
Bloomberg Barclays BAML BAML BAML
US IG & HY US IG & HY, EU IG US IG & HY US IG & HY

Investment
1Y variation in total
assets

Low risk
Short maturity + Leverage × Duration ×

1Y equity beta
High rating Profitability

Momentum 6M bond return
6M bond return +

1Y stock return
6M stock return

Profitability Earnings-to-book

Size Market value of issuer Market capitalization Market capitalization

Value
Comparing OAS to Ma-
turity × Rating × 3M
OAS variation

Price-to-book

Comparing OAS to Du-
ration × Rating × Bond
return volatility + Im-
plied default probability

Price-to-book

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 662 / 1420



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Factor investing in equities
How many risk factors?
Construction of risk factors
Risk factors in other asset classes

Risk factors in currency markets

What are the main risk factors for explaining the cross-section of
currency returns?

1 Momentum (cross-section or time-series)
2 Carry
3 Value (short-term, medium-term or long-term)

The dynamics of some currencies are mainly explained by:

Common risk factors (e.g. NZD or CAD)
Idiosyncratic risk factors (e.g. IDR or PEN)

Carry-oriented currency? (e.g. JPY 6= CHF)
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Risk factors in commodities

Two universal strategies:

Contango/backwardation
strategy
Trend-following strategy

CTA = Commodity Trading
Advisor

Only two risk factors?

Carry
Momentum

Figure 53: Contango and backwardation
movements in commodity futures
contracts
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Factor analysis of an asset

Carry Value Momentum

Asset

Quality Size Liquidity Volatility
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Factor analysis of an asset

Carry

• Yield

• Income
generation

• Risk arbitrage

Value

• Fair price

• Overvalued /
undervalued

• Fundamental

Momentum

• Price dynamics

• Trend-following

• Mean-reverting /
Reversal

Liquidity

• Tradability property (transaction cost,
execution time, scarcity)

• Supply/demande imbalance

• Bad times 6= good times
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The concept of alternative risk premia

There are many definitions of ARP:

ARP ≈ factor investing (FI)
(ARP = long/short portfolios, FI = long portfolios)

ARP ≈ all the other risk premia (RP) than the equity and bond risk
premia

ARP ≈ quantitative investment strategies (QIS)

Sell-side

CIBs & brokers

ARP = QIS

Buy-side

Asset managers & asset owners

ARP = FI (for asset managers)

ARP = RP (for asset owners)
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The concept of alternative risk premia

Alternative Risk Premia

Alternative (or real) assets

Private equity

Private debt

Real estate

Infrastructure

Traditional financial assets

Long/short risk factors
in equities, rates, credit,
currencies &
commodities

Risk premium strategy
(e.g. carry, momentum,
value, etc.)
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The concept of alternative risk premia

A risk premium is the expected excess return by the investor in order
to accept the risk ⇒ any (risky) investment strategy has a risk
premium!

Generally, the term “risk premium” is associated to asset classes:

The equity risk premium
The risk premium of high yield bonds

This means that a risk premium is the expected excess return by the
investor in order to accept a future economic risk that cannot be
diversifiable

For instance, the risk premium of a security does not integrate its
specific risk
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The concept of alternative risk premia

What is the relationship between a risk factor and a risk premium?

A rewarded risk factor may correspond a to risk premium, while a
non-rewarded risk factor is not a risk premium
A risk premium can be a risk factor if it helps to explain the
cross-section of expected returns
The case of cat bonds:

Risk premium 4
Risk factor 8
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Risk premia & non-diversifiable risk

Consumption-based model (Lucas, 1978; Cochrane, 2001)

A risk premium is a compensation for accepting (systematic) risk in
bad times.

We have:

Et [Rt+1 − Rf ,t ]︸ ︷︷ ︸
Risk premium

∝ −ρ (u′ (Ct+1) ,Rt+1)︸ ︷︷ ︸
Correlation term

× σ (u′ (Ct+1))︸ ︷︷ ︸
Smoothing term

× σ (Rt+1)︸ ︷︷ ︸
Volatility term

where Rt+1 is the one-period return of the asset, Rf ,t is the risk-free rate,
Ct+1 is the future consumption and u (C ) is the utility function.

Main results

Hedging assets help to smooth the consumption ⇒ low or negative
risk premium

In bad times, risk premium strategies are correlated and have a
negative performance (6= all-weather strategies)
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Risk premia & bad times

The market must
reward contrarian
and value investors,
not momentum
investors

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 672 / 1420



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Definition
Carry, value, momentum and liquidity
Portfolio allocation with ARP

Behavioral finance and limits to arbitrage

Bounded rationality

Barberis and Thaler (2003), A Survey of Behavioral Finance.

Decisions of the other economic agents
⇓

Feedback effects on our decisions!

Killing Homo Economicus

[...] “conventional economics assumes that people are highly
rational, super rational and unemotional. They can calculate like
a computer and have no self-control problems” (Richard Thaler,
2009).

“The people I study are humans that are closer to Homer
Simpson” (Richard Thaler, 2017).
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Behavioral finance and social preferences

For example, momentum may be a rational behavior if the investor is
not informed and his objective is to minimize the loss with respect to
the ‘average’ investor.

Absolute loss 6= relative loss

Loss aversion and performance asymmetry

Imitations between institutional investors ⇒ benchmarking

Home bias

What does the theory become if utility maximization includes the
performance of other economic agents?

⇒ The crowning glory of tracking error and relative performance!
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Behavioral finance and market anomalies

Previously

Positive expected excess returns
are explained by:

risk premia

Today

Positive expected excess returns
are explained by:

risk premia

or market anomalies

Market anomalies correspond to trading strategies that have delivered
good performance in the past, but their performance cannot be explained
by the existence of a systematic risk (in bad times). Their performance
can only be explained by behavioral theories.

⇒ Momentum, low risk and quality risk factors are three market anomalies
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The case of low risk assets

Figure 54: What is the impact of borrowing
constraints on the market portfolio?

The investor that targets
a 8% expected return
must choose Portfolio B

The demand for high
beta assets is higher than
this predicted by CAPM

This effect is called the
low beta anomaly

Low risk assets have a higher Sharpe ratio than high risk assets
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Skewness risk premia & market anomalies

Characterization of alternative risk premia

An alternative risk premium (ARP) is a risk premium, which is not
traditional

Traditional risk premia (TRP): equities, sovereign/corporate bonds
Currencies and some commodities are not TRP

The drawdown of an ARP must be positively correlated to bad times

Risk premia 6= insurance against bad times
(SMB, HML) 6= WML

Risk premia are an increasing function of the volatility and a
decreasing function of the skewness

In the market practice, alternative risk premia recover:

1 Skewness risk premia (or pure risk premia), which present high
negative skewness and potential large drawdown

2 Markets anomalies
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Payoff function of alternative risk premia

Figure 55: Which option profile may be considered as a
skewness risk premium?
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A myriad of alternative risk premia?

Figure 56: Mapping of risk premia strategies (based on existing products)

Strategy Equities Rates Credit Currencies Commodities

Carry
Dividend futures

High dividend yield

Forward rate bias Forward rate bias
Term structure slope Forward rate bias Forward rate bias Term structure slope
Cross-term-structure Cross-term-structure

Event
Buyback

Merger arbitrage
Growth Growth

Liquidity Amihud liquidity Turn-of-the-month Turn-of-the-month Turn-of-the-month

Low beta
Low beta

Low volatility

Momentum
Cross-section Cross-section

Time-series
Cross-section Cross-section

Time-series Time-series Time-series Time-series
Quality Quality

Reversal
Time-series

Time-series Time-series Time-series
Variance

Size Size

Value Value Value Value
PPP

ValueREER, BEER, FEER
NATREX

Volatility
Carry

Carry Carry Carry
Term structure

Source: Roncalli (2017)
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The carry risk premium
Underlying idea

Definition

The investor takes an investment risk

This investment risk is rewarded by a high and known yield

Financial theory predicts a negative mark-to-market return that may
reduce or write off the performance

The investor hopes that the impact of the mark-to-market will be
lower than the predicted value

⇒ Carry strategies are highly related to the concept of risk arbitrage16

The carry risk premium is extensively studied by Koijen et al. (2018)

The carry risk premium has a short put option profile

16An example is the carry strategy between pure money market instruments and
commercial papers = not the same credit risk, not the same maturity risk, but the
investor believes that the default will never occur!
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The carry risk premium
Not one but several carry strategies

Equity
Carry on dividend futures
Carry on stocks with high dividend yields (HDY)

Rates (sovereign bonds)
Carry on the yield curve (term structure & roll-down)

Credit (corporate bons)
Carry on bonds with high spreads
High yield strategy

Currencies
Carry on interest rate differentials (uncovered interest rate parity)

Commodities
Carry on contango & backwardation movements

Volatility
Carry on option implied volatilities
Short volatility strategy

⇒ Many implementation methods: security-slope, cross-asset, long/short,
long-only, basis arbitrage, etc.
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The carry risk premium
Analytical model

Let Xt be the capital allocated at time t to finance a futures position
(or an unfunded forward exposure) on asset St

By assuming that the futures price expires at the future spot price
(Ft+1 = St+1), Koijen et al. (2018) showed that:

Rt+1 (Xt)− Rf =
Ft+1 − Ft

Xt

=
St+1 − Ft

Xt

=
St − Ft

Xt
+
Et [St+1]− St

Xt
+

St+1 − Et [St+1]

Xt
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The carry risk premium
Analytical model

At time t + 1, the excess return of this investment is then equal to:

Rt+1 (Xt)− Rf = Ct +
Et [∆St+1]

Xt
+ εt+1

where εt+1 = (St+1 − Et [St+1]) /Xt is the unexpected price change
and Ct is the carry:

Ct =
St − Ft

Xt

It follows that the expected excess return is the sum of the carry and
the expected price change:

Et [Rt+1 (Xt)]− Rf = Ct +
Et [∆St+1]

Xt

The nature of these two components is different:
1 The carry is an ex-ante observable quantity (known value)
2 The price change depends on the dynamic model of St (unknown

value)
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The carry risk premium
Analytical model

If we assume that the spot price does not change (no-arbitrage
assumption H), the expected excess return is equal to the carry:

Et [∆St+1]

Xt
= −Ct

The carry investor will prefer Asset i to Asset j if the carry of Asset i
is higher:

Ci,t ≥ Cj,t =⇒ Ai � Aj

The carry strategy would then be long on high carry assets and short
on low carry assets.

Remark

In the case of a fully-collateralized position Xt = Ft , the value of the carry
becomes:

Ct =
St

Ft
− 1
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The carry risk premium
Currency carry (or the carry trade strategy)

Let St , it and rt be the spot exchange rate, the domestic interest rate
and the foreign interest rate for the period [t, t + 1]

The forward exchange rate Ft is equal to:

Ft =
1 + it
1 + rt

St

The carry is approximately equal to the interest rate differential:

Ct =
rt − it
1 + it

' rt − it
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The carry risk premium
Currency carry (or the carry trade strategy)

The carry strategy is long on currencies with high interest rates and
short on currencies with low interest rates

We can consider the following carry scoring (or ranking) system:

Ct = rt

Uncovered interest rate parity (UIP)

An interest rate differential of 10% ⇒ currency depreciation of 10%
per year

In 10 years, we must observe a depreciation of 65%!
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The carry risk premium
Currency carry (or the carry trade strategy)

ARS Argentine peso KRW Korean won
AUD Australian dollar LTL Lithuanian litas
BGN Bulgarian lev LVL Latvian lats
BHD Bahraini dinar MXN Mexican peso
BRL Brazilian real MYR Malaysian ringgit
CAD Canadian dollar NOK Norwegian krone
CHF Swiss franc NZD New Zealand dollar
CLP Chilean peso PEN Peruvian new sol
CNY/RMB Chinese yuan (Renminbi) PHP Philippine peso
COP Colombian peso PLN Polish zloty
CZK Czech koruna RON new Romanian leu
DKK Danish krone RUB Russian rouble
EUR Euro SAR Saudi riyal
GBP Pound sterling SEK Swedish krona
HKD Hong Kong dollar SGD Singapore dollar
HUF Hungarian forint THB Thai baht
IDR Indonesian rupiah TRY Turkish lira
ILS Israeli new shekel TWD new Taiwan dollar
INR Indian rupee USD US dollar
JPY Japanese yen ZAR South African rand
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The carry risk premium
Currency carry (or the carry trade strategy)

Baku et al. (2019, 2020) consider the most liquid currencies:

G10 AUD, CAD, CHF, EUR, GBP, JPY, NOK, NZD, SEK and USD

EM BRL, CLP, CZK, HUF, IDR, ILS, INR, KRW, MXN, PLN, RUB,
SGD, TRY, TWD and ZAR

G25 G10 + EM

They build currency risk factors using the following characteristics:

The portfolio is equally-weighted and rebalanced every month

The portfolio is notional-neutral (number of long exposures = number
of short exposures)

3/3 for G10, 4/4 for EM and 7/7 for G25

The long (resp. short) exposures correspond to the highest (resp.
lowest) scores

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 688 / 1420



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Definition
Carry, value, momentum and liquidity
Portfolio allocation with ARP

The carry risk premium
Currency carry (or the carry trade strategy)

Scoring system: Si,t = Ci,t = ri,t

The carry strategy is long on currencies with high interest rates and
short on currencies with low interest rates

Table 60: Risk/return statistics of the carry risk factor (2000-2018)

G10 EM G25
Excess return (in %) 3.75 11.21 7.22
Volatility (in %) 9.35 9.12 8.18
Sharpe ratio 0.40 1.23 0.88
Maximum drawdown (in %) −31.60 −25.27 −17.89

Source: Baku et al. (2019, 2020)
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The carry risk premium
Currency carry (or the carry trade strategy)

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

100

150

200

250

500

750

Figure 57: Cumulative performance of the carry risk factor

Source: Baku et al. (2019, 2020)
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The carry risk premium
Equity carry

We have:

Ct '
Et [Dt+1]

St
− rt

where Et [Dt+1] is the risk-neutral expected dividend for time t + 1

If we assume that dividends are constant, the carry is the difference
between the dividend yield yt and the risk-free rate rt :

Ct = yt − rt

The carry strategy is long on stocks with high dividend yields and
short on stocks with low dividend yields

This strategy may be improved by considering forecasts of dividends.
In this case, we have:

Ct '
Et [Dt+1]

St
− rt =

Dt + Et [∆Dt+1]

St
− rt = yt + gt − rt

where gt is the expected dividend growth

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 691 / 1420



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Definition
Carry, value, momentum and liquidity
Portfolio allocation with ARP

The carry risk premium
Equity carry

Carry strategy with dividend futures

Another carry strategy concerns dividend futures. The underlying idea is to
take a long position on dividend futures where the dividend premium is the
highest and a short position on dividend futures where the dividend
premium is the lowest. Because dividend futures are on equity indices, the
market beta exposure is generally hedged.

Why do we observe a premium on dividend futures?

⇒ Because of the business of structured products and options
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The carry risk premium
Bond carry

The price of a zero-coupon bond with maturity date T is equal to:

Bt (T ) = e−(T−t)Rt (T )

where Rt (T ) is the corresponding zero-coupon rate

Let Ft (T ,m) denote the forward interest rate for the period
[T ,T + m], which is defined as follows:

Bt (T + m) = e−mFt (T ,m)Bt (T )

We deduce that:

Ft (T ,m) = − 1

m
ln

Bt (T + m)

Bt (T )

It follows that the instantaneous forward rate is given by this equation:

Ft (T ) = Ft (T , 0) =
−∂ lnBt (T )

∂ T

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 693 / 1420



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Definition
Carry, value, momentum and liquidity
Portfolio allocation with ARP

The carry risk premium
Bond carry

Figure 58: Movements of the yield curve
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Bond carry

Figure 59: Sport and forward interest rates
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1 The first carry strategy (“forward rate bias”) consists in being long
the forward contract on the forward rate Ft (T ,m) and selling it at
time t + dt with t + dt ≤ T

Forward rates are generally higher than spot rates
Under the hypothesis (H) that the yield curve does not change, rolling
forward rate agreements can then capture the term premium and the
roll down
The carry of this strategy is equal to:

Ct = Rt (T )− rt︸ ︷︷ ︸
term premium

+ ∂T̄ R̄t

(
T̄
)︸ ︷︷ ︸

roll down

where R̄t

(
T̄
)

is the zero-coupon rate with a constant time to maturity
T̄ = T − t
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The carry risk premium
Bond carry

Implementation

We notice that the difference is higher for long maturities. However, the
risk associated with such a strategy is that of a rise in interest rates. This
is why this carry strategy is generally implemented by using short-term
maturities (less than two years)
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Bond carry

2 The second carry strategy (“carry slope”) corresponds to a long
position in the bond with maturity T2 and a short position in the
bond with maturity T1

The exposure of the two legs are adjusted in order to obtain a
duration-neutral portfolio
This strategy is known as the slope carry trade
We have:

Ct = (Rt (T2)− rt)− D2 (T1)

Dt (T1)
(Rt (T1)− rt)︸ ︷︷ ︸

duration neutral slope

+

∂T̄ R̄t

(
T̄2

)
− D2 (T1)

Dt (T1)
∂T̄ R̄t

(
T̄1

)
︸ ︷︷ ︸

duration neutral roll down
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The carry risk premium
Bond carry

Implementation

The classical carry strategy is long 10Y/short 2Y
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The carry risk premium
Bond carry

3 The third carry strategy (“cross-carry slope”) is a variant of the
second carry strategy when we consider the yield curves of several
countries

Implementation

The portfolio is long on positive or higher slope carry and short on
negative or lower slope carry

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 700 / 1420



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Definition
Carry, value, momentum and liquidity
Portfolio allocation with ARP

The carry risk premium
Credit carry

We consider a long position on a corporate bond and a short position on
the government bond with the same duration

The carry is equal to:

Ct = st (T )︸ ︷︷ ︸
spread

+ ∂T̄ R̄?t
(
T̄
)
− ∂T̄ R̄t

(
T̄
)︸ ︷︷ ︸

roll down difference

where st (T ) = R?t (T )− Rt (T ) is the credit spread, R?t (T ) is the
yield-to-maturity of the credit bond and R?t (T ) is the yield-to-maturity of
the government bond
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The carry risk premium
Credit carry

Two implementations

1 The first one is to build a long/short portfolio with corporate bond
indices or baskets. The bond universe can be investment grade or
high yield. In the case of HY bonds, the short exposure can be an IG
bond index

2 The second approach consists in using credit default swaps (CDS).
Typically, we sell credit protection on HY credit default indices (e.g.
CDX.NA.HY) and buy protection on IG credit default indices (e.g.
CDX.NA.IG)
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The carry risk premium
Commodity carry

Figure 60: Contango and backwardation
movements in commodity futures contracts

Source: Roncalli (2013)

Figure 61: Term structure of crude oil
futures contracts

Source: Roncalli (2013)
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The carry risk premium
Volatility carry (or the short volatility strategy)

Volatility carry risk premium

Long volatility ⇒ negative carry (6= structural exposure)

Short volatility ⇒ positive carry, but the highest skewness risk

The P&L of selling and delta-hedging an option is equal to:

Π =
1

2

∫ T

0

er(T−t)S2
t Γt

(
Σ2

t − σ2
t

)
dt

where St is the price of the underlying asset, Γt is the gamma
coefficient, Σt is the implied volatility and σt is the realized volatility

Σt ≥ σt =⇒ Π > 0

3 main reasons:

1 Asymmetric risk profile between the seller and the buyer
2 Hedging demand imbalances
3 Liquidity preferences
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The carry risk premium
Volatility carry (or the short volatility strategy)

Figure 62: Non-parametric payoff of the US
short volatility strategy

Income generation

Short put option profile

Strategic asset allocation (6=
tactical asset allocation)

Time horizon is crucial!

It is a skewness risk premium!

Carry strategies exhibit concave payoffs
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The value risk premium
Definition

Let Si,t be the market price of Asset i

Let S?i be the fundamental price (or the fair value) of Asset i

The value of Asset i is the relative difference between the two prices:

Vi,t =
S?i − Si,t

Si,t

The value investor will prefer Asset i to Asset j if the value of Asset i
is higher:

Vi,t ≥ Vj,t =⇒ Ai � Aj
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The value risk premium
The value strategy is an active management bet

The price of Asset i is undervalued if and only if its value is negative:

Vi,t ≤ 0⇔ S?i ≤ Si,t

The value investor should sell securities with negative values

The price of Asset i is overvalued if and only if its value is positive:

Vi,t ≥ 0⇔ S?i ≥ Si,t

The value investor should buy securities with positive values

Remark

While carry is an objective measure, value is a subjective measure,
because the fair value is different from one investor to another (e.g. stock
picking = value strategy)
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The value risk premium
Computing the fair value

We need a model to estimate the fundamental price S?i :

Stocks: discounted cash flow (DCF) method, fundamental measures
(B2P, PE, DY, EBITDA/EV, etc.), machine learning model, etc.

Sovereign bonds: macroeconomic model, flows model, etc.

Corporate bonds: Merton model, structural model, econometric
model, etc.

Foreign exchange rates: purchasing power parity (PPP), real effective
exchange rate (REER), BEER, FEER, NATREX, etc.

Commodities: statistical model (5-year average price), etc.
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The value risk premium
Equity value

The equity strategy

If we assume that the weight of asset i is proportional to its book-to-price:

wi,t ∝
Bi,t

Pi,t

We obtain:

wi,t = Bi,t

/∑n

j=1
Bj,t︸ ︷︷ ︸

Fundamental component

×
∑n

j=1
Pj,t

/
Pi,t︸ ︷︷ ︸

Reversal component

× a cross-effect term︸ ︷︷ ︸
' constant

The value risk factor can be decomposed into two main components:

a fundamental indexation pattern

a reversal-based pattern

⇒ Reversal strategies ≈ value strategies
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The value risk premium
Equity value

In equities, the frequency of the reversal pattern is ≤ 1 month or ≥
18 months

In currencies and commodities, the frequency of the reversal pattern
is very short (one or two weeks) or very long (≥ 3 years)

⇒ Value strategy in currencies and commodities?
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The value risk premium
The payoff of the equity value risk premium

We consider two Eurozone Value indices calculated by the same index
sponsor

The index sponsor uses the same stock selection process

The index sponsor uses two different weighting schemes:

The first index considers a capitalization-weighted portfolio
The second index considers a minimum variance portfolio

⇒ We recall that the payoff of the low-volatility strategy is long put +
short call
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The value risk premium
The payoff of the equity value risk premium

Index #1 Index #2
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Figure 63: Which Eurozone value index has the right payoff?
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The value risk premium
The payoff of the equity value risk premium

Answer

The payoff of the equity value risk premium is:

Short Put + Long Call

⇒ It is a skewness risk premium too!

The design of the strategy is crucial (some weighting schemes may
change or destroy the desired payoff!)

Are the previous results valid for other asset classes, e.g. rates or
currencies?
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The value risk premium
Misunderstanding of the equity value risk premium

The dot-com crisis (2000-2003)

If we consider the S&P 500 index, we
obtain:

55% of stocks post a negative
performance

≈ 75% of MC

45% of stocks post a positive
performance

Maximum drawdown = 49 %

Small caps stocks ↗
Value stocks ↗

The GFC crisis (2008)

If we consider the S&P 500 index, we
obtain:

95% of stocks post a negative
performance

≈ 97% of MC

5% of stocks post a positive
performance

Maximum drawdown = 56 %

Small caps stocks ↘
Value stocks ↘

What is the impact of the liquidity risk premium?
Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 714 / 1420



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Definition
Carry, value, momentum and liquidity
Portfolio allocation with ARP

The value risk premium
Extension to other asset classes

Corporate bonds

Houweling and van Zundert (2017)
Ben Slimane et al. (2019)
Roncalli (2020)

Currencies

MacDonald (1995)
Menkhoff et al. (2016)
Baku et al. (2019, 2020)
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The momentum risk premium
Definition

Let Si,t be the market price of Asset i

We assume that:

dSi,t

Si,t
= µi,t dt + σi,t dWi,t

The momentum of Asset i corresponds to its past trend:

Mi,t = µ̂i,t

The momentum investor will prefer Asset i to Asset j if the
momentum of Asset i is higher:

Mi,t ≥Mj,t =⇒ Ai � Aj
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The momentum risk premium
Computing the momentum measure

Past return (e.g. one-month, three-month, one-year, etc.)

Mi,t =
Si,t − Si,t−h

Si,t−h

Lagged past return17

Econometric and statistical trend estimators (see Bruder et al. (2011)
for a survey)

17For instance, the WML risk factor is generally implemented using the one-month
lag of the twelve-month return:

Mi,t =
Si,t−1M − Si,t−13M

Si,t−13M

because the stock market is reversal within a one-month time horizon
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The momentum risk premium
Three momentum strategies

1 Cross-section momentum (CSM)

Mi,t ≥Mj,t =⇒ Ai � Aj

2 Time-series momentum (TSM)

Mi,t > 0 =⇒ Ai � 0 and Mi,t < 0 =⇒ Ai ≺ 0

3 Reversal strategy:

Mi,t ≥Mj,t =⇒ Ai ≺ Aj

Remark

Generally, the momentum risk premium corresponds to the CSM or TSM
strategies. When we speak about momentum strategies, we can also
include reversal strategies, which are more considered as trading strategies
with high turnover ratios and very short holding periods (generally
intra-day or daily frequency, less than one week most of the time)
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The momentum risk premium
Cross-section versus time-series

Time-series momentum (TSM)

The portfolio is long (resp.
short) on the asset if it has a
positive (resp. negative)
momentum

This strategy is also called
“trend-following” or
“trend-continuation”

HF: CTA and managed futures

Between asset classes

Cross-section momentum (CSM)

The portfolio is long (resp.
short) on assets that present a
momentum higher (resp. lower)
than the others

This strategy is also called
“winners minus losers” (or
WML) by Carhart (1997)

Within an asset class (equities,
currencies)

⇒ These two momentum risk premia are very different and not well
understood!
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The momentum risk premium
Understanding the TSM strategy

Some results (Jusselin et al., 2017)

EWMA is the optimal trend estimator (Kalman-Bucy filtering)

Two components

a short-term component given by the payoff (dynamics)
a long-term component given by the trading impact (performance)

Main important parameters

The Sharpe ratio
The duration of the moving average
The correlation matrix
The term structure of the volatility

Too much leverage kills momentum (high ruin probability)
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The momentum risk premium
Understanding the TSM strategy

Some results (Jusselin et al., 2017)

The issue of diversification

Time-series momentum likes zero-correlated assets (e.g. multi-asset
momentum premium)
Cross-section momentum likes highly correlated assets (e.g. equity
momentum factor)
The number of assets decreases the P&L dispersion
The symmetry puzzle
The n/ρ trade-off

Short-term versus long-term momentum

Short-term momentum is more risky than long-term momentum
The Sharpe ratio of long-term momentum is higher
The choice of the EWMA duration is more crucial for long-term
momentum
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The momentum risk premium
Understanding the TSM strategy

Some results (Jusselin et al., 2017)

The momentum strategy outperforms the buy-and-hold strategy when
the Sharpe ratio is lower than 35%

The specific nature of equities and bonds

Performance of equity momentum is explained by leverage patterns
Performance of bond momentum is explained by frequency patterns

A lot of myths about the performance of CTAs (equity contribution,
option profile, hedging properties)

Momentum strategies are not alpha or absolute return strategies, but
diversification strategies
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The momentum risk premium
Trend-following strategies (or TSM) exhibit a convex payoff
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Figure 64: Option profile of the trend-following strategy

λ is the parameter of the
EWMA estimator

τ = 1/λ is the duration
of the EWMA estimator

Market anomaly: the
systematic risk is limited
in bad times

Trend-following
strategies exhibit a
convex payoff
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The momentum risk premium
The loss of a trend-following strategy is bounded
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Figure 65: Cumulative distribution function of gt

(st = 0)

st is the Sharpe ratio

gt is the trading impact

The loss is bounded

The gain may be infinite

The return variance of
short-term momentum
strategies is larger than
the return variance of
long-term momentum
strategies

The skewness is positive
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The momentum risk premium
Trend-following strategies exhibit positive skewness
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Figure 66: Statistical moments of the momentum
strategy

Short-term
trend-following strategies
are more risky than
long-term
trend-following strategies

The skewness is positive

It is a market anomaly,
not a skewness risk
premium
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The momentum risk premium
Short-term versus long-term trend-following strategies
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Figure 67: Sharpe ratio of the momentum strategy

When the Sharpe ratio
of the underlying is lower
than 35%, the
momentum strategy
dominates the
buy-and-hold strategy

The Sharpe ratio of
long-term momentum
strategies is higher than
the Sharpe ratio of
short-term momentum
strategies
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The momentum risk premium
Relationship with the Black-Scholes robustness

Figure 68: Admissible region for positive P&L

Delta-hedging: implied
volatility vs realized
volatility

Trend-following:
duration vs realized
Sharpe ratio

The critical value for the
Sharpe ratio is 1.41 for
3M and 0.71 for 1Y
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The momentum risk premium
Impact of the correlation on trend-following strategies
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Figure 69: Cumulative distribution function of gt

(st = 0)

Sign of correlation does
not matter when the
Sharpe ratio of assets is
zero

Symmetry puzzle

positive correlation
=

negative correlation
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The momentum risk premium
Correlation and diversification

Long-only versus long/short diversification

We consider a portfolio (α1, α2) composed of two assets. We have:

σ (ρ) =
√
α2

1σ
2
1 + 2ρα1α2σ1σ2 + α2

2σ
2
2

In the case of a long-only portfolio, the best case for diversification is
reached when the correlation is equal to −1:

|α1σ1 − α2σ2| = σ (−1) ≤ σ (ρ) ≤ σ (1) = α1σ1 + α2σ2

In the case of a long/short portfolio, we generally have
sgn (α1α2) = sgn (ρ). Therefore, the best case for diversification is
reached when the correlation is equal to zero: σ (0) ≤ σ (ρ). Indeed,
when the correlation is −1, the investor is long on one asset and short
on the other asset, implying that this is the same bet.
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The momentum risk premium
The number of assets/correlation trade-off
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Figure 70: Impact of the number of assets on
Pr {gt ≤ g} (st = 2, ρ = 80%)

Correlation is not the
friend of time-series
momentum

A momentum strategy
prefers a few number of
assets with high Sharpe
ratio absolute values
than a large number of
assets with low Sharpe
ratio absolute values
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The momentum risk premium
TSM versus CSM

Time-series momentum

Absolute trends{
µ̂i,t ≥ 0⇒ ei,t ≥ 0
µ̂i,t < 0⇒ ei,t < 0

CTA hedge funds

Alternative risk premia in
multi-asset portfolios

Cross-section momentum

Relative trends{
µ̂i,t ≥ µ̄t ⇒ ei,t ≥ 0
µ̂i,t < µ̄t ⇒ ei,t < 0

where:

µ̄t =
1

n

n∑
j=1

µ̂j,t

Statistical arbitrage / relative value

Factor investing in equity portfolios

Beta strategy or Alpha strategy?
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The momentum risk premium
Performance of cross-section momentum risk premium
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Figure 71: Sharpe ratio of the CSM strategy

Correlation is the
friend of cross-section
momentum!

Statistical arbitrage /
relative value
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The momentum risk premium
Naive replication of the SG CTA Index
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Figure 72: Comparison between the cumulative
performance of the naive replication strategy and the SG
CTA Index

The performance of
trend-followers comes
from the trading impact

Currencies and
commodities are the
main contributors!

Mixing asset classes is
the key point in order to
capture the
diversification premium
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The momentum risk premium
Trend-following strategies benefit from traditional risk premia

Table 61: Exposure average of the trend-following strategy (in %)

Asset Average Short Long Short Long
Class Exposure Exposure Exposure Frequency Frequency
Bond 58% −100% 122% 29% 71%
Equity 52% −88% 160% 44% 56%
Currency 18% −103% 115% 45% 55%
Commodity 23% −108% 113% 41% 59%

The specific nature of bonds: long exposure frequency > short
exposure frequency; long leverage ≈ short leverage

The specific nature of equities: short exposure frequency ≈ long
exposure frequency; long leverage > short leverage
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The momentum risk premium
The myth of short selling

Equity and bond momentum strategies benefit from the existence of a
risk premium

Currency and commodity momentum strategies benefit from (positive
/ negative) trend patterns

Leverage management � short management

The case of equities in the 2008 GFC, the stock-bond correlation and
the symmetry puzzle

The good performance of CTAs in 2008 is not explained by their
short exposure in equities, but by their long exposure in bonds
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The momentum risk premium
The reversal strategy

The reversal strategy may be defined as the opposite of the
momentum strategy (CSM or TSM)

It is also known as the mean-reverting strategy

How to reconciliate reversal and trend-following strategies?

Because they don’t use the same trend windows and holding periods18

18Generally, reversal strategies use short-term or very long-term trends while
trend-following strategies use medium-term trends
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The momentum risk premium
The reversal strategy

The mean-reverting (or autocorrelation) strategy

Let Ri,t = lnSi,t − lnSi,t−1 be the one-period return

We note ρi (h) = ρ (Ri,t ,Ri,t−h) the autocorrelation function

Asset i exhibits a mean-reverting pattern if the short-term
autocorrelation ρi (1) is negative

In this case, the short-term reversal is defined by the product of the
autocorrelation and the current return:

Ri,t = ρi (1) · Ri,t

The short-term reversal strategy is then defined by the following rule:

Ri,t ≥ Rj,t =⇒ i � j
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The momentum risk premium
The reversal strategy

First implementation of the autocorrelation strategy

• If Ri,t is positive, meaning that the current return Ri,t is negative, we
should buy the asset, because a negative return is followed by a
positive return on average

• If Ri,t is negative, meaning that the current return Ri,t is positive, we
should sell the asset, because a positive return is followed by a
negative return on average
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The momentum risk premium
The reversal strategy

The variance swap strategy

We assume that the one-period asset return follows an AR(1) process:

Ri,t = ρRi,t−1 + εt

where |ρ| < 1, εt ∼ N
(
0, σ2

ε

)
and cov (εt , εt−j ) = 0 for j ≥ 1

Let RV (h) be the annualized realized variance of the h-period asset
return Ri,t (h) = ln Si,t − lnSi,t−h

Hamdan et al. (2016) showed that:

E [RV (h)] = φ (h)E [RV (1)]

where:

φ (h) = 1 + 2ρ
1− ρh−1

1− ρ
− 2

∑h−1

j=1

j

h
ρj
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The momentum risk premium
The reversal strategy

The variance swap strategy

We notice that:

lim
h→∞

E [RV (h)] =

(
1 +

2ρ

1− ρ

)
· E [RV (1)]

When the autocorrelation is negative, this implies that the long-term
frequency variance is lower than the short-term frequency variance

More generally, we have:{
E [RV (h)] < E [RV (1)] if ρ < 0
E [RV (h)] ≥ E [RV (1)] otherwise
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The momentum risk premium
The reversal strategy

Figure 73: Variance ratio (RV (h)− RV (1)) /RV (1) (in %)
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The momentum risk premium
The reversal strategy

Second implementation of the autocorrelation strategy

• The spread between daily/weekly and weekly/monthly variance swaps
depends on the autocorrelation of daily returns

• The reversal strategy consists in being long on the daily/weekly
variance swaps and short on the weekly/monthly variance swaps
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The momentum risk premium
The reversal strategy

The long-term reversal strategy

The long-term return reversal is defined by the difference between
long-run and short-period average prices:

Ri,t = S̄LT
i,t − S̄ST

i,t

Typically, S̄ST
i,t is the average price over the last year and S̄LT

i,t is the
average price over the last five years

The long-term return reversal strategy follows the same rule as the
short-term reversal strategy

This reversal strategy is equivalent to a value strategy because the
long-run average price can be viewed as an estimate of the
fundamental price in some asset classes
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The momentum risk premium
The reversal strategy

Implementation of the long-term reversal strategy

• If Ri,t is positive, the long-term mean of the asset price is above its
short-term mean ⇒ we should buy the asset

• If Ri,t is negative, the long-term mean of the asset price is below its
short-term mean ⇒ we should sell the asset
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The liquidity risk premium
What means “liquidity risk”?

“[...] there is also broad belief among users of financial liquidity
— traders, investors and central bankers — that the principal
challenge is not the average level of financial liquidity ... but its
variability and uncertainty ” (Persaud, 2003).
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The liquidity risk premium
The liquidity-adjusted CAPM

L-CAPM (Acharya and Pedersen, 2005)

We note Li the relative (stochastic) illiquidity cost of Asset i . At the
equilibrium, we have:

E [Ri − Li ]− Rf = β̃i (E [RM − LM ]− Rf )

where:

β̃i =
cov (Ri − Li ,RM − LM )

var (RM − LM )

CAPM in the frictionless economy
⇓

CAPM in net returns (including illiquidity costs)
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The liquidity risk premium
The liquidity-adjusted CAPM

The liquidity-adjusted beta can be decomposed into four beta(s):

β̃i = βi + β (Li,, LM )− β (Ri,, LM )− β (Li,,RM )

where:

βi = β (Ri,RM ) is the standard market beta;
β (Li,, LM ) is the beta associated to the commonality in liquidity with
the market liquidity;
β (Ri,, LM ) is the beta associated to the return sensitivity to market
liquidity;
β (Li,,RM ) is the beta associated to the liquidity sensitivity to market
returns.

The risk premium is equal to:

πi = E [Li ] + (βi + β (Li,, LM ))πM −(
β̃iE [LM ] + (β (Ri,, LM ) + β (Li,,RM ))πM

)
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The liquidity risk premium
The liquidity-adjusted CAPM

Acharya and Pedersen (2005)

If assets face some liquidity costs, the relationship between the risk
premium and the beta of asset i becomes:

E [Ri ]− Rf = αi + βi (E [RM ]− Rf )

where αi is a function of the relative liquidity of Asset i with respect to
the market portfolio and the liquidity beta(s):

αi =
(
E [Li ]− β̃iE [LM ]

)
+

β (Li,, LM )πM − β (Ri,, LM )πM − β (Li,,RM )πM
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The liquidity risk premium
Disentangling the liquidity alpha

We deduce that:
αi 6= E [Li ]

meaning that the risk premium of an illiquid asset is not the
systematic risk premium plus a premium due the illiquidity level:

E [Ri ]− Rf 6= E [Li ] + βi (E [RM ]− Rf )

The 4 liquidity premia are highly correlated19 (E [Li ], β (Li,, LM ),
β (Ri,, LM ) and β (Li,,RM )).

Acharaya and Pedersen (2005) found that E [Li ] represents 75% of αi

on average. The 25% remaining are mainly explained by the liquidity
sensitivity to market returns – β (Li,,RM ).

19For instance, we have ρ
(
β
(
Li,, LM

)
, β
(
Ri,, LM

))
= −57%,

ρ
(
β
(
Li,, LM

)
, β
(
Li,,RM

))
= −94% and ρ

(
β
(
Ri,, LM

)
, β
(
Li,,RM

))
= 73%.
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The liquidity risk premium
Three liquidity risks

In fact, we have:

αi = illiquidity level + illiquidity covariance risks

1 β (Li,, LM )

An asset that becomes illiquid when the market becomes illiquid
should have a higher risk premium
Substitution effects when the market becomes illiquid

2 β (Ri,, LM )

Assets that perform well in times of market illiquidity should have a
lower risk premium
Relationship with solvency constraints

3 β (Li,,RM )

Investors accept a lower risk premium on assets that are liquid in a
bear market
Selling markets 6= buying markets
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The liquidity risk premium
How does market liquidity impact risk premia?

Three main impacts

Effect on the risk premium

Effect on the price dynamics
If liquidity is persistent, negative shock to liquidity implies low current
returns and high predicted future returns:

cov (Li,t ,Ri,t) < 0 and ∂Li,tEt [Ri,t+1] > 0

Effect on portfolio management

Sovereign bonds

Corporate bonds

Stocks

Small caps

Private equities
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The liquidity risk premium
Application to stocks

Pastor and Stambaugh (2003) include a liquidity premium in the
Fama-French-Carhart model:

E [Ri ]− Rf = βM
i (E [RM ]− Rf ) + βSMB

i E [RSMB ] + βHML
i E [RHML] +

βWML
i E [RWML] + βLIQ

i E [RLIQ ]

where LIQ measures the shock or innovation of the aggregate liquidity.

Alphas of decile portfolios sorted
on predicted liquidity beta(s)

Long Q10 / Short Q1:

9.2% wrt 3F Fama-French
model

7.5% wrt 4F Carhart model
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The liquidity risk premium
Impact of the liquidity on the stock market

The dot-com crisis (2000-2003)

If we consider the S&P 500 index, we
obtain:

55% of stocks post a negative
performance

≈ 75% of MC

45% of stocks post a positive
performance

Maximum drawdown = 49 %

Small caps stocks ↗
Value stocks ↗

The GFC crisis (2008)

If we consider the S&P 500 index, we
obtain:

95% of stocks post a negative
performance

≈ 97% of MC

5% of stocks post a positive
performance

Maximum drawdown = 56 %

Small caps stocks ↘
Value stocks ↘
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The liquidity risk premium
The specific status of the stock market

The interconnectedness nature of illiquid assets and liquid assets: the
example of the Global Financial Crisis

Subprime crisis ⇔ banks (credit risk)

Banks ⇔ asset management, e.g. hedge funds (funding & leverage
risk)

Asset management ⇔ equity market (liquidity risk)

Equity market ⇔ banks (asset-price & collateral risk)

The equity market is the ultimate liquidity provider:
GFC � internet bubble

Remark

1/3 of the losses in the stock market is explained by the liquidity supply
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The liquidity risk premium
Relationship between diversification & liquidity

During good times

Medium correlation between
liquid assets

Illiquid assets have low impact
on liquid assets

Low substitution effects

Main effect:

E [Li ]

During bad times

High correlation between liquid
assets

Illiquid assets have a high
impact on liquid assets

High substitution effects

Main effects:

β (Li ,RM ) and β (Ri , LM )
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The skewness puzzle

Skewness aggregation 6= volatility aggregation

When we accumulate long/short skewness risk premia in a portfolio, the
volatility of this portfolio decreases dramatically, but its skewness risk
generally increases!

Skewness diversification 6= volatility diversification

σ (X1 + X2) ≤ σ (X1) + σ (X2)

|γ1 (X1 + X2)| � |γ1 (X1) + γ1 (X2)|

Skewness is not a convex risk measure
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The skewness puzzle

Example 12

We assume that (X1,X2) follows a bivariate log-normal distribution
LN

(
µ1, σ

2
1 , µ2, σ

2
2 , ρ
)
. This implies that lnX1 ∼ N

(
µ1, σ

2
1

)
,

lnX2 ∼ N
(
µ2, σ

2
2

)
and ρ is the correlation between lnX1 and lnX2.
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The skewness puzzle

We recall that the skewness of X1 is equal to:

γ1 (X1) =
µ3 (X1)

µ
3/2
2 (X1)

=
e3σ2

1 − 3eσ
2
1 + 2(

eσ
2
1 − 1

)3/2

whereas the skewness of X1 + X2 is equal to:

γ1 (X1 + X2) =
µ3 (X1 + X2)

µ
3/2
2 (X1 + X2)

where µn (X ) is the nth central moment of X

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 758 / 1420



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Definition
Carry, value, momentum and liquidity
Portfolio allocation with ARP

The skewness puzzle

In order to find the skewness of the sum X1 + X2, we need a preliminary
result. By denoting X = α1 lnX1 + α2 lnX2, we have20:

E
[
eX
]

= eµX + 1
2σ

2
X

where:
µX = α1µ1 + α2µ2

and:
σ2

X = α2
1σ

2
1 + α2

2σ
2
2 + 2α1α2ρσ1σ2

It follows that:

E [Xα1
1 Xα2

2 ] = eα1µ1+α2µ2+ 1
2 (α2

1σ
2
1+α2

2σ
2
2+2α1α2ρσ1σ2)

20Because X is a Gaussian random variable
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The skewness puzzle

We have:

µ2 (X1 + X2) = µ2 (X1) + µ2 (X2) + 2 cov (X1,X2)

where:
µ2 (X1) = e2µ1+σ2

1

(
eσ

2
1 − 1

)
and:

cov (X1,X2) = (eρσ1σ2 − 1) eµ1+ 1
2σ

2
1eµ2+ 1

2σ
2
2
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The skewness puzzle

For the third moment of X1 + X2, we use the following formula:

µ3 (X1 + X2) = µ3 (X1) + µ3 (X2) + 3 (cov (X1,X1,X2) + cov (X1,X2,X2))

where:
µ3 (X1) = e2µ1+ 3

2σ
2
1

(
e3σ2

1 − 3eσ
2
1 + 2

)
and:

cov (X1,X1,X2) = (eρσ1σ2 − 1) e2µ1+σ2
1+µ2+

σ2
2

2

(
eσ

2
1+ρσ1σ2 + eσ

2
2 − 2

)
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The skewness puzzle

We deduce that:

γ1 (X1 + X2) =
µ3 (X1 + X2)

µ
3/2
2 (X1 + X2)

where:

µ2 (X1 + X2) = e2µ1+σ2
1

(
eσ

2
1 − 1

)
+ e2µ2+σ2

2

(
eσ

2
2 − 1

)
+

2 (eρσ1σ2 − 1) eµ1+ 1
2σ

2
1eµ2+ 1

2σ
2
2

and:

µ3 (X1 + X2) = e2µ1+ 3
2σ

2
1

(
e3σ2

1 − 3eσ
2
1 + 2

)
+ e2µ2+ 3

2σ
2
2

(
e3σ2

2 − 3eσ
2
2 + 2

)
+

3 (eρσ1σ2 − 1) e2µ1+σ2
1+µ2+

σ2
2

2

(
eσ

2
1+ρσ1σ2 + eσ

2
2 − 2

)
+

3 (eρσ1σ2 − 1) eµ1+ 1
2σ

2
1+2µ2+σ2

2

(
eσ

2
2+ρσ1σ2 + eσ

2
1 − 2

)
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The skewness puzzle

Figure 74: Skewness aggregation of the random vector (−X1,−X3)
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The skewness puzzle

Why?

Volatility diversification works very well with L/S risk premia:

σ (R (x)) ≈ σ̄√
n

Drawdown diversification don’t work very well because bad times are
correlated and are difficult to hedge:

DD (x) ≈ DD
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The skewness puzzle

Figure 75: Cumulative performance of US 10Y bonds, US equities and US short
volatility

Source: Bruder et al. (2016)
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The correlation puzzle

We consider the Gaussian random vector (R1,R2,R3), whose volatilities
are equal to 25%, 12% and 9.76%. The correlation matrix is given by:

C =

 100%
−25.00% 100%

55.31% 66.84% 100%


Good diversification? (correlation approach)

If Ri represents an asset return (or an excess return), we conclude that
(R1,R2,R3) is a well-diversified investment universe

Bad diversification? (payoff approach)

However, we have:
R3 = 0.30R1 + 0.70R2
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The correlation puzzle

Fantasies about correlations

Negative correlations are good for diversification

Positive correlations are bad for diversification

If ρ (R1,R2) is close to −1, can we hedge Asset 1 with Asset 2?

If ρ (R1,R2) is close to −1, can we diversify Asset 1 with Asset 2?

If ρ (R1,R2) is close to +1, can we hedge Asset 1 with a short
position on Asset 2?

If ρ (R1,R2) is close to +1, can we diversify Asset 1 with a short
position on Asset 2?

Does ρ (R1,R2) = −70% correspond to a better diversification
pattern than ρ (R1,R2) = +70%?

There is a confusion between diversification and hedging!
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The payoff approach

Table 62: Correlation matrix between asset classes (2000-2016)

Equity Bond
US Euro UK Japan US Euro UK Japan

Equity

US 100%
Euro 78% 100%
UK 79% 87% 100%

Japan 53% 57% 55% 100%

Bond

US −35% −39% −32% −29% 100%
Euro −17% −16% −16% −16% 58% 100%
UK −31% −37% −30% −31% 72% 63% 100%

Japan −17% −18% −16% −33% 37% 31% 36% 100%

Correlation = Pearson correlation = Linear correlation
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The payoff approach

Let us consider a Gaussian random vector defined as follows:(
Y
X

)
∼ N

((
µy

µx

)
,

(
Σyy Σyx

Σxy Σxx

))
The conditional distribution of Y given X = x is a MN distribution:

µy |x = E [Y | X = x ] = µy + Σyx Σ−1
xx (x − µx )

and:
Σyy |x = σ2 [Y | X = x ] = Σyy − Σyx Σ−1

xx Σxy

We deduce that:

Y = µy + Σyx Σ−1
xx (x − µx ) + u

=
(
µy − Σyx Σ−1

xx µx

)︸ ︷︷ ︸
β0

+ Σyx Σ−1
xx︸ ︷︷ ︸

β>

x + u

where u is a centered Gaussian random variable with variance s2 = Σyy |x .
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Correlation = linear payoff

It follows that the payoff function is defined by the curve:

y = f (x)

where:

f (x) = E [R2 | R1 = x ]

=
(
µ2 − β2|1µ1

)
+ β2|1x
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Figure 76: Linear payoff function with respect to the S&P 500 Index

A long-only diversified stock-bond portfolio makes sense!
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Figure 77: Worst diversification case

What is good diversification? What is bad diversification?

Negative correlation does not necessarily imply good diversification!
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Concave payoff

Negative skewness

Positive vega

Hit ratio ≥ 50%

Gain frequency > loss
frequency

Average gain < average loss

Positively correlated with bad
times

Volatility Carry 6=

Convex payoff

Positive skewness

Negative vega

Hit ratio ≤ 50%

Gain frequency < loss
frequency

Average gain > average loss

Negatively correlated with bad
times?

Time-series Momentum
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Alpha

Carry
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Figure 78: What does portfolio optimization produce with convex and concave
strategies?

Momentum = low allocation during good times and high allocation
after bad times

Carry = high allocation during good times and low allocation after
bad times
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The magic formula

Long-run positive correlations, but...

...negative correlations is bad times
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Figure 79: Stock/bond payoff (EUR)

Daily diversification is different than 3-year diversification
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Exercise

We note Σ the covariance matrix of n asset returns. In what follows, we
consider the equally weighted portfolio based on the universe of these n
assets.
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Question 1

Let Σi,j = ρi,jσiσj be the elements of the covariance matrix Σ.
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Question 1.a

Compute the volatility σ (x) of the EW portfolio.
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The elements of the covariance matrix are Σi,j = ρi,jσiσj . If we consider a
portfolio x = (x1, . . . , xn), its volatility is:

σ (x) =
√
x>Σx

=

√√√√ n∑
i=1

x2
i σ

2
i + 2

∑
i>j

xixjρi,jσiσj

For the equally weighted portfolio, we have xi = n−1 and:

σ (x) =
1

n

√√√√ n∑
i=1

σ2
i + 2

∑
i>j

ρi,jσiσj
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Question 1.b

Let σ0 (x) and σ1 (x) be the volatility of the EW portfolio when the asset
returns are respectively independent and perfectly correlated. Calculate
σ0 (x) and σ1 (x).
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We have:

σ0 (x) =
1

n

√√√√ n∑
i=1

σ2
i

and:

σ1 (x) =
1

n

√√√√ n∑
i=1

n∑
j=1

σiσj =
1

n

√√√√ n∑
i=1

σi

n∑
j=1

σj

=
1

n

√√√√( n∑
i=1

σi

)2

=

∑n
i=1 σi

n

= σ̄
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Question 1.c

We assume that the volatilities are the same. Find the expression of the
portfolio volatility with respect to the mean correlation ρ̄. What is the
value of σ (x) when ρ̄ is equal to zero? What is the value of σ (x) when n
tends to +∞?
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If σi = σj = σ, we obtain:

σ (x) =
σ

n

√
n + 2

∑
i>j

ρi,j

Let ρ̄ be the mean correlation. We have:

ρ̄ =
2

n2 − n

∑
i>j

ρi,j

We deduce that: ∑
i>j

ρi,j =
n (n − 1)

2
ρ̄
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We finally obtain:

σ (x) =
σ

n

√
n + n (n − 1) ρ̄

= σ

√
1 + (n − 1) ρ̄

n

When ρ̄ is equal to zero, the volatility σ (x) is equal to σ/
√
n. When the

number of assets tends to +∞, it follows that:

lim
n→∞

σ (x) = σ
√
ρ̄
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Question 1.d

We assume that the correlations are uniform (ρi,j = ρ). Find the
expression of the portfolio volatility as a function of σ0 (x) and σ1 (x).
Comment on this result.
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If ρi,j = ρ, we obtain:

σ (x) =
1

n

√√√√ n∑
i=1

n∑
j=1

ρi,jσiσj

=
1

n

√√√√ n∑
i=1

σ2
i + ρ

n∑
i=1

n∑
j=1

σiσj − ρ
n∑

i=1

σ2
i

=
1

n

√√√√(1− ρ)
n∑

i=1

σ2
i + ρ

n∑
i=1

n∑
j=1

σiσj
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We have:
n∑

i=1

σ2
i = n2σ2

0 (x)

and:
n∑

i=1

n∑
j=1

σiσj = n2σ2
1 (x)

It follows that:

σ (x) =
√

(1− ρ)σ2
0 (x) + ρσ2

1 (x)

When the correlation is uniform, the variance σ2 (x) is the weighted
average between σ2

0 (x) and σ2
1 (x).
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Question 2.a

Compute the normalized risk contributions RC?i of the EW portfolio.
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The risk contributions are equal to:

RC?i =
xi · (Σx)i

σ2 (x)

In the case of the EW portfolio, we obtain:

RC?i =

∑n
j=1 ρi,jσiσj

n2σ2 (x)

=
σ2

i + σi

∑
j 6=i ρi,jσj

n2σ2 (x)
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Question 2.b

Deduce the risk contributions RC?i when the asset returns are respectively
independent and perfectly correlateda.

aWe note them RC?0,i and RC?1,i .
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If asset returns are independent, we have:

RC?0,i =
σ2

i∑n
i=1 σ

2
i

In the case of perfect correlation, we obtain:

RC?1,i =
σ2

i + σi

∑
j 6=i σj

n2σ̄2

=
σi

∑
j σj

n2σ̄2

=
σi

nσ̄
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Question 2.c

Show that the risk contribution RC i is proportional to the ratio between
the mean correlation of asset i and the mean correlation of the asset
universe when the volatilities are the same.
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If σi = σj = σ, we obtain:

RC?i =
σ2 + σ2

∑
j 6=i ρi,j

n2σ2 (x)

=
σ2 + (n − 1)σ2ρ̄i

n2σ2 (x)

=
1 + (n − 1) ρ̄i

n (1 + (n − 1) ρ̄)

It follows that:

lim
n→∞

1 + (n − 1) ρ̄i

1 + (n − 1) ρ̄
=
ρ̄i

ρ̄

We deduce that the risk contributions are proportional to the ratio
between the mean correlation of asset i and the mean correlation of the
asset universe.
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Question 2.d

We assume that the correlations are uniform (ρi,j = ρ). Show that the risk
contribution RC i is a weighted average of RC?0,i and RC?1,i .
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We recall that we have:

σ (x) =
√

(1− ρ)σ2
0 (x) + ρσ2

1 (x)

It follows that:

RC i = xi ·
(1− ρ)σ0 (x) ∂xiσ0 (x) + ρσ1 (x) ∂xiσ1 (x)√

(1− ρ)σ2
0 (x) + ρσ2

1 (x)

=
(1− ρ)σ0 (x)RC0,i + ρσ1 (x)RC1,i√

(1− ρ)σ2
0 (x) + ρσ2

1 (x)

We then obtain:

RC?i =
(1− ρ)σ2

0 (x)

σ2 (x)
RC?0,i +

ρσ1 (x)

σ2 (x)
RC?1,i

We verify that the risk contribution RC i is a weighted average of RC?0,i
and RC?1,i .
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Question 3

We suppose that the return of asset i satisfies the CAPM model:

Ri = βiRm + εi

where Rm is the return of the market portfolio and εi is the specific risk.
We note β = (β1, . . . , βn) and ε = (ε1, . . . , εn). We assume that Rm ⊥ ε,
var (Rm) = σ2

m and cov (ε) = D = diag
(
σ̃2

1 , . . . , σ̃
2
n

)
.
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Question 3.a

Calculate the volatility of the EW portfolio.
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We have:
Σ = ββ>σ2

m + D

We deduce that:

σ (x) =
1

n

√√√√σ2
m

n∑
i=1

n∑
j=1

βiβj +
n∑

i=1

σ̃2
i
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Question 3.b

Calculate the risk contribution RC i .
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The risk contributions are equal to:

RC i =
xi · (Σx)i

σ (x)

In the case of the EW portfolio, we obtain:

RC i =
xi ·
(
σ2

mβi

∑n
j=1 xjβj + xi σ̃

2
i

)
n2σ (x)

=
σ2

mβi

∑n
j=1 βj + σ̃2

i

n2σ (x)

=
nσ2

mβi β̄ + σ̃2
i

n2σ (x)
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Question 3.c

Show that RC i is approximately proportional to βi if the number of assets
is large. Illustrate this property using a numerical example.
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When the number of assets is large and βi > 0, we obtain:

RC i '
σ2

mβi β̄

nσ (x)

because β̄ > 0. We deduce that the risk contributions are approximately
proportional to the beta coefficients:

RC?i '
βi∑n

j=1 βj

In Figure 80, we compare the exact and approximated values of RC?i . For
that, we simulate βi and σ̃i with βi ∼ U[0.5,1.5] and σ̃i ∼ U[0,20%] whereas
σm is set to 25%. We notice that the approximated value is very close to
the exact value when n increases.
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Figure 80: Comparing the exact and approximated values of RC?i
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Exercise

We consider a universe of n assets. We note σ = (σ1, . . . , σn) the vector
of volatilities and Σ the covariance matrix.
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Question 1

In what follows, we consider non-constrained optimized portfolios.
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Question 1.a

Define the diversification ratioDiversification ratio DR (x) by considering a
general risk measure R (x). How can one interpret this measure from a
risk allocation perspective?
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Let R (x) be the risk measure of the portfolio x . We note Ri = R (ei ) the
risk associated to the i th asset. The diversification ratio is the ratio
between the weighted mean of the individual risks and the portfolio risk
(TR-RPB, page 168):

DR (x) =

∑n
i=1 xiRi

R (x)

If we assume that the risk measure satisfies the Euler allocation principle,
we have:

DR (x) =

∑n
i=1 xiRi∑n
i=1RC i
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Question 1.b

We assume that the weights of the portfolio are positive. Show that
DR (x) ≥ 1 for all risk measures satisfying the Euler allocation principle.
Find an upper bound of DR (x).
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If R (x) satisfies the Euler allocation principle, we know that Ri ≥MRi

(TR-RPB, page 78). We deduce that:

DR (x) ≥
∑n

i=1 xiRi∑n
i=1 xiRi

≥ 1

Let xmr be the portfolio that minimizes the risk measure. We have:

DR (x) ≤ supRi

R (xmr)
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Question 1.c

We now consider the volatility risk measure. Calculate the upper bound of
DR (x).
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If we consider the volatility risk measure, the minimum risk portfolio is the
minimum variance portfolio. We have (TR-RPB, page 164):

σ (xmv) =
1√

1>n Σ1n

We deduce that:

DR (x) ≤
√

1>n Σ−11n · supσi
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Question 1.d

What is the most diversified portfolio (or MDP)? In which case does it
correspond to the tangency portfolio? Deduce the analytical expression of
the MDP and calculate its volatility.
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The MDP is the portfolio which maximizes the diversification ratio when
the risk measure is the volatility (TR-RPB, page 168). We have:

x? = arg maxDR (x)

u.c. 1>n x = 1
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If we consider that the risk premium πi = µi − r of the asset i is
proportional to its volatility σi , we obtain:

SR (x | r) =
µ (x)− r

σ (x)

=

∑n
i=1 xi (µi − r)

σ (x)

= s

∑n
i=1 xiσi

σ (x)

= s · DR (x)

where s is the coefficient of proportionality. Maximizing the diversification
ratio is equivalent to maximizing the Sharpe ratio.
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Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

We recall that the expression of the tangency portfolio is:

x? =
Σ−1 (µ− r1n)

1>n Σ−1 (µ− r1n)

We deduce that the weights of the MDP are:

x? =
Σ−1σ

1>n Σ−1σ

The volatility of the MDP is then:

σ (x?) =

√
σ>Σ−1

1>n Σ−1σ
Σ

Σ−1σ

1>n Σ−1σ

=

√
σ>Σ−1σ

1>n Σ−1σ
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Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

Question 1.e

Demonstrate then that the weights of the MDP are in some sense
proportional to Σ−1σ.
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Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

We recall that another expression of the unconstrained tangency portfolio
is:

x? =
σ2 (x?)

(µ (x?)− r)
Σ−1 (µ− r1n)

We deduce that the MDP is also:

x? =
σ2 (x?)

σ̄ (x?)
Σ−1σ

where σ̄ (x?) = x?>σ. Nevertheless, this solution is endogenous.
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Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

Question 2

We suppose that the return of asset i satisfies the CAPM:

Ri = βiRm + εi

where Rm is the return of the market portfolio and εi is the specific risk.
We note β = (β1, . . . , βn) and ε = (ε1, . . . , εn). We assume that Rm ⊥ ε,
var (Rm) = σ2

m and cov (ε) = D = diag
(
σ̃2

1 , . . . , σ̃
2
n

)
.
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Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

Question 2.a

Compute the correlation ρi,m between the asset return and the market
return. Deduce the relationship between the specific risk σ̃i and the total
risk σi of asset i .
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Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

We have:
cov (Ri ,Rm) = βiσ

2
m

We deduce that:

ρi,m =
cov (Ri ,Rm)

σiσm

= βi
σm

σi
(4)

and:

σ̃i =
√
σ2

i − β2
i σ

2
m

= σi

√
1− ρ2

i,m (5)
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Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

Question 2.b

Show that the solution of the MDP may be written as:

x?i = DR (x?)
σiσ (x?)

σ̃2
i

(
1− ρi,m

ρ?

)
(6)

with ρ? a scalar to be determined.
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Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

We know that (TR-RPB, page 167):

Σ−1 = D−1 − 1

σ−2
m + β̃>β

β̃β̃>

where β̃i = βi/σ̃
2
i .
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Risk-based indexation
Factor investing

Alternative risk premia
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Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

We deduce that:

x? =
σ2 (x?)

σ̄ (x?)

(
D−1σ − 1

σ−2
m + β̃>β

β̃β̃>σ

)
and:

x?i =
σ2 (x?)

σ̄ (x?)

(
σi

σ̃2
i

− β̃>σ

σ−2
m + β̃>β

β̃i

)

=
σiσ

2 (x?)

σ̄ (x?) σ̃2
i

(
1− β̃>σ

σ−1
m + σmβ̃>β

σmσ̃
2
i β̃i

σi

)

=
σiσ

2 (x?)

σ̄ (x?) σ̃2
i

(
1− β̃>σ

σ−1
m + σmβ̃>β

ρi,m

)

= DR (x?)
σiσ (x?)

σ̃2
i

(
1− ρi,m

ρ?

)
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Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

Using Equations (4) and (5), ρ? is defined as follows:

ρ? =
σ−1

m + σmβ̃
>β

β̃>σ

=

1 +
n∑

j=1

σ2
mβ

2
j

σ̃2
j

/ n∑
j=1

σmβjσj

σ̃2
j


=

1 +
n∑

j=1

ρ2
j,m

1− ρ2
j,m

/ n∑
j=1

ρj,m

1− ρ2
j,m
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Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

Question 2.c

In which case is the optimal weight x?i positive?
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Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

The optimal weight x?i is positive if:

1− ρi,m

ρ?
≥ 0

or equivalently:
ρi,m ≤ ρ?
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Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

Question 2.d

Are the weights of the MDP a decreasing or an increasing function of the
specific risk σ̃i ?
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Factor investing

Alternative risk premia
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Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

We recall that:

ρi,m = βi
σm

σi

=
βiσm√

β2
i σ

2
m + σ̃2

i

If βi < 0, an increase of the idiosyncratic volatility σ̃i increases ρi,m and
decreases the ratio σi/σ̃

2
i . We deduce that the weight is a decreasing

function of the specific volatility σ̃i . If βi > 0, an increase of the
idiosyncratic volatility σ̃i decreases ρi,m and decreases the ratio σi/σ̃

2
i . We

cannot conclude in this case.

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 829 / 1420



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

Question 3

In this question, we illustrate that the MDP may be very different than the
minimum variance portfolio.
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Risk-based indexation
Factor investing

Alternative risk premia
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Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

Question 3.a

In which case does the MDP coincide with the minimum variance
portfolio?
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Risk-based indexation
Factor investing

Alternative risk premia
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Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

The MDP coincide with the MV portfolio when the volatility is the same
for all the assets.
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Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

Question 3.b

We consider the following parameter values:

i 1 2 3 4
βi 0.80 0.90 1.10 1.20
σ̃i 0.02 0.05 0.15 0.15

with σm = 20%. Calculate the unconstrained MDP with Formula (6).
Compare it with the unconstrained MV portfolio. What is the result if we
consider a long-only portfolio?
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Risk-based indexation
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Alternative risk premia
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Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

The formula cannot be used directly, because it depends on σ (x?) and
DR (x?). However, we notice that:

x?i ∝
σi

σ̃2
i

(
1− ρi,m

ρ?

)
It suffices then to rescale these weights to obtain the solution. Using the
numerical values of the parameters, ρ? = 98.92% and we obtain the
following results:

βi ρi,m
xi ∈ R xi ≥ 0

MDP MV MDP MV
x?1 0.80 99.23% −27.94% 211.18% 0.00% 100.00%
x?2 0.90 96.35% 43.69% −51.98% 25.00% 0.00%
x?3 1.10 82.62% 43.86% −24.84% 39.24% 0.00%
x?4 1.20 84.80% 40.39% −34.37% 35.76% 0.00%

σ (x?) 24.54% 13.42% 23.16% 16.12%
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Alternative risk premia
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Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

Question 3.c

We assume that the volatility of the assets is 10%, 10%, 50% and 50%
whereas the correlation matrix of asset returns is:

ρ =


1.00
0.90 1.00
0.80 0.80 1.00
0.00 0.00 −0.25 1.00


Calculate the (unconstrained and long-only) MDP and MV portfolios.
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Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

The results are:

xi ∈ R xi ≥ 0
MDP MV MDP MV

x?1 −36.98% 60.76% 0.00% 48.17%
x?2 −36.98% 60.76% 0.00% 48.17%
x?3 91.72% −18.54% 50.00% 0.00%
x?4 82.25% −2.98% 50.00% 3.66%

σ (x?) 48.59% 6.43% 30.62% 9.57%
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Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

Question 3.d

Comment on these results.
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Alternative risk premia
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Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

These two examples show that the MDP may have a different behavior
than the minimum variance portfolio. Contrary to the latter, the most
diversified portfolio is not necessarily a low-beta or a low-volatility
portfolio.
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Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Computation of risk-based portfolios

Exercise

We consider a universe of five assets. Their expected returns are 6%, 10%,
6%, 8% and 12% whereas their volatilities are equal to 10%, 20%, 15%,
25% and 30%. The correlation matrix of asset returns is defined as follows:

ρ =


100%

60% 100%
40% 50% 100%
30% 30% 20% 100%
20% 10% 10% −50% 100%


We assume that the risk-free rate is equal to 2%.
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Computation of risk-based portfolios
Building a carry trade exposure

Computation of risk-based portfolios

Question 1

We consider unconstrained portfolios. For each portfolio, compute the risk
decomposition.
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Question 1.a

Find the tangency portfolio.
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Computation of risk-based portfolios

To compute the unconstrained tangency portfolio, we use the analytical
formula (TR-RPB, page 14):

x? =
Σ−1 (µ− r1n)

1>n Σ−1 (µ− r1n)

We obtain the following results:

Asset xi MRi RC i RC?i
1 11.11% 6.56% 0.73% 5.96%
2 17.98% 13.12% 2.36% 19.27%
3 2.55% 6.56% 0.17% 1.37%
4 33.96% 9.84% 3.34% 27.31%
5 34.40% 16.40% 5.64% 46.09%
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Computation of risk-based portfolios
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Computation of risk-based portfolios

Question 1.b

Determine the equally weighted portfolio.
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Building a carry trade exposure

Computation of risk-based portfolios

We obtain the following results for the equally weighted portfolio:

Asset xi MRi RC i RC?i
1 20.00% 7.47% 1.49% 13.43%
2 20.00% 15.83% 3.17% 28.48%
3 20.00% 9.98% 2.00% 17.96%
4 20.00% 9.89% 1.98% 17.80%
5 20.00% 12.41% 2.48% 22.33%
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Question 1.c

Compute the minimum variance portfolio.
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Computation of risk-based portfolios

For the minimum variance portfolio, we have:

Asset xi MRi RC i RC?i
1 74.80% 9.08% 6.79% 74.80%
2 −15.04% 9.08% −1.37% −15.04%
3 21.63% 9.08% 1.96% 21.63%
4 10.24% 9.08% 0.93% 10.24%
5 8.36% 9.08% 0.76% 8.36%
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Question 1.d

Calculate the most diversified portfolio.

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 847 / 1420



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
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Computation of risk-based portfolios

For the most diversified portfolio, we have:

Asset xi MRi RC i RC?i
1 −14.47% 4.88% −0.71% −5.34%
2 4.83% 9.75% 0.47% 3.56%
3 18.94% 7.31% 1.38% 10.47%
4 49.07% 12.19% 5.98% 45.24%
5 41.63% 14.63% 6.09% 46.06%
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Question 1.e

Find the ERC portfolio.
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Computation of risk-based portfolios

For the ERC portfolio, we have:

Asset xi MRi RC i RC?i
1 27.20% 7.78% 2.12% 20.00
2 13.95% 15.16% 2.12% 20.00
3 20.86% 10.14% 2.12% 20.00
4 19.83% 10.67% 2.12% 20.00
5 18.16% 11.65% 2.12% 20.00
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Computation of risk-based portfolios

Question 1.f

Compare the expected return µ (x), the volatility σ (x) and the Sharpe
ratio SR (x | r) of the different portfolios. Calculate then the tracking
error volatility σ (x | b), the beta β (x | b) and the correlation ρ (x | b) if
we assume that the benchmark b is the tangency portfolio.
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Computation of risk-based portfolios

We recall the definition of the statistics:

µ (x) = µ>x

σ (x) =
√
x>Σx

SR (x | r) =
µ (x)− r

σ (x)

σ (x | b) =

√
(x − b)>Σ (x − b)

β (x | b) =
x>Σb

b>Σb

ρ (x | b) =
x>Σb√

x>Σx
√
b>Σb
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Computation of risk-based portfolios

We obtain the following results:

Statistic x? xew xmv xmdp xerc
µ (x) 9.46% 8.40% 6.11% 9.67% 8.04%
σ (x) 12.24% 11.12% 9.08% 13.22% 10.58%

SR (x | r) 60.96% 57.57% 45.21% 58.03% 57.15%
σ (x | b) 0.00% 4.05% 8.21% 4.06% 4.35%
β (x | b) 100.00% 85.77% 55.01% 102.82% 81.00%
ρ (x | b) 100.00% 94.44% 74.17% 95.19% 93.76%

We notice that all the portfolios present similar performance in terms of
Sharpe Ratio. The minimum variance portfolio shows the smallest Sharpe
ratio, but it also shows the lowest correlation with the tangency portfolio.
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Question 2

Same questions if we impose the long-only portfolio constraint.

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 854 / 1420



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Computation of risk-based portfolios

The tangency portfolio, the equally weighted portfolio and the ERC
portfolio are already long-only. For the minimum variance portfolio, we
obtain:

Asset xi MRi RC i RC?i
1 65.85% 9.37% 6.17% 65.85%
2 0.00% 13.11% 0.00% 0.00%
3 16.72% 9.37% 1.57% 16.72%
4 9.12% 9.37% 0.85% 9.12%
5 8.32% 9.37% 0.78% 8.32%
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Computation of risk-based portfolios

For the most diversified portfolio, we have:

Asset xi MRi RC i RC?i
1 0.00% 5.50% 0.00% 0.00%
2 1.58% 9.78% 0.15% 1.26%
3 16.81% 7.34% 1.23% 10.04%
4 44.13% 12.23% 5.40% 43.93%
5 37.48% 14.68% 5.50% 44.77%
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The results become:

Statistic x? xew xmv xmdp xerc
µ (x) 9.46% 8.40% 6.68% 9.19% 8.04%
σ (x) 12.24% 11.12% 9.37% 12.29% 10.58%

SR (x | r) 60.96% 57.57% 49.99% 58.56% 57.15%
σ (x | b) 0.00% 4.05% 7.04% 3.44% 4.35%
β (x | b) 100.00% 85.77% 62.74% 96.41% 81.00%
ρ (x | b) 100.00% 94.44% 82.00% 96.06% 93.76%
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Building a carry trade exposure

Question 1

We would like to build a carry trade strategy using a cash neutral portfolio
with equal weights and a notional amount of $100 mn. We use the data
given in Table 63. The holding period is equal to three months.

Table 63: Three-month interest rates (March, 15th 2000)

Currency AUD CAD CHF EUR GBP
Interest rate (in %) 5.74 5.37 2.55 3.79 6.21

Currency JPY NOK NZD SEK USD
Interest rate (in %) 0.14 5.97 6.24 4.18 6.17
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Building a carry trade exposure

Question 1.a

Build the carry trade exposure with two funding currencies and two asset
currencies.
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Building a carry trade exposure

We rank the currencies according to their interest rate from the lowest to
the largest value:

1. JPY 2. CHF 3. EUR 4. SEK 5. CAD
6. AUD 7. NOK 8. USD 9. GBP 10. NZD

We deduce that the carry trade portfolio is:

1 long $50 mn on NZD

2 long $50 mn on GBP

3 short $50 mn on JPY

4 short $50 mn on CHF
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Question 1.b

Same question with five funding currencies and two asset currencies.
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The portfolio becomes:

1 long $50 mn on NZD and GBP

2 short $20 mn on JPY, CHF, EUR, SEK and CAD
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Question 1.c

What is the specificity of the portfolio if we use five funding currencies and
five asset currencies.
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The portfolio is:

1 long $20 mn on NZD, GBP, USD, NOK and AUD

2 short $20 mn on JPY, CHF, EUR, SEK and CAD

The asset notional is not equal to the funding notional, because the
funding notional is equal to $100 mn and the asset notional is equal to $80
mn. Indeed, we don’t need to invest the $20 mn USD exposure since the
portfolio currency is the US dollar.

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 864 / 1420



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Building a carry trade exposure

Question 1.d

Calculate an approximation of the carry trade P&L if we assume that the
spot foreign exchange rates remain constant during the next three months.
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If we consider the last portfolio, we have:

PnL ≈ 20× 1

4
(6.24% + 6.21% + 6.17% + 5.97% + 5.74%)−

20× 1

4
(0.14% + 2.55% + 3.79% + 4.18% + 5.37%)

= $0.71 mn

If the spot foreign exchange rates remain constant during the next three
months, the quarterly P&L is approximated equal to $710 000.
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Question 2

We consider the data given in Tables 64 and 65.

Table 64: Three-month interest rates (March, 21th 2005)

Currency BRL CZK HUF KRW MXN
Interest rate (in %) 18.23 2.45 8.95 3.48 8.98

Currency PLN SGD THB TRY TWD
Interest rate (in %) 6.63 1.44 2.00 19.80 1.30

Table 65: Annualized volatility of foreign exchange rates (March, 21th 2005)

Currency BRL CZK HUF KRW MXN
Volatility (in %) 11.19 12.57 12.65 6.48 6.80

Currency PLN SGD THB TRY TWD
Volatility (in %) 11.27 4.97 4.26 11.61 4.12
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Question 2.a

Let Σ be the covariance matrix of the currency returns. Which expected
returns are used by the carry investor? Write the mean-variance
optimization problem if we assume a cash neutral portfolio.
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Let Ci and C = (C1, . . . , Cn) be the carry of Currency i and the vector of
carry values. The carry investor assumes that µi = Ci . We deduce that the
mean-variance optimization problem is:

x? (γ) = arg min
1

2
x>Σx − γx>C

u.c. 1>n x = 0

The constraint 1>n x = 0 indicates that the portfolio is cash neutral. If we
target a portfolio volatility σ?, we use the bisection algorithm in order to
find the optimal value of γ such that:

σ (x? (γ)) = σ?
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Question 2.b

By assuming a zero correlation between the currencies, calibrate the cash
neutral portfolio when the objective function is to target a 3% portfolio
volatility.
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We obtain the following solution:

Currency BRL CZK HUF KRW MXN
Weight 15.05% −1.28% 4.11% −1.57% 14.30%

Currency PLN SGD THB TRY TWD
Weight 2.76% −13.59% −14.42% 15.52% −20.87%
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Question 2.c

Same question if we use the following correlation matrix:

ρ =



1.00
0.30 1.00
0.38 0.80 1.00
0.00 0.04 0.08 1.00
0.50 0.30 0.34 0.12 1.00
0.35 0.70 0.78 0.06 0.30 1.00
0.33 0.49 0.56 0.29 0.27 0.53 1.00
0.30 0.34 0.34 0.38 0.29 0.35 0.53 1.00
0.43 0.39 0.48 0.10 0.38 0.41 0.35 0.43 1.00
0.03 0.07 0.06 0.63 0.09 0.07 0.30 0.40 0.20 1.00
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The solution becomes:

Currency BRL CZK HUF KRW MXN
Weight 13.69% −9.45% 4.58% 17.31% 6.56%

Currency PLN SGD THB TRY TWD
Weight 2.07% −17.79% −20.86% 17.98% −14.10%
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Question 2.d

Calculate the carry of this optimized portfolio. For each currency, deduce
the maximum value of the devaluation (or revaluation) rate that is
compatible with a positive P&L.
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The carry of the portfolio is equal to:

C (x) =
n∑

i=1

xi · Ci

We find C (x) = 6.7062% per year. We deduce that the maximum value of
the devaluation or revaluation rate Di that is compatible with a positive
P&L is equal to:

Di =
6.7062%

4
= 1.6765%

This figure is valid for an exposure of 100%.
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By considering the weights, we deduce that:

Di = −C (x)

4xi

Finally, we obtain the following compatible devaluation (negative sign −)
and revaluation (positive sign +) rates:

Currency BRL CZK HUF KRW MXN
Di −12.25% +17.75% −36.64% −9.69% −25.55%

Currency PLN SGD THB TRY TWD
Di −81.08% +9.43% +8.04% −9.32% +11.89%
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Question 2.e

Repeat Question 2.b assuming that the volatility target is equal 5%.
Calculate the leverage ratio. Comment on these results.
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We obtain the following results:

Currency BRL CZK HUF KRW MXN
Weight 25.08% −2.13% 6.84% −2.62% 23.83%

Currency PLN SGD THB TRY TWD
Weight 4.60% −22.65% −24.03% 25.86% −34.78%

The leverage ratio of this portfolio is equal to
∑n

i=1 |xi | = 172.43%,
whereas it is equal to 103.47% and 124.37% for the portfolios of Questions
2.b and 2.c. This is perfectly normal because the leverage is proportional
to the volatility.
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Question 2.f

Find the analytical solution of the optimal portfolio x? when we target a
volatility σ?.
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The Lagrange function is equal to:

L (x ;λ0) =
1

2
x>Σx − γx>C + λ0

(
1>n x − 0

)
The first-order condition is equal to:

∂ L (x ;λ0)

∂ x
= Σx − γC + λ01n = 0n

It follows that:
x = Σ−1 (γC − λ01n)
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The cash neutral constraint implies that:

1>n Σ−1 (γC − λ01n) = 0

We deduce that:

λ0 = γ
1>n Σ−1C
1>n Σ−11n

Therefore, the optimal solution is equal to:

x? =
γΣ−1

1>n Σ−11n

((
1>n Σ−11n

)
C−
(
1>n Σ−1C

)
1n

)
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The volatility of the optimal portfolio is equal:

σ2 (x?) = x?>Σx?

=
(
γC>−λ01>n

)
Σ−1ΣΣ−1 (γC − λ01n)

=
(
γC>−λ01>n

)
Σ−1 (γC − λ01n)

= γ2C>Σ−1C + λ2
01>n Σ−11n − 2γλ0C>Σ−11n

= γ2

(
C>Σ−1C−

(
1>n Σ−1C

)2

1>n Σ−11n

)

=
γ2

1>n Σ−11n

((
1>n Σ−11n

) (
C>Σ−1C

)
−
(
1>n Σ−1C

)2
)

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 882 / 1420



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Building a carry trade exposure

We deduce that:

γ =

√
1>n Σ−11n√

(1>n Σ−11n) (C>Σ−1C)− (1>n Σ−1C)
2
σ (x?)

Finally, we obtain:

x? = σ (x?)
Σ−1

((
1>n Σ−11n

)
C−
(
1>n Σ−1C

)
1n

)√
(1>n Σ−11n)

2
(C>Σ−1C)− (1>n Σ−11n) (1>n Σ−1C)

2

= σ?
Σ−1

((
1>n Σ−11n

)
C−
(
1>n Σ−1C

)
1n

)√
(1>n Σ−11n)

2
(C>Σ−1C)− (1>n Σ−11n) (1>n Σ−1C)

2
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Question 2.g

We assume that the correlation matrix is the identity matrix In. Find the
expression of the threshold value C? such that all currencies with a carry Ci

larger than C? form the long leg of the portfolio.

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 884 / 1420



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Building a carry trade exposure

We recall that:

x? ∝ Σ−1
((

1>n Σ−11n

)
C−
(
1>n Σ−1C

)
1n

)
If ρ = In, we have:

1>n Σ−11n =
n∑

j=1

1

σ2
j

and:

1>n Σ−1C =
n∑

j=1

Cj

σ2
j

We deduce that:

x?i ∝
1

σ2
i

 n∑
j=1

1

σ2
j

 Ci−

 n∑
j=1

Cj

σ2
j
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The portfolio is long on the currency i if:

Ci ≥ C?

where:

C? =

 n∑
j=1

1

σ2
j

−1 n∑
j=1

Cj

σ2
j

 =
n∑

j=1

ωjCj

and:

ωj =
σ−2

j∑n
k=1 σ

−2
k

C? is the weighted mean of the carry values and the weights are inversely
proportional to the variance of the currency returns.
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We consider the CAPM model:

Ri − r = βi (Rm − r) + εi

where Ri is the return of asset i , Rm is the return of the market portfolio
wm, r is the risk free asset, βi is the beta of asset i with respect to the
market portfolio and εi is the idiosyncratic risk of asset i . We have
Rm ⊥ εi and εi ⊥ εj . We note σm the volatility of the market portfolio.
Let σ̃i , µi and Si be the idiosyncratic volatility, the expected return and
the ESG score of asset i . We use a universe of 6 assets with the following
parameter values:

Asset i 1 2 3 4 5 6
βi 0.10 0.30 0.50 0.90 1.30 2.00

σ̃i (in %) 17.00 17.00 16.00 10.00 11.00 12.00
µi (in %) 1.50 2.50 3.50 5.50 7.50 11.00

Si 1.10 1.50 2.50 −1.82 −2.35 −2.91

and σm = 20%. The risk-free return r is set to 1% and the expected
return of the market portfolio wm is equal to µm = 6%.
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Question 1

We assume that the CAPM is valid.
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Question (a)

Calculate the vector µ of expected returns.
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Using the CAPM, we have:

µi = r + βi (µm − r)

For instance, we have:

µ1 = 1% + 0.10× (6%− 1%) = 1.5%

and:
µ2 = 1% + 0.30× 5% = 2.5%

Finally, we obtain µ = (1.5%, 2.5%, 3.5%, 5.5%, 7.5%, 11%)
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Question (b)

Compute the covariance matrix Σ. Deduce the volatility σi of the asset i
and find the correlation matrix C = (ρi,j ) between asset returns.
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We have:
Σ = σ2

mββ
> + D

where:
D = diag

(
σ̃2

1 , . . . , σ̃
2
6

)
The numerical value of Σ is:

Σ =


293

12 325
20 60 356
36 108 180 424
52 156 260 468 797
80 240 400 720 1 040 1 744

× 10−4
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We have:
σi =

√
Σi,i

We obtain:

σ = (17.12%, 18.03%, 18.87%, 20.59%, 28.23%, 41.76%)

We have:

ρi,j =
Σi,j

σiσj

We obtain the following correlation matrix expressed in %:

C =


100.00

3.89 100.00
6.19 17.64 100.00

10.21 29.09 46.33 100.00
10.76 30.65 48.81 80.51 100.00
11.19 31.88 50.76 83.73 88.21 100.00
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Question (c)

Compute the tangency portfolio w∗. Calculate µ (w∗) and σ (w∗). Deduce
the Sharpe ratio and the ESG score of the tangency portfolio.
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We have:

w∗ =
Σ−1 (µ− r1)

1>Σ−1 (µ− r1)
=


0.94%
2.81%
5.28%

24.34%
29.06%
37.57%


We deduce:

µ (w∗) = w∗>µ = 7.9201%

σ (w∗) =
√
w∗>Σw∗ = 28.3487%

SR (w∗ | r) =
7.9201%− 1%

28.3487%
= 0.2441

S (w∗) =
6∑

i=1

w∗i Si = −2.0347
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Question (d)

Compute the beta coefficient βi (w∗) of the six assets with respect to the
tangency portfolio w∗, and the implied expected return µ̃i :

µ̃i = r + βi (w∗) (µ (w∗)− r)
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We have:

βi (w∗) =
e>i Σw∗

σ2 (w∗)

We obtain:

β (w∗) =


0.0723
0.2168
0.3613
0.6503
0.9393
1.4451


The computation of µ̃i = r + βi (w∗) (µ (w∗)− r) gives:

µ̃ =


1.50%
2.50%
3.50%
5.50%
7.50%

11.00%
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Question (e)

Deduce the market portfolio wm. Comment on these results.
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βi (w∗) 6= βi (wm) but risk premia are exact

Let us assume that the allocation of wm is equal to α of the tangency
portfolio w∗ and 1− α of the risk-free asset. We deduce that:

β (wm) =
Σwm

σ2 (wm)
=

αΣw∗

α2σ2 (w∗)
=

1

α
β (w∗)

We have:

α =
βi (w∗)

βi (wm)
= 72.25%

The market portfolio wm is equal to 72.25% of the tangency portfolio
w∗ and 27.75% of the risk-free asset

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 912 / 1420



CAPM and implied expected returns
Mean-variance optimization with ESG scores

Benchmark with ESG scores

We have:

µ (wm) = r +α (µ (w∗)− r) = 1% + 72.25%× (7.9201%− 1%) = 6%

and:

σ (wm) = ασ (w∗) = 72.25%× 28.3487% = 20.48%

We deduce that:

SR (wm | r) =
6%− 1%

20.48%
= 0.2441

We do not obtain the true value of the Sharpe ratio:

SR (wm | r) =
6%− 1%

20%
= 0.25

The tangency portfolio has an idiosyncratic risk:√
w>m (σ2

mββ
>)w> = 20% < σ (wm) = 20.48%
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Question 2

We consider long-only portfolios and we also impose a minimum threshold
S? for the portfolio ESG score:

S (w) = w>S ≥ S?
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Question (a)

Let γ be the risk tolerance. Write the mean-variance optimization problem.
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We have:

w? = arg min
1

2
w>Σw − γw>µ

s.t.

 1>6 w = 1
w>S ≥ S?
06 ≤ w ≤ 16
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Question (b)

Find the QP form of the MVO problem.
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The matrix form of the QP problem is:

w? = arg min
1

2
w>Qw − w>R

s.t.

 Aw = B
Cw ≤ D
w− ≤ w ≤ w+

We deduce that Q = Σ, R = γµ, A = 1>6 , B = 1, C = −S>,
D = −S?, w− = 06 and w+ = 16
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Question (c)

Compare the efficient frontier when (1) there is no ESG constraint
(S? = −∞), (2) we impose a positive ESG score (S? = 0) and (3) the
minimum threshold is set to 0.5 (S? = 0.5). Comment on these results.
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To compute the efficient frontier, we consider several value of
γ ∈ [−1, 2]

For each value of γ, we compute the optimal portfolio w? and deduce
its expected return µ (w?) and its volatility σ (w?)
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Figure 81: Impact of the minimum ESG score on the efficient frontier
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Question (d)

For each previous cases, find the tangency portfolio w∗ and the
corresponding risk tolerance γ∗. Compute then µ (w∗), σ (w∗),
SR (w∗ | r) and S (w∗). Comment on these results.
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Let w? (γ) be the MVO portfolio when the risk tolerance is equal to γ

By using a fine grid of γ values, we can find the optimal value γ∗ by
solving numerically the following optimization problem with the brute
force algorithm:

γ∗ = arg max
µ (w? (γ))− r

σ (w? (γ))
for γ ∈ [0, 2]

We deduce the tangency portfolio w∗ = w? (γ∗)
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Table 66: Impact of the minimum ESG score on the efficient frontier

S? −∞ 0 0.5
γ∗ 1.1613 0.8500 0.8500

w∗ (in %)

0.9360 9.7432 9.1481
2.8079 16.3317 19.0206
5.2830 31.0176 40.3500

24.3441 5.1414 0.0000
29.0609 11.6028 3.8248
37.5681 26.1633 27.6565

µ (w∗) (in %) 7.9201 5.6710 5.3541
σ (w∗) (in%) 28.3487 19.8979 19.2112
SR (w∗ | r) 0.2441 0.2347 0.2266
S (w∗) −2.0347 0.0000 0.5000
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Question (e)

Draw the relationship between the minimum ESG score S? and the Sharpe
ratio SR (w∗ | r) of the tangency portfolio.
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We perform the same analysis as previously for several values
S? ∈ [−2.5, 2.5]

We verify that the Sharpe ratio is a decreasing function of S?
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Figure 82: Relationship between the minimum ESG score S? and the Sharpe
ratio SR (w∗ | r) of the tangency portfolio
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Question (f)

We assume that the market portfolio wm corresponds to the tangency
portfolio when S? = 0.5.
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The market portfolio wm is then equal to:

wm =


9.15%

19.02%
40.35%

0.00%
3.82%

27.66%


We deduce that:

µ (wm) = 5.3541%

σ (wm) = 19.2112%

SR (wm | r) = 0.2266

S (wm) = 0.5
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Question (f).i

Compute the beta coefficient βi (wm) and the implied expected return
µ̃i (wm) for each asset. Deduce then the alpha return αi of asset i .
Comment on these results.
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We have:

βi (wm) =
e>i Σwm

σ2 (wm)

and:
µ̃i (wm) = r + βi (wm) (µ (wm)− r)

We deduce that the alpha return is equal to:

αi = µi − µ̃i (wm)

= (µi − r)− βi (wm) (µ (wm)− r)

We notice that αi < 0 for the first three assets and αi > 0 for the last
three assets, implying that:{

Si > 0⇒ αi < 0
Si < 0⇒ αi > 0
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Table 67: Computation of the alpha return due to the ESG constraint

Asset βi (wm)
µ̃i (wm) µ̃i (wm)− r αi

(in %) (in %) (in bps)
1 0.1660 1.7228 0.7228 −22.28
2 0.4321 2.8813 1.8813 −38.13
3 0.7518 4.2733 3.2733 −77.33
4 0.8494 4.6984 3.6984 80.16
5 1.2395 6.3967 5.3967 110.33
6 1.9955 9.6885 8.6885 131.15
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Question (f).ii

We consider the equally-weighted portfolio wew. Compute its beta
coefficient β (wew | wm), its implied expected return µ̃ (wew) and its alpha
return α (wew). Comment on these results.
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We have:

β (wew | wm) =
w>ewΣwm

σ2 (wm)
= 0.9057

and:

µ̃ (wew) = 1% + 0.9057× (5.3541%− 1%) = 4.9435%

We deduce that:

α (wew) = µ (wew)− µ̃ (wew) = 5.25%− 4.9435% = 30.65 bps

We verify that:

α (wew) =
6∑

i=1

wew,iαi =

∑6
i=1 αi

6
= 30.65 bps

The equally-weighted portfolio has a positive alpha because:

S (wew) = −0.33� S (wm) = 0.50
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Question 3

The objective of the investor is twice. He would like to manage the
tracking error risk of his portfolio with respect to the benchmark
b = (15%, 20%, 19%, 14%, 15%, 17%) and have a better ESG score than
the benchmark. Nevertheless, this investor faces a long-only constraint
because he cannot leverage his portfolio and he cannot also be short on
the assets.
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Question (a)

What is the ESG score of the benchmark?
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We have:

S (b) =
6∑

i=1

biSi = −0.1620
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Question (b)

We assume that the investor’s portfolio is
w = (10%, 10%, 30%, 20%, 20%, 10%). Compute the excess score
S (w | b), the expected excess return µ (w | b), the tracking error volatility
σ (w | b) and the information ratio IR (w | b). Comment on these results.

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 938 / 1420



CAPM and implied expected returns
Mean-variance optimization with ESG scores

Benchmark with ESG scores

We have:

S (w | b) = (w − b)> S = 0.0470

µ (w | b) = (w − b)> µ = −0.5 bps

σ (w | b) =

√
(w − b)>Σ (w − b) = 2.8423%

IR (w | b) =
µ (w | b)

σ (w | b)
= −0.0018

The portfolio w is not optimal since it improves the ESG score of the
benchmark, but its information ratio is negative. Nevertheless, the
expected excess return is close to zero (less than −1 bps).
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Question (c)

Same question with the portfolio w = (10%, 15%, 30%, 10%, 15%, 20%).
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We have: We have:

S (w | b) = (w − b)> S = 0.1305

µ (w | b) = (w − b)> µ = 29.5 bps

σ (w | b) =

√
(w − b)>Σ (w − b) = 2.4949%

IR (w | b) =
µ (w | b)

σ (w | b)
= 0.1182
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Question (d)

In the sequel, we assume that the investor has no return target. In fact,
the objective of the investor is to improve the ESG score of the benchmark
and control the tracking error volatility. We note γ the risk tolerance. Give
the corresponding esg-variance optimization problem.
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The optimization problem is:

w? = arg min
1

2
σ2 (w | b)− γS (w | b)

s.t.

{
1>6 w = 1
06 ≤ w ≤ 16
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Question (e)

Find the matrix form of the corresponding QP problem.
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The objective function is equal to:

(∗) =
1

2
σ2 (w | b)− γS (w | b)

=
1

2
(w − b)>Σ (w − b)− γ (w − b)> S

=
1

2
w>Σw − w> (Σb + γS) +

(
γb>S +

1

2
b>Σb

)
︸ ︷︷ ︸

does not depend on w

We deduce that Q = Σ, R = Σb + γS, A = 1>6 , B = 1, w− = 06

and w+ = 16
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Question (f)

Draw the esg-variance efficient frontier (σ (w? | b) ,S (w? | b)) where w?

is an optimal portfolio.
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We solve the QP problem for several values of γ ∈ [0, 5%] and obtain
Figure 83
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Figure 83: Efficient frontier of tracking a benchmark with an ESG score objective
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Question (g)

Find the optimal portfolio w? when we target a given tracking error
volatility σ?. The values of σ? are 0%, 1%, 2%, 3% and 4%.
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Using the QP numerical algorithm, we compte the optimal value
σ (w | b) for γ = 0 and γ = 5%

Then, we apply the bisection algorithm to find the optimal value γ?

such that:
σ (w | b) = σ?
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Table 68: Solution of the σ-problem

Target σ? 0 1% 2% 3% 4%
γ? (in bps) 0.000 4.338 8.677 13.015 18.524

w? (in %)

15.000 15.175 15.350 15.525 14.921
20.000 21.446 22.892 24.338 25.385
19.000 23.084 27.167 31.251 35.589
14.000 9.588 5.176 0.763 0.000
15.000 12.656 10.311 7.967 3.555
17.000 18.052 19.104 20.156 20.550

S (w? | b) 0.000 0.230 0.461 0.691 0.915
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Question (h)

Find the optimal portfolio w? when we target a given excess score S?.
The values of S? are 0, 0.1, 0.2, 0.3 and 0.4.
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Same method as previously with the following equation:

S (w | b) = S?

An alternative approach consists in solving the following optimization
problem:

w? = arg min
1

2
σ2 (w | b)

s.t.

 1>6 w = 1
S (w | b) = S?
06 ≤ w ≤ 16

We have: Q = Σ, R = Σb, A =

(
1>6
S>

)
, B =

(
1

S? + S>b

)
,

w− = 06 and w+ = 16
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Table 69: Solution of the S-problem

Target S? 0 0.1 0.2 0.3 0.4
γ? (in bps) 0.000 1.882 3.764 5.646 7.528

w? (in %)

15.000 15.076 15.152 15.228 15.304
20.000 20.627 21.255 21.882 22.509
19.000 20.772 22.544 24.315 26.087
14.000 12.086 10.171 8.257 6.343
15.000 13.983 12.966 11.949 10.932
17.000 17.456 17.913 18.369 18.825

σ (w? | b) (in %) 0.000 0.434 0.868 1.301 1.735
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Benchmark with ESG scores

Question (i)

We would like to compare the efficient frontier obtained in Question 3(f)
with the efficient frontier when we implement a best-in-class selection or a
worst-in-class exclusion. The selection strategy consists in investing only in
the best three ESG assets, while the exclusion strategy implies no exposure
on the worst ESG asset. Draw the three efficient frontiers. Comment on
these results.
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For the best-in-class strategy, the optimization problem becomes:

w? = arg min
1

2
σ2 (w | b)− γS (w | b)

s.t.

 1>6 w = 1
w4 = w5 = w6 = 0
06 ≤ w ≤ 16

The QP form is defined by Q = Σ, R = Σb + γS, A = 1>6 , B = 1,

w− = 06 and w+ =

(
13

03

)
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For the worst-in-class strategy, the optimization problem becomes:

w? = arg min
1

2
σ2 (w | b)− γS (w | b)

s.t.

 1>6 w = 1
w6 = 0
06 ≤ w ≤ 16

The QP form is defined by Q = Σ, R = Σb + γS, A = 1>6 , B = 1,

w− = 06 and w+ =

(
15

0

)
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Benchmark with ESG scores

The efficient frontiers are reported in Figure 84

The exclusion strategy has less impact than the selection strategy

The selection strategy implies a high tracking error risk
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Figure 84: Comparison of the efficient frontiers (ESG integration, best-in-class
selection and worst-in-class exclusion)
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Question (j)

Which minimum tracking error volatility must the investor accept to
implement the best-in-class selection strategy? Give the corresponding
optimal portfolio.
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We solve the first problem of Question 3(i) with γ = 0

We obtain:
σ (w | b) ≥ 11.17%

The lower bound σ (w? | b) = 11.17% corresponds to the following
optimal portfolio:

w? =


16.31%
34.17%
49.52%

0%
0%
0%
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Remark

The impact of ESG scores on optimized portfolios depends on their
relationship with expected returns, volatilities, correlations, beta
coefficients, etc. In the previous exercise, the results are explained because
the best-in-class assets are those with the lowest expected returns and
beta coefficients while the worst-in-class assets are those with the highest
expected returns and beta coefficients. For instance, we obtain a high
tracking error risk for the best-in-class selection strategy, because the
best-in-class assets have low volatilities and correlations with respect to
worst-in-class assets, implying that it is difficult to replicate these last
assets with the other assets.
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Quadratic programming

Definition

We have:

x? = arg min
1

2
x>Qx − x>R

s.t.

 Ax = B
Cx ≤ D
x− ≤ x ≤ x+

where x is a n × 1 vector, Q is a n × n matrix, R is a n × 1 vector, A is a
nA × n matrix, B is a nA × 1 vector, C is a nC × n matrix, D is a nC × 1
vector, and x− and x+ are two n × 1 vectors
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Quadratic form

A quadratic form is a polynomial with terms all of degree two

QF (x1, . . . , xn) =
n∑

i=1

n∑
j=1

ai,jxixj = x>Ax

Canonical form

QF (x1, . . . , xn) =
1

2

(
x>Ax + x>A>x

)
=

1

2
x>
(
A + A>

)
x =

1

2
x>Qx

Generalized quadratic form

QF (x ;Q,R, c) =
1

2
x>Qx − x>R + c
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Quadratic form
Main properties

1 ϕ · QF (w ;Q,R, c) = QF (w ;ϕQ, ϕR, ϕc)

2 QF (x ;Q1,R1, c1) +QF (x ;Q2,R2, c2) =
QF (x ;Q1 + Q2,R1 + R2, c1 + c2)

3 QF (x − y ;Q,R, c) = QF
(
x ;Q,R + Qy , 1

2y
>Qy + y>R + c

)
4 QF (x − y ;Q,R, c) = QF

(
y ;Q,Qx − R, 1

2x
>Qx − x>R + c

)
5

1

2

∑n
i=1 qix

2
i = QF (x ;D (q) , 0n, 0) where q = (q1, . . . , qn) is a n × 1

vector and D (q) = diag (q)

6
1

2

∑n
i=1 qi (xi − yi )

2 = QF
(
x ;D (q) ,D (q) y , 1

2y
>D (q) y

)
7

1

2

(∑n
i=1 qixi

)2
= QF (x ; T (q) , 0n, 0) where T (q) = qq>

8
1

2

(∑n
i=1 qi (xi − yi )

)2
= QF

(
x ; T (q) , T (q) y , 1

2y
>T (q) y

)
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Quadratic form
Main properties

We note ω = (ω1, . . . , ωn) where ωi = 1 {i ∈ Ω}

1
1

2

∑
i∈Ω qix

2
i = QF (x ;D (ω ◦ q) , 0n, 0)

2
1

2

∑
i∈Ω qi (xi − yi )

2 =

QF
(
x ;D (ω ◦ q) ,D (ω ◦ q) y ,

1

2
y>D (ω ◦ q) y

)
3

1

2

(∑
i∈Ω qixi

)2
= QF (x ; T (ω ◦ q) , 0n, 0)

4
1

2

(∑
i∈Ω qi (xi − yi )

)2
=

QF
(
x ; T (ω ◦ q) , T (ω ◦ q) y ,

1

2
y>T (ω ◦ q) y

)
5 D (ω ◦ q) = diag (ω ◦ q) = D (ω)D (q)

6 T (ω ◦ q) = (ω ◦ q) (ω ◦ q)> =
(
ωω>

)
◦ qq> = T (ω) ◦ T (q)
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Equity portfolio
Basic optimization problems

Mean-variance optimization

The long-only mean-variance optimization problem is given by:

w? = arg min
1

2
w>Σw − γw>µ

s.t.

{
1>n w = 1
0n ≤ w ≤ 1n

where:

• γ is the risk-tolerance coefficient

• the equality constraint is the budget constraint (
∑n

i=1 wi = 1)

• the bounds correspond to the no short-selling restriction (wi ≥ 0)

QP form

Q = Σ, R = γµ, A = 1>n , B = 1, w− = 0n and w+ = 1
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Equity portfolio
Basic optimization problems

Tracking error optimization

The tracking error optimization problem is defined as:

w? = arg min
1

2
w>Σw − w> (γµ+ Σb)

s.t.

{
1>n w = 1
0n ≤ w ≤ 1n

QP form

Q = Σ, R = γµ+ Σb , A = 1>n , B = 1, w− = 0n and w+ = 1

⇒ Portfolio replication: R = Σb
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Specification of the constraints
Sector weight constraint

We have
s−j ≤

∑
i∈Sectorj

wi ≤ s+
j

sss j is the n × 1 sector-mapping vector: sss i,j = 1 {i ∈ Sectorj}
We notice that: ∑

i∈Sectorj

wi = sss>j w

We deduce that:

s−j ≤
∑

i∈Sectorj

wi ≤ s+
j ⇔

{
s−j ≤ sss>j w

sss>j w ≤ s+
j

⇔
{
−sss>j w ≤ −s−j
sss>j w ≤ s+

j

QP form (
−sss>j
sss>j

)
︸ ︷︷ ︸

C

w ≤
(
−s−j
s+

j

)
︸ ︷︷ ︸

D
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Specification of the constraints
Score constraint

General constraint:

n∑
i=1

wiSi ≥ S? ⇔ −S>w ≤ −S?

QP form

C = −S>
D = −S?
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Specification of the constraints
Score constraint

Sector-specific constraint:

∑
i∈Sectorj

wiSi ≥ S?j ⇔
n∑

i=1

1 {i ∈ Sectorj} · wiSi ≥ S?j

⇔
n∑

i=1

sss i,jwiSi ≥ S?j

⇔
n∑

i=1

wi · (sss i,jSi ) ≥ S?j

⇔ (sss j ◦ S)> w ≥ S?j

QP form

C = − (sss j ◦ S)>

D = −S?j
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Equity portfolios

Example #1

The capitalization-weighted equity index is composed of 8 stocks

The weights are equal to 23%, 19%, 17%, 13%, 9%, 8%, 6% and 5%

The ESG score, carbon intensity and sector of the eight stocks are the
following:

Stock #1 #2 #3 #4 #5 #6 #7 #8
S −1.20 0.80 2.75 1.60 −2.75 −1.30 0.90 −1.70
CI 125 75 254 822 109 17 341 741

Sector 1 1 2 2 1 2 1 2
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Equity portfolios

Example #1 (Cont’d)

The stock volatilities are equal to 22%, 20%, 25%, 18%, 35%, 23%,
13% and 29%

The correlation matrix is given by:

C =



100%
80% 100%
70% 75% 100%
60% 65% 80% 100%
70% 50% 70% 85% 100%
50% 60% 70% 80% 60% 100%
70% 50% 70% 75% 80% 50% 100%
60% 65% 70% 75% 65% 70% 80% 100%
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Equity portfolios
QP problem

We have:

w? = arg min
1

2
w>Qw − w>R

s.t.

 Aw = B
Cw ≤ D
w− ≤ w ≤ w+
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Equity portfolios
Objective function

Using Σi,j = Ci,jσiσj , we obtain:

Q = Σ = 10−4×

484.00 352.00 385.00 237.60 539.00 253.00 200.20 382.80
352.00 400.00 375.00 234.00 350.00 276.00 130.00 377.00
385.00 375.00 625.00 360.00 612.50 402.50 227.50 507.50
237.60 234.00 360.00 324.00 535.50 331.20 175.50 391.50
539.00 350.00 612.50 535.50 1225.00 483.00 364.00 659.75
253.00 276.00 402.50 331.20 483.00 529.00 149.50 466.90
200.20 130.00 227.50 175.50 364.00 149.50 169.00 301.60
382.80 377.00 507.50 391.50 659.75 466.90 301.60 841.00
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Equity portfolios
Objective function

We have:

R = Σb =



3.74
3.31
4.39
3.07
5.68
3.40
2.02
4.54


× 10−2
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Equity portfolios
Constraint specification (bounds)

The portfolio is long-only

QP form

w− = 08

w+ = 18
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Equity portfolios
Constraint specification (equality)

The budget constraint
∑8

i=1 wi = 1 ⇒ a first linear equation
A0w = B0

QP form

A0 = 1>8
B0 = 1
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Equity portfolios
Constraint specification (equality)

We can impose the sector neutrality of the portfolio meaning that:∑
i∈Sectorj

wi =
∑

i∈Sectorj

bi

The sector neutrality constraint can be written as:(
A1

A2

)
w =

(
B1

B2

)
QP form

A1 = sss>1 =
(

1 1 0 0 1 0 1 0
)

A2 = sss>2 =
(

0 0 1 1 0 1 0 1
)

B1 = sss>1 b =
∑

i∈Sector1
bi

B2 = sss>2 b =
∑

i∈Sector2
bi
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Equity portfolios
Constraint specification (inequality)

We can impose a relative reduction of the benchmark carbon intensity:

CI (w) ≤ (1−R)CI (b)⇔ C1w ≤ D1

QP form

C1 = CI> (because CI (w) = CI>w)
D1 = (1−R)CI (b)

We can impose an absolute increase of the benchmark ESG score:

S (w) ≥ S (b) + ∆S?

Since S (w) = S>w , we deduce that C2w ≤ D2

QP form

C2 = −S>
D2 = − (S (b) + ∆S?)
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Equity portfolios
Combination of constraints

Set of Carbon ESG Sector
A B C D

constraints intensity score neutrality
#1 X A0 B0 C1 D1

#2 X A0 B0 C2 D2

#3 X X A0 B0

[
C1

C2

] [
D1

D2

]
#4 X X X

 A0

A1

A2

  B0

B1

B2

 [
C1

C2

] [
D1

D2

]
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Bond portfolios

Equity portfolios
Results

Table 70: R = 30% and ∆S? = 0.50 (Example #1)

Benchmark Set #1 Set #2 Set #3 Set #4

Weights (in %)

w?
1 23.00 18.17 25.03 8.64 12.04

w?
2 19.00 24.25 14.25 29.27 23.76

w?
3 17.00 16.92 21.95 26.80 30.55

w?
4 13.00 2.70 27.30 1.48 2.25

w?
5 9.00 12.31 3.72 10.63 8.51

w?
6 8.00 11.23 1.34 6.30 10.20

w?
7 6.00 11.28 1.68 16.87 12.69

w?
8 5.00 3.15 4.74 0.00 0.00

Statistics

σ (w? | b) (in %) 0.00 0.50 1.18 1.90 2.12
CI (w?) 261.72 183.20 367.25 183.20 183.20
R (w? | b) (in %) 30.00 −40.32 30.00 30.00
S (w?) 0.17 0.05 0.67 0.67 0.67
S (w?)− S (b) −0.12 0.50 0.50 0.50
w? (Sector1) (in %) 57.00 66.00 44.67 65.41 57.00
w? (Sector2) (in %) 43.00 34.00 55.33 34.59 43.00
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Equity portfolios
Bond portfolios

Equity portfolios
Dealing with constraints on relative weights

The carbon intensity of the jth sector within the portfolio w is:

CI (w ;Sectorj ) =
∑

i∈Sectorj

w̃iCI i

where w̃i is the normalized weight in the sector bucket:

w̃i =
wi∑

k∈Sectorj
wk

Another expression of CI (w ;Sectorj ) is:

CI (w ;Sectorj ) =

∑
i∈Sectorj

wiCI i∑
i∈Sectorj

wi
=

(sss j ◦ CI)> w

sss>j w
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Equity portfolios
Dealing with constraints on relative weights

If we consider the constraint CI (w ;Sectorj ) ≤ CI?j , we obtain:

(∗) ⇔ CI (w ;Sectorj ) ≤ CI?j
⇔ (sss j ◦ CI)> w ≤ CI?j

(
sss>j w

)
⇔

(
(sss j ◦ CI)− CI?j sss j

)>
w ≤ 0

⇔
(
sss j ◦

(
CI − CI?j

))>
w ≤ 0

QP form

C =
(
sss j ◦

(
CI − CI?j

))>
D = 0
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Equity portfolios
Dealing with constraints on relative weights

Example #2

Example #1

We would like to reduce the carbon footprint of the benchmark by
30%

We impose the sector neutrality
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Equity portfolios
Dealing with constraints on relative weights

QP form

A =

 1 1 1 1 1 1 1 1
1 1 0 0 1 0 1 0
0 0 1 1 0 1 0 1


B =

 100%
57%
43%


C =

(
125 75 254 822 109 17 341 741

)
D = 183.2040
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Equity portfolios
Dealing with constraints on relative weights

The optimal solution is:

w? = (21.54%, 18.50%, 21.15%, 3.31%, 10.02%, 15.26%, 6.94%, 3.27%)

σ (w? | b) = 112 bps

CI (w?) = 183.20 vs. CI (b) = 261.72

BUT{
CI (w?;Sector1) = 132.25
CI (w?;Sector2) = 250.74

versus

{
CI (b;Sector1) = 128.54
CI (b;Sector2) = 438.26

The global reduction of 30% is explained by:

an increase of 2.89% of the carbon footprint for the first sector

a decrease of 42.79% of the carbon footprint for the second sector
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Equity portfolios
Dealing with constraints on relative weights

We impose R1 = 20%

QP form

C =

(
CI>

(sss1 ◦ (CI − (1−R1)CI (b;Sector1)))>

)
=(

125 75 254 822 109 17 341 741
22.1649 −27.8351 0 0 6.1649 0 238.1649 0

)
D =

(
183.2040

0

)
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Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Equity portfolios
Dealing with constraints on relative weights

Solving the new QP problem gives the following optimal portfolio:

w? = (22.70%, 22.67%, 19.23%, 5.67%, 11.39%, 14.50%, 0.24%, 3.61%)

σ (w? | b) = 144 bps

CI (w?) = 183.20

CI (w?;Sector1) = 102.84 (reduction of 20%)
CI (w?;Sector2) = 289.74 (reduction of 33.89%)
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Risk measure of a bond portfolio

We consider a zero-coupon bond, whose price and maturity date are
B (t,T ) and T :

Bt (t,T ) = e−(r(t)+s(t))(T−t)+L(t)

where r (t), s (t) and L (t) are the interest rate, the credit spread and
the liquidity premium

We deduce that:

d lnB (t,T ) = − (T − t) dr (t)− (T − t) ds (t) + dL (t)

= −D dr (t)− (D s (t))
ds (t)

s (t)
+ dL (t)

= −D dr (t)−DTS (t)
ds (t)

s (t)
+ dL (t)

where:

D = T − t is the remaining maturity (or duration)
DTS (t) is the duration-times-spread factor
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Risk measure of a bond portfolio

If we assume that r (t), s (t) and L (t) are independent, the risk of
the defaultable bond is equal to:

σ2 (d lnB (t,T )) = D2σ2 (dr (t))+DTS (t)2
σ2

(
ds (t)

s (t)

)
+σ2 (dL (t))

Three risk components

σ2 (d lnB (t,T )) = D2σ2
r + DTS (t)2

σ2
s + σ2

L

=⇒ The historical volatility of a bond price is not a relevant risk
measure
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Bond portfolio optimization
Without a benchmark

Duration risk:

MD (w) =
n∑

i=1

wi MDi

DTS risk:

DTS (w) =
n∑

i=1

wi DTSi

Clustering approach = generalization of the sector approach, e.g.
(EUR, Financials, AAA to A−, 1Y-3Y)

We have:
MDj (w) =

∑
i∈Sectorj

wi MDi

and:
DTSj (w) =

∑
i∈Sectorj

wi DTSi
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Bond portfolio optimization
Without a benchmark

Objective function without a benchmark

We have:

w? = arg min
ϕMD

2

nSector∑
j=1

(
MDj (w)−MD?j

)2
+

ϕDTS

2

nSector∑
j=1

(
DTSj (w)−DTS?j

)2 − γ
n∑

i=1

wiCi

where:

ϕMD ≥ 0 and ϕDTS ≥ 0 indicate the relative weight of each risk
component

Ci is the expected carry of bond i and γ is the risk-tolerance
coefficient
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Bond portfolio optimization
Without a benchmark

QP form

w? = arg minQF (w ;Q,R, c)

s.t.

{
1>n w = 1
0n ≤ w ≤ 1n

where QF (w ;Q,R, c) is the quadratic form of the objective function
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Bond portfolio optimization
Without a benchmark

We have:

1

2

(
MDj (w)−MD?j

)2
=

1

2

(∑
i∈Sectorj

wi MDi −MD?j

)2

=
1

2

(
n∑

i=1

sss i,jwi MDi −MD?j

)2

=
1

2

(
n∑

i=1

sss i,j MDi wi

)2

− w> (sss j ◦MD)MD?j +
1

2
MD?

2

j

= QF
(
w ; T (sss j ◦MD) , (sss j ◦MD)MD?j ,

1

2
MD?

2

j

)
where MD = (MD1, . . . ,MDn) is the vector of modified durations and
T (u) = uu>
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Bond portfolio optimization
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We deduce that:

1

2

nSector∑
j=1

(
MDj (w)−MD?j

)2
= QF (w ;QMD,RMD, cMD)

where: 

QMD =

nSector∑
j=1

T (sss j ◦MD)

RMD =

nSector∑
j=1

(sss j ◦MD)MD?j

cMD =
1

2

nSector∑
j=1

MD?
2

j

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 998 / 1420



Portfolio optimization in practice
Portfolio decarbonization

Net-zero investing

Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Bond portfolio optimization
Without a benchmark

In a similar way, we have:

1

2

nSector∑
j=1

(
DTSj (w)−DTS?j

)2
= QF (w ;QDTS,RDTS, cDTS)

where: 

QDTS =

nSector∑
j=1

T (sss j ◦DTS)

RMD =

nSector∑
j=1

(sss j ◦DTS)DTS?j

cDTS =
1

2

nSector∑
j=1

DTS?
2

j
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We have:

−γ
n∑

i=1

wiCi = γQF (w ; 0n,n, C, 0) = QF (w ; 0n,n, γC, 0)

where C = (C1, . . . , Cn) is the vector of expected carry values
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Quadratic form of the objective function

The function to optimize is:

QF (w ;Q,R, c) = ϕMDQF (w ;QMD,RMD, cMD) +

ϕDTSQF (w ;QDTS,RDTS, cDTS) +

QF (w ; 0n,n, γC, 0)

where:  Q = ϕMDQMD + ϕDTSQDTS

R = γC + ϕMDRMD + ϕDTSRDTS

c = ϕMDcMD + ϕDTScDTS
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The MD- and DTS-based tracking error variances are equal to:

RMD (w | b) = σ2
MD (w | b) =

nSector∑
j=1

(∑
i∈Sectorj

(wi − bi )MDi

)2

and:

RDTS (w | b) = σ2
DTS (w | b) =

nSector∑
j=1

(∑
i∈Sectorj

(wi − bi )DTSi

)2

This means that MD?j =
∑

i∈Sectorj
bi MDi and

DTS?j =
∑

i∈Sectorj
bi DTSi .

The active share risk is defined as:

RAS (w | b) = σ2
AS (w | b) =

n∑
i=1

(wi − bi )
2
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Objective function with a benchmark

The optimization problem becomes:

w? = arg min
1

2
R (w | b)− γ

n∑
i=1

(wi − bi ) Ci

s.t.

{
1>n w = 1
0n ≤ w ≤ 1n

where the synthetic risk measure is equal to:

R (w | b) = ϕASRAS (w | b) + ϕMDRMD (w | b) + ϕDTSRDTS (w | b)
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We can show that

w? = arg minQF (w ;Q (b) ,R (b) , c (b))

s.t.

{
1>n w = 1
0n ≤ w ≤ 1n

where: Q (b) = ϕASQAS (b) + ϕMDQMD (b) + ϕDTSQDTS (b)
R (b) = γC + ϕASRAS (b) + ϕMDRMD (b) + ϕDTSRDTS (b)
c (b) = γb>C + ϕAScAS (b) + ϕMDcMD (b) + ϕDTScDTS (b)

QAS (b) = In, RAS (b) = b, cAS (b) =
1

2
b>b, QMD (b) = QMD,

RMD (b) = QMDb = RMD, cMD (b) =
1

2
b>QMDb = cMD,

QDTS (b) = QDTS, RDTS (b) = QDTSb = RDTS, and

cDTS (b) =
1

2
b>QDTSb = cDTS
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Example #3

We consider an investment universe of 9 corporate bonds with the
following characteristicsa:

Issuer #1 #2 #3 #4 #5 #6 #7 #8 #9
bi 21 19 16 12 11 8 6 4 3
CI i 111 52 369 157 18 415 17 253 900
MDi 3.16 6.48 3.54 9.23 6.40 2.30 8.12 7.96 5.48
DTSi 107 255 75 996 289 45 620 285 125
Sector 1 1 1 2 2 2 3 3 3

We impose that 0.25× bi ≤ wi ≤ 4× bi . We have ϕAS = 100, ϕMD = 25
and ϕDTS = 0.001.

aThe units are: bi in %, CI i in tCO2e/$ mn, MDi in years and DTSi in bps
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The optimization problem is defined as:

w? (R) = arg min
1

2
w>Q (b)w − w>R (b)

s.t.


1>9 w = 1

CI>w ≤ (1−R)CI (b)
b

4
≤ w ≤ 4b

where R is the reduction rate
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Since the bonds are ordering by sectors, Q (b) is a block diagonal matrix:

Q (b) =

 Q1 03×3 03×3

03×3 Q2 03×3

03×3 03×3 Q3

× 103

where:

Q1 =

 0.3611 0.5392 0.2877
0.5392 1.2148 0.5926
0.2877 0.5926 0.4189

 , Q2 =

 3.2218 1.7646 0.5755
1.7646 1.2075 0.3810
0.5755 0.3810 0.2343


and:

Q3 =

 2.1328 1.7926 1.1899
1.7926 1.7653 1.1261
1.1899 1.1261 0.8664


R (b) = (2.243, 4.389, 2.400, 6.268, 3.751, 1.297, 2.354, 2.120, 1.424) ×102
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Table 71: Weights in % of optimized bond portfolios (Example #3)

Portfolio #1 #2 #3 #4 #5 #6 #7 #8 #9
b 21.00 19.00 16.00 12.00 11.00 8.00 6.00 4.00 3.00
w? (10%) 21.92 19.01 15.53 11.72 11.68 7.82 6.68 4.71 0.94
w? (30%) 26.29 20.24 10.90 10.24 16.13 3.74 9.21 2.50 0.75
w? (50%) 27.48 23.97 4.00 6.94 22.70 2.00 11.15 1.00 0.75

Table 72: Risk statistics of optimized bond portfolios (Example #3)

Portfolio ASSector MD (w) DTS (w) σAS (w | b) σMD (w | b) σDTS (w | b) CI (w)
(in %) (in years) (in bps) (in %) (in years) (in bps) gCO2e/$

b 0.00 5.43 290.18 0.00 0.00 0.00 184.39
w? (10%) 3.00 5.45 293.53 2.62 0.02 3.80 165.95
w? (30%) 14.87 5.58 303.36 10.98 0.10 14.49 129.07
w? (50%) 28.31 5.73 302.14 21.21 0.19 30.11 92.19
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Figure 85: Relationship between the reduction rate and the tracking risk
(Example #3)
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Advanced optimization problems
Large bond universe

QP: n ≤ 5 000 (the dimension of Q is n × n)

LP: n� 106

Some figures as of 31/01/2023

MSCI World Index (DM): n = 1 508 stocks
MSCI World IMI (DM): n = 5 942 stocks
MSCI World AC (DM + EM): n = 2 882 stocks
MSCI World AC IMI (DM + EM): n = 7 928 stocks

Bloomberg Global Aggregate Total Return Index: n = 28 799 securities
ICE BOFA Global Broad Market Index: n = 33 575 securities

Trick: L2-norm risk measures ⇒ L1-norm risk measures
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We replace the synthetic risk measure by:

D (w | b) = ϕ′ASDAS (w | b) + ϕ′MDDMD (w | b) + ϕ′DTSDDTS (w | b)

where:

DAS (w | b) =
1

2

n∑
i=1

|wi − bi |

DMD (w | b) =

nSector∑
j=1

∣∣∣∣∑i∈Sectorj

(wi − bi )MDi

∣∣∣∣
DDTS (w | b) =

nSector∑
j=1

∣∣∣∣∑i∈Sectorj

(wi − bi )DTSi

∣∣∣∣
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The optimization problem becomes:

w? = arg minD (w | b)− γ
n∑

i=1

(wi − bi ) Ci

s.t.

{
1>n w = 1
0n ≤ w ≤ 1n
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Absolute value trick

If ci ≥ 0, then:

min
n∑

i=1

ci |fi (x)|+ g (x)⇔


min

n∑
i=1

ciτi + g (x)

s.t.

{
|fi (x)| ≤ τi

τi ≥ 0

The problem becomes linear:

|fi (x)| ≤ τi ⇔ −τi ≤ fi (x) ∧ fi (x) ≤ τi
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Linear programming

The standard formulation of a linear programming problem is:

x? = arg min c>x

s.t.

 Ax = b
Cx ≤ D
x− ≤ x ≤ x+

where x is a n × 1 vector, c is a n × 1 vector, A is a nA × n matrix, B is a
nA × 1 vector, C is a nC × n matrix, D is a nC × 1 vector, and x− and x+

are two n × 1 vectors.
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We have:

w? = arg min
1

2
ϕ′AS

n∑
i=1

τi,w + ϕ′MD

nSector∑
j=1

τj,MD + ϕ′DTS

nSector∑
j=1

τj,DTS −

γ
n∑

i=1

(wi − bi ) Ci

s.t.



1>n w = 1
0n ≤ w ≤ 1n

|wi − bi | ≤ τi,w∣∣∣∑i∈Sectorj
(wi − bi )MDi

∣∣∣ ≤ τj,MD∣∣∣∑i∈Sectorj
(wi − bi )DTSi

∣∣∣ ≤ τj,DTS

τi,w ≥ 0, τj,MD ≥ 0, τj,DTS ≥ 0
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|wi − bi | ≤ τi,w ⇔
{

wi − τi,w ≤ bi

−wi − τi,w ≤ −bi
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(∗) ⇔
∣∣∣∣∑i∈Sectorj

(wi − bi )MDi

∣∣∣∣ ≤ τj,MD

⇔ −τj,MD ≤
∑

i∈Sectorj

(wi − bi )MDi ≤ τj,MD

⇔ −τj,MD +
∑

i∈Sectorj

bi MDi ≤
∑

i∈Sectorj

wi MDi ≤ τj,MD +∑
i∈Sectorj

bi MDi

⇔ −τj,MD + MD?j ≤ (sss j ◦MD)> w ≤ τj,MD + MD?j

⇔

{
(sss j ◦MD)> w − τj,MD ≤ MD?j
− (sss j ◦MD)> w − τj,MD ≤ −MD?j
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∣∣∣∣∑i∈Sectorj

(wi − bi )DTSi

∣∣∣∣ ≤ τj,DTS ⇔

{
(sss j ◦DTS)> w − τj,DTS ≤ DTS?j
− (sss j ◦DTS)> w − τj,DTS ≤ −DTS?j
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x is a vector of dimension nx = 2× (n + nSector ):

x =


w
τw

τMD

τDTS
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The vector c is equal to:

c =


−γC

1

2
ϕ′AS1n

ϕ′MD1nSector

ϕ′DTS1nSector



Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 1020 / 1420



Portfolio optimization in practice
Portfolio decarbonization

Net-zero investing

Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Advanced optimization problems
LP formulation

The linear equality constraint Ax = B is defined by:

A =
(

1>n 0>n 0>nSector
0>nSector

)
and:

B = 1
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The linear inequality constraint Cx ≤ D is defined by:

C =


In −In 0n,nSector 0n,nSector

−In −In 0n,nSector 0n,nSector

CMD 0nSector ,n −InSector 0nSector ,nSector

−CMD 0nSector ,n −InSector 0nSector ,nSector

CDTS 0nSector ,n 0nSector ,nSector −InSector

−CDTS 0nSector ,n 0nSector ,nSector −InSector


end:

D =


b
−b
MD?

−MD?

DTS?

−DTS?
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CMD and CDTS are two nSector × n matrices, whose elements are:

(CMD)j,i = sss i,j MDi

and:
(CDTS)j,i = sss i,j DTSi

We have:
MD? =

(
MD?1 , . . . ,MD?nSector

)
and

DTS? =
(
DTS?1 , . . . ,DTS?nSector

)
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The bounds are:
x− = 0nx

and:
x+ =∞ · 1nx

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 1024 / 1420



Portfolio optimization in practice
Portfolio decarbonization

Net-zero investing

Quadratic programming (QP) problem
Equity portfolios
Bond portfolios

Advanced optimization problems
LP formulation

Additional constraints:{
A′w = B ′

C ′w ≤ D ′
⇔
{ (

A′ 0nA,nx−n

)
x = B ′(

C ′ 0nA,nx−n

)
x ≤ D ′
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Toy example

We consider a toy example with four corporate bonds:

Issuer #1 #2 #3 #4
bi (in %) 35 15 20 30
CI i (in tCO2e/$ mn) 117 284 162.5 359
MDi (in years) 3.0 5.0 2.0 6.0
DTSi (in bps) 100 150 200 250
Sector 1 1 2 2

We would like to reduce the carbon footprint by 20%, and we set
ϕ′AS = 100, ϕ′MD = 25 and ϕ′DTS = 1
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We have n = 4, nSector = 2 and:

x = (w1,w2,w3,w4︸ ︷︷ ︸
w

, τw1 , τw2 , τw3 , τw4︸ ︷︷ ︸
τw

, τMD1 , τMD2︸ ︷︷ ︸
τMD

, τDTS1 , τDTS2︸ ︷︷ ︸
τDTS

)

Since the vector C is equal to 04, we obtain:

c = (0, 0, 0, 0, 50, 50, 50, 50, 25, 25, 1, 1)
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The equality system Ax = B is defined by:

A =
(

1 1 1 1 0 0 0 0 0 0 0 0
)

and:
B = 1
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The inequality system Cx ≤ D is given by:

C =



I4 −I4 04,4

−I4 −I4 04,4

3 5 0 0

04,4

−1 0 0 0
0 0 2 6 0 −1 0 0
−3 −5 0 0 −1 0 0 0

0 0 −2 −6 0 −1 0 0
100 150 0 0

04,4

0 0 −1 0
0 0 200 250 0 0 0 −1

−100 −150 0 0 0 0 −1 0
0 0 −200 −250 0 0 0 −1

117 284 162.5 359 01,4 0 0 0 0


and:

D = (0.35, 0.15, 0.2, 0.3, −0.35,−0.15,−0.2,−0.3, . . .

1.8, 2.2,−1.8,−2.2, 57.5, 115,−57.5,−115, 179)
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The last row of Cx ≤ D corresponds to the carbon footprint
constraint

We have:
CI (b) = 223.75 tCO2e/$ mn

and:

(1−R)CI (b) = 0.80× 223.75 = 179.00 tCO2e/$ mn
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We solve the LP program, and we obtain the following solution:

w? = (47.34%, 0%, 33.3%, 19.36%)

τ?w = (12.34%, 15%, 13.3%, 10.64%)

τ?MD = (0.3798, 0.3725)

τ?DTS = (10.1604, 0)
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Interpretation of τ?w :

w? ± τ?w =


47.34%

0.00%
33.30%
19.36%



−
+
−
+




12.34%
15.00%
13.30%
10.64%

 =


35%
15%
20%
30%

 = b

Interpretation of τ?MD:( ∑
i∈Sector1

w?
i MDi∑

i∈Sector2
w?

i MDi

)
± τ?MD =

(
1.42
1.83

)(
+
+

)(
0.38
0.37

)
=

(
1.80
2.20

)
=

(
MD?1
MD?2

)
Interpretation of τ?DTS:( ∑

i∈Sector1
w?

i DTSi∑
i∈Sector2

w?
i DTSi

)
± τ?DTS =

(
47.34

115.00

)(
+
+

)(
10.16

0.00

)
=

(
57.50

115.00

)
=

(
DTS?1
DTS?2

)
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Example #4 (Example #3 again)

We consider an investment universe of 9 corporate bonds with the
following characteristicsa:

Issuer #1 #2 #3 #4 #5 #6 #7 #8 #9
bi 21 19 16 12 11 8 6 4 3
CI i 111 52 369 157 18 415 17 253 900
MDi 3.16 6.48 3.54 9.23 6.40 2.30 8.12 7.96 5.48
DTSi 107 255 75 996 289 45 620 285 125
Sector 1 1 1 2 2 2 3 3 3

We impose that 0.25× bi ≤ wi ≤ 4× bi and assume that
ϕ′AS = ϕAS = 100, ϕ′MD = ϕMD = 25 and ϕ′DTS = ϕ′DTS = 0.001

aThe units are: bi in %, CI i in tCO2e/$ mn, MDi in years and DTSi in bps
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Table 73: Weights in % of optimized bond portfolios (Example #4)

Portfolio #1 #2 #3 #4 #5 #6 #7 #8 #9
b 21.00 19.00 16.00 12.00 11.00 8.00 6.00 4.00 3.00
w? (10%) 21.70 19.00 16.00 12.00 11.00 8.00 7.46 4.00 0.84
w? (30%) 34.44 19.00 4.00 11.65 11.98 6.65 7.52 4.00 0.75
w? (50%) 33.69 19.37 4.00 3.91 24.82 2.00 10.46 1.00 0.75

Table 74: Risk statistics of optimized bond portfolios (Example #4)

Portfolio ASSector MD (w) DTS (w) σAS (w | b) σMD (w | b) σDTS (w | b) CI (w)
(in %) (in years) (in bps) (in %) (in years) (in bps) gCO2e/$

b 0.00 5.43 290.18 0.00 0.00 0.00 184.39
w? (10%) 2.16 5.45 297.28 2.16 0.02 7.10 165.95
w? (30%) 15.95 5.43 300.96 15.95 0.00 13.20 129.07
w? (50%) 31.34 5.43 268.66 31.34 0.00 65.12 92.19
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Threshold approach

The optimization problem is:

w? = arg min
1

2
(w − b)>Σ (w − b)

s.t.


1>n w = 1
w ∈ Ω
0n ≤ w ≤ 1n

CI (w) ≤ (1−R)CI (b)
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Order-statistic approach

• CI i :n is the order statistics of (CI1, . . . ,CIn):

minCI i = CI1:n ≤ CI2:n ≤ · · · ≤ CI i :n ≤ · · · ≤ CIn:n = maxCI i

• The carbon intensity bound CI(m,n) is defined as:

CI(m,n) = CIn−m+1:n

where CIn−m+1:n is the (n −m + 1)-th order statistic of
(CI1, . . . ,CIn)

• Exclusion process:

CI i ≥ CI(m,n) ⇒ wi = 0
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Order-statistic approach (Cont’d)

The optimization problem is:

w? = arg min
1

2
(w − b)>Σ (w − b)

s.t.


1>n w = 1
w ∈ Ω

0n ≤ w ≤ 1
{
CI < CI(m,n)

}

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 1037 / 1420



Portfolio optimization in practice
Portfolio decarbonization

Net-zero investing

Equity and bond portfolios
Sector-specific constraints
Empirical results

Equity portfolios

Naive approach

We re-weight the remaining assets:

w?
i =

1
{
CI i < CI(m,n)

}
· bi∑n

k=1 1
{
CIk < CI(m,n)

}
· bk
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Example #5

We consider a capitalization-weighted equity index, which is composed of
eight stocks. Their weights are equal to 20%, 19%, 17%, 13%, 12%, 8%,
6% and 5%. The carbon intensities (expressed in tCO2e/$ mn) are
respectively equal to 100.5, 97.2, 250.4, 352.3, 27.1, 54.2, 78.6 and 426.7.
To evaluate the risk of the portfolio, we use the market one-factor model:
the beta βi of each stock is equal to 0.30, 1.80, 0.85, 0.83, 1.47, 0.94,
1.67 and 1.08, the idiosyncratic volatilities σ̃i are respectively equal to
10%, 5%, 6%, 12%, 15%, 4%, 8% and 7%, and the estimated market
volatility σm is 18%.
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The covariance matrix is:

Σ = ββ>σ2
m + D

where:

1 β is the vector of beta coefficients

2 σ2
m is the variance of the market portfolio

3 D = diag
(
σ̃2

1 , . . . , σ̃
2
n

)
is the diagonal matrix of idiosyncratic variances
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Table 75: Optimal decarbonization portfolios (Example #5, threshold approach)

R 0 10 20 30 40 50 CI i

w?
1 20.00 20.54 21.14 21.86 22.58 22.96 100.5

w?
2 19.00 19.33 19.29 18.70 18.11 17.23 97.2

w?
3 17.00 15.67 12.91 8.06 3.22 0.00 250.4

w?
4 13.00 12.28 10.95 8.74 6.53 3.36 352.3

w?
5 12.00 12.26 12.60 13.07 13.53 14.08 27.1

w?
6 8.00 11.71 16.42 22.57 28.73 34.77 54.2

w?
7 6.00 6.36 6.69 7.00 7.30 7.59 78.6

w?
8 5.00 1.86 0.00 0.00 0.00 0.00 426.7

σ (w? | b) 0.00 30.01 61.90 104.10 149.65 196.87
CI (w) 160.57 144.52 128.46 112.40 96.34 80.29
R (w | b) 0.00 10.00 20.00 30.00 40.00 50.00

The reduction rate and the weights are expressed in % whereas the tracking error

volatility is measured in bps
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Table 76: Optimal decarbonization portfolios (Example #5, order-statistic
approach)

m 0 1 2 3 4 5 6 7 CI i

w?
1 20.00 20.40 22.35 26.46 0.00 0.00 0.00 0.00 100.5

w?
2 19.00 19.90 20.07 20.83 7.57 0.00 0.00 0.00 97.2

w?
3 17.00 17.94 21.41 0.00 0.00 0.00 0.00 0.00 250.4

w?
4 13.00 13.24 0.00 0.00 0.00 0.00 0.00 0.00 352.3

w?
5 12.00 12.12 12.32 12.79 13.04 14.26 18.78 100.00 27.1

w?
6 8.00 10.04 17.14 32.38 74.66 75.12 81.22 0.00 54.2

w?
7 6.00 6.37 6.70 7.53 4.73 10.62 0.00 0.00 78.6

w?
8 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 426.7

σ (w? | b) 0.00 0.37 1.68 2.25 3.98 4.04 4.30 15.41
CI (w) 160.57 145.12 113.48 73.78 55.08 52.93 49.11 27.10
R (w | b) 0.00 9.62 29.33 54.05 65.70 67.04 69.42 83.12

The reduction rate, the weights and the tracking error volatility are expressed in %
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Table 77: Optimal decarbonization portfolios (Example #5, naive approach)

m 0 1 2 3 4 5 6 7 CI i

w?
1 20.00 21.05 24.39 30.77 0.00 0.00 0.00 0.00 100.5

w?
2 19.00 20.00 23.17 29.23 42.22 0.00 0.00 0.00 97.2

w?
3 17.00 17.89 20.73 0.00 0.00 0.00 0.00 0.00 250.4

w?
4 13.00 13.68 0.00 0.00 0.00 0.00 0.00 0.00 352.3

w?
5 12.00 12.63 14.63 18.46 26.67 46.15 60.00 100.00 27.1

w?
6 8.00 8.42 9.76 12.31 17.78 30.77 40.00 0.00 54.2

w?
7 6.00 6.32 7.32 9.23 13.33 23.08 0.00 0.00 78.6

w?
8 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 426.7

σ (w? | b) 0.00 0.39 1.85 3.04 9.46 8.08 8.65 15.41
CI (w) 160.57 146.57 113.95 78.26 68.38 47.32 37.94 27.10
R (w | b) 0.00 8.72 29.04 51.26 57.41 70.53 76.37 83.12

The reduction rate, the weights and the tracking error volatility are expressed in %.
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Figure 86: Efficient decarbonization frontier (Example #5)
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Figure 87: Efficient decarbonization frontier of the interpolated naive approach
(Example #5)
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Example #6

We consider a debt-weighted bond index, which is composed of eight
bonds. Their weights are equal to 20%, 19%, 17%, 13%, 12%, 8%, 6%
and 5%. The carbon intensities (expressed in tCO2e/$ mn) are
respectively equal to 100.5, 97.2, 250.4, 352.3, 27.1, 54.2, 78.6 and 426.7.
To evaluate the risk of the portfolio, we use the modified duration which is
respectively equal to 3.1, 6.6, 7.2, 5, 4.7, 2.1, 8.1 and 2.6 years, and the
duration-times-spread factor, which is respectively equal to 100, 155, 575,
436, 159, 145, 804 and 365 bps. There are two sectors. Bonds #1, #3,
#4 and #8 belong to Sector1 while Bonds #2, #5, #6 and #7 belong to
Sector2
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Table 78: Optimal decarbonization portfolios (Example #6, threshold approach)

R 0 10 20 30 40 50 CI i

w?
1 20.00 21.62 23.93 26.72 30.08 33.44 100.5

w?
2 19.00 18.18 16.98 14.18 7.88 1.58 97.2

w?
3 17.00 18.92 21.94 22.65 16.82 11.00 250.4

w?
4 13.00 11.34 5.35 0.00 0.00 0.00 352.3

w?
5 12.00 13.72 16.14 21.63 33.89 46.14 27.1

w?
6 8.00 9.60 10.47 10.06 7.21 4.36 54.2

w?
7 6.00 5.56 5.19 4.75 4.11 3.48 78.6

w?
8 5.00 1.05 0.00 0.00 0.00 0.00 426.7

ASSector 0.00 6.87 15.49 24.07 31.97 47.58
MD (w) 5.48 5.49 5.45 5.29 4.90 4.51
DTS (w) 301.05 292.34 282.28 266.12 236.45 206.78
σAS (w | b) 0.00 5.57 12.31 19.82 30.04 43.58
σMD (w | b) 0.00 0.01 0.04 0.17 0.49 0.81
σDTS (w | b) 0.00 8.99 19.29 35.74 65.88 96.01

CI (w) 160.57 144.52 128.46 112.40 96.34 80.29
R (w | b) 0.00 10.00 20.00 30.00 40.00 50.00
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Table 79: Optimal decarbonization portfolios (Example #6, order-statistic
approach)

m 0 1 2 3 4 5 6 7 CI i

w?
1 20.00 20.83 24.62 64.64 0.00 0.00 0.00 0.00 100.5

w?
2 19.00 18.60 18.13 21.32 3.32 0.00 0.00 0.00 97.2

w?
3 17.00 17.79 26.30 0.00 0.00 0.00 0.00 0.00 250.4

w?
4 13.00 14.53 0.00 0.00 0.00 0.00 0.00 0.00 352.3

w?
5 12.00 12.89 13.96 6.00 36.57 41.27 41.27 100.00 27.1

w?
6 8.00 9.74 11.85 0.00 60.11 58.73 58.73 0.00 54.2

w?
7 6.00 5.62 5.15 8.03 0.00 0.00 0.00 0.00 78.6

w?
8 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 426.7

ASSector 0.00 5.78 19.72 49.00 76.68 80.00 80.00 88.00
MD (w) 5.48 5.52 5.54 4.77 3.27 3.17 3.17 4.70
DTS (w) 301.05 295.08 284.71 171.82 150.45 150.78 150.78 159.00
σAS (w | b) 0.00 5.73 17.94 50.85 66.96 68.63 68.63 95.33
σMD (w | b) 0.00 0.03 0.04 0.63 2.66 2.64 2.64 3.21
σDTS (w | b) 0.00 6.21 16.87 128.04 197.22 197.29 197.29 199.22

CI (w) 160.57 147.94 122.46 93.63 45.72 43.02 43.02 27.10
R (w | b) 0.00 7.87 23.74 41.69 71.53 73.21 73.21 83.12
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Decarbonization scenario per sector:

CI (w ;Sectorj ) ≤ (1−Rj )CI (b;Sectorj )

We have: (
sss j ◦

(
CI − CI?j

))>
w ≤ 0

where CI?j = (1−Rj )CI (b;Sectorj )
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QP form

C =



(sss1 ◦ (CI − CI?1))
>

...(
sss j ◦

(
CI − CI?j

))>
...(

sssnSector ◦
(
CI − CI?nSector

))>



D =


(1−R1)CI (b;Sector1)

...
(1−Rj )CI (b;Sectorj )

...
(1−RnSector )CI (b;SectornSector )
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Table 80: Carbon intensity and threshold in tCO2e/$ mn per GICS sector (MSCI
World, 2030)

Sector
CI (b;Sectorj ) Rj CI?j

SC1 SC1−2 SCup
1−3 SC1−3 (in %) SC1 SC1−2 SCup

1−3 SC1−3

Communication Services 2 28 134 172 52.4 1 13 64 82
Consumer Discretionary 23 65 206 590 52.4 11 31 98 281
Consumer Staples 28 55 401 929 52.4 13 26 191 442
Energy 632 698 1 006 6 823 56.9 272 301 434 2 941
Financials 13 19 52 244 52.4 6 9 25 116
Health Care 10 22 120 146 52.4 5 10 57 70
Industrials 111 130 298 1 662 18.8 90 106 242 1 350
Information Technology 7 23 112 239 52.4 3 11 53 114
Materials 478 702 1 113 2 957 36.7 303 445 704 1 872
Real Estate 22 101 167 571 36.7 14 64 106 361
Utilities 1 744 1 794 2 053 2 840 56.9 752 773 885 1 224
MSCI World 130 163 310 992 36.6 82 103 196 629
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Sector-specific constraints
Sector and weight deviation constraints (equity portfolio)

1 Asset weight deviation constraint:

Ω := C1

(
m−w ,m

+
w

)
=
{
w : m−w b ≤ w ≤ m+

wb
}

2 Sector weight deviation constraint:

Ω := C2

(
m−s ,m

+
s

)
==

∀j : m−s
∑

i∈Sectorj

bi ≤
∑

i∈Sectorj

wi ≤ m+
s

∑
i∈Sectorj

bi


3 C2 (ms) = C2 (1/ms ,ms)

4 C3 (m−w ,m
+
w ,ms) = C1 (m−w ,m

+
w ) ∩ C2 (ms)
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Sector-specific constraints
Sector and weight deviation constraints (bond portfolio)

1 Modified duration constraint:

Ω := C′1 = {w : MD (w) = MD (b)} =

{
w :

n∑
i=1

(xi − bi )MDi = 0

}
2 DTS constraint

Ω := C′2 = {w : DTS (w) = DTS (b)} =

{
w :

n∑
i=1

(xi − bi )DTSi = 0

}
3 Maturity/rating buckets:

Ω :=

w :
∑

i∈Bucketj

(xi − bi ) = 0


1 C′3: Bucketj is the jth maturity bucket, e.g., 0–1, 1–3, 3–5, 5–7, 7–10

and 10+
2 C′4: Bucketj is the jth rating category, e.g., AAA–AA (AAA, AA+, AA

and AA−), A (A+, A and A−) and BBB (BBB+, BBB, BBB−)
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Sector-specific constraints
HCIS constraint

Two types of sectors:

1 High climate impact sectors (HCIS):

“sectors that are key to the low-carbon transition” (TEG, 2019)

2 Low climate impact sectors (LCIS)

Let HCIS (w) =
∑

i∈HCIS wi be the HCIS weight of portfolio w :

HCIS (w) ≥ HCIS (b)
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Table 81: Weight and carbon intensity when applying the HCIS filter (MSCI
World, June 2022)

Sector
Index HCIS SC1 SC1−2 SCup

1−3 SC1−3

bj b′j CI CI ′ CI CI ′ CI CI ′ CI CI ′

Communication Services 7.58 0.00 2 28 134 172
Consumer Discretionary 10.56 8.01 23 14 65 31 206 189 590 462
Consumer Staples 7.80 7.80 28 28 55 55 401 401 929 929
Energy 4.99 4.99 632 632 698 698 1 006 1 006 6 823 6 823
Financials 13.56 0.00 13 19 52 244
Health Care 14.15 9.98 10 13 22 26 120 141 146 177
Industrials 9.90 7.96 111 132 130 151 298 332 1 662 1 921
Information Technology 21.08 10.67 7 12 23 30 112 165 239 390
Materials 4.28 4.28 478 478 702 702 1 113 1 113 2 957 2 957
Real Estate 2.90 2.90 22 22 101 101 167 167 571 571
Utilities 3.21 3.21 1 744 1 744 1 794 1 794 2 053 2 053 2 840 2 840
MSCI World 100.00 59.79 130 210 163 252 310 458 992 1 498

Source: MSCI (2022), Trucost (2022) & Author’s calculations
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Figure 88: Boxplot of carbon intensity per sector (MSCI World, June 2022,
scope SC1−2)
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Figure 89: Boxplot of carbon intensity per sector (MSCI World, June 2022,
scope SC1−3)
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Barahhou et al. (2022) consider the basic optimization problem:

w? = arg min
1

2
(w − b)>Σ (w − b)

s.t.

{
CI (w) ≤ (1−R)CI (b)
w ∈ Ω0 ∩ Ω

What is the impact of constraints Ω0 ∩ Ω?
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Figure 90: Impact of the carbon scope on the tracking error volatility (MSCI
World, June 2022, C0 constraint)
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Table 82: Sector allocation in % (MSCI World, June 2022, scope SC1−3)

Sector Index
Reduction rate R

30% 40% 50% 60% 70% 80% 90%
Communication Services 7.58 7.95 8.15 8.42 8.78 9.34 10.13 12.27
Consumer Discretionary 10.56 10.69 10.69 10.65 10.52 10.23 9.62 6.74
Consumer Staples 7.80 7.80 7.69 7.48 7.11 6.35 5.03 1.77
Energy 4.99 4.14 3.65 3.10 2.45 1.50 0.49 0.00
Financials 13.56 14.53 15.17 15.94 16.90 18.39 20.55 28.62
Health Care 14.15 14.74 15.09 15.50 16.00 16.78 17.77 17.69
Industrials 9.90 9.28 9.01 8.71 8.36 7.79 7.21 6.03
Information Technology 21.08 21.68 22.03 22.39 22.88 23.51 24.12 24.02
Materials 4.28 3.78 3.46 3.06 2.56 1.85 1.14 0.24
Real Estate 2.90 3.12 3.27 3.41 3.57 3.72 3.71 2.51
Utilities 3.21 2.28 1.79 1.36 0.90 0.54 0.24 0.12

Source: MSCI (2022), Trucost (2022) & Barahhou et al. (2022)

Portfolio decarbonization = strategy long on Financials and short on
Energy, Materials and Utilities
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Figure 91: Impact of C1 constraint on the tracking error volatility (MSCI World,
June 2022)
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Figure 92: Impact of C2 and C3 constraints (MSCI World, June 2022)
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Figure 93: Tracking error volatility with C3 (0, 10, 2) constraint (MSCI World,
June 2022)
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First approach

The carbon footprint contribution of the m worst performing assets is:

CFC(m,n) =

∑n
i=1 1

{
CI i ≥ CI(m,n)

}
· biCI i

CI (b)

where CI(m,n) = CIn−m+1:n is the (n −m + 1)-th order statistic
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Figure 94: Carbon footprint contribution CFC(m,n) in % (MSCI World, June
2022, first approach)
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Second approach

Another definition:

CFC(m,n) =

∑n
i=1 1

{
CIC i ≥ CIC(m,n)

}
· biCI i

CI (b)

where CIC i = biCI i and CIC(m,n) = CICn−m+1:n

Weight contribution:

WC(m,n) =
n∑

i=1

1
{
CIC i ≥ CIC(m,n)

}
· bi
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Figure 95: Carbon footprint contribution CFC(m,n) in % (MSCI World, June
2022, second approach)
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Table 83: Carbon footprint contribution CFC(m,n) in % (MSCI World, June
2022, second approach, SC1−3)

Sector
m

1 5 10 25 50 75 100 200
Communication Services 0.44 0.44 0.73
Consumer Discretionary 0.78 1.37 2.44 2.93 4.28
Consumer Staples 2.46 2.46 2.46 3.75 4.44 4.92 5.62
Energy 9.61 17.35 23.78 29.56 31.78 33.02 33.89
Financials 0.72 1.53 1.88
Health Care 0.21 0.37
Industrials 2.16 5.59 7.13 8.70 9.48 13.05
Information Technology 0.98 1.58 1.94 2.15 3.30
Materials 4.08 4.08 4.08 5.81 7.31 8.81 9.59 10.75
Real Estate 0.77 0.77 0.77 0.85
Utilities 0.81 3.20 3.89 5.24 7.98
Total 4.08 16.15 26.06 40.21 54.66 63.94 70.29 82.70

Source: MSCI (2022), Trucost (2022) & Author’s calculations
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Table 84: Weight contribution WC(m,n) in % (MSCI World, June 2022, second
approach, SC1−3)

Sector
bj m

(in %) 1 5 10 25 50 75 100 200
Communication Services 7.58 0.08 0.08 3.03
Consumer Discretionary 10.56 0.58 1.79 2.44 4.51 5.89
Consumer Staples 7.80 0.70 0.70 0.70 1.90 2.50 2.84 3.84
Energy 4.99 1.71 2.25 2.96 3.62 3.99 4.33 4.65
Financials 13.56 0.74 1.17 2.33
Health Care 14.15 0.95 1.34
Industrials 9.90 0.06 0.32 0.70 0.96 1.20 4.12
Information Technology 21.08 0.16 4.70 8.42 8.78 11.62
Materials 4.28 0.29 0.29 0.29 0.47 0.88 1.10 1.40 1.87
Real Estate 2.90 0.05 0.05 0.05 0.23
Utilities 3.21 0.31 0.86 1.04 1.31 2.33
Total 0.29 2.71 3.30 5.49 14.50 21.32 26.63 41.24

Source: MSCI (2022), Trucost (2022) & Author’s calculations
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The order-statistic optimization problem is:

w? = arg min
1

2
(w − b)>Σ (w − b)

s.t.

{
1>n w = 1
0n ≤ w ≤ w (m,n)

where the upper bound w (m,n) is equal to 1
{
CI < CI(m,n)

}
for the

first ordering approach and 1
{
CIC < CIC(m,n)

}
for the second

ordering approach
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The naive method is:

w?
i =

eibi∑n
k=1 ekbk

where ei is defined as 1
{
CI i < CI(m,n)

}
for the first ordering

approach and 1
{
CIC i < CIC(m,n)

}
for the second ordering approach
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Figure 96: Tracking error volatility (MSCI World, June 2022, SC1−3, first
ordering method)
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Figure 97: Tracking error volatility (MSCI World, June 2022, SC1−3, second
ordering method)
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The optimization problem is:

w? = arg min
1

2

n∑
i=1

|wi − bi |+ 50

nSector∑
j=1

∣∣∣∣∣∣
∑

i∈Sectorj

(wi − bi )DTSi

∣∣∣∣∣∣
s.t.

{
CI (w) ≤ (1−R)CI (b)
w ∈ C0 ∩ C′1 ∩ C′3 ∩ C′4
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Figure 98: Impact of the carbon scope on the active share in % (ICE Global
Corp., June 2022)
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Figure 99: Impact of the carbon scope on the DTS risk in bps (ICE Global
Corp., June 2022)
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Table 85: Sector allocation in % (ICE Global Corp., June 2022, scope SC1−3)

Sector Index
Reduction rate R

30% 40% 50% 60% 70% 80% 90%
Communication Services 7.34 7.35 7.34 7.37 7.43 7.43 7.31 7.30
Consumer Discretionary 5.97 5.97 5.96 5.94 5.93 5.46 4.48 3.55
Consumer Staples 6.04 6.04 6.04 6.04 6.04 6.02 5.39 4.06
Energy 6.49 5.49 4.42 3.84 3.69 3.23 2.58 2.52
Financials 33.91 34.64 35.66 35.96 36.09 37.36 38.86 39.00
Health Care 7.50 7.50 7.50 7.50 7.50 7.50 7.52 7.48
Industrials 8.92 9.38 9.62 10.19 11.34 12.07 13.55 18.13
Information Technology 5.57 5.57 5.59 5.59 5.60 5.60 5.52 5.27
Materials 3.44 3.43 3.31 3.18 3.12 2.64 2.25 1.86
Real Estate 4.76 4.74 4.74 4.74 4.74 4.66 4.61 3.93
Utilities 10.06 9.89 9.82 9.64 8.52 8.04 7.92 6.88

Source: ICE (2022), Trucost (2022) & Barahhou et al. (2022)
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Choice of the decarbonization scenario

Figure 100: CO2 emissions by sector in the IEA NZE scenario (in GtCO2e)
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A decarbonization scenario is defined as a function that relates a
decarbonization rate to a time index t:

f : R+ −→ [0, 1]

t 7−→R (t0, t)

where t0 is the base year and R
(
t0, t

−
0

)
= 0

Two choices

1 Carbon emissions

CE (t) = (1−R (t0, t))CE (t0)

2 Carbon intensity (CTB/PAB)

CI (t) = (1−∆R)t−t0
(
1−R−

)
CI (t0)

where ∆R = 7% and R− takes the values 30%/50% (CTB/PAB)
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Figure 101: IEA, NZAOA, CTB and PAB decarbonization pathways
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Table 86: IEA, NZAOA, CTB and PAB decarbonization rates (baseline = 2020)

Year CTB PAB NZE NZAOA
R− 30% 50% IEA Average
∆R 7% 7% Scenario Scenario
2020 30.0% 50.0% 0.0% 10.0%
2021 34.9% 53.5% 1.7% 14.0%
2022 39.5% 56.8% 3.9% 18.0%
2023 43.7% 59.8% 6.7% 22.0%
2024 47.6% 62.6% 9.9% 26.0%
2025 51.3% 65.2% 13.6% 30.0%
2026 54.7% 67.7% 17.8% 34.0%
2027 57.9% 69.9% 22.3% 38.0%
2028 60.8% 72.0% 27.2% 42.0%
2029 63.6% 74.0% 32.1% 46.0%
2030 66.1% 75.8% 37.1% 50.0%
2035 76.4% 83.2% 60.2% 70.3%
2040 83.6% 88.3% 77.2% 89.6%
2045 88.6% 91.9% 87.6% 95.2%
2050 92.1% 94.3% 94.6% 100.0%

Source: Ben Slimane et al. (2023).
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Figure 102: Sectoral decarbonization pathways
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The carbon budget approach

A NZE scenario is defined by the following constraints:{
CB (t0, 2050) ≤ CB+ GtCO2e
CE (2050) ≈ 0 GtCO2e

where t0 is the base date and CB+ is the maximum carbon budget

IPCC SR15

t0 = 2019 and CB+ = 580GtCO2e: there is a 50% probability of
limiting the global warning to 1.5◦C

t0 = 2019 and CB+ = 420GtCO2e: the probability is 66%

t0 = 2019 and CB+ = 300GtCO2e: the probability is 83%
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The carbon budget approach

If we have:
CE (t) = (1−∆R)t−t0

(
1−R−

)
CE (t0)

we obtain:

CB (t0, t) =

(
(1−∆R)t−t0 − 1

ln (1−∆R)

)(
1−R−

)
CE (t0)

Table 87: Carbon budget CB (2020, 2050) (in GtCO2e) when defining the
decarbonization pathway of carbon emissions and assuming that
CE (2020) = 36GtCO2e

R− 0% 10% 20% 30% 50% 75%

∆R

5% 551 496 441 386 276 138
6% 491 442 393 344 245 123
7% 440 396 352 308 220 110
8% 396 357 317 277 198 99
9% 359 323 287 251 180 90

10% 327 294 262 229 164 82
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Dynamic decarbonization and portfolio alignment

We have:
CI (t,w) ≤ (1−R (t0, t))CI (t0, b (t0))

where:

t0 is the base year

R (t0, t) is the decarbonization pathway of the NZE scenario

CI (t0, b (t0)) is the carbon intensity of the benchmark at time t0
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Dynamic decarbonization and portfolio alignment

Some properties:

Decarbonizing the aligned portfolio becomes easier over time as the
benchmark decarbonizes itself:

CI (t, b (t))� CI (t0, b (t0)) for t > t0

Decarbonizing the aligned portfolio becomes more difficult over time
as the benchmark carbonizes itself:

CI (t, b (t))� CI (t0, b (t0)) for t > t0

The aligned portfolio matches the benchmark portfolio if the
benchmark is sufficiently decarbonized:

CI (t, b (t)) ≤ (1−R (t0, t))CI (t0, b (t0))
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The optimization problem becomes:

w? (t) = arg min
1

2
(w − b (t))>Σ (t) (w − b (t))

s.t.

{
CI (t,w) ≤ (1−R (t0, t))CI (t0, b (t0))
w ∈ Ω0 ∩ Ω

where:

Ω0 = C0 =
{
w : 1>n w = 1, 0n ≤ w ≤ 1n

}
defines the long-only

constraint

Ω is the set of additional constraints

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 1087 / 1420



Portfolio optimization in practice
Portfolio decarbonization

Net-zero investing

Integrated approach
Core satellite approach

Equity portfolios

Example #7

We consider Example #5. We want to align the portfolio with respect to
the CTB scenario. To compute the optimal portfolio w? (t) where
t = t0 + h and h = 0, 1, 2, ... years, we assume that the benchmark b (t),
the covariance matrix Σ (t), and the vector CI (t) of carbon intensities do
not change over time.
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1 First, we compute the mapping function between the time t and the
decarbonization rate R (t0, t):

R (t0, t) = 1− (1− 30%)× (1− 7%)h

We get R (t0, t0) = 30%, R (t0, t0 + 1) = 34.90%,
R (t0, t0 + 2) = 39.46%, and so on

2 Second, we solve the optimization problem for the different values of
time t
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Table 88: Equity portfolio alignment (Example #7)

t b (t0) t0 t0 + 1 t0 + 2 t0 + 3 t0 + 4 t0 + 5 t0 + 10
w?

1 20.00 21.86 22.21 22.54 22.84 23.02 22.92 8.81
w?

2 19.00 18.70 18.41 18.15 17.90 17.58 17.04 0.00
w?

3 17.00 8.06 5.69 3.48 1.43 0.00 0.00 0.00
w?

4 13.00 8.74 7.66 6.65 5.72 4.56 2.70 0.00
w?

5 12.00 13.07 13.29 13.51 13.70 13.91 14.18 21.22
w?

6 8.00 22.57 25.59 28.39 31.00 33.39 35.54 62.31
w?

7 6.00 7.00 7.15 7.29 7.42 7.53 7.63 7.66
w?

8 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ (w? | b (t)) 0.01 104.10 126.22 147.14 166.79 185.24 203.51 352.42
CI (t,w) 160.57 112.40 104.53 97.22 90.41 84.08 78.20 54.40

R (w | b (t0)) 0.00 30.00 34.90 39.46 43.70 47.64 51.30 66.12

The reduction rate and weights are expressed in %, while the tracking error volatility is

measured in bps.
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For bonds, the tracking error volatility is replaced by the active risk
function:

D (w | b) = ϕ

nSector∑
s=1

∣∣∣∣∣∑
i∈s

(wi − bi )DTSi

∣∣∣∣∣︸ ︷︷ ︸
DTS component

+
1

2

∑
i∈b

|wi − bi |︸ ︷︷ ︸
AS component

+ 1ΩMD
(w)︸ ︷︷ ︸

MD component

where:

DTSi and MDi are the duration-times-spread and modified duration
factors

ΩMD =
{
w :

∑n
i=1 (wi − bi )MDi = 0

}
1Ω (w) is the convex indicator function
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The optimization problem becomes then:

w? (t) = arg minD (w | b (t))

s.t.

{
CI (t,w) ≤ (1−R (t0, t))CI (t0, b (t0))
w ∈ Ω0 ∩ Ω
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Example #8

We consider Example #6. We want to align the portfolio with respect to
the CTB scenario. To compute the optimal portfolio w? (t) where
t = t0 + h and h = 0, 1, 2, ... years, we assume that the benchmark, the
modified duration and the duration-times-spread factors do not change
over time.
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The corresponding LP problem is:

x? = arg min c>x

s.t.

 Ax = B
Cx ≤ D
x− ≤ x ≤ x+

where:

x = (w , τw , τDTS) is a 18× 1 vector

The 18× 1 vector c is equal to

(
08,

1

2
18, ϕ12

)
The equality constraint includes the convex indicator function
1ΩMD

(w) and is defined by:

Ax = B ⇔
(

1>8 0>8 0>2
MD> 0>8 0>2

)
x =

(
1

5.476

)
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The inequality constraints are:

Cx ≤ D ⇔


I8 −I8 08,2

−I8 −I8 08,2

CDTS 02,8 −I2
−CDTS 02,8 −I2
CI (t)> 01,8 0

 x ≤



b
−b

192.68
108.37
−192.68
−108.37

160.574× (1−R (t0, t))


where:

CDTS =

(
100 0 575 436 0 0 0 365

0 155 0 0 159 145 804 0

)
Finally, the bounds are x− = 018 and x+ =∞ · 118
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Table 89: Bond portfolio alignment (Example #8)

t b (t0) t0 t0 + 1 t0 + 2 t0 + 3 t0 + 4 t0 + 5 t0 + 10
w?

1 20.00 20.00 20.00 20.00 13.98 17.64 16.02 5.02
w?

2 19.00 13.99 17.79 19.00 19.00 19.00 19.00 19.00
w?

3 17.00 25.43 20.96 17.78 17.00 13.64 11.65 4.61
w?

4 13.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
w?

5 12.00 28.97 30.71 35.84 43.52 48.80 53.33 71.37
w?

6 8.00 8.00 8.00 5.67 6.46 0.92 0.00 0.00
w?

7 6.00 3.61 2.53 1.70 0.04 0.00 0.00 0.00
w?

8 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AS (w) 0.00 25.40 22.68 24.62 31.52 36.80 41.33 59.37
MD (w) 5.48 5.48 5.48 5.48 5.48 5.48 5.48 5.48
DTS (w) 301.05 274.61 248.91 230.60 220.10 204.46 197.26 174.46
D (w | b) 0.00 0.39 0.49 0.60 0.72 0.85 0.99 1.57
CI (w) 160.57 112.40 104.53 97.22 90.41 84.08 78.20 54.40
R (w | b) 0.00 30.00 34.90 39.46 43.70 47.64 51.30 66.12

The reduction rate, weights, and active share metrics are expressed in %, the MD metrics

are measured in years, and the DTS metrics are calculated in bps.
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Defining a net-zero investment policy

General framework

The set of constraints to be applied must include the transition dimension:

Ω = Ωalignment ∩ Ωtransition

where:

Ωalignment = {w : CI (t,w) ≤ (1−R (t0, t))CI (t0, b (t0))}

and:
Ωtransition = Ωself-decarbonization ∩ Ωgreenness ∩ Ωexclusion
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Self-decarbonization and endogeneity of the
decarbonization pathway

Bad case Mixed case Good case
Effective decarbonization

at the beginning of the year t 30% 30% 30%
at the end of the year t 25% 33% 36%

Self-decarbonization 0% 3% 6%
Relabancing requirement 10% 2% 0%

We can specify the self-decarbonization constraint as follows:

Ωself-decarbonization = {w : CM (t,w) ≤ CM? (t)}

where:

CM (t,w) is the carbon momentum of the portfolio w at time t

CM? (t) is the self-decarbonization minimum threshold
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Green footprint

The greenness constraint can be written as follows:

Ωgreenness = {w : GI (t,w) ≥ GI? (t)}

where:

GI (t,w) is the green intensity of the portfolio w at time t

GI? (t) is the minimum threshold

Remark

In general, the absolute measure GI? (t) is expressed as a relative value
with respect to the benchmark:

GI? (t) = (1 + G)GI (t, b (t))

where G is the minimum growth value. For example, if G = 100%, we
want to improve the green footprint of the benchmark so that the green
intensity of the portfolio is at least twice the green intensity of the
benchmark
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Net-zero exclusion policy

Net-zero enemies

Temperature score (Implied Temperature Rating or ITR)

Barahhou et al. (2022) suggest excluding issuers whose carbon
momentum is greater than a threshold CM+:

Ωexclusion =
{
w : CMi ≥ CM+ ⇒ wi = 0

}
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The optimization problem becomes:

w? (t) = arg min
1

2
(w − b (t))> Σ (t) (w − b (t))

s.t.


CI (t,w) ≤ (1−R (t0, t))CI (t0, b (t0)) ← Alignment
CM (t,w) ≤ CM? (t) ← Self-decarbonization
GI (t,w) ≥ (1 + G)GI (t, b (t)) ← Greenness
0 ≤ wi ≤ 1

{
CMi (t) ≤ CM+

}
← Exclusion

w ∈ Ω0 ∩ Ω ← Other constraints
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We deduce that the quadratic form is Q = Σ (t), R = Σ (t) b (t), A = 1>n ,
B = 1, w− = 0n, w+ = 1

{
CM (t) ≤ CM+

}
.

If we assume that the carbon momentum function is a linear function:

CM (t,w) = w>CM (t) =
n∑

i=1

wiCMi (t)

where CM (t) = (CM1 (t) , . . . ,CMn (t)) is the carbon momentum
vector, we get:

Cw ≤ D ⇔

 CI (t)>

CM (t)>

−GI (t)>

w ≤

 (1−R (t0, t))CI (t0, b (t0))
CM? (t)

− (1 + G)GI (t, b (t))
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If we use an exact calculation of the carbon momentum at the
portfolio level, we get:

Cw ≤ D ⇔

 CI (t)>

ζ>

−GI (t)>

w ≤

 (1−R (t0, t))CI (t0, b (t0))
0

− (1 + G)GI (t, b (t))


where ζ = (ζ1, . . . , ζn) and ζi = CI i (t) (CMi (t)− CM? (t))
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Example #9

We consider Example #7. The carbon momentum values are equal to
−3.1%, −1.2%, −5.8%, −1.4%, +7.4%, −2.6%, +1.2%, and −8.0%. We
measure the green intensity by the green revenue share. Its values are
equal to 10.2%, 45.3%, 7.5%, 0%, 0%, 35.6%, 17.8% and 3.0%. The
net-zero investment policy imposes to follow the CTB decarbonization
pathway with a self-decarbonization of 3%, and to improve the green
intensity of the benchmark by 100%
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Table 90: Net-zero equity portfolio (Example #9)

t b (t0) t0 t0 + 1 t0 + 2 t0 + 3 t0 + 4 t0 + 5 t0 + 10
w?

1 20.00 5.26 3.51 1.49 0.00 0.02
w?

2 19.00 20.96 17.27 13.00 8.82 4.16
w?

3 17.00 3.35 7.27 11.82 15.02 14.32
w?

4 13.00 0.00 0.00 0.00 0.00 0.00 No feasible
w?

5 12.00 0.00 0.00 0.00 0.00 0.00 solution
w?

6 8.00 60.06 64.69 70.05 75.37 81.51
w?

7 6.00 0.00 0.00 0.00 0.00 0.00
w?

8 5.00 10.37 7.25 3.64 0.79 0.00
σ (w? | b (t)) 0.00 370.16 376.38 398.30 430.94 472.44
CI (t,w) 160.57 110.85 104.53 97.22 90.41 84.08

R (w | b (t0)) 0.00 30.96 34.90 39.46 43.70 47.64
CM (t,w) −1.66 −3.00 −3.00 −3.00 −3.00 −3.00
GI (t,w) 15.99 31.98 31.98 31.98 31.98 31.98

The reduction rate, weights, carbon momentum and green intensity are expressed in %,

while the tracking error volatility is measured in bps.
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The optimization problem becomes:

w? (t) = arg minD (w | b (t))

s.t.


CI (t,w) ≤ (1−R (t0, t))CI (t0, b (t0)) ← Alignment
CM (t,w) ≤ CM? (t) ← Self-decarbonization
GI (t,w) ≥ (1 + G)GI (t, b (t)) ← Greenness
0 ≤ wi ≤ 1

{
CMi (t) ≤ CM+

}
← Exclusion

w ∈ Ω0 ∩ Ω ← Other constraints
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We get the same LP form except for the set of inequality constraints
Cx ≤ D:

In −In 0n,nSector

−In −In 0n,nSector

CDTS 0nSector ,n −InSector

−CDTS 0nSector ,n −InSector

CI (t)> 01,n 01,nSector

CM (t)> 01,n 01,nSector

−GI (t)> 01,n 01,nSector


x ≤



b
−b
DTS?

−DTS?

(1−R (t0, t))CI (t0, b (t0))
CM? (t)

− (1 + G)GI (t, b (t))


and the upper bound:

x+ =
(
1
{
CM (t) ≤ CM+

}
,∞ · 1n,∞ · 1nSector

)
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Example #10

We consider Example #8. The carbon momentum values are equal to
−3.1%, −1.2%, −5.8%, −1.4%, +7.4%, −2.6%, +1.2%, and −8.0%. We
measure the green intensity by the green revenue share. Its values are
equal to 10.2%, 45.3%, 7.5%, 0%, 0%, 35.6%, 17.8% and 3.0%. The
net-zero investment policy imposes to follow the CTB decarbonization
pathway with a self-decarbonization of 2%, and to improve the green
intensity of the benchmark by 100%.
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Table 91: Net-zero bond portfolio (Example #10)

t b (t0) t0 t0 + 1 t0 + 2 t0 + 3 t0 + 4 t0 + 5 t0 + 10
w?

1 20.00 4.28 13.80 20.48 26.34 19.02
w?

2 19.00 34.78 38.94 42.72 46.23 49.01
w?

3 17.00 21.03 13.86 7.73 2.11 0.00
w?

4 13.00 0.00 0.00 0.00 0.00 0.00 No feasible
w?

5 12.00 0.00 0.00 0.00 0.00 0.00 solution
w?

6 8.00 39.91 33.40 29.07 25.32 31.97
w?

7 6.00 0.00 0.00 0.00 0.00 0.00
w?

8 5.00 0.00 0.00 0.00 0.00 0.00
AS (w) 0.00 51.72 45.34 45.27 50.89 53.98
MD (w) 5.48 5.48 5.48 5.48 5.48 5.48
DTS (w) 301.05 236.99 202.30 173.29 146.83 141.34
D (w | b) 0.00 0.87 0.95 1.09 1.28 1.48
CI (w) 160.57 112.40 104.53 97.22 90.41 84.08
R (w | b) 0.00 30.00 34.90 39.46 43.70 47.64
CM (t,w) −1.66 −2.81 −2.57 −2.35 −2.15 −2.01
GI (t,w) 15.99 31.98 31.98 32.37 32.80 35.52

The reduction rate, weights, carbon momentum, green intensity and active share metrics

are expressed in %, the MD metrics are measured in years, and the DTS metrics are

calculated in bps.
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Figure 103: Tracking error volatility of dynamic decarbonized portfolios (MSCI
World, June 2022, C0 constraint)
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Source: MSCI (2022), Trucost (2022) & Barahhou et al. (2022).
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Figure 104: Tracking error volatility of dynamic decarbonized portfolios (MSCI
World, June 2022, C3 (0, 10, 2) constraint)
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The previous analysis deals only with the decarbonization dimension.
Barahhou et al. (2022) then introduced the transition dimension and
solved the following optimization problem:

w? (t) = arg min
1

2
(w − b (t))> Σ (t) (w − b (t))

s.t.


CI (t,w) ≤ (1−R (t0, t))CI (t0, b (t0))
CM (t,w) ≤ CM? (t)
GI (t,w) ≥ (1 + G)GI (t, b (t))
w ∈ C0 ∩ C3 (0, 10, 2)

where CM? (t) = −5% and G = 100%
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Empirical results

Figure 105: Tracking error volatility of net-zero portfolios (MSCI World, June
2022, C0 constraint, G = 100%, CM? = −5%, PAB)
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Figure 106: Tracking error volatility of net-zero portfolios (MSCI World, June
2022, C3 (0, 10, 2) constraint, G = 100%, CM? = −5%, PAB)
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Empirical results

Figure 107: Tracking error volatility of net-zero portfolios (MSCI EMU, June
2022, C3 (0, 10, 2) constraint, G = 100%, CM? = −5%, PAB)
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Figure 108: Tracking error volatility of net-zero portfolios (MSCI USA, Jun.
2022, C3 (0, 10, 2) constraint, G = 100%, CM? = −5%, PAB)

2020 2030 2040 2050
t

0

40

80

120

160
<

(w
jb

)
(i
n

b
p
s)

SC1

Decarbonization

Transition

2020 2030 2040 2050
t

0

50

100

150

200

250

<
(w

jb
)
(i
n

b
p
s)

SC1!2

Decarbonization

Transition

2020 2030 2040 2050
t

0

100

200

300

400

500

<
(w

jb
)
(i
n

b
p
s)

SCup
1!3

Decarbonization

Transition

2020 2030 2040 2050
t

0

100

200

300

400

<
(w

jb
)
(i
n

b
p
s)

SC1!3

Decarbonization

Transition

Source: MSCI (2022), Trucost (2022) & Barahhou et al. (2022).
Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 1116 / 1420



Portfolio optimization in practice
Portfolio decarbonization

Net-zero investing

Integrated approach
Core satellite approach

Empirical results

Figure 109: Radar chart of investment universe shrinkage (MSCI World, June
2022, C3 (0, 10, 2) constraint, G = 100%, CM? = −5%, PAB, Scope SC1−3)

Communication Services

Consumer Discretionary

Consumer Staples

Energy

Financials

Health CareIndustrials

Information Technology

Materials

Real Estate

Utilities

Index
2022
2030
2040

Source: MSCI (2022), Trucost (2022) & Barahhou et al. (2022).
Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 1117 / 1420



Portfolio optimization in practice
Portfolio decarbonization

Net-zero investing

Integrated approach
Core satellite approach

Empirical results

Figure 110: Impact of momentum exclusion on universe shrinkage (MSCI World,
June 2022, C3 (0, 10, 2) constraint, G = 100%, CM? = −5%, PAB, Scope
SC1−3, CM+ = 0%)
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Figure 111: Duration-times-spread cost of dynamically decarbonized portfolios
(Global Corporate, June 2022)
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Figure 112: Active share of dynamically decarbonized portfolios (Global
Corporate, June 2022)
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Figure 113: IEA decarbonization pathways
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Table 92: First year of country exit from the NZE investment portfolio
(GHG/GDP intensity metric)

Australia 2025 Finland 2029 Lithuania 2025 Romania 2029
Austria 2029 France 2029 Luxembourg 2029 Singapore 2029
Belgium 2028 Germany 2029 Mexico 2029 Slovakia 2025
Canada 2024 Hong Kong 2029 Malaysia 2028 Slovenia 2028
Chile 2029 Hungary 2029 Malta 2029 South Korea 2024
China 2028 Indonesia 2024 Netherlands 2029 Spain 2028
Colombia 2029 Ireland 2029 Norway 2029 Switzerland 2029
Cyprus 2029 Israel 2029 New Zealand 2024 Sweden 2029
Czechia 2024 Italy 2029 Peru 2029 Thailand 2025
Denmark 2029 Japan 2029 Poland 2029 United Kingdom 2029
Estonia 2025 Latvia 2028 Portugal 2028 United States 2028

Source: Barahhou et al. (2023, Table 9, page 26.
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Table 93: Country exclusion year by intensity metric

Metric
GHG

GDP

GHG

Population
CO2 (production)

GDP

CO2 (consumption)

Population
China 2028 2031 2027 2031
France 2029 2032 2027 2031
Indonesia 2024 2032 2024 2031
Ireland 2029 2030 2027 2030
Japan 2029 2032 2027 2031
United States 2028 2030 2026 2029
United Kingdom 2029 2032 2027 2031
Sweden 2029 2032 2027 2031

Source: Barahhou et al. (2023, Table 14, page 31.
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The core-satellite approach

The two building block approach

Decarbonizing the portfolio

• Net-zero decarbonization
portfolio

• Net-zero transition portfolio

• Dynamic low-carbon
portfolio

Financing the transition

• Net-zero contribution
portfolio

• Net-zero funding portfolio

• Net-zero transformation
portfolio
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The core-satellite approach

The core-satellite approach

Decarbonized portfolio

Carbon intensity

Decarbonization pathway(s)

Top-down approach

Portfolio construction

Net-zero carbon metrics

+

Transition portfolio

Green intensity

Financing the transition

Bottom-up approach

Security selection

Net-zero transition metrics

1− α (t) α (t)
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Core portfolio

A typical program for the equity bucket looks like this:

w? (t) = arg min
1

2
(w − b (t))> Σ (t) (w − b (t))

s.t.


CI (t,w) ≤ (1−R (t0, t))CI (t0, b (t0))
CM (t,w) ≤ CM? (t)
0 ≤ wi ≤ 1

{
CMi (t) ≤ CM+

}
w ∈ Ω0 ∩ Ω
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For the bond bucket, we get a similar optimization problem:

w? (t) = arg minD (w | b (t))

s.t.


CI (t,w) ≤ (1−R (t0, t))CI (t0, b (t0))
CM (t,w) ≤ CM? (t)
0 ≤ wi ≤ 1

{
CMi (t) ≤ CM+

}
w ∈ Ω0 ∩ Ω
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The electricity sector scenario in the core portfolio

The constraint to meet a reduction rate for a given sector Sectorj is:∑n
i=1 1 {i ∈ Sectorj}wiCI i∑n

i=1 1 {i ∈ Sectorj}wi
= CI (Sectorj ,Rj )

where CI (Sectorj ,Rj ) is the carbon intensity target for the given sector:

CI (Sectorj ,Rj ) = (1−Rj )

∑n
i=1 1 {i ∈ Sectorj} biCI i∑n

i=1 1 {i ∈ Sectorj} bi

We deduce that:
n∑

i=1

1 {i ∈ Sectorj}wiCI i = CI (Sectorj ,Rj )
n∑

i=1

1 {i ∈ Sectorj}wi

which is equivalent to the following constraint:
n∑

i=1

1 {i ∈ Sectorj}wi (CI i − CI (Sectorj ,Rj )) = 0⇔
(
sss j ◦

(
CI i − CI?j

))>
w = 0

where CI?j = CI (Sectorj ,Rj )
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Figure 114: TE volatility of decarbonized portfolios (MSCI World, December
2021, CM? = −3.5%, CM+ = 10%, IEA NZE electricity sector scenario)
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Figure 115: Active risk of decarbonized portfolios (Global Corporate, December
2021, CM? = −3.5%, CM+ = 10%, IEA NZE electricity sector scenario)
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Satellite portfolio

Green, sustainability and sustainability-linked bonds

Green stocks

Green infrastructure

Sustainable real estate
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Figure 116: Narrow specification of the satellite investment universegeneral]GICS
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Green bonds

Table 94: GSS+ bond issuance

Year
Green Social Sustainability SLB

# $ bn # $ bn # $ bn # $ bn
2022 1 784 531.6 542 152.8 614 174.8 382 144.3
2021 1 971 686.1 554 242.1 646 233.2 343 161.5
2020 1 076 291.2 273 172.0 308 154.8 47 16.5
2019 877 268.0 99 22.2 333 85.2 18 8.9
2018 582 165.3 48 16.5 52 22.1 1 2.2
2017 472 160.9 46 11.8 17 9.2 1 0.2
2016 285 99.7 14 2.2 16 6.6 0 0.0

Source: Bloomberg (2023), GSS+ Instrument Indicator & Author’s calculations.
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Figure 117: Performance and duration of the Bloomberg Global Green Bond and
Aggregate indices
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Green stocks

Figure 118: Performance and tracking error volatility of thematic equity indices
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Green infrastructure

The European Commission defines green infrastructure as “a strategically
planned network of natural and semi-natural areas with other
environmental features, designed and managed to deliver a wide range of
ecosystem services, while also enhancing biodiversity”. Green
infrastructure is implemented in a variety of sectors, from energy through
energy transmission infrastructure, water through natural water retention
measures or sustainable urban drainage systems, to the urban landscape
with street trees to help sequester carbon or green roofs to help regulate
the temperature of buildings. The cost of implementing green
infrastructure is in the identification, mapping, planning and creation of the
infrastructure, but the environmental, economic and social benefits make it
worthwhile. Funds that assess infrastructure needs are emerging in the
market and typically invest in owners of sustainable infrastructure assets as
well as companies that are leaders in infrastructure investment. In addition
to infrastructure funds, investors are also considering direct investments
such as green car parks, water infrastructure and flood defences.
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Sustainable real estate

CRREM (Carbon Risk Real Estate Monitor) ⇒ whole-building
approach for in-use emissions

GRESB ⇒ GHG Protocol principles to the real estate industry
(corporate approach)

SBTi Building Guidelines

PCAF/CRREM/GRESB joint technical guidance ⇒ Accounting and
reporting of financed GHG emissions from real estate operations
(GHG Protocol)
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Allocation process
The stock/bond mix allocation

Let αequity and αbond be the proportions of stocks and bonds in the
multi-asset portfolio

Let αsatellite be the weight of the satellite portfolio

The core allocation is given by the vector
(
αcore
equity, α

core
bond

)
, while the

satellite allocation is defined by
(
αsatellite
equity , αsatellite

bond

)
We have the following identities:{

αequity =
(
1− αsatellite

)
αcore
equity + αsatelliteαsatellite

equity

αbond =
(
1− αsatellite

)
αcore
bond +

(
1− αsatellite

)
αsatellite
bond
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Allocation process
The stock/bond mix allocation

In general, the fund manager targets a strategic asset allocation at
the portfolio level, i.e. the proportions αequity and αbond are given

For example, a defensive portfolio corresponds to a 20/80 constant
mix strategy, while the 50/50 allocation is known as a balanced
portfolio. Another famous allocation rule is the 60/40 portfolio, which
is 60% in stocks and 40% in bonds.

The solution is to calculate the proportion of bonds in the core
portfolio relative to the proportion of bonds in the satellite portfolio:

αcore
bond =

αbond − αsatelliteαsatellite
bond

1− αsatellite
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The stock/bond mix allocation

Example #11

We consider a 60/40 constant mix strategy. The satellite portfolio
represents 10% of the net zero investments. We assume that the satellite
portfolio has 70% exposure to green bonds.
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Allocation process
The stock/bond mix allocation

We have αequity = 60%, αbond = 40%, αcore = 90%, αsatellite = 10% and
αsatellite
bond = 70%. We deduce that:

αcore
bond =

0.40− 0.10× 0.70

1− 0.10
=

33

90
= 36.67%

The core allocation is then (63.33%, 36.67%), while the satellite allocation
is (30%, 70%). We check that:

αequity = 0.90×
(

1− 33

90

)
+ 0.10× 0.30 = 60%

αbond = 0.90× 33

90
+ 0.10× 0.70 = 40%
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Table 95: Calculating the bond allocation in the core portfolio (αcore
bond in %)

Strategy 60/40 50/50 20/80
αsatellite
bond 70.0 80.0 90.0 70.0 80.0 90.0 70.0 80.0 90.0

αsatellite

0% 40.0 40.0 40.0 50.0 50.0 50.0 80.0 80.0 80.0
1% 39.7 39.6 39.5 49.8 49.7 49.6 80.1 80.0 79.9
5% 38.4 37.9 37.4 48.9 48.4 47.9 80.5 80.0 79.5

10% 36.7 35.6 34.4 47.8 46.7 45.6 81.1 80.0 78.9
15% 34.7 32.9 31.2 46.5 44.7 42.9 81.8 80.0 78.2
20% 32.5 30.0 27.5 45.0 42.5 40.0 82.5 80.0 77.5
25% 30.0 26.7 23.3 43.3 40.0 36.7 83.3 80.0 76.7
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Allocation process
Tracking error risk of the core-satellite portfolio

The tracking error volatility of the core-satellite portfolio has the following
expression:

σ (w | b) =

√
α̃>Σ̃ (w | b) α̃ =

√
(α̃ ◦ σ̃ (w | b))> ρ̃ (w | b) (α̃ ◦ σ̃ (w | b))

where:

α̃ is the vector of allocation:

α̃ =


(
1− αsatellite

)
αcore
equity(

1− αsatellite
)
αcore
bond

αsatelliteαsatellite
equity

αsatelliteαsatellite
bond


ρ̃ (w | b) is the correlation matrix of R (w)− R (b)
σ̃ (w | b) is the vector of tracking error volatilities:

σ̃ (w | b) =


σ
(
w core
equity | bequity

)
σ (w core

bond | bbond)
σ
(
w satellite
equity | bequity

)
σ
(
w satellite
bond | bbond

)
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Allocation process
Tracking error risk of the core-satellite portfolio

Example #12

The tracking error volatilities are 2% for the core equity portfolio, 25 bps
for the core bond portfolio, 20% for the satellite equity portfolio, and 3%
for the satellite bond portfolio. To define the correlation matrix ρ̃ (w | b),
we assume an 80% correlation between the two equity baskets, a 50%
correlation between the two bond baskets, and a 0% correlation between
the equity and bond baskets. We consider a 60/40 constant mix strategy.
The satellite portfolio represents 10% of the net zero portfolio and has
70% exposure to green bonds
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We compute the tracking error covariance matrix Σ̃ (w | b) as follows:
The tracking error variance for the core equity portfolio is
Σ̃1,1 (w | b) = 0.022

The tracking error variance for the satellite equity portfolio is
Σ̃3,3 (w | b) = 0.202

The tracking error covariance for the two core portfolios is
Σ̃1,2 (w | b) = 0× 0.02× 0.0025
The tracking error covariance for the core equity portfolio and the
satellite equity portfolio is Σ̃1,3 (w | b) = 0.80× 0.02× 0.20
Etc.

Finally, we get:

Σ̃ (w | b) =


4 0 32 0
0 0.0625 0 0.375

32 0 400 0
0 0.375 0 9

× 10−4

and σ (w | b) = 1.68% because α̃ = (57%, 33%, 3%, 7%)
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Table 96: Estimation of the tracking error volatility of the core-satellite portfolio
(in %)

αsatellite Bond Defensive Balanced 60/40 Dynamic Equity

Lower bound
10% 0.38 0.62 1.36 1.62 2.15 2.69
20% 0.63 1.00 2.18 2.60 3.45 4.31
30% 0.92 1.43 3.11 3.71 4.93 6.16

Upper bound
10% 0.53 1.18 2.16 2.49 3.15 3.80
20% 0.80 1.76 3.20 3.68 4.64 5.60
30% 1.07 2.34 4.24 4.87 6.13 7.40
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∂αsatellite (t)

∂t
≥ 0
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We consider an investment universe of 8 issuers. In the table below, we
report the carbon emissions CE i,j (in ktCO2e) of these companies and
their revenues Yi (in $ bn), and we indicate in the last row whether the
company belongs to sector Sector1 or Sector2:

Issuer #1 #2 #3 #4 #5 #6 #7 #8
CE i,1 75 5 000 720 50 2 500 25 30 000 5
CE i,2 75 5 000 1 030 350 4 500 5 2000 64
CE i,3 24 000 15 000 1 210 550 500 187 30 000 199
Yi 300 328 125 100 200 102 107 25
Sector 1 2 1 1 2 1 2 2

The benchmark b of this investment universe is defined as:

b = (22%, 19%, 17%, 13%, 11%, 8%, 6%, 4%)

In what follows, we consider long-only portfolios.
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Question 1

We want to compute the carbon intensity of the benchmark.
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Question (a)

Compute the carbon intensities CI i,j of each company i for the scopes 1,
2 and 3.
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We have:

CI i,j =
CE i,j

Yi

For instance, if we consider the 8th issuer, we have24:

CI8,1 =
CE8,1

Y8
=

5

25
= 0.20 tCO2e/$ mn

CI8,2 =
CE8,2

Y8
=

64

25
= 2.56 tCO2e/$ mn

CI8,3 =
CE8,3

Y8
=

199

25
= 7.96 tCO2e/$ mn

24Because 1 ktCO2e/$ bn = 1 tCO2e/$ mn.
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Since we have:

Issuer #1 #2 #3 #4 #5 #6 #7 #8
CE i,1 75 5 000 720 50 2 500 25 30 000 5
CE i,2 75 5 000 1 030 350 4 500 5 2000 64
CE i,3 24 000 15 000 1 210 550 500 187 30 000 199
Yi 300 328 125 100 200 102 107 25

we obtain:

Issuer #1 #2 #3 #4 #5 #6 #7 #8
CI i,1 0.25 15.24 5.76 0.50 12.50 0.25 280.37 0.20
CI i,2 0.25 15.24 8.24 3.50 22.50 0.05 18.69 2.56
CI i,3 80.00 45.73 9.68 5.50 2.50 1.83 280.37 7.96
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Question (b)

Deduce the carbon intensities CI i,j of each company i for the scopes
1 + 2 and 1 + 2 + 3.
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We have:

CI i,1−2 =
CE i,1 + CE i,2

Yi
= CI i,1 + CI i,2

and:
CI i,1−3 = CI i,1 + CI i,2 + CI i,3

We deduce that:

Issuer #1 #2 #3 #4 #5 #6 #7 #8
CI i,1 0.25 15.24 5.76 0.50 12.50 0.25 280.37 0.20
CI i,1−2 0.50 30.49 14.00 4.00 35.00 0.29 299.07 2.76
CI i,1−3 80.50 76.22 23.68 9.50 37.50 2.12 579.44 10.72
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Question (c)

Deduce the weighted average carbon intensity (WACI) of the benchmark if
we consider the scope 1 + 2 + 3.
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We have:

CI (b) =
8∑

i=1

biCI i

= 0.22× 80.50 + 0.19× 76.2195 + 0.17× 23.68 + 0.13× 9.50 +

0.11× 37.50 + 0.08× 2.1275 + 0.06× 579.4393 + 0.04× 10.72

= 76.9427 tCO2e/$ mn
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Question (d)

We assume that the market capitalization of the benchmark portfolio is
equal to $10 tn and we invest $1 bn.
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Question (d).i

Deduce the market capitalization of each company (expressed in $ bn).
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We have:

bi =
MCi∑8

k=1 MCk

and
∑8

k=1 MCk = $10 tn. We deduce that:

MCi = 10× bi

We obtain the following values of market capitalization expressed in $ bn:

Issuer #1 #2 #3 #4 #5 #6 #7 #8
MCi 2 200 1 900 1 700 1 300 1 100 800 600 400
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Question (d).ii

Compute the ownership ratio for each asset (expressed in bps).
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Let W be the wealth invested in the benchmark portfolio b. The wealth
invested in asset i is equal to biW . We deduce that the ownership ratio is
equal to:

$i =
biW

MCi
=

biW

bi

∑n
k=1 MCk

=
W∑n

k=1 MCk

When we invest in a capitalization-weighted portfolio, the ownership ratio
is the same for all the assets. In our case, we have:

$i =
1

10× 1000
= 0.01%

The ownership ratio is equal to 1 basis point.
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Question (d).iii

Compute the carbon emissions of the benchmark portfolioa if we invest $1
bn and we consider the scope 1 + 2 + 3.

aWe assume that the float percentage is equal to 100% for all the 8 companies.
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Using the financed emissions approach, the carbon emissions of our
investment is equal to:

CE ($1 bn) = 0.01%× (75 + 75 + 24 000) +

0.01%× (5 000 + 5 000 + 15 000) +

. . .+

0.01%× (5 + 64 + 199)

= 12.3045 ktCO2e
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Question (d).iv

Compare the (exact) carbon intensity of the benchmark portfolio with the
WACI value obtained in Question 1.(c).
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We compute the revenues of our investment:

Y ($1 bn) = 0.01%
8∑

i=1

Yi = $0.1287 bn

We deduce that the exact carbon intensity is equal to:

CI ($1 bn) =
CE ($1 bn)

Y ($1 bn)
=

12.3045

0.1287
= 95.6061 tCO2e/$ mn

We notice that the WACI of the benchmark underestimates the exact
carbon intensity of our investment by 19.5%:

76.9427 < 95.6061
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Question 2

We want to manage an equity portfolio with respect to the previous
investment universe and reduce the weighted average carbon intensity of
the benchmark by the rate R. We assume that the volatility of the stocks
is respectively equal to 22%, 20%, 25%, 18%, 40%, 23%, 13% and 29%.
The correlation matrix between these stocks is given by:

ρ =



100%
80% 100%
70% 75% 100%
60% 65% 80% 100%
70% 50% 70% 85% 100%
50% 60% 70% 80% 60% 100%
70% 50% 70% 75% 80% 50% 100%
60% 65% 70% 75% 65% 70% 60% 100%
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Question (a)

Compute the covariance matrix Σ.
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The covariance matrix Σ = (Σi,j ) is defined by:

Σi,j = ρi,jσiσj

We obtain the following numerical values (expressed in bps):

Σ =



484.0 352.0 385.0 237.6 616.0 253.0 200.2 382.8
352.0 400.0 375.0 234.0 400.0 276.0 130.0 377.0
385.0 375.0 625.0 360.0 700.0 402.5 227.5 507.5
237.6 234.0 360.0 324.0 612.0 331.2 175.5 391.5
616.0 400.0 700.0 612.0 1600.0 552.0 416.0 754.0
253.0 276.0 402.5 331.2 552.0 529.0 149.5 466.9
200.2 130.0 227.5 175.5 416.0 149.5 169.0 226.2
382.8 377.0 507.5 391.5 754.0 466.9 226.2 841.0
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Question (b)

Write the optimization problem if the objective function is to minimize the
tracking error risk under the constraint of carbon intensity reduction.
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The tracking error variance of portfolio w with respect to benchmark b is
equal to:

σ2 (w | b) = (w − b)>Σ (w − b)

The carbon intensity constraint has the following expression:

8∑
i=1

wiCI i ≤ (1−R)CI (b)

where R is the reduction rate and CI (b) is the carbon intensity of the
benchmark. Let CI? = (1−R)CI (b) be the target value of the carbon
footprint. The optimization problem is then:

w? = arg min
1

2
σ2 (w | b)

s.t.


∑8

i=1 wiCI i ≤ CI?∑8
i=1 wi = 1

0 ≤ wi ≤ 1

We add the second and third constraints in order to obtain a long-only
portfolio.
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Question (c)

Give the QP formulation of the optimization problem.
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The objective function is equal to:

f (w) =
1

2
σ2 (w | b) =

1

2
(w − b)>Σ (w − b) =

1

2
w>Σw−w>Σb+

1

2
b>Σb

while the matrix form of the carbon intensity constraint is:

CI>w ≤ CI?

where CI = (CI1, . . . ,CI8) is the column vector of carbon intensities.
Since b>Σb is a constant and does not depend on w , we can cast the
previous optimization problem into a QP problem:

w? = arg min
1

2
w>Qw − w>R

s.t.

 Aw = B
Cw ≤ D
w− ≤ w ≤ w+

We have Q = Σ, R = Σb, A = 1>8 , B = 1, C = CI>, D = CI?,
w− = 08 and w+ = 18.
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Question (d)

R is equal to 20%. Find the optimal portfolio if we target scope 1 + 2.
What is the value of the tracking error volatility?
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We have:

CI (b) = 0.22× 0.50 + 0.19× 30.4878 + . . .+ 0.04× 2.76

= 30.7305 tCO2e/$ mn

We deduce that:

CI? = (1−R)CI (b) = 0.80× 30.7305 = 24.5844 tCO2e/$ mn

Therefore, the inequality constraint of the QP problem is:

(
0.50 30.49 14.00 4.00 35.00 0.29 299.07 2.76

)


w1

w2

...
w7

w8

 ≤ 24.5844
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We obtain the following optimal solution:

w? =



23.4961%
17.8129%
17.1278%
15.4643%
10.4037%

7.5903%
4.0946%
4.0104%


The minimum tracking error volatility σ (w? | b) is equal to 15.37 bps.
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Question (e)

Same question if R is equal to 30%, 50%, and 70%.
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Table 97: Solution of the equity optimization problem (scope SC1−2)

R 0% 20% 30% 50% 70%
w1 22.0000 23.4961 24.2441 25.7402 30.4117
w2 19.0000 17.8129 17.2194 16.0323 9.8310
w3 17.0000 17.1278 17.1917 17.3194 17.8348
w4 13.0000 15.4643 16.6964 19.1606 23.3934
w5 11.0000 10.4037 10.1055 9.5091 7.1088
w6 8.0000 7.5903 7.3854 6.9757 6.7329
w7 6.0000 4.0946 3.1418 1.2364 0.0000
w8 4.0000 4.0104 4.0157 4.0261 4.6874

CI (w) 30.7305 24.5844 21.5114 15.3653 9.2192
σ (w | b) 0.00 15.37 23.05 38.42 72.45
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In Table 97, we report the optimal solution w? (expressed in %) of the
optimization problem for different values of R. We also indicate the
carbon intensity of the portfolio (in tCO2e/$ mn) and the tracking error
volatility (in bps). For instance, if R is set to 50%, the weights of assets
#1, #3, #4 and #8 increase whereas the weights of assets #2, #5, #6
and #7 decrease. The carbon intensity of this portfolio is equal to
15.3653 tCO2e/$ mn. The tracking error volatility is below 40 bps, which
is relatively low.
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Question (f)

We target scope 1 + 2 + 3. Find the optimal portfolio if R is equal to
20%, 30%, 50% and 70%. Give the value of the tracking error volatility for
each optimized portfolio.
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In this case, the inequality constraint Cw ≤ D is defined by:

C = CI>1−3 =



80.5000
76.2195
23.6800

9.5000
37.5000

2.1275
579.4393

10.7200



>

and:
D = (1−R)× 76.9427
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We obtain the results given in Table 98.

Table 98: Solution of the equity optimization problem (scope SC1−3)

R 0% 20% 30% 50% 70%
w1 22.0000 23.9666 24.9499 26.4870 13.6749
w2 19.0000 17.4410 16.6615 8.8001 0.0000
w3 17.0000 17.1988 17.2981 19.4253 24.1464
w4 13.0000 16.5034 18.2552 25.8926 41.0535
w5 11.0000 10.2049 9.8073 7.1330 3.5676
w6 8.0000 7.4169 7.1254 7.0659 8.8851
w7 6.0000 3.2641 1.8961 0.0000 0.0000
w8 4.0000 4.0043 4.0065 5.1961 8.6725

CI (w) 76.9427 61.5541 53.8599 38.4713 23.0828
σ (w | b) 0.00 21.99 32.99 104.81 414.48
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Question (g)

Compare the optimal solutions obtained in Questions 2.(e) and 2.(f).
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Figure 119: Impact of the scope on the tracking error volatility
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Figure 120: Impact of the scope on the portfolio allocation (in %)
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In Figure 119, we report the relationship between the reduction rate R
and the tracking error volatility σ (w | b). The choice of the scope has
little impact when R ≤ 45%. Then, we notice a high increase when we
consider the scope 1 + 2 + 3. The portfolio’s weights are given in Figure
120. For assets #1 and #3, the behavior is divergent when we compare
scopes 1 + 2 and 1 + 2 + 3.
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L2-norm risk measures
L1-norm risk measures

Question 3

We want to manage a bond portfolio with respect to the previous
investment universe and reduce the weighted average carbon intensity of
the benchmark by the rate R. We use the scope 1 + 2 + 3. In the table
below, we report the modified duration MDi and the
duration-times-spread factor DTSi of each corporate bond i :

Asset #1 #2 #3 #4 #5 #6 #7 #8
MDi (in years) 3.56 7.48 6.54 10.23 2.40 2.30 9.12 7.96
DTSi (in bps) 103 155 75 796 89 45 320 245
Sector 1 2 1 1 2 1 2 2
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L2-norm risk measures
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Question 3 (Cont’d)

We remind that the active risk can be calculated using three functions.
For the active share, we have:

RAS (w | b) = σ2
AS (w | b) =

n∑
i=1

(wi − bi )
2

We also consider the MD-based tracking error risk:

RMD (w | b) = σ2
MD (w | b) =

nSector∑
j=1

(∑
i∈Sectorj

(wi − bi )MDi

)2

and the DTS-based tracking error risk:

RDTS (w | b) = σ2
DTS (w | b) =

nSector∑
j=1

(∑
i∈Sectorj

(wi − bi )DTSi

)2
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Question 3 (Cont’d)

Finally, we define the synthetic risk measure as a combination of AS, MD
and DTS active risks:

R (w | b) = ϕASRAS (w | b) + ϕMDRMD (w | b) + ϕDTSRDTS (w | b)

where ϕAS ≥ 0, ϕMD ≥ 0 and ϕDTS ≥ 0 indicate the weight of each risk.
In what follows, we use the following numerical values: ϕAS = 100,
ϕMD = 25 and ϕDTS = 1. The reduction rate R of the weighted average
carbon intensity is set to 50% for the scope 1 + 2 + 3.
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Question (a)

Compute the modified duration MD (b) and the duration-times-spread
factor DTS (b) of the benchmark.

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 1191 / 1420



Carbon intensity of the benchmark
Equity portfolios
Bond portfolios
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We have:

MD (b) =
n∑

i=1

bi MDi

= 0.22× 3.56 + 0.19× 7.48 + . . .+ 0.04× 7.96

= 5.96 years

and:

DTS (b) =
n∑

i=1

bi DTSi

= 0.22× 103 + 0.19× 155 + . . .+ 0.04× 155

= 210.73 bps
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Question (b)

Let wew be the equally-weighted portfolio. Computea MD (wew),
DTS (wew), σAS (wew | b), σMD (wew | b) and σDTS (wew | b).

aPrecise the corresponding unit (years, bps or %) for each metric.
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We have: 
MD (wew) = 6.20 years
DTS (wew) = 228.50 bps
σAS (wew | b) = 17.03%
σMD (wew | b) = 1.00 years
σDTS (wew | b) = 36.19 bps
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Question (c)

We consider the following optimization problem:

w? = arg min
1

2
RAS (w | b)

s.t.



∑n
i=1 wi = 1

MD (w) = MD (b)
DTS (w) = DTS (b)
CI (w) ≤ (1−R)CI (b)
0 ≤ wi ≤ 1

Give the analytical value of the objective function. Find the optimal
portfolio w?. Compute MD (w?), DTS (w?), σAS (w? | b), σMD (w? | b)
and σDTS (w? | b).
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We have:

RAS (w | b) = (w1 − 0.22)2 + (w2 − 0.19)2 + (w3 − 0.17)2 + (w4 − 0.13)2 +

(w5 − 0.11)2 + (w6 − 0.08)2 + (w7 − 0.06)2 + (w8 − 0.04)2

The objective function is then:

f (w) =
1

2
RAS (w | b)

The optimal solution is equal to:

w? = (17.30%, 17.41%, 20.95%, 14.41%, 10.02%, 11.09%, 0%, 8.81%)

The risk metrics are: 
MD (w?) = 5.96 years
DTS (w?) = 210.73 bps
σAS (w? | b) = 10.57%
σMD (w? | b) = 0.43 years
σDTS (w? | b) = 15.21 bps
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Question (d)

We consider the following optimization problem:

w? = arg min
ϕAS

2
RAS (w | b) +

ϕMD

2
RMD (w | b)

s.t.


∑n

i=1 wi = 1
DTS (w) = DTS (b)
CI (w) ≤ (1−R)CI (b)
0 ≤ wi ≤ 1

Give the analytical value of the objective function. Find the optimal
portfolio w?. Compute MD (w?), DTS (w?), σAS (w? | b), σMD (w? | b)
and σDTS (w? | b).
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We have25:

RMD (w | b) =

 ∑
i=1,3,4,6

(wi − bi )MDi

2

+

 ∑
i=2,5,7,8

(wi − bi )MDi

2

=

 ∑
i=1,3,4,6

wi MDi −
∑

i=1,3,4,6

bi MDi

2

+

 ∑
i=2,5,7,8

wi MDi −
∑

i=2,5,7,8

bi MDi

2

= (3.56w1 + 6.54w3 + 10.23w4 + 2.30w6 − 3.4089)2 +

(7.48w2 + 2.40w5 + 9.12w7 + 7.96w8 − 2.5508)2

The objective function is then:

f (w) =
ϕAS

2
RAS (w | b) +

ϕMD

2
RMD (w | b)

25We verify that 3.4089 + 2.5508 = 5.9597 years.
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The optimal solution is equal to:

w? = (16.31%, 18.44%, 17.70%, 13.82%, 11.67%, 11.18%, 0%, 10.88%)

The risk metrics are: 
MD (w?) = 5.93 years
DTS (w?) = 210.73 bps
σAS (w? | b) = 11.30%
σMD (w? | b) = 0.03 years
σDTS (w? | b) = 3.70 bps
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Question (e)

We consider the following optimization problem:

w? = arg min
1

2
R (w | b)

s.t.


∑n

i=1 wi = 1
CI (w) ≤ (1−R)CI (b)
0 ≤ wi ≤ 1

Give the analytical value of the objective function. Find the optimal
portfolio w?. Compute MD (w?), DTS (w?), σAS (w? | b), σMD (w? | b)
and σDTS (w? | b).
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We have26:

RDTS (w | b) =

 ∑
i=1,3,4,6

(wi − bi )DTSi

2

+

 ∑
i=2,5,7,8

(wi − bi )DTSi

2

= (103w1 + 75w3 + 796w4 + 45w6 − 142.49)2 +

(155w2 + 89w5 + 320w7 + 245w8 − 68.24)2

The objective function is then:

f (w) =
ϕAS

2
RAS (w | b) +

ϕMD

2
RMD (w | b) +

ϕDTS

2
RDTS (w | b)

26We verify that 142.49 + 68.24 = 210.73 bps.
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The optimal solution is equal to:

w? = (16.98%, 17.21%, 18.26%, 13.45%, 12.10%, 9.46%, 0%, 12.55%)

The risk metrics are: 
MD (w?) = 5.97 years
DTS (w?) = 210.68 bps
σAS (w? | b) = 11.94%
σMD (w? | b) = 0.03 years
σDTS (w? | b) = 0.06 bps
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Question (f)

Comment on the results obtained in Questions 3.(c), 3.(d) and 3.(e).
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Table 99: Solution of the bond optimization problem (scope SC1−3)

Problem Benchmark 3.(c) 3.(d) 3.(e)
w1 22.0000 17.3049 16.3102 16.9797
w2 19.0000 17.4119 18.4420 17.2101
w3 17.0000 20.9523 17.6993 18.2582
w4 13.0000 14.4113 13.8195 13.4494
w5 11.0000 10.0239 11.6729 12.1008
w6 8.0000 11.0881 11.1792 9.4553
w7 6.0000 0.0000 0.0000 0.0000
w8 4.0000 8.8075 10.8769 12.5464

MD (w) 5.9597 5.9597 5.9344 5.9683
DTS (w) 210.7300 210.7300 210.7300 210.6791
σAS (w | b) 0.0000 10.5726 11.3004 11.9400
σMD (w | b) 0.0000 0.4338 0.0254 0.0308
σDTS (w | b) 0.0000 15.2056 3.7018 0.0561

CI (w) 76.9427 38.4713 38.4713 38.4713
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Question (g)

How to find the previous solution of Question 3.(e) using a QP solver?
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The goal is to write the objective function into a quadratic function:

f (w) =
ϕAS

2
RAS (w | b) +

ϕMD

2
RMD (w | b) +

ϕDTS

2
RDTS (w | b)

=
1

2
w>Q (b)w − w>R (b) + c (b)

where:

RAS (w | b) = (w1 − 0.22)2 + (w2 − 0.19)2 + (w3 − 0.17)2 + (w4 − 0.13)2 +

(w5 − 0.11)2 + (w6 − 0.08)2 + (w7 − 0.06)2 + (w8 − 0.04)2

RMD (w | b) = (3.56w1 + 6.54w3 + 10.23w4 + 2.30w6 − 3.4089)2 +

(7.48w2 + 2.40w5 + 9.12w7 + 7.96w8 − 2.5508)2

RDTS (w | b) = (103w1 + 75w3 + 796w4 + 45w6 − 142.49)2 +

(155w2 + 89w5 + 320w7 + 245w8 − 68.24)2
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We use the analytical approach which is described in Section 11.1.2 on
pages 332-339. Moreover, we rearrange the universe such that the first
fourth assets belong to the first sector and the last fourth assets belong to
the second sector. In this case, we have:

w =

w1,w3,w4,w6︸ ︷︷ ︸
Sector1

,w2,w5,w7,w8︸ ︷︷ ︸
Sector2
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The matrix Q (b) is block-diagonal:

Q (b) =

(
Q1 04,4

04,4 Q2

)
where the matrices Q1 and Q2 are equal to:

Q1 =


11 025.8400 8 307.0600 82 898.4700 4 839.7000

8 307.0600 6 794.2900 61 372.6050 3 751.0500
82 898.4700 61 372.6050 636 332.3225 36 408.2250

4 839.7000 3 751.0500 36 408.2250 2 257.2500


and:

Q2 =


25 523.7600 14 243.8000 51 305.4400 39 463.5200
14 243.8000 8 165.0000 29 027.2000 22 282.6000
51 305.4400 29 027.2000 104 579.3600 80 214.8800
39 463.5200 22 282.6000 80 214.8800 61 709.0400
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The vector R (b) is defined as follows:

R (b) =



15 001.8621
11 261.1051

114 306.8662
6 616.0617

11 073.1996
6 237.4080

22 424.3824
17 230.4092


Finally, the value of c (b) is equal to:

c (b) = 12 714.3386
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Using a QP solver, we obtain the following numerical solution:

w1

w3

w4

w6

w2

w5

w7

w8


=



16.9796
18.2582
13.4494

9.4553
17.2102
12.1009

0.0000
12.5464


× 10−2

We observe some small differences (after the fifth digit) because the QP
solver is more efficient than a traditional nonlinear solver.
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Question 4

We consider a variant of Question 3 and assume that the synthetic risk
measure is:

D (w | b) = ϕASDAS (w | b) + ϕMDDMD (w | b) + ϕDTSDDTS (w | b)

where:

DAS (w | b) =
1

2

n∑
i=1

|wi − bi |

DMD (w | b) =

nSector∑
j=1

∣∣∣∣∑i∈Sectorj

(wi − bi )MDi

∣∣∣∣
DDTS (w | b) =

nSector∑
j=1

∣∣∣∣∑i∈Sectorj

(wi − bi )DTSi

∣∣∣∣
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Question (a)

Define the corresponding optimization problem when the objective is to
minimize the active risk and reduce the carbon intensity of the benchmark
by R.
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The optimization problem is:

w? = arg minD (w | b)

s.t.


1>8 w = 1

CI>w ≤ (1−R)CI (b)
08 ≤ w ≤ 18
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Question (b)

Give the LP formulation of the optimization problem.
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We use the absolute value trick and obtain the following optimization
problem:

w? = arg min
1

2
ϕAS

8∑
i=1

τi,w + ϕMD

2∑
j=1

τj,MD + ϕDTS

2∑
j=1

τj,DTS

s.t.



1>8 w = 1
08 ≤ w ≤ 18

CI>w ≤ (1−R)CI (b)
|wi − bi | ≤ τi,w∣∣∣∑i∈Sectorj

(wi − bi )MDi

∣∣∣ ≤ τj,MD∣∣∣∑i∈Sectorj
(wi − bi )DTSi

∣∣∣ ≤ τj,DTS

τi,w ≥ 0, τj,MD ≥ 0, τj,DTS ≥ 0

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 1215 / 1420



Carbon intensity of the benchmark
Equity portfolios
Bond portfolios

L2-norm risk measures
L1-norm risk measures

We can now formulate this problem as a standard LP problem:

x? = arg min c>x

s.t.

 Ax = B
Cx ≤ D
x− ≤ x ≤ x+

where x is the 20× 1 vector defined as follows:

x =


w
τw

τMD

τDTS
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The 20× 1 vector c is equal to:

c =


08

1

2
ϕAS18

ϕMD12

ϕDTS12


The equality constraint is defined by A =

(
1>8 0>8 0>2 0>2

)
and

B = 1. The bounds are x− = 020 and x+ =∞ · 120.
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For the inequality constraint, we have27:

Cx ≤ D ⇔



I8 −I8 08,2 08,2

−I8 −I8 08,2 08,2

CMD 02,8 −I2 02,2

−CMD 02,8 −I2 02,2

CDTS 02,8 02,2 −I2
−CDTS 02,8 02,2 −I2
CI> 01,8 0 0


x ≤



b
−b
MD?

−MD?

DTS?

−DTS?

(1−R)CI (b)


where:

CMD =

(
3.56 0.00 6.54 10.23 0.00 2.30 0.00 0.00
0.00 7.48 0.00 0.00 2.40 0.00 9.12 7.96

)
and:

CDTS =

(
103 0 75 796 0 45 0 0

0 155 0 0 89 0 320 245

)
The 2× 1 vectors MD? and DTS? are respectively equal to
(3.4089, 2.5508) and (142.49, 68.24).

27C is a 25× 8 matrix and D is a 25× 1 vector.
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Question (c)

Find the optimal portfolio when R is set to 50%. Compare the solution
with this obtained in Question 3.(e).
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We obtain the following solution:

w? = (18.7360, 15.8657, 17.8575, 13.2589, 11, 9.4622, 0, 13.8196)× 10−2

τ?w = (3.2640, 3.1343, 0.8575, 0.2589, 0, 1.4622, 6, 9.8196)× 10−2

τMD = (0, 0)

τDTS = (0, 0)
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Table 100: Solution of the bond optimization problem (scope SC1−3)

Problem Benchmark 3.(e) 4.(c)
w1 22.0000 16.9796 18.7360
w2 19.0000 17.2102 15.8657
w3 17.0000 18.2582 17.8575
w4 13.0000 13.4494 13.2589
w5 11.0000 12.1009 11.0000
w6 8.0000 9.4553 9.4622
w7 6.0000 0.0000 0.0000
w8 4.0000 12.5464 13.8196

MD (w) 5.9597 5.9683 5.9597
DTS (w) 210.7300 210.6791 210.7300
σAS (w | b) 0.0000 11.9400 12.4837
σMD (w | b) 0.0000 0.0308 0.0000
σDTS (w | b) 0.0000 0.0561 0.0000
DAS (w | b) 0.0000 25.6203 24.7964
DMD (w | b) 0.0000 0.0426 0.0000
DDTS (w | b) 0.0000 0.0608 0.0000

CI (w) 76.9427 38.4713 38.4713
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In Table 100, we compare the two solutions28. They are very close. In
fact, we notice that the LP solution matches perfectly the MD and DTS
constraints, but has a higher AS risk σAS (w | b). If we note the two
solutions w? (L1) and w? (L2), we have:{

R (w? (L2) | b) = 1.4524 < R (w? (L1) | b) = 1.5584
D (w? (L2) | b) = 13.9366 > D (w? (L1) | b) = 12.3982

There is a trade-off between the L1- and L2-norm risk measures. This is
why we cannot say that one solution dominates the other.

28The units are the following: % for the weights wi , and the active share metrics
σAS (w | b) and DAS (w | b); years for the modified duration metrics MD (w),
σMD (w | b) and DMD (w | b); bps for the duration-times-spread metrics DTS (w),
σDTS (w | b) and DDTS (w | b); tCO2e/$ mn for the carbon intensity DTS (w).
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Agenda

Lecture 1: Portfolio Optimization

Lecture 2: Risk Budgeting

Lecture 3: Smart Beta, Factor Investing and Alternative Risk Premia

Lecture 4: Equity Portfolio Optimization with ESG Scores

Lecture 5: Climate Portfolio Construction

Lecture 6: Equity and Bond Portfolio Optimization with Green
Preferences

Lecture 7: Machine Learning in Asset Management
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Prologue

Machine learning is a hot topic in asset management (and more
generally in finance)

Machine learning and data mining are two sides of the same coin

backtesting performance 6= live performance

Reaching for the stars: a complex/complicated process does not mean
a good solution

Don’t forget the 3 rules in asset management

1 It is difficult to make money

2 It is difficult to make money

3 It is difficult to make money
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Prologue

In this lecture, we focus on ML optimization algorithms, because they
have proved their worth

We have no time to study classical ML methods that can be used by
quants to build investment strategies30

30Don’t believe that they are always significantly better than standard statistical
approaches!!!
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Standard optimization algorithms

Gradient descent methods

Conjugate gradient (CG) methods (Fletcher–Reeves, Polak–Ribiere,
etc.)

Quasi-Newton (QN) methods (NR, BFGS, DFP, etc.)

Quadratic programming (QP) methods

Sequential QP methods

Interior-point methods
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Standard optimization algorithms

We consider the following unconstrained minimization problem:

x? = arg min
x

f (x) (7)

where x ∈ Rn and f (x) is a continuous, smooth and convex function

In order to find the solution x?, optimization algorithms use iterative
algorithms:

x (k+1) = x (k) + ∆x (k)

= x (k) − η(k)D(k)

where:

x (0) is the vector of starting values
x (k) is the approximated solution of Problem (7) at the kth iteration
η(k) > 0 is a scalar that determines the step size
D(k) is the direction
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Standard optimization algorithms

Gradient descent:

D(k) = ∇f
(
x (k)

)
=
∂ f
(
x (k)

)
∂ x

Newton-Raphson method:

D(k) =
(
∇2f

(
x (k)

))−1

∇f
(
x (k)

)
=

(
∂2 f

(
x (k)

)
∂ x ∂ x>

)−1
∂ f
(
x (k)

)
∂ x

Quasi-Newton method:

D(k) = H(k)∇f
(
x (k)

)
where H(k) is an approximation of the inverse of the Hessian matrix
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Standard optimization algorithms

What are the issues?

1 How to solve large-scale optimization problems?

2 How to solve optimization problems where there are multiple
solutions?

3 How to just find an “acceptable” solution?

The case of neural networks and deep learning

⇒ Standard approaches are not well adapted
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Machine learning optimization algorithms

Machine learning problems

Non-smooth objective function

Non-unique solution

Large-scale dimension

Optimization in machine learning requires

to reinvent numerical optimization
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Machine learning optimization algorithms

We consider 4 methods:

Cyclical coordinate descent (CCD)

Alternative direction method of multipliers (ADMM)

Proximal operators (PO)

Dykstra’s algorithm (DA)
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Coordinate descent methods

The fall and the rise of the steepest descent method

In the 1980s:

Conjugate gradient methods (Fletcher–Reeves, Polak–Ribiere, etc.)

Quasi-Newton methods (NR, BFGS, DFP, etc.)

In the 1990s:

Neural networks

Learning rules: Descent, Momentum/Nesterov and Adaptive learning
methods

In the 2000s:

Gradient descent (by observations): Batch gradient descent (BGD),
Stochatic gradient descent (SGD), Mini-batch gradient descent
(MGD)

Gradient descent (by parameters): Coordinate descent (CD), cyclical
coordinate descent (CCD), Random coordinate descent (RCD)
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Coordinate descent methods

Descent method

The descent algorithm is defined by the following rule:

x (k+1) = x (k) + ∆x (k) = x (k) − η(k)D(k)

At the kth Iteration, the current solution x (k) is updated by going in the
opposite direction to D(k) (generally, we set D(k) = ∂x f

(
x (k)

)
)

Coordinate descent method

Coordinate descent is a modification of the descent algorithm by
minimizing the function along one coordinate at each step:

x
(k+1)
i = x

(k)
i + ∆x

(k)
i = x

(k)
i − η(k)D

(k)
i

⇒ The coordinate descent algorithm becomes a scalar problem
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Coordinate descent methods

Choice of the variable i

1 Random coordinate descent (RCD)
We assign a random number between 1 and n to the index i
(Nesterov, 2012)

2 Cyclical coordinate descent (CCD)
We cyclically iterate through the coordinates (Tseng, 2001):

x
(k+1)
i = arg min

x
f
(
x

(k+1)
1 , . . . , x

(k+1)
i−1 , x , x

(k)
i+1, . . . , x

(k)
n

)
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Cyclical coordinate descent (CCD)

Example 1

We consider the following function:

f (x1, x2, x3) = (x1 − 1)2 + x2
2 − x2 + (x3 − 2)4 ex1−x2+3

We have:

D1 =
∂ f (x1, x2, x3)

∂ x1
= 2 (x1 − 1) + (x3 − 2)4 ex1−x2+3

D2 =
∂ f (x1, x2, x3)

∂ x2
= 2x2 − 1− (x3 − 2)4 ex1−x2+3

D3 =
∂ f (x1, x2, x3)

∂ x3
= 4 (x3 − 2)3 ex1−x2+3
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Cyclical coordinate descent (CCD)

The CCD algorithm is defined by the following iterations:

x
(k+1)
1 = x

(k)
1 − η(k)

(
2
(
x

(k)
1 − 1

)
+
(
x

(k)
3 − 2

)4

ex
(k)
1 −x

(k)
2 +3

)
x

(k+1)
2 = x

(k)
2 − η(k)

(
2x

(k)
2 − 1−

(
x

(k)
3 − 2

)4

ex
(k+1)
1 −x

(k)
2 +3

)
x

(k+1)
3 = x

(k)
3 − η(k)

(
4
(
x

(k)
3 − 2

)3

ex
(k+1)
1 −x

(k+1)
2 +3

)
We have the following scheme:(

x
(0)
1 , x

(0)
2 , x

(0)
3

)
→ x

(1)
1 →

(
x

(1)
1 , x

(0)
2 , x

(0)
3

)
→ x

(1)
2 →

(
x

(1)
1 , x

(1)
2 , x

(0)
3

)
→ x

(1)
3 →(

x
(1)
1 , x

(1)
2 , x

(1)
3

)
→ x

(2)
1 →

(
x

(2)
1 , x

(1)
2 , x

(1)
3

)
→ x

(2)
2 →

(
x

(2)
1 , x

(2)
2 , x

(1)
3

)
→ x

(2)
3 →(

x
(2)
1 , x

(2)
2 , x

(2)
3

)
→ x

(3)
1 → . . .
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Cyclical coordinate descent (CCD)

Table 101: Solution obtained with the CCD algorithm (η(k) = 0.25)

k x
(k)
1 x

(k)
2 x

(k)
3 D

(k)
1 D

(k)
2 D

(k)
3

0 1.0000 1.0000 1.0000
1 -4.0214 0.7831 1.1646 20.0855 0.8675 -0.6582
2 -1.5307 0.8834 2.2121 -9.9626 -0.4013 -4.1902
3 -0.2663 0.6949 2.1388 -5.0578 0.7540 0.2932
4 0.3661 0.5988 2.0962 -2.5297 0.3845 0.1703
5 0.6827 0.5499 2.0758 -1.2663 0.1957 0.0818
6 0.8412 0.5252 2.0638 -0.6338 0.0989 0.0480
7 0.9205 0.5127 2.0560 -0.3172 0.0498 0.0314
8 0.9602 0.5064 2.0504 -0.1588 0.0251 0.0222
9 0.9800 0.5033 2.0463 -0.0795 0.0126 0.0166
∞ 1.0000 0.5000 2.0000 0.0000 0.0000 0.0000
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The lasso revolution

Least absolute shrinkage and selection operator (lasso)

The lasso method consists in adding a `1 penalty function to the least
square problem:

β̂lasso (τ) = arg min
1

2
(Y − Xβ)> (Y − Xβ)

s.t. ‖β‖1 =
m∑

j=1

|βj | ≤ τ

This problem is equivalent to:

β̂lasso (λ) = arg min
1

2
(Y − Xβ)> (Y − Xβ) + λ ‖β‖1

We have:
τ =

∥∥∥β̂lasso (λ)
∥∥∥

1
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Solving the lasso regression problem

We introduce the parametrization:

β =
(
Im −Im

)( β+

β−

)
= β+ − β−

under the constraints β+ ≥ 0m and β− ≥ 0m. We deduce that:

‖β‖1 =
m∑

j=1

∣∣∣β+
j − β

−
j

∣∣∣ =
m∑

j=1

∣∣∣β+
j

∣∣∣+
m∑

j=1

∣∣∣β−j ∣∣∣ = 1>mβ
+ + 1>mβ

−
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Solving the lasso regression problem

Augmented QP program of the lasso regression (λ-problem)

The augmented QP program is specified as follows:

θ̂ = arg min
1

2
θ>Qθ − θ>R

s.t. θ ≥ 02m

where θ = (β+, β−), X̃ =
(
X −X

)
, Q = X̃>X̃ and

R = X̃>Y + λ12m. If we denote T =
(
Im −Im

)
, we obtain:

β̂lasso (λ) = T θ̂
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Solving the lasso regression problem

Augmented QP program of the lasso regression (τ -problem)

If we consider the τ -problem, we obtain another augmented QP program:

θ̂ = arg min
1

2
θ>Qθ − θ>R

s.t.

{
Cθ ≤ D
θ ≥ 02m

where Q = X̃>X̃ , R = X̃>Y , C = 1>2m and D = τ . Again, we have:

β̂ (τ) = T θ̂
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Solving the lasso regression problem

We consider the linear regression:

Y = Xβ + ε

where Y is a n × 1 vector, X is a n ×m matrix and β is a m × 1 vector.
The optimization problem is:

β̂ = arg min f (β) =
1

2
(Y − Xβ)> (Y − Xβ)

Since we have ∂β f (β) = −X> (Y − Xβ)), we deduce that:

∂ f (β)

∂ βj
= x>j (Xβ − Y )

= x>j
(
xjβj + X(−j)β(−j) − Y

)
= x>j xjβj + x>j X(−j)β(−j) − x>j Y

where xj is the n × 1 vector corresponding to the jth variable and X(−j) is

the n × (m − 1) matrix (without the jth variable)
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Solving the lasso regression problem

At the optimum, we have ∂βj f (β) = 0 or:

βj =
x>j Y − x>j X(−j)β(−j)

x>j xj
=

x>j
(
Y − X(−j)β(−j)

)
x>j xj

CCD algorithm for the linear regression

We have:

β
(k+1)
j =

x>j

Y −
j−1∑
j′=1

xj′β
(k+1)
j′ −

m∑
j′=j+1

xj′β
(k)
j′


x>j xj

⇒ Introducing pointwise constraints is straightforward
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Solving the lasso regression problem

The objective function becomes:

f (β) =
1

2
(Y − Xβ)> (Y − Xβ) + λ ‖β‖1

= fOLS (β) + λ ‖β‖1

Since the norm is separable — ‖β‖1 =
∑m

j=1 |βj |, the first-order condition
is:

∂ fOLS (β)

∂ βj
+ λ∂ |βj | = 0

or: (
x>j xj

)︸ ︷︷ ︸
c

βj − x>j
(
Y − X(−j)β(−j)

)︸ ︷︷ ︸
v

+ λ∂ |βj | = 0
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Derivation of the soft-thresholding operator

We consider the following equation:

cβj − v + λ∂ |βj | ∈ {0}

where c > 0 and λ > 0. Since we have ∂ |βj | = sign (βj ), we deduce that:

β?j =


c−1 (v + λ) if β?j < 0
0 if β?j = 0
c−1 (v − λ) if β?j > 0

If β?j < 0 or β?j > 0, then we have v + λ < 0 or v − λ > 0. This is
equivalent to set |v | > λ > 0. The case β?j = 0 implies that |v | ≤ λ. We
deduce that:

β?j = c−1 · S (v ;λ)

where S (v ;λ) is the soft-thresholding operator:

S (v ;λ) =

{
0 if |v | ≤ λ
v − λ sign (v) otherwise

= sign (v) · (|v | − λ)+
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Solving the lasso regression problem

CCD algorithm for the lasso regression

We have:

β
(k+1)
j =

1

x>j xj
S

x>j

Y −
j−1∑
j′=1

xj′β
(k+1)
j′ −

m∑
j′=j+1

xj′β
(k)
j′

 ;λ


where S (v ;λ) is the soft-thresholding operator:

S (v ;λ) = sign (v) · (|v | − λ)+
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Solving the lasso regression problem

Table 102: Matlab code'

&

$

%

for k = 1:nIters

for j = 1:m

x_j = X(:,j);

X_j = X;

X_j(:,j) = zeros(n,1);

if lambda > 0

v = x_j’*(Y - X_j*beta);

beta(j) = max(abs(v) - lambda,0) * sign(v) / (x_j’*x_j);

else

beta(j) = x_j’*(Y - X_j*beta) / (x_j’*x_j);

end

end

end
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Solving the lasso regression problem

Example 2

We consider the following data:

i y x1 x2 x3 x4 x5

1 3.1 2.8 4.3 0.3 2.2 3.5
2 24.9 5.9 3.6 3.2 0.7 6.4
3 27.3 6.0 9.6 7.6 9.5 0.9
4 25.4 8.4 5.4 1.8 1.0 7.1
5 46.1 5.2 7.6 8.3 0.6 4.5
6 45.7 6.0 7.0 9.6 0.6 0.6
7 47.4 6.1 1.0 8.5 9.6 8.6
8 −1.8 1.2 9.6 2.7 4.8 5.8
9 20.8 3.2 5.0 4.2 2.7 3.6

10 6.8 0.5 9.2 6.9 9.3 0.7
11 12.9 7.9 9.1 1.0 5.9 5.4
12 37.0 1.8 1.3 9.2 6.1 8.3
13 14.7 7.4 5.6 0.9 5.6 3.9
14 −3.2 2.3 6.6 0.0 3.6 6.4
15 44.3 7.7 2.2 6.5 1.3 0.7
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Solving the lasso regression problem
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-0.5

0

0.5

1

1.5

2

2.5

3

Figure 121: Convergence of the CCD algorithm (lasso regression, λ = 2)

Note: we start the CCD algorithm with β
(0)
j = 0 (don’t forget to standardize the data!)
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Solving the lasso regression problem

1 The dimension problem is (2m, 2m) for QP and (1, 0) for CCD!

2 CCD is faster for lasso regression than for linear regression (because
of the soft-thresholding operator)!

Suppose n = 50 000 and m = 1 000 000 (DNA sequence problem!)
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Solving the lasso regression problem

Example 3

We consider an experiment with n = 100 000 observations and
m = 50 variables.

The design matrix X is built using the uniform distribution while the
residuals are simulated using a Gaussian distribution and a standard
deviation of 20%.

The beta coefficients are distributed uniformly between −3 and +3
except four coefficients that take a larger value.

We then standardize the data of X and Y .

For initializing the coordinates, we use uniform random numbers
between −1 and +1.
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Solving the lasso regression problem

0 1 2 3 4

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0 1 2 3 4

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Figure 122: Convergence of the CCD algorithm (lasso vs linear regression)
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Alternative direction method of multipliers

Definition

The alternating direction method of multipliers (ADMM) is an algorithm
introduced by Gabay and Mercier (1976) to solve optimization problems
which can be expressed as:

{x?, y?} = arg min
(x,y)

fx (x) + fy (y)

s.t. Ax + By = c

The algorithm is:

x (k+1) = arg min
x

{
fx (x) +

ϕ

2

∥∥∥Ax + By (k) − c + u(k)
∥∥∥2

2

}
y (k+1) = arg min

y

{
fy (y) +

ϕ

2

∥∥∥Ax (k+1) + By − c + u(k)
∥∥∥2

2

}
u(k+1) = u(k) +

(
Ax (k+1) + By (k+1) − c

)
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Alternative direction method of multipliers

What is the underlying idea?

Minimizing fx (x) + fy (y) with respect to (x , y) is a difficult task

Minimizing

gx (x) = fx (x) +
ϕ

2
‖Ax + By − c‖2

2

with respect to x and minimizing

gy (y) = fy (y) +
ϕ

2
‖Ax + By − c‖2

2

with respect to y is easier
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Alternative direction method of multipliers

We use the following notations:

f
(k+1)

x (x) is the objective function of the x-update step:

f (k+1)
x (x) = fx (x) +

ϕ

2

∥∥∥Ax + By (k) − c + u(k)
∥∥∥2

2

f
(k+1)

y (y) is the objective function of the y -update step:

f (k+1)
y (y) = fy (y) +

ϕ

2

∥∥∥Ax (k+1) + By − c + u(k)
∥∥∥2

2
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Alternative direction method of multipliers

When A = In and B = −In, we have:
1

Ax + By (k) − c + u(k) = x − y (k) − c + u(k) = x − v (k+1)
x

where:
v (k+1)

x = y (k) + c − u(k)

2

Ax (k+1) + By − c + u(k) = x (k+1) − y − c + u(k) = v (k+1)
y − y

where:
v (k+1)

y = x (k+1) − c + u(k)

3

f (k+1)
x (x) = fx (x) +

ϕ

2

∥∥∥x − v (k+1)
x

∥∥∥2

2

f (k+1)
y (y) = fy (y) +

ϕ

2

∥∥∥y − v (k+1)
y

∥∥∥2

2
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Alternative direction method of multipliers

We consider a problem of the form:

x? = arg min
x

g (x)

The idea is then to write g (x) as a separable function:

g (x) = g1 (x) + g2 (x)

and to consider the following equivalent ADMM problem:

{x?, y?} = arg min
(x,y)

fx (x) + fy (y)

s.t. x = y

where fx (x) = g1 (x) and fy (y) = g2 (y)
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Alternative direction method of multipliers

We consider a problem of the form:

x? = arg min
x

g (x)

s.t. x ∈ Ω

We have:

{x?, y?} = arg min
(x,y)

fx (x) + fy (y)

s.t. x = y

where fx (x) = g (x), fy (y) = 1Ω (y) and:

1Ω (y) =

{
0 if y ∈ Ω
+∞ if y /∈ Ω
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Alternative direction method of multipliers

Special case

Ω =
{
x : x− ≤ x ≤ x+

}
By setting ϕ = 1, the y -step becomes:

y (k+1) = arg min

{
1Ω (y) +

1

2

∥∥∥x (k+1) − y + u(k)
∥∥∥2

2

}
= proxfy

(
x (k+1) + u(k)

)
where the proximal operator is the box projection or the truncation
operator:

proxfy
(v) = x− � 1

{
v < x−

}
+

v � 1
{
x− ≤ v ≤ x+

}
+

x+ � 1
{
v > x+

}
= T

(
v ; x−, x+

)
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Alternative direction method of multipliers

Special case

Ω =
{
x : x− ≤ x ≤ x+

}
The ADMM algorithm is then:

x (k+1) = arg min

{
g (x) +

1

2

∥∥∥x − y (k) + u(k)
∥∥∥2

2

}
y (k+1) = proxfy

(
x (k+1) + u(k)

)
u(k+1) = u(k) +

(
x (k+1) − y (k+1)

)
⇒ Solving the constrained optimization problem consists in solving the
unconstrained optimization problem, applying the box projection and
iterating these steps until convergence

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 1261 / 1420



Portfolio optimization
Pattern learning and self-automated strategies

Market generators
Tutorial exercises

Standard optimization algorithms
Machine learning optimization algorithms
Application to portfolio allocation

Alternative direction method of multipliers

Lasso regression

The λ-problem of the lasso regression has the following ADMM
formulation:{

β?, β̄?
}

= arg min
1

2
(Y − Xβ)>(Y − Xβ) + λ‖β̄‖1

s.t. β − β̄ = 0m

We have:

fx (β) =
1

2
(Y − Xβ)>(Y − Xβ)

=
1

2
β>
(
X>X

)
β − β>

(
X>Y

)
+

1

2
Y>Y

and:
fy
(
β̄
)

= λ‖β̄‖1
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Alternative direction method of multipliers

The x-step is:

β(k+1) = arg min
β

{
1

2
β>
(
X>X

)
β − β>

(
X>Y

)
+
ϕ

2

∥∥∥β − β̄(k) + u(k)
∥∥∥2

2

}
Since we have:

ϕ

2

∥∥∥β − β̄(k) + u(k)
∥∥∥2

2
=

ϕ

2
β>β − ϕβ>

(
β̄(k) − u(k)

)
+

ϕ

2

(
β̄(k) − u(k)

)> (
β̄(k) − u(k)

)
we deduce that the x-update is a standard QP problem where:

f (k+1)
x (β) =

1

2
β>
(
X>X + ϕIm

)
β − β>

(
X>Y + ϕ

(
β̄(k) − u(k)

))
It follows that the solution is:

β(k+1) = arg min f (k+1)
x (β)

=
(
X>X + ϕIm

)−1
(
X>Y + ϕ

(
β̄(k) − u(k)

))
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Alternative direction method of multipliers

The y -step is:

β̄(k+1) = arg min
β̄

{
λ‖β̄‖1 +

ϕ

2

∥∥∥β(k+1) − β̄ + u(k)
∥∥∥2

2

}
= arg min

{
1

2

∥∥∥β̄ − (β(k+1) + u(k)
)∥∥∥2

2
+
λ

ϕ
‖β̄‖1

}
We recognize the soft-thresholding problem with v = β(k+1) + u(k). We
have:

β̄(k+1) = S
(
β(k+1) + u(k);ϕ−1λ

)
where:

S (v ;λ) = sign (v) · (|v | − λ)+
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Alternative direction method of multipliers

ADMM-Lasso algorithm (Boyd et al., 2011)

Finally, the ADMM algorithm is made up of the following steps: β(k+1) =
(
X>X + ϕIm

)−1 (
X>Y + ϕ

(
β̄(k) − u(k)

))
β̄(k+1) = S

(
β(k+1) + u(k);ϕ−1λ

)
u(k+1) = u(k) +

(
β(k+1) − β̄(k+1)

)

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 1265 / 1420



Portfolio optimization
Pattern learning and self-automated strategies

Market generators
Tutorial exercises

Standard optimization algorithms
Machine learning optimization algorithms
Application to portfolio allocation

Alternative direction method of multipliers
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Figure 123: Convergence of the ADMM algorithm (Example 3, λ = 900)

Note: the initial values are the OLS estimates and we set ϕ = λ

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 1266 / 1420



Portfolio optimization
Pattern learning and self-automated strategies

Market generators
Tutorial exercises

Standard optimization algorithms
Machine learning optimization algorithms
Application to portfolio allocation

Alternative direction method of multipliers

In practice, we use a time-varying parameter ϕ(k) (see Perrin and Roncalli,
2020).
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Proximal operator

Definition

The proximal operator proxf (v) of the function f (x) is defined by:

proxf (v) = x? = arg min
x

{
fv (x) = f (x) +

1

2
‖x − v‖2

2

}
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Proximal operator

Example 4

We consider the scalar-valued logarithmic barrier function f (x) = −λ ln x
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Proximal operator

We have:

fv (x) = −λ ln x +
1

2
(x − v)2

= −λ ln x +
1

2
x2 − xv +

1

2
v2

The first-order condition is −λx−1 + x − v = 0. We obtain two roots with
opposite signs:

x ′ =
v −
√
v2 + 4λ

2
and x ′′ =

v +
√
v2 + 4λ

2

Since the logarithmic function is defined for x > 0, we deduce that:

proxf (v) =
v +
√
v2 + 4λ

2
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Proximal operator

In the case where f (x) = 1Ω (x), we have:

proxf (v) = arg min
x

{
1Ω (x) +

1

2
‖x − v‖2

2

}
= arg min

x∈Ω

{
‖x − v‖2

2

}
= PΩ (v)

where PΩ (v) is the standard projection of v onto Ω
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Proximal operator

Table 103: Projection for some simple polyhedra

Notation Ω PΩ (v)
Affineset [A,B] Ax = B v − A† (Av − B)

Hyperplane [a, b] a>x = b v −
(
a>v − b

)
‖a‖2

2

a

Halfspace [c , d ] c>x ≤ d v −
(
c>v − d

)
+

‖c‖2
2

c

Box [x−, x+] x− ≤ x ≤ x+ T (v ; x−, x+)

Source: Parikh and Boyd (2014)

Note: A† is the Moore-Penrose pseudo-inverse of A, and T
(

v ; x−, x+
)

is the truncation operator

Remark: No analytical formula for the (multi-dimensional) inequality constraint Cx ≤ D ⇒ it may

be solved using the Dykstra’s algorithm
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Proximal operator

Separable sum

If f (x) =
∑n

i=1 fi (xi ) is fully separable, then the proximal of f (v) is the
vector of the proximal operators applied to each scalar-valued function
fi (xi ):

proxf (v) =

 proxf1
(v1)

...
proxfn

(vn)
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Proximal operator

If f (x) = −λ ln x , we have:

proxf (v) =
v +
√
v2 + 4λ

2

In the case of the vector-valued logarithmic barrier f (x) = −λ
∑n

i=1 ln xi ,
we deduce that:

proxf (v) =
v +
√
v � v + 4λ

2
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Proximal operator

Moreau decomposition theorem

We have:
proxf (v) + proxf ∗ (v) = v

where f ∗ is the convex conjugate of f .

Application

If f (x) is a `q-norm function, then f ∗ (x) = 1Bp (x) where Bp is the `p

unit ball and p−1 + q−1 = 1. Since we have proxf ∗ (v) = PBp (v), we
deduce that:

proxf (v) + PBp (v) = v

The proximal of the `p-ball can be deduced from the proximal operator of
the `q-norm function.
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Proximal operator

Table 104: Proximal of the `p-norm function f (x) = ‖x‖p

p proxλf (v)
p = 1 S (v ;λ) = sign (v)� (|v | − λ1n)+

p = 2

(
1− λ

max (λ, ‖v‖2)

)
v

p =∞ sign (v)� proxλmax x (|v |)

We have:
proxλmax x (v) = min (v , s?)

where s? is the solution of the following equation:

s? =

{
s ∈ R :

n∑
i=1

(vi − s)+ = λ

}
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Proximal operator

Table 105: Proximal of the `p-ball Bp (c, λ) =
{
x ∈ Rn : ‖x − c‖p ≤ λ

}
when c

is equal to 0n

p PBp(0n,λ) (v) q
p = 1 v − sign (v)� proxλmax x (|v |) q =∞
p = 2 v − proxλ‖x‖2

(v) q = 2

p =∞ T (v ;−λ, λ) q = 1
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Proximal operator

Scaling and translation

Let us define g (x) = f (ax + b) where a 6= 0. We have:

proxg (v) =
proxa2f (av + b)− b

a

Application

We can use this property when the center c of the `p ball is not equal to
0n. Since we have proxg (v) = proxf (v − c) + c where g (x) = f (x − c)
and the equivalence Bp (0n, λ) = {x ∈ Rn : f (x) ≤ λ} where
f (x) = ‖x‖p, we deduce that:

PBp(c,λ) (v) = PBp(0n,λ) (v − c) + c
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Application to the τ -problem of the lasso regression

We have:

β̂ (τ) = arg min
β

1

2
(Y − Xβ)> (Y − Xβ)

s.t. ‖β‖1 ≤ τ

The ADMM formulation is:{
β?, β̄?

}
= arg min

(β,β̄)

1

2
(Y − Xβ)> (Y − Xβ) + 1Ω

(
β̄
)

s.t. β = β̄

where Ω = B1 (0m, τ) is the centered `1 ball with radius τ
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Application to the τ -problem of the lasso regression

1 The x-update is:

β(k+1) = arg min
β

{
1

2
(Y − Xβ)> (Y − Xβ) +

ϕ

2

∥∥∥β − β̄(k) + u(k)
∥∥∥2

2

}
=

(
X>X + ϕIm

)−1
(
X>Y + ϕ

(
β̄(k) − u(k)

))
where v

(k+1)
x = β̄(k) − u(k)

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 1280 / 1420



Portfolio optimization
Pattern learning and self-automated strategies

Market generators
Tutorial exercises

Standard optimization algorithms
Machine learning optimization algorithms
Application to portfolio allocation

Application to the τ -problem of the lasso regression

2 The y -update is:

β̄(k+1) = arg min
β̄

{
1Ω

(
β̄
)

+
ϕ

2

∥∥∥β(k+1) − β̄ + u(k)
∥∥∥2

2

}
= proxfy

(
β(k+1) + u(k)

)
= PΩ

(
v (k+1)

y

)
= v (k+1)

y − sign
(
v (k+1)

y

)
� proxτ max x

(∣∣∣v (k+1)
y

∣∣∣)
where v

(k+1)
y = β(k+1) + u(k)
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Application to the τ -problem of the lasso regression

3 The u-update is:

u(k+1) = u(k) + β(k+1) − β̄(k+1)
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Application to the τ -problem of the lasso regression

ADMM-Lasso algorithm

The ADMM algorithm is :
β(k+1) =

(
X>X + ϕIm

)−1 (
X>Y + ϕ

(
β̄(k) − u(k)

))
β̄(k+1) =

{
S
(
β(k+1) + u(k);ϕ−1λ

)
(λ-problem)

PB1(0m,τ)

(
β(k+1) + u(k)

)
(τ -problem)

u(k+1) = u(k) +
(
β(k+1) − β̄(k+1)

)

Remark

The ADMM algorithm is similar for λ- and τ -problems since the only
difference concerns the y -step. However, the τ -problem is easier to solve
with the ADMM algorithm from a practical point of view, because the
y -update of the τ -problem is independent of the penalization parameter ϕ.
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Derivation of the soft-thresholding operator

We consider the following equation:

cx − v + λ∂ |x | ∈ 0

where c > 0 and λ > 0. Since we have ∂ |x | = sign (x), we deduce that:

x? =

 c−1 (v + λ) if x? < 0
0 if x? = 0
c−1 (v − λ) if x? > 0

If x? < 0 or x? > 0, then we have v + λ < 0 or v − λ > 0. This is
equivalent to set |v | > λ > 0. The case x? = 0 implies that |v | ≤ λ. We
deduce that:

x? = c−1 · S (v ;λ)

where S (v ;λ) is the soft-thresholding operator:

S (v ;λ) =

{
0 if |v | ≤ λ
v − λ sign (v) otherwise

= sign (v) · (|v | − λ)+
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Derivation of the soft-thresholding operator

We use the result on the separable sum

Remark

If f (x) = λ ‖x‖1, we have f (x) = λ
∑n

i=1 |xi | and fi (xi ) = λ |xi |. We
deduce that the proximal operator of f (x) is the vector formulation of the
soft-thresholding operator:

proxλ‖x‖1
(v) =

 sign (v1) · (|v1| − λ)+
...

sign (vn) · (|vn| − λ)+

 = sign (v)� (|v | − λ1n)+

The soft-thresholding operator is the proximal operator of the `1-norm
f (x) = ‖x‖1. Indeed, we have proxf (v) = S (v ; 1) and
proxλf (v) = S (v ;λ).
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Dykstra’s algorithm

We consider the following optimization problem:

x? = arg min fx (x)

s.t. x ∈ Ω

where Ω is a complex set of constraints:

Ω = Ω1 ∩ Ω2 ∩ · · ·Ωm

We set y = x and fy (y) = 1Ω (y). The ADMM algorithm becomes

x (k+1) = arg min

{
fx (x) +

ϕ

2

∥∥∥x − y (k) + u(k)
∥∥∥2

2

}
v (k) = x (k+1) + u(k)

y (k+1) = PΩ

(
v (k)

)
u(k+1) = u(k) +

(
x (k+1) − y (k+1)

)
How to compute PΩ (v)?
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Dykstra’s algorithm

More generally, we consider the proximal optimization problem where the
function f (x) is the convex sum of basic functions fj (x):

x? = arg min
x


m∑

j=1

fj (x) +
1

2
‖x − v‖2

2


and the proximal of each basic function is known.

How to find the solution x??
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Dykstra’s algorithm
The case m = 2

We know the proximal solution of the `1-norm function
f1 (x) = λ1 ‖x‖1

We know the proximal solution of the logarithmic barrier function
f2 (x) = λ2

∑n
i=1 ln xi

We don’t know how to compute the proximal operator of
f (x) = f1 (x) + f2 (x):

x? = arg min
x

f1 (x) + f2 (x) +
1

2
‖x − v‖2

2

= proxf (v)
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Dykstra’s algorithm
The case m = 2

The Dykstra’s algorithm consists in the following iterations:
x (k+1) = proxf1

(
y (k) + p(k)

)
p(k+1) = y (k) + p(k) − x (k+1)

y (k+1) = proxf2

(
x (k+1) + q(k)

)
q(k+1) = x (k+1) + q(k) − y (k+1)

where x (0) = y (0) = v and p(0) = q(0) = 0n
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Dykstra’s algorithm
The case m = 2

This algorithm is related to the Douglas-Rachford splitting framework:
x(k+ 1

2 ) = proxf1

(
x (k) + p(k)

)
p(k+1) = p(k) −∆1/2x

(k+ 1
2 )

x (k+1) = proxf2

(
x(k+ 1

2 ) + q(k)
)

q(k+1) = q(k) −∆1/2x
(k+1)

where ∆hx
(k) = x (k) − x (k−h)
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Dykstra’s algorithm
The case m = 2

x (k−1) x (k) x (k+1) x (k+2)x(k− 1
2) x(k+ 1

2) x(k+ 3
2)

f1 (x) f1 (x) f1 (x)f2 (x) f2 (x) f2 (x)

p(k) p(k+1) p(k+2)

q(k) q(k+1) q(k+2)

Residual of f1 (x)

Residual of f2 (x)

Figure 124: Splitting method of the Dykstra’s algorithm
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Dykstra’s algorithm
The case m > 2

The case m > 2 is a generalization of the previous algorithm by
considering m residuals:

1 The x-update is:

x (k+1) = proxfj(k)

(
x (k) + z (k+1−m)

)
2 The z-update is:

z (k+1) = x (k) + z (k+1−m) − x (k+1)

where x (0) = v , z (k) = 0n for k < 0 and j (k) = mod (k + 1,m)
denotes the modulo operator taking values in {1, . . . ,m}

Remark

The variable x (k) is updated at each iteration while the residual z (k) is
updated every m iterations. This implies that the basic function fj (x) is
related to the residuals z (j), z (j+m), z (j+2m), etc.
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Dykstra’s algorithm
The case m > 2

Tibshirani (2017) proposes to write the Dykstra’s algorithm by using two
iteration indices k and j . The main index k refers to the cycle, whereas
the sub-index j refers to the constraint number

The Dykstra’s algorithm becomes:

1 The x-update is:

x (k+1,j) = proxfj

(
x (k+1,j−1) + z (k,j)

)
2 The z-update is:

z (k+1,j) = x (k+1,j−1) + z (k,j) − x (k+1,j)

where x (1,0) = v , z (k,j) = 0n for k = 0 and x (k+1,0) = x (k,m)
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Dykstra’s algorithm
The case m > 2

The Dykstra’s algorithm is particularly efficient when we consider the
projection problem:

x? = PΩ (v)

where:
Ω = Ω1 ∩ Ω2 ∩ · · · ∩ Ωm

Indeed, the Dykstra’s algorithm becomes:

1 The x-update is:

x (k+1,j) = proxfj

(
x (k+1,j−1) + z (k,j)

)
= PΩj

(
x (k+1,j−1) + z (k,j)

)
2 The z-update is:

z (k+1,j) = x (k+1,j−1) + z (k,j) − x (k+1,j)

where x (1,0) = v , z (k,j) = 0n for k = 0 and x (k+1,0) = x (k,m)
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Dykstra’s algorithm

Successive projections of PΩj

(
x (k+1,j−1)

)
do not work!

Successive projections of PΩj

(
x (k+1,j−1) + z (k,j)

)
do work!
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Dykstra’s algorithm

Table 106: Solving the proximal problem with linear inequality constraints

The goal is to compute the solution x? = proxf (v) where f (x) = 1Ω (x) and Ω = {x ∈ Rn : Cx ≤ D}
We initialize x (0,m) ← v
We set z (0,1) ← 0n, . . . , z

(0,m) ← 0n

k ← 0
repeat
x (k+1,0) ← x (k,m)

for j = 1 : m do
The x-update is:

x (k+1,j) = x (k+1,j−1) + z (k,j) −

(
c>(j)x

(k+1;j−1) + c>(j)z
(k,j) − d(j)

)
+∥∥c(j)

∥∥2

2

c(j)

The z-update is:
z (k+1,j) = x (k+1,j−1) + z (k,j) − x (k+1,j)

end for
k ← k + 1

until Convergence
return x? ← x (k,m)
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Dykstra’s algorithm

Table 107: Solving the proximal problem with general linear constraints

The goal is to compute the solution x? = proxf (v) where f (x) = 1Ω (x), Ω = Ω1 ∩ Ω2 ∩ Ω3, Ω1 =
{x ∈ Rn : Ax = B}, Ω2 = {x ∈ Rn : Cx ≤ D} and Ω3 = {x ∈ Rn : x− ≤ x ≤ x+}
We initialize x

(0)
m ← v

We set z
(0)
1 ← 0n, z

(0)
2 ← 0n and z

(0)
3 ← 0n

k ← 0
repeat

x
(k+1)
0 ← x

(k)
m

x
(k+1)
1 ← x

(k+1)
0 + z

(k)
1 − A†

(
Ax

(k+1)
0 + Az

(k)
1 − B

)
z

(k+1)
1 ← x

(k+1)
0 + z

(k)
1 − x

(k+1)
1

x
(k+1)
2 ← PΩ2

(
x

(k+1)
1 + z

(k)
2

)
I Previous algorithm

z
(k+1)
2 ← x

(k+1)
1 + z

(k)
2 − x

(k+1)
2

x
(k+1)
3 ← T

(
x

(k+1)
2 + z

(k)
3 ; x−, x+

)
z

(k+1)
3 ← x

(k+1)
2 + z

(k)
3 − x

(k+1)
3

k ← k + 1
until Convergence

return x? ← x
(k)
3
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Dykstra’s algorithm

Remark

Since we have:

1

2
‖x − v‖2

2 =
1

2
x>x − x>v +

1

2
v>v

the two previous problems can be cast into a QP problem:

x? = arg min
x

1

2
x>Inx − x>v

s.t. x ∈ Ω
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Dykstra’s algorithm

Dykstra’s algorithm versus QP algorithm

The vector v is defined by the elements vi = ln
(
1 + i2

)
The set of constraints is:

Ω =

{
x ∈ Rn :

n∑
i=1

xi ≤
1

2
,

n∑
i=1

e−ixi ≥ 0

}

Using a Matlab implementation, we find that the computational time
of the Dykstra’s algorithm when n is equal to 10 million is equal to
the QP algorithm when n is equal to 12 500!

The QP algorithm requires to store the matrix In — impossible when
n > 105. For instance, the size of In is equal to 7450.6 GB when
n = 106
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Table 108: Some objective functions used in portfolio optimization

Item Portfolio f (x) Reference
(1) MVO 1

2x
>Σx − γx>µ Markowitz (1952)

(2) GMV 1
2x
>Σx Jagganathan and Ma (2003)

(3) MDP ln
(√

x>Σx
)
− ln

(
x>σ

)
Choueifaty and Coignard (2008)

(4) KL
∑n

i=1 xi ln (xi/x̃i ) Bera and Park (2008)
(5) ERC 1

2x
>Σx − λ

∑n
i=1 ln xi Maillard et al. (2010)

(6) RB R (x)− λ
∑n

i=1RBi · ln xi Roncalli (2015)
(7) RQE 1

2x
>Dx Carmichael et al. (2018)
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Table 109: Some regularization penalties used in portfolio optimization

Item Regularization R (x) Reference

(8) Ridge λ ‖x − x̃‖2
2 DeMiguel et al. (2009)

(9) Lasso λ ‖x − x̃‖1 Brodie at al. (2009)
(10) Log-barrier −

∑n
i=1 λi ln xi Roncalli (2013)

(11) Shannon’s entropy λ
∑n

i=1 xi ln xi Yu et al. (2014)
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Table 110: Some constraints used in portfolio optimization

Item Constraint Ω
(12) No cash and leverage

∑n
i=1 xi = 1

(13) No short selling xi ≥ 0
(14) Weight bounds x−i ≤ xi ≤ x+

i

(15) Asset class limits c−j ≤
∑

i∈Cj
xi ≤ c+

j

(16) Turnover
∑n

i=1 |xi − x̃i | ≤ τ+

(17) Transaction costs
∑n

i=1

(
c−i (x̃i − xi )+ + c+

i (xi − x̃i )+

)
≤ ccc+

(18) Leverage limit
∑n

i=1 |xi | ≤ L+

(19) Long/short exposure −LS− ≤
∑n

i=1 xi ≤ LS+

(20) Benchmarking

√
(x − x̃)>Σ (x − x̃) ≤ σ+

(21) Tracking error floor

√
(x − x̃)> Σ (x − x̃) ≥ σ−

(22) Active share floor 1
2

∑n
i=1 |xi − x̃i | ≥ AS−

(23) Number of active bets
(
x>x

)−1 ≥ N−
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Most of portfolio optimization problems are a combination of:

1 an objective function (Table 108)

2 one or two regularization penalty functions (Table 109)

3 some constraints (Table 110)

Perrin and Roncalli (2020) solve all these problems using CCD, ADMM,
Dykstra and the appropriate proximal functions. For that, they derive:

the semi-analytical solution of the x-step for all objective functions

the proximal solution of the y -step for all regularization penalty
functions and constraints
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Herfindahl-MV optimization
Formulation of the mathematical problem

The second generation of minimum variance strategies uses a global
diversification constraint
The most popular solution is based on the Herfindahl index:

H (x) =
n∑

i=1

x2
i

The effective number of bets is the inverse of the Herfindahl index:

N (x) = H (x)−1

The optimization program is:

x? = arg min
x

1

2
x>Σx

s.t.

 1>n x = 1
0n ≤ x ≤ x+

N (x) ≥ N−

where N− is the minimum number of effective bets.
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Herfindahl-MV optimization
The QP solution

The Herfindhal constraint is equivalent to:

N (x) ≥ N− ⇔
(
x>x

)−1 ≥ N−

⇔ x>x ≤ 1

N−

The QP problem is:

x? (λ) = arg min
x

1

2
x>Σx + λx>x =

1

2
x> (Σ + 2λIn) x

s.t.

{
1>n x = 1
0n ≤ x ≤ x+

where λ ≥ 0 is a scalar

We have N (x) ∈ [N (x? (0)) , n]

The optimal value λ? is found using the bi-section algorithm such
that N (x? (λ)) = N−
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Herfindahl-MV optimization
The ADMM solution (first version)

The ADMM form is:

{x?, y?} = arg min
(x,y)

1

2
x>Σx + 1Ω1 (x) + 1Ω2 (y)

s.t. x = y

where Ω1 =
{
x ∈ Rn : 1>n x = 1, 0n ≤ x ≤ x+

}
and

Ω2 = B2

(
0n,
√

1
N−

)
The x-update is a QP problem:

x (k+1) = arg min
x

{
1

2
x> (Σ + ϕIn) x − ϕx>

(
y (k) − u(k)

)
+ 1Ω1 (x)

}
The y -update is:

y (k+1) =
x (k+1) + u(k)

max
(

1,
√
N−

∥∥x (k+1) + u(k)
∥∥

2

)
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Herfindahl-MV optimization
The ADMM solution (second version)

A better approach is to write the problem as follows:

{x?, y?} = arg min
(x,y)

1

2
x>Σx + 1Ω3 (x) + 1Ω4 (y)

s.t. x = y

where Ω3 = Hyperplane [1n, 1] and Ω4 = Box [0n, x
+] ∩ B2

(
0n,
√

1
N−

)
The x-update is:

x (k+1) = (Σ + ϕIn)−1

ϕ(y (k) − u(k)
)

+
1− 1>n (Σ + ϕIn)−1 ϕ

(
y (k) − u(k)

)
1>n (Σ + ϕIn)−1 1n

1n


The y -update is:

y (k+1) = PBox−Ball

(
x (k+1) + u(k); 0n, x

+, 0n,

√
1

N−

)
where PBox−Ball corresponds to the Dykstra’s algorithm given by

Perrin and Roncalli (2020)
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Herfindahl-MV optimization

Remark

If we compare the computational time of the three approaches, we observe
that the best method is the second version of the ADMM algorithm:

CT (QP; n = 1000) = 50× CT (ADMM2; n = 1000)

CT (ADMM1; n = 1000) = 400× CT (ADMM2; n = 1000)
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Herfindahl-MV optimization
The QP solution

Example 5

We consider an investment universe of eight stocks. We assume that their
volatilities are 21%, 20%, 40%, 18%, 35%, 23%, 7% and 29%. The
correlation matrix is defined as follows:

ρ =



100%
80% 100%
70% 75% 100%
60% 65% 90% 100%
70% 50% 70% 85% 100%
50% 60% 70% 80% 60% 100%
70% 50% 70% 75% 80% 50% 100%
60% 65% 70% 75% 65% 70% 80% 100%
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Herfindahl-MV optimization

Table 111: Minimum variance portfolios (in %)

N− 1.00 2.00 3.00 4.00 5.00 6.00 6.50 7.00 7.50 8.00
x?1 0.00 3.22 9.60 13.83 15.18 15.05 14.69 14.27 13.75 12.50
x?2 0.00 12.75 14.14 15.85 16.19 15.89 15.39 14.82 14.13 12.50
x?3 0.00 0.00 0.00 0.00 0.00 0.07 2.05 4.21 6.79 12.50
x?4 0.00 10.13 15.01 17.38 17.21 16.09 15.40 14.72 13.97 12.50
x?5 0.00 0.00 0.00 0.00 0.71 5.10 6.33 7.64 9.17 12.50
x?6 0.00 5.36 8.95 12.42 13.68 14.01 13.80 13.56 13.25 12.50
x?7 100.00 68.53 52.31 40.01 31.52 25.13 22.92 20.63 18.00 12.50
x?8 0.00 0.00 0.00 0.50 5.51 8.66 9.41 10.14 10.95 12.50

λ? (in %) 0.00 1.59 3.10 5.90 10.38 18.31 23.45 31.73 49.79 ∞

Note: the upper bound x+ is set to 1n. The solutions are those found by the ADMM algorithm. We

also report the value of λ? found by the bi-section algorithm when we use the QP algorithm.
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ERC portfolio optimization

We recall that:

x? = arg min
x

1

2
x>Σx − λ

n∑
i=1

ln xi

and:

xerc =
x?

1>n x?
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ERC portfolio optimization
The CCD solution

The first-order condition (Σx)i − λx
−1
i = 0 implies that:

x2
i σ

2
i + xiσi

∑
j 6=i

xjρi,jσj − λ = 0

The CCD algorithm is:

x
(k+1)
i =

−v (k+1)
i +

√(
v

(k+1)
i

)2

+ 4λσ2
i

2σ2
i

where:
v

(k+1)
i = σi

∑
j<i

x
(k+1)
j ρi,jσj + σi

∑
j>i

x
(k)
j ρi,jσj
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ERC portfolio optimization
The ADMM solution

In the case of the ADMM algorithm, we set:

fx (x) =
1

2
x>Σx

fy (y) = −λ
n∑

i=1

ln yi

x = y

The x-update step is:

x (k+1) = (Σ + ϕIn)−1
ϕ
(
y (k) − u(k)

)
The y -update step is:

y
(k+1)
i =

1

2

((
x

(k+1)
i + u

(k)
i

)
+

√(
x

(k+1)
i + u

(k)
i

)2

+ 4λϕ−1

)
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RB portfolio optimization

The RB portfolio is equal to:

xrb =
x?

1>n x?

where x? is the solution of the logarithmic barrier problem:

x? = arg min
x
R (x)− λ

n∑
i=1

RBi · ln xi

λ is any positive scalar and RBi is the risk budget allocated to Asset i
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RB portfolio optimization
The CCD solution (SD risk measure)

In the case of the standard deviation-based risk measure:

R (x) = −x> (µ− r) + ξ
√
x>Σx

the first-order condition for defining the CCD algorithm is:

− (µi − r) + ξ
(Σx)i√
x>Σx

− λRBi

xi
= 0

It follows that ξxi (Σx)i − (µi − r) xiσ (x)− λσ (x) · RBi = 0 or
equivalently:

αix
2
i + βixi + γi = 0

where αi = ξσ2
i , βi = ξσi

∑
j 6=i xjρi,jσj − (µi − r)σ (x) and

γi = −λσ (x) · RBi
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RB portfolio optimization
The CCD solution (SD risk measure)

The CCD algorithm is:

x
(k+1)
i =

−β(k+1)
i +

√(
β

(k+1)
i

)2

− 4α
(k+1)
i γ

(k+1)
i

2α
(k+1)
i

where:

α
(k+1)
i = ξσ2

i

β
(k+1)
i = ξσi

(∑
j<i x

(k+1)
j ρi,jσj +

∑
j>i x

(k)
j ρi,jσj

)
− (µi − r)σ

(k+1)
i (x)

γ
(k+1)
i = −λσ(k+1)

i (x) · RBi

σ
(k+1)
i (x) =

√
χ>Σχ

χ =
(
x

(k+1)
1 , . . . , x

(k+1)
i−1 , x

(k)
i , x

(k)
i+1 . . . , x

(k)
n

)
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RB portfolio optimization
The ADMM solution (convex risk measure)

We have:

{x?, y?} = arg min
x,y
R (x)− λ

n∑
i=1

RBi · ln yi

s.t. x = y

The ADMM algorithm is:
x (k+1) = proxϕ−1R(x)

(
y (k) − u(k)

)
v

(k+1)
y = x (k+1) + u(k)

y (k+1) = 1
2

(
v

(k+1)
y +

√
v

(k+1)
y � v

(k+1)
y + 4λϕ−1 · RB

)
u(k+1) = u(k) + x (k+1) − y (k+1)
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Tips and tricks of portfolio optimization

Full allocation —
∑n

i=1 xi = 1:

Ω = Hyperplane [1n, 1]

We have:

PΩ (v) = v −
(

1>n v − 1

n

)
1n

Cash neutral —
∑n

i=1 xi = 0:

Ω = Hyperplane [1n, 0]

We have:

PΩ (v) = v −
(

1>n v

n

)
1n
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Tips and tricks of portfolio optimization

No short selling — x ≥ 0n:

Ω = Box [0n,∞]

We have:
PΩ (v) = T (v ; 0n,∞)

Weight bounds — x− ≤ x ≤ x+:

Ω = Box

[
x−, x+

]
We have:

PΩ (v) = T
(
v ; x−, x+

)
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Tips and tricks of portfolio optimization

µ-problem — µ (x) ≥ µ?:

Ω = Halfspace [−µ,−µ?]

We have:

PΩ (v) = v +

(
µ? − µ>v

)
+

‖µ‖2
2

µ
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Tips and tricks of portfolio optimization

σ-problem — σ (x) ≤ σ?:

Ω =
{
x :
√
x>Σx ≤ σ?

}
We have:

√
x>Σx ≤ σ? ⇔

√
x> (LL>) x ≤ σ?

⇔
∥∥y>y∥∥

2
≤ σ?

⇔ y ∈ B2 (0n, σ
?)

where y = L>x and L is the Cholesky decomposition of Σ. It follows
that the proximal of the y -update is the projection onto the `2 ball
B2 (0n, σ

?):

PΩ (v) = v − proxσ?‖x‖2
(v)

= v −
(

1− σ?

max (σ?, ‖v‖2)

)
v
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Tips and tricks of portfolio optimization

Leverage management —
∑n

i=1 |xi | ≤ L+:

Ω =
{
x : ‖x‖1 ≤ L

+
}

= B1

(
0n,L+

)
The proximal of the y -update is the projection onto the `1 ball
B1 (0n,L+):

PΩ (v) = v − sign (v)� proxL+ max x (|v |)
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Tips and tricks of portfolio optimization

Leverage management — LS− ≤
∑n

i=1 xi ≤ LS+:

Ω = Halfspace

[
1n,LS+

]
∩Halfspace

[
−1n,−LS−

]
The proximal of the y -update is obtained with the Dykstra’s
algorithm by combining the two half-space projections.

Leverage management —
∣∣∑n

i=1 xi

∣∣ ≤ L+:

Ω =
{
x :
∣∣1>n x

∣∣ ≤ L+
}

This is a special case of the previous result where LS+ = L+ and
LS− = −L+:

Ω = Halfspace

[
1n,L+

]
∩Halfspace

[
−1n,L+

]
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Tips and tricks of portfolio optimization

Concentration management31

Portfolio managers can also use another constraint concerning the
sum of the k largest values:

f (x) =
n∑

i=n−k+1

x(i :n) = x(n:n) + . . .+ x(n−k+1:n)

where x(i :n) is the order statistics of x : x(1:n) ≤ x(2:n) ≤ · · · ≤ x(n:n).
Beck (2017) shows that:

proxλf (x) (v) = v − λPΩ

(v
λ

)
where:

Ω =
{
x ∈ [0, 1]n : 1>n x = k

}
= Box [0n, 1n] ∩Hyperlane [1n, k]

31An example is the 5/10/40 UCITS rule: A UCITS fund may invest no more than
10% of its net assets in transferable securities or money market instruments issued by
the same body, with a further aggregate limitation of 40% of net assets on exposures of
greater than 5% to single issuers.
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Tips and tricks of portfolio optimization

Entropy portfolio management
Bera and Park (2008) propose using a cross-entropy measure as the
objective function:

x? = arg min
x

KL (x | x̃)

s.t.

 1>n x = 1
0n ≤ x ≤ 1n

µ (x) ≥ µ?, σ (x) ≤ σ?

where KL (x | x̃) is the Kullback-Leibler measure:

KL (x | x̃) =
n∑

i=1

xi ln (xi/x̃i )

and x̃ is a reference portfolio
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Tips and tricks of portfolio optimization

Entropy portfolio management
We have:

proxλKL(v |x̃) (v) = λ


W
(
λ−1x̃1e

λ−1v1−x̃−1
1

)
...

W
(
λ−1x̃ne

λ−1vn−x̃−1
n

)


where W (x) is the Lambert W function
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Tips and tricks of portfolio optimization

Remark

Since the Shannon’s entropy is equal to SE (x) = −KL (x | 1n), we
deduce that:

proxλ SE(x) (v) = λ


W
(
λ−1eλ

−1v1−1
)

...

W
(
λ−1eλ

−1vn−1
)
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Tips and tricks of portfolio optimization

Active share constraint — AS (x | x̃) ≥ AS−:

AS (x | x̃) =
1

2

n∑
i=1

|xi − x̃i | ≥ AS−

We use the projection onto the complement B̄1 (c , r) of the `1 ball
and we obtain:

PΩ (v) = v + sign (v − x̃)�
max

(
2AS− − ‖v − x̃‖1 , 0

)
n
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Tips and tricks of portfolio optimization

Tracking error volatility — σ (x | x̃) ≤ σ?:

σ (x | x̃) ≤ σ? ⇔
√

(x − x̃)>Σ (x − x̃) ≤ σ?

⇔ ‖y‖2 ≤ σ
?

⇔ y ∈ B2 (0n, σ
?)

where y = L>x − L>x̃ . It follows that Ax + By = c where A = L>,
B = −In and c = L>x̃ . It follows that the proximal of the y -update is
the projection onto the `2 ball B2 (0n, σ

?):

PΩ (v) = v − proxσ?‖x‖2
(v)

= v −
(

1− σ?

max (σ?, ‖v‖2)

)
v
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Tips and tricks of portfolio optimization

Bid-ask transaction cost management:

ccc (x | x0) = λ

n∑
i=1

(
c−i (x0,i − xi )+ + c+

i (xi − x0,i )+

)
where c−i and c+

i are the bid and ask transaction costs. We have:

proxccc(x|x0) (v) = x0 + S
(
v − x0;λc−, λc+

)
where S (v ;λ−, λ+) = (v − λ+)+ − (v + λ−)− is the two-sided
soft-thresholding operator.
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Tips and tricks of portfolio optimization

Turnover management:

Ω =
{
x ∈ Rn : ‖x − x0‖1 ≤ τ

+
}

The proximal operator is:

PΩ (v) = v − sign (v − x0)�min (|v − x0| , s?)

where s? =
{
s ∈ R :

∑n
i=1 (|vi − x0,i | − s)+ = τ+

}
.
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Table 112: What works / What doesn’t

Bond Stock Trend Mean Index HF Stock Technical
Scoring Picking Filtering Reverting Tracking Tracking Classification Analysis

Lasso , , , / ,
NMF , /

Boosting , ,
Bagging , ,

Random forests , / /
Neural nets , /

SVM , / / /
Sparse Kalman / ,

K-NN /
K-means , ,

Testing protocols32 , , , , ,

Source: Roncalli (2014), Big Data in Asset Management, ESMA/CEMA/GEA meeting, Madrid.

32Cross-validation, training/test/probe sets, K-fold, etc.
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2021 6= 2014

The evolution of machine learning in finance is fast, very fast!
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Some examples

Natural Language Processing
(NLP)

Deep learning (DL)

Reinforcement learning (RL)

Gaussian process (GP) and
Bayesian optimization (BO)

Learning to rank (MLR)

Etc.

Some applications

Robo-advisory

Stock classification

Q1 − Q5 long/short strategy

Trend-following strategies

Mean-reverting strategies

Scoring models

Sentiment and news analysis

Etc.
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The underlying idea is to simulate artificial multi-dimensional financial
time series, whose statistical properties are the same as those
observed in the financial markets

≈ Monte Carlo simulation of the financial market

3 main approaches:

1 Restricted Boltzmann machines (RBM)
2 Generative adversarial networks (GAN)
3 Convolutional Wasserstein models (W-GAN)

The goal is to:

improve the the risk management of quantitative investment strategies
avoid the over-fitting bias of backtesting

The current research shows that results are disappointed until now
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Portfolio optimization with CCD and ADMM algorithms

Question 1

We consider the following optimization program:

x? = arg min
1

2
x>Σx − λ

n∑
i=1

bi ln xi

where Σ is the covariance matrix, b is a vector of positive budgets and x is
the vector of portfolio weights.
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Question 1.a

Write the first-order condition with respect to the coordinate xi and show
that the solution x? corresponds to a risk-budgeting portfolio.

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 1337 / 1420



Portfolio optimization
Pattern learning and self-automated strategies

Market generators
Tutorial exercises

Portfolio optimization with CCD and ADMM algorithms
Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

We have:

L (x ;λ) = arg min
1

2
x>Σx − λ

n∑
i=1

bi ln xi

The first-order condition is:

∂ L (x ;λ)

∂ xi
= (Σx)i − λ

bi

xi
= 0

or:
xi · (Σx)i = λbi
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If we assume that the risk measure is the portfolio volatility:

R (x) =
√
x>Σx

the risk contribution of Asset i is equal to:

RC i (x) =
xi · (Σx)i√

x>Σx

We deduce that the optimization problem defines a risk budgeting
portfolio:

xi · (Σx)i

bi
=

xj · (Σx)j

bj
= λ⇔ RC i (x)

bi
=
RCj (x)

bj

where the risk measure is the portfolio volatility and the risk budgets are
(b1, . . . , bn).
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Question 1.b

Find the optimal value x?i when we consider the other coordinates
(x1, . . . , xi−1, xi+1, . . . , xn) as fixed.
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The first-order condition is equivalent to:

xi · (Σx)i − λbi = 0

We have:
(Σx)i = xiσ

2
i + σi

∑
j 6=i

xjρi,jσj

It follows that:
x2

i σ
2
i + xiσi

∑
j 6=i

xjρi,jσj − λbi = 0
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We obtain a second-degree equation:

αix
2
i + βixi + γi = 0

where: 
αi = σ2

i

βi = σi

∑
j 6=i xjρi,jσj

γi = −λbi

1 The polynomial function is convex because we have αi = σ2
i > 0

2 The product of the roots is negative:

x ′i x
′′
i =

γi

αi
= −λbi

σ2
i

< 0

3 The discriminant is positive:

∆ = β2
i − 4αiγi =

σi

∑
j 6=i

ρi,jσjyj

2

+ 4λbiσ
2
i > 0
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We always have two solutions with opposite signs. We deduce that the
solution is the positive root of the second-degree equation:

x?i = x ′′i =
−βi +

√
β2

i − 4αiγi

2αi

=
−σi

∑
j 6=i xjρi,jσj +

√
σ2

i

(∑
j 6=i xjρi,jσj

)2

+ 4λbiσ2
i

2σ2
i
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Question 1.c

We note x
(k)
i the value of the i th coordinate at the kth iteration. Deduce

the corresponding CCD algorithm. How to find the RB portfolio xrb?
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The CCD algorithm consists in iterating the following formula:

x
(k)
i =

−β(k)
i +

√(
β

(k)
i

)2

− 4α
(k)
i γ

(k)
i

2α
(k)
i

where: 
α

(k)
i = σ2

i

β
(k)
i = σi

(∑
j<i ρi,jσjx

(k)
j +

∑
j>i ρi,jσjx

(k−1)
j

)
γ

(k)
i = −λbi

The RB portfolio is the scaled solution:

xrb =
x?∑n

i=1 x
?
i
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Question 1.d

We consider a universe of three assets, whose volatilities are equal to 20%,
25% and 30%. The correlation matrix is equal to:

ρ =

 100%
50% 100%
60% 70% 100%


We would like to compute the ERC portfolioa using the CCD algorithm.
We initialize the CCD algorithm with the following starting values
x (0) = (33.3%, 33.3%, 33.3%). We assume that λ = 1.

aThis means that:

bi =
1

3
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Question 1.d.i

Starting from x (0), find the optimal coordinate x
(1)
1 for the first asset.
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We have: 
α

(1)
1 = 0.22 = 4%

β
(1)
1 = 0.02033

γ
(1)
i = −0.333%

We obtain:
x

(1)
1 = 2.64375
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Question 1.d.ii

Compute then the optimal coordinate x
(1)
2 for the second asset.
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We have: 
α

(1)
2 = 0.252 = 6.25%

β
(1)
2 = 0.08359

γ
(1)
2 = −0.333%

We obtain:
x

(1)
2 = 1.73553
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Question 1.d.iii

Compute then the optimal coordinate x
(1)
3 for the third asset.
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We have: 
α

(1)
3 = 0.32 = 9%

β
(1)
3 = 0.18629

γ
(1)
3 = −0.333%

We obtain:
x

(1)
3 = 1.15019
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Question 1.d.iv

Give the CCD coordinates x
(k)
i for k = 1, . . . , 10.
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Table 113: CCD coordinates (k = 1, . . . , 5)

k i α
(k)
i β

(k)
i γ

(k)
i x

(k)
i

CCD coordinates
x1 x2 x3

0 0.33333 0.33333 0.33333
1 1 0.04000 0.02033 −0.33333 2.64375 2.64375 0.33333 0.33333
1 2 0.06250 0.08359 −0.33333 1.73553 2.64375 1.73553 0.33333
1 3 0.09000 0.18629 −0.33333 1.15019 2.64375 1.73553 1.15019
2 1 0.04000 0.08480 −0.33333 2.01525 2.01525 1.73553 1.15019
2 2 0.06250 0.11077 −0.33333 1.58744 2.01525 1.58744 1.15019
2 3 0.09000 0.15589 −0.33333 1.24434 2.01525 1.58744 1.24434
3 1 0.04000 0.08448 −0.33333 2.01782 2.01782 1.58744 1.24434
3 2 0.06250 0.11577 −0.33333 1.56202 2.01782 1.56202 1.24434
3 3 0.09000 0.15465 −0.33333 1.24842 2.01782 1.56202 1.24842
4 1 0.04000 0.08399 −0.33333 2.02183 2.02183 1.56202 1.24842
4 2 0.06250 0.11609 −0.33333 1.56044 2.02183 1.56044 1.24842
4 3 0.09000 0.15471 −0.33333 1.24821 2.02183 1.56044 1.24821
5 1 0.04000 0.08395 −0.33333 2.02222 2.02222 1.56044 1.24821
5 2 0.06250 0.11609 −0.33333 1.56044 2.02222 1.56044 1.24821
5 3 0.09000 0.15472 −0.33333 1.24817 2.02222 1.56044 1.24817
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Table 114: CCD coordinates (k = 6, . . . , 10)

k i α
(k)
i β

(k)
i γ

(k)
i x

(k)
i

CCD coordinates
x1 x2 x3

0 0.33333 0.33333 0.33333
6 1 0.04000 0.08395 −0.33333 2.02223 2.02223 1.56044 1.24817
6 2 0.06250 0.11608 −0.33333 1.56045 2.02223 1.56045 1.24817
6 3 0.09000 0.15472 −0.33333 1.24816 2.02223 1.56045 1.24816
7 1 0.04000 0.08395 −0.33333 2.02223 2.02223 1.56045 1.24816
7 2 0.06250 0.11608 −0.33333 1.56046 2.02223 1.56046 1.24816
7 3 0.09000 0.15472 −0.33333 1.24816 2.02223 1.56046 1.24816
8 1 0.04000 0.08395 −0.33333 2.02223 2.02223 1.56046 1.24816
8 2 0.06250 0.11608 −0.33333 1.56046 2.02223 1.56046 1.24816
8 3 0.09000 0.15472 −0.33333 1.24816 2.02223 1.56046 1.24816
9 1 0.04000 0.08395 −0.33333 2.02223 2.02223 1.56046 1.24816
9 2 0.06250 0.11608 −0.33333 1.56046 2.02223 1.56046 1.24816
9 3 0.09000 0.15472 −0.33333 1.24816 2.02223 1.56046 1.24816

10 1 0.04000 0.08395 −0.33333 2.02223 2.02223 1.56046 1.24816
10 2 0.06250 0.11608 −0.33333 1.56046 2.02223 1.56046 1.24816
10 3 0.09000 0.15472 −0.33333 1.24816 2.02223 1.56046 1.24816
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Question 1.d.v

Deduce the ERC portfolio.
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The CCD algorithm has converged to the following solution:

x? =

 2.02223
1.56046
1.24816


Since

∑3
i=1 x

?
i = 4.83085, we deduce that:

xerc =
1

4.83085

 2.02223
1.56046
1.24816

 =

 41.86076%
32.30189%
25.83736%
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Question 1.d.vi

Compute the variance of the previous CCD solution. What do you notice?
Explain this result.
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We remind that the CCD solution is:

x? =

 2.02223
1.56046
1.24816


We have:

σ2 (x?) = x?>Σx? = 1

We notice that:
σ2 (x?) = λ
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At the optimum, we remind that:

λ =
x?i · (Σx?)i

bi
=

x?i · (Σx?)i

n−1

We deduce that:

λ =
1

n

n∑
i=1

x?i · (Σx?)i

n−1

=
n∑

i=1

x?i · (Σx?)i

= x?>Σx?

= σ2 (x?)

It follows that the portfolio variance of the CCD solution is exactly equal
to λ.
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Question 1.d.vii

Verify that the CCD solution converges faster to the ERC portfolio when
we assume that λ = x>ercΣxerc.
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We have:

σ (xerc) =
√

x>ercΣxerc = 20.70029%

and:
σ2 (xerc) = 4.28502%

We obtain the results given in Table 115 when λ = 4.28502%. If we
compare with those given in Tables 113 and 114, it is obvious that the
convergence is faster in the present case.
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Table 115: CCD coordinates (k = 1, . . . , 5)

k i α
(k)
i β

(k)
i γ

(k)
i x

(k)
i

CCD coordinates
x1 x2 x3

0 0.33333 0.33333 0.33333
1 1 0.04000 0.02033 −0.01428 0.39521 0.39521 0.33333 0.33333
1 2 0.06250 0.02738 −0.01428 0.30680 0.39521 0.30680 0.33333
1 3 0.09000 0.03033 −0.01428 0.26403 0.39521 0.30680 0.26403
2 1 0.04000 0.01718 −0.01428 0.42027 0.42027 0.30680 0.26403
2 2 0.06250 0.02437 −0.01428 0.32133 0.42027 0.32133 0.26403
2 3 0.09000 0.03200 −0.01428 0.25847 0.42027 0.32133 0.25847
3 1 0.04000 0.01734 −0.01428 0.41893 0.41893 0.32133 0.25847
3 2 0.06250 0.02404 −0.01428 0.32295 0.41893 0.32295 0.25847
3 3 0.09000 0.03204 −0.01428 0.25835 0.41893 0.32295 0.25835
4 1 0.04000 0.01737 −0.01428 0.41863 0.41863 0.32295 0.25835
4 2 0.06250 0.02403 −0.01428 0.32302 0.41863 0.32302 0.25835
4 3 0.09000 0.03203 −0.01428 0.25837 0.41863 0.32302 0.25837
5 1 0.04000 0.01738 −0.01428 0.41861 0.41861 0.32302 0.25837
5 2 0.06250 0.02403 −0.01428 0.32302 0.41861 0.32302 0.25837
5 3 0.09000 0.03203 −0.01428 0.25837 0.41861 0.32302 0.25837
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Question 2

We recall that the ADMM algorithm is based on the following
optimization problem:

{x?, y?} = arg min fx (x) + fy (y)

s.t. Ax + By = c
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Question 2.a

Describe the ADMM algorithm.
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The ADMM algorithm consists in the following iterations:
x (k+1) = arg minx

{
fx (x) +

ϕ

2

∥∥Ax + By (k) − c + u(k)
∥∥2

2

}
y (k+1) = arg miny

{
fy (y) +

ϕ

2

∥∥Ax (k+1) + By − c + u(k)
∥∥2

2

}
u(k+1) = u(k) +

(
Ax (k+1) + By (k+1) − c

)
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Question 2.b

We consider the following optimization problem:

w? (γ) = arg min
1

2
(w − b)> Σ (w − b)− γ (w − b)> µ

s.t.

 1>n w = 1∑n
i=1 |wi − bi | ≤ τ+

0n ≤ w ≤ 1n
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Question 2.b.i

Give the meaning of the symbols w , b, Σ, and µ. What is the goal of this
optimization program? What is the meaning of the constraint∑n

i=1 |wi − bi | ≤ τ+?
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w is the vector of portfolio weights:

w = (w1, . . . ,wn)

b is the vector of benchmark weights:

b = (b1, . . . , bn)

Σ is the covariance matrix of asset returns

µ is the vector of expected returns
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The goal of the optimization problem is to tilt a benchmark portfolio by
controlling the volatility of the tracking error:

σ (w | b) =

√
(w − b)>Σ (w − b)

and improving the expected excess return:

µ (w | b) = (w − b)> µ

This is a typical γ-problem when there is a benchmark
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We remind that the turnover between the benchmark b and the portfolio
w is equal to:

τ (w | b) =
n∑

i=1

|wi − bi |

Therefore, we impose that the turnover is less than an upper limit:

τ (w | b) ≤ τ+
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Question 2.b.ii

What is the best way to specify fx (x) and fy (y) in order to find
numerically the solution. Justify your choice.
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The best way to specify fx (x) and fy (y) is to split the QP problem and
the turnover constraint:

{x?, y?} = arg min
x,y

fx (x) + fy (y)

s.t. x − y = 0n

where:

fx (x) =
1

2
(x − b)>Σ (x − b)− γ (x − b)> µ+ 1Ω1 (x) + 1Ω3 (x)

fy (y) = 1Ω2 (y)

Ω1 (x) =
{
x : 1>n x = 1

}
Ω2 (y) =

{
y :

n∑
i=1

|yi − bi | ≤ τ+

}
Ω3 (x) = {x : 0n ≤ x ≤ 1n}

Indeed, the x-update step is a standard QP problem whereas the y -update
step is the projection onto the `1-ball B1 (b, τ+).
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Question 2.b.iii

Give the corresponding ADMM algorithm.
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We have:

(∗) =
1

2
(x − b)>Σ (x − b)− γ (x − b)> µ

=
1

2
x>Σx − x>Σb +

1

2
b>Σb − γx>µ+ γb>µ

=
1

2
x>Σx − x> (Σb + γµ) +

(
γb>µ+

1

2
b>Σb

)
︸ ︷︷ ︸

constant
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If we note v
(k+1)
x = y (k) − u(k), we have:∥∥∥x − y (k) + u(k)

∥∥∥2

2
=

∥∥∥x − v (k+1)
x

∥∥∥2

2

=
(
x − v (k+1)

x

)> (
x − v (k+1)

x

)
= x>Inx − 2x>v (k+1)

x +
(
v (k+1)

x

)>
v (k+1)

x︸ ︷︷ ︸
constant

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 1376 / 1420



Portfolio optimization
Pattern learning and self-automated strategies

Market generators
Tutorial exercises

Portfolio optimization with CCD and ADMM algorithms
Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

It follows that:

f (k+1)
x (x) = fx (x) +

ϕ

2

∥∥∥x − y (k) + u(k)
∥∥∥2

2

=
1

2
(x − b)> Σ (x − b)− γ (x − b)> µ+

1Ω1 (x) + 1Ω3 (x) +
ϕ

2

∥∥∥x − y (k) + u(k)
∥∥∥2

2

=
1

2
x> (Σ + ϕIn) x − x>

(
Σb + γµ+ ϕv (k+1)

x

)
+

1Ω1 (x) + 1Ω3 (x) + constant
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We have:

f (k+1)
y (y) = 1Ω2 (y) +

ϕ

2

∥∥∥x (k+1) − y + u(k)
∥∥∥2

2

= 1Ω2 (y) +
ϕ

2

∥∥∥y − v (k+1)
y

∥∥∥2

2

where v
(k+1)
y = x (k+1) + u(k). We deduce that:

y (k+1) = arg min
y

f (k+1)
y (y)

= PΩ2

(
v (k+1)

y

)
where:

Ω2 = B1

(
b, τ+

)
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We remind that:

PB1(c,λ) (v) = PB1(0n,λ) (v − c) + c

PB1(0n,λ) (v) = v − sign (v)� proxλmax x (|v |)
proxλmax x (v) = min (v , s?)

where s? is the solution of the following equation:

s? =

{
s ∈ R :

n∑
i=1

(vi − s)+ = λ

}
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We deduce that:

PΩ2

(
v (k+1)

y

)
= PB1(b,τ+)

(
v (k+1)

y

)
= PB1(0n,τ+)

(
v (k+1)

y − b
)

+ b

= v (k+1)
y − sign

(
v (k+1)

y − b
)
� proxτ+ max x

(∣∣∣v (k+1)
y − b

∣∣∣)
= v (k+1)

y − sign
(
v (k+1)

y − b
)
�min

(∣∣∣v (k+1)
y − b

∣∣∣ , s?)
where s? is the solution of the following equation:

s? =

{
s ∈ R :

n∑
i=1

(∣∣∣v (k+1)
y ,i − bi

∣∣∣− s
)

+
= τ+

}
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The ADMM algorithm becomes:

v
(k+1)
x = y (k) − u(k)

Q(k+1) = Σ + ϕIn
R(k+1) = Σb + γµ+ ϕv

(k+1)
x

x (k+1) = arg minx

{
1
2x
>Q(k+1)x − x>R(k+1) + 1Ω1 (x) + 1Ω3 (x)

}
v

(k+1)
y = x (k+1) + u(k)

s? =

{
s ∈ R :

∑n
i=1

(∣∣∣v (k+1)
y ,i − bi

∣∣∣− s
)

+
= τ+

}
y (k+1) = v

(k+1)
y − sign

(
v

(k+1)
y − b

)
�min

(∣∣∣v (k+1)
y − b

∣∣∣ , s?)
u(k+1) = u(k) + x (k+1) − y (k+1)
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Question 2.c

We consider the following optimization problem:

w? = arg min ‖w − w̃‖1

s.t.


1>n w = 1√

(w − b)> Σ (w − b) ≤ σ+

0n ≤ w ≤ 1n
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Question 2.c.i

What is the meaning of the objective function ‖w − w̃‖1? What is the

meaning of the constraint

√
(w − b)>Σ (w − b) ≤ σ+?
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The objective function ‖w − w̃‖1 is the turnover between a given portfolio
w̃ and the optimized portfolio w

The constraint

√
(w − b)> Σ (w − b) ≤ σ+ is a tracking error limit with

respect to a benchmark b
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Question 2.c.ii

Propose an equivalent optimization problem such that fx (x) is a QP
problem. How to solve the y -update?

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 1385 / 1420



Portfolio optimization
Pattern learning and self-automated strategies

Market generators
Tutorial exercises

Portfolio optimization with CCD and ADMM algorithms
Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

The optimization problem is equivalent to solve the following program:

w? = arg min
1

2
(w − b)>Σ (w − b) + λ ‖w − w̃‖1

s.t.

{
1>n w = 1
0n ≤ w ≤ 1n
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We deduce that:

fx (x) =
1

2
(x − b)>Σ (x − b) + 1Ω1 (x) + 1Ω2 (x)

where:
Ω1 (x) =

{
x : 1>n x = 1

}
and:

Ω2 (x) = {x : 0n ≤ x ≤ 1n}
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We have:
fy (y) = λ ‖w − w̃‖1

We remind that:

proxλ‖x‖1
(v) = S (v ;λ) = sign (v)� (|v | − λ1n)+

and:
proxf (x+b) (v) = proxf (v + b)− b

The y -update step is then equal to:

y (k+1) = proxλ‖w−w̃‖1

(
x (k+1) + u(k)

)
= w̃ + sign

(
x (k+1) + u(k) − w̃

)
�
(∣∣∣x (k+1) + u(k) − w̃

∣∣∣− λ1n

)
+

because fy (y) is fully separable33

33Otherwise the scaling property does not work!
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Exercise

We consider an investment universe with 6 assets. We assume that their
expected returns are 4%, 6%, 7%, 8%, 10% and 10%,, and their
volatilities are 6%, 10%, 11%, 15%, 15% and 20%. The correlation matrix
is given by:

ρ =


100%

50% 100%
20% 20% 100%
50% 50% 80% 100%

0% −20% −50% −30% 100%
0% 20% 30% 0% 0% 100%
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Question 1

We restrict the analysis to long-only portfolios meaning that
∑n

i=1 xi = 1
and xi ≥ 0.
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Question 1.a

We consider the Herfindahl index H (x) =
∑n

i=1 x
2
i . What are the two

limit cases of H (x)? What is the interpretation of the statistic
N (x) = H−1 (x)?
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We consider the following optimization problem:

x? = arg minH (x)

s.t.
n∑

i=1

xi = 1

We deduce that the Lagrange function is:

L (x ;λ) = H (x)− λ

(
n∑

i=1

xi = 1

)
= x>x − λ

(
1>n x − 1

)
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The first-order condition is:

∂ L (x ;λ)

∂ x
= x − λ1n = 0n

Since we have 1>n x − 1 = 0, we deduce that:

λ =
1

1>n 1n
=

1

n

We conclude that the lower bound is reached for the equally-weighted
portfolio:

xew =
1

n
· 1n

and we have:

H (xew) =
1

n2
· 1>n 1n =

1

n
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Since the weights are positive, we have:

H (x) =
n∑

i=1

x2
i

≤

(
n∑

i=1

xi

)2

≤ 1

The upper bound is reached when the portfolio is concentrated on one
asset:

∃i : xi = 1
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We conclude that:
1

n
≤ H (x) ≤ 1

The statistic N (x) = H−1 (x) is the effective number of assets
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Question 1.b

We consider the following optimization problem (P1):

x? (λ) = arg min
1

2
x>Σx + λx>x

s.t.

{ ∑n
i=1 xi = 1

xi ≥ 0

What is the link between this constrained optimization program and the
weight diversification based on the Herfindahl index?
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The optimization problem (P1) is equivalent to:

x?
(
H+
)

= arg min
1

2
x>Σx

s.t.


∑n

i=1 xi = 1
xi ≥ 0
x>x ≤ H+

We obtain a long-only minimum variance portfolio with a diversification
constraint based on the Herfindahl index:

H (x) ≤ H+

We have the following correspondance:

H+ = H (x? (λ)) = x? (λ)> x? (λ)

Given a value of λ, we can then compute the implicit constraint
H (x) ≤ H+.
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Question 1.c

Solve Program (P1) when λ is equal to respectively 0, 0.001, 0.01, 0.05,
0.10 and 10. Compute the statistic N (x). Comment on these results.
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Table 116: Solution of the optimization problem (P1)

λ 0.000 0.001 0.010 0.050 0.100 10.000
x?1 (λ) (in %) 44.60 35.66 23.97 18.71 17.76 16.68
x?2 (λ) (in %) 9.12 14.60 18.10 17.08 16.89 16.67
x?3 (λ) (in %) 25.46 26.57 19.96 16.89 16.71 16.67
x?4 (λ) (in %) 0.00 0.00 7.64 14.46 15.52 16.65
x?5 (λ) (in %) 20.40 22.11 22.38 19.31 18.21 16.69
x?6 (λ) (in %) 0.43 1.07 7.94 13.55 14.92 16.65
H (x? (λ)) 0.3137 0.2680 0.1923 0.1693 0.1675 0.1667
N (x? (λ)) 3.19 3.73 5.20 5.91 5.97 6.00
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Question 1.d

Using the bisection algorithm, find the optimal value of λ? that satisfies:

N (x? (λ?)) = 4

Give the composition of x? (λ?). What is the interpretation of x? (λ?)?
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The optimal solution is:
λ? = 0.002301

The optimal weights (in %) are equal to:

x? =


31.62%
17.24%
26.18%

0.00%
22.63%

2.33%


The effective number of bets N (x?) is equal to 4

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 1401 / 1420



Portfolio optimization
Pattern learning and self-automated strategies

Market generators
Tutorial exercises

Portfolio optimization with CCD and ADMM algorithms
Regularized portfolio optimization

Regularized portfolio optimization

Question 2

We consider long/short portfolios and the following optimization problem
(P2):

x? (λ) = arg min
1

2
x>Σx + λ

n∑
i=1

|xi |

s.t.
n∑

i=1

xi = 1
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Question 2.a

Solve Program (P2) when λ is equal to respectively 0, 0.0001, 0.001, 0.01,
0.05, 0.10 and 10. Comment on these results.
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Table 117: Solution of the optimization problem (P2)

λ 0.000 0.0001 0.001 0.010 0.050 0.100 10.000
x?1 (λ) (in %) 35.82 37.17 44.50 44.60 44.60 44.60 44.60
x?2 (λ) (in %) 33.08 30.26 11.48 9.12 9.12 9.12 9.12
x?3 (λ) (in %) 77.62 71.77 31.28 25.46 25.46 25.46 25.46
x?4 (λ) (in %) −53.48 −47.97 −7.16 0.00 0.00 0.00 0.00
x?5 (λ) (in %) 20.83 20.56 19.90 20.40 20.40 20.40 20.40
x?6 (λ) (in %) −13.87 −11.78 0.00 0.43 0.43 0.43 0.43
L (x) (in %) 234.69 219.50 114.33 100.00 100.00 100.00 100.00
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Question 2.b

For each optimized portfolio, calculate the following statistic:

L (x) =
n∑

i=1

|xi |

What is the interpretation of L (x)? What is the impact of Lasso
regularization?
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L (x) =
∑n

i=1 |xi | is the leverage ratio. Their values are reported in Table
117.
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Question 3

We assume that the investor holds an initial portfolio x (0) defined as
follows:

x (0) =


10%
15%
20%
25%
30%

0%


We consider the optimization problem (P3):

x? (λ) = arg min
1

2
x>Σx + λ

n∑
i=1

∣∣∣xi − x
(0)
i

∣∣∣
s.t.

n∑
i=1

xi = 1
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Question 3.a

Solve Program (P3) when λ is equal respectively to 0, 0.0001, 0.001,
0.0015 and 0.01. Compute the turnover of each optimized portfolio.
Comment on these results.
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Table 118: Solution of the optimization problem (P3)

λ 0.000 0.000 0.001 0.002 0.010
x?1 (λ) (in %) 35.82 35.55 27.90 24.28 10.00
x?2 (λ) (in %) 33.08 30.61 15.00 15.00 15.00
x?3 (λ) (in %) 77.62 72.35 33.36 22.86 20.00
x?4 (λ) (in %) −53.48 −48.00 −5.20 7.87 25.00
x?5 (λ) (in %) 20.83 21.51 28.94 30.00 30.00
x?6 (λ) (in %) −13.87 −12.02 0.00 0.00 0.00

τ
(
x? (λ) | x (0)

)
(in %) 203.04 187.02 62.51 34.27 0.00
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Question 3.b

Using the bisection algorithm, find the optimal value of λ? such that the
two-way turnover is equal to 60%. Give the composition of x? (λ?).
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The optimal solution is:
λ? = 0.00103

The optimal weights (in %) are equal to:

x? =


27.23%
15.00%
32.77%
−4.30%
29.30%

0.00%


The turnover τ

(
x? | x (0)

)
is equal to 60%
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Regularized portfolio optimization

Question 3.c

Same question when the two-way turnover is equal to 50%.
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Portfolio optimization with CCD and ADMM algorithms
Regularized portfolio optimization

Regularized portfolio optimization

The optimal solution is:
λ? = 0.00119

The optimal weights (in %) are equal to:

x? =


25.53%
15.00%
29.47%

0.00%
30.00%

0.00%


The turnover τ

(
x? | x (0)

)
is equal to 50%
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Regularized portfolio optimization

Question 3.d

What becomes the portfolio x? (λ) when λ→∞? How do you explain
this result?
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Regularized portfolio optimization

We notice that:
lim
λ→∞

x? (λ) = x (0)

This is normal since we have:

x? (λ) = arg min
1

2
x>Σx + λ

n∑
i=1

∣∣∣xi − x
(0)
i

∣∣∣
s.t.

n∑
i=1

xi = 1

We deduce that:

x? (∞) = arg min
n∑

i=1

∣∣∣xi − x
(0)
i

∣∣∣
s.t.

n∑
i=1

xi = 1

The solution is x? (∞) = x (0)
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