Course 2023-2024 in Portfolio Allocation and Asset Management Lecture Notes + Tutorial Exercises

Thierry Roncalli*

*Amundi Asset Management¹

*University of Paris-Saclay

January 2024

¹The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

Part 1. Portfolio Optimization

1	Theory of portfolio optimization	18
	The Markowitz framework	18
	 Capital asset pricing model (CAPM) 	38
	 Portfolio optimization in the presence of a benchmark 	53
	 Black-Litterman model 	66
2	Practice of portfolio optimization	86
	Covariance matrix	86
	Expected returns	92
	Regularization of optimized portfolios	94
	 Adding constraints 	123
3	Tutorial exercises	152
	Variations on the efficient frontier	152
	Beta coefficient	188
	 Black-Litterman model 	226
4	References	246

Part 2. Risk Budgeting

5	The ERC portfolio	252
	 Definition 	252
	 Special cases 	277
	 Properties 	288
	 Numerical solution 	309
6	Extensions to risk budgeting portfolios	323
	 Definition of RB portfolios 	323
	 Properties of RB portfolios 	337
	 Diversification measures 	357
	 Using risk factors instead of assets 	367
7	Risk budgeting, risk premia and the risk parity strategy	393
	 Diversified funds 	393
	Risk premium	396
	 Risk parity strategies 	412
	 Performance budgeting portfolios 	413
8	Tutorial exercises	419
	 Variation on the ERC portfolio 	419
	 Weight concentration of a portfolio 	444
	The optimization problem of the ERC portfolio	467
	Risk parity funds	496
9	References	518

Part 3. Smart Beta, Factor Investing and ARP

10	Risk-based indexation	523
	Capitalization-weighted indexation	523
	Risk-based portfolios	541
	Comparison of the four risk-based portfolios	596
	 The case of bonds 	617
11	Factor investing	620
	 Factor investing in equities 	620
	• How many risk factors?	633
	 Construction of risk factors 	644
	 Risk factors in other asset classes 	654
12	Alternative risk premia	667
	• Definition	667
	Carry, value, momentum and liquidity	680
	Portfolio allocation with ARP	756
13	Tutorial exercises	777
	Equally-weighted portfolio	777
	Most diversified portfolio	805
	Computation of risk-based portfolios	839
	 Building a carry trade exposure 	858
14	References	887
	i Nererences	007

Part 4. Equity Portfolio Optimization with ESG Scores (Exercise)

CAPM and implied expected returns

16

Mean-variance optimization with ESG scores

Benchmark with ESG scores

935

901

914

Part 5. Climate Portfolio Construction

18	Portfolio optimization in practice	965
	Quadratic programming (QP) problem	965
	Equity portfolios	969
	 Bond portfolios 	992
19	Portfolio decarbonization	1035
	Equity and bond portfolios	1035
	 Sector-specific constraints 	1049
	Empirical results	1056
20	Net-zero investing	1078
	Integrated approach	1078
	 Core satellite approach 	1124

Part 6. Equity and Bond Portfolio Optimization with Green Preferences (Exercise)

21	Carbon intensity of the benchmark	1151
22	Equity portfolios	1168
23	 Bond portfolios \$\mathcal{L}_2\$-norm risk measures \$\mathcal{L}_1\$-norm risk measures 	<mark>1188</mark> 1188 1211

Part 7. Machine Learning in Asset Management

24	 Portfolio optimization Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation 	1227 1227 1231 1300
25	Pattern learning and self-automated strategies	1332
26	Market generators	1335
27	 Tutorial exercises Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization 	1336 1336 1389
28	References	1416

General information

Overview

The objective of this course is to understand the theoretical and practical aspects of asset management

Prerequisites

M1 Finance or equivalent

ECTS

3

4 Keywords

Finance, Asset Management, Optimization, Statistics

6 Hours

Lectures: 24h, HomeWork: 30h

Evaluation

Project + oral examination

Course website

www.thierry-roncalli.com/AssetManagementCourse.html

Objective of the course

The objective of the course is twofold:

- having a financial culture on asset management
- eing proficient in quantitative portfolio management

Class schedule

Course sessions

- January 12 (6 hours, AM+PM)
- January 19 (6 hours, AM+PM)
- January 26 (6 hours, AM+PM)
- February 2 (6 hours, AM+PM)

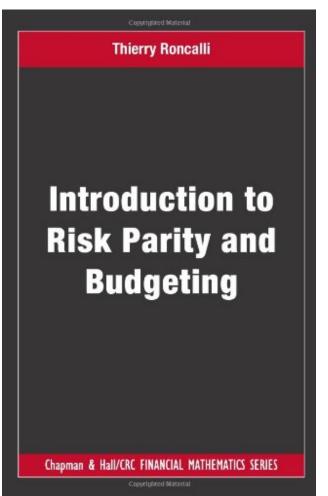
Class times: Fridays 9:00am-12:00pm, 1:00pm-4:00pm, University of Evry

Agenda

- Lecture 1: Portfolio Optimization
- Lecture 2: Risk Budgeting
- Lecture 3: Smart Beta, Factor Investing and Alternative Risk Premia
- Lecture 4: Equity Portfolio Optimization with ESG Scores
- Lecture 5: Climate Portfolio Construction
- Lecture 6: Equity and Bond Portfolio Optimization with Green Preferences
- Lecture 7: Machine Learning in Asset Management

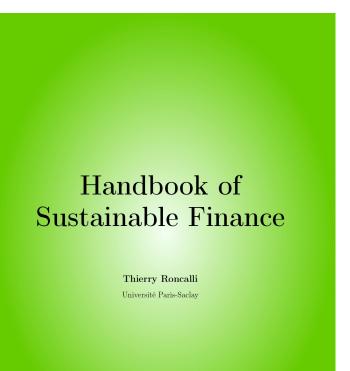
Textbook (Asset Management)

 Roncalli, T. (2013), Introduction to Risk Parity and Budgeting, Chapman & Hall/CRC Financial Mathematics Series.



Textbook (Sustainable Finance)

• Roncalli, T. (2024), Handbook of Sustainable Finance.



Additional materials

 Slides, tutorial exercises and past exams can be downloaded at the following address:

www.thierry-roncalli.com/AssetManagementCourse.html

 Solutions of exercises can be found in the companion book, which can be downloaded at the following address:

http://www.thierry-roncalli.com/RiskParityBook.html

Course 2023-2024 in Portfolio Allocation and Asset Management Lecture 1. Portfolio Optimization

Thierry Roncalli*

*Amundi Asset Management²

*University of Paris-Saclay

January 2024

²The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

Agenda

• Lecture 1: Portfolio Optimization

- Lecture 2: Risk Budgeting
- Lecture 3: Smart Beta, Factor Investing and Alternative Risk Premia
- Lecture 4: Equity Portfolio Optimization with ESG Scores
- Lecture 5: Climate Portfolio Construction
- Lecture 6: Equity and Bond Portfolio Optimization with Green Preferences
- Lecture 7: Machine Learning in Asset Management

17 / 1420

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Notations

- We consider a universe of *n* assets
- $x = (x_1, ..., x_n)$ is the vector of weights in the portfolio
- The portfolio is fully invested:

$$\sum_{i=1}^n x_i = \mathbf{1}_n^\top x = 1$$

- $R = (R_1, ..., R_n)$ is the vector of asset returns where R_i is the return of asset *i*
- The return of the portfolio is equal to:

$$R(x) = \sum_{i=1}^{n} x_i R_i = x^{\top} R$$

• $\mu = \mathbb{E}[R]$ and $\Sigma = \mathbb{E}\left[(R - \mu)(R - \mu)^{\top}\right]$ are the vector of expected returns and the covariance matrix of asset returns

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Computation of the first two moments

The expected return of the portfolio is:

$$\mu\left(x\right) = \mathbb{E}\left[R\left(x\right)\right] = \mathbb{E}\left[x^{\top}R\right] = x^{\top}\mathbb{E}\left[R\right] = x^{\top}\mu$$

whereas its variance is equal to:

$$\sigma^{2}(x) = \mathbb{E}\left[\left(R(x) - \mu(x)\right)\left(R(x) - \mu(x)\right)^{\top}\right]$$
$$= \mathbb{E}\left[\left(x^{\top}R - x^{\top}\mu\right)\left(x^{\top}R - x^{\top}\mu\right)^{\top}\right]$$
$$= \mathbb{E}\left[x^{\top}\left(R - \mu\right)\left(R - \mu\right)^{\top}x\right]$$
$$= x^{\top}\mathbb{E}\left[\left(R - \mu\right)\left(R - \mu\right)^{\top}\right]x$$
$$= x^{\top}\Sigma x$$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Efficient frontier

Two equivalent optimization problems

• Maximizing the expected return of the portfolio under a volatility constraint (σ -problem):

$$\max \mu(x)$$
 u.c. $\sigma(x) \leq \sigma^{\star}$

Or minimizing the volatility of the portfolio under a return constraint $(\mu$ -problem):

 $\min \sigma(x)$ u.c. $\mu(x) \ge \mu^{\star}$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Efficient frontier

Example 1

We consider four assets. Their expected returns are equal to 5%, 6%, 8% and 6% while their volatilities are equal to 15%, 20%, 25% and 30%. The correlation matrix of asset returns is given by the following matrix:

$$C = \left(\begin{array}{c} 1.00 \\ 0.10 & 1.00 \\ 0.40 & 0.70 & 1.00 \\ 0.50 & 0.40 & 0.80 & 1.00 \end{array}\right)$$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Efficient frontier

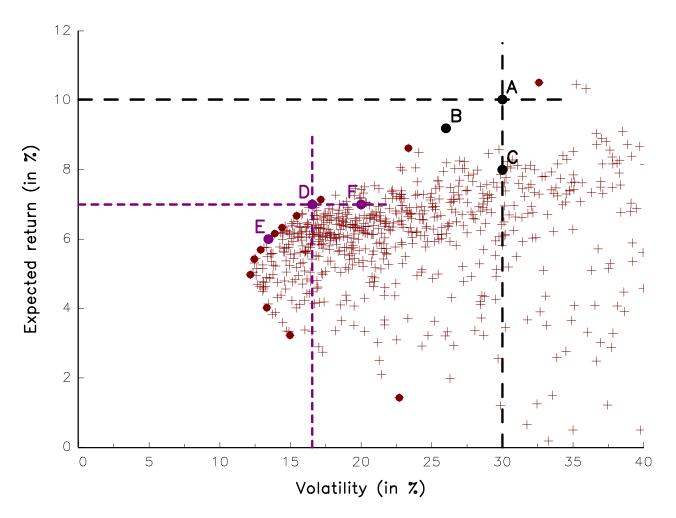


Figure 1: Optimized Markowitz portfolios (1000 simulations)

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Markowitz trick

Markowitz transforms the two original non-linear optimization problems into a quadratic optimization problem:

$$egin{array}{rl} x^{\star}\left(\phi
ight)&=&rg\max x^{ op}\mu-rac{\phi}{2}x^{ op}\Sigma x\ u.c. & \mathbf{1}_{n}^{ op}x=1 \end{array}$$

where ϕ is a risk-aversion parameter:

- $\phi = 0 \Rightarrow$ we have $\mu \left(x^{\star} \left(0 \right) \right) = \mu^{+}$
- If $\phi = \infty$, the optimization problem becomes:

$$x^{\star}(\infty) = \arg \min \frac{1}{2} x^{\top} \Sigma x$$

u.c. $\mathbf{1}_{n}^{\top} x = 1$

⇒ we have $\sigma(x^*(\infty)) = \sigma^-$. This is the minimum variance (or MV) portfolio

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

The γ -problem

The previous problem can also be written as follows:

$$x^{\star}(\gamma) = \arg \min \frac{1}{2} x^{\top} \Sigma x - \gamma x^{\top} \mu$$

u.c. $\mathbf{1}_{n}^{\top} x = 1$

with $\gamma=\phi^{-1}$

- \Rightarrow This is a standard QP problem
 - The minimum variance portfolio corresponds to $\gamma = 0$
 - \bullet Generally, we use the $\gamma\text{-problem},$ not the $\phi\text{-problem}$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Quadratic programming problem

Definition

This is an optimization problem with a quadratic objective function and linear inequality constraints:

$$x^{\star}$$
 = arg min $\frac{1}{2}x^{\top}Qx - x^{\top}R$
u.c. $Sx < T$

where x is a $n \times 1$ vector, Q is a $n \times n$ matrix and R is a $n \times 1$ vector

 \Rightarrow $Sx \leq T$ allows specifying linear equality constraints Ax = B ($Ax \geq B$ and $Ax \leq B$) or weight constraints $x^- \leq x \leq x^+$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Quadratic programming problem

Mathematical softwares consider the following formulation:

$$x^{\star} = \arg \min \frac{1}{2} x^{\top} Q x - x^{\top} R$$

u.c.
$$\begin{cases} Ax = B \\ Cx \le D \\ x^{-} \le x \le x^{+} \end{cases}$$

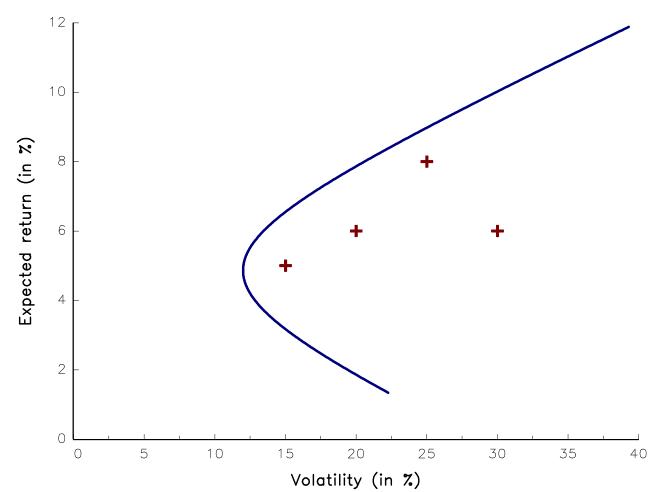
because:

$$Sx \leq T \Leftrightarrow \begin{bmatrix} -A \\ A \\ C \\ -I_n \\ I_n \end{bmatrix} x \leq \begin{bmatrix} -B \\ B \\ D \\ -x^- \\ x^+ \end{bmatrix}$$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Efficient frontier

The efficient frontier is the parametric function $(\sigma(x^*(\phi)), \mu(x^*(\phi)))$ with $\phi \in \mathbb{R}_+$



The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Optimized portfolios

Table 1: Solving the ϕ -problem

ϕ	$+\infty$	5.00	2.00	1.00	0.50	0.20
x_1^{\star}	72.74	68.48	62.09	51.44	30.15	-33.75
x_2^{\star}	49.46	35.35	14.17	-21.13	-91.72	-303.49
x ₃ *	-20.45	12.61	62.21	144.88	310.22	806.22
x_4^{\star}	-1.75	-16.44	-38.48	-75.20	-148.65	-368.99
$\left[\bar{\mu} (\bar{x^{\star}}) \right]$	4.86	5.57	6.62	8.38	11.90	22.46
$\sigma(\mathbf{x}^{\star})$	12.00	12.57	15.23	22.27	39.39	94.57

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Solving μ - and σ -problems

This is equivalent to finding the optimal value of γ such that:

$$\mu\left(x^{\star}\left(\gamma\right)\right)=\mu^{\star}$$

or:

$$\sigma\left(x^{\star}\left(\gamma\right)\right) = \sigma^{\star}$$

We know that:

- the functions $\mu(x^{\star}(\gamma))$ and $\sigma(x^{\star}(\gamma))$ are increasing with respect to γ
- the functions $\mu(x^{\star}(\gamma))$ and $\sigma(x^{\star}(\gamma))$ are bounded:

$$\begin{array}{ll} \mu^{-} & \leq & \mu \left(x^{\star} \left(\gamma \right) \right) \leq \mu^{+} \\ \sigma^{-} & \leq & \sigma \left(x^{\star} \left(\gamma \right) \right) \leq \sigma^{+} \end{array}$$

 \Rightarrow The optimal value of γ can then be easily computed using the bisection algorithm

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Solving μ - and σ -problems

We want to solve $f(\gamma) = c$ where:

- $f(\gamma) = \mu(x^{\star}(\gamma))$ and $c = \mu^{\star}$
- or $f(\gamma) = \sigma(x^{\star}(\gamma))$ and $c = \sigma^{\star}$

Bisection algorithm

- We assume that $\gamma^{\star} \in [\gamma_1, \gamma_2]$
- **2** If $\gamma_2 \gamma_1 \leq \varepsilon$, then stop
- We compute:

$$\bar{\gamma} = \frac{\gamma_1 + \gamma_2}{2}$$

```
and f(\bar{\gamma})

4 We update \gamma_1 and \gamma_2 as follows:

1 If f(\bar{\gamma}) < c, then \gamma^* \in [\gamma_c, \gamma_2] and \gamma_1 \leftarrow \gamma_c

2 If f(\bar{\gamma}) > c, then \gamma^* \in [\gamma_1, \gamma_c] and \gamma_2 \leftarrow \gamma_c

5 Go to Step 2
```

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Solving μ - and σ -problems

Table 2: Solving the unconstrained μ -problem

μ^{\star}	5.00	6.00	7.00	8.00	9.00
x_1^{\star}	* 71.92 6		59.81	53.76	47.71
x_2^{\star}	46.73	26.67	6.62	-13.44	-33.50
x ₃ *	-14.04	32.93	79.91	126.88	173.86
x_4^{\star}	-4.60	-25.47	-46.34	-67.20	-88.07
$\bar{\sigma}(\bar{x^{\star}})$	12.02	13.44	16.54	20.58	25.10
ϕ	25.79	3.10	1.65	1.12	0.85

Table 3: Solving the unconstrained σ -problem

15.00	20.00	25.00	30.00	35.00
62.52	54.57	47.84	41.53	35.42
15.58	-10.75	-33.07	-54.00	-74.25
58.92	120.58	172.85	221.88	269.31
-37.01	-64.41	-87.62	-109.40	-130.48
6.55	7.87	8.98	10.02	11.03
2.08	1.17	0.86	0.68	0.57
	$\begin{array}{r} 62.52\\ 15.58\\ 58.92\\ -37.01\\ \overline{6.55}\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Adding some constraints

We have:

$$egin{array}{rl} x^{\star}\left(\gamma
ight)&=&rg\minrac{1}{2}x^{ op}\Sigma x-\gamma x^{ op}\mu\ &\ ext{u.c.}&\left\{egin{array}{rl} \mathbf{1}_n^{ op}x=1\ x\in\Omega\end{array}
ight. \end{array}
ight.$$

where $x \in \Omega$ corresponds to the set of restrictions

Two classical constraints:

• no short-selling restriction

$$x_i \geq 0$$

• upper bound

$$x_i \leq c$$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Adding some constraints

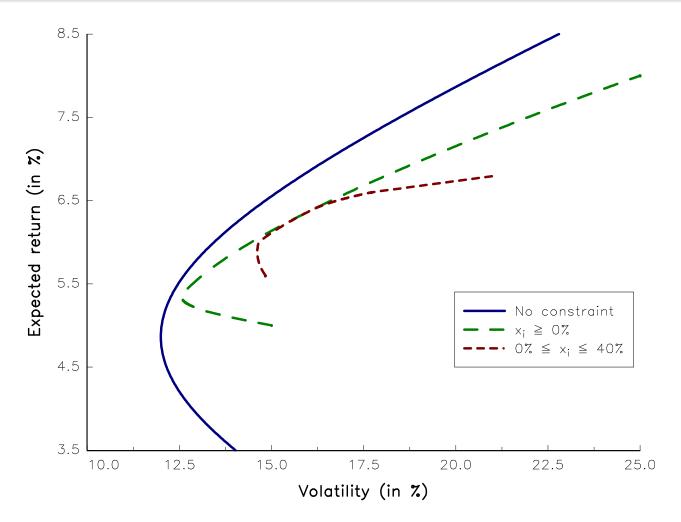


Figure 2: The efficient frontier with some weight constraints

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Adding some constraints

Table 4: Solving the σ -problem with weight constraints

	$x_i \in \mathbb{R}$		$x_i \ge 0$		$0 \le x_i \le 40\%$	
σ^{\star}	15.00	20.00	15.00	20.00	15.00	20.00
x_1^{\star}	62.52	54.57	45.59	24.88	40.00	6.13
x_2^{\star}	15.58	-10.75	24.74	4.96	34.36	40.00
x ₃ *	58.92	120.58	29.67	70.15	25.64	40.00
x_4^{\star}	-37.01	-64.41	0.00	0.00	0.00	13.87
$\left[\bar{\mu} (\bar{x}^{\star}) \right]$	6.55	7.87	6.14	7.15	6.11	6.74
ϕ	2.08	1.17	1.61	0.91	1.97	0.28

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Analytical solution

The Lagrange function is:

$$\mathcal{L}(x;\lambda_0) = x^{\top} \mu - \frac{\phi}{2} x^{\top} \Sigma x + \lambda_0 \left(\mathbf{1}_n^{\top} x - 1\right)$$

The first-order conditions are:

$$\begin{cases} \partial_{x} \mathcal{L} (x; \lambda_{0}) = \mu - \phi \Sigma x + \lambda_{0} \mathbf{1}_{n} = \mathbf{0}_{n} \\ \partial_{\lambda_{0}} \mathcal{L} (x; \lambda_{0}) = \mathbf{1}_{n}^{\top} x - 1 = 0 \end{cases}$$

We obtain:

$$\mathbf{x} = \phi^{-1} \mathbf{\Sigma}^{-1} \left(\mu + \lambda_0 \mathbf{1}_n \right)$$

Because $\mathbf{1}_n^\top x - 1 = 0$, we have:

$$\mathbf{1}_{n}^{\top}\phi^{-1}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu} + \lambda_{0}\left(\mathbf{1}_{n}^{\top}\phi^{-1}\boldsymbol{\Sigma}^{-1}\mathbf{1}_{n}\right) = 1$$

It follows that:

$$\lambda_0 = \frac{1 - \mathbf{1}_n^\top \phi^{-1} \Sigma^{-1} \mu}{\mathbf{1}_n^\top \phi^{-1} \Sigma^{-1} \mathbf{1}_n}$$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Analytical solution

The solution is then:

$$x^{\star}(\phi) = \frac{\Sigma^{-1}\mathbf{1}_{n}}{\mathbf{1}_{n}^{\top}\Sigma^{-1}\mathbf{1}_{n}} + \frac{1}{\phi} \cdot \frac{\left(\mathbf{1}_{n}^{\top}\Sigma^{-1}\mathbf{1}_{n}\right)\Sigma^{-1}\mu - \left(\mathbf{1}_{n}^{\top}\Sigma^{-1}\mu\right)\Sigma^{-1}\mathbf{1}_{n}}{\mathbf{1}_{n}^{\top}\Sigma^{-1}\mathbf{1}_{n}}$$

Remark

The global minimum variance portfolio is:

$$x_{\mathrm{mv}} = x^{\star}(\infty) = \frac{\Sigma^{-1} \mathbf{1}_n}{\mathbf{1}_n^{\top} \Sigma^{-1} \mathbf{1}_n}$$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Analytical solution

In the case of no short-selling, the Lagrange function becomes:

$$\mathcal{L}(x;\lambda_0,\lambda) = x^{\top}\mu - \frac{\phi}{2}x^{\top}\Sigma x + \lambda_0\left(\mathbf{1}_n^{\top}x - 1\right) + \lambda^{\top}x$$

where $\lambda = (\lambda_1, \dots, \lambda_n) \ge \mathbf{0}_n$ is the vector of Lagrange coefficients associated with the constraints $x_i \ge 0$

• The first-order condition is:

$$\mu - \phi \boldsymbol{\Sigma} \boldsymbol{x} + \lambda_0 \boldsymbol{1} + \lambda = \boldsymbol{0}_n$$

• The Kuhn-Tucker conditions are:

$$\min\left(\lambda_i, x_i\right) = 0$$

<u>37 / 1420</u>

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

The tangency portfolio

Markowitz

There are many optimized portfolios \Rightarrow there are many optimal portfolios

Tobin

One optimized portfolio dominates all the others if there is a risk-free asset

38 / 1420

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

The tangency portfolio

We consider a combination of the risk-free asset and a portfolio x:

$$R(y) = (1 - \alpha) r + \alpha R(x)$$

where:

- r is the return of the risk-free asset
- $y = \begin{pmatrix} \alpha x \\ 1 \alpha \end{pmatrix}$ is a vector of dimension (n+1)

• $\alpha \ge 0$ is the proportion of the wealth invested in the risky portfolio It follows that:

$$\mu(\mathbf{y}) = (1 - \alpha) \mathbf{r} + \alpha \mu(\mathbf{x}) = \mathbf{r} + \alpha (\mu(\mathbf{x}) - \mathbf{r})$$

and:

$$\sigma^{2}(\mathbf{y}) = \alpha^{2}\sigma^{2}(\mathbf{x})$$

We deduce that:

$$\mu(\mathbf{y}) = \mathbf{r} + \frac{(\mu(\mathbf{x}) - \mathbf{r})}{\sigma(\mathbf{x})} \sigma(\mathbf{y})$$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

The tangency portfolio

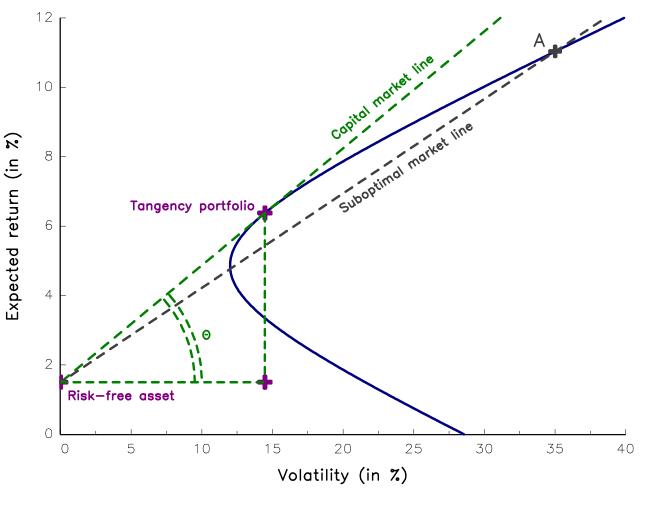


Figure 3: The capital market line (r = 1.5%)

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

The tangency portfolio

Let SR (x | r) be the Sharpe ratio of portfolio x:

$$\operatorname{SR}(x \mid r) = \frac{\mu(x) - r}{\sigma(x)}$$

We obtain:

$$\frac{\mu(y) - r}{\sigma(y)} = \frac{\mu(x) - r}{\sigma(x)} \Leftrightarrow SR(y \mid r) = SR(x \mid r)$$

The tangency portfolio is the one that maximizes the angle θ or equivalently tan θ :

$$an heta = \mathrm{SR}\left(x \mid r
ight) = rac{\mu\left(x
ight) - r}{\sigma\left(x
ight)}$$

The tangency portfolio is the risky portfolio corresponding to the maximum Sharpe ratio

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

The tangency portfolio

Example 2

We consider Example 1 and r = 1.5%

The composition of the tangency portfolio x^* is:

$$x^{\star} = \left(egin{array}{ccc} 63.63\% \ 19.27\% \ 50.28\% \ -33.17\% \end{array}
ight)$$

We have:

$$\mu(x^{*}) = 6.37\%$$

$$\sigma(x^{*}) = 14.43\%$$

SR (x^{*} | r) = 0.34

$$\theta(x^{*}) = 18.64 \text{ degrees}$$

Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark

The tangency portfolio

Let us consider a portfolio x of risky assets and a risk-free asset r. We denote by \tilde{x} the augmented vector of dimension n+1 such that:

$$ilde{x} = \left(egin{array}{c} x \ x_r \end{array}
ight) \quad ext{and} \quad ilde{\Sigma} = \left(egin{array}{c} \Sigma & \mathbf{0}_n \ \mathbf{0}_n^ op & \mathbf{0} \end{array}
ight) \quad ext{and} \quad ilde{\mu} = \left(egin{array}{c} \mu \ r \end{array}
ight)$$

If we include the risk-free asset, the Markowitz γ -problem becomes:

$$\begin{split} \widetilde{x}^{\star}\left(\gamma
ight) &= rg \min rac{1}{2} \widetilde{x}^{ op} \widetilde{\Sigma} \widetilde{x} - \gamma \widetilde{x}^{ op} \widetilde{\mu} \ ext{u.c.} \quad \mathbf{1}_{n}^{ op} \widetilde{x} = 1 \end{split}$$

Two-fund separation theorem

We can show that (RPB, pages 13-14):

$$\tilde{x}^{\star} = \underbrace{\alpha \cdot \begin{pmatrix} x_0^{\star} \\ 0 \end{pmatrix}}_{\text{risky assets}} + \underbrace{(1 - \alpha) \cdot \begin{pmatrix} \mathbf{0}_n \\ 1 \end{pmatrix}}_{\text{risk-free asset}}$$

risky assets

Thierry Roncalli

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

The tangency portfolio

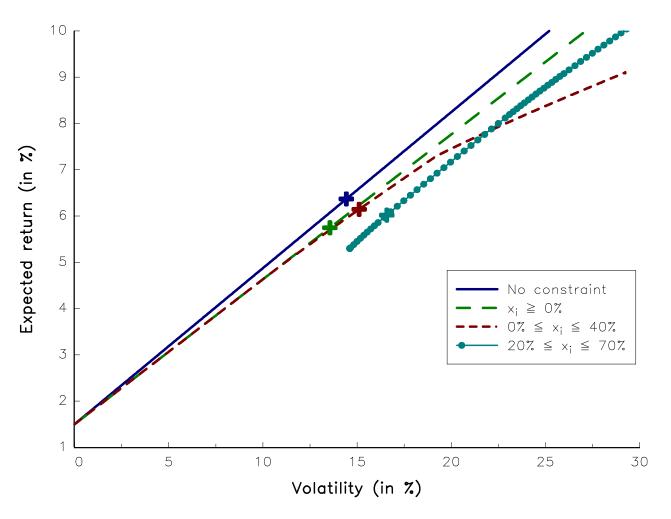


Figure 4: The efficient frontier with a risk-free asset

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Market equilibrium and CAPM

- x^* is the tangency portfolio
- On the efficient frontier, we have:

$$\mu(\mathbf{y}) = \mathbf{r} + \frac{\sigma(\mathbf{y})}{\sigma(\mathbf{x}^{\star})} \left(\mu(\mathbf{x}^{\star}) - \mathbf{r} \right)$$

• We consider a portfolio z with a proportion w invested in the asset i and a proportion (1 - w) invested in the tangency portfolio x^* :

$$\mu(z) = w\mu_i + (1 - w)\mu(x^*) \sigma^2(z) = w^2\sigma_i^2 + (1 - w)^2\sigma^2(x^*) + 2w(1 - w)\rho(\mathbf{e}_i, x^*)\sigma_i\sigma(x^*)$$

It follows that:

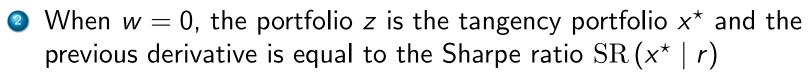
$$\frac{\partial \mu(z)}{\partial \sigma(z)} = \frac{\mu_i - \mu(x^*)}{\left(w\sigma_i^2 + (w-1)\sigma^2(x^*) + (1-2w)\rho(\mathbf{e}_i, x^*)\sigma_i\sigma(x^*)\right)\sigma^{-1}(z)}$$

I he Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Market equilibrium and CAPM

• When
$$w = 0$$
, we have:

$$\frac{\partial \mu(z)}{\partial \sigma(z)} = \frac{\mu_i - \mu(x^*)}{\left(-\sigma^2(x^*) + \rho(\mathbf{e}_i, x^*)\sigma_i\sigma(x^*)\right)\sigma^{-1}(x^*)}$$



We deduce that:

$$\frac{\left(\mu_{i}-\mu\left(x^{\star}\right)\right)\sigma\left(x^{\star}\right)}{\rho\left(\mathbf{e}_{i},x^{\star}\right)\sigma_{i}\sigma\left(x^{\star}\right)-\sigma^{2}\left(x^{\star}\right)}=\frac{\mu\left(x^{\star}\right)-r}{\sigma\left(x^{\star}\right)}$$

which is equivalent to:

$$\pi_i = \mu_i - r = \beta_i \left(\mu \left(x^* \right) - r \right)$$

with π_i the risk premium of the asset *i* and:

$$\beta_{i} = \frac{\rho\left(\mathbf{e}_{i}, x^{\star}\right)\sigma_{i}}{\sigma\left(x^{\star}\right)} = \frac{\operatorname{cov}\left(R_{i}, R\left(x^{\star}\right)\right)}{\operatorname{var}\left(R\left(x^{\star}\right)\right)}$$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Market equilibrium and CAPM

CAPM

The risk premium of the asset i is equal to its beta times the excess return of the tangency portfolio

 \Rightarrow We can extend the previous result to the case of a portfolio x (and not only to the asset *i*):

$$z = wx + (1 - w) x^{\star}$$

In this case, we have:

$$\pi(\mathbf{x}) = \mu(\mathbf{x}) - \mathbf{r} = \beta(\mathbf{x} \mid \mathbf{x}^{\star})(\mu(\mathbf{x}^{\star}) - \mathbf{r})$$

47 / 1420

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Computation of the beta

The least squares method

- $R_{i,t}$ and $R_t(x)$ be the returns of asset *i* and portfolio *x* at time *t*
- β_i is estimated with the linear regression:

$$R_{i,t} = \alpha_i + \beta_i R_t(x) + \varepsilon_{i,t}$$

• For a portfolio *y*, we have:

$$R_{t}(y) = \alpha + \beta R_{t}(x) + \varepsilon_{t}$$

48 / 1420

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Computation of the beta

The covariance method

Another way to compute the beta of portfolio y is to use the following relationship:

$$\beta\left(y \mid x\right) = \frac{\sigma\left(y, x\right)}{\sigma^{2}\left(x\right)} = \frac{y^{\top}\Sigma x}{x^{\top}\Sigma x}$$

We deduce that the expression of the beta of asset *i* is also:

$$eta_i = eta\left(\mathbf{e}_i \mid x
ight) = rac{\mathbf{e}_i^\top \mathbf{\Sigma} x}{x^\top \mathbf{\Sigma} x} = rac{\left(\mathbf{\Sigma} x
ight)_i}{x^\top \mathbf{\Sigma} x}$$

The beta of a portfolio is the weighted average of the beta of the assets that compose the portfolio:

$$\beta \left(y \mid x \right) = \frac{y^{\top} \Sigma x}{x^{\top} \Sigma x} = y^{\top} \frac{\Sigma x}{x^{\top} \Sigma x} = \sum_{i=1}^{n} y_i \beta_i$$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Market equilibrium and CAPM

We have $x^{\star} = (63.63\%, 19.27\%, 50.28\%, -33.17\%)$ and $\mu(x^{\star}) = 6.37\%$

Table 5: Computation of the beta and the risk premium (Example 2)

Portfolio y	$\mu(\mathbf{y})$	$\mu(\mathbf{y}) - \mathbf{r}$	$\beta(y \mid x^{\star})$	$\pi\left(y \mid x^{\star}\right)$
\mathbf{e}_1	5.00	3.50	0.72	3.50
e ₂	6.00	4.50	0.92	4.50
e ₃	8.00	6.50	1.33	6.50
e ₄	6.00	4.50	0.92	4.50
$X_{\rm ew}$	6.25	4.75	0.98	4.75

Example 2

We consider four assets. Their expected returns are equal to 5%, 6%, 8% and 6% while their volatilities are equal to 15%, 20%, 25% and 30%. The correlation matrix of asset returns is given by the following matrix:

$$C = \begin{pmatrix} 1.00 \\ 0.10 & 1.00 \\ 0.40 & 0.70 & 1.00 \\ 0.50 & 0.40 & 0.80 & 1.00 \end{pmatrix}$$

The risk free rate is equal to r = 1.5%

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

From active management to passive management

- Active management
- Sharpe (1964)

$$\pi(\mathbf{x}) = \beta(\mathbf{x} \mid \mathbf{x}^{\star}) \pi(\mathbf{x}^{\star})$$

• Jensen (1969)

$$R_{t}(x) = \alpha + \beta R_{t}(b) + \varepsilon_{t}$$

where $R_t(x)$ is the fund return and $R_t(b)$ is the benchmark return

• Passive management (John McQuown, WFIA, 1971)

Active management = Alpha Passive management = Beta

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Impact of the constraints

If we impose a lower bound $x_i \ge 0$, the tangency portfolio becomes $x^* = (53.64\%, 32.42\%, 13.93\%, 0.00\%)$ and we have $\mu(x^*) = 5.74\%$

Table 6: Computation of the beta with a constrained tangency portfolio

Portfolio	$\mu(y) - r$	$\beta(y \mid x^{\star})$	$\pi(y \mid x^{\star})$
\mathbf{e}_1	3.50	0.83	3.50
e ₂	4.50	1.06	4.50
e ₃	6.50	1.53	6.50
e ₄	4.50	1.54	6.53
X_{ew}	4.75	1.24	5.26

 $\Rightarrow \mu_4 - r = \beta_4 (\mu(x^*) - r) + \pi_4^-$ where $\pi_4^- \leq 0$ represents a negative premium due to a lack of arbitrage on the fourth asset

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Tracking error

- Portfolio $x = (x_1, \ldots, x_n)$
- Benchmark $b = (b_1, \ldots, b_n)$
- The tracking error between the active portfolio x and its benchmark b is the difference between the return of the portfolio and the return of the benchmark:

$$e = R(x) - R(b) = \sum_{i=1}^{n} x_i R_i - \sum_{i=1}^{n} b_i R_i = x^{\top} R - b^{\top} R = (x - b)^{\top} R$$

• The expected excess return is:

$$\mu (x \mid b) = \mathbb{E} [e] = (x - b)^{\top} \mu$$

• The volatility of the tracking error is:

$$\sigma(x \mid b) = \sigma(e) = \sqrt{(x-b)^{\top} \Sigma(x-b)}$$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Markowitz optimization problem

The expected return of the portfolio is replaced by the expected excess return and the volatility of the portfolio is replaced by the volatility of the tracking error

σ -problem

The objective of the investor is to maximize the expected tracking error with a constraint on the tracking error volatility:

$$egin{argge} \mathbf{x}^{\star} &=& rg\max\mu\left(\mathbf{x}\mid b
ight) \ \mathbf{u.c.} &\left\{ egin{argge} \mathbf{1}_{n}^{ op}\mathbf{x} = 1 \ \sigma\left(\mathbf{x}\mid b
ight) \leq \sigma^{\star} \end{array}
ight. \end{aligned}$$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Equivalent QP problem

We transform the $\sigma\text{-problem}$ into a $\gamma\text{-problem}$:

$$x^{\star}(\gamma) = \arg\min f(x \mid b)$$

with:

$$\begin{split} f\left(x\mid b\right) &= \frac{1}{2}\left(x-b\right)^{\top}\Sigma\left(x-b\right) - \gamma\left(x-b\right)^{\top}\mu \\ &= \frac{1}{2}x^{\top}\Sigma x - x^{\top}\left(\gamma\mu + \Sigma b\right) + \left(\frac{1}{2}b^{\top}\Sigma b + \gamma b^{\top}\mu\right) \\ &= \frac{1}{2}x^{\top}\Sigma x - x^{\top}\left(\gamma\mu + \Sigma b\right) + c \end{split}$$

where c is a constant which does not depend on Portfolio x

QP problem with $Q = \Sigma$ and $R = \gamma \mu + \Sigma b$

Remark The efficient frontier is the parametric curve $(\sigma(x^*(\gamma) | b), \mu(x^*(\gamma) | b))$ with $\gamma \in \mathbb{R}_+$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Efficient frontier with a benchmark

Example 3

We consider four assets. Their expected returns are equal to 5%, 6%, 8% and 6% while their volatilities are equal to 15%, 20%, 25% and 30%. The correlation matrix of asset returns is given by the following matrix:

$$C = \left(\begin{array}{cccc} 1.00 & & & \\ 0.10 & 1.00 & & \\ 0.40 & 0.70 & 1.00 & \\ 0.50 & 0.40 & 0.80 & 1.00 \end{array}\right)$$

The benchmark of the portfolio manager is equal to b = (60%, 40%, 20%, -20%)

•
$$1^{st}$$
 case: No constraint
• 2^{nd} case: $x_i^- \le x_i$ with $x_i^- = -10\%$
• 3^{rd} case: $x_i^- \le x_i \le x_i^+$ with $x_1^- = x_2^- = x_3^- = 0\%$, $x_4^- = -20\%$ and $x_i^+ = 50\%$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Efficient frontier with a benchmark

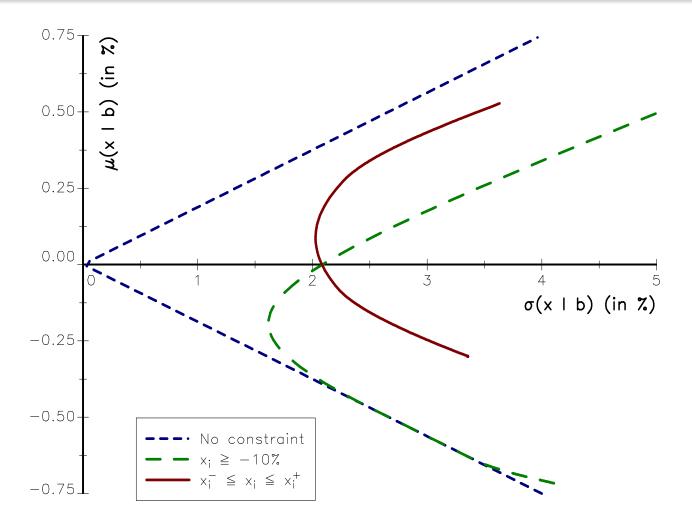


Figure 5: The efficient frontier with a benchmark (Example 3)

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Information ratio

Definition

The information ratio is defined as follows:

$$\operatorname{IR}\left(x \mid b\right) = \frac{\mu\left(x \mid b\right)}{\sigma\left(x \mid b\right)} = \frac{\left(x - b\right)^{\top}\mu}{\sqrt{\left(x - b\right)^{\top}\Sigma\left(x - b\right)}}$$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Information ratio

If we consider a combination of the benchmark b and the active portfolio x, the composition of the portfolio is:

$$\mathbf{y} = (\mathbf{1} - \alpha) \, \mathbf{b} + \alpha \mathbf{x}$$

with $\alpha \ge 0$ the proportion of wealth invested in the portfolio x. It follows that:

$$\mu (\mathbf{y} \mid \mathbf{b}) = (\mathbf{y} - \mathbf{b})^{\top} \mu = \alpha \mu (\mathbf{x} \mid \mathbf{b})$$

and:

$$\sigma^{2}(y \mid b) = (y - b)^{\top} \Sigma (y - b) = \alpha^{2} \sigma^{2} (x \mid b)$$

We deduce that:

$$\mu(y \mid b) = \operatorname{IR}(x \mid b) \cdot \sigma(y \mid b)$$

The efficient frontier is a straight line

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Tangency portfolio

If we add some constraints, the portfolio optimization problem becomes:

$$egin{array}{rcl} x^{\star}\left(\gamma
ight)&=&rg\minrac{1}{2}x^{ op}\Sigma x-x^{ op}\left(\gamma\mu+\Sigma b
ight)\ &\ ext{u.c.}&\left\{egin{array}{c} \mathbf{1}_n^{ op}x=1\ x\in\Omega\end{array}
ight. \end{array}
ight.$$

The efficient frontier is no longer a straight line

Tangency portfolio

One optimized portfolio dominates all the other portfolios. It is the portfolio which belongs to the efficient frontier and the straight line which is tangent to the efficient frontier. It is also the portfolio which maximizes the information ratio

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Constrained efficient frontier with a benchmark

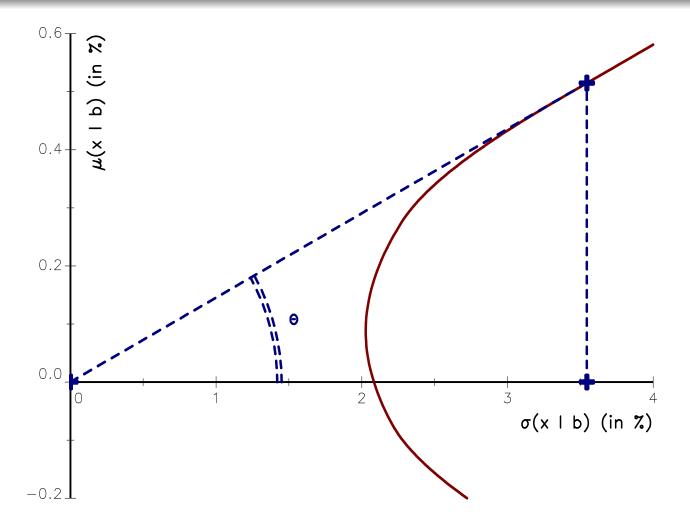


Figure 6: The tangency portfolio with respect to a benchmark (Example 3, 3rd case)

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Tangency portfolio

If $x_i^- \le x_i \le x_i^+$ with $x_1^- = x_2^- = x_3^- = 0\%$, $x_4^- = -20\%$ and $x_i^+ = 50\%$, the tangency portfolio is equal to:

$$x^{\star} = \begin{pmatrix} 49.51\% \\ 29.99\% \\ 40.50\% \\ -20.00\% \end{pmatrix}$$

If r = 1.5%, we recall that the MSR (maximum Sharpe ratio) portfolio is equal to:

$$\mathbf{x}^{\star} = \left(egin{array}{ccc} 63.63\% \ 19.27\% \ 50.28\% \ -33.17\% \end{array}
ight)$$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

When the benchmark is the risk-free rate

The Markowitz-Tobin-Sharpe approach is obtained when the benchmark is the risk-free asset r. We have:

$$ilde{x} = \left(egin{array}{c} x \\ 0 \end{array}
ight) \quad ext{and} \quad ilde{b} = \left(egin{array}{c} \mathbf{0}_n \\ 1 \end{array}
ight)$$

It follows that:

$$\tilde{\Sigma} = \begin{pmatrix} \Sigma & \mathbf{0}_n \\ \mathbf{0}_n^\top & 0 \end{pmatrix}$$
 and $\tilde{\mu} = \begin{pmatrix} \mu \\ r \end{pmatrix}$

I he Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

When the benchmark is the risk-free rate

The objective function is then defined as follows:

$$f\left(\tilde{x} \mid \tilde{b}\right) = \frac{1}{2} \left(\tilde{x} - \tilde{b}\right)^{\top} \Sigma \left(\tilde{x} - \tilde{b}\right) - \gamma \left(\tilde{x} - \tilde{b}\right)^{\top} \mu$$

$$= \frac{1}{2} \tilde{x}^{\top} \tilde{\Sigma} \tilde{x} - \tilde{x}^{\top} \left(\gamma \tilde{\mu} + \tilde{\Sigma} \tilde{b}\right) + \left(\frac{1}{2} \tilde{b}^{\top} \tilde{\Sigma} \tilde{b} + \gamma \tilde{b}^{\top} \tilde{\mu}\right)$$

$$= \frac{1}{2} x^{\top} \Sigma x - \gamma \left(x^{\top} \mu - r\right)$$

$$= \frac{1}{2} x^{\top} \Sigma x - \gamma x^{\top} \left(\mu - r \mathbf{1}_{n}\right)$$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

When the benchmark is the risk-free rate

The solution of the QP problem $\tilde{x}^*(\gamma) = \arg \min f\left(\tilde{x} \mid \tilde{b}\right)$ is related to the solution $x^*(\gamma)$ of the Markowitz γ -problem in the following way:

$$\tilde{x}^{\star}(\gamma) = \left(\begin{array}{c} x^{\star}(\gamma) \\ 0 \end{array} \right)$$

We have
$$\sigma\left(\widetilde{x}^{\star}\left(\gamma
ight) \mid\widetilde{b}
ight) =\sigma\left(x^{\star}\left(\phi
ight)
ight)$$

Remark

 \Rightarrow The MSR portfolio is obtained by replacing the vector μ of expected returns by the vector $\mu - r\mathbf{1}_n$ of expected excess returns. We have:

$$\operatorname{SR}\left(x^{\star}\left(\gamma\right)\mid r\right)=\operatorname{IR}\left(\tilde{x}^{\star}\left(\gamma\right)\mid\tilde{b}
ight)$$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Black-Litterman model

Tactical asset allocation (TAA) model

How to incorporate portfolio manager's views in a strategic asset allocation (SAA)?

Two-step approach:

- Initial allocation \Rightarrow implied risk premia (Sharpe)
- 2 Portfolio optimization \Rightarrow coherent with the bets of the portfolio manager (Markowitz)

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Implied risk premium

$$x^{\star} = \arg \min \frac{1}{2} x^{\top} \Sigma x - \gamma x^{\top} (\mu - r \mathbf{1}_n)$$

u.c.
$$\begin{cases} \mathbf{1}_n^{\top} x = 1\\ x \in \Omega \end{cases}$$

If the constraints are satisfied, the first-order condition is:

$$\Sigma x - \gamma \left(\mu - r \mathbf{1}_n
ight) = \mathbf{0}_n$$

The solution is:

$$x^{\star} = \gamma \Sigma^{-1} \left(\mu - r \mathbf{1}_n \right)$$

- In the Markowitz model, the unknown variable is the vector x
- If the initial allocation x₀ is given, it must be optimal for the investor, implying that:

$$\tilde{\mu} = r\mathbf{1}_n + \frac{1}{\gamma}\Sigma x_0$$

• $\tilde{\mu}$ is the vector of expected returns which is coherent with x_0

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Implied risk premium

We deduce that:

$$\begin{split} \tilde{\pi} &= \tilde{\mu} - r \ &= rac{1}{\gamma} \Sigma x_0 \end{split}$$

The variable $\tilde{\pi}$ is:

- the *risk premium priced* by the portfolio manager
- the '*implied risk premium*' of the portfolio manager
- the 'market risk premium' when x_0 is the market portfolio

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Implied risk aversion

The computation of $\tilde{\mu}$ needs to the value of the parameter γ or the risk aversion $\phi=\gamma^{-1}$

Since we have $\sum x_0 - \gamma \left(\tilde{\mu} - r \mathbf{1}_n \right) = \mathbf{0}_n$, we deduce that:

$$(*) \quad \Leftrightarrow \quad \gamma \left(\tilde{\mu} - r \mathbf{1}_{n} \right) = \Sigma x_{0} \\ \Leftrightarrow \quad \gamma \left(x_{0}^{\top} \tilde{\mu} - r x_{0}^{\top} \mathbf{1}_{n} \right) = x_{0}^{\top} \Sigma x_{0} \\ \Leftrightarrow \quad \gamma \left(x_{0}^{\top} \tilde{\mu} - r \right) = x_{0}^{\top} \Sigma x_{0} \\ \Leftrightarrow \quad \gamma = \frac{x_{0}^{\top} \Sigma x_{0}}{x_{0}^{\top} \tilde{\mu} - r}$$

It follows that

$$\phi = \frac{x_0^\top \tilde{\mu} - r}{x_0^\top \Sigma x_0} = \frac{\operatorname{SR}(x_0 \mid r)}{\sqrt{x_0^\top \Sigma x_0}} = \frac{\operatorname{SR}(x_0 \mid r)}{\sigma(x_0)}$$

where SR $(x_0 | r)$ is the portfolio's expected Sharpe ratio

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Implied risk aversion

We have:

$$ilde{\mu} = r + \mathrm{SR}\left(x_0 \mid r\right) rac{\Sigma x_0}{\sqrt{x_0^{\top} \Sigma x_0}}$$

and:

$$\tilde{\pi} = \mathrm{SR}\left(x_0 \mid r\right) \frac{\Sigma x_0}{\sqrt{x_0^{\top} \Sigma x_0}}$$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Implied risk premium

Example 4

We consider Example 1 and we suppose that the initial allocation x_0 is (40%, 30%, 20%, 10%)

• The volatility of the portfolio is equal to:

$$\sigma(x_0) = 15.35\%$$

- The objective of the portfolio manager is to target a Sharpe ratio equal to 0.25
- We obtain $\phi = 1.63$
- If r = 3%, the implied expected returns are:

$$ilde{\mu} = \left(egin{array}{c} 5.47\% \\ 6.68\% \\ 8.70\% \\ 9.06\% \end{array}
ight)$$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Specification of the bets

Black and Litterman assume that μ is a Gaussian vector with expected returns $\tilde{\mu}$ and covariance matrix Γ :

$$\mu \sim \mathcal{N}\left(ilde{\mu}, \mathsf{\Gamma}
ight)$$

The portfolio manager's views are given by this relationship:

$$P\mu = Q + \varepsilon$$

where P is a $(k \times n)$ matrix, Q is a $(k \times 1)$ vector and $\varepsilon \sim \mathcal{N}(0, \Omega)$ is a Gaussian vector of dimension k

- If the portfolio manager has two views, the matrix P has two rows \Rightarrow k is then the number of views
- Ω is the covariance matrix of $P\mu Q$, therefore it measures the uncertainty of the views

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Absolute views

• We consider the three-asset case:

$$\mu = \left(\begin{array}{c} \mu_1 \\ \mu_2 \\ \mu_3 \end{array}\right)$$

• The portfolio manager has an absolute view on the expected return of the first asset:

$$\mu_1 = q_1 + \varepsilon_1$$

We have:

$$P=egin{pmatrix} 1 & 0 & 0 \end{bmatrix}$$
 , $Q=q_1$, $arepsilon=arepsilon_1$ and $\Omega=\omega_1^2$

If $\omega_1 = 0$, the portfolio manager has a very high level of confidence. If $\omega_1 \neq 0$, his view is uncertain

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Absolute views

• The portfolio manager has an absolute view on the expected return of the second asset:

$$\mu_2 = q_2 + \varepsilon_2$$

We have:

$$P=egin{pmatrix} 0 & 1 & 0 \end{pmatrix}$$
 , $Q=q_2$, $arepsilon=arepsilon_2$ and $\Omega=\omega_2^2$

• The portfolio manager has two absolute views:

$$\mu_1 = q_1 + \varepsilon_1$$

 $\mu_2 = q_2 + \varepsilon_2$

We have:

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \ Q = \begin{pmatrix} q_1 \\ q_2 \end{pmatrix}, \ \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \end{pmatrix} \text{ and } \Omega = \begin{pmatrix} \omega_1^2 & 0 \\ 0 & \omega_2^2 \end{pmatrix}$$

Relative views

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

• The portfolio manager thinks that the outperformance of the first asset with respect to the second asset is *q*:

$$\mu_1 - \mu_2 = q_{1|2} + \varepsilon_{1|2}$$

We have:

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Portfolio optimization

The Markowitz optimization problem becomes:

$$egin{array}{rl} x^{\star}\left(\gamma
ight) &=& rg\minrac{1}{2}x^{ op}\Sigma x - \gamma x^{ op}\left(ar{\mu} - r \mathbf{1}_n
ight) \ & \ ext{u.c.} \quad \mathbf{1}_n^{ op}x = 1 \end{array}$$

where $\bar{\mu}$ is the vector of expected returns conditional to the views:

$$ar{\mu} = \mathbb{E} \left[\mu \mid \mathsf{views}
ight]$$
 $= \mathbb{E} \left[\mu \mid P \mu = Q + \varepsilon
ight]$
 $= \mathbb{E} \left[\mu \mid P \mu - \varepsilon = Q
ight]$

To compute $\bar{\mu}$, we consider the random vector:

$$\left(\begin{array}{c} \mu \\ \nu = P\mu - \varepsilon \end{array} \right) \sim \mathcal{N} \left(\left(\begin{array}{c} \tilde{\mu} \\ P\tilde{\mu} \end{array} \right), \left(\begin{array}{c} \Gamma & \Gamma P^{\top} \\ P\Gamma & P\Gamma P^{\top} + \Omega \end{array} \right) \right)$$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Conditional distribution in the case of the normal distribution

Let us consider a Gaussian random vector defined as follows:

$$\left(\begin{array}{c}X\\Y\end{array}\right) \sim \mathcal{N}\left(\left(\begin{array}{c}\mu_{x}\\\mu_{y}\end{array}\right), \left(\begin{array}{cc}\Sigma_{x,x} & \Sigma_{x,y}\\\Sigma_{y,x} & \Sigma_{y,y}\end{array}\right)\right)$$

We have:

$$Y \mid X = x \sim \mathcal{N}\left(\mu_{y|x}, \Sigma_{y,y|x}\right)$$

where:

$$\mu_{y|x} = \mathbb{E}\left[Y \mid X = x\right] = \mu_y + \Sigma_{y,x} \Sigma_{x,x}^{-1} \left(x - \mu_x\right)$$

and:

$$\Sigma_{y,y|x} = \operatorname{cov}\left(Y \mid X = x\right) = \Sigma_{y,y} - \Sigma_{y,x}\Sigma_{x,x}^{-1}\Sigma_{x,y}$$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Computation of the conditional expectation

We apply the conditional expectation formula:

$$\begin{split} \bar{\mu} &= & \mathbb{E}\left[\mu \mid \nu = Q\right] \\ &= & \mathbb{E}\left[\mu\right] + \operatorname{cov}\left(\mu, \nu\right) \operatorname{var}\left(\nu\right)^{-1}\left(Q - \mathbb{E}\left[\nu\right]\right) \\ &= & \tilde{\mu} + \Gamma P^{\top} \left(P \Gamma P^{\top} + \Omega\right)^{-1} \left(Q - P \tilde{\mu}\right) \end{split}$$

The conditional expectation $\bar{\mu}$ has two components:

- The first component corresponds to the vector of implied expected returns $\tilde{\mu}$
- 2 The second component is a correction term which takes into account the *disequilibrium* $(Q P\tilde{\mu})$ between the manager views and the market views

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Computation of the conditional covariance matrix

The condition covariance matrix is equal to:

$$\begin{split} \bar{\boldsymbol{\Sigma}} &= \operatorname{var}\left(\boldsymbol{\mu} \mid \boldsymbol{\nu} = \boldsymbol{Q}\right) \\ &= \boldsymbol{\Gamma} - \boldsymbol{\Gamma} \boldsymbol{P}^\top \left(\boldsymbol{P} \boldsymbol{\Gamma} \boldsymbol{P}^\top + \boldsymbol{\Omega}\right)^{-1} \boldsymbol{P} \boldsymbol{\Gamma} \end{split}$$

Another expression is:

$$\bar{\boldsymbol{\Sigma}} = \left(\boldsymbol{I}_n + \boldsymbol{\Gamma} \boldsymbol{P}^\top \boldsymbol{\Omega}^{-1} \boldsymbol{P} \right)^{-1} \boldsymbol{\Gamma} \\ = \left(\boldsymbol{\Gamma}^{-1} + \boldsymbol{P}^\top \boldsymbol{\Omega}^{-1} \boldsymbol{P} \right)^{-1}$$

The conditional covariance matrix is a weighted average of the covariance matrix Γ and the covariance matrix Ω of the manager views.

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Choice of covariance matrices

Choice of Σ

From a theoretical point of view, we have:

$$\Sigma = ar{\Sigma} = \left(\Gamma^{-1} + P^{ op} \Omega^{-1} P
ight)^{-1}$$

In practice, we use:

$$\Sigma = \hat{\Sigma}$$

Choice of Γ

We assume that:

$$\Gamma = \tau \Sigma$$

We can also target a tracking error volatility and deduce $\boldsymbol{\tau}$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Numerical implementation of the model

The five-step approach to implement the Black-Litterman model is:

- ${\color{black} \bullet}$ We estimate the empirical covariance matrix $\hat{\Sigma}$ and set $\Sigma=\hat{\Sigma}$
- 2 Given the current portfolio, we compute the implied risk aversion $\phi = \gamma^{-1}$ and we deduce the vector $\tilde{\mu}$ of implied expected returns
- \bigcirc We specify the views by defining the P, Q and Ω matrices
- Given a matrix Γ , we compute the conditional expectation $\bar{\mu}$
- ${f igodot}$ We finally perform the portfolio optimization with $\hat{\Sigma}$, $ar{\mu}$ and γ

Illustration

I he Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

- We use Example 4 and impose that the optimized weights are positive
- The portfolio manager has an absolute view on the first asset and a relative view on the second and third assets:

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \end{pmatrix}, \ Q = \begin{pmatrix} q_1 \\ q_{2-3} \end{pmatrix} \text{ and } \Omega = \begin{pmatrix} \varpi_1^2 & 0 \\ 0 & \varpi_{2-3}^2 \end{pmatrix}$$

• $q_1=4\%$, $q_{2-3}=-1\%$, $arpi_1=10\%$ and $arpi_{2-3}=5\%$

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Illustration

- Case $\#1: \tau = 1$
- Case #2: $\tau = 1$ and $q_1 = 7\%$
- Case #3: $\tau = 1$ and $\varpi_1 = \varpi_{2-3} = 20\%$
- Case #4: $\tau = 10\%$
- Case #5: $\tau = 1\%$

Illustration

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Table 7: Black-Litterman portfolios

	#0	#1	#2	#3	#4	#5
x_1^{\star}	40.00	33.41	51.16	36.41	38.25	39.77
x_2^{\star}	30.00	51.56	39.91	42.97	42.72	32.60
x*	20.00	5.46	0.00	10.85	9.14	17.65
x_4^{\star}	10.00	9.58	8.93	9.77	9.89	9.98
$\left[\begin{array}{c} \overline{\sigma} \overline{(x^{\star} \mid x_0)} \end{array} \right]$	0.00	3.65	3.67	2.19	2.18	0.45

84 / 1420

The Markowitz framework Capital asset pricing model (CAPM) Portfolio optimization in the presence of a benchmark Black-Litterman model

Illustration

To calibrate the parameter τ , we could target a tracking error volatility σ^* :

- If $\sigma^* = 2\%$, the optimized portfolio is between portfolios #4 $(\sigma(x^* \mid x_0) = 2.18\%)$ and #5 $(\sigma(x^* \mid x_0) = 0.45\%)$
- $\bullet\,$ The optimal value of τ is between 10% and 1%
- Using a bisection algorithm, we obtain au=5.2%

The optimal portfolio is:

$$x^{\star} = \left(\begin{array}{c} 36.80\% \\ 41.83\% \\ 11.58\% \\ 9.79\% \end{array}\right)$$

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Empirical estimator

We have:

$$\hat{\Sigma} = rac{1}{T} \sum_{t=1}^{T} \left(R_t - ar{R}
ight) \left(R_t - ar{R}
ight)^{ op}$$

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Asynchronous markets

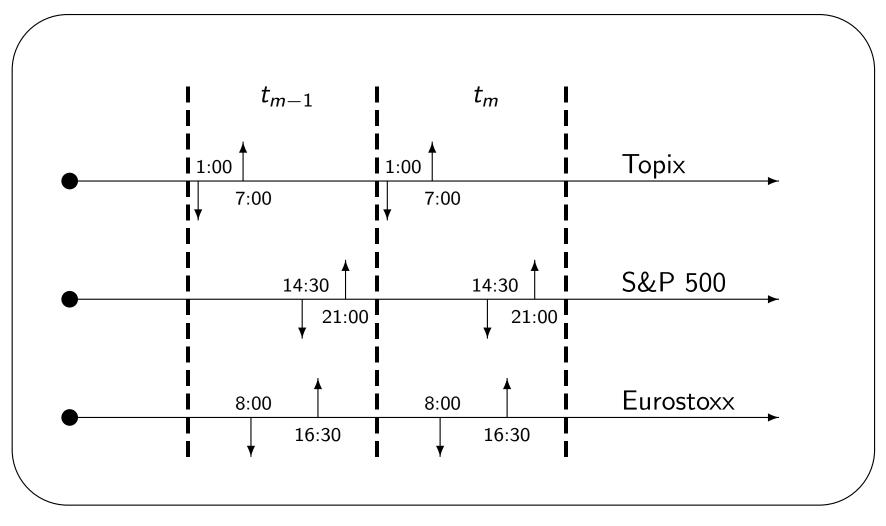


Figure 7: Trading hours of asynchronous markets (UTC time)

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Asynchronous markets

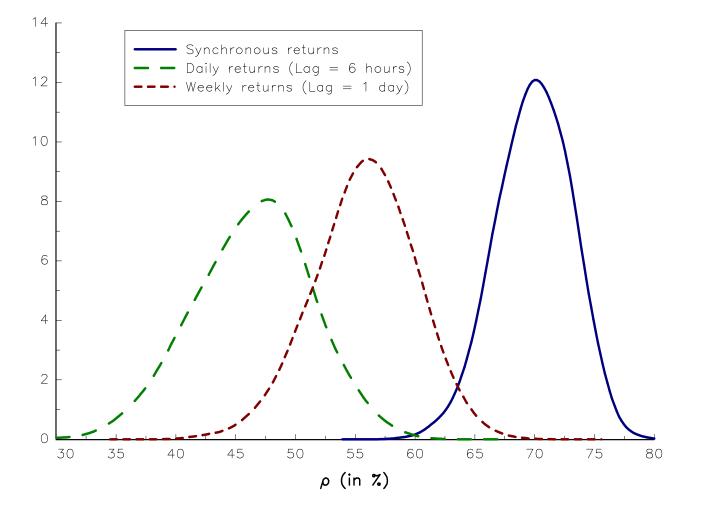
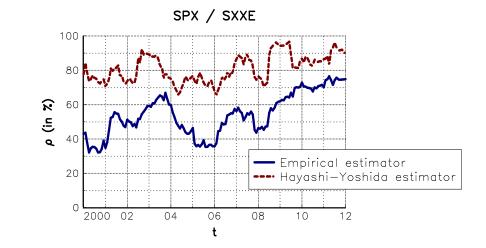


Figure 8: Density of the estimator $\hat{\rho}$ with asynchronous returns ($\rho = 70\%$)

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Asynchronous markets



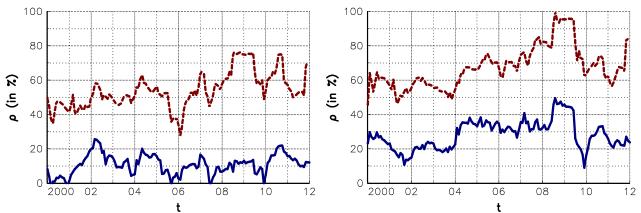


Figure 9: Hayashi-Yoshida estimator

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Hayashi-Yoshida estimator

We have:

$$\tilde{\Sigma}_{i,j} = \frac{1}{T} \sum_{t=1}^{T} \left(R_{i,t} - \bar{R}_i \right) \left(R_{j,t} - \bar{R}_j \right) + \frac{1}{T} \sum_{t=1}^{T} \left(R_{i,t} - \bar{R}_i \right) \left(R_{j,t-1} - \bar{R}_j \right)$$

where j is the equity index which has a closing time after the equity index i. In our case, j is necessarily the S&P 500 index whereas i can be the Topix index or the Eurostoxx index. This estimator has two components:

- The first component is the classical covariance estimator $\hat{\Sigma}_{i,j}$
- The second component is a correction to take into account the lag between the two closing times

90 / 1420

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Other statistical methods

- EWMA methods
- GARCH models
- Factor models
 - Uniform correlation

$$\rho_{i,j} = \rho$$

- Sector approach (inter-correlation and intra-correlation)
- Linear factor models:

$$R_{i,t} = A_i^\top \mathcal{F}_t + \varepsilon_{i,t}$$

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Economic/econometric approach

- Market timing (MT)
- Tactical asset allocation (TAA)
- Strategic asset allocation (SAA)

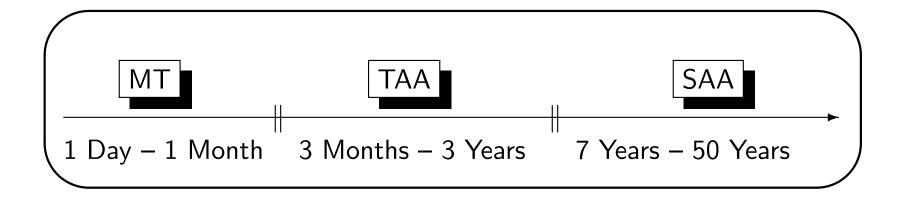


Figure 10: Time horizon of MT, TAA and SAA

<u>92 / 1420</u>

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Statistical/scoring approach

- Stock picking models: fundamental scoring, value, quality, sector analysis, etc.
- Bond picking models: fundamental scoring, structural model, credit arbitrage model, etc.
- Statistical models: mean-reverting, trend-following, cointegration, etc.
- Machine learning: return forecasting, scoring model, etc.

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Stability issues

Example 5

We consider a universe of 3 assets. The parameters are: $\mu_1 = \mu_2 = 8\%$, $\mu_3 = 5\%$, $\sigma_1 = 20\%$, $\sigma_2 = 21\%$, $\sigma_3 = 10\%$ and $\rho_{i,j} = 80\%$. The objective is to maximize the expected return for a 15% volatility target. The optimal portfolio is (38.3%, 20.2%, 41.5%).

Table 8: Sensitivity of the MVO portfolio to input parameters

ρ		70%	90%		90%	
σ_2				18%	18%	
$\mid \mu_1$						9%
<i>x</i> ₁	38.3	38.3	44.6	13.7	-8.0	60.6
<i>x</i> ₂	20.2	25.9	8.9	56.1	74.1	-5.4
<i>x</i> ₃	41.5	35.8	46.5	30.2	34.0	44.8

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Solutions

In order to stabilize the optimal portfolio, we have to introduce some regularization techniques:

- Resampling techniques
- Factor analysis
- Shrinkage methods
- Random matrix theory
- Norm penalization
- Etc.

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Resampling techniques

- Jacknife
- Cross validation
 - Hold-out
 - K-fold
- Bootstrap
 - Resubstitution
 - Out of the bag
 - .632

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Resampling techniques

Example 6

We consider a universe of four assets. The expected returns are $\hat{\mu}_1 = 5\%$, $\hat{\mu}_2 = 9\%$, $\hat{\mu}_3 = 7\%$ and $\hat{\mu}_4 = 6\%$ whereas the volatilities are equal to $\hat{\sigma}_1 = 4\%$, $\hat{\sigma}_2 = 15\%$, $\hat{\sigma}_3 = 5\%$ and $\hat{\sigma}_4 = 10\%$. The correlation matrix is the following:

$$\hat{C} = \begin{pmatrix} 1.00 & & & \\ 0.10 & 1.00 & & \\ 0.40 & 0.20 & 1.00 & \\ -0.10 & -0.10 & -0.20 & 1.00 \end{pmatrix}$$

97 / 1420

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Resampling techniques

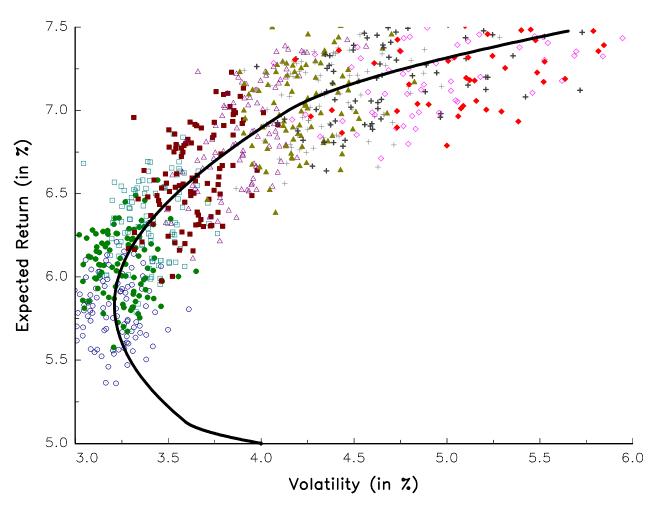


Figure 11: Uncertainty of the efficient frontier

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Resampling techniques

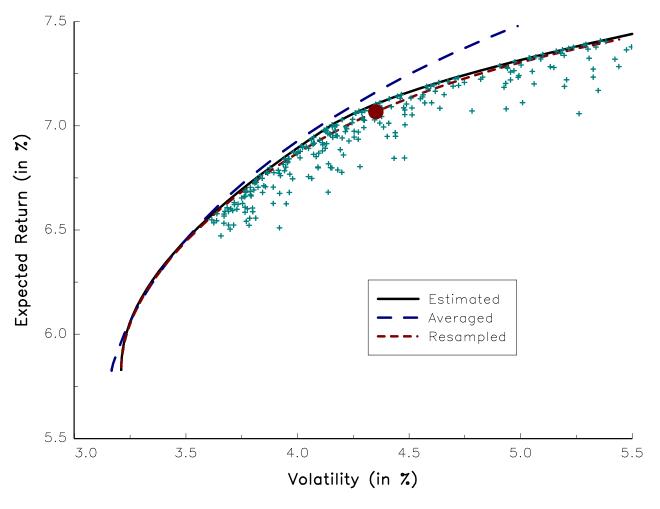


Figure 12: Resampled efficient frontier

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Resampling techniques

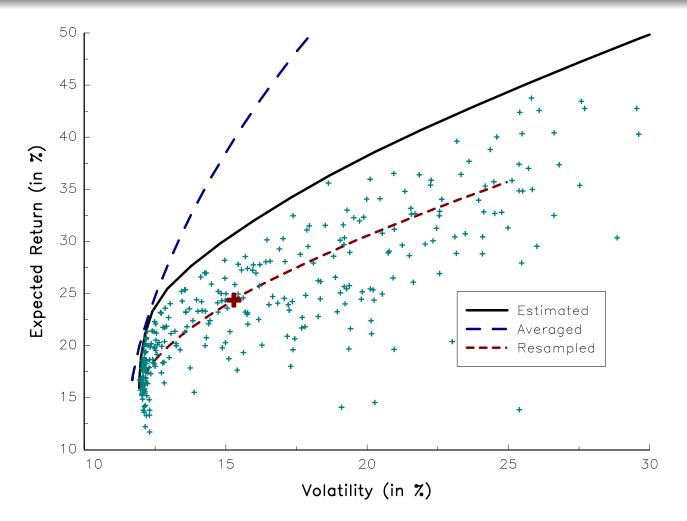


Figure 13: S&P 100 resampled efficient frontier (Bootstrap approach)

Source: Bruder et al. (2013)

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

How to denoise the covariance matrix?

- Factor analysis by imposing a correlation structure (MSCI Barra)
- Factor analysis by filtering the correlation structure (APT)
- Principal component analysis
- Random matrix theory
- Shrinkage methods

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

How to denoise the covariance matrix?

• The eigendecomposition $\hat{\Sigma}$ of is

 $\hat{\boldsymbol{\Sigma}} = \boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^\top$

where $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ is the diagonal matrix of eigenvalues with $\lambda_1 > \lambda_2 > \ldots > \lambda_n$ and V is an orthonormal matrix

- The endogenous factors are $\mathcal{F}_t = \Lambda^{-1/2} V^{\top} R_t$
- By considering only the *m* first components, we can build an estimation of Σ with less noise

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

How to denoise the covariance matrix?

Choice of *m*

• We keep factors that explain more than 1/n of asset variance:

$$m = \sup \{i : \lambda_i \ge (\lambda_1 + \ldots + \lambda_n) / n\}$$

2 Laloux et al. (1999) propose to use the random matrix theory (RMT)

• The maximum eigenvalue of a random matrix M is equal to:

$$\lambda_{\max} = \sigma^2 \left(1 + n/T + 2\sqrt{n/T} \right)$$

where T is the sample size
We keep the first m factors such that:

$$m = \sup\{i : \lambda_i > \lambda_{\max}\}$$

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

How to denoise the covariance matrix?

Shrinkage methods

- $\hat{\Sigma}$ is an unbiased estimator, but its convergence is very slow
- $\hat{\Phi}$ is a biased estimator that converges more quickly

Ledoit and Wolf (2003) propose to combine $\hat{\Sigma}$ and $\hat{\Phi}$:

$$\hat{\Sigma}_{\alpha} = \alpha \hat{\Phi} + (1 - \alpha) \hat{\Sigma}$$

The value of α is estimated by minimizing a quadratic loss:

$$\alpha^{\star} = \arg \min \mathbb{E} \left[\left\| \alpha \hat{\Phi} + (1 - \alpha) \, \hat{\Sigma} - \Sigma \right\|^2
ight]$$

They find an analytical expression of α^* when:

- $\hat{\Phi}$ has a constant correlation structure
- $\hat{\Phi}$ corresponds to a factor model or is deduced from PCA

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

How to denoise the covariance matrix?

Example 7 (equity correlation matrix)

We consider a universe with eight equity indices: S&P 500, Eurostoxx, FTSE 100, Topix, Bovespa, RTS, Nifty and HSI. The study period is January 2005–December 2011 and we use weekly returns.

The empirical correlation matrix is:

$$\hat{C} = \begin{pmatrix} 1.00 & & & \\ 0.88 & 1.00 & & \\ 0.88 & 0.94 & 1.00 & & \\ 0.64 & 0.68 & 0.65 & 1.00 & \\ 0.77 & 0.76 & 0.78 & 0.61 & 1.00 & \\ 0.56 & 0.61 & 0.61 & 0.50 & 0.64 & 1.00 & \\ 0.53 & 0.61 & 0.57 & 0.53 & 0.60 & 0.57 & 1.00 & \\ 0.64 & 0.68 & 0.67 & 0.68 & 0.68 & 0.60 & 0.66 & 1.00 & \\ \end{pmatrix}$$

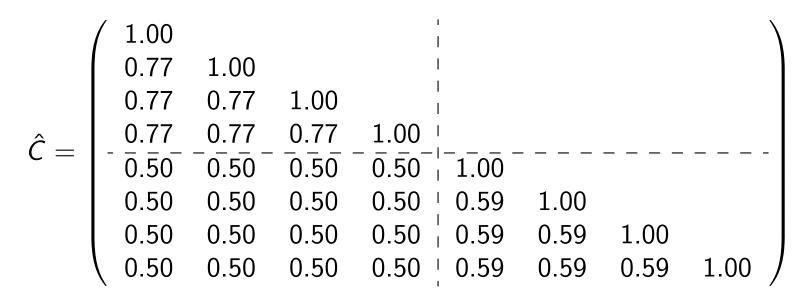
Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

How to denoise the covariance matrix?

• Uniform correlation

$$\hat{\rho} = 66.24\%$$

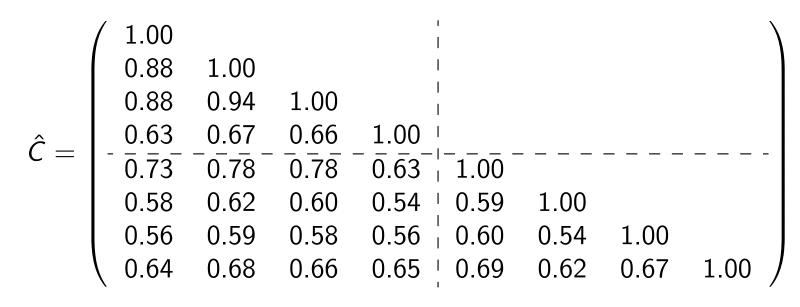
• One common factor + two specific factors



Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

How to denoise the covariance matrix?

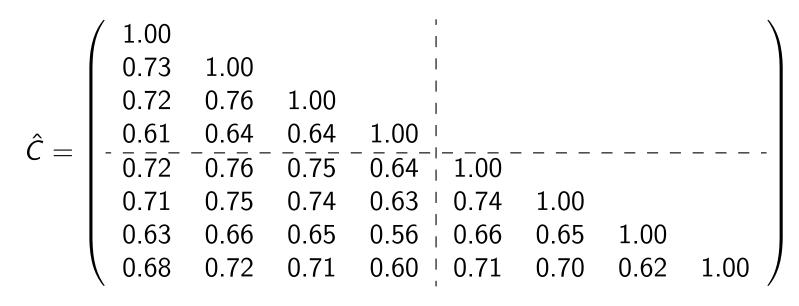
• Two-linear factor model



Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

How to denoise the covariance matrix?

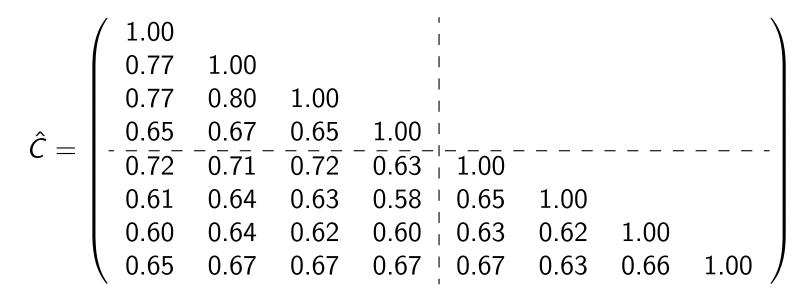
• RMT estimation



Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

How to denoise the covariance matrix?

• Ledoit-Wolf shrinkage estimation (constant correlation matrix)



• We obtain:

$$\alpha^{\star} = 51.2\%$$

• What does this result become in the case of a multi-asset-class universe?

$$\alpha^{\star} \simeq 0$$

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Why standard regularization techniques are not sufficient

Optimized portfolios are solutions of the following quadratic program:

$$egin{array}{rl} x^{\star}\left(\gamma
ight)&=&rg\minrac{1}{2}x^{ op}\Sigma x-\gamma x^{ op}\mu\ &\ ext{u.c.}&\left\{egin{array}{rl} \mathbf{1}_{n}^{ op}x=1\ x\in\mathbb{R}^{n}\end{array}
ight. \end{array}$$

We have:

$$x^{\star}(\gamma) = \frac{\Sigma^{-1} \mathbf{1}_{n}}{\mathbf{1}_{n}^{\top} \Sigma^{-1} \mathbf{1}_{n}} + \gamma \cdot \frac{\left(\mathbf{1}_{n}^{\top} \Sigma^{-1} \mathbf{1}_{n}\right) \Sigma^{-1} \mu - \left(\mathbf{1}_{n}^{\top} \Sigma^{-1} \mu\right) \Sigma^{-1} \mathbf{1}_{n}}{\mathbf{1}_{n}^{\top} \Sigma^{-1} \mathbf{1}_{n}}$$

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Why standard regularization techniques are not sufficient

Optimal solutions are of the following form:

 $x^{\star} \propto f\left(\Sigma^{-1}
ight)$

The important quantity is then the precision matrix $\mathcal{I} = \Sigma^{-1}$, not the covariance matrix Σ

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Why standard regularization techniques are not sufficient

• For the covariance matrix Σ , we have:

$$\Sigma = V \Lambda V^{ op}$$

where $V^{-1} = V^{\top}$ and $\Lambda = (\lambda_1, \ldots, \lambda_n)$ with $\lambda_1 \ge \ldots \ge \lambda_n$ the ordered eigenvalues

• The decomposition for the precisions matrix is

$$\mathcal{I} = U \Delta U^{\top}$$

• We have:

$$\Sigma^{-1} = (V\Lambda V^{\top})^{-1}$$
$$= (V^{\top})^{-1}\Lambda^{-1}V^{-1}$$
$$= V\Lambda^{-1}V^{\top}$$

• We deduce that U = V and $\delta_i = 1/\lambda_{n-i+1}$

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Why standard regularization techniques are not sufficient

Remark

The eigenvectors of the precision matrix are the same as those of the covariance matrix, but the eigenvalues of the precision matrix are the inverse of the eigenvalues of the covariance matrix. This means that the risk factors are the same, but they are in the reverse order

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Why standard regularization techniques are not sufficient

Example 8

We consider a universe of 3 assets, where $\mu_1 = \mu_2 = 8\%$, $\mu_3 = 5\%$, $\sigma_1 = 20\%$, $\sigma_2 = 21\%$, $\sigma_3 = 10\%$ and $\rho_{i,j} = 80\%$.

The eigendecomposition of the covariance and precision matrices is:

	Со	variance mati	rix Σ	Information matrix ${\cal I}$			
Asset / Factor	1	2	3	1	2	3	
1	65.35%	-72.29%	-22.43%	-22.43%	-72.29%	65.35%	
2	69.38%	69.06%	-20.43%	-20.43%	69.06%	69.38%	
3	30.26%	-2.21%	95.29%	95.29%	-2.21%	30.26%	
Eigenvalue	8.31%	0.84%	0.26%	379.97	119.18	12.04	
% cumulated	88.29%	97.20%	100.00%	74.33%	97.65%	100.00%	

 \Rightarrow It means that the first factor of the information matrix corresponds to the last factor of the covariance matrix and that the last factor of the information matrix corresponds to the first factor.

 \Rightarrow Optimization on arbitrage risk factors, idiosyncratic risk factors and (certainly) noise factors!

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Why standard regularization techniques are not sufficient

Example 9

We consider a universe of 6 assets. The volatilities are respectively equal to 20%, 21%, 17%, 24%, 20% and 16%. For the correlation matrix, we have:

$$\rho = \begin{pmatrix} 1.00 & & & \\ 0.40 & 1.00 & & \\ 0.40 & 0.40 & 1.00 & & \\ 0.50 & 0.50 & 0.50 & 1.00 & & \\ 0.50 & 0.50 & 0.50 & 0.60 & 1.00 & \\ 0.50 & 0.50 & 0.50 & 0.60 & 0.60 & 1.00 \end{pmatrix}$$

 \Rightarrow We compute the minimum variance (MV) portfolio with a shortsale constraint

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Why standard regularization techniques are not sufficient

Table 9: Effect of deleting a PCA factor

<i>x</i> *	MV	$\lambda_1 = 0$	$\lambda_2 = 0$	$\lambda_3 = 0$	$\lambda_4 = 0$	$\lambda_5 = 0$	$\lambda_6 = 0$
x_1^{\star}	15.29	15.77	20.79	27.98	0.00	13.40	0.00
x_2^{\star}	10.98	16.92	1.46	12.31	0.00	8.86	0.00
x_3^{\star}	34.40	12.68	35.76	28.24	52.73	53.38	2.58
x_4^{\star}	0.00	22.88	0.00	0.00	0.00	0.00	0.00
x_5^{\star}	1.01	17.99	2.42	0.00	15.93	0.00	0.00
x_6^{\star}	38.32	13.76	39.57	31.48	31.34	24.36	97.42

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Why standard regularization techniques are not sufficient

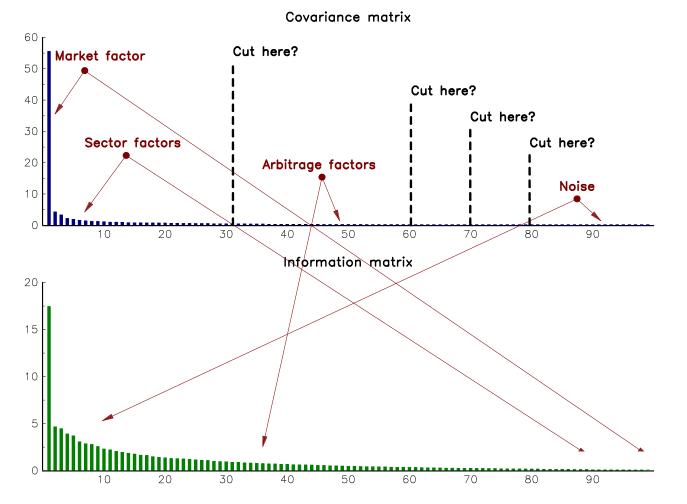


Figure 14: PCA applied to the stocks of the FTSE index (June 2012)

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Arbitrage factors, hedging factors or risk factors

We consider the following linear regression model:

$$R_{i,t} = \beta_0 + \beta_i^\top R_t^{(-i)} + \varepsilon_{i,t}$$

- R⁽⁻ⁱ⁾_t denotes the vector of asset returns R_t excluding the ith asset
 ε_{i,t} ~ N(0, s²_i)
- \mathcal{R}_i^2 is the *R*-squared of the linear regression

Precision matrix

Stevens (1998) shows that the precision matrix is given by:

$$\mathcal{I}_{i,i} = \frac{1}{\hat{\sigma}_i^2 \left(1 - \mathcal{R}_i^2\right)} \text{ and } \mathcal{I}_{i,j} = -\frac{\hat{\beta}_{i,j}}{\hat{\sigma}_i^2 \left(1 - \mathcal{R}_i^2\right)} = -\frac{\hat{\beta}_{j,i}}{\hat{\sigma}_j^2 \left(1 - \mathcal{R}_j^2\right)}$$

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Arbitrage factors, hedging factors or risk factors

Example 10

We consider a universe of four assets. The expected returns are $\hat{\mu}_1 = 7\%$, $\hat{\mu}_2 = 8\%$, $\hat{\mu}_3 = 9\%$ and $\hat{\mu}_4 = 10\%$ whereas the volatilities are equal to $\hat{\sigma}_1 = 15\%$, $\hat{\sigma}_2 = 18\%$, $\hat{\sigma}_3 = 20\%$ and $\hat{\sigma}_4 = 25\%$. The correlation matrix is the following:

$$\hat{C} = \begin{pmatrix} 1.00 & & & \\ 0.50 & 1.00 & & \\ 0.50 & 0.50 & 1.00 & \\ 0.60 & 0.50 & 0.40 & 1.00 \end{pmatrix}$$

We do not impose that the sum of weights are equal to 100%

119 / 1420

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Arbitrage factors, hedging factors or risk factors

Table 10: Hedging portfolios when $\rho_{3,4} = 40\%$

Asset		Ĵ.	_i		\mathcal{R}_i^2	Ŝį	$ar{\mu}_i$	<i>x</i> *
1		0.139	0.187	0.250	45.83%	11.04%	1.70%	69.80%
2	0.230		0.268	0.191	37.77%	14.20%	2.06%	51.18%
3	0.409	0.354		0.045	33.52%	16.31%	2.85%	53.66%
4	0.750	0.347	0.063	1	41.50%	19.12%	1.41%	19.28%

Table 11: Hedging portfolios when $\rho_{3,4} = 95\%$

Asset		Ĵ	} _i		\mathcal{R}_i^2	Ŝį	$ar{\mu}_i$	<i>x</i> *
1		0.244	-0.595	0.724	47.41%	10.88%	3.16%	133.45%
2	0.443		0.470	-0.157	33.70%	14.66%	2.23%	52.01%
3	-0.174	0.076		0.795	91.34%	5.89%	1.66%	239.34%
4	0.292	-0.035	1.094		92.38%	6.90%	-1.61%	-168.67%

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Arbitrage factors, hedging factors or risk factors

Table 12: Hedging portfolios (in %) at the end of 2006

	SPX	SX5E	TPX	RTY	EM	US HY	EMBI	EUR	JPY	GSCI
SPX		58.6	6.0	150.3	-30.8	-0.5	5.0	-7.3	15.3	-25.5
SX5E	9.0		-1.2	-1.3	35.2	0.8	3.2	-4.5	-5.0	-1.5
TPX	0.4	-0.6		-2.4	38.1	1.1	-3.5	-4.9	-0.8	-0.3
RTY	48.6	-2.7	-10.4		26.2	-0.6	1.9	0.2	-6.4	5.6
EM	-4.1	30.9	69.2	10.9		0.9	4.6	9.1	3.9	33.1
ĪŪSĪHŢ	-5.0	53.5	160.0	-18.8	69.5		95.6	48.4	31.4	-211.7
EMBI	10.8	44.2	-102.1	12.3	73.4	19.4		-5.8	40.5	86.2
ĒŪR	-3.6	-14.7	-33.4	0.3	33.8	2.3	-1.4		56.7	48.2
JPY	6.8	-14.5	-4.8	-8.8	12.7	1.3	8.4	50.4		-33.2
GSCI _	-1.1	-0.4	-0.2	0.8	10.7	-0.9	1.8	4.2	-3.3	
ŝ _i	0.3	0.7	0.9	0.5	0.7	0.1	0.2	0.4	0.4	1.2
\mathcal{R}_i^2	83.0	47.7	34.9	82.4	60.9	39.8	51.6	42.3	43.7	12.1

Source: Bruder et al. (2013)

121 / 1420

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Arbitrage factors, hedging factors or risk factors

We finally obtain:

$$x_{i}^{\star}(\gamma) = \gamma \frac{\mu_{i} - \hat{\beta}_{i}^{\top} \mu^{(-i)}}{\hat{s}_{i}^{2}}$$

From this equation, we deduce the following conclusions:

- The better the hedge, the higher the exposure. This is why highly correlated assets produces unstable MVO portfolios
- 2 The long/short position is defined by the sign of $\mu_i \hat{\beta}_i^{\top} \mu^{(-i)}$. If the expected return of the asset is lower than the conditional expected return of the hedging portfolio, the weight is negative

Markowitz diversification \neq Diversification of risk factors=Concentration on arbitrage factors

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

QP problem

We use the following formulation of the QP problem:

$$x^{\star} = \arg \min \frac{1}{2} x^{\top} Q x - x^{\top} R$$

u.c.
$$\begin{cases} A x = B \\ C x \le D \\ x^{-} \le x \le x^{+} \end{cases}$$

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Standard constraints

• γ -problem

$$\arg\min\frac{1}{2}x^{\top}\Sigma x - \gamma x^{\top}\left(\mu - r\mathbf{1}_{n}\right) \Rightarrow \begin{cases} Q = \Sigma \\ R = \gamma\mu \end{cases}$$

• Full allocation

$$\mathbf{1}_n^\top x = 1 \Rightarrow \begin{cases} A = \mathbf{1}_n^\top \\ B = 1 \end{cases}$$

• No short selling

$$x_i \geq 0 \Rightarrow x^- = \mathbf{0}_n$$

• Cash neutral (and portfolio optimization with unfunded strategies)

$$\mathbf{1}_n^\top x = \mathbf{0} \Rightarrow \begin{cases} A = \mathbf{1}_n^\top \\ B = \mathbf{0} \end{cases}$$

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Asset class constraints

Example 11

We consider a multi-asset universe of eight asset classes represented by the following indices:

- four equity indices: S&P 500, Eurostoxx, Topix, MSCI EM
- two bond indices: EGBI, US BIG
- two alternatives indices: GSCI, EPRA

The portfolio manager wants the following exposures:

- at least 50% bonds
- less than 10% commodities
- Emerging market equities cannot represent more than one third of the total exposure on equities

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Asset class constraints

The constraints are then expressed as follows:

$$\begin{cases} x_5 + x_6 \ge 50\% \\ x_7 \le 10\% \\ x_4 \le \frac{1}{3} \left(x_1 + x_2 + x_3 + x_4 \right) \end{cases}$$

The corresponding formulation $Cx \leq D$ of the QP problem is:

$$\begin{pmatrix} 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \\ x_8 \end{pmatrix} \leq \begin{pmatrix} -0.50 \\ 0.10 \\ 0.00 \end{pmatrix}$$

126 / 1420

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Non-standard constraints (turnover management)

• We want to limit the turnover of the long-only optimized portfolio with respect to a current portfolio x^0 :

$$\Omega = \left\{ x \in [0,1]^n : \sum_{i=1}^n |x_i - x_i^0| \le \tau^+ \right\}$$

where τ^+ is the maximum turnover

 Scherer (2007) proposes to introduce some additional variables x_i⁻ and x_i⁺ such that:

$$x_i = x_i^0 + \Delta x_i^+ - \Delta x_i^-$$

with $\Delta x_i^- \ge 0$ and $\Delta x_i^+ \ge 0$

- Δx_i^+ indicates a positive weight change with respect to the initial weight x_i^0
- Δx_i^- indicates a negative weight change with respect to the initial weight x_i^0

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Non-standard constraints (turnover management)

• The expression of the turnover becomes:

$$\sum_{i=1}^{n} |x_i - x_i^0| = \sum_{i=1}^{n} |\Delta x_i^+ - \Delta x_i^-| = \sum_{i=1}^{n} \Delta x_i^+ + \sum_{i=1}^{n} \Delta x_i^-$$

• We obtain the following γ -problem:

$$x^{\star} = \arg\min\frac{1}{2}x^{\top}\Sigma x - \gamma x^{\top}\mu$$

u.c.
$$\begin{cases} \sum_{i=1}^{n} x_{i} = 1\\ x_{i} = x_{i}^{0} + \Delta x_{i}^{+} - \Delta x_{i}^{-}\\ \sum_{i=1}^{n} \Delta x_{i}^{+} + \sum_{i=1}^{n} \Delta x_{i}^{-} \le \tau^{+}\\ 0 \le x_{i} \le 1\\ 0 \le \Delta x_{i}^{-} \le 1\\ 0 \le \Delta x_{i}^{+} \le 1 \end{cases}$$

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Non-standard constraints (turnover management)

We obtain an augmented QP problem of dimension 3n instead of n:

$$X^{\star} = \arg \min \frac{1}{2} X^{\top} Q X - X^{\top} R$$

u.c.
$$\begin{cases} A X = B \\ C X \leq D \\ \mathbf{0}_{3n} \leq X \leq \mathbf{1}_{3n} \end{cases}$$

where X is a $3n \times 1$ vector:

$$X = (x_1, \ldots, x_n, \Delta x_1^-, \ldots, \Delta x_n^-, \Delta x_1^+, \ldots, \Delta x_n^+)$$

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Non-standard constraints (turnover management)

The augmented QP matrices are:

$$Q_{3n\times 3n} = \begin{pmatrix} \Sigma & \mathbf{0}_{n\times n} & \mathbf{0}_{n\times n} \\ \mathbf{0}_{n\times n} & \mathbf{0}_{n\times n} & \mathbf{0}_{n\times n} \\ \mathbf{0}_{n\times n} & \mathbf{0}_{n\times n} & \mathbf{0}_{n\times n} \end{pmatrix}, \quad R_{3n\times 1} = \begin{pmatrix} \gamma\mu \\ \mathbf{0}_n \\ \mathbf{0}_n \end{pmatrix},$$
$$A_{(n+1)\times 3n} = \begin{pmatrix} \mathbf{1}_n^\top & \mathbf{0}_n^\top & \mathbf{0}_n^\top \\ I_n & I_n & -I_n \end{pmatrix}, \quad B_{(n+1)\times 1} = \begin{pmatrix} 1 \\ x^0 \end{pmatrix},$$
$$C_{1\times 3n} = \begin{pmatrix} \mathbf{0}_n^\top & \mathbf{1}_n^\top & \mathbf{1}_n^\top \end{pmatrix} \text{ and } D_{1\times 1} = \tau^+$$

130 / 1420

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Non-standard constraints (turnover management)

Example 12

We consider four assets. Their expected returns are equal to 5%, 6%, 8% and 6% while their volatilities are equal to 15%, 20%, 25% and 30%. The correlation matrix of asset returns is given by the following matrix:

$$\rho = \left(\begin{array}{cccc} 1.00 & & & \\ 0.10 & 1.00 & & \\ 0.40 & 0.70 & 1.00 & \\ 0.50 & 0.40 & 0.80 & 1.00 \end{array}\right)$$

We impose that the weights are positive

- The optimal portfolio x* for a 15% volatility target is (45.59%, 24.74%, 29.67%, 0.00%)
- We assume that the current portfolio x^0 is (30%, 45%, 15%, 10%)
- If we move directly from portfolio x^0 to portfolio x^* , the turnover is equal to 60.53%

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Non-standard constraints (turnover management)

Table 13: Limiting the turnover of MVO portfolios

$ au^+$	5.00	10.00	25.00	50.00	75.00	x^0
x [*]		35.00	36.40	42.34	45.59	30.00
x_2^{\star}		45.00	42.50	30.00	24.74	45.00
x [*]		15.00	21.10	27.66	29.67	15.00
x_4^{\star}		5.00	0.00	0.00	0.00	10.00
$\begin{bmatrix} -\mu(\mathbf{x}^{\star}) \end{bmatrix}$		5.95	6.06	6.13	$^{-}\bar{6}.\bar{1}4^{-}$	6.00
$\sigma(\mathbf{x}^{\star})$		15.00	15.00	15.00	15.00	15.69
$ \tau (x^{\star} x^{0}) $		10.00	25.00	50.00	60.53	

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Non-standard constraints (transaction cost management)

Let c_i^- and c_i^+ be the bid and ask transactions costs. The net expected return is equal to:

$$\mu(x) = \sum_{i=1}^{n} x_{i} \mu_{i} - \sum_{i=1}^{n} \Delta x_{i}^{-} c_{i}^{-} - \sum_{i=1}^{n} \Delta x_{i}^{+} c_{i}^{+}$$

The γ -problem becomes:

$$\begin{aligned} \mathbf{x}^{\star} &= \arg\min\frac{1}{2}\mathbf{x}^{\top}\Sigma\mathbf{x} - \gamma\left(\sum_{i=1}^{n} x_{i}\mu_{i} - \sum_{i=1}^{n}\Delta x_{i}^{-}c_{i}^{-} - \sum_{i=1}^{n}\Delta x_{i}^{+}c_{i}^{+}\right) \\ &= 1 \\ \text{u.c.} & \begin{cases} \sum_{i=1}^{n} \left(x_{i} + \Delta x_{i}^{-}c_{i}^{-} + \Delta x_{i}^{+}c_{i}^{+}\right) = 1 \\ x_{i} = x_{i}^{0} + \Delta x_{i}^{+} - \Delta x_{i}^{-} \\ 0 \le x_{i} \le 1 \\ 0 \le \Delta x_{i}^{-} \le 1 \\ 0 \le \Delta x_{i}^{+} \le 1 \end{cases} \end{aligned}$$

133 / 1420

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Non-standard constraints (transaction cost management)

The augmented QP problem becomes:

where X is a $3n \times 1$ vector:

$$X = (x_1, \ldots, x_n, \Delta x_1^-, \ldots, \Delta x_n^-, \Delta x_1^+, \ldots, \Delta x_n^+)$$

and:

$$Q_{3n\times 3n} = \begin{pmatrix} \Sigma & \mathbf{0}_{n\times n} & \mathbf{0}_{n\times n} \\ \mathbf{0}_{n\times n} & \mathbf{0}_{n\times n} & \mathbf{0}_{n\times n} \\ \mathbf{0}_{n\times n} & \mathbf{0}_{n\times n} & \mathbf{0}_{n\times n} \end{pmatrix}, \quad R_{3n\times 1} = \begin{pmatrix} \gamma\mu \\ -c^{-} \\ -c^{+} \end{pmatrix},$$
$$A_{(n+1)\times 3n} = \begin{pmatrix} \mathbf{1}_{n}^{\top} & (c^{-})^{\top} & (c^{+})^{\top} \\ I_{n} & I_{n} & -I_{n} \end{pmatrix} \text{ and } B_{(n+1)\times 1} = \begin{pmatrix} \mathbf{1} \\ x^{0} \end{pmatrix}$$

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Index sampling

Index sampling

The underlying idea is to replicate an index *b* with *n* stocks by a portfolio *x* with n_x stocks and $n_x \ll n$

From a mathematical point of view, index sampling can be written as a portfolio optimization problem with a benchmark:

$$x^{\star} = \arg\min\frac{1}{2}(x-b)^{\top}\Sigma(x-b)$$

u.c.
$$\begin{cases} \mathbf{1}_{n}^{\top}x = 1\\ x \ge \mathbf{0}_{n}\\ \sum_{i=1}^{n}\mathbb{1}\left\{x_{i} > 0\right\} \le n_{x} \end{cases}$$

where *b* is the vector of index weights

We obtain a mixed integer non-linear optimization problem

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Index sampling

Three stepwise algorithms:

- The backward elimination algorithm starts with all the stocks, computes the optimized portfolio, deletes the stock which presents the highest tracking error variance, and repeats this process until the number of stocks in the optimized portfolio reaches the target value n_x
- 2 The forward selection algorithm starts with no stocks in the portfolio, adds the stock which presents the smallest tracking error variance, and repeats this process until the number of stocks in the optimized portfolio reaches the target value n_x
- The heuristic algorithm is a variant of the backward elimination algorithm, but the elimination process of the heuristic algorithm uses the criterion of the smallest weight

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Heuristic algorithm

- The algorithm is initialized with $\mathcal{N}_{(0)} = \emptyset$ and $x_{(0)}^{\star} = b$.
- 2 At the iteration k, we define a set $\mathcal{I}_{(k)}$ of stocks having the smallest positive weights in the portfolio $x_{(k-1)}^{\star}$. We then update the set $\mathcal{N}_{(k)}$ with $\mathcal{N}_{(k)} = \mathcal{N}_{(k-1)} \cup \mathcal{I}_{(k)}$ and define the upper bounds $x_{(k)}^{+}$:

$$x_{(k),i}^{+} = \begin{cases} 0 & \text{if} \quad i \in \mathcal{N}_{(k)} \\ 1 & \text{if} \quad i \notin \mathcal{N}_{(k)} \end{cases}$$

• We solve the QP problem by using the new upper bounds $x_{(k)}^+$:

$$\begin{aligned} x_{(k)}^{\star} &= \arg\min\frac{1}{2}\left(x_{(k)} - b\right)^{\top} \Sigma\left(x_{(k)} - b\right) \\ \text{u.c.} &\begin{cases} \mathbf{1}_{n}^{\top} x_{(k)} = 1 \\ \mathbf{0}_{n} \leq x_{(k)} \leq x_{(k)}^{+} \end{cases} \end{aligned}$$

We iterate steps 2 and 3 until the convergence criterion:

$$\sum_{i=1}^n \mathbb{1}\left\{x^*_{(k),i} > 0\right\} \le n_x$$

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Complexity of the three numerical algorithms

The number of solved QP problems is respectively equal to:

- $n_b n_x$ for the heuristic algorithm
- $(n_b n_x)(n_b + n_x + 1)/2$ for the backward elimination algorithm
- $n_x (2n_b n_x + 1)/2$ for the forward selection algorithm

		Number of solved QP problems		
n _b	n_{x}	Heuristic	Backward	Forward
50	10	40	1 220	455
50	40	10	455	1 220
500	50	450	123 975	23775
500	450	50	23775	123975
1 500	100^{-1}	1400	1120700	145050
	1 000	500	625 250	1000500

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Index sampling (Eurostoxx 50, June 2012)

Table 14: Sampling the SX5E index with the heuristic algorithm

k	Stock	bi	$\sigma\left(\mathbf{x}_{(k)} \mid \mathbf{b}\right)$
1	Nokia	0.45	0.18
2	Carrefour	0.60	0.23
3	Repsol	0.71	0.28
4	Unibail-Rodamco	0.99	0.30
5	Muenchener Rueckver	1.34	0.32
6	RWE	1.18	0.36
7	Koninklijke Philips	1.07	0.41
8	Generali	1.06	0.45
9	CRH	0.82	0.51
10	Volkswagen	1.34	0.55
42	H	2.39	3.67
43	Telefonica	3.08	3.81
44	Bayer	3.51	4.33
45	Vinci	1.46	5.02
46	BBVA	2.13	6.53
47	Sanofi	5.38	7.26
48	Allianz	2.67	10.76
49	Total	5.89	12.83
50	Siemens	4.36	30.33

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Index sampling (Eurostoxx 50, June 2012)

Table 15: Sampling the SX5E index with the backward elimination algorithm

k	Stock	bi	$\sigma\left(x_{(k)} \mid b\right)$
1	Iberdrola	1.05	0.11
2	France Telecom	1.48	0.18
3	Carrefour	0.60	0.22
4	Muenchener Rueckver	1.34	0.26
5	Repsol	0.71	0.30
6	BMW	1.37	0.34
7	Generali	1.06	0.37
8	RWE	1.18	0.41
9	Koninklijke Philips	1.07	0.44
10	Air Liquide	2.10	0.48
42	GDF Suez	1.92	3.49
43	Bayer	3.51	3.88
44	BNP Paribas	2.26	4.42
45	Total	5.89	4.99
46	LVMH	2.39	5.74
47	Allianz	2.67	7.15
48	Sanofi	5.38	8.90
49	BBVA	2.13	12.83
50	Siemens	4.36	30.33

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Index sampling (Eurostoxx 50, June 2012)

Table 16: Sampling the SX5E index with the forward selection algorithm

k	Stock	bi	$\sigma\left(\mathbf{x}_{(k)} \mid \mathbf{b}\right)$
1	Siemens	4.36	12.83
2	Banco Santander	3.65	8.86
3	Bayer	3.51	6.92
4	Eni	3.32	5.98
5	Allianz	2.67	5.11
6	LVMH	2.39	4.55
7	France Telecom	1.48	3.93
8	Carrefour	0.60	3.62
9	BMW	1.37	3.35
41	Société Générale	1.07	0.50
42	CRH	0.82	0.45
43	Air Liquide	2.10	0.41
44	RWE	1.18	0.37
45	Nokia	0.45	0.33
46	Unibail-Rodamco	0.99	0.28
47	Repsol	0.71	0.24
48	Essilor	1.17	0.18
49	Muenchener Rueckver	1.34	0.11
50	Iberdrola	1.05	0.00

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

Index sampling

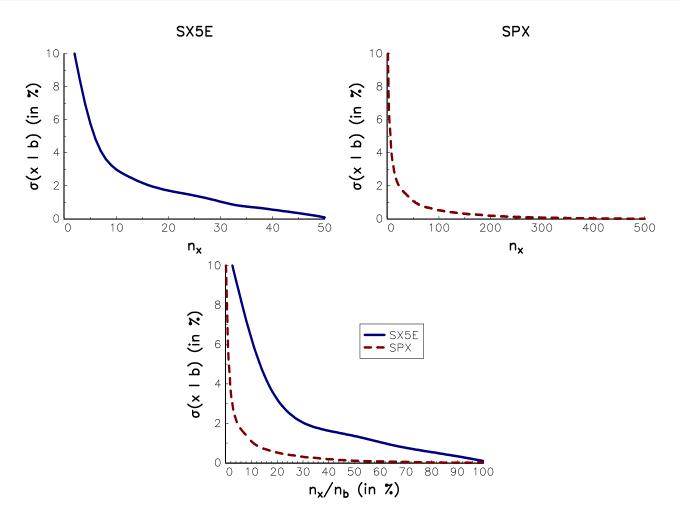


Figure 15: Sampling the SX5E and SPX indices (June 2012)

142 / 1420

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

The impact of weight constraints

We specify the optimization problem as follows:

$$\min \frac{1}{2} x^{\top} \Sigma x$$

u.c.
$$\begin{cases} \mathbf{1}_{n}^{\top} x = 1\\ \mu^{\top} x \ge \mu^{\star}\\ x \in \mathcal{C} \end{cases}$$

where ${\mathcal C}$ is the set of weights constraints. We define:

• the unconstrained portfolio x^* or $x^*(\mu, \Sigma)$:

$$\mathcal{C} = \mathbb{R}^n$$

• the constrained portfolio \tilde{x} :

$$\mathcal{C}\left(x^{-},x^{+}\right) = \left\{x \in \mathbb{R}^{n} : x_{i}^{-} \leq x_{i} \leq x_{i}^{+}\right\}$$

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

The impact of weight constraints

Theorem

Jagannathan and Ma (2003) show that the constrained portfolio is the solution of the unconstrained problem:

$$ilde{x} = x^{\star} \left(ilde{\mu}, ilde{\Sigma}
ight)$$

with:

$$\left\{ egin{array}{l} ilde{\mu} & \ ilde{\Sigma} = \Sigma + \left(\lambda^+ - \lambda^-
ight) \mathbf{1}_n^ op + \mathbf{1}_n \left(\lambda^+ - \lambda^-
ight)^ op \end{array}
ight.$$

where λ^- and λ^+ are the Lagrange coefficients vectors associated to the lower and upper bounds.

 \Rightarrow Introducing weights constraints is equivalent to introduce a shrinkage method or to introduce some relative views (similar to the Black-Litterman approach).

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

The impact of weight constraints

Proof (step 1)

Without weight constraints, the expression of the Lagrangian is:

$$\mathcal{L}(x;\lambda_0,\lambda_1) = \frac{1}{2}x^{\top}\Sigma x - \lambda_0\left(\mathbf{1}_n^{\top}x - 1\right) - \lambda_1\left(\mu^{\top}x - \mu^{\star}\right)$$

with $\lambda_0 \ge 0$ and $\lambda_1 \ge 0$. The first-order conditions are:

$$\begin{cases} \boldsymbol{\Sigma} \boldsymbol{x} - \lambda_0 \boldsymbol{1}_n - \lambda_1 \boldsymbol{\mu} = \boldsymbol{0}_n \\ \boldsymbol{1}_n^\top \boldsymbol{x} - 1 = \boldsymbol{0} \\ \boldsymbol{\mu}^\top \boldsymbol{x} - \boldsymbol{\mu}^* = \boldsymbol{0} \end{cases}$$

We deduce that the solution x^* depends on the vector of expected return μ and the covariance matrix Σ and we note $x^* = x^* (\mu, \Sigma)$

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

The impact of weight constraints

Proof (step 2)

If we impose now the weight constraints $C(x^-, x^+)$, we have:

$$\mathcal{L}\left(x;\lambda_{0},\lambda_{1},\lambda^{-},\lambda^{+}\right) = \frac{1}{2}x^{\top}\Sigma x - \lambda_{0}\left(\mathbf{1}_{n}^{\top}x-1\right) - \lambda_{1}\left(\mu^{\top}x-\mu^{*}\right) - \lambda^{-\top}\left(x-x^{-}\right) - \lambda^{+\top}\left(x^{+}-x\right)$$

with $\lambda_0 \ge 0$, $\lambda_1 \ge 0$, $\lambda_i^- \ge 0$ and $\lambda_i^+ \ge 0$. In this case, the Kuhn-Tucker conditions are:

$$\begin{cases} \Sigma x - \lambda_0 \mathbf{1}_n - \lambda_1 \mu - \lambda^- + \lambda^+ = \mathbf{0}_n \\ \mathbf{1}_n^\top x - 1 = 0 \\ \mu^\top x - \mu^* = 0 \\ \min(\lambda_i^-, x_i - x_i^-) = 0 \\ \min(\lambda_i^+, x_i^+ - x_i) = 0 \end{cases}$$

146 / 1420

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

The impact of weight constraints

Proof (step 3)

Given a constrained portfolio \tilde{x} , it is possible to find a covariance matrix $\tilde{\Sigma}$ such that \tilde{x} is the solution of unconstrained mean-variance portfolio. Let $\mathcal{E} = \left\{\tilde{\Sigma} > 0 : \tilde{x} = x^*\left(\mu, \tilde{\Sigma}\right)\right\}$ denote the corresponding set:

$$\mathcal{E} = \left\{ \tilde{\boldsymbol{\Sigma}} > \boldsymbol{0} : \tilde{\boldsymbol{\Sigma}} \tilde{\boldsymbol{x}} - \lambda_0 \boldsymbol{1}_n - \lambda_1 \boldsymbol{\mu} = \boldsymbol{0}_n \right\}$$

Of course, the set \mathcal{E} contains several solutions. From a financial point of view, we are interested in covariance matrices $\tilde{\Sigma}$ that are close to Σ . Jagannathan and Ma note that the matrix $\tilde{\Sigma}$ defined by:

$$\tilde{\boldsymbol{\Sigma}} = \boldsymbol{\Sigma} + \left(\boldsymbol{\lambda}^{+} - \boldsymbol{\lambda}^{-}\right) \mathbf{1}_{n}^{\top} + \mathbf{1}_{n} \left(\boldsymbol{\lambda}^{+} - \boldsymbol{\lambda}^{-}\right)^{\top}$$

is a solution of $\ensuremath{\mathcal{E}}$

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

The impact of weight constraints

Proof (step 4)

Indeed, we have:

$$\begin{split} \tilde{\Sigma}\tilde{x} &= \Sigma\tilde{x} + \left(\lambda^{+} - \lambda^{-}\right)\mathbf{1}_{n}^{\top}\tilde{x} + \mathbf{1}_{n}\left(\lambda^{+} - \lambda^{-}\right)^{\top}\tilde{x} \\ &= \Sigma\tilde{x} + \left(\lambda^{+} - \lambda^{-}\right) + \mathbf{1}_{n}\left(\lambda^{+} - \lambda^{-}\right)^{\top}\tilde{x} \\ &= \lambda_{0}\mathbf{1}_{n} + \lambda_{1}\mu + \mathbf{1}_{n}\left(\lambda_{0}\mathbf{1}_{n} + \lambda_{1}\mu - \Sigma\tilde{x}\right)^{\top}\tilde{x} \\ &= \lambda_{0}\mathbf{1}_{n} + \lambda_{1}\mu + \mathbf{1}_{n}\left(\lambda_{0} + \lambda_{1}\mu^{*} - \tilde{x}^{\top}\Sigma\tilde{x}\right) \\ &= \left(2\lambda_{0} - \tilde{x}^{\top}\Sigma\tilde{x} + \lambda_{1}\mu^{*}\right)\mathbf{1}_{n} + \lambda_{1}\mu \end{split}$$

It proves that \tilde{x} is the solution of the unconstrained optimization problem. The Lagrange coefficients λ_0^* and λ_1^* for the unconstrained problem are respectively equal to $2\tilde{\lambda}_0 - \tilde{x}^\top \Sigma \tilde{x} + \tilde{\lambda}_1 \mu^*$ and $\tilde{\lambda}_1$ where $\tilde{\lambda}_0$ and $\tilde{\lambda}_1$ are the Lagrange coefficient for the constrained problem. Moreover, $\tilde{\Sigma}$ is generally a positive definite matrix

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

The impact of weight constraints

Example 13

We consider four assets. Their expected returns are equal to 5%, 6%, 8% and 6% while their volatilities are equal to 15%, 20%, 25% and 30%. The correlation matrix of asset returns is given by the following matrix:

$$C = \left(egin{array}{ccccc} 1.00 & & & \ 0.10 & 1.00 & & \ 0.40 & 0.70 & 1.00 & \ 0.50 & 0.40 & 0.80 & 1.00 \end{array}
ight)$$

Given these parameters, the global minimum variance portfolio is equal to:

$$x^{\star} = \begin{pmatrix} 72.742\% \\ 49.464\% \\ -20.454\% \\ -1.753\% \end{pmatrix}$$

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

The impact of weight constraints

Table 17: Minimum variance portfolio when $x_i \ge 10\%$

x_i^{\star}	<i>x</i> _i	λ_i^-	λ_i^+	$ ilde{\sigma}_i$		$ ilde{ ho}$	i,j	
72.742	56.195	0.000	0.000	15.00	100.00			
49.464	23.805	0.000	0.000	20.00	10.00	100.00		
-20.454	10.000	1.190	0.000	19.67	10.50	58.71	100.00	
-1.753	10.000	1.625	0.000	23.98	17.38	16.16	67.52	100.00

Table 18: Minimum variance portfolio when $10\% \le x_i \le 40\%$

x_i^{\star}	<i>x</i> _i	λ_i^-	λ_i^+	$\tilde{\sigma}_i$	$\widetilde{ ho}_{i,j}$	
72.742	40.000	0.000	0.915	20.20 100.00		
49.464	40.000	0.000	0.000	20.00 30.08	100.00	
-20.454	10.000	0.915	0.000	21.02 35.32	61.48 100.00	
-1.753	10.000	1.050	0.000	26.27 39.86	25.70 73.06	100.00

Covariance matrix Expected returns Regularization of optimized portfolios Adding constraints

The impact of weight constraints

Table 19: Mean-variance portfolio when $10\% \le x_i \le 40\%$ and $\mu^* = 6\%$

	x_i^{\star}	<i>x̃</i> i	λ_i^-	λ_i^+	$\tilde{\sigma}_i$	$ ilde{ ho}_i$, <i>j</i>	
	65.866	40.000	0.000	0.125	15.81 100.00			
	26.670	30.000	0.000	0.000	20.00 13.44	100.00		
	32.933	20.000	0.000	0.000	25.00 41.11	70.00	100.00	
_	-25.470	10.000	1.460	0.000	24.66 23.47	19.06	73.65	100.00

Table 20: MSR portfolio when $10\% \le x_i \le 40\%$

x_i^{\star}	<i>x</i> _i	λ_i^-	λ_i^+	$ ilde{\sigma}_i$		$ ilde{ ho}$	i,j	
51.19	40.000	0.000	0.342	17.13 1	.00.00			
50.784	39.377	0.000	0.000	20.00	18.75	100.00		
-21.80) 10.000	0.390	0.000	23.39	36.25	66.49	100.00	
19.81	3 10.623	0.000	0.000	30.00	50.44	40.00	79.96	100.00

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

Exercise

We consider an investment universe of four assets. We assume that their expected returns are equal to 5%, 6%, 8% and 6%, and their volatilities are equal to 15%, 20%, 25% and 30%. The correlation matrix is:

$$ho = \left(egin{array}{ccccc} 100\% & & & \ 10\% & 100\% & \ 40\% & 70\% & 100\% & \ 50\% & 40\% & 80\% & 100\% \end{array}
ight)$$

We note x_i the weight of the i^{th} asset in the portfolio. We only impose that the sum of the weights is equal to 100%.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

Question 1

Represent the efficient frontier by considering the following values of γ : -1, -0.5, -0.25, 0, 0.25, 0.5, 1 and 2.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

We deduce that the covariance matrix is:

$$\Sigma = \begin{pmatrix} 2.250 & 0.300 & 1.500 & 2.250 \\ 0.300 & 4.000 & 3.500 & 2.400 \\ 1.500 & 3.500 & 6.250 & 6.000 \\ 2.250 & 2.400 & 6.000 & 9.000 \end{pmatrix} \times 10^{-2}$$

We then have to solve the $\gamma\text{-formulation}$ of the Markowitz problem:

$$x^{\star}(\gamma) = \arg \min \frac{1}{2} x^{\top} \Sigma x - \gamma x^{\top} \mu$$

u.c. $\mathbf{1}_{n}^{\top} x = 1$

We obtain the results³ given in Table 21. We represent the efficient frontier in Figure 16.

³The weights, expected returns and volatilities are expressed in %.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

Table 21: Solution of Question 1

γ	-1.00	-0.50	-0.25	0.00	0.25	0.50	1.00	2.00
x_1^{\star}	94.04	83.39	78.07	72.74	67.42	62.09	51.44	30.15
x_2^{\star}	120.05	84.76	67.11	49.46	31.82	14.17	-21.13	-91.72
x ₃ *	-185.79	-103.12	-61.79	-20.45	20.88	62.21	144.88	310.22
x ₄ *	71.69	34.97	16.61	-1.75	-20.12	-38.48	-75.20	-148.65
$\left[\bar{\mu} (\bar{x^{\star}}) \right]$	1.34	3.10	3.98	4.86	5.74	6.62	8.38	11.90
$\sigma(\mathbf{x}^{\star})$	22.27	15.23	12.88	12.00	12.88	15.23	22.27	39.39

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

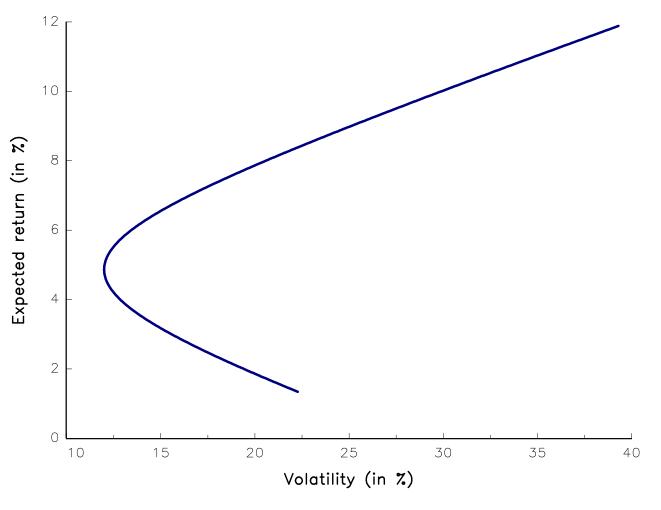


Figure 16: Markowitz efficient frontier

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

Question 2

Calculate the minimum variance portfolio. What are its expected return and its volatility?

Variations on the efficient frontier Beta coefficient Black-Litterman model

We solve the γ -problem with $\gamma = 0$. The minimum variance portfolio is then $x_1^* = 72.74\%$, $x_2^* = 49.46\%$, $x_3^* = -20.45\%$ and $x_4^* = -1.75\%$. We deduce that $\mu(x^*) = 4.86\%$ and $\sigma(x^*) = 12.00\%$.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

Question 3

Calculate the optimal portfolio which has an ex-ante volatility σ^* equal to 10%. Same question if $\sigma^* = 15\%$ and $\sigma^* = 20\%$.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

There is no solution when the target volatility σ^* is equal to 10% because the minimum variance portfolio has a volatility larger than 10%. Finding the optimized portfolio for $\sigma^* = 15\%$ or $\sigma^* = 20\%$ is equivalent to solving a σ -problem. If $\sigma^* = 15\%$ (resp. $\sigma^* = 20\%$), we obtain an implied value of γ equal to 0.48 (resp. 0.85). Results are given in the following Table:

σ^{\star}	15.00	20.00
x_1^{\star}	62.52	54.57
x_2^{\star}	15.58	-10.75
x ₃ *	58.92	120.58
x ₄ *	-37.01	-64.41
$\left[\bar{\mu} (\bar{x}^{\star}) \right]$	6.55	7.87
γ	0.48	0.85

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

Question 4

We note $x^{(1)}$ the minimum variance portfolio and $x^{(2)}$ the optimal portfolio with $\sigma^* = 20\%$. We consider the set of portfolios $x^{(\alpha)}$ defined by the relationship:

$$x^{(\alpha)} = (1 - \alpha) x^{(1)} + \alpha x^{(2)}$$

In the previous efficient frontier, place the portfolios $x^{(\alpha)}$ when α is equal to -0.5, -0.25, 0, 0.1, 0.2, 0.5, 0.7 and 1. What do you observe? Comment on this result.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

Let $x^{(\alpha)}$ be the portfolio defined by the relationship $x^{(\alpha)} = (1 - \alpha) x^{(1)} + \alpha x^{(2)}$ where $x^{(1)}$ is the minium variance portfolio and $x^{(2)}$ is the optimized portfolio with a 20% ex-ante volatility. We obtain the following results:

α	$\sigma\left(\mathbf{x}^{(\alpha)}\right)$	$\mu\left(x^{(\alpha)} ight)$
-0.50	14.42	3.36
-0.25	12.64	4.11
0.00	12.00	4.86
0.10	12.10	5.16
0.20	12.41	5.46
0.50	14.42	6.36
0.70	16.41	6.97
1.00	20.00	7.87

We have reported these portfolios in Figure 17. We notice that they are located on the efficient frontier. This is perfectly normal because we know that a combination of two optimal portfolios corresponds to another optimal portfolio.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

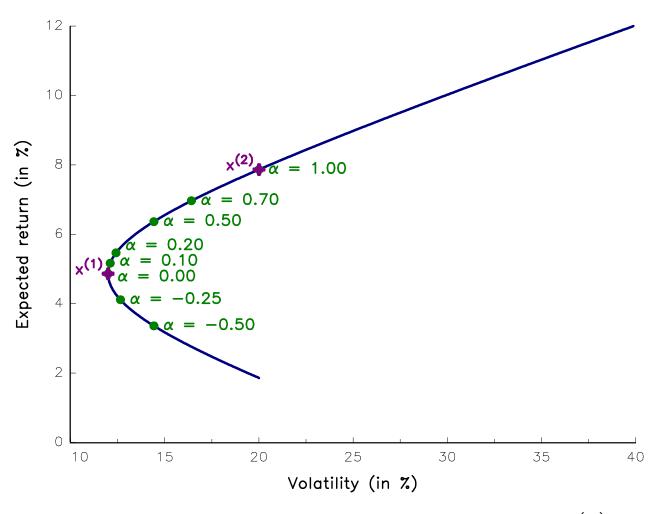


Figure 17: Mean-variance diagram of portfolios $x^{(\alpha)}$

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

Question 5

Repeat Questions 3 and 4 by considering the constraint $0 \le x_i \le 1$. Explain why we do not retrieve the same observation.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

If we consider the constraint $0 \le x_i \le 1$, the γ -formulation of the Markowitz problem becomes:

$$\begin{aligned} x^{\star}(\gamma) &= \arg\min\frac{1}{2}x^{\top}\Sigma x - \gamma x^{\top}\mu \\ \text{u.c.} &\begin{cases} \mathbf{1}_{n}^{\top}x = 1 \\ \mathbf{0}_{n} \leq x \leq \mathbf{1}_{n} \end{cases} \end{aligned}$$

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

We obtain the following results:

σ^{\star}	MV	12.00	15.00	20.00
x_1^{\star}	65.49	\checkmark	45.59	24.88
x_2^{\star}	34.51	\checkmark	24.74	4.96
x ₃ *	0.00	\checkmark	29.67	70.15
x_4^{\star}	0.00	\checkmark	0.00	0.00
$\left[\bar{\mu} (\bar{x^{\star}}) \right]$	5.35	\sim \sim \sim \sim \sim \sim	$^{-}\bar{6}.\bar{1}4^{-}$	7.15
$\sigma(\mathbf{x}^{\star})$	12.56	\checkmark	15.00	20.00
γ	0.00	\checkmark	0.62	1.10

We observe that we cannot target a volatility $\sigma^* = 10\%$. Moreover, the expected return $\mu(x^*)$ of the optimal portfolios are reduced due to the additional constraints.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

Question 6

We now include in the investment universe a fifth asset corresponding to the risk-free asset. Its return is equal to 3%.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

Question 6.a

Define the expected return vector and the covariance matrix of asset returns.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

We have	9:		$\mu =$	(5.0 6.0 8.0 6.0 3.0)	imes 10 ⁻²	2	
and:	$\Sigma =$	$\left(\begin{array}{c} 2.250\\ 0.300\\ 1.500\\ 2.250\\ 0.000\end{array}\right)$	0.300 4.000 3.500 2.400 0.000	1.500 3.500 6.250 6.000 0.000	6.000	0.000 0.000 0.000 0.000 0.000	$ ight) imes 10^{-2}$

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

Question 6.b

Deduce the efficient frontier by solving directly the quadratic problem.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

We solve the γ -problem and obtain the efficient frontier given in Figure 18.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

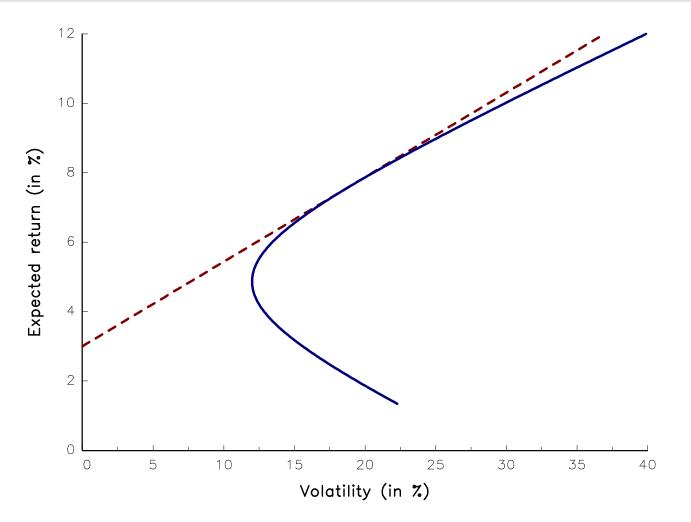


Figure 18: Efficient frontier when the risk-free asset is introduced

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

Question 6.c

What is the shape of the efficient frontier? Comment on this result.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

This efficient frontier is a straight line. This line passes through the risk-free asset and is tangent to the efficient frontier of Figure 16. This question is a direct application of the *Separation Theorem* of Tobin.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

Question 6.d

Choose two arbitrary portfolios $x^{(1)}$ and $x^{(2)}$ of this efficient frontier. Deduce the Sharpe ratio of the tangency portfolio.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

We consider two optimized portfolios of this efficient frontier. They corresponds to $\gamma = 0.25$ and $\gamma = 0.50$. We obtain the following results:

γ	0.25	0.50
x_1^{\star}	18.23	36.46
x_2^{\star}	-1.63	-3.26
x ₃ *	34.71	69.42
x ₄ *	-18.93	-37.86
x_5^{\star}	67.62	35.24
$\left[\bar{\mu} (\bar{x}^{\star}) \right]$	4.48	5.97
$\sigma(\mathbf{x}^{\star})$	6.09	12.18

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

The first portfolio has an expected return equal to 4.48% and a volatility equal to 6.09%. The weight of the risk-free asset is 67.62%. This explains the low volatility of this portfolio. For the second portfolio, the weight of the risk-free asset is lower and equal to 35.24%. The expected return and the volatility are then equal to 5.97% and 12.18%. We note $x^{(1)}$ and $x^{(2)}$ these two portfolios. By definition, the Sharpe ratio of the market portfolio x^* is the tangency of the line. We deduce that:

SR
$$(x^* | r) = \frac{\mu(x^{(2)}) - \mu(x^{(1)})}{\sigma(x^{(2)}) - \sigma(x^{(1)})}$$

= $\frac{5.97 - 4.48}{12.18 - 6.09}$
= 0.2436

The Sharpe ratio of the market portfolio x^* is then equal to 0.2436.

177 / 1420

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

Question 6.e

Calculate then the composition of the tangency portfolio from $x^{(1)}$ and $x^{(2)}$.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

By construction, every portfolio $x^{(\alpha)}$ which belongs to the tangency line is a linear combination of two portfolios $x^{(1)}$ and $x^{(2)}$ of this efficient frontier:

$$x^{(\alpha)} = (1 - \alpha) x^{(1)} + \alpha x^{(2)}$$

The market portfolio x^* is the portfolio $x^{(\alpha)}$ which has a zero weight in the risk-free asset. We deduce that the value α^* which corresponds to the market portfolio satisfies the following relationship:

$$(1 - \alpha^*) x_5^{(1)} + \alpha^* x_5^{(2)} = 0$$

because the risk-free asset is the fifth asset of the portfolio.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

It follows that:

$$\alpha^{\star} = \frac{x_5^{(1)}}{x_5^{(1)} - x_5^{(2)}} \\ = \frac{67.62}{67.62 - 35.24} \\ = 2.09$$

We deduce that the market portfolio is:

$$x^{\star} = (1 - 2.09) \cdot \begin{pmatrix} 18.23 \\ -1.63 \\ 34.71 \\ -18.93 \\ 67.62 \end{pmatrix} + 2.09 \cdot \begin{pmatrix} 36.46 \\ -3.26 \\ 69.42 \\ -37.86 \\ 35.24 \end{pmatrix} = \begin{pmatrix} 56.30 \\ -5.04 \\ 107.21 \\ -58.46 \\ 0.00 \end{pmatrix}$$

We check that the Sharpe ratio of this portfolio is 0.2436.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

Question 7

We consider the general framework with *n* risky assets whose vector of expected returns is μ and the covariance matrix of asset returns is Σ while the return of the risk-free asset is *r*. We note \tilde{x} the portfolio invested in the n + 1 assets. We have:

$$\tilde{x} = \left(\begin{array}{c} x \\ x_r \end{array}\right)$$

with x the weight vector of risky assets and x_r the weight of the risk-free asset. We impose the following constraint:

$$\sum_{i=1}^n \tilde{x}_i = \sum_{i=1}^n x_i = 1$$

181 / 1420

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

Question 7.a

Define $\tilde{\mu}$ and $\tilde{\Sigma}$ the vector of expected returns and the covariance matrix of asset returns associated with the n + 1 assets.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

We have:

$$\tilde{\mu} = \left(\begin{array}{c} \mu \\ r \end{array} \right)$$

and:

$$\tilde{\boldsymbol{\Sigma}} = \left(\begin{array}{cc} \boldsymbol{\Sigma} & \boldsymbol{0}_n \\ \boldsymbol{0}_n^\top & \boldsymbol{0} \end{array} \right)$$

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

Question 7.b

By using the Markowitz ϕ -problem, retrieve the *Separation Theorem* of Tobin.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

If we include the risk-free asset, the Markowitz ϕ -problem becomes:

$$egin{array}{lll} ilde{x}^{\star}\left(\phi
ight) &=& rg\max{ ilde{x}^{ op}} ilde{\mu} - rac{\phi}{2} ilde{x}^{ op} ilde{\Sigma} ilde{x} \ { extsf{u.c.}} & extsf{1}^{ op}_n ilde{x} = 1 \end{array}$$

We note that the objective function can be written as follows:

$$f(\tilde{x}) = \tilde{x}^{\top} \tilde{\mu} - \frac{\phi}{2} \tilde{x}^{\top} \tilde{\Sigma} \tilde{x}$$
$$= x^{\top} \mu + x_r r - \frac{\phi}{2} x^{\top} \Sigma x$$
$$= g(x, x_r)$$

The constraint becomes $\mathbf{1}_n^\top x + x_r = 1$. We deduce that the Lagrange function is:

$$\mathcal{L}(x, x_r; \lambda_0) = x^\top \mu + x_r r - \frac{\phi}{2} x^\top \Sigma x - \lambda_0 \left(\mathbf{1}_n^\top x + x_r - 1\right)$$

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

The first-order conditions are:

$$\begin{cases} \partial_{x} \mathcal{L} (x, x_{r}; \lambda_{0}) = \mu - \phi \Sigma x - \lambda_{0} \mathbf{1}_{n} = \mathbf{0}_{n} \\ \partial_{x_{r}} \mathcal{L} (x, x_{r}; \lambda_{0}) = r - \lambda_{0} = 0 \\ \partial_{\lambda_{0}} \mathcal{L} (x, x_{r}; \lambda_{0}) = \mathbf{1}_{n}^{\top} x + x_{r} - 1 = 0 \end{cases}$$

The solution of the optimization problem is then:

$$\begin{cases} x^{\star} = \phi^{-1} \Sigma^{-1} \left(\mu - r \mathbf{1}_n \right) \\ \lambda_0^{\star} = r \\ x_r^{\star} = 1 - \phi^{-1} \mathbf{1}_n^{\top} \Sigma^{-1} \left(\mu - r \mathbf{1}_n \right) \end{cases}$$

Let x_0^* be the following portfolio:

$$x_0^{\star} = \frac{\Sigma^{-1} \left(\mu - r \mathbf{1}_n \right)}{\mathbf{1}_n^{\top} \Sigma^{-1} \left(\mu - r \mathbf{1}_n \right)}$$

Variations on the efficient frontier Beta coefficient Black-Litterman model

Variations on the efficient frontier

We can then write the solution of the optimization problem in the following way:

$$\begin{cases} x^{\star} = \alpha x_{0}^{\star} \\ \lambda_{0}^{\star} = r \\ x_{r}^{\star} = 1 - \alpha \\ \alpha = \phi^{-1} \mathbf{1}_{n}^{\top} \Sigma^{-1} (\mu - r \mathbf{1}_{n}) \end{cases}$$

The first equation indicates that the relative proportions of risky assets in the optimized portfolio remain constant. If $\phi = \phi_0 = \mathbf{1}_n^\top \Sigma^{-1} (\mu - r \mathbf{1}_n)$, then $x^* = x_0^*$ and $x_r^* = 0$. We deduce that x_0^* is the tangency portfolio. If $\phi \neq \phi_0$, x^* is proportional to x_0^* and the wealth invested in the risk-free asset is the complement $(1 - \alpha)$ to obtain a total exposure equal to 100%. We retrieve then the separation theorem:

$$\tilde{\mathbf{x}}^{\star} = \underbrace{\alpha \cdot \begin{pmatrix} \mathbf{x}_{0}^{\star} \\ \mathbf{0} \end{pmatrix}}_{\text{risky assets}} + \underbrace{(1 - \alpha) \cdot \begin{pmatrix} \mathbf{0}_{n} \\ 1 \end{pmatrix}}_{\text{risk-free asset}}$$

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

Question 1

We consider an investment universe of *n* assets with:

$$R = \begin{pmatrix} R_1 \\ \vdots \\ R_n \end{pmatrix} \sim \mathcal{N}(\mu, \Sigma)$$

The weights of the market portfolio (or the benchmark) are $b = (b_1, \ldots, b_n)$.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

Question 1.a

Define the beta β_i of asset *i* with respect to the market portfolio.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

The beta of an asset is the ratio between its covariance with the market portfolio return and the variance of the market portfolio return. In the CAPM theory, we have:

$$\mathbb{E}\left[R_{i}\right]=r+\beta_{i}\left(\mathbb{E}\left[R\left(b\right)\right]-r\right)$$

where R_i is the return of asset *i*, R(b) is the return of the market portfolio and *r* is the risk-free rate. The beta β_i of asset *i* is:

$$\beta_{i} = \frac{\operatorname{cov}(R_{i}, R(b))}{\operatorname{var}(R(b))}$$

Let Σ be the covariance matrix of asset returns. We have $\operatorname{cov}(R, R(b)) = \Sigma b$ and $\operatorname{var}(R(b)) = b^{\top} \Sigma b$. We deduce that:

$$\beta_i = \frac{(\Sigma b)_i}{b^\top \Sigma b}$$

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

Question 1.b

Let X_1 , X_2 and X_3 be three random variables. Show that:

 $cov(c_1X_1 + c_2X_2, X_3) = c_1 cov(X_1, X_3) + c_2 cov(X_2, X_3)$

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

We recall that the mathematical operator \mathbb{E} is bilinear. Let c be the covariance $cov(c_1X_1 + c_2X_2, X_3)$. We then have:

$$c = \mathbb{E} \left[(c_1 X_1 + c_2 X_2 - \mathbb{E} [c_1 X_1 + c_2 X_2]) (X_3 - \mathbb{E} [X_3]) \right] \\ = \mathbb{E} \left[(c_1 (X_1 - \mathbb{E} [X_1]) + c_2 (X_2 - \mathbb{E} [X_2])) (X_3 - \mathbb{E} [X_3]) \right] \\ = c_1 \mathbb{E} \left[(X_1 - \mathbb{E} [X_1]) (X_3 - \mathbb{E} [X_3]) \right] + c_2 \mathbb{E} \left[(X_2 - \mathbb{E} [X_2]) (X_3 - \mathbb{E} [X_3]) \right] \\ = c_1 \operatorname{cov} (X_1, X_3) + c_2 \operatorname{cov} (X_2, X_3)$$

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

Question 1.c

We consider the asset portfolio $x = (x_1, ..., x_n)$ such that $\sum_{i=1}^n x_i = 1$. What is the relationship between the beta $\beta(x \mid b)$ of the portfolio and the betas β_i of the assets?

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

We have:

$$\beta(x \mid b) = \frac{\operatorname{cov}(R(x), R(b))}{\operatorname{var}(R(b))} = \frac{\operatorname{cov}(x^{\top}R, b^{\top}R)}{\operatorname{var}(b^{\top}R)}$$
$$= \frac{x^{\top}\mathbb{E}\left[(R - \mu)(R - \mu)^{\top}\right]b}{b^{\top}\mathbb{E}\left[(R - \mu)(R - \mu)^{\top}\right]b}$$
$$= \frac{x^{\top}\Sigma b}{b^{\top}\Sigma b} = x^{\top}\frac{\Sigma b}{b^{\top}\Sigma b} = x^{\top}\beta = \sum_{i=1}^{n} x_{i}\beta_{i}$$

with $\beta = (\beta_1, \dots, \beta_n)$. The beta of portfolio x is then the weighted mean of asset betas. Another way to show this result is to exploit the result of Question 1.b. We have:

$$\beta(x \mid b) = \frac{\operatorname{cov}\left(\sum_{i=1}^{n} x_i R_i, R(b)\right)}{\operatorname{var}\left(R(b)\right)} = \sum_{i=1}^{n} x_i \frac{\operatorname{cov}\left(R_i, R(b)\right)}{\operatorname{var}\left(R(b)\right)} = \sum_{i=1}^{n} x_i \beta_i$$

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

Question 1.d

Calculate the beta of the portfolios $x^{(1)}$ and $x^{(2)}$ with the following data:

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

We obtain $\beta(x^{(1)} | b) = 0.80$ and $\beta(x^{(2)} | b) = 0.85$.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

Question 2

We assume that the market portfolio is the equally weighted portfolio^a.

^{*a*}We have $b_i = n^{-1}$.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

Question 2.a

Show that $\sum_{i=1}^{n} \beta_i = n$.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

The weights of the market portfolio are then $b = n^{-1}\mathbf{1}_n$. We have:

$$\beta = \frac{\operatorname{cov}\left(R, R\left(b\right)\right)}{\operatorname{var}\left(R\left(b\right)\right)} = \frac{\Sigma b}{b^{\top}\Sigma b} = \frac{n^{-1}\Sigma \mathbf{1}_{n}}{n^{-2}\left(\mathbf{1}_{n}^{\top}\Sigma \mathbf{1}_{n}\right)} = n\frac{\Sigma \mathbf{1}_{n}}{\left(\mathbf{1}_{n}^{\top}\Sigma \mathbf{1}_{n}\right)}$$

We deduce that:

$$\sum_{i=1}^{n} \beta_i = \mathbf{1}_n^{\top} \beta = \mathbf{1}_n^{\top} n \frac{\Sigma \mathbf{1}_n}{(\mathbf{1}_n^{\top} \Sigma \mathbf{1}_n)} = n \frac{\mathbf{1}_n^{\top} \Sigma \mathbf{1}_n}{(\mathbf{1}_n^{\top} \Sigma \mathbf{1}_n)} = n$$

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

Question 2.b

We consider the case n = 3. Show that $\beta_1 \ge \beta_2 \ge \beta_3$ implies $\sigma_1 \ge \sigma_2 \ge \sigma_3$ if $\rho_{i,j} = 0$.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

If $\rho_{i,j} = 0$, we have:

$$\beta_i = n \frac{\sigma_i^2}{\sum_{j=1}^n \sigma_j^2}$$

We deduce that:

$$\begin{split} \beta_1 \geq \beta_2 \geq \beta_3 \quad \Rightarrow \quad n \frac{\sigma_1^2}{\sum_{j=1}^3 \sigma_j^2} \geq n \frac{\sigma_2^2}{\sum_{j=1}^3 \sigma_j^2} \geq n \frac{\sigma_3^2}{\sum_{j=1}^3 \sigma_j^2} \\ \Rightarrow \quad \sigma_1^2 \geq \sigma_2^2 \geq \sigma_3^2 \\ \Rightarrow \quad \sigma_1 \geq \sigma_2 \geq \sigma_3 \end{split}$$

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

Question 2.c

What is the result if the correlation is uniform $\rho_{i,j} = \rho$?

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

If $\rho_{i,j} = \rho$, it follows that:

$$\beta_i \propto \sigma_i^2 + \sum_{j \neq i} \rho \sigma_i \sigma_j$$

$$= \sigma_i^2 + \rho \sigma_i \sum_{j \neq i} \sigma_j + \rho \sigma_i^2 - \rho \sigma_i^2$$

$$= (1 - \rho) \sigma_i^2 + \rho \sigma_i \sum_{j=1}^n \sigma_j$$

$$= f(\sigma_i)$$

with:

$$f(z) = (1 - \rho) z^2 + \rho z \sum_{j=1}^{n} \sigma_j$$

203 / 1420

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

The first derivative of f(z) is:

$$f'(z) = 2(1-\rho)z + \rho \sum_{j=1}^{n} \sigma_{j}$$

If $\rho \ge 0$, then f(z) is an increasing function for $z \ge 0$ because $(1 - \rho) \ge 0$ and $\rho \sum_{j=1}^{n} \sigma_j \ge 0$. This explains why the previous result remains valid:

$$\beta_1 \ge \beta_2 \ge \beta_3 \Rightarrow \sigma_1 \ge \sigma_2 \ge \sigma_3 \quad \text{if} \quad \rho_{i,j} = \rho \ge 0$$

If $-(n-1)^{-1} \le \rho < 0$, then f' is decreasing if $z < -2^{-1}\rho (1-\rho)^{-1} \sum_{j=1}^{n} \sigma_j$ and increasing otherwise. We then have: $\beta_1 \ge \beta_2 \ge \beta_3 \Rightarrow \sigma_1 \ge \sigma_2 \ge \sigma_3$ if $\rho_{i,i} = \rho < 0$

In fact, the result remains valid in most cases. To obtain a counter-example, we must have large differences between the volatilities and a correlation close to $-(n-1)^{-1}$. For example, if $\sigma_1 = 5\%$, $\sigma_2 = 6\%$, $\sigma_3 = 80\%$ and $\rho = -49\%$, we have $\beta_1 = -0.100$, $\beta_2 = -0.115$ and $\beta_3 = 3.215$.

204 / 1420

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

Question 2.d

Find a general example such that $\beta_1 > \beta_2 > \beta_3$ and $\sigma_1 < \sigma_2 < \sigma_3$.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

We assume that $\sigma_1 = 15\%$, $\sigma_2 = 20\%$, $\sigma_3 = 22\%$, $\rho_{1,2} = 70\%$, $\rho_{1,3} = 20\%$ and $\rho_{2,3} = -50\%$. It follows that $\beta_1 = 1.231$, $\beta_2 = 0.958$ and $\beta_3 = 0.811$. We thus have found an example such that $\beta_1 > \beta_2 > \beta_3$ and $\sigma_1 < \sigma_2 < \sigma_3$.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

Question 2.e

Do we have $\sum_{i=1}^{n} \beta_i < n$ or $\sum_{i=1}^{n} \beta_i > n$ if the market portfolio is not equally weighted?

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

There is no reason that we have either $\sum_{i=1}^{n} \beta_i < n$ or $\sum_{i=1}^{n} \beta_i > n$. Let us consider the previous numerical example. If b = (5%, 25%, 70%), we obtain $\sum_{i=1}^{3} \beta_i = 1.808$ whereas if b = (20%, 40%, 40%), we have $\sum_{i=1}^{3} \beta_i = 3.126$.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

Question 3

We search a market portfolio $b \in \mathbb{R}^n$ such that the betas are the same for all the assets: $\beta_i = \beta_j = \beta$.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

Question 3.a

Show that there is an obvious solution which satisfies $\beta = 1$.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

We have:

$$\sum_{i=1}^{n} b_{i}\beta_{i} = \sum_{i=1}^{n} b_{i}\frac{(\Sigma b)_{i}}{b^{\top}\Sigma b}$$
$$= b^{\top}\frac{\Sigma b}{b^{\top}\Sigma b}$$
$$= 1$$

If $\beta_i = \beta_j = \beta$, then $\beta = 1$ is an obvious solution because the previous relationship is satisfied:

$$\sum_{i=1}^n b_i \beta_i = \sum_{i=1}^n b_i = 1$$

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

Question 3.b

Show that this solution is unique and corresponds to the minimum variance portfolio.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

If $\beta_i = \beta_j = \beta$, then we have:

$$\sum_{i=1}^{n} b_i \beta = 1 \Leftrightarrow \beta = \frac{1}{\sum_{i=1}^{n} b_i} = 1$$

 β can only take one value, the solution is then unique. We know that the marginal volatilities are the same in the case of the minimum variance portfolio x (TR-RPB, page 173):

$$\frac{\partial \sigma(x)}{\partial x_i} = \frac{\partial \sigma(x)}{\partial x_j}$$

with $\sigma(x) = \sqrt{x^{\top} \Sigma x}$ the volatility of the portfolio x.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

It follows that:

$$\frac{(\Sigma x)_i}{\sqrt{x^\top \Sigma x}} = \frac{(\Sigma x)_j}{\sqrt{x^\top \Sigma x}}$$

By dividing the two terms by $\sqrt{x^{\top}\Sigma x}$, we obtain:

$$\frac{(\Sigma x)_i}{x^{\top} \Sigma x} = \frac{(\Sigma x)_j}{x^{\top} \Sigma x}$$

The asset betas are then the same in the minimum variance portfolio. Because we have:

$$\begin{cases} \beta_i = \beta_j \\ \sum_{i=1}^n x_i \beta_i = 1 \end{cases}$$

we deduce that:

$$\beta_i = 1$$

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

Question 4

We assume that $b \in [0,1]^n$.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

Question 4.a

Show that if one asset has a beta greater than one, there exists another asset which has a beta smaller than one.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

We have:

$$\sum_{i=1}^{n} b_{i}\beta_{i} = 1$$

$$\Leftrightarrow \sum_{i=1}^{n} b_{i}\beta_{i} = \sum_{i=1}^{n} b_{i}$$

$$\Leftrightarrow \sum_{i=1}^{n} b_{i}\beta_{i} - \sum_{i=1}^{n} b_{i} = 0$$

$$\Leftrightarrow \sum_{i=1}^{n} b_{i}(\beta_{i} - 1) = 0$$

217 / 1420

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

We obtain the following system of equations:

$$\left\{ egin{array}{l} \sum_{i=1}^n b_i \left(eta_i-1
ight)=0 \ b_i\geq 0 \end{array}
ight.$$

Let us assume that the asset j has a beta greater than 1. We then have:

$$\left\{ egin{array}{l} b_{j}\left(eta_{j}-1
ight)+\sum_{i
eq j}b_{i}\left(eta_{i}-1
ight)=0\ b_{i}\geq0 \end{array}
ight.$$

It follows that $b_j (\beta_j - 1) > 0$ because $b_j > 0$ (otherwise the beta is zero). We must therefore have $\sum_{i \neq j} x_i (\beta_i - 1) < 0$. Because $b_i \ge 0$, it is necessary that at least one asset has a beta smaller than 1.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

Question 4.b

We consider the case n = 3. Find a covariance matrix Σ and a market portfolio *b* such that one asset has a negative beta.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

We use standard notations to represent Σ . We seek a portfolio such that $\beta_1 > 0$, $\beta_2 > 0$ and $\beta_3 < 0$. To simplify this problem, we assume that the three assets have the same volatility. We also obtain the following system of inequalities:

$$b_1+b_2
ho_{1,2}+b_3
ho_{1,3}>0\ b_1
ho_{1,2}+b_2+b_3
ho_{2,3}>0\ b_1
ho_{1,3}+b_2
ho_{2,3}+b_3<0$$

It is sufficient that $b_1\rho_{1,3} + b_2\rho_{2,3}$ is negative and b_3 is small. For example, we may consider $b_1 = 50\%$, $b_2 = 45\%$, $b_3 = 5\%$, $\rho_{1,2} = 50\%$, $\rho_{1,3} = 0\%$ and $\rho_{2,3} = -50\%$. We obtain $\beta_1 = 1.10$, $\beta_2 = 1.03$ and $\beta_3 = -0.27$.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

Question 5

We report the return $R_{i,t}$ and $R_t(b)$ of asset *i* and market portfolio *b* at different dates:

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

Question 5.a

Estimate the beta of the asset.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

We perform the linear regression $R_{i,t} = \alpha_i + \beta_i R_t(b) + \varepsilon_{i,t}$ and we obtain $\hat{\beta}_i = 1.06$.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

Question 5.b

What is the proportion of the asset volatility explained by the market?

Variations on the efficient frontier Beta coefficient Black-Litterman model

Beta coefficient

We deduce that the contribution c_i of the market factor is (TR-RPB, page 16):

$$c_i = \frac{\beta_i^2 \operatorname{var} (R(b))}{\operatorname{var} (R_i)} = 90.62\%$$

Variations on the efficient frontier Beta coefficient Black-Litterman model

Black-Litterman model

Exercise

We consider a universe of three assets. Their volatilities are 20%, 20% and 15%. The correlation matrix of asset returns is:

$$ho = \left(egin{array}{cccc} 1.00 & & \ 0.50 & 1.00 & \ 0.20 & 0.60 & 1.00 \end{array}
ight)$$

We would like to implement a trend-following strategy. For that, we estimate the trend of each asset and the volatility of the trend. We obtain the following results:

Asset	1	2	3
$\hat{\mu}$	10%	-5%	15%
$\sigma(\hat{\mu})$	4%	2%	10%

We assume that the neutral portfolio is the equally weighted portfolio.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Black-Litterman model

Question 1

Find the optimal portfolio if the constraint of the tracking error volatility is set to 1%, 2%, 3%, 4% and 5%.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Black-Litterman model

We consider the portfolio optimization problem in the presence of a benchmark (TR-RPB, page 17). We obtain the following results (expressed in %):

$\sigma(x^{\star} \mid b)$	1.00	2.00	3.00	4.00	5.00
x_1^{\star}	35.15	36.97	38.78	40.60	42.42
x_2^{\star}	26.32	19.30	12.28	5.26	-1.76
x ₃ *	38.53	43.74	48.94	54.14	59.34
$\left[\begin{array}{c} \overline{\mu} \left(x^{\star} \right) \right] \overline{b} $	1.31	2.63	3.94	5.25	6.56

228 / 1420

Variations on the efficient frontier Beta coefficient Black-Litterman model

Black-Litterman model

Question 2

In order to tilt the neutral portfolio, we now consider the Black-Litterman model. The risk-free rate is set to 0.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Black-Litterman model

Question 2.a

Find the implied risk premium of the assets if we target a Sharpe ratio equal to 0.50. What is the value of ϕ ?

Variations on the efficient frontier Beta coefficient Black-Litterman model

Black-Litterman model

Let b be the benchmark (that is the equally weighted portfolio). We recall that the implied risk aversion parameter is:

$$\phi = \frac{\mathrm{SR}\left(b \mid r\right)}{\sqrt{b^{\top} \Sigma b}}$$

and the implied risk premium is:

$$ilde{\mu} = r + \mathrm{SR} \left(b \mid r
ight) rac{\Sigma b}{\sqrt{b^{ op} \Sigma b}}$$

We obtain $\phi = 3.4367$ and:

$$\tilde{\mu} = \begin{pmatrix} \tilde{\mu}_1 \\ \tilde{\mu}_2 \\ \tilde{\mu}_3 \end{pmatrix} = \begin{pmatrix} 7.56\% \\ 8.94\% \\ 5.33\% \end{pmatrix}$$

Variations on the efficient frontier Beta coefficient Black-Litterman model

Black-Litterman model

Question 2.b

How does one incorporate a trend-following strategy in the Black-Litterman model? Give the P, Q and Ω matrices.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Black-Litterman model

In this case, the views of the portfolio manager corresponds to the trends observed in the market. We then have⁴:

$$P = I_3$$

$$Q = \hat{\mu}$$

$$\Omega = \text{diag} \left(\sigma^2(\hat{\mu}_1), \dots, \sigma^2(\hat{\mu}_n)\right)$$

The views $P\mu = Q + \varepsilon$ become:

$$\mu = \hat{\mu} + \varepsilon$$

with $\varepsilon \sim \mathcal{N}(\mathbf{0}_3, \Omega)$.

⁴If we suppose that the trends are not correlated.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Black-Litterman model

Question 2.c

Calculate the conditional expectation $\bar{\mu} = \mathbb{E} \left[\mu \mid P \mu = Q + \varepsilon \right]$ if we assume that $\Gamma = \tau \Sigma$ and $\tau = 0.01$.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Black-Litterman model

We have (TR-RPB, page 25):

$$\begin{split} \bar{\mu} &= E\left[\mu \mid P\mu = Q + \varepsilon\right] \\ &= \tilde{\mu} + \Gamma P^{\top} \left(P\Gamma P^{\top} + \Omega\right)^{-1} \left(Q - P\tilde{\mu}\right) \\ &= \tilde{\mu} + \tau \Sigma \left(\tau \Sigma + \Omega\right)^{-1} \left(\hat{\mu} - \tilde{\mu}\right) \end{split}$$

We obtain:

$$\bar{\mu} = \begin{pmatrix} \bar{\mu}_1 \\ \bar{\mu}_2 \\ \bar{\mu}_3 \end{pmatrix} = \begin{pmatrix} 5.16\% \\ 2.38\% \\ 2.47\% \end{pmatrix}$$

Variations on the efficient frontier Beta coefficient Black-Litterman model

Black-Litterman model

Question 2.d

Find the Black-Litterman optimized portfolio.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Black-Litterman model

We optimize the quadratic utility function with $\phi = 3.4367$. The Black-Litterman portfolio is then:

$$x^{\star} = \begin{pmatrix} x_{1}^{\star} \\ x_{2}^{\star} \\ x_{3}^{\star} \end{pmatrix} = \begin{pmatrix} 56.81\% \\ -23.61\% \\ 66.80\% \end{pmatrix}$$

Its volatility tracking error is $\sigma(x^* \mid b) = 8.02\%$ and its alpha is $\mu(x^* \mid b) = 10.21\%$.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Black-Litterman model

Question 3

We would like to compute the Black-Litterman optimized portfolio, corresponding to a 3% tracking error volatility.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Black-Litterman model

Question 3.a

What is the Black-Litterman portfolio when $\tau = 0$ and $\tau = +\infty$?

Variations on the efficient frontier Beta coefficient Black-Litterman model

Black-Litterman model

- If $\tau = 0$, $\bar{\mu} = \tilde{\mu}$. The BL portfolio x is then equal to the neutral portfolio b.
- We also have:

$$egin{aligned} \lim_{ au o \infty} ar{\mu} &=& \widetilde{\mu} + \lim_{ au o \infty} au \Sigma^ op \left(au \Sigma + \Omega
ight)^{-1} \left(\hat{\mu} - ilde{\mu}
ight) \ &=& \widetilde{\mu} + \left(\hat{\mu} - ilde{\mu}
ight) \ &=& \hat{\mu} \end{aligned}$$

In this case, $\bar{\mu}$ is independent from the implied risk premium $\hat{\mu}$ and is exactly equal to the estimated trends $\hat{\mu}$. The BL portfolio x is then the Markowitz optimized portfolio with the given value of ϕ .

Variations on the efficient frontier Beta coefficient Black-Litterman model

Black-Litterman model

Question 3.b

Using the previous results, apply the bisection algorithm and find the Black-Litterman optimized portfolio, which corresponds to a 3% tracking error volatility.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Black-Litterman model

We would like to find the BL portfolio such that $\sigma(x \mid b) = 3\%$. We know that $\sigma(x \mid b) = 0$ if $\tau = 0$. Thanks to Question 2.d, we also know that $\sigma(x \mid b) = 8.02\%$ if $\tau = 1\%$. It implies that the optimal portfolio corresponds to a specific value of τ which is between 0 and 1%. If we apply the bi-section algorithm, we find that:

$$au^{\star} = 0.242\%$$

. The composition of the optimal portfolio is then

$$x^{\star} = \left(egin{array}{c} x_1^{\star} \ x_2^{\star} \ x_3^{\star} \end{array}
ight) = \left(egin{array}{c} 41.18\% \ 11.96\% \ 46.85\% \end{array}
ight)$$

We obtain an alpha equal to 3.88%, which is a little bit smaller than the alpha of 3.94% obtained for the TE portfolio.

242 / 1420

Variations on the efficient frontier Beta coefficient Black-Litterman model

Black-Litterman model

Question 3.c

Compare the relationship between $\sigma(x \mid b)$ and $\mu(x \mid b)$ of the Black-Litterman model with the one of the tracking error model. Comment on these results.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Black-Litterman model

We have reported the relationship between $\sigma(x \mid b)$ and $\mu(x \mid b)$ in Figure 19. We notice that the information ratio of BL portfolios is very close to the information ratio of TE portfolios. We may explain that because of the homogeneity of the estimated trends $\hat{\mu}_i$ and the volatilities $\sigma(\hat{\mu}_i)$. If we suppose that $\sigma(\hat{\mu}_1) = 1\%$, $\sigma(\hat{\mu}_2) = 5\%$ and $\sigma(\hat{\mu}_3) = 15\%$, we obtain the relationship #2. In this case, the BL model produces a smaller information ratio than the TE model. We explain this because $\bar{\mu}$ is the right measure of expected return for the BL model whereas it is $\hat{\mu}$ for the TE model. We deduce that the ratios $\bar{\mu}_i/\hat{\mu}_i$ are more volatile for the parameter set #2, in particular when τ is small.

Variations on the efficient frontier Beta coefficient Black-Litterman model

Black-Litterman model

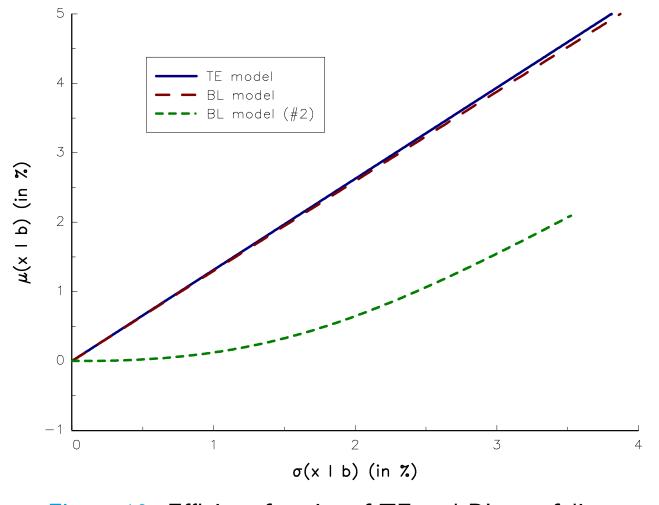


Figure 19: Efficient frontier of TE and BL portfolios

Main references

Roncalli, T. (2013)

Introduction to Risk Parity and Budgeting, Chapman and Hall/CRC Financial Mathematics Series, Chapter 1.

RONCALLI, **T.** (2013)

Introduction to Risk Parity and Budgeting — Companion Book, Chapman and Hall/CRC Financial Mathematics Series, Chapter 1.

References I

- BLACK, F. and LITTERMAN, R.B. (1992) Global Portfolio Optimization, *Financial Analysts Journal*, 48(5), pp. 28-43.
- BOURGERON, T., LEZMI, E., and RONCALLI, T. (2018) Robust Asset Allocation for Robo-Advisors, *arXiv*, 1902.05710, https://arxiv.org/abs/1902.07449.
- BRUDER, B., GAUSSEL, N., RICHARD, J.C., and RONCALLI, T. (2013) Regularization of Portfolio Allocation, SSRN, www.ssrn.com/abstract=2767358.
- JAGANNATHAN, R. and MA, T. (2003)

Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps, *Journal of Finance*, 58(4), pp. 1651-1684.

References II

- LALOUX, L., CIZEAU, P., BOUCHAUD, J-P. and POTTERS, M. (1999) Noise Dressing of Financial Correlation Matrices, *Physical Review Letters*, 83(7), pp. 1467-1470.*
- LEDOIT, O. and WOLF, M. (2003)
 - Improved Estimation of the Covariance Matrix of Stock Returns With an Application to Portfolio Selection, *Journal of Empirical Finance*, 10(5), pp. 603-621.
- LEDOIT, O. and WOLF, M. (2004)
 Honey, I Shrunk the Sample Covariance Matrix, *Journal of Portfolio Management*, 30(4), pp. 110-119.
- MARKOWITZ, **H.** (1952)

Portfolio Selection, Journal of Finance, 7(1), pp. 77-91.

References III

MICHAUD, R.O. (1989)

The Markowitz Optimization Enigma: Is Optimized Optimal?, *Financial Analysts Journal*, 45(1), pp. 31-42.

SCHERER, **B**. (2007)

Portfolio Construction & Risk Budgeting, Third edition, Risk Books.

SHARPE, W.F. (1964)

Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk, *Journal of Finance*, 19(3), pp. 425-442.

STEVENS, **G.V.G.** (1998)

On the Inverse of the Covariance Matrix in Portfolio analysis, *Journal of Finance*, 53(5), pp. 1821-1827.

🚺 Товін, **Ј. (1958)**

Liquidity Preference as Behavior Towards Risk, *Review of Economic Studies*, 25(2), pp. 65-86.

Course 2023-2024 in Portfolio Allocation and Asset Management Lecture 2. Risk Budgeting

Thierry Roncalli*

*Amundi Asset Management⁵

*University of Paris-Saclay

January 2024

⁵The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

The ERC portfolio Extensions to risk budgeting portfolios Risk budgeting, risk premia and the risk parity strategy Tutorial exercises

Agenda

- Lecture 1: Portfolio Optimization
- Lecture 2: Risk Budgeting
- Lecture 3: Smart Beta, Factor Investing and Alternative Risk Premia
- Lecture 4: Equity Portfolio Optimization with ESG Scores
- Lecture 5: Climate Portfolio Construction
- Lecture 6: Equity and Bond Portfolio Optimization with Green Preferences
- Lecture 7: Machine Learning in Asset Management

The ERC portfolio Extensions to risk budgeting portfolios Risk budgeting, risk premia and the risk parity strategy Tutorial exercises Definition Special cases Properties Numerical solution

Portfolio optimization & portfolio diversification

Example 1

- We consider an investment universe of 5 assets
- (μ_i, σ_i) are respectively equal to (8%, 12%), (7%, 10%), (7.5%, 11%), (8.5%, 13%) and (8%, 12%)
- The correlation matrix is $C_5(\rho)$ with $\rho = 60\%$

The optimal portfolio x^* such that $\sigma(x^*) = 10\%$ is equal to:

$$x^{\star} = \left(egin{array}{ccc} 23.97\% \ 6.42\% \ 16.91\% \ 28.73\% \ 23.97\% \end{array}
ight)$$

Definition Special cases Properties Numerical soluti

Portfolio optimization & portfolio diversification

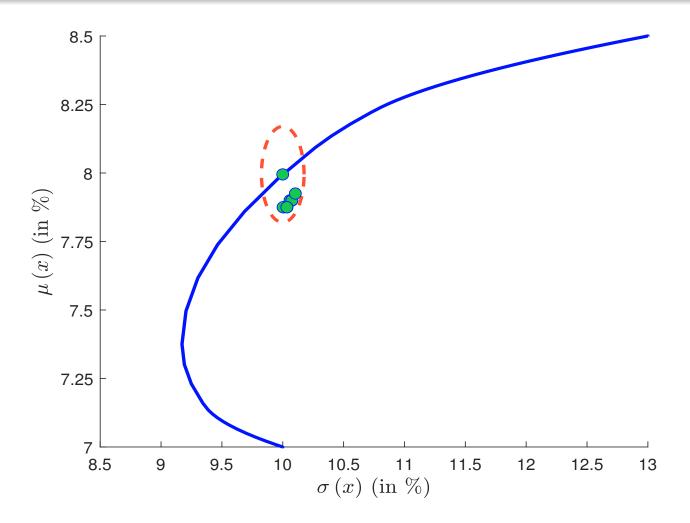


Figure 20: Optimized portfolios versus optimal diversified portfolios

Definition Special cases Properties Numerical soluti

Portfolio optimization & portfolio diversification

Table 22: Some equivalent mean-variance portfolios

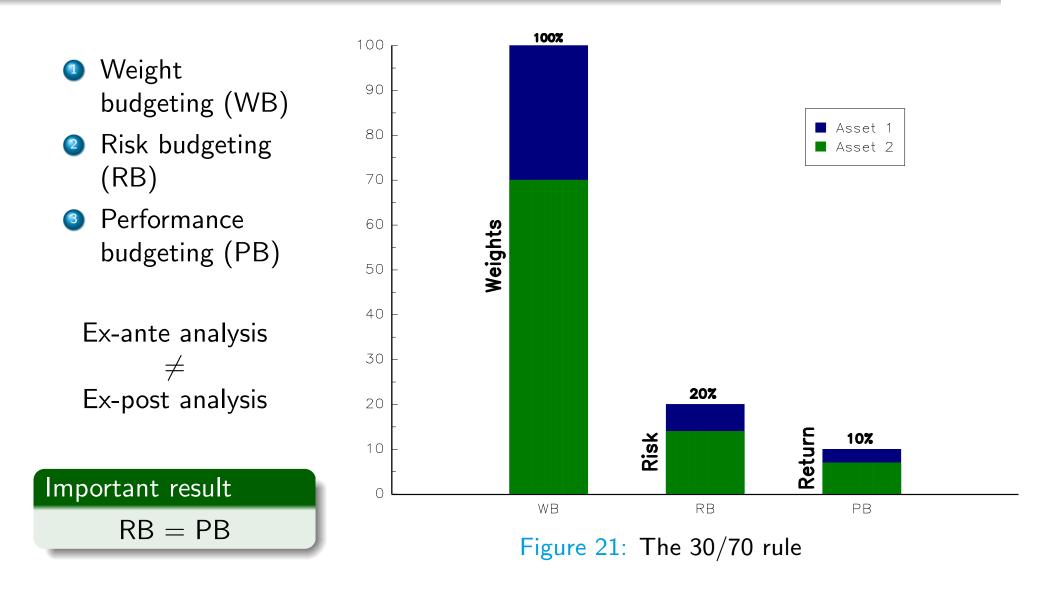
<i>x</i> ₁	23.97		5	5	35	35	50	5	5	10
<i>x</i> ₂	6.42	25		25	10	25	10	30		25
<i>X</i> 3	16.91	5	40		10	5	15		45	10
<i>x</i> ₄	28.73	35	20	30	5	35	10	35	20	45
<i>X</i> 5		35		40	40		15	30	30	10
$\mu(\mathbf{x})$	7.99	7.90	7.90	7.90	7.88	7.90	7.88	7.88	7.88	7.93
$\sigma(\mathbf{x})$	10.00	10.07	10.06	10.07	10.01	10.07	10.03	10.00	10.03	10.10

 \Rightarrow These portfolios have very different compositions, but lead to very close mean-variance features

Some of these portfolios appear more balanced and more diversified than the optimized portfolio

Definition Special cases Properties Numerical soluti

Other methods to build a portfolio



Definition Special cases Properties Numerical solution

Weight budgeting versus risk budgeting

Let $x = (x_1, ..., x_n)$ be the weights of *n* assets in the portfolio. Let $\mathcal{R}(x_1, ..., x_n)$ be a coherent and convex risk measure. We have:

$$\mathcal{R}(x_1,\ldots,x_n) = \sum_{i=1}^n x_i \cdot \frac{\partial \mathcal{R}(x_1,\ldots,x_n)}{\partial x_i}$$
$$= \sum_{i=1}^n \mathcal{RC}_i (x_1,\ldots,x_n)$$

Let $b = (b_1, ..., b_n)$ be a vector of budgets such that $b_i \ge 0$ and $\sum_{i=1}^{n} b_i = 1$. We consider two allocation schemes:

Weight budgeting (WB)

$$x_i = b_i$$

Q Risk budgeting (RB)

$$\mathcal{RC}_i = b_i \cdot \mathcal{R}(x_1, \ldots, x_n)$$

Definition Special cases Properties Numerical solution

Importance of the coherency and convexity properties

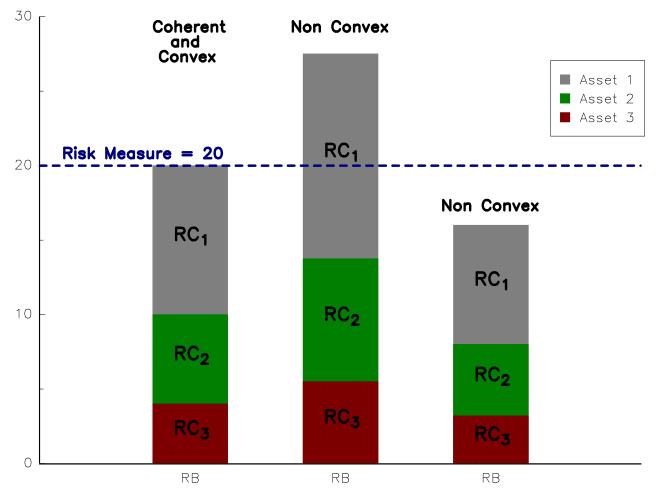


Figure 22: Risk Measure = 20 with a 50/30/20 budget rule

Definition Special cases Properties Numerical solution

Application to the volatility risk measure

Let Σ be the covariance matrix of the assets returns. We note x the vector of the portfolio's weights:

$$x = \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right)$$

It follows that the portfolio volatility is equal to:

$$\sigma\left(x\right) = \sqrt{x^{\top} \Sigma x}$$

Definition Special cases Properties Numerical soluti

Computation of the marginal volatilities

The vector of marginal volatilities is equal to:

$$\frac{\partial \sigma (x)}{\partial x} = \begin{pmatrix} \frac{\partial \sigma (x)}{\partial x_{1}} \\ \vdots \\ \frac{\partial \sigma (x)}{\partial x_{n}} \end{pmatrix}$$
$$= \frac{\partial}{\partial x} (x^{\top} \Sigma x)^{1/2}$$
$$= \frac{1}{2} (x^{\top} \Sigma x)^{1/2-1} (2\Sigma x)^{1/2}$$
$$= \frac{\Sigma x}{\sqrt{x^{\top} \Sigma x}}$$

It follows that the marginal volatility of Asset *i* is given by:

$$\frac{\partial \sigma (x)}{\partial x_{i}} = \frac{(\Sigma x)_{i}}{\sqrt{x^{\top} \Sigma x}} = \sum_{j=1}^{n} \frac{\rho_{i,j} \sigma_{i} \sigma_{j} x_{j}}{\sigma (x)} = \sigma_{i} \sum_{j=1}^{n} x_{j} \frac{\rho_{i,j} \sigma_{j}}{\sigma (x)}$$

Definition Special cases Properties Numerical soluti

Computation of the risk contributions

We deduce that the risk contribution of the i^{th} asset is then:

$$\mathcal{RC}_{i} = x_{i} \cdot \frac{\partial \sigma (x)}{\partial x_{i}}$$
$$= \frac{x_{i} \cdot (\Sigma x)_{i}}{\sqrt{x^{\top} \Sigma x}}$$
$$= \sigma_{i} x_{i} \sum_{j=1}^{n} x_{j} \frac{\rho_{i,j} \sigma_{j}}{\sigma (x)}$$

Definition Special cases Properties Numerical solutio

The Euler allocation principle

We verify that the volatility satisfies the full allocation property:

$$\sum_{i=1}^{n} \mathcal{RC}_{i} = \sum_{i=1}^{n} \sigma_{i} x_{i} \sum_{j=1}^{n} x_{j} \frac{\rho_{i,j} \sigma_{j}}{\sigma(x)} = \frac{1}{\sigma(x)} \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} \rho_{i,j} \sigma_{i} \sigma_{j}$$
$$= \frac{\sigma^{2}(x)}{\sigma(x)} = \sigma(x)$$

An alternative proof uses the definition of the dot product:

$$a \cdot b = \sum_{i=1}^n a_i b_i = a^\top b$$

Indeed, we have:

$$\sum_{i=1}^{n} \mathcal{RC}_{i} = \sum_{i=1}^{n} \frac{x_{i} \cdot (\Sigma x)_{i}}{\sqrt{x^{\top} \Sigma x}} = \frac{1}{\sqrt{x^{\top} \Sigma x}} \sum_{i=1}^{n} x_{i} \cdot (\Sigma x)_{i} = \frac{1}{\sqrt{x^{\top} \Sigma x}} x^{\top} \Sigma x = \sigma(x)$$

261 / 1420

Definition Special cases Properties Numerical solution

Definition of the risk contribution

Definition

The marginal risk contribution of Asset *i* is:

$$\mathcal{MR}_{i} = \frac{\partial \sigma (x)}{\partial x_{i}} = \frac{(\Sigma x)_{i}}{\sqrt{x^{\top} \Sigma x}}$$

The absolute risk contribution of Asset *i* is:

$$\mathcal{RC}_{i} = x_{i} \frac{\partial \sigma (x)}{\partial x_{i}} = \frac{x_{i} \cdot (\Sigma x)_{i}}{\sqrt{x^{\top} \Sigma x}}$$

The relative risk contribution of Asset *i* is:

$$\mathcal{RC}_{i}^{\star} = \frac{\mathcal{RC}_{i}}{\sigma(x)} = \frac{x_{i} \cdot (\Sigma x)_{i}}{x^{\top} \Sigma x}$$

Definition Special cases Properties Numerical solutio

The Euler allocation principle

Remark

We have $\sum_{i=1}^{n} \mathcal{RC}_{i} = \sigma(x)$ and $\sum_{i=1}^{n} \mathcal{RC}_{i}^{\star} = 100\%$.

Application

Example 2

We consider three assets. We assume that their expected returns are equal to zero whereas their volatilities are equal to 30%, 20% and 15%. The correlation of asset returns is given by the following matrix:

Definition

$$\rho = \left(\begin{array}{ccc} 1.00 & & \\ 0.80 & 1.00 & \\ 0.50 & 0.30 & 1.00 \end{array}\right)$$

We consider the portfolio *x*, which is given by:

$$x = \left(\begin{array}{c} 50\% \\ 20\% \\ 30\% \end{array}\right)$$

Definition Special cases Properties Numerical solution

Application

Using the relationship $\Sigma_{i,j} = \rho_{i,j}\sigma_i\sigma_j$, we deduce that the covariance matrix is⁶:

$$\Sigma = \left(egin{array}{cccc} 9.00 & 4.80 & 2.25 \ 4.80 & 4.00 & 0.90 \ 2.25 & 0.90 & 2.25 \end{array}
ight) imes 10^{-2}$$

It follows that the variance of the portfolio is:

$$\sigma^{2}(x) = 0.50^{2} \times 0.09 + 0.20^{2} \times 0.04 + 0.30^{2} \times 0.0225 + 2 \times 0.50 \times 0.20 \times 0.0480 + 2 \times 0.50 \times 0.30 \times 0.0225 + 2 \times 0.20 \times 0.30 \times 0.0090 = 4.3555\%$$

The volatility is then $\sigma(x) = \sqrt{4.3555\%} = 20.8698\%$.

 $^6 The$ covariance term between assets 1 and 2 is equal to $\Sigma_{1,2}=80\%\times 30\%\times 20\%$ or $\Sigma_{1,2}=4.80\%$

Application

The computation of the marginal volatilities gives:

$$\frac{\Sigma x}{\sqrt{x^{\top}\Sigma x}} = \frac{1}{20.8698\%} \left(\begin{array}{c} 6.1350\% \\ 3.4700\% \\ 1.9800\% \end{array} \right) = \left(\begin{array}{c} 29.3965\% \\ 16.6269\% \\ 9.4874\% \end{array} \right)$$

Definition

Application

Finally, we obtain the risk contributions by multiplying the weights by the marginal volatilities:

Definition

$$x \circ \frac{\Sigma x}{\sqrt{x^{\top} \Sigma x}} = \begin{pmatrix} 50\% \\ 20\% \\ 30\% \end{pmatrix} \circ \begin{pmatrix} 29.3965\% \\ 16.6269\% \\ 9.4874\% \end{pmatrix} = \begin{pmatrix} 14.6982\% \\ 3.3254\% \\ 2.8462\% \end{pmatrix}$$

We verify that the sum of risk contributions is equal to the volatility:

$$\sum_{i=1}^{3} \mathcal{RC}_{i} = 14.6982\% + 3.3254\% + 2.8462\% = 20.8698\%$$

Application

Table 23: Risk decomposition of the portfolio's volatility (Example 2)

Definition

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	50.00	29.40	14.70	70.43
2	20.00	16.63	3.33	15.93
3	30.00	9.49	2.85	13.64
$\sigma(\mathbf{x})$			20.87	

Definition Special cases Properties Numerical solutio

The ERC portfolio

Definition

- Let Σ be the covariance matrix of asset returns
- The risk measure corresponds to the volatility risk measure
- The ERC portfolio is the **unique** portfolio *x* such that the risk contributions are equal:

$$\mathcal{RC}_i = \mathcal{RC}_j \Leftrightarrow \frac{x_i \cdot (\Sigma x)_i}{\sqrt{x^\top \Sigma x}} = \frac{x_j \cdot (\Sigma x)_j}{\sqrt{x^\top \Sigma x}}$$

ERC = Equal Risk Contribution

Definition Special cases Properties Numerical solutic

The concept of risk budgeting

Example 3

- 3 assets
- Volatilities are respectively equal to 20%, 30% and 15%
- Correlations are set to 60% between the 1st asset and the 2nd asset and 10% between the first two assets and the 3rd asset
- Budgets are set to 50%, 25% and 25%
- For the ERC (Equal Risk Contribution) portfolio, all the assets have the same risk budget

Weight budgeting (or traditional approach)

Asset	Weight	Marginal	Risk Contribution		
Asset		Risk	Absolute	Relative	
1	50.00%	17.99%	9.00%	54.40%	
2	25.00%	25.17%	6.29%	38.06%	
3	25.00%	4.99%	1.25%	7.54%	
Volatility			16.54%		

Risk budgeting approach

Asset	Weight	Marginal	Risk Con	tribution		
		Risk	Absolute	Relative		
1	41.62%	16.84%	7.01%	50.00%		
2	15.79%	22.19%	3.51%	25.00%		
3	42.58%	8.23%	3.51%	25.00%		
Volatility			14.02%			

ERC approach

		Marginal	Risk Contribution	
Asset	Weight	Risk	Absolute	Relative
1	30.41%	15.15%	4.61%	33.33%
2	20.28%	22.73%	4.61%	33.33%
3	49.31%	9.35%	4.61%	33.33%
Volatility			13.82%	

Definition Special cases Properties Numerical solution

The concept of risk budgeting

We have:

$$\sigma$$
 (50%, 25%, 25%) = 16.54%

The marginal risk for the first asset is:

$$\frac{\partial \sigma(x)}{\partial x_1} = \lim_{\varepsilon \to 0} \frac{\sigma(x_1 + \varepsilon, x_2, x_3) - \sigma(x_1, x_2, x_3)}{(x_1 + \varepsilon) - x_1}$$

If $\varepsilon = 1\%$, we have:

$$\sigma \, (0.51, 0.25, 0.25) = 16.72\%$$

We deduce that:

$$\frac{\partial \sigma(x)}{\partial x_{1}} \simeq \frac{16.72\% - 16.54\%}{1\%} = 18.01\%$$

whereas the true value is equal to:

$$\frac{\partial \sigma(x)}{\partial x_1} = 17.99\%$$

Definition Special cases Properties Numerical solutio

The concept of risk budgeting

Example 4

- 3 assets
- Volatilities are respectively 30%, 20% and 15%
- Correlations are set to 80% between the $1^{\rm st}$ asset and the $2^{\rm nd}$ asset, 50% between the $1^{\rm st}$ asset and the $3^{\rm rd}$ asset and 30% between the $2^{\rm nd}$ asset and the $3^{\rm rd}$ asset and the $3^{\rm rd}$ asset

Weight budgeting (or traditional) approach

Asset	Weight	Marginal Risk Contribu		tribution
Asset	weight	Risk	Absolute	Relative
1	50.00%	29.40%	14.70%	70.43%
2	20.00%	16.63%	3.33%	15.93%
3	30.00%	9.49%	2.85%	13.64%
Volatility			20.87%	

Risk budgeting approach

	Weight	Marginal	tribution	
Asset		Risk	Absolute	Relative
1	31.15%	28.08%	8.74%	50.00%
2	21.90%	15.97%	3.50%	20.00%
3	46.96%	11.17%	5.25%	30.00%
Volatility			17.49%	

ERC approach

Asset	Weight	Marginal Risk Contribu		tribution			
Assel	weight	Risk	Absolute	Relative			
1	19.69%	27.31%	5.38%	33.33%			
2	32.44%	16.57%	5.38%	33.33%			
3	47.87%	11.23%	5.38%	33.33%			
Volatility			16.13%				

Definition Special cases Properties Numerical solutio

The concept of risk budgeting

Question

We assume that the portfolio's wealth is set to \$1000. Calculate the nominal volatility of the previous WB, RB and ERC portfolios.

Definition Special cases Properties Numerical solutic

The concept of risk budgeting

We have:

$$\begin{aligned} \sigma(x_{\rm wb}) &= 10^3 \times 20.87\% = \$208.7 \\ \sigma(x_{\rm rb}) &= 10^3 \times 17.49\% = \$174.9 \\ \sigma(x_{\rm erc}) &= 10^3 \times 16.13\% = \$161.3 \end{aligned}$$

Definition Special cases Properties Numerical solutio

The concept of risk budgeting

Question

We increase the exposure of the 3 portfolios by \$10 as follows:

$$\Delta x = \begin{pmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta x_3 \end{pmatrix} = \begin{pmatrix} \$1 \\ \$5 \\ \$4 \end{pmatrix}$$

Calculate the nominal volatility of these new portfolios.

Definition Special cases Properties Numerical solutio

The concept of risk budgeting

By assuming that $\Delta x \simeq 0$, we have:

$$egin{aligned} \sigma \left(x_{
m wb} + \Delta x
ight) &pprox \ (\$500 + \$1) imes 0.2940 + \ (\$200 + \$5) imes 0.1663 + \ (\$300 + \$4) imes 0.0949 \ &pprox \ \$210.2 \end{aligned}$$

 $\sigma (x_{
m rb} + \Delta x) \approx$ \$176.4 and $\sigma (x_{
m erc} + \Delta x) \approx$ \$162.9.

Definition Special cases Properties Numerical solutic

Uniform correlation

• We assume a constant correlation matrix $C_n(\rho)$, meaning that $\rho_{i,j} = \rho$ for all $i \neq j$

• We have:

$$\begin{aligned} (\Sigma x)_i &= \sum_{k=1}^n \rho_{i,k} \sigma_i \sigma_k x_k \\ &= \sigma_i^2 x_i + \rho \sigma_i \sum_{k \neq i} \sigma_k x_k \\ &= \sigma_i^2 x_i + \rho \sigma_i \sum_{k=1}^n \sigma_k x_k - \rho \sigma_i^2 x_i \\ &= (1-\rho) x_i \sigma_i^2 + \rho \sigma_i \sum_{k=1}^n x_k \sigma_k \\ &= \sigma_i \left((1-\rho) x_i \sigma_i + \rho \sum_{k=1}^n x_k \sigma_k \right) \end{aligned}$$

277 / 1420

Definition Special cases Properties Numerical solutio

Uniform correlation

• Since we have:

$$\mathcal{RC}_{i} = \frac{x_{i} \left(\Sigma x \right)_{i}}{\sigma \left(x \right)}$$

we deduce that $\mathcal{RC}_i = \mathcal{RC}_j$ is equivalent to:

$$x_i\sigma_i\left((1-\rho)x_i\sigma_i+\rho\sum_{k=1}^n x_k\sigma_k\right)=x_j\sigma_j\left((1-\rho)x_j\sigma_j+\rho\sum_{k=1}^n x_k\sigma_k\right)$$

It follows that $x_i \sigma_i = x_j \sigma_j$. Because $\sum_{i=1}^n x_i = 1$, we deduce that:

$$x_i = \frac{\sigma_i^{-1}}{\sum_{j=1}^n \sigma_j^{-1}}$$

Result

The weight allocated to Asset *i* is inversely proportional to its volatility and does not depend on the value of the correlation

Definition Special cases Properties Numerical solution

Minimum uniform correlation

• The global minimum variance portfolio is equal to:

$$x_{\rm gmv} = \frac{\boldsymbol{\Sigma}^{-1} \mathbf{1}_n}{\mathbf{1}_n^\top \boldsymbol{\Sigma}^{-1} \mathbf{1}_n}$$

- Let $\Sigma = \sigma \sigma^{\top} \circ C_n(\rho)$ be the covariance matrix with $C_n(\rho)$ the constant correlation matrix
- We have:

$$\Sigma^{-1} = \Gamma \circ \mathcal{C}_n^{-1}\left(\rho\right)$$

with $\Gamma_{i,j} = \sigma_i^{-1} \sigma_j^{-1}$ and:

$$C_n^{-1}(\rho) = \frac{\rho \mathbf{1}_n \mathbf{1}_n^{\top} - ((n-1)\rho + 1) I_n}{(n-1)\rho^2 - (n-2)\rho - 1}$$

Definition Special cases Properties Numerical solutio

Minimum uniform correlation

• We deduce that the expression of the GMV weights are:

$$x_{\text{gmv},i} = \frac{-((n-1)\rho+1)\sigma_i^{-2} + \rho\sum_{j=1}^n (\sigma_i\sigma_j)^{-1}}{\sum_{k=1}^n (-((n-1)\rho+1)\sigma_k^{-2} + \rho\sum_{j=1}^n (\sigma_k\sigma_j)^{-1})}$$

The lower bound of C_n(ρ) is achieved for ρ = -(n-1)⁻¹
In this case, the solution becomes:

$$x_{\text{gmv},i} = \frac{\sum_{j=1}^{n} (\sigma_{i}\sigma_{j})^{-1}}{\sum_{k=1}^{n} \sum_{j=1}^{n} (\sigma_{k}\sigma_{j})^{-1}} = \frac{\sigma_{i}^{-1}}{\sum_{k=1}^{n} \sigma_{k}^{-1}}$$

Result

The ERC portfolio is equal to the GMV portfolio when the correlation is at its lowest possible value:

$$\lim_{\to -(n-1)^{-1}} x_{\rm gmv} = x_{\rm erc}$$

 ρ

Definition Special cases Properties Numerical solution

Uniform volatility

• If all volatilities are equal, i.e. $\sigma_i = \sigma$ for all *i*, the risk contribution becomes:

$$\mathcal{RC}_{i} = \frac{\left(\sum_{k=1}^{n} x_{i} x_{k} \rho_{i,k}\right) \sigma^{2}}{\sigma(x)}$$

• The ERC portfolio verifies then:

$$x_i\left(\sum_{k=1}^n x_k \rho_{i,k}\right) = x_j\left(\sum_{k=1}^n x_k \rho_{j,k}\right)$$

• We deduce that:

$$x_{i} = \frac{\left(\sum_{k=1}^{n} x_{k} \rho_{i,k}\right)^{-1}}{\sum_{j=1}^{n} \left(\sum_{k=1}^{n} x_{k} \rho_{j,k}\right)^{-1}}$$

Definition Special cases Properties Numerical solutio

Uniform volatility

Result

The weight of asset i is inversely proportional to the weighted average of correlations of Asset i

Remark

Contrary to the previous case, this solution is endogenous since x_i is a function of itself directly

Definition Special cases Properties Numerical solution

General case

• In the general case, we have:

$$\beta_i = \beta \left(\mathbf{e}_i \mid x \right) = \frac{\mathbf{e}_i^\top \Sigma x}{x^\top \Sigma x} = \frac{(\Sigma x)_i}{\sigma^2 \left(x \right)}$$

and:

$$\mathcal{RC}_{i} = \frac{x_{i} (\Sigma x)_{i}}{\sigma(x)} = \sigma(x) x_{i} \beta_{i}$$

• We deduce that $\mathcal{RC}_i = \mathcal{RC}_j$ is equivalent to:

$$x_i\beta_i=x_j\beta_j$$

• It follows that:

$$x_i = \frac{\beta_i^{-1}}{\sum_{j=1}^n \beta_j^{-1}}$$

Definition Special cases Properties Numerical solution

General case

• We notice that:

$$\sum_{i=1}^{n} x_{i}\beta_{i} = \sum_{i=1}^{n} \frac{\mathcal{RC}_{i}}{\sigma(x)} = \frac{1}{\sigma(x)} \sum_{i=1}^{n} \mathcal{RC}_{i} = 1$$

and:

$$\sum_{i=1}^{n} x_i \beta_i = \sum_{i=1}^{n} \left(\frac{1}{\sum_{j=1}^{n} \beta_j^{-1}} \right) = 1$$

It follows that:

$$\frac{1}{\sum_{j=1}^n \beta_j^{-1}} = \frac{1}{n}$$

• We finally obtain:

$$x_i=\frac{1}{n\beta_i}$$

General case

Result

The weight of Asset *i* is proportional to the inverse of its beta:

$$x_i \propto \beta_i^{-1}$$

Special cases

Remark

This solution is endogenous since x_i is a function of itself because $\beta_i = \beta (\mathbf{e}_i \mid x)$.

General case

Example 5

We consider an investment universe of four assets with $\sigma_1 = 15\%$, $\sigma_2 = 20\%$, $\sigma_3 = 30\%$ and $\sigma_4 = 10\%$. The correlation of asset returns is given by the following matrix:

Special cases

$$ho = \left(egin{array}{cccccc} 1.00 & & & \ 0.50 & 1.00 & \ 0.00 & 0.20 & 1.00 & \ -0.10 & 0.40 & 0.70 & 1.00 \end{array}
ight)$$

Definition Special cases Properties Numerical solutio

General case

Table 24: Composition of the ERC portfolio (Example 5)

Asset	Xi	\mathcal{MR}_i	β_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	31.34%	8.52%	0.80	2.67%	25.00%
2	17.49%	15.27%	1.43	2.67%	25.00%
3	13.05%	20.46%	1.92	2.67%	25.00%
4	38.12%	7.00%	0.66	2.67%	25.00%
Volatility				10.68%	

We verify that:

$$x_1 = rac{1}{(4 imes 0.7978)} = 31.34\%$$

Definition Special cases Properties Numerical solutio

Existence and uniqueness

We consider the following optimization problem:

$$y^{\star}(c) = rgmin rac{1}{2}y^{\top} \Sigma y$$

u.c. $\sum_{i=1}^{n} \ln y_i \ge c$

The Lagrange function is equal to:

$$\mathcal{L}(y;\lambda_c) = \frac{1}{2}y^{\top}\Sigma y - \lambda_c \left(\sum_{i=1}^n \ln y_i - c\right)$$

At the optimum, we have:

$$\frac{\partial \mathcal{L}(y;\lambda_c,\lambda)}{\partial y} = \mathbf{0}_n \Leftrightarrow (\Sigma y)_i - \frac{\lambda_c}{y_i} = 0$$

288 / 1420

Definition Special cases **Properties** Numerical solution

Existence and uniqueness

It follows that:

$$y_i (\Sigma y)_i = \lambda_c$$

or equivalently:

$$\mathcal{RC}_i = \mathcal{RC}_j$$

Since we minimize a convex function subject to a lower convex bound, the solution $y^*(c)$ exists and is unique

Definition Special cases Properties Numerical solutio

Existence and uniqueness

Question

What is the difference between $y^{*}(c)$ and $y^{*}(c')$?

Let $y' = \alpha y^{\star}(c)$. The first-order conditions are:

$$y_{i}^{\star}(c)(\Sigma y^{\star}(c))_{i} = \lambda_{c}$$

and:

$$y_i' \left(\Sigma y' \right)_i = \alpha^2 \lambda_c = \lambda_{c'}$$

Since $\lambda_c \neq 0$, the Kuhn-Tucker condition becomes:

$$\min\left(\lambda_{c},\sum_{i=1}^{n}\ln y_{i}^{\star}(c)-c\right)=0\Leftrightarrow\sum_{i=1}^{n}\ln y_{i}^{\star}(c)-c=0$$

Definition Special cases Properties Numerical solutic

Existence and uniqueness

It follows that:

$$\sum_{i=1}^{n} \ln \frac{y_i'(c)}{\alpha} = c$$

or:

$$\sum_{i=1}^{n} \ln y_i'(c) = c + n \ln \alpha = c'$$

We deduce that:

$$\alpha = \exp\left(\frac{c'-c}{n}\right)$$

 $y^{\star}(c')$ is a scaled solution of $y^{\star}(c)$:

$$y^{\star}(c') = \exp\left(\frac{c'-c}{n}\right)y^{\star}(c)$$

Definition Special cases Properties Numerical solutio

Existence and uniqueness

The ERC portfolio is the solution $y^{\star}(c)$ such that $\sum_{i=1}^{n} y_{i}^{\star}(c) = 1$:

$$x_{\rm erc} = \frac{y^{\star}(c)}{\sum_{i=1}^{n} y_{i}^{\star}(c)}$$

and corresponds to the following value of the logarithmic barrier:

$$c_{\rm erc} = c - n \ln \sum_{i=1}^{n} y_i^{\star}(c)$$

Х

Definition Special cases Properties Numerical solutio

Existence and uniqueness

Theorem

Because of the previous results, x_{erc} exists and is unique. This is the solution of the following optimization problem^{*a*}:

$$\mathcal{L}_{\text{erc}} = \arg \min \frac{1}{2} x^{\top} \Sigma x$$
$$\text{u.c.} \quad \begin{cases} \sum_{i=1}^{n} \ln x_{i} \ge c_{\text{erc}} \\ \mathbf{1}_{n}^{\top} x = 1 \\ \mathbf{0}_{n} \le x \le \mathbf{1}_{n} \end{cases}$$

^aWe can add the last two constraints because they do not change the solution

Definition Special cases Properties Numerical solutio

Location of the ERC portfolio

The global global minimum variance portfolio is defined by:

$$egin{array}{rcl} x_{ ext{gmv}} &=& rg\min\sigma\left(x
ight)\ ext{u.c.} & \mathbf{1}_n^ op x = 1 \end{array}$$

We have:

$$\mathcal{L}(x;\lambda_0) = \sigma(x) - \lambda_0 \left(\mathbf{1}_n^{\top} x - 1\right)$$

The first-order condition is:

$$\frac{\partial \mathcal{L}(x;\lambda_0)}{\partial x} = \mathbf{0}_n \Leftrightarrow \frac{\partial \sigma(x)}{\partial x} - \lambda_0 \mathbf{1}_n = \mathbf{0}_n$$

Definition Special cases Properties Numerical solutic

Location of the ERC portfolio

Theorem

The global minimum variance portfolio satisfies:

$$\frac{\partial \sigma (x)}{\partial x_{i}} = \frac{\partial \sigma (x)}{\partial x_{j}}$$

The marginal volatilities are then the same.

Definition Special cases Properties Numerical solutio

Location of the ERC portfolio

The equally-weighted portfolio is defined by:

$$x_i = \frac{1}{n}$$

We deduce that:

$$x_i = x_j$$

Definition Special cases Properties Numerical solutio

Location of the ERC portfolio

We have:

$$x_{i} = x_{j}$$
(EW)

$$\frac{\partial \sigma (x)}{\partial x_{i}} = \frac{\partial \sigma (x)}{\partial x_{j}}$$
(GMV)

$$x_{i} \frac{\partial \sigma (x)}{\partial x_{i}} = x_{j} \frac{\partial \sigma (x)}{\partial x_{j}}$$
(ERC)

The ERC portfolio is a combination of GMV and EW portfolios

Definition Special cases Properties Numerical solutio

Volatility of the ERC portfolio

We consider the following optimization problem:

$$x^{\star}(c) = \arg \min \frac{1}{2} x^{\top} \Sigma x$$

u.c.
$$\begin{cases} \sum_{i=1}^{n} \ln x_{i} \ge c \\ \mathbf{1}_{n}^{\top} x = 1 \\ \mathbf{0}_{n} \le x \le \mathbf{1}_{n} \end{cases}$$

• We know that there exists a scalar $c_{\rm erc}$ such that:

$$x^{\star}(c_{\mathrm{erc}}) = x_{\mathrm{erc}}$$

• If $c = -\infty$, the logarithmic barrier constraint vanishes and we have:

$$x^{\star}(-\infty) = x_{\mathrm{mv}}$$

where $x_{\rm mv}$ is the long-only minimum variance portfolio

Definition Special cases Properties Numerical solutio

Volatility of the ERC portfolio

• We notice that the function $f(x) = \sum_{i=1}^{n} \ln x_i$ such that $\mathbf{1}_n^{\top} x = 1$ reaches its maximum when:

$$\frac{1}{x_i} = \lambda_0$$

implying that $x_i = x_j = n^{-1}$. In this case, we have:

$$c_{\max} = \sum_{i=1}^{n} \ln \frac{1}{n} = -n \ln n$$

• If $c = -n \ln n$, we have:

$$x^{\star}\left(-n\ln n\right)=x_{\rm ew}$$

 Because we have a convex minimization problem and a lower convex bound, we deduce that:

$$c_{2} \geq c_{1} \Leftrightarrow \sigma\left(x^{\star}\left(c_{2}
ight)
ight) \geq \sigma\left(x^{\star}\left(c_{1}
ight)
ight)$$

299 / 1420

Definition Special cases Properties Numerical solutio

Volatility of the ERC portfolio

Theorem

We obtain the following inequality:

$$\sigma(x_{\mathrm{mv}}) \leq \sigma(x_{\mathrm{erc}}) \leq \sigma(x_{\mathrm{ew}})$$

The ERC portfolio may be viewed as a portfolio "between" the MV portfolio and the EW portfolio.

Remark

The ERC portfolio is a form of variance-minimizing portfolio subject to a constraint of sufficient diversification in terms of weights

Relationship with naive diversification (1/n)

Definition Special cases Properties Numerical solution

Optimality of the ERC portfolio

Let us consider the tangency (or maximum Sharpe ratio) portfolio defined by:

$$x_{
m msr} = rg\maxrac{\mu(x) - r}{\sigma(x)}$$

where $\mu(x) = x^{\top}\mu$ and $\sigma(x) = \sqrt{x^{\top}\Sigma x}$. We recall that the portfolio is MSR if and only if:

$$\frac{\partial_{x_{i}} \mu(x) - r}{\partial_{x_{i}} \sigma(x)} = \frac{\mu(x) - r}{\sigma(x)}$$

Therefore, the MSR portfolio x_{msr} verifies the following relationship:

$$\mu - r \mathbf{1}_{n} = \left(\frac{\mu (x_{\rm msr}) - r}{\sigma^{2} (x_{\rm msr})} \right) \Sigma x_{\rm msr}$$
$$= \operatorname{SR} (x_{\rm msr} \mid r) \frac{\Sigma x_{\rm msr}}{\sigma (x_{\rm msr})}$$

Definition Special cases Properties Numerical solutio

Optimality of the ERC portfolio

• If we assume a constant correlation matrix, the ERC portfolio is defined by:

$$x_i = \frac{c}{\sigma_i}$$

where $c = \left(\sum_{j=1}^{n} \sigma_{j}^{-1}\right)^{-1}$

• We have:

$$(\Sigma x)_{i} = \sum_{j=1}^{n} \rho_{i,j} \sigma_{i} \sigma_{j} x_{j} = c \sigma_{i} \sum_{j=1}^{n} \rho_{i,j} = c \sigma_{i} (1 + \rho (n-1))$$

• We deduce that:

$$\frac{\partial \sigma(x)}{\partial x_{i}} = c \frac{\sigma_{i} \left((1 - \rho) + \rho n \right)}{\sigma(x)}$$

Definition Special cases Properties Numerical solutic

Optimality of the ERC portfolio

• The portfolio volatility is equal to:

$$\sigma^{2}(x) = \sigma(x) \sum_{i=1}^{n} x_{i} \frac{\partial \sigma(x)}{\partial x_{i}}$$
$$= \sigma(x) \sum_{i=1}^{n} \frac{c}{\sigma_{i}} \cdot c \frac{\sigma_{i} ((1-\rho) + \rho n)}{\sigma(x)}$$
$$= nc^{2} ((1-\rho) + \rho n)$$

• The ERC portfolio is the MSR portfolio if and only if:

$$\mu_{i} - r = \left(\frac{\sum_{j=1}^{n} (\mu_{j} - r) x_{j}}{\sigma^{2} (x)}\right) (\Sigma x)_{i}$$

$$= \left(\frac{\sum_{j=1}^{n} (\mu_{j} - r) c \sigma_{j}^{-1}}{n c^{2} ((1 - \rho) + \rho n)}\right) c \sigma_{i} (1 + \rho (n - 1))$$

$$= \left(\frac{1}{n} \sum_{j=1}^{n} \frac{\mu_{j} - r}{\sigma_{j}}\right) \sigma_{i}$$

Thierry Roncalli

Definition Special cases Properties Numerical solutic

Optimality of the ERC portfolio

• We can write this condition as follows:

$$\mu_i = r + \mathrm{SR} \cdot \sigma_i$$

where:

$$SR = \frac{1}{n} \sum_{j=1}^{n} \frac{\mu_j - r}{\sigma_j}$$

Theorem

The ERC portfolio is the tangency or MSR portfolio if and only if the correlation is uniform and the Sharpe ratio is the same for all the assets

Definition Special cases Properties Numerical solution

Optimality of the ERC portfolio

Example 6

We consider an investment universe of five assets. The volatilities are respectively equal to 5%, 7%, 9%, 10% and 15%. The risk-free rate is equal to 2%. The correlation is uniform.

Definition Special cases Properties Numerical solution

Optimality of the ERC portfolio

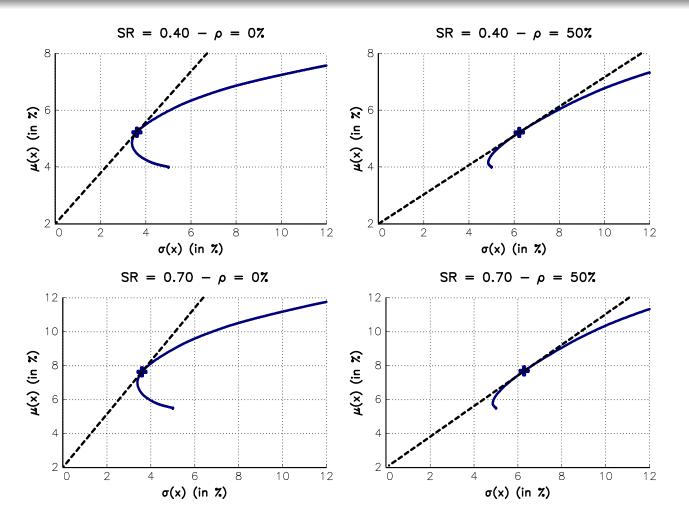


Figure 23: Location of the ERC portfolio in the mean-variance diagram when the Sharpe ratios are the same (Example 6)

Definition Special cases Properties Numerical solutic

Optimality of the ERC portfolio

Example 7

We consider an investment universe of five assets. The volatilities are respectively equal to 5%, 7%, 9%, 10% and 15%. The correlation matrix is equal to:

$$\rho = \begin{pmatrix} 1.00 \\ 0.50 & 1.00 \\ 0.25 & 0.25 & 1.00 \\ 0.00 & 0.00 & 0.00 & 1.00 \\ -0.25 & -0.25 & -0.25 & 0.00 & 1.00 \end{pmatrix}$$

Definition Special cases Properties Numerical solution

Optimality of the ERC portfolio

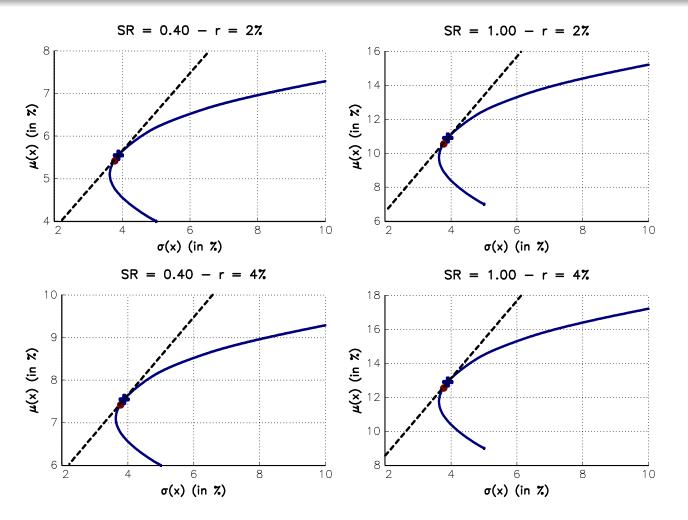


Figure 24: Location of the ERC portfolio in the mean-variance diagram when the Sharpe ratios are the same (Example 7)

Definition Special cases Properties Numerical solution

The SQP approach

• The ERC portfolio satisfies:

$$x_i \cdot (\Sigma x)_i = x_j \cdot (\Sigma x)_j$$

or:

$$x_i \cdot (\Sigma x)_i = \frac{x^\top \Sigma x}{n}$$

• We deduce that:

$$egin{array}{rcl} x_{ ext{erc}} &=& rg\min f\left(x
ight) \ ext{u.c.} & \left\{ egin{array}{c} \mathbf{1}_n^ op x = 1 \ \mathbf{0}_n \leq x \leq \mathbf{1}_n \end{array}
ight. \end{array}$$

and $f(x_{\rm erc}) = 0$

Remark

The optimization problem is solved using the sequential quadratic programming (or SQP) algorithm

309 / 1420

Definition Special cases Properties Numerical solution

The SQP approach

• We can choose:

$$f(x) = \sum_{i=1}^{n} \left(x_i \cdot (\Sigma x)_i - \frac{1}{n} x^{\top} \Sigma x \right)^2$$

or:

$$f(x;b) = \sum_{i=1}^{n} \sum_{j=1}^{n} \left(x_i \cdot (\Sigma x)_i - x_j \cdot (\Sigma x)_j \right)^2$$

Definition Special cases Properties Numerical solution

The Jacobi approach

• We have:

$$\beta_i(x) = \frac{(\Sigma x)_i}{x^\top \Sigma x}$$

• The ERC portfolio satisfies:

$$x_{i} = \frac{\beta_{i}^{-1}(x)}{\sum_{j=1}^{n}\beta_{j}^{-1}(x)}$$

or:

$$x_i \propto rac{1}{(\Sigma x)_i}$$

Definition Special cases Properties Numerical solution

The Jacobi approach

The Jacobi algorithm consists in finding the fixed point by considering the following iterations:

- We set $k \leftarrow 0$ and we note $x^{(0)}$ the vector of starting values⁷
- 2 At iteration k + 1, we compute:

$$y_i^{(k+1)} \propto rac{1}{eta_i\left(x^{(k)}
ight)} = rac{1}{\left(\Sigma x^{(k)}
ight)_i}$$

and:

$$x_{i}^{(k+1)} = \frac{y_{i}^{(k+1)}}{\sum_{j=1}^{n} y_{j}^{(k+1)}}$$

⁷For instance, we can use the following rule:

$$x_i^{(0)} = \frac{\sigma_i^{-1}}{\sum_{j=1}^n \sigma_j^{-1}}$$

Definition Special cases Properties Numerical solution

The Newton-Raphson approach

We consider the following optimization problem:

 $x^* = \arg\min f(x)$

The Newton-Raphson iteration is defined by:

$$x^{(k+1)} = x^{(k)} - \Delta x^{(k)}$$

where $\Delta x^{(k)}$ is the inverse of the Hessian matrix of $f(x^{(k)})$ times the gradient vector of $f(x^{(k)})$:

$$\Delta x^{(k)} = \left[\partial_x^2 f\left(x^{(k)}\right)\right]^{-1} \partial_x f\left(x^{(k)}\right)$$

Definition Special cases Properties Numerical solution

The Newton-Raphson approach

• We consider the Lagrange function:

$$f(y) = \frac{1}{2}y^{\top}\Sigma y - \lambda_c \sum_{i=1}^n \ln y_i$$

- We choose a value of λ_c (e.g. $\lambda_c = 1$)
- We note y^{-m} the vector $n \times 1$ matrix with elements $(y_1^{-m}, \ldots, y_n^{-m})$ and diag (y^{-m}) the $n \times n$ diagonal matrix with elements $(y_1^{-m}, \ldots, y_n^{-m})$:

diag
$$(y^{-m}) = \begin{pmatrix} y_1^{-m} & 0 & 0 \\ 0 & y_2^{-m} & & \\ & \ddots & 0 \\ 0 & & 0 & y_n^{-m} \end{pmatrix}$$

Definition Special cases Properties Numerical solution

The Newton-Raphson approach

• We apply the Newton-Raphson algorithm with:

$$\partial_{y}f(y) = \Sigma y - \lambda_{c}y^{-1}$$

and:

$$\partial_{y}^{2}f(y) = \Sigma + \lambda_{c} \operatorname{diag}(y^{-2})$$

• The solution is given by:

$$x_{\rm erc} = \frac{y^{\star}}{\sum_{i=1}^{n} y_i^{\star}}$$

Definition Special cases Properties Numerical solution

The Newton-Raphson approach

• For the starting value $y_i^{(0)}$, we can assume that the correlations are uniform:

$$y_i^{(0)} = \frac{\sigma_i^{-1}}{\sum_{j=1}^n \sigma_j^{-1}}$$

• At the optimum, we recall that $\lambda_c = y_i^* \cdot (\Sigma y^*)_i$. We deduce that:

$$\lambda_{c} = \frac{1}{n} \sum_{i=1}^{n} y_{i}^{\star} \cdot (\Sigma y^{\star})_{i} = \frac{\sigma^{2}(y^{\star})}{n}$$

Therefore, we can choose:

$$\lambda_c = \frac{\sigma^2 \left(y^{(0)} \right)}{n}$$

Definition Special cases Properties Numerical solution

The Newton-Raphson approach

From a numerical point of view, it may be important to control the magnitude order α of y* (e.g. α = 10%, α = 1 or α = 10). For instance, we don't want that the magnitude order is 10⁻⁵ or 10⁵. In this case, we can use the following rule:

$$\lambda_{c} = n\alpha^{2}\sigma^{2}\left(x_{\rm erc}\right)$$

• For example, if n = 10 and $\alpha = 5$, and we guess that the volatility of the ERC portfolio is around 10%, we set:

$$\lambda_c = 10 \times 5^2 \times 0.10^2 = 2.5$$

Definition Special cases Properties Numerical solution

The CCD approach

Table 25: Cyclical coordinate descent algorithm

```
The goal is to find the solution x^* = \arg \min f(x)

We initialize the vector x^{(0)}

Set k \leftarrow 0

repeat

for i = 1 : n do

x_i^{(k+1)} = \arg \min_{\varkappa} f\left(x_1^{(k+1)}, \dots, x_{i-1}^{(k+1)}, \varkappa, x_{i+1}^{(k)}, \dots, x_n^{(k)}\right)

end for

k \leftarrow k + 1

until convergence

return x^* \leftarrow x^{(k)}
```

Definition Special cases Properties Numerical solution

The CCD approach

We have:

$$\mathcal{L}(y; \lambda_c) = \arg\min \frac{1}{2}y^{\top}\Sigma y - \lambda_c \sum_{i=1}^n \ln y_i$$

The first-order condition is equal to:

$$\frac{\partial \mathcal{L}(y;\lambda)}{\partial y_i} = (\Sigma y)_i - \frac{\lambda_c}{y_i} = 0$$

or:

$$y_i \cdot (\Sigma y)_i - \lambda_c = 0$$

It follows that:

$$\sigma_i^2 y_i^2 + \left(\sigma_i \sum_{j \neq i} \rho_{i,j} \sigma_j y_j\right) y_i - \lambda_c = 0$$

Definition Special cases Properties Numerical solution

The CCD approach

We recognize a second-degree equation:

$$\alpha_i y_i^2 + \beta_i y_i + \gamma_i = 0$$

The polynomial function is convex because we have $\alpha_i = \sigma_i^2 > 0$ The product of the roots is negative:

$$y_i'y_i'' = \frac{\gamma_i}{\alpha_i} = -\frac{\lambda_c}{\sigma_i^2} < 0$$

The discriminant is positive:

$$\Delta = \beta_i^2 - 4\alpha_i \gamma_i = \left(\sigma_i \sum_{j \neq i} \rho_{i,j} \sigma_j y_j\right)^2 + 4\sigma_i^2 \lambda_c > 0$$

We always have two solutions with opposite signs. We deduce that the solution is the positive root of the second-degree equation:

$$y_i^{\star} = y_i^{\prime\prime} = \frac{-\beta_i + \sqrt{\beta_i^2 - 4\alpha_i \gamma_i}}{2\alpha_i}$$

Special cases Properties Numerical solution

The CCD approach

The CCD algorithm consists in iterating the following formula:

$$y_i^{(k+1)} = \frac{-\beta_i^{(k+1)} + \sqrt{\left(\beta_i^{(k+1)}\right)^2 - 4\alpha_i^{(k+1)}\gamma_i^{(k+1)}}}{2\alpha_i^{(k+1)}}$$

where:

$$\begin{aligned} \alpha_i^{(k+1)} &= \sigma_i^2 \\ \beta_i^{(k+1)} &= \sigma_i \left(\sum_{j < i} \rho_{i,j} \sigma_j y_j^{(k+1)} + \sum_{j > i} \rho_{i,j} \sigma_j y_j^{(k)} \right) \\ \gamma_i^{(k+1)} &= -\lambda_c \end{aligned}$$

The ERC portfolio is the scaled solution y^* :

$$x_{\rm erc} = \frac{y^{\star}}{\sum_{i=1}^{n} y_i^{\star}}$$

Definition Special cases Properties Numerical solution

Efficiency of the algorithms

$\mathrm{CCD}\succ\mathrm{NR}\succ\mathrm{SQP}\succ\mathrm{Jacobi}$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Definition of RB portfolios

Definition

A risk budgeting (RB) portfolio x satisfies the following conditions:

 $\begin{cases} \mathcal{RC}_{1} = b_{1}\mathcal{R}(x) \\ \vdots \\ \mathcal{RC}_{i} = b_{i}\mathcal{R}(x) \\ \vdots \\ \mathcal{RC}_{n} = b_{n}\mathcal{R}(x) \end{cases}$

where $\mathcal{R}(x)$ is a coherent and convex risk measure and $b = (b_1, \ldots, b_n)$ is a vector of risk budgets such that $b_i \ge 0$ and $\sum_{i=1}^n b_i = 1$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Definition of RB portfolios

Remark

The ERC portfolio is a particular case of RB portfolios when $\mathcal{R}(x) = \sigma(x)$ and $b_i = \frac{1}{n}$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Coherent risk measure

Subadditivity

 $\mathcal{R}\left(x_{1}+x_{2}
ight)\leq\mathcal{R}\left(x_{1}
ight)+\mathcal{R}\left(x_{2}
ight)$

 $\mathcal{R}(\lambda x) = \lambda \mathcal{R}(x) \quad \text{if } \lambda \geq 0$

Monotonicity

if
$$x_{1}\prec x_{2}$$
, then $\mathcal{R}\left(x_{1}
ight)\geq\mathcal{R}\left(x_{2}
ight)$

Translation invariance

if
$$m \in \mathbb{R}$$
, then $\mathcal{R}(x + m) = \mathcal{R}(x) - m$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Convex risk measure

The convexity property is defined as follows:

$$\mathcal{R}\left(\lambda x_{1}+\left(1-\lambda
ight)x_{2}
ight)\leq\lambda\mathcal{R}\left(x_{1}
ight)+\left(1-\lambda
ight)\mathcal{R}\left(x_{2}
ight)$$

This condition means that diversification should not increase the risk

Euler allocation principle

This property is necessary for the Euler allocation principle:

$$\mathcal{R}(x) = \sum_{i=1}^{n} x_i \frac{\partial \mathcal{R}(x)}{\partial x_i}$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Some risk measures

The portfolio loss is L(x) = -R(x) where R(x) is the portfolio return. We consider then different risk measures:

• Volatility of the loss

$$\mathcal{R}(x) = \sigma(L(x)) = \sigma(x)$$

• Standard deviation-based risk measure

$$\mathcal{R}(x) = \mathrm{SD}_{c}(x) = \mathbb{E}[L(x)] + c \cdot \sigma(L(x)) = -\mu(x) + c \cdot \sigma(x)$$

• Value-at-risk

$$\mathcal{R}(x) = \operatorname{VaR}_{\alpha}(x) = \inf \left\{ \ell : \Pr \left\{ L(x) \leq \ell \right\} \geq \alpha \right\}$$

• Expected shortfall

$$\mathcal{R}(x) = \mathrm{ES}_{\alpha}(x) = \mathbb{E}\left[L(x) \mid L(x) \ge \mathrm{VaR}_{\alpha}(x)\right] = \frac{1}{1-\alpha} \int_{\alpha}^{1} \mathrm{VaR}_{u}(x) \, \mathrm{d}u$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Gaussian risk measures

We assume that the asset returns are normally distributed: $R \sim \mathcal{N}(\mu, \Sigma)$ We have:

$$\sigma(x) = \sqrt{x^{\top}\Sigma x}$$

$$SD_{c}(x) = -x^{\top}\mu + c \cdot \sqrt{x^{\top}\Sigma x}$$

$$VaR_{\alpha}(x) = -x^{\top}\mu + \Phi^{-1}(\alpha)\sqrt{x^{\top}\Sigma x}$$

$$ES_{\alpha}(x) = -x^{\top}\mu + \frac{\sqrt{x^{\top}\Sigma x}}{(1-\alpha)}\phi(\Phi^{-1}(\alpha))$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Gaussian risk contributions

• Volatility $\sigma(x)$

$$\mathcal{RC}_i = x_i \cdot \frac{(\Sigma x)_i}{\sqrt{x^\top \Sigma x}}$$

• Standard deviation-based risk measure $SD_{c}(x)$

$$\mathcal{RC}_i = x_i \cdot \left(-\mu_i + c \frac{(\Sigma x)_i}{\sqrt{x^\top \Sigma x}}\right)$$

• Value-at-risk
$$\operatorname{VaR}_{lpha}(x)$$

$$\mathcal{RC}_{i} = x_{i} \cdot \left(-\mu_{i} + \Phi^{-1}\left(\alpha\right) \frac{(\Sigma x)_{i}}{\sqrt{x^{\top} \Sigma x}}\right)$$

• Expected shortfall $\mathrm{ES}_{\alpha}\left(x\right)$

$$\mathcal{RC}_{i} = x_{i} \cdot \left(-\mu_{i} + \frac{(\Sigma x)_{i}}{(1-\alpha)\sqrt{x^{\top}\Sigma x}}\phi\left(\Phi^{-1}\left(\alpha\right)\right)\right)$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Gaussian risk contributions

Example 8

We consider three assets. We assume that their expected returns are equal to zero whereas their volatilities are equal to 30%, 20% and 15%. The correlation of asset returns is given by the following matrix:

$$ho = \left(egin{array}{ccccc} 1.00 & & \ 0.80 & 1.00 & \ 0.50 & 0.30 & 1.00 \end{array}
ight)$$

The portfolio is equal to (50%, 20%, 30%).

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Gaussian risk contributions

Table 26: Risk decomposition of the portfolio (Example 8)

$\mathcal{R}(x)$	Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
	1	50.00	29.40	14.70	70.43
	2	20.00	16.63	3.33	15.93
Volatility	3	30.00	9.49	2.85	13.64
	$\sigma(x)$			20.87	
	1	50.00	68.39	34.19	70.43
Value-at-risk	2	20.00	38.68	7.74	15.93
Value-at-risk	3	30.00	22.07	6.62	13.64
	$\operatorname{VaR}_{99\%}(x)$			48.55	
Expected shortfall	1	50.00	78.35	39.17	70.43
	2	20.00	44.31	8.86	15.93
	3	30.00	25.29	7.59	13.64
	$\mathrm{ES}_{99\%}\left(x ight)$			55.62	

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Gaussian risk contributions

Example 9

We consider three assets. We assume that their expected returns are equal to 10%, 5% and 8% whereas their volatilities are equal to 30%, 20% and 15%. The correlation of asset returns is given by the following matrix:

$$ho = \left(egin{array}{cccc} 1.00 & & \ 0.80 & 1.00 & \ 0.50 & 0.30 & 1.00 \end{array}
ight)$$

The portfolio is equal to (50%, 20%, 30%).

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Gaussian risk contributions

Table 27: Risk decomposition of the portfolio (Example 9)

$\mathcal{R}(x)$	Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
	1	50.00	29.40	14.70	70.43
	2	20.00	16.63	3.33	15.93
Volatility	3	30.00	9.49	2.85	13.64
	$\sigma(x)$			20.87	
	1	50.00	58.39	29.19	72.71
Value-at-risk	2	20.00	33.68	6.74	16.78
Value-at-risk	3	30.00	14.07	4.22	10.51
	$\operatorname{VaR}_{99\%}(x)$			40.15	
Expected shortfall	1	50.00	68.35	34.17	72.37
	2	20.00	39.31	7.86	16.65
	3	30.00	17.29	5.19	10.98
	$\mathrm{ES}_{99\%}\left(x ight)$			47.22	

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

They are not frequently used in asset management and portfolio allocation, except in the case of skewed assets (Bruder *et al.*, 2016; Lezmi *et al.*, 2018)

Non-parametric risk contributions are given in Chapter 2 in Roncalli (2013)

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Gaussian RB portfolios

Example 10

We consider three assets. We assume that their expected returns are equal to 10%, 5% and 8% whereas their volatilities are equal to 30%, 20% and 15%. The correlation of asset returns is given by the following matrix:

$$ho = \left(egin{array}{cccc} 1.00 & & \ 0.80 & 1.00 & \ 0.50 & 0.30 & 1.00 \end{array}
ight)$$

The risk budgets are equal to (50%, 20%, 30%).

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Gaussian RB portfolios

Table 28: Risk budgeting portfolios (Example 10)

$\mathcal{R}(x)$	Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
	1	31.14	28.08	8.74	50.00
	2	21.90	15.97	3.50	20.00
Volatility	3	46.96	11.17	5.25	30.00
	$\sigma(x)$			17.49	
	1	29.18	54.47	15.90	50.00
Value-at-risk	2	20.31	31.30	6.36	20.00
Value-at-risk	3	50.50	18.89	9.54	30.00
	$\operatorname{VaR}_{99\%}(x)$			31.79	
	1	29.48	64.02	18.87	50.00
Expected shortfall	2	20.54	36.74	7.55	20.00
	3	49.98	22.65	11.32	30.00
	$\mathrm{ES}_{99\%}\left(x ight)$			37.74	

Properties of RB portfolios

Special cases

- The case of uniform correlation⁸ $\rho_{i,j} = \rho$
 - Minimum correlation

$$x_i\left(-\frac{1}{n-1}\right) = \frac{\sigma_i^{-1}}{\sum_{j=1}^n \sigma_j^{-1}}$$



$$x_i(0) = \frac{\sqrt{b_i}\sigma_i^{-1}}{\sum_{j=1}^n \sqrt{b_j}\sigma_j^{-1}}$$

Maximum correlation

$$x_i(1) = \frac{b_i \sigma_i^{-1}}{\sum_{j=1}^n b_j \sigma_j^{-1}}$$

• The general case

$$x_{i} = \frac{b_{i}\beta_{i}^{-1}}{\sum_{j=1}^{n} b_{j}\beta_{j}^{-1}}$$

where β_i is the beta of Asset *i* with respect to the RB portfolio

⁸The solution is noted $x_i(\rho)$.

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Existence and uniqueness

We have:

$$\frac{\partial \sigma(x)}{\partial x_{i}} = \frac{x_{i}\sigma_{i}^{2} + \sigma_{i}\sum_{j\neq i}x_{j}\rho_{i,j}\sigma_{j}}{\sigma(x)}$$

Suppose that the risk budget b_k is equal to zero. This means that:

$$x_k\left(x_k\sigma_k^2+\sigma_k\sum_{j\neq k}x_j\rho_{k,j}\sigma_j\right)=0$$

We obtain two solutions:

• The first one is:

$$x'_k = 0$$

Output Description of the second one verifies:

$$x_k'' = -\frac{\sum_{j \neq k} x_j \rho_{k,j} \sigma_j}{\sigma_k}$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Existence and uniqueness

- If $\rho_{k,j} \ge 0$ for all j, we have $\sum_{j \ne k} x_j \rho_{k,j} \sigma_j \ge 0$ because $x_j \ge 0$ and $\sigma_j > 0$. This implies that $x''_k \le 0$ meaning that $x'_k = 0$ is the unique positive solution
- The only way to have $x_k'' > 0$ is to have some negative correlations $\rho_{k,j}$. In this case, this implies that:

$$\sum_{j\neq k} x_j \rho_{k,j} \sigma_j < 0$$

• If we consider a universe of three assets, this constraint is verified for k = 3 and a covariance matrix such that $\rho_{1,3} < 0$ and $\rho_{2,3} < 0$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Existence and uniqueness

Example 11

We have
$$\sigma_1 = 20\%$$
, $\sigma_2 = 10\%$, $\sigma_3 = 5\%$, $\rho_{1,2} = 50\%$, $\rho_{1,3} = -25\%$ and $\rho_{2,3} = -25\%$

If the risk budgets are equal to (50%, 50%, 0%), the two solutions are:

(33.33%, 66.67%, 0%)

and:

(20%, 40%, 40%)

Two questions

O How many solutions do we have in the general case?

Which solution is the best?

340 / 1420

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Existence and uniqueness

Table 29: First solution (Example 11)

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	33.33	17.32	5.77	50.00
2	66.67	8.66	5.77	50.00
3	0.00	-1.44	0.00	0.00
Volatili	ity		11.55	

Table 30: Second solution (Example 11)

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	20.00	16.58	3.32	50.00
2	40.00	8.29	3.32	50.00
3	40.00	0.00	0.00	0.00
Volatili	ty		6.63	

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Existence and uniqueness The case with strictly positive risk budgets

• We consider the following optimization problem:

$$y^{\star} = \arg \min \mathcal{R} (y)$$

u.c.
$$\begin{cases} \sum_{i=1}^{n} b_{i} \ln y_{i} \ge c \\ y \ge \mathbf{0}_{n} \end{cases}$$

where c is an arbitrary constant

• The associated Lagrange function is:

$$\mathcal{L}(y; \lambda, \lambda_c) = \mathcal{R}(y) - \lambda^{\top} y - \lambda_c \left(\sum_{i=1}^n b_i \ln y_i - c\right)$$

where $\lambda \in \mathbb{R}^n$ and $\lambda_c \in \mathbb{R}$

342 / 1420

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Existence and uniqueness The case with strictly positive risk budgets

• The solution y^* verifies the following first-order condition:

$$\frac{\partial \mathcal{L}(y; \lambda, \lambda_{c})}{\partial y_{i}} = \frac{\partial \mathcal{R}(y)}{\partial y_{i}} - \lambda_{i} - \lambda_{c} \frac{b_{i}}{y_{i}} = 0$$

• The Kuhn-Tucker conditions are:

$$\begin{cases} \min(\lambda_i, y_i) = 0\\ \min(\lambda_c, \sum_{i=1}^n b_i \ln y_i - c) = 0 \end{cases}$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Existence and uniqueness The case with strictly positive risk budgets

- Because ln y_i is not defined for $y_i = 0$, it follows that $y_i > 0$ and $\lambda_i = 0$
- We note that the constraint $\sum_{i=1}^{n} b_i \ln y_i = c$ is necessarily reached (because the solution cannot be $y^* = \mathbf{0}_n$), then $\lambda_c > 0$ and we have:

$$y_{i}\frac{\partial \mathcal{R}(y)}{\partial y_{i}}=\lambda_{c}b_{i}$$

• We verify that the risk contributions are proportional to the risk budgets:

$$\mathcal{RC}_i = \lambda_c b_i$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Existence and uniqueness The case with strictly positive risk budgets

Theorem

The optimization program has a unique solution and the RB portfolio is equal to:

$$x_{\rm rb} = \frac{y^{\star}}{\sum_{i=1}^{n} y_i^{\star}}$$

Remark

We note that the convexity property of the risk measure is essential to the existence and uniqueness of the RB portfolio. If $\mathcal{R}(x)$ is not convex, the preceding analysis becomes invalid.

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Existence and uniqueness Effect on the solution of setting risk budgets to zero

- Let \mathcal{N} be the set of assets such that $b_i = 0$
- The Lagrange function becomes:

$$\mathcal{L}(y; \lambda, \lambda_c) = \mathcal{R}(y) - \lambda^{\top} y - \lambda_c \left(\sum_{i \notin \mathcal{N}} b_i \ln y_i - c\right)$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Effect on the solution of setting risk budgets to zero

• The solution y^* verifies the following first-order conditions:

$$\frac{\partial \mathcal{L}(y;\lambda,\lambda_{c})}{\partial y_{i}} = \begin{cases} \partial_{y_{i}} \mathcal{R}(y) - \lambda_{i} - \lambda_{c} b_{i} y_{i}^{-1} = 0 & \text{if } i \notin \mathcal{N} \\ \partial_{y_{i}} \mathcal{R}(y) - \lambda_{i} = 0 & \text{if } i \in \mathcal{N} \end{cases}$$

 If *i* ∉ *N*, the previous analysis is valid and we verify that risk contributions are proportional to the risk budgets:

$$y_{i}\frac{\partial \mathcal{R}(y)}{\partial y_{i}}=\lambda_{c}b_{i}$$

- If $i \in \mathcal{N}$, we must distinguish two cases:
 - 1 If $y_i = 0$, it implies that $\lambda_i > 0$ and $\partial_{y_i} \mathcal{R}(y) > 0$ 2 In the other case, if $y_i > 0$, it implies that $\lambda_i = 0$ and $\partial_{y_i} \mathcal{R}(y) = 0$
- The solution y_i = 0 or y_i > 0 if i ∈ N will then depend on the structure of the covariance matrix Σ (in the case of a Gaussian risk measure)

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Existence and uniqueness

Effect on the solution of setting risk budgets to zero

Theorem

We conclude that the solution y^* of the optimization problem exists and is unique even if some risk budgets are set to zero. As previously, we deduce the normalized RB portfolio x_{rb} by scaling y^* . This solution, noted S_1 , satisfies the following relationships:

$$\begin{cases} \mathcal{RC}_{i} = x_{i} \cdot \partial_{x_{i}} \mathcal{R}(x) = b_{i} & \text{if } i \notin \mathcal{N} \\ x_{i} = 0 \text{ and } \partial_{x_{i}} \mathcal{R}(x) > 0 & (i) \\ \text{or } & \text{if } i \in \mathcal{N} \\ x_{i} > 0 \text{ and } \partial_{x_{i}} \mathcal{R}(x) = 0 & (ii) \end{cases}$$

The conditions (*i*) and (*ii*) are mutually exclusive for one asset $i \in \mathcal{N}$, but not necessarily for all the assets $i \in \mathcal{N}$.

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Existence and uniqueness Effect on the solution of setting risk budgets to zero

The previous analysis implies that there may be several solutions to the following non-linear system when $b_i = 0$ for $i \in \mathcal{N}$:

$$\begin{cases} \mathcal{RC}_{1} = b_{1}\mathcal{R}(x) \\ \vdots \\ \mathcal{RC}_{i} = b_{i}\mathcal{R}(x) \\ \vdots \\ \mathcal{RC}_{n} = b_{n}\mathcal{R}(x) \end{cases}$$

- Let N = N₁ ∐ N₂ where N₁ is the set of assets verifying the condition (i) and N₂ is the set of assets verifying the condition (ii)
- The number of solutions is equal to 2^m where $m = |\mathcal{N}_2|$ is the cardinality of \mathcal{N}_2

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Effect on the solution of setting risk budgets to zero

We note S_2 the solution with $x_i = 0$ for all assets such that $b_i = 0$. Even if S_2 is the solution expected by the investor, the only acceptable solution is S_1 . Indeed, if we impose $b_i = \varepsilon_i$ where $\varepsilon_i > 0$ is a small number for $i \in \mathcal{N}$, we obtain:

$$\lim_{\varepsilon_i\to 0}\mathcal{S}=\mathcal{S}_1$$

The solution converges to S_1 , and not to S_2 or the other solutions

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Existence and uniqueness Effect on the solution of setting risk budgets to zero

Remark

The non-linear system is not well-defined, whereas the optimization problem is the right approach to define a RB portfolio

Definition

A RB portfolio is a minimum risk portfolio subject to a diversification constraint, which is defined by the logarithmic barrier function

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Existence and uniqueness

Example 12

We consider a universe of three assets with $\sigma_1 = 20\%$, $\sigma_2 = 10\%$ and $\sigma_3 = 5\%$. The correlation of asset returns is given by the following matrix:

$$ho = \left(egin{array}{ccccc} 1.00 & & \ 0.50 & 1.00 & \
ho_{1,3} &
ho_{2,3} & 1.00 \end{array}
ight)$$

We would like to build a RB portfolio such that the risk budgets with respect to the volatility risk measure are (50%, 50%, 0%). Moreover, we assume that $\rho_{1,3} = \rho_{2,3}$.

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Existence and uniqueness

Table 31: RB solutions when the risk budget b_3 is equal to 0 (Example 12)

$\rho_{1,3} = \rho_{2,3}$	Sc	lution	1	2	3	$\sigma(x)$
		Xi	20.00%	40.00%	40.00%	
	$ S_1 $	\mathcal{MR}_i	16.58%	8.29%	0.00%	6.63%
		\mathcal{RC}_i	50.00%	50.00%	0.00%	
		Xi	33.33%	66.67%	0.00%	
-25%	S_2	\mathcal{MR}_i	17.32%	8.66%	-1.44%	11.55%
		\mathcal{RC}_i	50.00%	50.00%	0.00%	
		Xi	19.23%	38.46%	42.31%	
	$ \mathcal{S}'_1 $	\mathcal{MR}_i	16.42%	8.21%	0.15%	6.38%
		\mathcal{RC}_i	49.50%	49.50%	1.00%	
		Xi	33.33%	66.67%	0.00%	
25%	$ S_1 $	\mathcal{MR}_i	17.32%	8.66%	1.44%	11.55%
		\mathcal{RC}_i	50.00%	50.00%	0.00%	

Definition of RB portfolios **Properties of RB portfolios** Diversification measures Using risk factors instead of assets

Existence and uniqueness

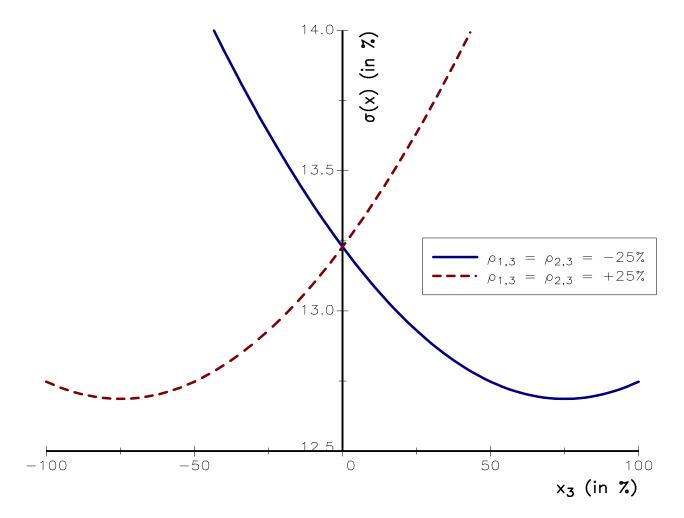


Figure 25: Evolution of the portfolio's volatility with respect to x_3

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Location of the RB portfolio

We have:

$$\frac{x_i}{b_i} = \frac{x_j}{b_j} \tag{WB}$$

$$\frac{\partial \mathcal{R}(x)}{\partial x_{i}} = \frac{\partial \mathcal{R}(x)}{\partial x_{j}}$$
(MR)

$$\frac{1}{b_{i}}\left(x_{i}\frac{\partial \mathcal{R}\left(x\right)}{\partial x_{i}}\right) = \frac{1}{b_{j}}\left(x_{j}\frac{\partial \mathcal{R}\left(x\right)}{\partial x_{j}}\right)$$
(ERC)

The RB portfolio is a combination of MR (long-only minimum risk) and WB (weight budgeting) portfolios

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk of the RB portfolio

Theorem

We obtain the following inequality:

$$\mathcal{R}\left(x_{\mathrm{mr}}
ight) \leq \mathcal{R}\left(x_{\mathrm{rb}}
ight) \leq \mathcal{R}\left(x_{\mathrm{wb}}
ight)$$

The RB portfolio may be viewed as a portfolio "between" the MR portfolio and the WB portfolio

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Diversification index

Definition

The diversification index is equal to:

1

$$\mathcal{P}(x) = \frac{\mathcal{R}\left(\sum_{i=1}^{n} L_{i}\right)}{\sum_{i=1}^{n} \mathcal{R}(L_{i})}$$
$$= \frac{\mathcal{R}(x)}{\sum_{i=1}^{n} x_{i} \mathcal{R}(\mathbf{e}_{i})}$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Diversification index

- The diversification index is the ratio between the risk measure of portfolio x and the weighted risk measure of the assets
- If \mathcal{R} is a coherent risk measure, we have $\mathcal{D}(x) \leq 1$
- If $\mathcal{D}(x) = 1$, it implies that the losses are comonotonic
- If \mathcal{R} is the volatility risk measure, we obtain:

$$\mathcal{D}(x) = \frac{\sqrt{x^{\top} \Sigma x}}{\sum_{i=1}^{n} x_i \sigma_i}$$

It takes the value one if the asset returns are perfectly correlated meaning that the correlation matrix is $C_n(1)$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Concentration index

- Let $\pi \in \mathbb{R}^n_+$ such that $\mathbf{1}^{\top}_n \pi = 1 \Rightarrow \pi$ is a probability distribution
- The probability distribution π^+ is perfectly concentrated if there exists one observation i_0 such that $\pi_{i_0}^+ = 1$ and $\pi_i^+ = 0$ if $i \neq i_0$
- When *n* tends to $+\infty$, the limit distribution is noted π^+_{∞}
- On the opposite, the probability distribution π^- such that $\pi_i^- = 1/n$ for all i = 1, ..., n has no concentration

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Concentration index

Definition

A concentration index is a mapping function $C(\pi)$ such that $C(\pi)$ increases with concentration and verifies:

 $\mathcal{C}\left(\pi^{-}
ight)\leq\mathcal{C}\left(\pi
ight)\leq\mathcal{C}\left(\pi^{+}
ight)$

- For instance, if π represents the weights of the portfolio, $C(\pi)$ measures then the weight concentration
- By construction, $C(\pi)$ reaches the minimum value if the portfolio is equally weighted
- To measure the risk concentration of the portfolio, we define π as the distribution of the risk contributions. In this case, the portfolio corresponding to the lower bound C (π⁻) = 0 is the ERC portfolio

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Herfindahl index

Definition

The Herfindahl index associated with π is defined as:

$$\mathcal{H}\left(\pi\right) = \sum_{i=1}^{n} \pi_{i}^{2}$$

- This index takes the value 1 for the probability distribution π^+ and 1/n for the distribution with uniform probabilities π^-
- To scale the statistics onto [0, 1], we consider the normalized index $\mathcal{H}^{\star}(\pi)$ defined as follows:

$$\mathcal{H}^{\star}\left(\pi
ight)=rac{n\mathcal{H}\left(\pi
ight)-1}{n-1}$$

Gini index

- The Gini index is based on the Lorenz curve of inequality
- Let X and Y be two random variables. The Lorenz curve $y = \mathbb{L}(x)$ is defined by the following parameterization:

Definition of RB portfolios

Properties of RB portfolios

Diversification measures

$$\begin{cases} x = \Pr \{ X \le x \} \\ y = \Pr \{ Y \le y \mid X \le x \} \end{cases}$$

- The Lorenz curve admits two limit cases
 - 0 If the portfolio is perfectly concentrated, the distribution of the weights corresponds to π^+_∞
 - 2 On the opposite, the least concentrated portfolio is the equally weighted portfolio and the Lorenz curve is the bisecting line y = x

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Gini index

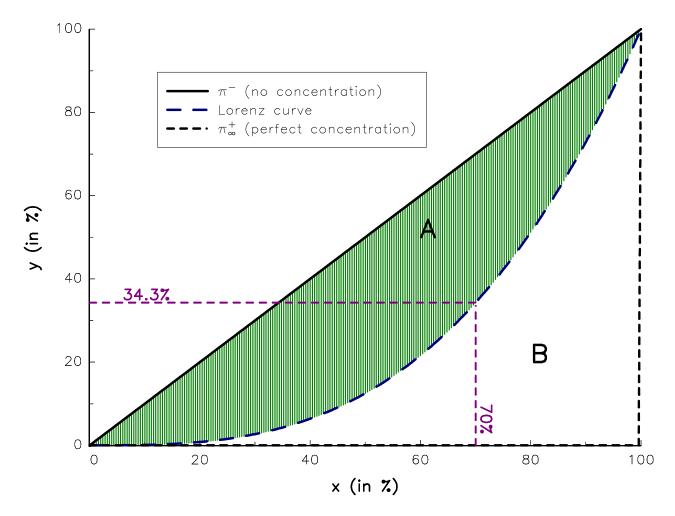


Figure 26: Geometry of the Lorenz curve

Gini index

Definition

The Gini index is then defined as:

$$\mathcal{G}\left(\pi
ight)=rac{A}{A+B}$$

Diversification measures

with A the area between $\mathbb{L}(\pi^{-})$ and $\mathbb{L}(\pi)$, and B the area between $\mathbb{L}(\pi)$ and $\mathbb{L}(\pi_{\infty}^{+})$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Gini index

• By construction, we have $\mathcal{G}\left(\pi^{-}\right)=0$, $\mathcal{G}\left(\pi^{+}_{\infty}\right)=1$ and:

$$\mathcal{G}(\pi) = \frac{(A+B)-B}{A+B}$$
$$= 1 - \frac{1}{A+B}B$$
$$= 1 - 2\int_0^1 \mathbb{L}(x) \, \mathrm{d}x$$

In the case when π is a discrete probability distribution, we obtain:

$$\mathcal{G}(\pi) = \frac{2\sum_{i=1}^{n} i\pi_{i:n}}{n\sum_{i=1}^{n} \pi_{i:n}} - \frac{n+1}{n}$$

where $\{\pi_{1:n}, \ldots, \pi_{n:n}\}$ are the ordered statistics of $\{\pi_1, \ldots, \pi_n\}$.

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Shannon entropy

Definition

The Shannon entropy is equal to:

$$\mathcal{I}(\pi) = -\sum_{i=1}^{n} \pi_{i} \ln \pi_{i}$$

• The diversity index corresponds to the statistic:

$$\mathcal{I}^{\star}\left(\pi\right) = \exp\left(\mathcal{I}\left(\pi\right)\right)$$

• We have
$$\mathcal{I}^{\star}\left(\pi^{-}
ight)=n$$
 and $\mathcal{I}^{\star}\left(\pi^{+}
ight)=1$

Impact of the reparametrization on the asset universe

- We consider a set of *m* primary assets $(\mathcal{A}'_1, \ldots, \mathcal{A}'_m)$ with a covariance matrix Ω
- We define *n* synthetic assets (A_1, \ldots, A_n) which are composed of the primary assets
- We denote W = (w_{i,j}) the weight matrix such that w_{i,j} is the weight of the primary asset A'_j in the synthetic asset A_i (we have ∑^m_{j=1} w_{i,j} = 1)
- The covariance matrix of the synthetic assets Σ is equal to $W\Omega W^ op$
- The synthetic assets can be interpreted as portfolios of the primary assets
- For example, \mathcal{A}'_i may represent a stock whereas \mathcal{A}_i may be an index

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Impact of the reparametrization on the asset universe

• We consider a portfolio $x = (x_1, ..., x_n)$ defined with respect to the synthetic assets. We have:

$$\mathcal{RC}_i = x_i \cdot \frac{(\Sigma x)_i}{\sqrt{x^\top \Sigma x}}$$

2 We also define the portfolio with respect to the primary assets. In this case, the composition is $y = (y_1, \ldots, y_m)$ where $y_j = \sum_{i=1}^n x_i w_{i,j}$ (or $y = W^{\top} x$). We have:

$$\mathcal{RC}_j = y_j \cdot \frac{(\Omega y)_j}{\sqrt{y^\top \Omega y}}$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Impact of the reparametrization on the asset universe

Example 13

We have six primary assets. The volatility of these assets is respectively 20%, 30%, 25%, 15%, 10% and 30%. We assume that the assets are not correlated. We consider two equally weighted synthetic assets with:

$$W = \begin{pmatrix} 1/4 & 1/4 & 1/4 & 1/4 \\ & 1/4 & 1/4 & 1/4 & 1/4 \end{pmatrix}$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Impact of the reparametrization on the asset universe

Table 32: Risk decomposition of Portfolio #1 with respect to the synthetic assets (Example 13)

Asset i	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
\mathcal{A}_1	36.00	9.44	3.40	33.33
\mathcal{A}_2	38.00	8.90	3.38	33.17
\mathcal{A}_3	26.00	13.13	3.41	33.50

Table 33: Risk decomposition of Portfolio #1 with respect to the primary assets (Example 13)

Asset j	Уј	\mathcal{MR}_j	\mathcal{RC}_j	\mathcal{RC}_j^\star
\mathcal{A}_1'	9.00	3.53	0.32	3.12
\mathcal{A}_2'	9.00	7.95	0.72	7.02
\mathcal{A}'_3	31.50	19.31	6.08	59.69
\mathcal{A}'_4	31.50	6.95	2.19	21.49
\mathcal{A}_5'	9.50	0.93	0.09	0.87
\mathcal{A}_6'	9.50	8.39	0.80	7.82

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Impact of the reparametrization on the asset universe

Table 34: Risk decomposition of Portfolio #2 with respect to the synthetic assets (Example 13)

Asset i	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
\mathcal{A}_1	48.00	9.84	4.73	49.91
\mathcal{A}_2	50.00	9.03	4.51	47.67
\mathcal{A}_3	2.00	11.45	0.23	2.42

Table 35: Risk decomposition of Portfolio #2 with respect to the primary assets (Example 13)

Asset j	Уј	\mathcal{MR}_{j}	\mathcal{RC}_j	\mathcal{RC}_{j}^{\star}
\mathcal{A}_1'	12.00	5.07	0.61	6.43
\mathcal{A}_2'	12.00	11.41	1.37	14.46
\mathcal{A}'_3	25.50	16.84	4.29	45.35
\mathcal{A}'_4	25.50	6.06	1.55	16.33
\mathcal{A}_5'	12.50	1.32	0.17	1.74
$\mathcal{A}_{6}^{'}$	12.50	11.88	1.49	15.69

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Impact of the reparametrization on the asset universe

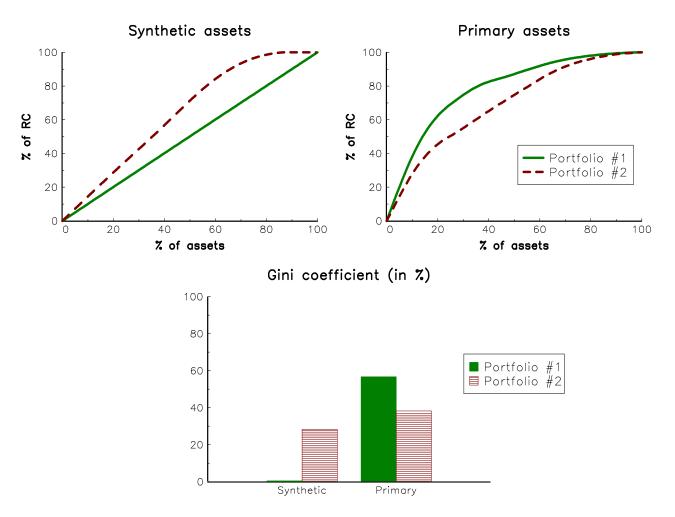


Figure 27: Lorenz curve of risk contributions (Example 13)

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk decomposition with respect to the risk factors

- We consider a set of *n* assets $\{A_1, \ldots, A_n\}$ and a set of *m* risk factors $\{F_1, \ldots, F_m\}$
- R_t is the $(n \times 1)$ vector of asset returns at time t
- Σ is the covariance matrix of asset returns
- \mathcal{F}_t is the $(m \times 1)$ vector of factor returns at time t
- Ω is the covariance matrix of factor returns

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk decomposition with respect to the risk factors

Linear factor model

We consider the linear factor model:

$$R_t = A\mathcal{F}_t + \varepsilon_t$$

where \mathcal{F}_t and ε_t are two uncorrelated random vectors, ε_t is a centered random vector $(n \times 1)$ of covariance D and A is the $(n \times m)$ loadings matrix

We have the following relationship:

$$\Sigma = A \Omega A^{\top} + D$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk decomposition with respect to the risk factors

We decompose the portfolio's asset exposures x by the portfolio's risk factors exposures y in the following way:

$$x = B^+ y + \tilde{B}^+ \tilde{y}$$

where:

- B^+ is the Moore-Penrose inverse of A^{\top}
- $ilde{B}^+$ is any n imes (n-m) matrix that spans the left nullspace of B^+
- \tilde{y} corresponds to n m residual (or additional) factors that have no economic interpretation

It follows that:

$$\begin{cases} y = A^{\top} x \\ \tilde{y} = \tilde{B} x \end{cases}$$

where $\tilde{B} = \ker \left(A^{\top} \right)^{\top}$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk decomposition with respect to the risk factors

Risk decomposition I

• We can show that the marginal risk of the *j*th factor exposure is given by:

$$\mathcal{MR}(\mathcal{F}_j) = \frac{\partial \sigma(x)}{\partial y_j} = \frac{(A^+ \Sigma x)_j}{\sigma(x)}$$

whereas its risk contribution is equal to:

$$\mathcal{RC}(\mathcal{F}_j) = y_j \frac{\partial \sigma(x)}{\partial y_j} = \frac{(A^{\top}x)_j \cdot (A^{+}\Sigma x)_j}{\sigma(x)}$$

376 / 1420

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk decomposition with respect to the risk factors

Risk decomposition II

• For the residual factors, we have:

$$\mathcal{MR}\left(\tilde{\mathcal{F}}_{j}\right) = \frac{\partial \sigma\left(x\right)}{\partial \tilde{y}_{j}} = \frac{\left(\tilde{B}\Sigma x\right)_{j}}{\sigma\left(x\right)}$$

and:

$$\mathcal{RC}\left(\tilde{\mathcal{F}}_{j}\right) = \tilde{y}_{j}\frac{\partial \sigma\left(x\right)}{\partial \tilde{y}_{j}} = \frac{\left(\tilde{B}x\right)_{j} \cdot \left(\tilde{B}\Sigma x\right)_{j}}{\sigma\left(x\right)}$$

377 / 1420

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk decomposition with respect to the risk factors

Remark

We can show that these risk contributions satisfy the allocation principle:

$$\sigma(x) = \sum_{j=1}^{m} \mathcal{RC}(\mathcal{F}_j) + \sum_{j=1}^{n-m} \mathcal{RC}(\tilde{\mathcal{F}}_j)$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk decomposition with respect to the risk factors

Let pinv(C) and null(C) be the Moore-Penrose pseudo-inverse and the orthonormal basis for the right null space of C

• Computation of A^+

$$\mathcal{A}^+ = \mathrm{pinv}\left(\mathcal{A}
ight) = \left(\mathcal{A}^ op \mathcal{A}
ight)^{-1} \mathcal{A}^ op$$

Computation of B

$$B = A^{\top}$$

• Computation of B^+

$$B^+ = \operatorname{pinv}\left(B
ight) = B^{ op} \left(BB^{ op}
ight)^{-1}$$

• Computation of \tilde{B}

$$\tilde{B} = \operatorname{pinv}\left(\operatorname{null}\left(B^{+^{\top}}\right)\right) \cdot \left(I_n - B^+ A^{\top}\right)$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk decomposition with respect to the risk factors

Remark

The previous results can be extended to other coherent and convex risk measures (Roncalli and Weisang, 2016)

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk decomposition with respect to the risk factors

Example 14

We consider an investment universe with four assets and three factors. The loadings matrix A is:

$${oldsymbol{\mathcal{A}}}=\left(egin{array}{cccc} 0.9 & 0.0 & 0.5\ 1.1 & 0.5 & 0.0\ 1.2 & 0.3 & 0.2\ 0.8 & 0.1 & 0.7 \end{array}
ight)$$

The three factors are uncorrelated and their volatilities are 20%, 10% and 10%. We assume a diagonal matrix D with specific volatilities 10%, 15%, 10% and 15%.

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk decomposition with respect to the risk factors

The correlation matrix of asset returns is (in %):

$$\rho = \left(\begin{array}{cccc} 100.0 & & & \\ 69.0 & 100.0 & & \\ 79.5 & 76.4 & 100.0 & \\ 66.2 & 57.2 & 66.3 & 100.0 \end{array} \right)$$

and their volatilities are respectively equal to 21.19%, 27.09%, 26.25% and 23.04%.

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk decomposition with respect to the risk factors

We obtain that:

$$\mathcal{A}^+ = \left(egin{array}{ccccccc} 1.260 & -0.383 & 1.037 & -1.196\ -3.253 & 2.435 & -1.657 & 2.797\ -0.835 & 0.208 & -1.130 & 2.348 \end{array}
ight)$$

and:

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk decomposition with respect to the risk factors

Table 36: Risk decomposition of the EW portfolio with respect to the assets (Example 14)

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	25.00	18.81	4.70	21.97
2	25.00	23.72	5.93	27.71
3	25.00	24.24	6.06	28.32
4	25.00	18.83	4.71	22.00
Volatili	Volatility 21.40			

Table 37: Risk decomposition of the EW portfolio with respect to the risk factors (Example 14)

Factor	Уј	\mathcal{MR}_j	\mathcal{RC}_{j}	\mathcal{RC}_j^{\star}
\mathcal{F}_1	100.00	17.22	17.22	80.49
\mathcal{F}_2	22.50	9.07	2.04	9.53
\mathcal{F}_3	35.00	6.06	2.12	9.91
$\left[\begin{array}{c} - \widetilde{\mathcal{F}}_1^{-} \end{array} ight]$	2.75	0.52	0.01	0.07
Volatilit	у		21.40	

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk factor parity (or RFP) portfolios

RFP portfolios are defined by:

$$\mathcal{RC}\left(\mathcal{F}_{j}\right)=b_{j}\mathcal{R}\left(x
ight)$$

They are computed using the following optimization problem:

$$egin{aligned} &(y^{\star}, \hat{y}^{\star}) &= &rg\min\sum_{j=1}^m \left(\mathcal{RC}\left(\mathcal{F}_j
ight) - b_j\mathcal{R}\left(x
ight)
ight)^2 \ & ext{u.c.} \quad \mathbf{1}_n^{ op}\left(B^+y + ilde{B}^+ ilde{y}
ight) = 1 \end{aligned}$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk factor parity (or RFP) portfolios

Example 15

We consider an investment universe with four assets and three factors. The loadings matrix A is:

$$A = \left(\begin{array}{rrrr} 0.9 & 0.0 & 0.5 \\ 1.1 & 0.5 & 0.0 \\ 1.2 & 0.3 & 0.2 \\ 0.8 & 0.1 & 0.7 \end{array}\right)$$

The three factors are uncorrelated and their volatilities are 20%, 10% and 10%. We assume a diagonal matrix D with specific volatilities 10%, 15%, 10% and 15%. We consider the following factor risk budgets:

$$b = (49\%, 25\%, 25\%)$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk factor parity (or RFP) portfolios

Table 38: Risk decomposition of the RFP portfolio with respect to the risk factors (Example 15)

Factor	Уј	\mathcal{MR}_j	\mathcal{RC}_j	\mathcal{RC}_{j}^{\star}
\mathcal{F}_1	93.38	11.16	10.42	49.00
\mathcal{F}_2	24.02	22.14	5.32	25.00
\mathcal{F}_3	39.67	13.41	5.32	25.00
$\begin{bmatrix} & \widetilde{\mathcal{F}}_1^{-} & & \\ & & \widetilde{\mathcal{F}}_1 & & \end{bmatrix}$	16.39	1.30	0.21	1.00
Volatilit	у		21.27	

Table 39: Risk decomposition of the RFP portfolio with respect to the assets (Example 15)

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	15.08	17.44	2.63	12.36
2	38.38	23.94	9.19	43.18
3	0.89	21.82	0.20	0.92
4	45.65	20.29	9.26	43.54
Volatili	ity	21.27		

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Minimizing the risk concentration between the risk factors

We now consider the following problem:

 $\mathcal{RC}\left(\mathcal{F}_{j}
ight)\simeq\mathcal{RC}\left(\mathcal{F}_{k}
ight)$

 \Rightarrow The portfolios are computed by minimizing the risk concentration between the risk factors

Remark

We can use the Herfindahl index, the Gini index or the Shanon entropy

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Minimizing the risk concentration between the risk factors

Example 16

We consider an investment universe with four assets and three factors. The loadings matrix A is:

$${oldsymbol{\mathcal{A}}}=\left(egin{array}{cccc} 0.9 & 0.0 & 0.5\ 1.1 & 0.5 & 0.0\ 1.2 & 0.3 & 0.2\ 0.8 & 0.1 & 0.7 \end{array}
ight)$$

The three factors are uncorrelated and their volatilities are 20%, 10% and 10%. We assume a diagonal matrix D with specific volatilities 10%, 15%, 10% and 15%.

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Minimizing the risk concentration between the risk factors

Table 40: Risk decomposition of the balanced RFP portfolio with respect to the risk factors (Example 16)

Factor	Уј	\mathcal{MR}_{j}	\mathcal{RC}_j	\mathcal{RC}_{j}^{\star}
\mathcal{F}_1	91.97	7.91	7.28	33.26
\mathcal{F}_2	25.78	28.23	7.28	33.26
\mathcal{F}_3	42.22	17.24	7.28	33.26
$\begin{bmatrix} & \widetilde{\mathcal{F}}_1^{-} & & \\ & & \widetilde{\mathcal{F}}_1 & & \end{bmatrix}$	6.74	0.70	0.05	0.21
Volatilit	у	21.88		

Table 41: Risk decomposition of the balanced RFP portfolio with respect to the assets (Example 16)

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	0.30	16.11	0.05	0.22
2	39.37	23.13	9.11	41.63
3	0.31	20.93	0.07	0.30
4	60.01	21.09	12.66	57.85
Volatility 21.88				

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Minimizing the risk concentration between the risk factors

We have $\mathcal{H}^{\star} = 0$, $\mathcal{G} = 0$ and $\mathcal{I}^{\star} = 3$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Minimizing the risk concentration between the risk factors

Table 42: Balanced RFP portfolios with $x_i \ge 10\%$ (Example 16)

Criterion	$\mathcal{H}(x)$	$\mathcal{G}(x)$	$\mathcal{I}(x)$
<i>x</i> ₁	10.00	10.00	10.00
<i>x</i> ₂	22.08	18.24	24.91
<i>x</i> ₃	10.00	10.00	10.00
X4	57.92	61.76	55.09
$\begin{bmatrix}\bar{\mathcal{H}}^{\star} \end{bmatrix}$	0.0436	0.0490	0.0453
\mathcal{G}	0.1570	0.1476	0.1639
\mathcal{I}^{\star}	2.8636	2.8416	2.8643

392 / 1420

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolios

Justification of diversified funds

Investor Profiles

- Conservative (low risk)
- Moderate (medium risk)
- Aggressive (high risk)

Fund Profiles

- Defensive (20% equities and 80% bonds)
- Balanced (50% equities and 50% bonds)
- Oynamic (80% equities and 20% bonds)

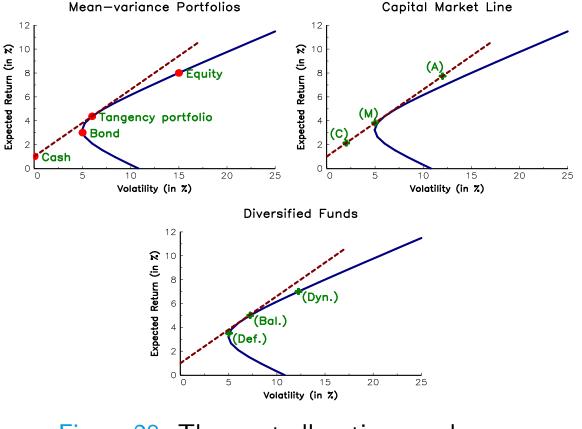


Figure 28: The asset allocation puzzle

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolios

What type of diversification is offered by diversified funds?

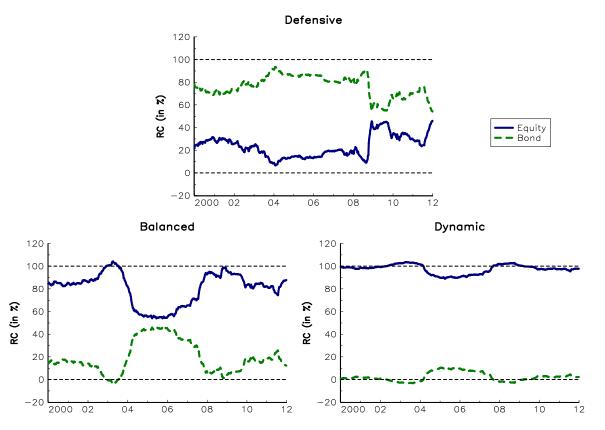


Figure 29: Equity (MSCI World) and bond (WGBI) risk contributions

Diversified funds

Marketing idea?

- Contrarian constant-mix strategy
- Deleverage of an equity exposure
- Low risk diversification
- No mapping between fund profiles and investor profiles
- Static weights
- Dynamic risk contributions

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolios

Risk-balanced allocation

- Multi-dimensional target volatility strategy
- Trend-following portfolio (if negative correlation between return and risk)
- Oynamic weights
- Static risk contributions (risk budgeting)
- High diversification

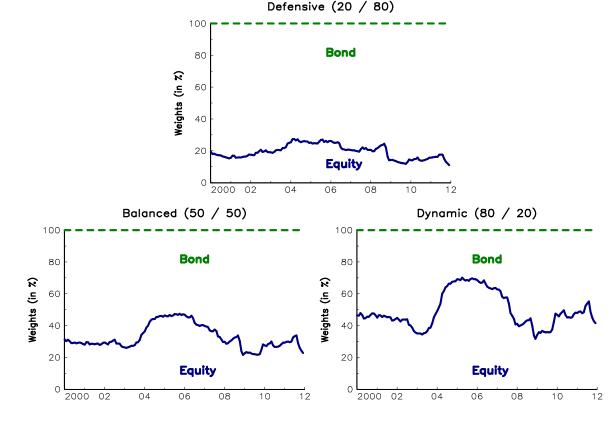


Figure 30: Equity and bond allocation

Diversified funds **Risk premium** Risk parity strategies Performance budgeting portfolios

Characterization of the stock/bond market portfolio

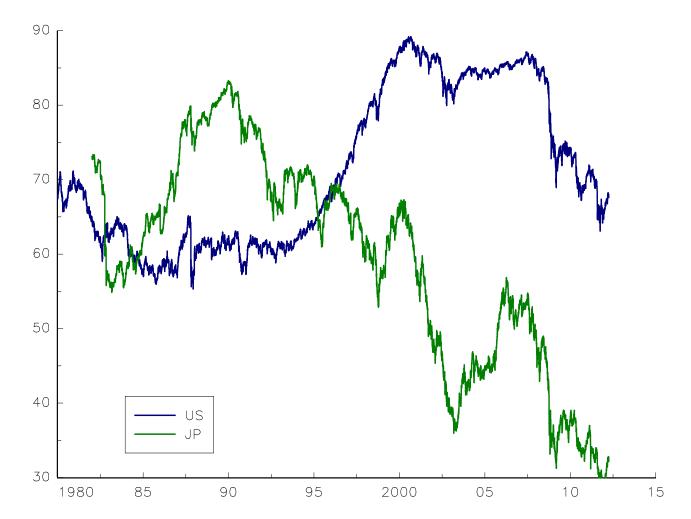


Figure 31: Evolution of the equity weight for United States and Japan

Diversified funds **Risk premium** Risk parity strategies Performance budgeting portfolios

Characterization of the stock/bond market portfolio

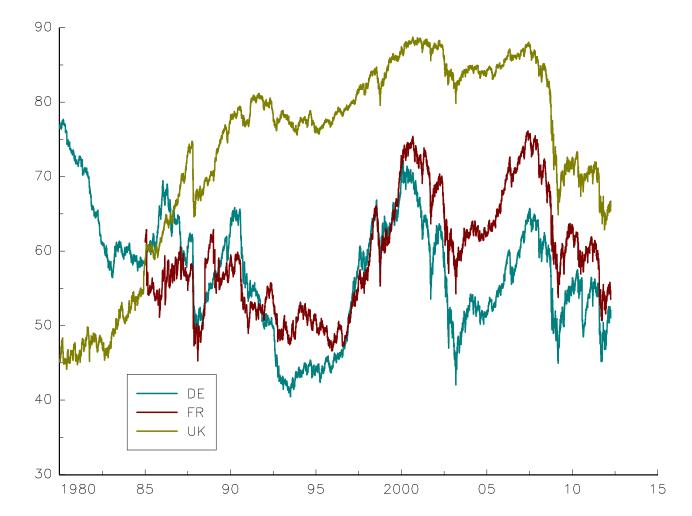


Figure 32: Evolution of the equity weight for Germany, France and UK

Diversified funds **Risk premium** Risk parity strategies Performance budgeting portfolios

Link between risk premium and risk contribution

Let π_i and π_M be the risk premium of Asset *i* and the market risk premium. We have:

$$\pi_{i} = \beta_{i} \cdot \pi_{M}$$

$$= \frac{\operatorname{cov}(R_{i}, R_{M})}{\sigma(R_{M})} \cdot \frac{\pi_{M}}{\sigma(R_{M})}$$

$$= \frac{\partial \sigma(x_{M})}{\partial x_{i}} \cdot \operatorname{SR}(x_{M})$$

The risk premium of Asset *i* is then proportional to the marginal volatility of Asset *i* with respect to the market portfolio

Foundation of the risk budgeting approach

For the tangency portfolio, we have:

performance contribution = risk contribution

Diversified funds **Risk premium** Risk parity strategies Performance budgeting portfolios

Link between risk premium and risk contribution

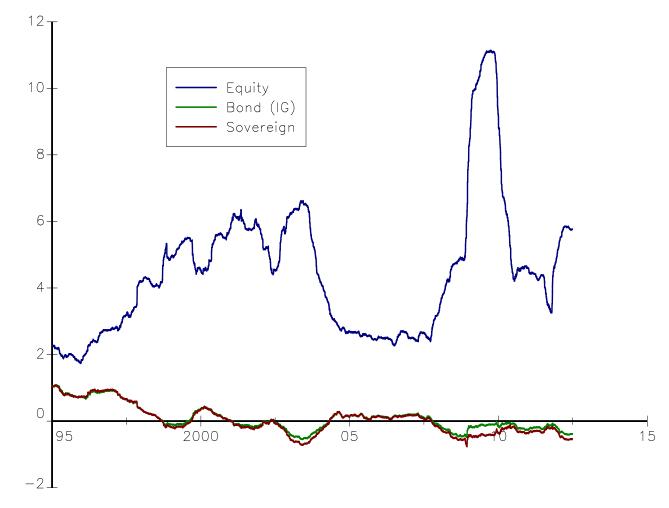
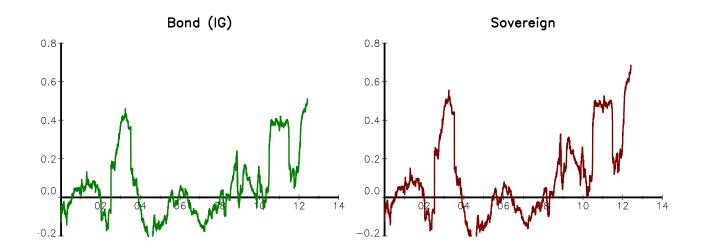


Figure 33: Risk premia (in %) for the US market portfolio (SR (x_M) = 25%)

Diversified tunds **Risk premium** Risk parity strategies Performance budgeting portfolios

Link between risk premium and risk contribution



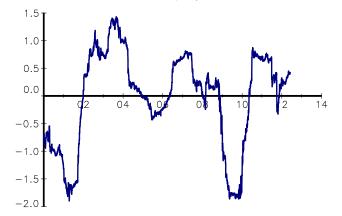


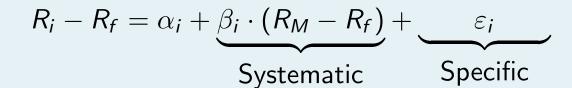
Figure 34: Difference (in %) between EURO and US risk premia $(SR(x_M) = 25\%)$

Diversified funds **Risk premium** Risk parity strategies Performance budgeting portfolios

Sharpe theory of risk premia

The one-factor risk model

We deduce that:



Risk

We necessarily have:

1
$$\alpha_i = 0$$

2 $\mathbb{E}[\varepsilon_i] = 0$

 \Rightarrow On average, only the systematic risk is rewarded, not the idiosyncratic risk

Risk

Diversified funds **Risk premium** Risk parity strategies Performance budgeting portfolios

Sharpe theory of risk premia

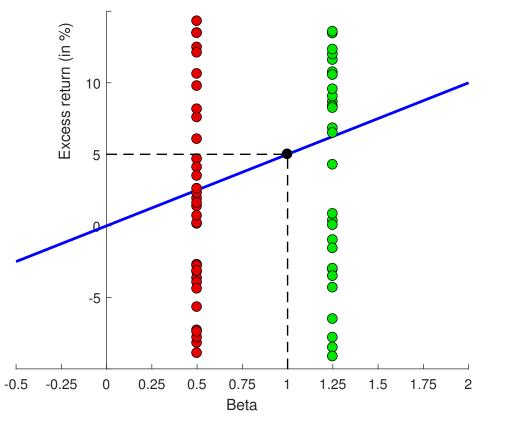


Figure 35: The security market line (SML)

- Risk premium is an increasing function of the systematic risk
- Risk premium may be negative (meaning that some assets can have a return lower than the risk-free asset!)

• More risk \neq more return

Diversified funds **Risk premium** Risk parity strategies Performance budgeting portfolios

Black-Litterman theory of risk premia

In the Black-Litterman model, the expected (or ex-ante/implied) risk premia are equal to:

$$ilde{\pi} = ilde{\mu} - r = \mathrm{SR}\left(x \mid r\right) rac{\Sigma x}{\sqrt{x^{\top}\Sigma x}}$$

where SR(x | r) is the expected Sharpe ratio of the portfolio.

Diversified funds **Risk premium** Risk parity strategies Performance budgeting portfolios

Black-Litterman theory of risk premia

Example 17

We consider four assets. Their expected returns are equal to 5%, 6%, 8% and 6% while their volatilities are equal to 15%, 20%, 25% and 30%. The correlation matrix of asset returns is given by the following matrix:

$$C = \left(\begin{array}{cccc} 1.00 & & & \\ 0.10 & 1.00 & & \\ 0.40 & 0.70 & 1.00 & \\ 0.50 & 0.40 & 0.80 & 1.00 \end{array}\right)$$

We also assume that the return of the risk-free asset is equal to 1.5%.

Diversified funds **Risk premium** Risk parity strategies Performance budgeting portfolios

Black-Litterman theory of risk premia

Table 43: Black-Litterman risk premia (Example 17)

	C/	APM	Black-Litterman				
Asset	π_i	x_i^{\star}	Xi	$ ilde{\pi}_{i}$	Xi	$ ilde{\pi}_i$	
#1	3.50%	63.63%	25.00%	2.91%	40.00%	3.33%	
#2	4.50%	19.27%	25.00%	4.71%	30.00%	4.97%	
#3	6.50%	50.28%	25.00%	7.96%	20.00%	7.69%	
#4	4.50%	-33.17%	25.00%	9.07%	10.00%	8.18%	
$\mu(\mathbf{x})$	6.37%		6.25%		6.00%		
$\sigma(\mathbf{x})$	14.43%		18.27%		15.35%		
$\tilde{\mu}(\mathbf{x})$	6.37%		7.66%		6.68%		

405 / 1420

Risk premium Risk parity strategies Performance budgeting portfolios

Black-Litterman theory of risk premia

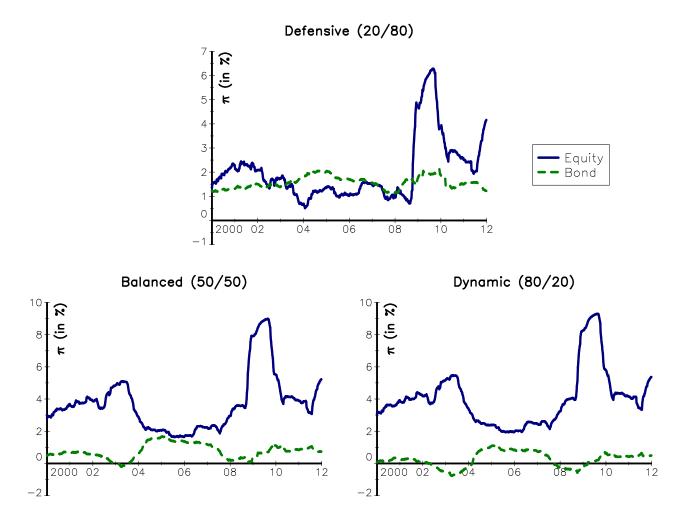


Figure 36: Equity and bond implied risk premia for diversified funds

Diversified funds **Risk premium** Risk parity strategies Performance budgeting portfolios

Performance assets versus hedging assets

• We recall that:

$$ilde{\pi} = \mathrm{SR}\left(x \mid r\right) rac{\partial \, \sigma \left(x
ight)}{\partial \, x}$$

where $\sigma(x)$ is the volatility of portfolio x

• We have:

$$\frac{\partial \sigma (x)}{\partial x_{i}} = \frac{(\Sigma x)_{i}}{\sigma (x)}$$
$$= \frac{\left(x_{i}\sigma_{i}^{2} + \sigma_{i}\sum_{j\neq i}x_{j}\rho_{i,j}\sigma_{j}\right)}{\sigma (x)}$$

• We deduce that

$$\tilde{\pi}_{i} = \operatorname{SR}(x \mid r) \frac{\left(x_{i}\sigma_{i}^{2} + \sigma_{i}\sum_{j \neq i} x_{j}\rho_{i,j}\sigma_{j}\right)}{\sigma(x)}$$

Risk premium Risk parity strategies Performance budgeting portfolios

Performance assets versus hedging assets

In the two-asset case, we obtain:

$$\tilde{\pi}_{1} = c(x) \left(\underbrace{x_{1}\sigma_{1}^{2}}_{\text{variance}} + \underbrace{\rho\sigma_{1}\sigma_{2}(1-x_{1})}_{\text{covariance}} \right)$$

and:

$$\tilde{\pi}_{2} = c(x) \left(\underbrace{x_{2}\sigma_{2}^{2}}_{\text{variance}} + \underbrace{\rho\sigma_{1}\sigma_{2}(1-x_{2})}_{\text{covariance}} \right)$$

where c(x) is equal to $SR(x | r) / \sigma(x)$ and ρ is the cross-correlation between the two asset returns

Diversified funds **Risk premium** Risk parity strategies Performance budgeting portfolios

Performance assets versus hedging assets

In the two-asset case, the implied risk premium becomes:

$$\tilde{\pi}_{i} = \frac{\mathrm{SR}\left(x \mid r\right)}{\sigma\left(x\right)} \left(\underbrace{\frac{x_{i} \cdot \sigma_{i}^{2}}{\underset{\text{variance}}{}} + \underbrace{\left(1 - x_{i}\right) \cdot \rho \sigma_{i} \sigma_{j}}_{\text{covariance}}\right)$$

There are two components in the risk premium:

- a variance risk component, which is an increasing function of the volatility and the weight of the asset
- a (positive or negative) covariance risk component, which depends on the correlation between asset returns

Performance asset versus hedging asset

- When $\tilde{\pi}_i > 0$, the asset *i* is a performance asset for Portfolio *x*
- When $\tilde{\pi}_i < 0$, the asset *i* is a hedging asset for Portfolio *x*

Diversified funds **Risk premium** Risk parity strategies Performance budgeting portfolios

Performance assets versus hedging assets

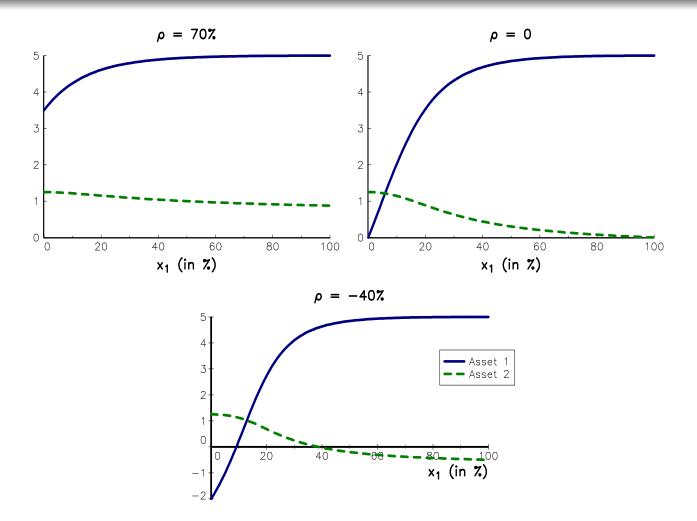


Figure 37: Impact of the correlation on the expected risk premium ($\sigma_1 = 20\%$, $\sigma_2 = 5\%$ and SR (x) = 0.25)

Diversified funds **Risk premium** Risk parity strategies Performance budgeting portfolios

Are bonds performance or hedging assets?

- Stocks are always considered as performance assets, while bonds may be performance or hedging assets, depending on the region and the period⁹
- 1990-2008: (Sovereign) bonds were perceived as performance assets
- The 2008 GFC has strengthened the fly-to-quality characteristic of bonds
- 2013-2017: Bonds are now more and more perceived as hedging assets¹⁰

Diversified stock-bond portfolios \Rightarrow **Deleveraged equity portfolios**

411 / 1420

⁹For instance bonds were hedging assets in 2008 and performance assets in 2011 ¹⁰This is particular true in the US and Europe, where the implied risk premium is negative. In Japan, the implied risk premium continue to be positive

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolios

Diversified versus risk parity funds

Table 44: Statistics of diversified and risk parity portfolios (2000-2012)

Portfolio	$\hat{\mu}_{1Y}$	$\hat{\sigma}_{1\mathrm{Y}}$	SR	\mathcal{MDD}	γ_1	γ_2
Defensive	5.41	6.89	0.42	-17.23	0.19	2.67
Balanced	3.68	9.64	0.12	-33.18	-0.13	3.87
Dynamic	1.70	14.48	-0.06	-48.90	-0.18	5.96
Risk parity	5.12	7.29		$-2\bar{1}.\bar{2}\bar{2}$	0.08	2.65
Static	4.71	7.64	0.29	-23.96	0.03	2.59
Leveraged RP	6.67	9.26	0.45	-23.74	0.01	0.78

- The 60/40 constant mix strategy is not the right benchmark
- Results depend on the investment universe (number/granularity of asset classes)
- What is the impact of rising interest rates?

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolios

Optimality of the RB portfolio

We consider the utility function:

$$\mathcal{U}(\mathbf{x}) = (\mu(\mathbf{x}) - \mathbf{r}) - \phi \mathcal{R}(\mathbf{x})$$

Portfolio x is optimal if the vector of expected risk premia satisfies this relationship:

$$\tilde{\pi} = \phi \frac{\partial \mathcal{R}(x)}{\partial x}$$

If the RB portfolio is optimal, we deduce that the (excess) performance contribution \mathcal{PC}_i of asset *i* is proportional to its risk budget:

$$\mathcal{PC}_i = x_i \tilde{\pi}_i \ = \phi \cdot \mathcal{RC}_i \ \propto b_i$$

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolios

Optimality of the RB portfolio

In the Black-Litterman approach of risk premia, we have:

$$ilde{\pi}_i = ilde{\mu}_i - r = \mathrm{SR}\left(x \mid r\right) rac{(\Sigma x)_i}{\sqrt{x^\top \Sigma x}}$$

This implies that the (excess) performance contribution is equal to:

$$\mathcal{PC}_{i} = \operatorname{SR}(x \mid r) \frac{x_{i} \cdot (\Sigma x)_{i}}{\sqrt{x^{\top} \Sigma x}}$$
$$= \operatorname{SR}(x \mid r) \cdot \mathcal{RC}_{i}$$

where SR(x | r) is the expected Sharpe ratio of the RB portfolio

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolios

Optimality of the RB portfolio

Remark

From an ex-ante point of view, performance budgeting and risk budgeting are equivalent

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolios

Optimality of the RB portfolio

Example 18

We consider a universe of four assets. The volatilities are respectively 10%, 20%, 30% and 40%. The correlation of asset returns is given by the following matrix:

$$\rho = \left(\begin{array}{cccc} 1.00 & & & \\ 0.80 & 1.00 & & \\ 0.20 & 0.20 & 1.00 & \\ 0.20 & 0.20 & 0.50 & 1.00 \end{array}\right)$$

The risk-free rate is equal to zero

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolios

Optimality of the RB portfolio

Table 45: Implied risk premia when b = (20%, 25%, 40%, 15%) (Example 18)

Asset	Xi	\mathcal{MR}_i	$ ilde{\mu}_i$	\mathcal{PC}_i	\mathcal{PC}_{i}^{\star}	
1	40.91	7.10	3.55	1.45	20.00	
2	25.12	14.46	7.23	1.82	25.00	
3	25.26	23.01	11.50	2.91	40.00	
4	8.71	25.04	12.52	1.09	15.00	
Expect	Expected return 7.27					

Table 46: Implied risk premia when b = (10%, 10%, 10%, 70%) (Example 18)

Asset	Xi	\mathcal{MR}_i	$ ilde{\mu}_i$	\mathcal{PC}_i	\mathcal{PC}_i^{\star}
1	35.88	5.27	2.63	0.94	10.00
2	17.94	10.53	5.27	0.94	10.00
3	10.18	18.56	9.28	0.94	10.00
4	35.99	36.75	18.37	6.61	70.00
Expect	ed returi	n		9.45	

417 / 1420

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolios

Main result

There is no neutral allocation. Every portfolio corresponds to an active bet.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Question 1

We note Σ the covariance matrix of asset returns.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Question 1.a

What is the risk contribution \mathcal{RC}_i of asset *i* with respect to portfolio *x*?

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Let $\mathcal{R}(x)$ be a risk measure of the portfolio x. If this risk measure satisfies the Euler principle, we have (TR-RPB, page 78):

$$\mathcal{R}(x) = \sum_{i=1}^{n} x_{i} \frac{\partial \mathcal{R}(x)}{\partial x_{i}}$$

We can then decompose the risk measure as a sum of asset contributions. This is why we define the risk contribution \mathcal{RC}_i of asset *i* as the product of the weight by the marginal risk:

$$\mathcal{RC}_{i} = x_{i} \frac{\partial \mathcal{R}(x)}{\partial x_{i}}$$

When the risk measure is the volatility $\sigma(x)$, it follows that:

$$\mathcal{RC}_{i} = x_{i} \frac{(\Sigma x)_{i}}{\sqrt{x^{\top} \Sigma x}}$$
$$= \frac{x_{i} \left(\sum_{k=1}^{n} \rho_{i,k} \sigma_{i} \sigma_{k} x_{k}\right)}{\sigma(x)}$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Question 1.b

Define the ERC portfolio.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

The ERC portfolio corresponds to the risk budgeting portfolio when the risk measure is the return volatility $\sigma(x)$ and when the risk budgets are the same for all the assets (TR-RPB, page 119). It means that $\mathcal{RC}_i = \mathcal{RC}_j$, that is:

$$x_i rac{\partial \sigma(x)}{\partial x_i} = x_j rac{\partial \sigma(x)}{\partial x_j}$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Question 1.c

Calculate the variance of the risk contributions. Define an optimization program to compute the ERC portfolio. Find an equivalent maximization program based on the \mathcal{L}^2 norm.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

We have:

$$\overline{\mathcal{RC}} = \frac{1}{n} \sum_{i=1}^{n} \mathcal{RC}_{i}$$
$$= \frac{1}{n} \sigma(x)$$

It follows that:

$$\operatorname{var}(\mathcal{RC}) = \frac{1}{n} \sum_{i=1}^{n} \left(\mathcal{RC}_{i} - \overline{\mathcal{RC}}\right)^{2}$$
$$= \frac{1}{n} \sum_{i=1}^{n} \left(\mathcal{RC}_{i} - \frac{1}{n}\sigma(x)\right)^{2}$$
$$= \frac{1}{n^{2}\sigma(x)} \sum_{i=1}^{n} \left(nx_{i}(\Sigma x)_{i} - \sigma^{2}(x)\right)^{2}$$

2

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

To compute the ERC portfolio, we may consider the following optimization program:

$$x^{\star} = \arg\min\sum_{i=1}^{n} \left(nx_i \left(\Sigma x\right)_i - \sigma^2 \left(x\right)\right)^2$$

Because we know that the ERC portfolio always exists (TR-RPB, page 108), the objective function at the optimum x^* is necessarily equal to 0. Another equivalent optimization program is to consider the L^2 norm. In this case, we have (TR-RPB, page 102):

$$x^{\star} = \arg\min\sum_{i=1}^{n}\sum_{j=1}^{n}\left(x_{i}\cdot(\Sigma x)_{i}-x_{j}\cdot(\Sigma x)_{j}\right)^{2}$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Question 1.d

Let $\beta_i(x)$ be the beta of asset *i* with respect to portfolio *x*. Show that we have the following relationship in the ERC portfolio:

$$x_{i}\beta_{i}(x)=x_{j}\beta_{j}(x)$$

Propose a numerical algorithm to find the ERC portfolio.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

We have:

$$\beta_{i}(x) = \frac{(\Sigma x)_{i}}{x^{\top}\Sigma x} \\ = \frac{\mathcal{M}\mathcal{R}_{i}}{\sigma(x)}$$

We deduce that:

$$\mathcal{RC}_{i} = x_{i} \cdot \mathcal{MR}_{i}$$
$$= x_{i}\beta_{i}(x)\sigma(x)$$

The relationship $\mathcal{RC}_i = \mathcal{RC}_j$ becomes:

$$x_{i}\beta_{i}(x)=x_{j}\beta_{j}(x)$$

It means that the weight is inversely proportional to the beta:

$$x_{i} \propto rac{1}{eta_{i}\left(x
ight)}$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

We can use the Jacobi power algorithm (TR-RPB, page 308). Let $x^{(k)}$ be the portfolio at iteration k. We define the portfolio $x^{(k+1)}$ as follows:

$$x^{(k+1)} = \frac{\beta_i^{-1}(x^{(k)})}{\sum_{j=1}^n \beta_j^{-1}(x^{(k)})}$$

Starting from an initial portfolio $x^{(0)}$, the limit portfolio is the ERC portfolio if the algorithm converges:

$$\lim_{k\to\infty} x^{(k)} = x_{\rm erc}$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Question 1.e

We suppose that the volatilities are 15%, 20% and 25% and that the correlation matrix is:

$$p = \left(egin{array}{cccc} 100\% & & \ 50\% & 100\% & \ 40\% & 30\% & 100\% \end{array}
ight)$$

Compute the ERC portfolio using the beta algorithm.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Starting from the EW portfolio, we obtain for the first five iterations:

k	0	1	2	3	4	5
$x_1^{(k)}$ (in %)	33.3333	43.1487	40.4122	41.2314	40.9771	41.0617
$x_{2}^{(k)}$ (in %)	33.3333	32.3615	31.9164	32.3529	32.1104	32.2274
$x_{3}^{(k)}$ (in %)	33.3333	24.4898	27.6714	26.4157	26.9125	26.7109
$\left[-\overline{\beta_1} \left(\overline{x^{(k)}} \right)^{-} \right]$	0.7326	0.8341	0.8046	0.8147	0.8113	0.8126
$\beta_2(x^{(k)})$	0.9767	1.0561	1.0255	1.0397	1.0337	1.0363
$\beta_3(x^{(k)})$	1.2907	1.2181	1.2559	1.2405	1.2472	1.2444

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

The next iterations give the following results:

k	6	7	8	9	10	11
$x_1^{(k)}$ (in %)	41.0321	41.0430	41.0388	41.0405	41.0398	41.0401
$x_{2}^{(k)}$ (in %)	32.1746	32.1977	32.1878	32.1920	32.1902	32.1909
$x_{3}^{(k)}$ (in %)	26.7933	26.7593	26.7734	26.7676	26.7700	26.7690
$\begin{bmatrix} -\overline{\beta_1} (\overline{x^{(k)}}) \end{bmatrix}$	0.8121	0.8123	0.8122	0.8122	0.8122	0.8122
$\beta_2(x^{(k)})$	1.0352	1.0356	1.0354	1.0355	1.0355	1.0355
$\beta_3(x^{(k)})$	1.2456	1.2451	1.2453	1.2452	1.2452	1.2452

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Finally, the algorithm converges after 14 iterations with the following stopping criteria:

$$\sup_{i} \left| x_{i}^{(k+1)} - x_{i}^{(k)} \right| \le 10^{-6}$$

and we obtain the following results:

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	41.04%	12.12%	4.97%	33.33%
2	32.19%	15.45%	4.97%	33.33%
3	26.77%	18.58%	4.97%	33.33%

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Question 2

We now suppose that the return of asset *i* satisfies the CAPM model:

$$R_i = \beta_i R_m + \varepsilon_i$$

where R_m is the return of the market portfolio and ε_i is the idiosyncratic risk. We note $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n)$. We assume that $R_m \perp \varepsilon$, $\operatorname{var}(R_m) = \sigma_m^2$ and $\operatorname{cov}(\varepsilon) = D = \operatorname{diag}(\tilde{\sigma}_1^2, \ldots, \tilde{\sigma}_n^2)$.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Question 2.a

Calculate the risk contribution \mathcal{RC}_i .

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

We have:

$$\boldsymbol{\Sigma} = \boldsymbol{\beta} \boldsymbol{\beta}^{\top} \boldsymbol{\sigma}_{m}^{2} + \operatorname{diag}\left(\tilde{\sigma}_{1}^{2}, \ldots, \tilde{\sigma}_{n}^{2}\right)$$

We deduce that:

$$\mathcal{RC}_{i} = \frac{x_{i} \left(\sum_{k=1}^{n} \beta_{i} \beta_{k} \sigma_{m}^{2} x_{k} + \tilde{\sigma}_{i}^{2} x_{i}\right)}{\tilde{\sigma}(x)}$$
$$= \frac{x_{i} \beta_{i} B + x_{i}^{2} \tilde{\sigma}_{i}^{2}}{\sigma(x)}$$

with:

$$B = \sum_{k=1}^{n} x_k \beta_k \sigma_m^2$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Question 2.b

We assume that $\beta_i = \beta_j$. Show that the ERC weight x_i is a decreasing function of the idiosyncratic volatility $\tilde{\sigma}_i$.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Using Equation 2.a, we deduce that the ERC portfolio satisfies:

$$x_i\beta_iB + x_i^2\tilde{\sigma}_i^2 = x_j\beta_jB + x_j^2\tilde{\sigma}_j^2$$

or:

$$(x_i\beta_i - x_j\beta_j)B = (x_j^2\tilde{\sigma}_j^2 - x_i^2\tilde{\sigma}_i^2)$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

If $\beta_i = \beta_j = \beta$, we have:

$$(x_i - x_j) \beta B = (x_j^2 \tilde{\sigma}_j^2 - x_i^2 \tilde{\sigma}_i^2)$$

Because $\beta > 0$, we deduce that:

$$\begin{array}{ll} x_i > x_j & \Leftrightarrow & x_j^2 \tilde{\sigma}_j^2 - x_i^2 \tilde{\sigma}_i^2 > 0 \\ & \Leftrightarrow & x_j \tilde{\sigma}_j > x_i \tilde{\sigma}_i \\ & \Leftrightarrow & \tilde{\sigma}_i < \tilde{\sigma}_j \end{array}$$

We conclude that the weight x_i is a decreasing function of the specific volatility $\tilde{\sigma}_i$.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Question 2.c

We assume that $\tilde{\sigma}_i = \tilde{\sigma}_j$. Show that the ERC weight x_i is a decreasing function of the sensitivity β_i to the common factor.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

If
$$\tilde{\sigma}_i = \tilde{\sigma}_j = \tilde{\sigma}$$
, we have:

$$(x_i\beta_i - x_j\beta_j) B = (x_j^2 - x_i^2) \tilde{\sigma}^2$$

We deduce that:

$$\begin{array}{ll} x_i > x_j & \Leftrightarrow & \left(x_i \beta_i - x_j \beta_j \right) B < 0 \\ & \Leftrightarrow & x_i \beta_i < x_j \beta_j \\ & \Leftrightarrow & \beta_i < \beta_j \end{array}$$

We conclude that the weight x_i is a decreasing function of the sensitivity β_i .

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Question 2.d

We consider the numerical application: $\beta_1 = 1$, $\beta_2 = 0.9$, $\beta_3 = 0.8$, $\beta_4 = 0.7$, $\tilde{\sigma}_1 = 5\%$, $\tilde{\sigma}_2 = 5\%$, $\tilde{\sigma}_3 = 10\%$, $\tilde{\sigma}_4 = 10\%$, and $\sigma_m = 20\%$. Find the ERC portfolio.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

We obtain the following results:

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	21.92%	19.73%	4.32%	25.00%
2	24.26%	17.83%	4.32%	25.00%
3	25.43%	17.00%	4.32%	25.00%
4	28.39%	15.23%	4.32%	25.00%

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

Question 1

We consider the Lorenz curve defined by:

We assume that \mathbb{L} is an increasing function and $\mathbb{L}(x) > x$.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

Question 1.a

Represent graphically the function \mathbb{L} and define the Gini coefficient \mathcal{G} associated with \mathbb{L} .

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

We have represented the function $y = \mathcal{L}(x)$ in Figure 38. It verifies $\mathcal{L}(x) \ge x$ and $\mathcal{L}(x) \le 1$. The Gini coefficient is defined as follows (TR-RPB, page 127):

$$G = \frac{A}{A+B}$$
$$= \left(\int_0^1 \mathcal{L}(x) \, \mathrm{d}x - \frac{1}{2}\right) / \frac{1}{2}$$
$$= 2\int_0^1 \mathcal{L}(x) \, \mathrm{d}x - 1$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

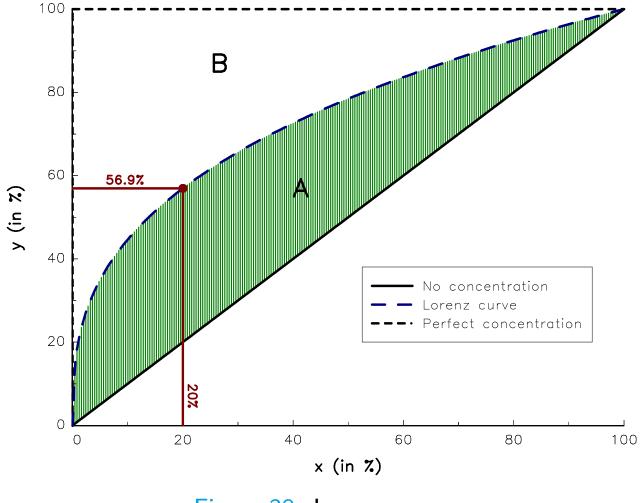


Figure 38: Lorenz curve

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

Question 1.b

We set $\mathbb{L}_{\alpha}(x) = x^{\alpha}$ with $\alpha \geq 0$. Is the function \mathbb{L}_{α} a Lorenz curve? Calculate the Gini coefficient $\mathcal{G}(\alpha)$ with respect to α . Deduce $\mathcal{G}(0)$, $\mathcal{G}(\frac{1}{2})$ and $\mathcal{G}(1)$.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

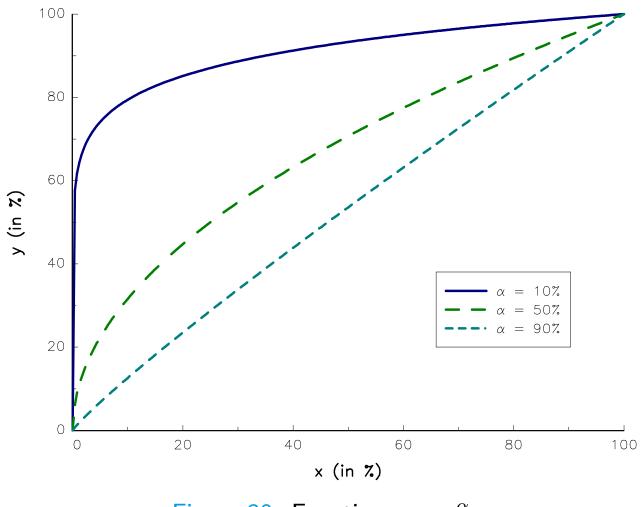


Figure 39: Function $y = x^{\alpha}$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

If $\alpha \geq 0$, the function $\mathcal{L}_{\alpha}(x) = x^{\alpha}$ is increasing. We have $\mathcal{L}_{\alpha}(1) = 1$, $\mathcal{L}_{\alpha}(x) \leq 1$ and $\mathcal{L}_{\alpha}(x) \geq x$. We deduce that \mathcal{L}_{α} is a Lorenz curve. For the Gini index, we have:

$$\mathcal{G}(\alpha) = 2 \int_0^1 x^{\alpha} \, \mathrm{d}x - 1$$
$$= 2 \left[\frac{x^{\alpha+1}}{\alpha+1} \right]_0^1 - 1$$
$$= \frac{1-\alpha}{1+\alpha}$$

We deduce that $\mathcal{G}(0) = 1$, $\mathcal{G}(\frac{1}{2}) = \frac{1}{3}$ et $\mathcal{G}(1) = 0$. $\alpha = 0$ corresponds to the perfect concentration whereas $\alpha = 1$ corresponds to the perfect equality.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

Question 2

Let w be a portfolio of n assets. We suppose that the weights are sorted in a descending order: $w_1 \ge w_2 \ge \ldots \ge w_n$.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

Question 2.a

We define $\mathbb{L}_{w}(x)$ as follows:

$$\mathbb{L}_{w}\left(x
ight)=\sum_{j=1}^{i}w_{j}$$
 if $rac{i}{n}\leq x<rac{i+1}{n}$

with $\mathbb{L}_w(0) = 0$. Is the function \mathbb{L}_w a Lorenz curve ? Calculate the Gini coefficient with respect to the weights w_i . In which cases does \mathcal{G} take the values 0 and 1?

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

We have $\mathcal{L}_w(0) = 0$ and $\mathcal{L}_w(1) = \sum_{j=1}^n w_j = 1$. If $x_2 \ge x_1$, we have $\mathcal{L}_w(x_2) \ge \mathcal{L}_w(x_2)$. \mathcal{L}_w is then a Lorenz curve. The Gini coefficient is equal to:

$$\mathcal{G} = 2 \int_0^1 \mathcal{L}(x) \, \mathrm{d}x - 1$$
$$= \frac{2}{n} \sum_{i=1}^n \sum_{j=1}^i w_j - 1$$

If $w_j = n^{-1}$, we have:

$$\lim_{n \to \infty} \mathcal{G} = \lim_{n \to \infty} \frac{2}{n} \sum_{i=1}^{n} \frac{i}{n} - 1$$
$$= \lim_{n \to \infty} \frac{2}{n} \cdot \frac{n(n+1)}{2n} - 1$$
$$= \lim_{n \to \infty} \frac{1}{n} = 0$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

If $w_1 = 1$, we have:

$$\lim_{n \to \infty} \mathcal{G} = \lim_{n \to \infty} 1 - \frac{1}{n}$$
$$= 1$$

We note that the perfect equality does not correspond to the case $\mathcal{G} = 0$ except in the asymptotic case. This is why we may slightly modify the definition of $\mathcal{L}_w(x)$:

$$\mathcal{L}_{w}(x) = \begin{cases} \sum_{j=1}^{i} w_{j} & \text{if } x = n^{-1}i \\ \sum_{j=1}^{i} w_{j} + w_{i+1}(nx-i) & \text{if } n^{-1}i < x < n^{-1}(i+1) \end{cases}$$

While the previous definition corresponds to a constant piecewise function, this one defines an affine piecewise function. In this case, the computation of the Gini index is done using a trapezoidal integration:

$$\mathcal{G} = \frac{2}{n} \left(\sum_{i=1}^{n-1} \sum_{j=1}^{i} w_j + \frac{1}{2} \right) - 1$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

Question 2.b

The definition of the Herfindahl index is:

$$\mathcal{H} = \sum_{i=1}^{n} w_i^2$$

In which cases does \mathcal{H} take the value 1? Show that \mathcal{H} reaches its maximum when $w_i = n^{-1}$. What is the interpretation of this result?

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

The Herfindahl index is equal to 1 if the portfolio is concentrated in only one asset. We seek to minimize $\mathcal{H} = \sum_{i=1}^{n} w_i^2$ under the constraint $\sum_{i=1}^{n} w_i = 1$. The Lagrange function is then:

$$f(w_1,\ldots,w_n;\lambda) = \sum_{i=1}^n w_i^2 - \lambda \left(\sum_{i=1}^n w_i - 1\right)$$

The first-order conditions are $2w_i - \lambda = 0$. We deduce that $w_i = w_j$. \mathcal{H} reaches its minimum when $w_i = n^{-1}$. It corresponds to the equally weighted portfolio. In this case, we have:

$$\mathcal{H}=rac{1}{n}$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

Question 2.c

We set $\mathcal{N} = \mathcal{H}^{-1}$. What does the statistic \mathcal{N} mean?

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The statistic \mathcal{N} is the degree of freedom or the equivalent number of equally weighted assets. For instance, if $\mathcal{H} = 0.5$, then $\mathcal{N} = 2$. It is a portfolio equivalent to two equally weighted assets.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

Question 3

We consider an investment universe of five assets. We assume that their asset returns are not correlated. The volatilities are given in the table below:

σ_i	2%	5%	10%	20%	30%
$W_i^{(1)}$		10%	20%	30%	40%
$W_i^{(2)}$	40%	20%		30%	10%
$W_i^{(3)}$	20%	15%	25%	35%	5%

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

Question 3.a

Find the minimum variance portfolio $w^{(4)}$.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

The minimum variance portfolio is equal to:

$$w^{(4)} = \begin{pmatrix} 82.342\% \\ 13.175\% \\ 3.294\% \\ 0.823\% \\ 0.366\% \end{pmatrix}$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

Question 3.b

Calculate the Gini and Herfindahl indices and the statistic \mathcal{N} for the four portfolios $w^{(1)}$, $w^{(2)}$, $w^{(3)}$ and $w^{(4)}$.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

For each portfolio, we sort the weights in descending order. For the portfolio $w^{(1)}$, we have $w_1^{(1)} = 40\%$, $w_2^{(1)} = 30\%$, $w_3^{(1)} = 20\%$, $w_4^{(1)} = 10\%$ and $w_5^{(1)} = 0\%$. It follows that:

$$\mathcal{H}(w^{(1)}) = \sum_{i=1}^{5} (w_i^{(1)})^2$$

= 0.10² + 0.20² + 0.30² + 0.40²
= 0.30

We also have:

 \mathcal{G}

$$\begin{pmatrix} w^{(1)} \end{pmatrix} = \frac{2}{5} \left(\sum_{i=1}^{4} \sum_{j=1}^{i} \tilde{w}_{j}^{(1)} + \frac{1}{2} \right) - 1$$

$$= \frac{2}{5} \left(0.40 + 0.70 + 0.90 + 1.00 + \frac{1}{2} \right) - 1$$

$$= 0.40$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

For the portfolios $w^{(2)}$, $w^{(3)}$ and $w^{(4)}$, we obtain $\mathcal{H}(w^{(2)}) = 0.30$, $\mathcal{H}(w^{(3)}) = 0.25$, $\mathcal{H}(w^{(4)}) = 0.70$, $\mathcal{G}(w^{(2)}) = 0.40$, $\mathcal{G}(w^{(3)}) = 0.28$ and $\mathcal{G}(w^{(4)}) = 0.71$. We have $\mathcal{N}(w^{(2)}) = \mathcal{N}(w^{(1)}) = 3.33$, $\mathcal{N}(w^{(3)}) = 4.00$ and $\mathcal{N}(w^{(4)}) = 1.44$.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

Question 3.c

Comment on these results. What differences do you make between portfolio concentration and portfolio diversification?

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

All the statistics show that the least concentrated portfolio is $w^{(3)}$. The most concentrated portfolio is paradoxically the minimum variance portfolio $w^{(4)}$. We generally assimilate variance optimization to diversification optimization. We show in this example that diversifying in the Markowitz sense does not permit to minimize the concentration.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Question 1

We consider four assets. Their volatilities are equal to 10%, 15%, 20% and 25% whereas the correlation matrix of asset returns is:

$$\rho = \begin{pmatrix} 100\% & & & \\ 60\% & 100\% & & \\ 40\% & 40\% & 100\% & \\ 30\% & 30\% & 20\% & 100\% \end{pmatrix}$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Question 1.a

Find the long-only minimum variance, ERC and equally weighted portfolios.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

The weights of the three portfolios are:

Asset	MV	ERC	EW
1	87.51%	37.01%	25.00%
2	4.05%	24.68%	25.00%
3	4.81%	20.65%	25.00%
4	3.64%	17.66%	25.00%

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Question 1.b

We consider the following portfolio optimization problem:

$$x^{\star}(c) = \arg \min \sqrt{x^{\top} \Sigma x}$$
(1)
u.c.
$$\begin{cases} \sum_{i=1}^{n} \ln x_{i} \ge c \\ \mathbf{1}_{n}^{\top} x = 1 \\ x \ge \mathbf{0}_{n} \end{cases}$$

with Σ the covariance matrix of asset returns. We note λ_c and λ_0 the Lagrange coefficients associated with the constraints $\sum_{i=1}^{n} \ln x_i \ge c$ and $\mathbf{1}_n^\top x = 1$. Write the Lagrange function of the optimization problem. Deduce then an equivalent optimization problem that is easier to solve than Problem (1).

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

The Lagrange function is:

$$\mathcal{L}(x;\lambda,\lambda_0,\lambda_c) = \sqrt{x^{\top}\Sigma x} - \lambda^{\top}x - \lambda_0 \left(\mathbf{1}_n^{\top}x - 1\right) - \lambda_c \left(\sum_{i=1}^n \ln x_i - c\right)$$

$$= \left(\sqrt{x^{\top}\Sigma x} - \lambda_c \sum_{i=1}^n \ln x_i\right) - \lambda^{\top}x - \lambda_0 \left(\mathbf{1}_n^{\top}x - 1\right) + \lambda_c c$$

We deduce that an equivalent optimization problem is:

$$\begin{split} \tilde{x}^{\star} \left(\lambda_{c} \right) &= \arg \min \sqrt{\tilde{x}^{\top} \Sigma \tilde{x}} - \lambda_{c} \sum_{i=1}^{n} \ln \tilde{x}_{i} \\ \text{u.c.} & \left\{ \begin{array}{l} \mathbf{1}_{n}^{\top} \tilde{x} = 1 \\ \tilde{x} \geq \mathbf{0}_{n} \end{array} \right. \end{split}$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

We notice a strong difference between the two problems because they don't use the same control variable. However, the control variable c of the first problem may be deduced from the solution of the second problem:

$$c = \sum_{i=1}^{n} \ln \tilde{x}_{i}^{\star} \left(\lambda_{c} \right)$$

We also know that (TR-RPB, page 131):

$$c_{-} \leq \sum_{i=1}^{n} \ln x_i \leq c_{+}$$

where $c_{-} = \sum_{i=1}^{n} \ln (x_{mv})_i$ and $c_{+} = -n \ln n$. It follows that:

$$\left\{ egin{array}{ll} x^{\star}\left(c
ight)= ilde{x}^{\star}\left(0
ight) & ext{if } c\leq c_{-} \ x^{\star}\left(c
ight)= ilde{x}^{\star}\left(\infty
ight) & ext{if } c\geq c_{+} \end{array}
ight.$$

If $c \in]c_-, c_+[$, there exists a scalar $\lambda_c > 0$ such that:

$$x^{\star}(c) = \tilde{x}^{\star}(\lambda_{c})$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Question 1.c

Represent the relationship between λ_c and $\sigma(x^*(c))$, c and $\sigma(x^*(c))$ and $\mathcal{I}^*(x^*(c))$ and $\sigma(x^*(c))$ where $\mathcal{I}^*(x)$ is the diversity index of the weights.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

For a given value $\lambda_c \in [0, +\infty[$, we solve numerically the second problem and find the optimized portfolio $\tilde{x}^*(\lambda_c)$. Then, we calculate $c = \sum_{i=1}^n \ln \tilde{x}_i^*(\lambda_c)$ and deduce that $x^*(c) = \tilde{x}^*(\lambda_c)$. We finally obtain $\sigma(x^*(c)) = \sigma(\tilde{x}^*(\lambda_c))$ and $\mathcal{I}^*(x^*(c)) = \mathcal{I}^*(\tilde{x}^*(\lambda_c))$. The relationships between λ_c , c, $\mathcal{I}^*(x^*(c))$ and $\sigma(x^*(c))$ are reported in Figure 40.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

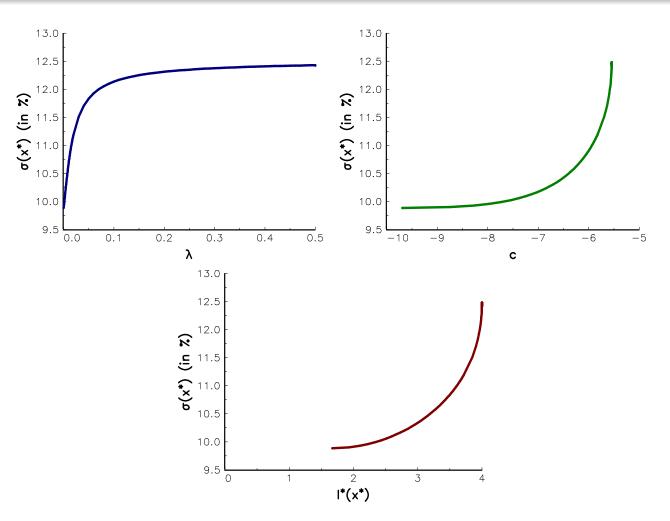


Figure 40: Relationship between λ_{c} , c, $\mathcal{I}^{\star}(x^{\star}(c))$ and $\sigma(x^{\star}(c))$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Question 1.d

Represent the relationship between λ_c and $\mathcal{I}^*(\mathcal{RC})$, c and $\mathcal{I}^*(\mathcal{RC})$ and $\mathcal{I}^*(\mathcal{RC})$ and $\mathcal{I}^*(\mathcal{RC})$ where $\mathcal{I}^*(\mathcal{RC})$ is the diversity index of the risk contributions.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

If we consider $\mathcal{I}^{\star}(\mathcal{RC})$ in place of $\sigma(x^{\star}(c))$, we obtain Figure 41.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

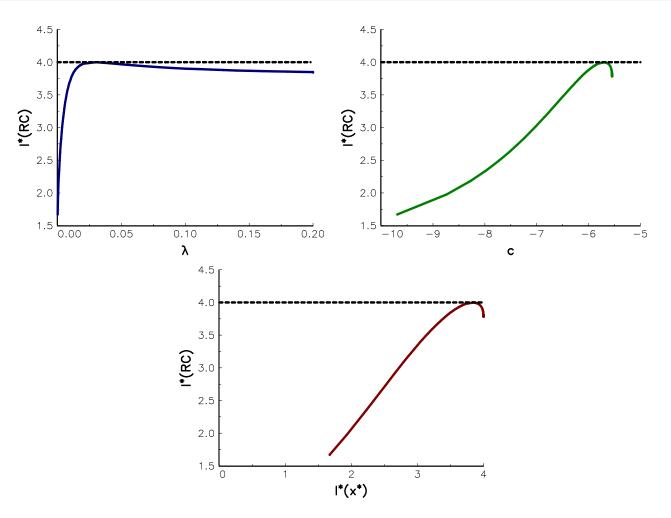


Figure 41: Relationship between λ_c , c, $\mathcal{I}^{\star}(x^{\star}(c))$ and $\mathcal{I}^{\star}(\mathcal{RC})$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Question 1.e

Draw the relationship between $\sigma(x^*(c))$ and $\mathcal{I}^*(\mathcal{RC})$. Identify the ERC portfolio.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

In Figure 42, we have reported the relationship between $\sigma(x^*(c))$ and $\mathcal{I}^*(\mathcal{RC})$. The ERC portfolio satisfies the equation $\mathcal{I}^*(\mathcal{RC}) = n$.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

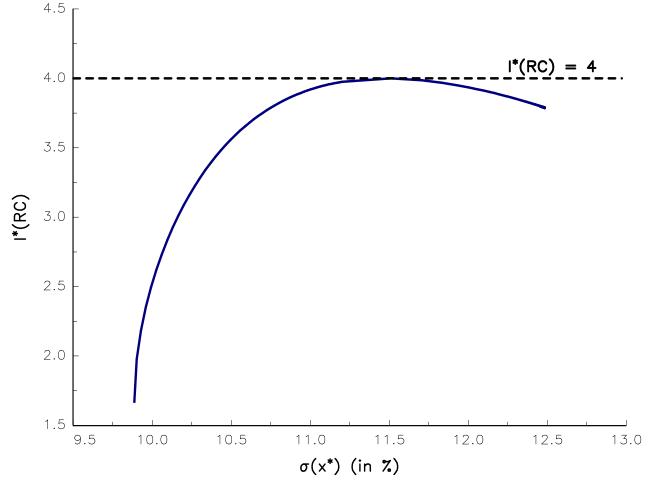


Figure 42: Relationship between $\sigma(x^{\star}(c))$ and $\mathcal{I}^{\star}(\mathcal{RC})$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Question 2

We now consider a slight modification of the previous optimization problem:

$$x^{*}(c) = \arg \min \sqrt{x^{\top} \Sigma x}$$
(2)
u.c.
$$\begin{cases} \sum_{i=1}^{n} \ln x_{i} \ge c \\ x \ge \mathbf{0}_{n} \end{cases}$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Question 2.a

Why does the optimization problem (1) not define the ERC portfolio?

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Let us consider the optimization problem when we impose the constraint $\mathbf{1}_n^{\top} x = 1$. The first-order condition is:

$$\frac{\partial \sigma (x)}{\partial x_i} - \lambda_i - \lambda_0 - \frac{\lambda_c}{x_i} = 0$$

Because $x_i > 0$, we deduce that $\lambda_i = 0$ and:

$$x_{i}\frac{\partial \sigma \left(x\right) }{\partial x_{i}}=\lambda_{0}x_{i}+\lambda_{c}$$

If this solution corresponds to the ERC portfolio, we obtain:

$$\mathcal{RC}_i = \mathcal{RC}_j \Leftrightarrow \lambda_0 x_i + \lambda_c = \lambda_0 x_j + \lambda_c$$

If $\lambda_0 \neq 0$, we deduce that:

$$x_i = x_j$$

It corresponds to the EW portfolio meaning that the assumption $\mathcal{RC}_i = \mathcal{RC}_i$ is false.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Question 2.b

Find the optimized portfolio of the optimization problem (2) when c is equal to -10. Calculate the corresponding risk allocation.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

If c is equal to -10, we obtain the following results:

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	12.65%	7.75%	0.98%	25.00%
2	8.43%	11.63%	0.98%	25.00%
3	7.06%	13.89%	0.98%	25.00%
4	6.03%	16.25%	0.98%	25.00%
 $\overline{\sigma(x)}^{-}$			3.92%	

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Question 2.c

Same question if c = 0.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

If c is equal to 0, we obtain the following results:

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	154.07%	7.75%	11.94%	25.00%
2	102.72%	11.63%	11.94%	25.00%
3	85.97%	13.89%	11.94%	25.00%
4	73.50%	16.25%	11.94%	25.00%
$\overline{\sigma}(\overline{x})$			47.78%	

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Question 2.d

Demonstrate then that the solution to the second optimization problem is:

$$x^{\star}(c) = \exp\left(\frac{c-c_{\mathrm{erc}}}{n}\right) x_{\mathrm{erc}}$$

where $c_{\text{erc}} = \sum_{i=1}^{n} \ln x_{\text{erc},i}$. Comment on this result.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

In this case, the first-order condition is:

$$\frac{\partial \sigma(x)}{\partial x_i} - \lambda_i - \frac{\lambda_c}{x_i} = 0$$

As previously, $\lambda_i = 0$ because $x_i > 0$ and we obtain:

$$x_{i}\frac{\partial \sigma \left(x\right) }{\partial x_{i}}=\lambda_{a}$$

The solution of the second optimization problem is then a non-normalized ERC portfolio because $\sum_{i=1}^{n} x_i$ is not necessarily equal to 1. If we note $c_{\text{erc}} = \sum_{i=1}^{n} \ln (x_{\text{erc}})_i$, we deduce that:

$$\begin{array}{rcl} x_{\mathrm{erc}} & = & \arg\min\sqrt{x^{\top}\Sigma x} \\ & & \text{u.c.} & \left\{ \begin{array}{c} \sum_{i=1}^{n}\ln x_{i} \geq c_{\mathrm{erc}} \\ & x \geq \mathbf{0}_{n} \end{array} \right. \end{array}$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Let $x^{\star}(c)$ be the portfolio defined by:

$$x^{\star}(c) = \exp\left(\frac{c-c_{\mathrm{erc}}}{n}\right) x_{\mathrm{erc}}$$

We have $x^{\star}(c) > \mathbf{0}_n$,

$$\sqrt{x^{\star}(c)^{\top}\Sigma x^{\star}(c)} = \exp\left(\frac{c-c_{\mathrm{erc}}}{n}\right)\sqrt{x_{\mathrm{erc}}^{\top}\Sigma x_{\mathrm{erc}}}$$

and:

$$\sum_{i=1}^{n} \ln x_{i}^{\star}(c) = \sum_{i=1}^{n} \ln \left(\exp \left(\frac{c - c_{\text{erc}}}{n} \right) x_{\text{erc}} \right)_{i}$$
$$= c - c_{\text{erc}} + \sum_{i=1}^{n} \ln (x_{\text{erc}})_{i}$$
$$= c$$

We conclude that $x^{*}(c)$ is the solution of the optimization problem.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

 $x^{\star}(c)$ is then a leveraged ERC portfolio if $c > c_{\text{erc}}$ and a deleveraged ERC portfolio if $c < c_{\text{erc}}$.

In our example, $c_{\rm erc}$ is equal to -5.7046. If c = -10, we have:

$$\exp\left(\frac{c-c_{\rm erc}}{n}\right) = 34.17\%$$

We verify that the solution of Question 2.b is such that $\sum_{i=1}^{n} x_i = 34.17\%$ and $RC_i^{\star} = RC_i^{\star}$.

If c = 0, we obtain:

$$\exp\left(\frac{c-c_{\rm erc}}{n}\right) = 416.26\%$$

In this case, the solution is a leveraged ERC portfolio.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Question 2.e

Show that there exists a scalar c such that the Lagrange coefficient λ_0 of the optimization problem (1) is equal to zero. Deduce then that the volatility of the ERC portfolio is between the volatility of the long-only minimum variance portfolio and the volatility of the equally weighted portfolio:

 $\sigma(\mathbf{x}_{\mathrm{mv}}) \leq \sigma(\mathbf{x}_{\mathrm{erc}}) \leq \sigma(\mathbf{x}_{\mathrm{ew}})$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

From the previous question, we know that the ERC optimization portfolio is the solution of the second optimization problem if we use $c_{\rm erc}$ for the control variable. In this case, we have $\sum_{i=1}^{n} x_i^* (c_{\rm erc}) = 1$ meaning that $x_{\rm erc}$ is also the solution of the first optimization problem. We deduce that $\lambda_0 = 0$ if $c = c_{\rm erc}$. The first optimization problem is a convex problem with a convex inequality constraint. The objective function is then an increasing function of the control variable c:

$$c_{1} \leq c_{2} \Rightarrow \sigma\left(x^{\star}\left(c_{1}\right)\right) \geq \sigma\left(x^{\star}\left(c_{2}\right)\right)$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

We have seen that the minimum variance portfolio corresponds to $c = -\infty$, that the EW portfolio is obtained with $c = -n \ln n$ and that the ERC portfolio is the solution of the optimization problem when c is equal to $c_{\rm erc}$. Moreover, we have $-\infty \leq c_{\rm erc} \leq -n \ln n$. We deduce that the volatility of the ERC portfolio is between the volatility of the long-only minimum variance portfolio and the volatility of the equally weighted portfolio:

 $\sigma(\mathbf{x}_{\mathrm{mv}}) \leq \sigma(\mathbf{x}_{\mathrm{erc}}) \leq \sigma(\mathbf{x}_{\mathrm{ew}})$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

Question 1

We consider a universe of three asset classes^a which are stocks (S), bonds (B) and commodities (C). We have computed the one-year historical covariance matrix of asset returns for different dates and we obtain the following results (all the numbers are expressed in %):

	31/12/1999			3	31/12/2002			30/12/2005		
σ_i	12.40	5.61	12.72	20.69	7.36	13.59	7.97	7.01	16.93	
[100.00			100.00			100.00			
$\rho_{i,j}$	-5.89	100.00		-36.98	100.00		29.25	100.00		
	-4.09	-7.13	100.00	22.74	-13.12	100.00	15.75	15.05	100.00	
	31/12/2007		31/12/2008			31/12/2010				
σ_i	12.94	5.50	14.54	33.03	9.73	29.00	16.73	6.88	16.93	
[100.00	-25.76		100.00			100.00			
$\rho_{i,j}$	-25.76	100.00		-16.26	100.00		15.31	100.00		
	31.91	6.87	100.00	47.31	9.13	100.00	64.13	15.46	100.00	

^aIn fact, we use the MSCI World index, the Citigroup WGBI index and the DJ UBS Commodity index to represent these asset classes.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

Question 1.a

Compute the weights and the volatility of the risk parity^a (RP portfolio) portfolios for the different dates.

^aHere, risk parity refers to the ERC portfolio when we do not take into account the correlations.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

The RP portfolio is defined as follows:

$$x_i = \frac{\sigma_i^{-1}}{\sum_{j=1}^n \sigma_j^{-1}}$$

We obtain the following results:

Date	1999	2002	2005	2007	2008	2010
S	23.89%	18.75%	38.35%	23.57%	18.07%	22.63%
B	52.81%	52.71%	43.60%	55.45%	61.35%	55.02%
C	23.29%	28.54%	18.05%	20.98%	20.58%	22.36%
$\begin{bmatrix} \overline{\sigma} (\overline{x}) \end{bmatrix}$	4.83%	6.08%	6.26%	5.51%	$1\overline{1}.\overline{6}4\overline{\%}$	8.38%

498 / 1420

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

Question 1.b

Same question by considering the ERC portfolio.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

In the ERC portfolio, the risk contributions are equal for all the assets:

$$\mathcal{RC}_i = \mathcal{RC}_j$$

with:

$$\mathcal{RC}_i = \frac{x_i \cdot (\Sigma x)_i}{\sqrt{x^\top \Sigma x}} \tag{3}$$

We obtain the following results:

Date	1999	2002	2005	2007	2008	2010
S	23.66%	18.18%	37.85%	23.28%	17.06%	20.33%
B	53.12%	58.64%	43.18%	59.93%	66.39%	59.61%
C	23.22%	23.18%	18.97%	16.79%	16.54%	20.07%
$\begin{bmatrix} \overline{\sigma} (\overline{x}) \end{bmatrix}$	4.82%	5.70%	6.32%	5.16%	10.77%	7.96%

500 / 1420

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

Question 1.c

What do you notice about the volatility of RP and ERC portfolios? Explain these results.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

We notice that $\sigma(x_{erc}) \leq \sigma(x_{rp})$ except for the year 2005. This date corresponds to positive correlations between assets. Moreover, the correlation between stocks and bonds is the highest. Starting from the RP portfolio, it is then possible to approach the ERC portfolio by reducing the weights of stocks and bonds and increasing the weight of commodities. At the end, we find an ERC portfolio that has a slightly higher volatility.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

Question 1.d

Find the analytical expression of the volatility $\sigma(x)$, the marginal risk \mathcal{MR}_i , the risk contribution \mathcal{RC}_i and the normalized risk contribution \mathcal{RC}_i^* in the case of RP portfolios.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

The volatility of the RP portfolio is:

$$\sigma(x) = \frac{1}{\sum_{j=1}^{n} \sigma_j^{-1}} \sqrt{(\sigma^{-1})^\top \Sigma \sigma^{-1}}$$

$$= \frac{1}{\sum_{j=1}^{n} \sigma_j^{-1}} \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{\sigma_i \sigma_j} \rho_{i,j} \sigma_i \sigma_j}$$

$$= \frac{1}{\sum_{j=1}^{n} \sigma_j^{-1}} \sqrt{n + 2\sum_{i>j} \rho_{i,j}}$$

$$= \frac{1}{\sum_{j=1}^{n} \sigma_j^{-1}} \sqrt{n (1 + (n-1)\overline{\rho})}$$

where $\bar{\rho}$ is the average correlation between asset returns.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

For the marginal risk, we obtain:

$$\mathcal{MR}_{i} = \frac{\left(\Sigma\sigma^{-1}\right)_{i}}{\sigma\left(x\right)\sum_{j=1}^{n}\sigma_{j}^{-1}}$$

$$= \frac{1}{\sqrt{n\left(1+\left(n-1\right)\bar{\rho}\right)}}\sum_{j=1}^{n}\rho_{i,j}\sigma_{j}\sigma_{j}\frac{1}{\sigma_{j}}$$

$$= \frac{\sigma_{i}}{\sqrt{n\left(1+\left(n-1\right)\bar{\rho}\right)}}\sum_{j=1}^{n}\rho_{i,j}$$

$$= \frac{\sigma_{i}\bar{\rho}_{i}\sqrt{n}}{\sqrt{1+\left(n-1\right)\bar{\rho}}}$$

where $\bar{\rho}_i$ is the average correlation of asset *i* with the other assets (including itself).

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

The expression of the risk contribution is then:

$$\mathcal{RC}_{i} = \frac{\sigma_{i}^{-1}}{\sum_{j=1}^{n} \sigma_{j}^{-1}} \frac{\sigma_{i} \overline{\rho}_{i} \sqrt{n}}{\sqrt{1 + (n-1)\overline{\rho}}}$$
$$= \frac{\overline{\rho}_{i} \sqrt{n}}{\sqrt{1 + (n-1)\overline{\rho}} \sum_{j=1}^{n} \sigma_{j}^{-1}}$$

We deduce that the normalized risk contribution is:

$$\mathcal{RC}_{i}^{\star} = \frac{\bar{\rho}_{i}\sqrt{n}}{\sigma(x)\sqrt{1+(n-1)\bar{\rho}}\sum_{j=1}^{n}\sigma_{j}^{-1}}$$
$$= \frac{\bar{\rho}_{i}}{1+(n-1)\bar{\rho}}$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

Question 1.e

Compute the normalized risk contributions of the previous RP portfolios. Comment on these results.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

We obtain the following normalized risk contributions:

Date	1999	2002	2005	2007	2008	2010
S	33.87%	34.96%	34.52%	32.56%	34.45%	36.64%
В	32.73%	20.34%	34.35%	24.88%	24.42%	26.70%
C	33.40%	44.69%	31.14%	42.57%	41.13%	36.67%

We notice that the risk contributions are not exactly equal for all the assets. Generally, the risk contribution of bonds is lower than the risk contribution of equities, which is itself lower than the risk contribution of commodities.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

Question 2

We consider four parameter sets of risk budgets:

Set	b_1	b_2	<i>b</i> ₃
#1	45%	45%	10%
#2	70%	10%	20%
#3	20%	70%	10%
#4	25%	25%	50%

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

Question 2.a

Compute the RB portfolios for the different dates.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

We obtain the following RB portfolios:

Date	bi	1999	2002	2005	2007	2008	2010
S	45%	26.83%	22.14%	42.83%	27.20%	20.63%	25.92%
B	45%	59.78%	66.10%	48.77%	66.15%	73.35%	67.03%
C	10%	13.39%	11.76%	8.40%	6.65%	6.02%	7.05%
[_ <u>S</u>	70%	⁺ 40.39% ⁻	29.32%	65.53%	39.37%	33.47%	46.26%
B	10%	37.63%	51.48%	19.55%	47.18%	52.89%	37.76%
C	20%	21.98%	19.20%	14.93%	13.45%	13.64%	15.98%
<u> </u>	20%	17.55%	16.02%	25.20%	18.78%	12.94%	13.87%
B	70%	69.67%	71.70%	66.18%	74.33%	80.81%	78.58%
C	10%	12.78%	12.28%	8.62%	6.89%	6.24%	7.55%
<u> </u>	25%	21.69%	15.76%	34.47%	20.55%	14.59%	16.65%
B	25%	48.99%	54.03%	39.38%	55.44%	61.18%	53.98%
C	50%	29.33%	30.21%	26.15%	24.01%	24.22%	29.37%

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

Question 2.b

Compute the implied risk premium $\tilde{\pi}_i$ of the assets for these portfolios if we assume a Sharpe ratio equal to 0.40.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

To compute the implied risk premium $\tilde{\pi}_i$, we use the following formula (TR-RPB, page 274):

$$\begin{aligned} \widetilde{\pi}_i &= & \mathrm{SR}\left(x \mid r\right) \cdot \mathcal{MR}_i \\ &= & \mathrm{SR}\left(x \mid r\right) \cdot \frac{\left(\Sigma x\right)_i}{\sigma\left(x\right)} \end{aligned}$$

where SR(x | r) is the Sharpe ratio of the portfolio.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

We obtain the following results:

Date	bi	1999	2002	2005	2007	2008	2010
S	45%	3.19%	4.60%	2.49%	3.15%	8.64%	5.20%
В	45%	1.43%	1.54%	2.19%	1.29%	2.43%	2.01%
C	10%	1.42%	1.92%	2.82%	2.86%	6.58%	4.24%
<u> </u>	70%	4.05%	6.45%	2.86%	4.31%	$\overline{11.56\%}$	6.32%
В	10%	0.62%	0.52%	1.37%	0.51%	1.04%	1.11%
C	20%	2.13%	2.81%	3.59%	3.61%	8.11%	5.23%
S -	20%	2.06%	2.68%	$\overline{1.91\%}$	1.93%	5.61%	3.91%
В	70%	1.82%	2.10%	2.54%	1.71%	3.14%	2.42%
C	10%	1.42%	1.75%	2.79%	2.64%	5.82%	3.60%
Γ S Γ	25%	2.33%	3.78%	1.98%	2.74%	8.06%	5.13%
В	25%	1.03%	1.10%	1.74%	1.02%	1.92%	1.58%
C	50%	3.45%	3.95%	5.23%	4.69%	9.71%	5.82%

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

Question 2.c

Comment on these results.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

We have:

$$x_i \tilde{\pi}_i = \mathrm{SR}\left(x \mid r\right) \cdot \mathcal{RC}_i$$

We deduce that:

$$ilde{\pi}_i \propto rac{b_i}{x_i}$$

 x_i is generally an increasing function of b_i . As a consequence, the relationship between the risk budgets b_i and the risk premiums $\tilde{\pi}_i$ is not necessarily increasing. However, we notice that the bigger the risk budget, the higher the risk premium. This is easily explained. If an investor allocates more risk budget to one asset class than another investor, he thinks that the risk premium of this asset class is higher than the other investor.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

However, we must be careful. This interpretation is valid if we compare two sets of risk budgets. It is false if we compare the risk budgets among themselves. For instance, if we consider the third parameter set, the risk budget of bonds is 70% whereas the risk budget of stocks is 20%. It does not mean that the risk premium of bonds is higher than the risk premium of equities. In fact, we observe the contrary. If we would like to compare risk budgets among themselves, the right measure is the implied Sharpe ratio, which is equal to:

$$SR_{i} = \frac{\tilde{\pi}_{i}}{\sigma_{i}}$$
$$= SR(x \mid r) \cdot \frac{\mathcal{MR}_{i}}{\sigma_{i}}$$

For instance, if we consider the most diversified portfolio, the marginal risk is proportional to the volatility and we retrieve the result that Sharpe ratios are equal if the MDP is optimal.

Main references

Roncalli, **T**. (2013)

Introduction to Risk Parity and Budgeting, Chapman and Hall/CRC Financial Mathematics Series, Chapter 2.

RONCALLI, **T**. (2013)

Introduction to Risk Parity and Budgeting — Companion Book, Chapman and Hall/CRC Financial Mathematics Series, Chapter 2.

References I

- BRUDER, B., KOSTYUCHYK, N., and RONCALLI, T. (2016) Risk Parity Portfolios with Skewness Risk: An Application to Factor Investing and Alternative Risk Premia, SSRN, www.ssrn.com/abstract=2813384.
- LEZMI, E., MALONGO, H., RONCALLI, T., and SOBOTKA, R. (2018) Portfolio Allocation with Skewness Risk: A Practical Guide, SSRN, www.ssrn.com/abstract=3201319.
- MAILLARD, S., RONCALLI, T. and TEILETCHE, J. (2010) The Properties of Equally Weighted Risk Contribution Portfolios, *Journal of Portfolio Management*, 36(4), pp. 60-70.
 - Roncalli, T. (2015)

Introducing Expected Returns into Risk Parity Portfolios: A New Framework for Asset Allocation, *Bankers, Markets & Investors*, 138, pp. 18-28.

References II

RONCALLI, T., and WEISANG, G. (2016)

Risk Parity Portfolios with Risk Factors, *Quantitative Finance*, 16(3), pp. 377-388

SCHERER, **B**. (2007)

Portfolio Construction & Risk Budgeting, Third edition, Risk Books.

Course 2023-2024 in Portfolio Allocation and Asset Management Lecture 3. Smart Beta, Factor Investing and Alternative Risk Premia

Thierry Roncalli*

*Amundi Asset Management¹¹

*University of Paris-Saclay

January 2024

¹¹The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

Agenda

- Lecture 1: Portfolio Optimization
- Lecture 2: Risk Budgeting
- Lecture 3: Smart Beta, Factor Investing and Alternative Risk Premia
- Lecture 4: Equity Portfolio Optimization with ESG Scores
- Lecture 5: Climate Portfolio Construction
- Lecture 6: Equity and Bond Portfolio Optimization with Green Preferences
- Lecture 7: Machine Learning in Asset Management

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Cap-weighted indexation and modern portfolio theory

Rationale of market-cap indexation

- Separation Theorem: there is one unique risky portfolio owned by investors called the tangency portfolio (Tobin, 1958)
- **CAPM**: the tangency portfolio is the Market portfolio, best represented by the capitalization-weighted index (Sharpe, 1964)
- **Performance of active management**: negative alpha in equity mutual funds on average (Jensen, 1968)
- **EMH**: markets are efficient (Fama, 1970)
- **Passive management**: launch of the first index fund (John McQuown, Wells Fargo Investment Advisors, Samsonite Luggage Corporation, 1971)
- First S&P 500 index fund by Wells Fargo and American National Bank in Chicago (1973)
- The first listed ETF was the SPDRs (Ticker: SPY) in 1993

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Index funds

Mutual Fund (MF)

A mutual fund is a **collective investment fund** that are regulated and sold to the general public

Exchange Traded Fund (ETF)

It is a **mutual fund** which trades **intra-day** on a securities exchange (thanks to market makers)

Exchange Traded Product (ETP)

It is a security that is **derivatively-priced** and that trades intra-day on an exchange. ETPs includes exchange traded funds (ETFs), exchange traded vehicles (ETVs), exchange traded notes (ETNs) and certificates.

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Pros of market-cap indexation

- A convenient and **recognized approach** to participate to broad equity markets
- Management simplicity: low turnover & transaction costs

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Construction of an equity index

- We consider an index universe composed of *n* stocks
- Let $P_{i,t}$ be the price of the i^{th} stock and $R_{i,t}$ be the corresponding return between times t 1 and t:

$$R_{i,t} = \frac{P_{i,t}}{P_{i,t-1}} - 1$$

• The value of the index B_t at time t is defined by:

$$B_t = \varphi \sum_{i=1}^n N_i P_{i,t}$$

where φ is a scaling factor and N_i is the total number of shares issued by the company *i*

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Construction of an equity index

• Another expression of B_t is¹²:

$$B_{t} = \varphi \sum_{i=1}^{n} N_{i} P_{i,t-1} (1 + R_{i,t})$$

= $B_{t-1} \frac{\sum_{i=1}^{n} N_{i} P_{i,t-1} (1 + R_{i,t})}{\sum_{i=1}^{n} N_{i} P_{i,t-1}}$
= $B_{t-1} \sum_{i=1}^{n} w_{i,t-1} (1 + R_{i,t})$

where $w_{i,t-1}$ is the weight of the *i*th stock in the index:

$$w_{i,t-1} = \frac{N_i P_{i,t-1}}{\sum_{i=1}^n N_i P_{i,t-1}}$$

- The computation of the index value B_t can be done at the closing time t and also in an intra-day basis
- ${}^{12}B_0$ can be set to an arbitrary value (e.g. 100, 500, 1000 or 5000)

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Construction of an equity index

Remark

The previous computation is purely theoretical because the portfolio corresponds to all the shares outstanding of the n stocks \Rightarrow impossible to hold this portfolio

Remark

Most of equity indices use floating shares^a instead of shares outstanding

^aThey indicate the number of shares available for trading

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Replication of an equity index

- In order to replicate this index, we must build a hedging strategy that consists in investing in stocks
- Let S_t be the value of the strategy (or the index fund):

$$S_t = \sum_{i=1}^n n_{i,t} P_{i,t}$$

where $n_{i,t}$ is the number of stock *i* held between t - 1 and *t*

• The tracking error is the difference between the return of the strategy and the return of the index:

$$e_t(S \mid B) = R_{S,t} - R_{B,t}$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Replication of an equity index

The quality of the replication process is measured by the volatility $\sigma(e_t(S \mid B))$ of the tracking error. We may distinguish several cases:

- Index funds with low tracking error volatility (less than 10 bps) \Rightarrow physical replication or synthetic replication
- 2 Index funds with moderate tracking error volatility (between 10 bps and 50 bps) \Rightarrow sampling replication
- Index funds with higher tracking error volatility (larger than 50 bps)
 ⇒ equity universes with liquidity problems and enhanced/tilted index funds

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Replication of an equity index

• In a capitalization-weighted index, the weights are given by:

$$w_{i,t} = \frac{C_{i,t}}{\sum_{j=1}^{n} C_{j,t}} = \frac{N_{i,t}P_{i,t}}{\sum_{j=1}^{n} N_{j,t}P_{j,t}}$$

where $N_{i,t}$ and $C_{i,t} = N_{i,t}P_{i,t}$ are the number of shares outstanding and the market capitalization of the i^{th} stock

• If we have a perfect match at time t - 1:

$$\frac{n_{i,t-1}P_{i,t-1}}{\sum_{i=1}^{n}n_{i,t-1}P_{i,t-1}} = w_{i,t-1}$$

we have a perfect match at time *t*:

$$n_{i,t} = n_{i,t-1}$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Replication of an equity index

• We do not need to rebalance the hedging portfolio because of the relationship:

 $n_{i,t}P_{i,t}\propto w_{i,t}P_{i,t}$

• Therefore, it is not necessarily to adjust the portfolio of the strategy (except if there are subscriptions or redemptions)

A CW index fund remains the most efficient investment in terms of management simplicity, turnover and transaction costs

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Cons of market-cap indexation

- Trend-following strategy: momentum bias leads to bubble risk exposure as weight of best performers ever increases
 ⇒ Mid 2007, financial stocks represent 40% of the Eurostoxx 50 index
- Growth bias as high valuation multiples stocks weight more than low-multiple stocks with equivalent realized earnings.
 ⇒ Mid 2000, the 8 stocks of the technology/telecom sectors represent 35% of the Eurostoxx 50 index
 ⇒ 2¹/₂ years later after the dot.com bubble, these two sectors represent 12%
- Concentrated portfolios
 - \Rightarrow The top 100 market caps of the S&P 500 account for around 70%
- Lack of risk diversification and high drawdown risk: no portfolio construction rules leads to concentration issues (e.g. sectors, stocks).

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Cons of market-cap indexation

Some illustrations

- Mid 2000: 8 Technology/Telecom stocks represent 35% of the Eurostoxx 50 index
- In 2002: 7.5% of the Eurostoxx 50 index is invested into Nokia with a volatility of 70%
- Dec. 2006: 26.5% of the MSCI World index is invested in financial stocks
- June 2007: 40% of the Eurostoxx 50 is invested into Financials
- January 2013: 20% of the S&P 500 stocks represent 68% of the S&P 500 risk
- Between 2002 and 2012, two stocks contribute on average to more than 20% of the monthly performance of the Eurostoxx 50 index

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Cons of market-cap indexation

Table 47: Weight and risk concentration of several equity indices (June 29, 2012)

		Weig	ghts		Risk contributions			
Ticker	C(y)	$\mathbb{L}(x)$		$C(\mathbf{x})$	$\mathbb{L}(x)$			
	$\mathcal{G}(x)$	10%	25%	50%	$\mathcal{G}(\mathbf{x})$	10%	25%	50%
SX5P	30.8	24.1	48.1	71.3	26.3	19.0	40.4	68.6
SX5E	31.2	23.0	46.5	72.1	31.2	20.5	44.7	73.3
INDU	33.2	23.0	45.0	73.5	35.8	25.0	49.6	75.9
BEL20	39.1	25.8	49.4	79.1	45.1	25.6	56.8	82.5
DAX	44.0	27.5	56.0	81.8	47.3	27.2	59.8	84.8
CAC	47.4	34.3	58.3	82.4	44.1	31.9	57.3	79.7
AEX	52.2	37.2	61.3	86.0	51.4	35.3	62.0	84.7
HSCEI	54.8	39.7	69.3	85.9	53.8	36.5	67.2	85.9
NKY	60.2	47.9	70.4	87.7	61.4	49.6	70.9	88.1
UKX	60.8	47.5	73.1	88.6	60.4	46.1	72.8	88.7
SXXE	61.7	49.2	73.5	88.7	63.9	51.6	75.3	90.1
SPX	61.8	52.1	72.0	87.8	59.3	48.7	69.9	86.7
MEXBOL	64.6	48.2	75.1	91.8	65.9	45.7	78.6	92.9
IBEX	64.9	51.7	77.3	90.2	68.3	58.2	80.3	91.4
SXXP	65.6	55.0	76.4	90.1	64.2	52.0	75.5	90.0
NDX	66.3	58.6	77.0	89.2	64.6	56.9	74.9	88.6
TWSE	79.7	73.4	86.8	95.2	79.7	72.6	87.3	95.7
TPX	80.8	72.8	88.8	96.3	83.9	77.1	91.0	97.3
KOSPI	86.5	80.6	93.9	98.0	89.3	85.1	95.8	98.8

 $\mathcal{G}(x) = \text{Gini coefficient}, \mathbb{L}(x) = \text{Lorenz curve}$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Cons of market-cap indexation

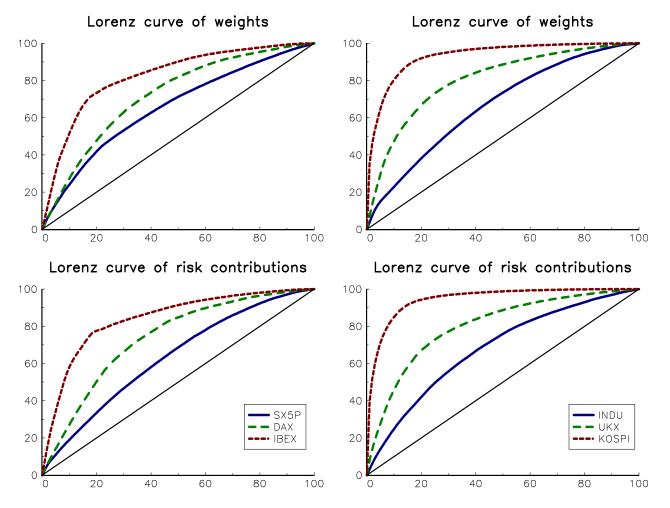


Figure 43: Lorenz curve of several equity indices (June 29, 2012)

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Capturing the equity risk premium

	APPLE	EXXON	MSFT	J&J	IBM	PFIZER	CITI	McDO
	Cap-weighted allocation (in %)							
Dec. 1999	1.05	12.40	38.10	7.94	12.20	12.97	11.89	3.46
Dec. 2004	1.74	22.16	19.47	12.61	11.00	13.57	16.76	2.70
Dec. 2008	6.54	35.03	14.92	14.32	9.75	10.30	3.15	5.98
Dec. 2010	18.33	22.84	14.79	10.52	11.29	8.69	8.51	5.02
Dec. 2012	26.07	20.55	11.71	10.12	11.27	9.62	6.04	4.61
Jun. 2013	20.78	19.80	14.35	11.64	11.36	9.51	7.79	4.77
			Impli	ed risk pre	emium (in	%)		
Dec. 1999	5.96	2.14	8.51	3.61	5.81	5.91	6.19	2.66
Dec. 2004	3.88	2.66	2.79	2.03	2.32	3.90	3.02	1.86
Dec. 2008	9.83	11.97	10.48	6.24	7.28	8.06	17.15	6.28
Dec. 2010	5.38	3.85	4.42	2.29	3.66	3.76	6.52	2.54
Dec. 2012	5.87	2.85	3.58	1.44	2.80	1.77	5.91	1.88
Jun. 2013	5.59	2.79	3.60	1.55	2.92	1.91	5.24	1.82
		E	xpected pe	rformance	e contribut	tion (in %)		
Dec. 1999	1.01	4.31	52.63	4.66	11.52	12.43	11.94	1.49
Dec. 2004	2.41	21.04	19.44	9.15	9.12	18.93	18.11	1.79
Dec. 2008	6.60	43.00	16.04	9.17	7.28	8.52	5.55	3.85
Dec. 2010	23.58	21.01	15.62	5.77	9.89	7.81	13.27	3.05
Dec. 2012	42.41	16.23	11.61	4.04	8.73	4.71	9.88	2.40
Jun. 2013	33.96	16.18	15.10	5.28	9.69	5.32	11.93	2.53

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Alternative-weighted indexation

Definition

Alternative-weighted indexation aims at building passive indexes where the weights are not based on market capitalization

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

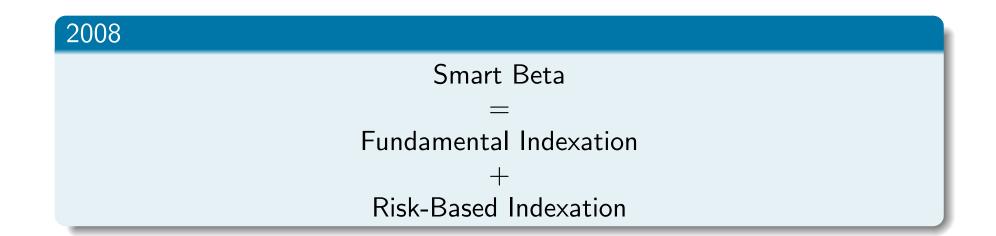
Alternative-weighted indexation

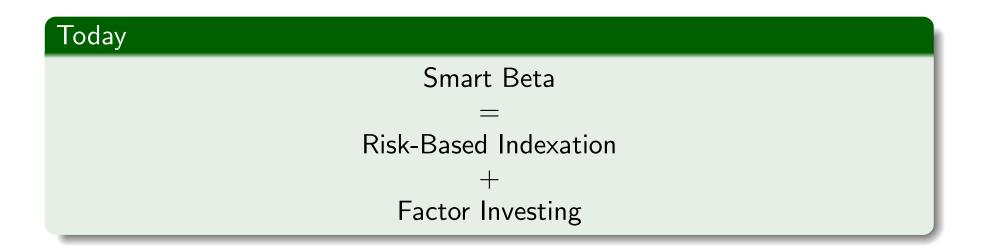
Three kinds of responses:

- Fundamental indexation (capturing *alpha*?)
 - Dividend yield indexation
 - **Q** RAFI indexation
- Q Risk-based indexation (capturing diversification?)
 - Equally weighted portfolio
 - Ø Minimum variance portfolio
 - **3** Equal risk contribution portfolio
 - Most diversified portfolio
- Sector investing (capturing normal returns or beta? abnormal returns or alpha?)
 - The market risk factor is not the only systematic risk factor
 - **Other factors: size, value, momentum, low beta, quality, etc.**

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Alternative-weighted indexation





Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Equally-weighted portfolio

- The underlying idea of the equally weighted or '1/n' portfolio is to define a portfolio independently from the estimated statistics and properties of stocks
- If we assume that it is impossible to predict return and risk, then attributing an equal weight to all of the portfolio components constitutes a natural choice
- We have:

$$x_i = x_j = \frac{1}{n}$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Equally-weighted portfolio

The portfolio volatility is equal to:

$$\sigma^{2}(x) = \sum_{i=1}^{n} x_{i}^{2} \sigma_{i}^{2} + 2 \sum_{i>j} x_{i} x_{j} \rho_{i,j} \sigma_{i} \sigma_{j}$$
$$= \frac{1}{n^{2}} \left(\sum_{i=1}^{n} \sigma_{i}^{2} + 2 \sum_{i>j} \rho_{i,j} \sigma_{i} \sigma_{j} \right)$$

If we assume that $\sigma_i \leq \sigma_{\max}$ and $0 \leq \rho_{i,j} \leq \rho_{\max}$, we obtain:

$$\sigma^{2}(x) \leq \frac{1}{n^{2}} \left(\sum_{i=1}^{n} \sigma_{\max}^{2} + 2 \sum_{i>j} \rho_{\max} \sigma_{\max}^{2} \right)$$
$$\leq \frac{1}{n^{2}} \left(n \sigma_{\max}^{2} + 2 \frac{n(n-1)}{2} \rho_{\max} \sigma_{\max}^{2} \right)$$
$$\leq \left(\frac{1 + (n-1) \rho_{\max}}{n} \right) \sigma_{\max}^{2}$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Equally-weighted portfolio

We deduce that:

$$\lim_{n \to \infty} \sigma(x) \le \sigma_{\max}(x) = \sigma_{\max}\sqrt{\rho_{\max}}$$

Table 48: Value of $\sigma_{\max}(x)$ (in %)

		σ_{\max} (in %)					
		5.00	10.00	15.00	20.00	25.00	30.00
	10.00	1.58	3.16	4.74	6.32	7.91	9.49
	20.00	2.24	4.47	6.71	8.94	11.18	13.42
$ ho_{max}$ (in %)	30.00	2.74	5.48	8.22	10.95	13.69	16.43
	40.00	3.16	6.32	9.49	12.65	15.81	18.97
	50.00	3.54	7.07	10.61	14.14	17.68	21.21
	75.00	4.33	8.66	12.99	17.32	21.65	25.98
	90.00	4.74	9.49	14.23	18.97	23.72	28.46
	99.00	4.97	9.95	14.92	19.90	24.87	29.85

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Equally-weighted portfolio

If the volatilities are the same ($\sigma_i = \sigma$) and the correlation matrix is constant ($\rho_{i,i} = \rho$), we deduce that:

$$\sigma(x) = \sigma \sqrt{\frac{1 + (n-1)\rho}{n}}$$

Correlations are more important than volatilities to benefit from diversification (= risk reduction)

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Equally-weighted portfolio

Result

The main interest of the EW portfolio is the volatility reduction

It is called "naive diversification"

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Equally-weighted portfolio

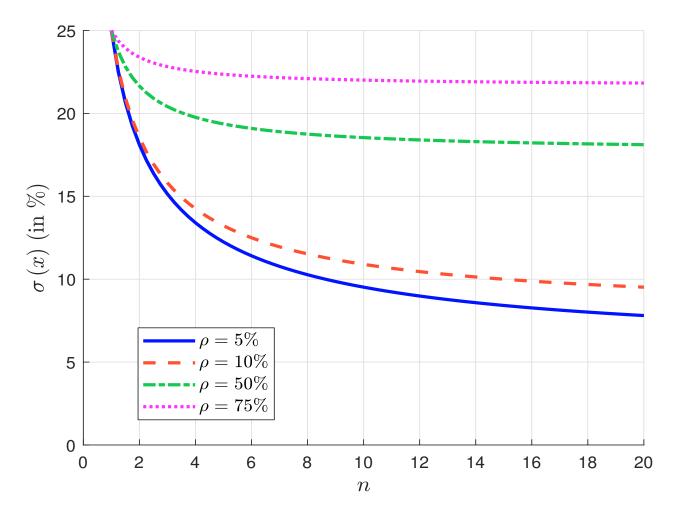


Figure 44: Illustration of the diversification effect ($\sigma = 25\%$)

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Equally-weighted portfolio

Another interest of the EW portfolio is its good out-of-sample performance:

"We evaluate the out-of-sample performance of the sample-based mean-variance model, and its extensions designed to reduce estimation error, relative to the naive 1/n portfolio. Of the 14 models we evaluate across seven empirical datasets, none is consistently better than the 1/n rule in terms of Sharpe ratio, certainty-equivalent return, or turnover, which indicates that, out of sample, the gain from optimal diversification is more than offset by estimation error" (DeMiguel et al., 2009)

1420

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

The global minimum variance (GMV) portfolio corresponds to the following optimization program:

$$x_{ ext{gmv}} = lpha ext{rgmv} \min rac{1}{2} x^{ op} \Sigma x$$

u.c. $\mathbf{1}_n^{ op} x = 1$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

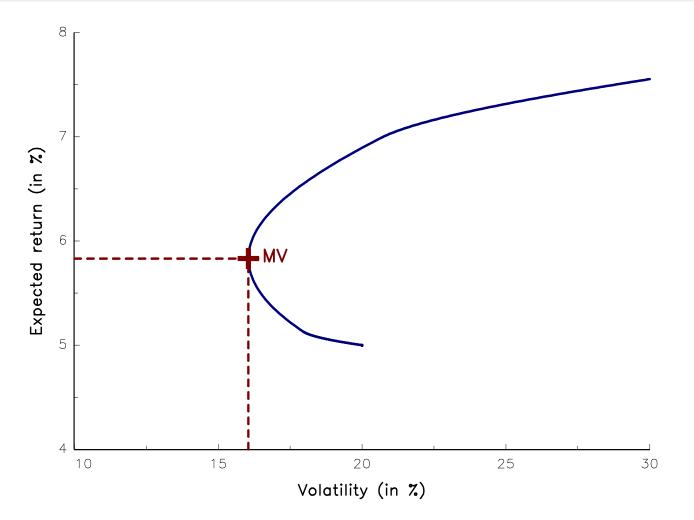


Figure 45: Location of the minimum variance portfolio in the efficient frontier

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

The Lagrange function is equal to:

$$\mathcal{L}(x;\lambda_0) = \frac{1}{2}x^{\top}\Sigma x - \lambda_0 \left(\mathbf{1}_n^{\top}x - 1\right)$$

The first-order condition is:

$$\frac{\partial \mathcal{L}(x;\lambda_0)}{\partial x} = \boldsymbol{\Sigma} x - \lambda_0 \mathbf{1}_n = \mathbf{0}_n$$

We deduce that:

$$x = \lambda_0 \Sigma^{-1} \mathbf{1}_n$$

Since we have $\mathbf{1}_n^\top x = 1$, the Lagrange multiplier satisfies:

$$\mathbf{1}_{n}^{ op}\left(\lambda_{0}\Sigma^{-1}\mathbf{1}_{n}
ight)=1$$

or:

$$\lambda_0 = rac{1}{\mathbf{1}_n^\top \Sigma^{-1} \mathbf{1}_n}$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

Theorem

The GMV portfolio is given by the following formula:

$$x_{\mathrm{gmv}} = rac{\Sigma^{-1} \mathbf{1}_n}{\mathbf{1}_n^\top \Sigma^{-1} \mathbf{1}_n}$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

The volatility of the GMV portfolio is equal to:

$$\sigma^{2}(\mathbf{x}_{gmv}) = \mathbf{x}_{gmv}^{\top} \boldsymbol{\Sigma} \mathbf{x}_{gmv}$$

$$= \frac{\mathbf{1}_{n}^{\top} \boldsymbol{\Sigma}^{-1}}{\mathbf{1}_{n}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{1}_{n}} \boldsymbol{\Sigma} \frac{\boldsymbol{\Sigma}^{-1} \mathbf{1}_{n}}{\mathbf{1}_{n}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{1}_{n}}$$

$$= \frac{\mathbf{1}_{n}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{-1} \mathbf{1}_{n}}{(\mathbf{1}_{n}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{1}_{n})^{2}}$$

$$= \frac{\mathbf{1}_{n}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{1}_{n}}{(\mathbf{1}_{n}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{1}_{n})^{2}}$$

$$= \frac{1}{\mathbf{1}_{n}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{1}_{n}}$$

Another expression of the GMV portfolio is:

$$x_{\rm gmv} = \sigma^2 \left(x_{\rm gmv} \right) \Sigma^{-1} \mathbf{1}_n$$

552 / 1420

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

Example 1

The investment universe is made up of 4 assets. The volatility of these assets is respectively equal to 20%, 18%, 16% and 14%, whereas the correlation matrix is given by:

$$\rho = \left(\begin{array}{cccc} 1.00 & & & \\ 0.50 & 1.00 & & \\ 0.40 & 0.20 & 1.00 & \\ 0.10 & 0.40 & 0.70 & 1.00 \end{array}\right)$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

We have:

$$\Sigma = \begin{pmatrix} 400.00 & 180.00 & 128.00 & 28.00 \\ 180.00 & 324.00 & 57.60 & 100.80 \\ 128.00 & 57.60 & 256.00 & 156.80 \\ 28.00 & 100.80 & 156.80 & 196.00 \end{pmatrix} \times 10^4$$

It follows that:

$$\Sigma^{-1} = \begin{pmatrix} 54.35 & -37.35 & -50.55 & 51.89 \\ -37.35 & 62.97 & 41.32 & -60.11 \\ -50.55 & 41.32 & 124.77 & -113.85 \\ 51.89 & -60.11 & -113.85 & 165.60 \end{pmatrix}$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

We deduce that:

$$\boldsymbol{\Sigma}^{-1} \mathbf{1}_4 = \left(\begin{array}{c} 18.34 \\ 6.83 \\ 1.69 \\ 43.53 \end{array} \right)$$

We also have $\mathbf{1}_{4}^{\top} \Sigma^{-1} \mathbf{1}_{4} = 70.39$, $\sigma^{2} (x_{\text{gmv}}) = 1/70.39 = 1.4206\%$ and $\sigma (x_{\text{gmv}}) = \sqrt{1.4206\%} = 11.92\%$. Finally, we obtain:

$$x_{\rm gmv} = \frac{\Sigma^{-1} \mathbf{1}_4}{\mathbf{1}_4^\top \Sigma^{-1} \mathbf{1}_4} = \begin{pmatrix} 26.05\% \\ 9.71\% \\ 2.41\% \\ 61.84\% \end{pmatrix}$$

We verify that
$$\sum_{i=1}^{4} x_{ ext{gmv},i} = 100\%$$
 and $\sqrt{x_{ ext{gmv}}^{ op} \Sigma x_{ ext{gmv}}} = 11.92\%$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

• If we assume that the correlation matrix is constant $-C = C_n(\rho)$, the covariance matrix is $\Sigma = \sigma \sigma^{\top} \circ C_n(\rho)$ with $C_n(\rho)$ the constant correlation matrix. We deduce that:

$$\Sigma^{-1} = \Gamma \circ \mathcal{C}_n^{-1}\left(\rho\right)$$

with $\Gamma_{i,j} = \sigma_i^{-1} \sigma_j^{-1}$ and:

$$C_n^{-1}(\rho) = \frac{\rho \mathbf{1}_n \mathbf{1}_n^{\top} - ((n-1)\rho + 1) I_n}{(n-1)\rho^2 - (n-2)\rho - 1}$$

• By using the trace property tr(AB) = tr(BA), we can show that:

$$x_{\text{gmv},i} = \frac{-((n-1)\rho+1)\sigma_i^{-2} + \rho\sum_{j=1}^n (\sigma_i\sigma_j)^{-1}}{\sum_{k=1}^n (-((n-1)\rho+1)\sigma_k^{-2} + \rho\sum_{j=1}^n (\sigma_k\sigma_j)^{-1})}$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

The denominator is the scaling factor such that 1^T_n x_{gmv} = 1. We deduce that the optimal weights are given by the following relationship:

$$x_{ ext{gmv},i} \propto rac{\left(\left(n-1
ight)
ho+1
ight)}{\sigma_i^2} - rac{
ho}{\sigma_i}\sum_{j=1}^n rac{1}{\sigma_j}$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

Here are some special cases:

• The lower bound of $C_n(\rho)$ is achieved for $\rho = -(n-1)^{-1}$ and we have:

$$egin{aligned} x_{ ext{gmv},i} & \propto & -rac{
ho}{\sigma_i}\sum_{j=1}^nrac{1}{\sigma_j} \ & \propto & rac{1}{\sigma_i} \end{aligned}$$

The weights are proportional to the inverse volatilities (GMV = ERC) 2 If the assets are uncorrelated ($\rho = 0$), we obtain:

$$x_i \propto rac{1}{\sigma_i^2}$$

The weights are proportional to the inverse variances

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

If the assets are perfectly correlated ($\rho = 1$), we have:

$$x_{\mathrm{gmv},i} \propto rac{1}{\sigma_i} \left(rac{n}{\sigma_i} - \sum_{j=1}^n rac{1}{\sigma_j}
ight)$$

We deduce that:

$$\begin{aligned} x_{\text{gmv},i} \ge 0 \quad \Leftrightarrow \quad \frac{n}{\sigma_i} - \sum_{j=1}^n \frac{1}{\sigma_j} \ge 0 \\ \Leftrightarrow \quad \sigma_i \le \left(\frac{1}{n} \sum_{j=1}^n \sigma_j^{-1}\right)^{-1} \\ \Leftrightarrow \quad \sigma_i \le \bar{H}(\sigma_1, \dots, \sigma_n) \end{aligned}$$

where $\bar{H}(\sigma_1, \ldots, \sigma_n)$ is the harmonic mean of volatilities

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

Example 2

We consider a universe of four assets. Their volatilities are respectively equal to 4%, 6%, 8% and 10%. We assume also that the correlation matrix C is uniform and is equal to $C_n(\rho)$.

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

Table 49: Global minimum variance portfolios

Accet	ρ						
Asset	-20%	0%	20%	50%	70%	90%	99%
1	44.35	53.92	65.88	90.65	114.60	149.07	170.07
2	25.25	23.97	22.36	19.04	15.83	11.20	8.38
3	17.32	13.48	8.69	-1.24	-10.84	-24.67	-33.09
4	13.08	8.63	3.07	-8.44	-19.58	-35.61	-45.37
$\sigma(\mathbf{x}^{\star})$	1.93	2.94	3.52	3.86	3.62	2.52	0.87

Table 50: Long-only minimum variance portfolios

Accet				ρ			
Asset	-20%	0%	20%	50%	70%	90%	99%
1	44.35	53.92	65.88	85.71	100.00	100.00	100.00
2	25.25	23.97	22.36	14.29	0.00	0.00	0.00
3	17.32	13.48	8.69	0.00	0.00	0.00	0.00
4	13.08	8.63	3.07	0.00	0.00	0.00	0.00
$\sigma(x^{\star})$	1.93	2.94	3.52	3.93	4.00	4.00	4.00

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

In practice, we impose no short selling constraints

↓ Smart beta products (funds and indices) corresponds to long-only minimum variance portfolios

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

Remark

The minimum variance strategy is related to the low beta effect (Black, 1972; Frazzini and Pedersen, 2014) or the low volatility anomaly (Haugen and Baker, 1991).

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

We consider the single-factor model of the CAPM:

$$R_i = \alpha_i + \beta_i R_m + \varepsilon_i$$

We have:

$$\boldsymbol{\Sigma} = \boldsymbol{\beta} \boldsymbol{\beta}^{\top} \boldsymbol{\sigma}_{\boldsymbol{m}}^2 + \boldsymbol{D}$$

where:

- $\beta = (\beta_1, \dots, \beta_n)$ is the vector of betas
- σ_m^2 is the variance of the market portfolio
- $D = \operatorname{diag} \left(\tilde{\sigma}_1^2, \ldots, \tilde{\sigma}_n^2 \right)$ is the diagonal matrix of specific variances

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

Sherman-Morrison-Woodbury formula

Suppose *u* and *v* are two $n \times 1$ vectors and *A* is an invertible $n \times n$ matrix. We can show that:

$$(A + uv^{\top})^{-1} = A^{-1} - \frac{1}{1 + v^{\top}A^{-1}u}A^{-1}uv^{\top}A^{-1}$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

We have:

$$\boldsymbol{\Sigma} = \boldsymbol{D} + (\boldsymbol{\sigma}_{\boldsymbol{m}}\boldsymbol{\beta}) (\boldsymbol{\sigma}_{\boldsymbol{m}}\boldsymbol{\beta})^{\top}$$

We apply the Sherman-Morrison-Woodbury with A = D and $u = v = \sigma_m \beta$:

$$\Sigma^{-1} = \left(D + (\sigma_m \beta) (\sigma_m \beta)^{\top}\right)^{-1}$$

= $D^{-1} - \frac{1}{1 + (\sigma_m \beta)^{\top} D^{-1} (\sigma_m \beta)} D^{-1} (\sigma_m \beta) (\sigma_m \beta)^{\top} D^{-1}$
= $D^{-1} - \frac{\sigma_m^2}{1 + \sigma_m^2 (\beta^{\top} D^{-1} \beta)} (D^{-1} \beta) (D^{-1} \beta)^{\top}$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

We have:

$$D^{-1}\beta = \tilde{\beta}$$

with $\tilde{\beta}_i = \beta_i / \tilde{\sigma}_i^2$ and:

$$\varphi = \beta^{\top} D^{-1} \beta$$
$$= \tilde{\beta}^{\top} \beta$$
$$= \sum_{i=1}^{n} \frac{\beta_{i}^{2}}{\tilde{\sigma}_{i}^{2}}$$

We obtain:

$$\Sigma^{-1} = D^{-1} - \frac{\sigma_m^2}{1 + \varphi \sigma_m^2} \tilde{\beta} \tilde{\beta}^\top$$

The GMV portfolio is equal to:

$$\begin{aligned} x_{\rm gmv} &= \sigma^2 \left(x_{\rm gmv} \right) \Sigma^{-1} \mathbf{1}_n \\ &= \sigma^2 \left(x_{\rm gmv} \right) \left(D^{-1} \mathbf{1}_n - \frac{\sigma_m^2}{1 + \varphi \sigma_m^2} \tilde{\beta} \tilde{\beta}^\top \mathbf{1}_n \right) \end{aligned}$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

It follows that:

$$\begin{aligned} x_{\text{gmv},i} &= \sigma^2 \left(x_{\text{gmv}} \right) \left(\frac{1}{\tilde{\sigma}_i^2} - \frac{\sigma_m^2 \left(\tilde{\beta}^\top \mathbf{1}_n \right)}{1 + \varphi \sigma_m^2} \frac{\beta_i}{\tilde{\sigma}_i^2} \right) \\ &= \frac{\sigma^2 \left(x_{\text{gmv}} \right)}{\tilde{\sigma}_i^2} \left(1 - \frac{\beta_i}{\beta^*} \right) \end{aligned}$$

where:

$$\beta^{\star} = \frac{1 + \varphi \sigma_m^2}{\sigma_m^2 \left(\tilde{\beta}^{\top} \mathbf{1}_n \right)}$$

The minimum variance portfolio is positively exposed to stocks with low beta:

$$\begin{cases} \beta_i < \beta^* \Rightarrow x_{\text{gmv},i} > 0\\ \beta_i > \beta^* \Rightarrow x_{\text{gmv},i} < 0 \end{cases}$$

Moreover, the absolute weight is a decreasing function of the idiosyncratic volatility: $\tilde{\sigma}_i \searrow \Rightarrow |x_{\text{gmv},i}| \nearrow$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

The previous formula has been found by Scherer (2011). Clarke et al. (2011) have extended it to the long-only minimum variance:

$$x_{\mathrm{mv},i} = rac{\sigma^2 \left(x_{\mathrm{gmv}}
ight)}{ ilde{\sigma}_i^2} \left(1 - rac{eta_i}{eta^\star}
ight)$$

where the threshold β^{\star} is defined as follows:

$$\beta^{\star} = \frac{1 + \sigma_m^2 \sum_{\beta_i < \beta^{\star}} \tilde{\beta}_i \beta_i}{\sigma_m^2 \sum_{\beta_i < \beta^{\star}} \tilde{\beta}_i}$$

In this case, if $\beta_i > \beta^*$, $x_i^* = 0$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

Example 3

We consider an investment universe of five assets. Their beta is respectively equal to 0.9, 0.8, 1.2, 0.7 and 1.3 whereas their specific volatility is 4%, 12%, 5%, 8% and 5%. We also assume that the market portfolio volatility is equal to 25%.

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

- In the case of the GMV portfolio, we have $\varphi = 1879.26$ and $\beta^{\star} = 1.0972$
- In the case of the long-only MV portfolio, we have $\varphi = 121.01$ and $\beta^{\star} = 0.8307$

Table 51: Composition of the MV portfolio

Asset	β_i	Ã.	Xi			
	P_{I}	ρ_i	Unconstrained	Long-only		
1	0.90	562.50	147.33	0.00		
2	0.80	55.56	24.67	9.45		
3	1.20	480.00	-49.19	0.00		
4	0.70	109.37	74.20	90.55		
5	1.30	520.00	-97.01	0.00		
Volatility			11.45	19.19		

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

In practice, we use a constrained long-only optimization program:

$$x^{\star} = \arg \min \frac{1}{2} x^{\top} \Sigma x$$

u.c.
$$\begin{cases} \mathbf{1}_{n}^{\top} x = 1 \\ \mathbf{0}_{n} \leq x \leq \mathbf{1}_{n} \\ x \in \mathcal{DC} \end{cases}$$

 \Rightarrow we need to impose some diversification constraints ($x \in DC$) because Markowitz optimization leads to corner solutions that are not diversified

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

Three main approaches:

In order to reduce the concentration of a few number of assets, we can use upper bound on the weights:

$$x_i \leq x_i^+$$

For instance, we can set $x_i \le 5\%$, meaning that the weight of an asset cannot be larger than 5%. We can also impose lower and upper bounds by sector:

$$s_j^- \leq \sum_{i \in S_j} x_i \leq s_j^+$$

For instance, if we impose that $3\% \leq \sum_{i \in S_j} x_i \leq 20\%$, this implied that the weight of each sector must be between 3% and 20%.

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

We can impose some constraints with respect to the benchmark composition:

$$\frac{b_i}{m} \le x_i \le m \cdot b_i$$

where b_i is the weight of asset *i* in the benchmark (or index) *b*. For instance, if m = 2, the weight of asset *i* cannot be lower than 50% of its weight in the benchmark. It cannot also be greater than twice of its weight in the benchmark.

The third approach consists of imposing a weight diversification based on the Herfindahl index:

$$\mathcal{H}(x) = \sum_{i=1}^{n} x_i$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

• The inverse of the Herfindahl index is called the effective number of bets (ENB):

$$\mathcal{N}\left(x\right)=\mathcal{H}^{-1}\left(x\right)$$

N(x) represents the equivalent number of equally-weighted assets.
 We can impose a sufficient number of effective bets:

$$\mathcal{N}(x) \geq \mathcal{N}_{\min}$$

 During the period 2000-2020, the ENB of the S&P 500 index is between 90 and 130:

 $90 \leq \mathcal{N}(b) \leq 130$

• During the same period, the ENB of the S&P 500 minimum variance portfolio is between 15 and 30:

$$15 \leq \mathcal{N}(x) \leq 30$$

 We conclude that the S&P 500 minimum variance portfolio is less diversified than the S&P 500 index

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

We can impose:

$$\mathcal{N}(x) \geq m \cdot \mathcal{N}(b)$$

For instance, if m = 1.5, the ENB of the S&P 500 minimum variance portfolio will be 50% larger than the ENB of the S&P 500 index We notice that:

$$\begin{aligned} \mathcal{N}\left(x\right) \geq \mathcal{N}_{\min} & \Leftrightarrow & \mathcal{H}\left(x\right) \leq \mathcal{N}_{\min}^{-1} \\ & \Leftrightarrow & x^{\top}x \leq \mathcal{N}_{\min}^{-1} \end{aligned}$$

The optimization problem becomes:

$$\begin{array}{ll} x^{\star}\left(\lambda\right) & = & \arg\min\frac{1}{2}x^{\top}\Sigma x + \lambda\left(x^{\top}x - \mathcal{N}_{\min}^{-1}\right) \\ & \text{u.c.} & \left\{ \begin{array}{l} \mathbf{1}_{n}^{\top}x = 1 \\ \mathbf{0}_{n} \leq x \leq \mathbf{1}_{n} \end{array} \right. \end{array}$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Minimum variance portfolio

We can rewrite the objective function as follows:

$$\mathcal{L}(x;\lambda) = \frac{1}{2}x^{\top}\Sigma x + \lambda x^{\top}I_n x = \frac{1}{2}x^{\top}(\Sigma + 2\lambda I_n)x$$

We obtain a standard minimum variance optimization problem where the covariance matrix is shrunk

Remark

The optimal solution is found by applying the bisection algorithm to the QP problem in order to match the constraint:

$$\mathcal{N}\left(x^{\star}\left(\lambda
ight)
ight)=\mathcal{N}_{\min}$$

An alternative approach is to consider the ADMM algorithm (these numerical problems are studied in Lecture 5)

577 / 1420

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Most diversified portfolio

Definition

Choueifaty and Coignard (2008) introduce the concept of diversification ratio:

$$\mathcal{DR}\left(x\right) = \frac{\sum_{i=1}^{n} x_{i} \sigma_{i}}{\sigma\left(x\right)} = \frac{x^{\top} \sigma}{\sqrt{x^{\top} \Sigma x}}$$

 $\mathcal{DR}(x)$ is the ratio between the weighted average volatility and the portfolio volatility

• The diversification ratio of a portfolio fully invested in one asset is equal to one:

$$\mathcal{DR}(e_i)=1$$

• In the general case, it is larger than one:

$$\mathcal{DR}(x) \geq 1$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Most diversified portfolio

The most diversified portfolio (or MDP) is defined as the portfolio which maximizes the diversification ratio:

$$egin{array}{rcl} x^{\star} &=& rg\max \operatorname{\mathsf{ln}}\mathcal{DR}\left(x
ight) \ & \ {f u.c.} & \left\{ egin{array}{c} {f 1}_n^{ op}x = 1 \ {f 0}_n \leq x \leq {f 1}_n \end{array}
ight. \end{array}
ight.$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Most diversified portfolio

The associated Lagrange function is equal to:

$$\begin{aligned} \mathcal{L}\left(x;\lambda_{0},\lambda\right) &= & \ln\left(\frac{x^{\top}\sigma}{\sqrt{x^{\top}\Sigma x}}\right) + \lambda_{0}\left(\mathbf{1}_{n}^{\top}x-1\right) + \lambda^{\top}\left(x-\mathbf{0}_{n}\right) \\ &= & \ln\left(x^{\top}\sigma\right) - \frac{1}{2}\ln\left(x^{\top}\Sigma x\right) + \lambda_{0}\left(\mathbf{1}_{n}^{\top}x-1\right) + \lambda^{\top}x \end{aligned}$$

The first-order condition is:

$$\frac{\partial \mathcal{L}(x;\lambda_0,\lambda)}{\partial x} = \frac{\sigma}{x^{\top}\sigma} - \frac{\Sigma x}{x^{\top}\Sigma x} + \lambda_0 \mathbf{1}_n + \lambda = \mathbf{0}_n$$

whereas the Kuhn-Tucker conditions are:

$$\min(\lambda_i, x_i) = 0 \qquad \text{for } i = 1, \dots, n$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Most diversified portfolio

The constraint $\mathbf{1}_n^\top x = 1$ can always be matched because:

$$\mathcal{DR}\left(\varphi\cdot x\right)=\mathcal{DR}\left(x\right)$$

We deduce that the MDP x^* satisfies:

$$\frac{\Sigma x^{\star}}{x^{\star \top} \Sigma x^{\star}} = \frac{\sigma}{x^{\star \top} \sigma} + \lambda$$

or:

$$\Sigma x^{\star} = \frac{\sigma^{2}(x^{\star})}{x^{\star \top}\sigma}\sigma + \lambda\sigma^{2}(x^{\star})$$
$$= \frac{\sigma(x^{\star})}{\mathcal{DR}(x^{\star})}\sigma + \lambda\sigma^{2}(x^{\star})$$

If the long-only constraint is not imposed, we have $\lambda = \mathbf{0}_n$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Most diversified portfolio

The correlation between a portfolio x and the MDP x^* is given by:

$$\rho(x, x^{\star}) = \frac{x^{\top} \Sigma x^{\star}}{\sigma(x) \sigma(x^{\star})}$$
$$= \frac{1}{\sigma(x) \mathcal{DR}(x^{\star})} x^{\top} \sigma + \frac{\sigma(x^{\star})}{\sigma(x)} x^{\top} \lambda$$
$$= \frac{\mathcal{DR}(x)}{\mathcal{DR}(x^{\star})} + \frac{\sigma(x^{\star})}{\sigma(x)} x^{\top} \lambda$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Most diversified portfolio

If x^* is the long-only MDP, we obtain (because $\lambda \ge \mathbf{0}_n$ and $x^\top \lambda \ge \mathbf{0}$):

$$\rho\left(x, x^{\star}\right) \geq \frac{\mathcal{DR}\left(x\right)}{\mathcal{DR}\left(x^{\star}\right)}$$

whereas we have for the unconstrained MDP:

$$\rho(x, x^{\star}) = \frac{\mathcal{DR}(x)}{\mathcal{DR}(x^{\star})}$$

The 'core property' of the MDP

"The long-only MDP is the long-only portfolio such that the correlation between any other long-only portfolio and itself is greater than or equal to the ratio of their diversification ratios" (Choueifaty et al., 2013)

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Most diversified portfolio

The correlation between Asset *i* and the MDP is equal to:

$$\rho(e_i, x^*) = \frac{\mathcal{D}\mathcal{R}(e_i)}{\mathcal{D}\mathcal{R}(x^*)} + \frac{\sigma(x^*)}{\sigma(e_i)} e_i^\top \lambda$$
$$= \frac{1}{\mathcal{D}\mathcal{R}(x^*)} + \frac{\sigma(x^*)}{\sigma_i} \lambda_i$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Most diversified portfolio

Because $\lambda_i = 0$ if $x_i^* > 0$ and $\lambda_i > 0$ if $x_i^* = 0$, we deduce that:

$$\rho\left(e_{i}, x^{\star}\right) = \frac{1}{\mathcal{DR}\left(x^{\star}\right)} \quad \text{if} \quad x_{i}^{\star} > 0$$

and:

$$ho\left(e_{i},x^{\star}
ight)\geqrac{1}{\mathcal{DR}\left(x^{\star}
ight)}\quad ext{if}\quad x_{i}^{\star}=0$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Most diversified portfolio

Another diversification concept

"Any stock not held by the MDP is more correlated to the MDP than any of the stocks that belong to it. Furthermore, all stocks belonging to the MDP have the same correlation to it. [...] This property illustrates that all assets in the universe are effectively represented in the MDP, even if the portfolio does not physically hold them. [...] This is consistent with the notion that the most diversified portfolio is the un-diversifiable portfolio" (Choueifaty et al., 2013)

′ 1420

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Most diversified portfolio

Remark

In the case when the long-only constraint is omitted, we have $\rho(e_i, x^*) = \rho(e_j, x^*)$ meaning that the correlation with the MDP is the same for all the assets

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Most diversified portfolio

Example 4

We consider an investment universe of four assets. Their volatilities are equal to 20%, 10%, 20% and 25%. The correlation of asset returns is given by the following matrix:

$$ho = \left(egin{array}{ccccccc} 1.00 & & & \ 0.80 & 1.00 & \ 0.40 & 0.30 & 1.00 & \ 0.50 & 0.10 & -0.10 & 1.00 \end{array}
ight)$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Most diversified portfolio

Table 52: Composition of the MDP

	Uncon	strained	Long-only			
Asset	X_i^{\star}	$ ho(e_i, x^{\star})$	X_i^{\star}	$ ho\left(\mathbf{e}_{\mathbf{i}}, \mathbf{x}^{\star} ight)$		
1	-18.15	61.10	0.00	73.20		
2	61.21	61.10	41.70	62.40		
3	29.89	61.10	30.71	62.40		
4	27.05	61.10	27.60	62.40		
$\sigma(\mathbf{x}^{\star})$	9	.31	10.74			
$\mathcal{DR}(x^{\star})$	1	.64	1.60			

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Most diversified portfolio

Assumption \mathcal{H}_0 : all the assets have the same Sharpe ratio

$$\frac{\mu_i - r}{\sigma_i} = s$$

Under \mathcal{H}_0 , the diversification ratio of portfolio x is proportional to its Sharpe ratio:

$$\mathcal{DR}(x) = \frac{1}{s} \frac{\sum_{i=1}^{n} x_i (\mu_i - r)}{\sigma(x)}$$
$$= \frac{1}{s} \frac{x^\top \mu - r}{\sigma(x)}$$
$$= \frac{1}{s} \cdot \operatorname{SR}(x \mid r)$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Most diversified portfolio

Optimality of the MDP

Under \mathcal{H}_0 , maximizing the diversification ratio is then equivalent to maximizing the Sharpe ratio:

MDP = MSR

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Most diversified portfolio

In the CAPM framework, Clarke et al. (2013) showed that:

$$x_{i}^{\star} = \mathcal{DR}\left(x^{\star}\right) \frac{\sigma_{i}\sigma\left(x^{\star}\right)}{\tilde{\sigma}_{i}^{2}} \left(1 - \frac{\rho_{i,m}}{\rho^{\star}}\right)$$

where $\sigma_i = \sqrt{\beta_i^2 \sigma_m^2 + \tilde{\sigma}_i^2}$ is the volatility of asset *i*, $\rho_{i,m} = \beta_i \sigma_m / \sigma_i$ is the correlation between asset *i* and the market portfolio and ρ^* is the threshold correlation given by this formula:

$$\rho^{\star} = \left(1 + \sum_{i=1}^{n} \frac{\rho_{i,m}^{2}}{1 - \rho_{i,m}^{2}}\right) / \left(\sum_{i=1}^{n} \frac{\rho_{i,m}}{1 - \rho_{i,m}^{2}}\right)$$

The weights are then strictly positive if $\rho_{i,m} < \rho^{\star}$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Most diversified portfolio

The MDP tends to be less concentrated than the MV portfolio because:

$$egin{array}{rcl} x_{\mathrm{mv},i} &=& rac{1}{ ilde{\sigma}_{i}^{2}} imes \cdots \ x_{\mathrm{mdp},i} &=& rac{\sigma_{i}}{ ilde{\sigma}_{i}^{2}} imes \cdots pprox rac{1}{ ilde{\sigma}_{i}} imes \cdots pprox rac{1}{ ilde{\sigma}_{i}} imes \cdots pprox rac{1}{ ilde{\sigma}_{i}} imes \cdots + \cdots \end{array}$$

Capitalization-weighted indexation **Risk-based portfolios** Comparison of the four risk-based portfolios The case of bonds

ERC portfolio

In Lecture 2, we have seen that the ERC portfolio corresponds to the portfolio such that the risk contribution from each stock is made equal

The main advantages of the ERC allocation are the following:

- It defines a portfolio that is well diversified in terms of risk and weights
- Like the three previous risk-based methods, it does not depend on any expected returns hypothesis
- It is less sensitive to small changes in the covariance matrix than MV or MDP portfolios (Demey *et al.*, 2010)

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

ERC portfolio

In the CAPM framework, Clarke et al. (2013) showed:

$$x_{i}^{\star} = \frac{\sigma^{2}\left(x^{\star}\right)}{\tilde{\sigma}_{i}^{2}} \left(\sqrt{\frac{\beta_{i}^{2}}{\beta^{\star 2}} + \frac{\tilde{\sigma}_{i}^{2}}{n\sigma^{2}\left(x^{\star}\right)}} - \frac{\beta_{i}}{\beta^{\star}}\right)$$

where:

$$\beta^{\star} = \frac{2\sigma^2 \left(x^{\star} \right)}{\beta \left(x^{\star} \right) \sigma_m^2}$$

It follows that:

$$\lim_{n\to\infty} x_{\rm erc} = x_{\rm ew}$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Comparison of the 4 Methods

Equally-weighted (EW)

- Weights are equal
- Easy to understand
- Contrarian strategy with a take-profit scheme
- The least concentrated in terms of weights
- Do not depend on risks

Most Diversified Portfolio (MDP)

- Also known as the Max Sharpe Ratio (MSR) portfolio of EDHEC
- Based on the assumption that sharpe ratio is equal for all stocks
- It is the tangency portfolio if the previous assumption is verified
- Sensitive to the covariance matrix

Minimum variance (MV)

- Low volatility portfolio
- The only optimal portfolio not depending on expected returns assumptions
- Good out of sample performance
- Concentrated portfolios
- Sensitive to the covariance matrix

Equal Risk Contribution (ERC)

- Risk contributions are equal
- Highly diversified portfolios
- Less sensitive to the covariance matrix (than the MV and MDP portfolios)
- Not efficient for universe with a large number of stocks (equivalent to the EW portfolio)

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Some properties

In terms of bets

$$\exists i: w_i = 0 \quad (MV - MDP) \\ \forall i: w_i \neq 0 \quad (EW - ERC)$$

In terms of risk factors

$$x_{i} = x_{j} \qquad (EW)$$

$$\frac{\partial \sigma(x)}{\partial x_{i}} = \frac{\partial \sigma(x)}{\partial x_{j}} \qquad (MV)$$

$$x_{i} \cdot \frac{\partial \sigma(x)}{\partial x_{i}} = x_{j} \cdot \frac{\partial \sigma(x)}{\partial x_{j}} \qquad (ERC)$$

$$\frac{1}{\sigma_{i}} \cdot \frac{\partial \sigma(x)}{\partial x_{i}} = \frac{1}{\sigma_{j}} \cdot \frac{\partial \sigma(x)}{\partial x_{j}} \qquad (MDP)$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Some properties

Proof for the MDP portfolio

For the unconstrained MDP portfolio, we recall that the first-order condition is given by:

$$\frac{\partial \mathcal{L}(x;\lambda_0,\lambda)}{\partial x_i} = \frac{\sigma_i}{x^{\top}\sigma} - \frac{(\Sigma x)_i}{x^{\top}\Sigma x} = 0$$

The scaled marginal volatility is then equal to the inverse of the diversification ratio of the MDP:

$$\frac{1}{\sigma_{i}} \cdot \frac{\partial \sigma (x)}{\partial x_{i}} = \frac{1}{\sigma_{i}} \cdot \frac{(\Sigma x)_{i}}{\sqrt{x^{\top} \Sigma x}}$$
$$= \frac{\sigma (x)}{\sigma_{i}} \cdot \frac{(\Sigma x)_{i}}{x^{\top} \Sigma x}$$
$$= \frac{\sigma (x)}{x^{\top} \sigma} = \frac{1}{\mathcal{DR} (x)}$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Application to the Eurostoxx 50 index

Table 53: Composition in % (January 2010)

						MV	MDP	MV	MDP							MV	MDP	MV	MDP
	CW	MV	ERC	MDP	1/n	10%	10%	5%	5%		CW	MV	ERC	MDP	1/n	10%	10%	5%	5%
TOTAL	6.1		2.1		2			5.0		RWE AG (NEU)	1.7	2.7	2.7		2	7.0		5.0	
BANCO SANTANDER	5.8		1.3		2					ING GROEP NV	1.6		0.8	0.4	2				
TELEFONICA SA	5.0	31.2	3.5		2	10.0		5.0	5.0	DANONE	1.6	1.9	3.4	1.8	2	8.7	3.3	5.0	5.0
SANOFI-AVENTIS	3.6	12.1	4.5	15.5	2	10.0	10.0	5.0	5.0	IBERDROLA SA	1.6		2.5		2	5.1		5.0	1.2
E.ON AG	3.6		2.1		2				1.4	ENEL	1.6		2.1		2			5.0	2.9
BNP PARIBAS	3.4		1.1		2					VIVENDI SA	1.6	2.8	3.1	4.5	2	10.0	5.9	5.0	5.0
SIEMENS AG	3.2		1.5		2					ANHEUSER-BUSCH INB	1.6	0.2	2.7	10.9	2	2.1	10.0	5.0	5.0
BBVA(BILB-VIZ-ARG)	2.9		1.4		2					ASSIC GENERALI SPA	1.6		1.8		2				
BAYER AG	2.9		2.6	3.7	2	2.2	5.0	5.0	5.0	AIR LIQUIDE(L')	1.4		2.1		2			5.0	
ENI	2.7		2.1		2					MUENCHENER RUECKVE	1.3		2.1	2.1	2		3.1	5.0	5.0
GDF SUEZ	2.5		2.6	4.5	2		5.4	5.0	5.0	SCHNEIDER ELECTRIC	1.3		1.5		2				
BASF SE	2.5		1.5		2					CARREFOUR	1.3	1.0	2.7	1.3	2	3.7	2.5	5.0	5.0
ALLIANZ SE	2.4		1.4		2					VINCI	1.3		1.6		2				
UNICREDIT SPA	2.3		1.1		2					LVMH MOET HENNESSY	1.2		1.8		2				
SOC GENERALE	2.2		1.2	3.9	2		3.7		5.0	PHILIPS ELEC(KON)	1.2		1.4		2				
UNILEVER NV	2.2	11.4	3.7	10.8	2	10.0	10.0	5.0	5.0	L'OREAL	1.1	0.8	2.8		2	5.5		5.0	5.0
FRANCE TELECOM	2.1	14.9	4.1	10.2	2	10.0	10.0	5.0	5.0	CIE DE ST-GOBAIN	1.0		1.1		2				
NOKIA OYJ	2.1		1.8	4.5	2		4.8		5.0	REPSOL YPF SA	0.9		2.0		2			5.0	
DAIMLER AG	2.1		1.3		2					CRH	0.8		1.7	5.1	2		5.2		5.0
DEUTSCHE BANK AG	1.9		1.0		2					CREDIT AGRICOLE SA	0.8		1.1		2				
DEUTSCHE TELEKOM	1.9		3.2	2.6	2	5.7	3.7	5.0	5.0	DEUTSCHE BOERSE AG	0.7		1.5		2				1.9
INTESA SANPAOLO	1.9		1.3		2					TELECOM ITALIA SPA	0.7		2.0		2				2.5
AXA	1.8		1.0		2					ALSTOM	0.6		1.5		2				
ARCELORMITTAL	1.8		1.0		2					AEGON NV	0.4		0.7		2				
SAP AG	1.8	21.0	3.4	11.2	2	10.0	10.0	5.0	5.0	VOLKSWAGEN AG	0.2		1.8	7.1	2		7.4		5.0
										Total of components	50	11	50	17	50	14	16	20	23

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Some examples

To compare the risk-based methods, we report:

- The weights x_i in %
- The relative risk contributions \mathcal{RC}_i in %
- The weight concentration $\mathcal{H}^{\star}(x)$ in % and the risk concentration $\mathcal{H}^{\star}(\mathcal{RC})$ in % where \mathcal{H}^{\star} is the modified Herfindahl index¹³
- The portfolio volatility $\sigma(x)$ in %
- The diversification ratio $\mathcal{DR}(x)$

¹³We have:

$$\mathcal{H}^{\star}\left(\pi
ight)=rac{n\mathcal{H}\left(\pi
ight)-1}{n-1}\in\left[0,1
ight]$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Some examples

Example 5

We consider an investment universe with four assets. We assume that the volatility σ_i is the same and equal to 20% for all four assets. The correlation matrix *C* is equal to:

$$C = \begin{pmatrix} 100\% & & & \\ 80\% & 100\% & & \\ 0\% & 0\% & 100\% & \\ 0\% & 0\% & -50\% & 100\% \end{pmatrix}$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Some examples

Table 54: Weights and risk contributions (Example 5)

Asset	EV	V	M	V	ME)P	ERC		
Asset	Xi	\mathcal{RC}_i	Xi	\mathcal{RC}_i	Xi	\mathcal{RC}_i	Xi	\mathcal{RC}_i	
1	25.00	4.20	10.87	0.96	10.87	0.96	17.26	2.32	
2	25.00	4.20	10.87	0.96	10.87	0.96	17.26	2.32	
3	25.00	1.17	39.13	3.46	39.13	3.46	32.74	2.32	
4	25.00	1.17	39.13	3.46	39.13	3.46	32.74	2.32	
$\mathcal{H}^{\star}(x)$	0.	00	10.65		10.65		3.20		
$\sigma(x)$	10.	72	8.85		8.85		9.26		
$\mathcal{DR}(x)$	1.87		2.26		2.26		2.16		
$\mathcal{H}^{\star}\left(\mathcal{RC} ight)$	10.65		10.65		10.	65	0.00		

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Some examples

Example 6

We modify the previous example by introducing differences in volatilities. They are 10%, 20%, 30% and 40% respectively. The correlation matrix remains the same as in Example 5.

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Some examples

Table 55: Weights and risk contributions (Example 6)

Asset	Eν	V	M	V	ME)P	ERC		
Assel	Xi	\mathcal{RC}_i	Xi	\mathcal{RC}_i	Xi	\mathcal{RC}_i	Xi	\mathcal{RC}_i	
1	25.00	1.41	74.48	6.43	27.78	1.23	38.36	2.57	
2	25.00	3.04	0.00	0.00	13.89	1.23	19.18	2.57	
3	25.00	1.63	15.17	1.31	33.33	4.42	24.26	2.57	
4	25.00	5.43	10.34	0.89	25.00	4.42	18.20	2.57	
$\mathcal{H}^{\star}(x)$	0.	00	45.13		2.68		3.46		
$\sigma(x)$	11.51		8.63		11.30		10.29		
$\mathcal{DR}(x)$	2.17		1.87		2.26		2.	16	
$\mathcal{H}^{\star}\left(\mathcal{RC} ight)$	10.31		45.13		10.	65	0.00		

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Some examples

Example 7

We now reverse the volatilities of Example 6. They are now equal to 40%, 30%, 20% and 10%.

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Some examples

Table 56: Weights and risk contributions (Example 7)

	EW		M	V	ME)P	ERC		
Asset	Xi	\mathcal{RC}_i	Xi	\mathcal{RC}_i	Xi	\mathcal{RC}_i	Xi	\mathcal{RC}_i	
1	25.00	9.32	0.00	0.00	4.18	0.74	7.29	1.96	
2	25.00	6.77	4.55	0.29	5.57	0.74	9.72	1.96	
3	25.00	1.09	27.27	1.74	30.08	2.66	27.66	1.96	
4	25.00	0.00	68.18	4.36	60.17	2.66	55.33	1.96	
$\mathcal{H}^{\star}(x)$	0.	00	38.84		27.65		19.65		
$\sigma(x)$	17.	18	6.	6.40		6.80		82	
$\mathcal{DR}(x)$	1.46		2.13		2.26		2.16		
$\mathcal{H}^{\star}\left(\mathcal{RC} ight)$	27.13		38.84		10.	65	0.00		

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Some examples

Example 8

We consider an investment universe of four assets. The volatility is respectively equal to 15%, 30%, 45% and 60% whereas the correlation matrix C is equal to:

$$C = \begin{pmatrix} 100\% & & & \\ 10\% & 100\% & & \\ 30\% & 30\% & 100\% & \\ 40\% & 20\% & -50\% & 100\% \end{pmatrix}$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Some examples

Table 57: Weights and risk contributions (Example 8)

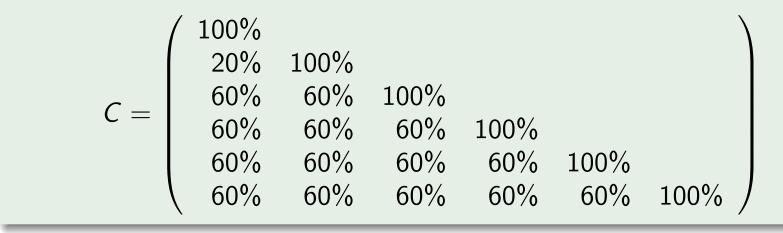
	E۷	V	M	V	M	OP	ERC		
Asset	Xi	\mathcal{RC}_i	Xi	\mathcal{RC}_i	Xi	\mathcal{RC}_i	Xi	\mathcal{RC}_i	
1	25.00	2.52	82.61	11.50	0.00	0.00	40.53	4.52	
2	25.00	5.19	17.39	2.42	0.00	0.00	22.46	4.52	
3	25.00	3.89	0.00	0.00	57.14	12.86	21.12	4.52	
4	25.00	9.01	0.00	0.00	42.86	12.86	15.88	4.52	
$\mathcal{H}^{\star}\left(x ight)$	0.	00	61.69		34.69		4.61		
$\sigma(x)$	20.61		13.92		25.71		18.06		
$\mathcal{DR}(x)$	1.82		1.27		2.00		1.	76	
$\mathcal{H}^{\star}\left(\mathcal{RC} ight)$	7.33		61.69		33.	.33	0.00		

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Some examples

Example 9

Now we consider an example with six assets. The volatilities are 25%, 20%, 15%, 18%, 30% and 20% respectively. We use the following correlation matrix:



Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Some examples

Table 58: Weights and risk contributions (Example 9)

	EW		M	V	ME)P	ERC		
Asset	Xi	\mathcal{RC}_i	Xi	\mathcal{RC}_i	Xi	\mathcal{RC}_i	Xi	\mathcal{RC}_i	
1	16.67	3.19	0.00	0.00	44.44	8.61	14.51	2.72	
2	16.67	2.42	6.11	0.88	55.56	8.61	18.14	2.72	
3	16.67	2.01	65.16	9.33	0.00	0.00	21.84	2.72	
4	16.67	2.45	22.62	3.24	0.00	0.00	18.20	2.72	
5	16.67	4.32	0.00	0.00	0.00	0.00	10.92	2.72	
6	16.67	2.75	6.11	0.88	0.00	0.00	16.38	2.72	
$\mathcal{H}^{\star}(x)$	0.	00	37.99		40.74		0.83		
$\sigma(\mathbf{x})$	17.	17.14		14.33		17.21		31	
$\mathcal{DR}(x)$	1.	24	1.14		1.29		1.25		
$\mathcal{H}^{\star}\left(\mathcal{RC} ight)$	1.	36	37.99		40.	00	0.00		

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Some examples

Example 10

To illustrate how the MV and MDP portfolios are sensitive to specific risks, we consider a universe of n assets with volatility equal to 20%. The structure of the correlation matrix is the following:

$$C = \begin{pmatrix} 100\% & & & \\ \rho_{1,2} & 100\% & & \\ 0 & \rho & 100\% & \\ \vdots & \vdots & \ddots & 100\% \\ 0 & \rho & \cdots & \rho & 100\% \end{pmatrix}$$

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Some examples

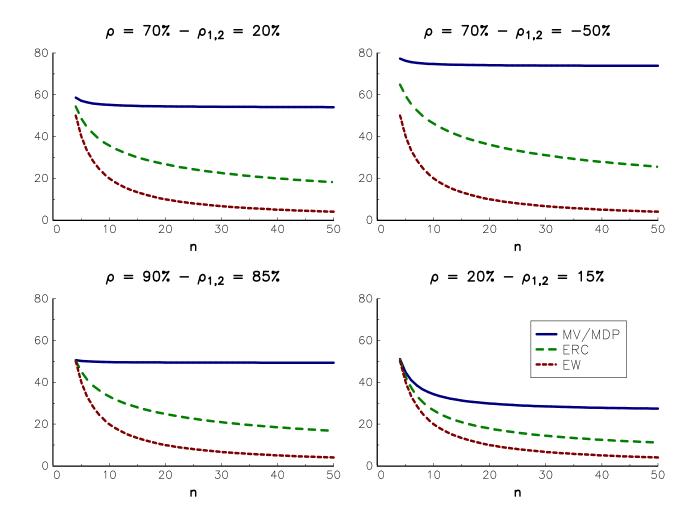


Figure 46: Weight of the first two assets in AW portfolios (Example 10)

612 / 1420

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Some examples

Example 11

We assume that asset returns follow the one-factor CAPM model. The idiosyncratic volatility $\tilde{\sigma}_i$ is set to 5% for all the assets whereas the volatility of the market portfolio σ_m is equal to 25%.

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Some examples

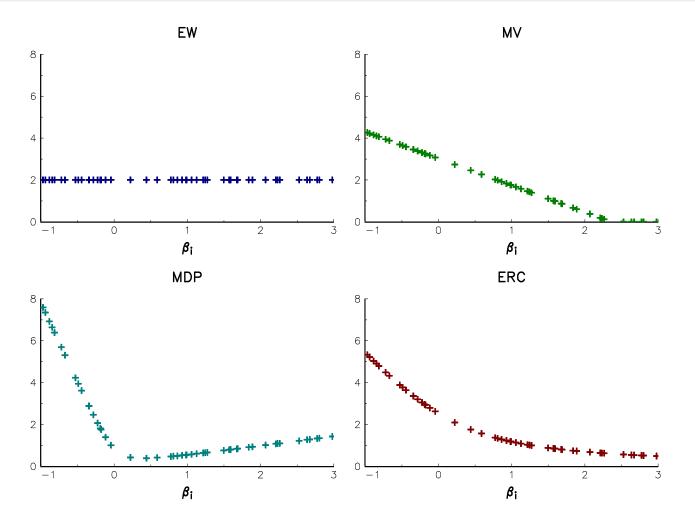


Figure 47: Weight with respect to the asset beta β_i (Example 11)

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Smart beta products

• MSCI Equal Weighted Indexes (EW)

www.msci.com/msci-equal-weighted-indexes

• S&P 500 Equal Weight Index (EW)

www.spglobal.com/spdji/en/indices/equity/sp-500-equal-weight-index

• FTSE UK Equally Weighted Index Series (EW)

www.ftserussell.com/products/indices/equally-weighted

• FTSE Global Minimum Variance Index Series (MV)

www.ftserussell.com/products/indices/min-variance

• MSCI Minimum Volatility Indexes (MV)

www.msci.com/msci-minimum-volatility-indexes

• S&P 500 Minimum Volatility Index (MV)

www.spglobal.com/spdji/en/indices/strategy/sp-500-minimum-volatility-index

• FTSE Global Equal Risk Contribution Index Series (ERC)

www.ftserussell.com/products/indices/erc

• TOBAM MaxDiv Index Series (MDP)

www.tobam.fr/maximum-diversification-indexes

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Smart beta products

Largest ETF issuers in Europe

- IShares (BlackRock)
- 2 Xtrackers (DWS)
- Uxor ETF
- UBS ETF
- Amundi ETF

Largest ETF issuers in US

- iShares (BlackRock)
- SPDR (State Street)
- Vanguard
- Invesco PowerShares
- First Trust
- Specialized smart beta ETF issuers: Wisdom Tree (US), Ossiam (Europe), Research affiliates (US), etc.
- Smart beta fund managers in Europe: Amundi, Ossiam, Quoniam, Robeco, Seeyond, Tobam, Unigestion, etc.
- ETFs, mutual funds, mandates

616 / 1420

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

The case of bonds

Two main problems:

- Benchmarks = debt-weighted indexation (the weights are based on the notional amount of the debt)
- 2 Fund management driven by the search of yield with little consideration for **credit risk** (carry position \neq arbitrage position)
- \Rightarrow Time to rethink bond indexes? (Toloui, 2010)

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

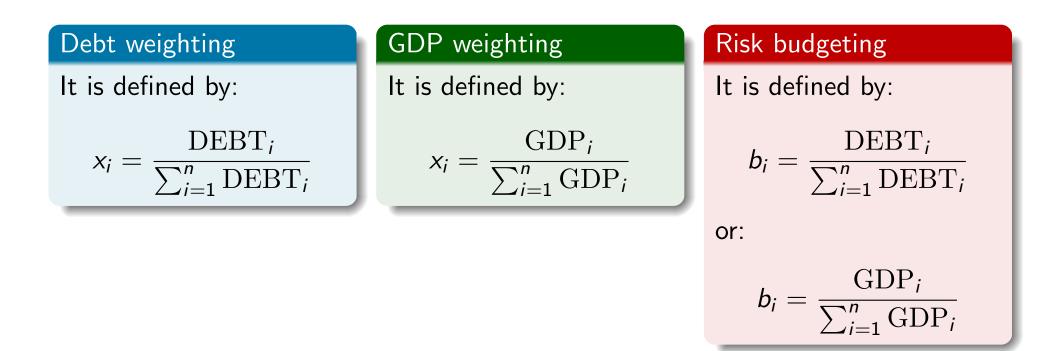
The case of bonds

Two main problems:

- Benchmarks = debt-weighted indexation (the weights are based on the notional amount of the debt)
- 2 Fund management driven by the search of yield with little consideration for **credit risk** (carry position \neq arbitrage position)
- \Rightarrow Time to rethink bond indexes? (Toloui, 2010)

Capitalization-weighted indexation Risk-based portfolios Comparison of the four risk-based portfolios The case of bonds

Bond indexation



 \Rightarrow The offering is very small compared to equity indices because of the liquidity issues (see Roncalli (2013), Chapter 4 for more details)

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

From CAPM to factor investing

How to define risk factors?

Risk factors are common factors that explain the cross-section variance of expected returns

- 1964: Market or MKT (or BETA) factor
- 1972: Low beta or BAB factor
- 1981: Size or SMB factor
- 1985: Value or HML factor
- 1991: Low volatility or VOL factor
- 1993: Momentum or WML factor
- 2000: Quality or QMJ factor

Systematic risk factors \neq **Idiosyncratic risk factors**

Beta(s) \neq Alpha(s)

620 / 1420

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Alpha or beta?

At the security level, there is a lot of idiosyncratic risk or alpha¹⁴:

	Common	Idiosyncratic	
	Risk	Risk	
GOOGLE	47%	53%	
NETFLIX	24%	76%	
MASTERCARD	50%	50%	
NOKIA	32%	68%	
TOTAL	89%	11%	
AIRBUS	56%	44%	

Carhart's model with 4 factors, 2010-2014 Source: Roncalli (2017)

¹⁴The linear regression is:

$$R_i = \alpha_i + \sum_{j=1}^{n_F} \beta_i^j \mathcal{F}_j + \varepsilon_i$$

In our case, we measure the alpha as $1 - \Re_i^2$ where:

$$\Re_{i}^{2} = 1 - rac{\sigma^{2}(\varepsilon_{i})}{\sigma^{2}(R_{i})}$$

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

The concept of alpha

• Jensen (1968) – How to measure the performance of active fund managers?

$$\mathsf{R}_{t}^{\mathsf{F}} = \alpha + \beta \mathsf{R}_{t}^{\mathsf{MKT}} + \varepsilon_{t}$$

Fund	Return	Rank	Beta	Alpha	Rank
A	12%	Best	1.0	-2%	Worst
В	11%	Worst	0.5	4%	Best

Market return = 14%

$\Rightarrow \bar{\alpha} = -\text{fees}$

- It is the beginning of passive management:
 - John McQuown (Wells Fargo Bank, 1971)
 - Rex Sinquefield (American National Bank, 1973)

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Active management and performance persistence

• Hendricks *et al.* (1993) – Hot Hands in Mutual Funds

$$\operatorname{cov}\left(\alpha_{t}^{\mathsf{Jensen}},\alpha_{t-1}^{\mathsf{Jensen}}\right) > 0$$

where:

$$\alpha_t^{\mathsf{Jensen}} = \mathsf{R}_t^{\mathsf{F}} - \beta^{\mathrm{MKT}} \mathsf{R}_t^{\mathsf{MKT}}$$

 \Rightarrow The persistence of the performance of active management is due to the **persistence of the alpha**

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Risk factors and active management

• Grinblatt *et al.* (1995) – Momentum investors versus Value investors

"77% of mutual funds are momentum investors"

• Carhart (1997):

$$\begin{pmatrix} \operatorname{cov} \left(\alpha_{t}^{\operatorname{Jensen}}, \alpha_{t-1}^{\operatorname{Jensen}} \right) > 0 \\ \operatorname{cov} \left(\alpha_{t}^{\operatorname{Carhart}}, \alpha_{t-1}^{\operatorname{Carhart}} \right) = 0 \end{cases}$$

where:

$$\alpha_t^{\text{Carhart}} = R_t^F - \beta^{\text{MKT}} R_t^{\text{MKT}} - \beta^{\text{SMB}} R_t^{\text{SMB}} - \beta^{\text{HML}} R_t^{\text{HML}} - \beta^{\text{WML}} R_t^{\text{WML}}$$

 \Rightarrow The (short-term) persistence of the performance of active management is due to the (short-term) **persistence of the performance of risk factors**

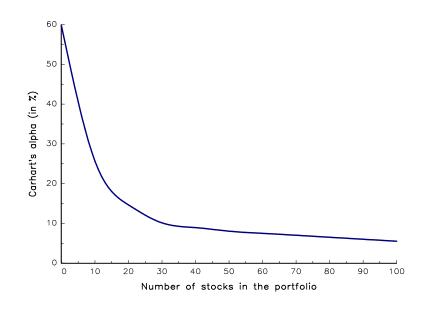
Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Diversification and alpha

David Swensen's rule for effective stock picking

Concentrated portfolio \Rightarrow **No more than 20 bets?**

Figure 48: Carhart's alpha decreases with the number of holding assets



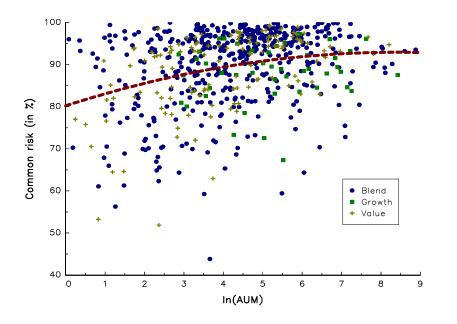
"If you can identify six wonderful businesses, that is all the diversification you need. And you will make a lot of money. And I can guarantee that going into the seventh one instead of putting more money into your first one is going to be a terrible mistake. Very few people have gotten rich on their seventh best idea." (Warren Buffett, University of Florida, 1998).

US equity markets, 2000-2014 Source: Roncalli (2017)

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Diversification and alpha

Figure 49: What proportion of return variance is explained by the 4-factor model?



Morningstar database, 880 mutual funds, European equities Carhart's model with 4 factors, 2010-2014 Source: Roncalli (2017) How many bets are there in large portfolios of institutional investors?

- 1986 Less than 10% of institutional portfolio return is explained by security picking and market timing (Brinson *et al.*, 1986)
- 2009 Professors' Report on the Norwegian GPFG: Risk factors represent 99.1% of the fund return variation (Ang *et al.*, 2009)

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

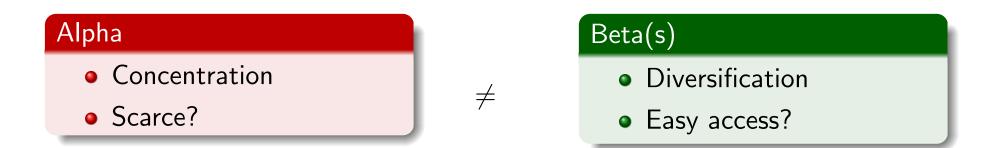
Risk factors versus alpha

What lessons can we draw from this?

Idiosyncratic risks and specific bets disappear in (large) diversified portfolios. Performance of institutional investors is then exposed to (common) risk factors.

Alpha is not scalable, but risk factors are scalable

 \Rightarrow Risk factors are the only bets that are compatible with diversification



Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Factor investing and active management

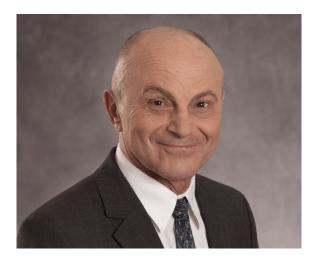
Misconception about active management

- Active management = $oldsymbol{lpha}$
- Passive management $=oldsymbol{eta}$

In this framework, passive management encompasses cap-weighted indexation, risk-based indexation and factor investing because these management styles do not pretend to create alpha

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Factor investing and active management



"The question is when is active management good? The answer is never"

Eugene Fama, Morningstar ETF conference, September 2014

"So people say, 'I'm not going to try to beat the market. The market is all-knowing.' But how in the world can the market be all-knowing, if nobody is trying – well, not as many people – are trying to beat it?"

Robert Shiller, CNBC, November 2017

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Factor investing and active management

- Discretionary active management ⇒ specific/idiosyncratic risks & rule-based management ⇒ factor investing and systematic risks?
- Are common risk factors exogenous or endogenous?
- Do risk factors exist without active management?

Risk factors first, active management second or Active management first, risk factors second

- Factor investing needs active investing
- Imagine a world without active managers, stock pickers, hedge funds, etc.
- ⇒ Should active management be reduced to alpha management?

630 / 1420

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Factor investing and active management

- Market risk factor = average of active management
- Low beta/low volatility strategies begin to be implemented in 2003-2004 (after the dot.com crisis)
- Quality strategies begin to be implemented in 2009-2010 (after the GFC crisis)

Alpha strategy \Rightarrow **Risk Factor** (or a beta strategy)

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Factor investing and active management

α or β ?

"[...] When an alpha strategy is massively invested, it has an enough impact on the structure of asset prices to become a risk factor.

[...] Indeed, an alpha strategy becomes a common market risk factor once it represents a significant part of investment portfolios and explains the cross-section dispersion of asset returns" (Roncalli, 2020)

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

The factor zoo

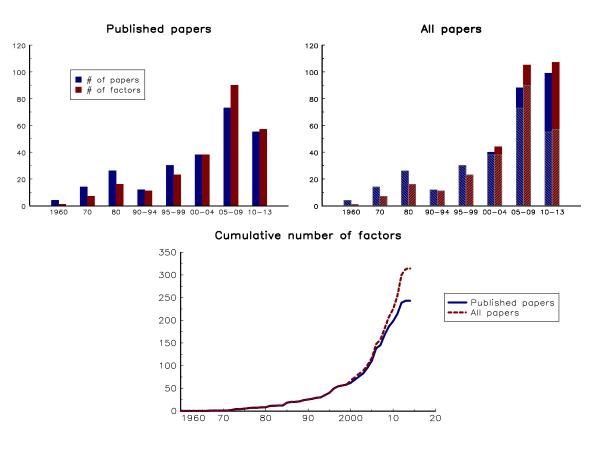


Figure 50: Harvey et al. (2016)

"Now we have a zoo of new factors" (Cochrane, 2011).

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classe:

Factors, factors everywhere

"Standard predictive regressions fail to reject the hypothesis that the party of the U.S. President, the weather in Manhattan, global warming, El Niño, sunspots, or the conjunctions of the planets, are significantly related to anomaly performance. These results are striking, and quite surprising. In fact, some readers may be inclined to reject some of this paper's conclusions solely on the grounds of plausibility. I urge readers to consider this option carefully, however, as doing do so entails rejecting the standard methodology on which the return predictability literature is built." (Novy-Marx, 2014).

 \Rightarrow MKT, SMB, HML, WML, STR, LTR, VOL, IVOL, BAB, QMJ, LIQ, TERM, CARRY, DIV, JAN, CDS, GDP, INF, etc.

634 / 1420

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

The alpha puzzle (Cochrane, 2011)

• Chaos

$$\mathbb{E}\left[R_{i}\right]-R_{f}=\alpha_{i}$$

• Sharpe (1964)

$$\mathbb{E}\left[R_{i}\right]-R_{f}=\beta_{i}^{m}\left(\mathbb{E}\left[R_{m}\right]-R_{f}\right)$$

• Chaos again

$$\mathbb{E}[R_i] - R_f = \alpha_i + \beta_i^m (\mathbb{E}[R_m] - R_f)$$

• Fama and French (1992)

 $\mathbb{E}[R_i] - R_f = \beta_i^m \left(\mathbb{E}[R_m] - R_f \right) + \beta_i^{smb} \mathbb{E}[R_{smb}] + \beta_i^{hml} \mathbb{E}[R_{hml}]$

This is not the end of the story...

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

The alpha puzzle (Cochrane, 2011)

It's just the beginning!

• Chaos again

 $\mathbb{E}[R_i] - R_f = \alpha_i + \beta_i^m (\mathbb{E}[R_m] - R_f) + \beta_i^{smb} \mathbb{E}[R_{smb}] + \beta_i^{hml} \mathbb{E}[R_{hml}]$

• Carhart (1997)

 $\mathbb{E}[R_i] - R_f = \beta_i^m \left(\mathbb{E}[R_m] - R_f \right) + \beta_i^{smb} \mathbb{E}[R_{smb}] + \beta_i^{hml} \mathbb{E}[R_{hml}] + \beta_i^{wml} \mathbb{E}[R_{wml}]$

• Chaos again

$$\mathbb{E}[R_i] - R_f = [\alpha_i] + \beta_i^m (\mathbb{E}[R_m] - R_f) + \beta_i^{smb} \mathbb{E}[R_{smb}] + \beta_i^{hml} \mathbb{E}[R_{hml}] + \beta_i^{wml} \mathbb{E}[R_{wml}]$$

• Etc.

How can alpha always come back?

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

The alpha puzzle (Cochrane, 2011)

- **1.** Because academic backtesting is not the real life
- 2. Because risk factors are not independent in practice
- **3.** Because the explanatory power of risk factors is time-varying
 - 4. Because alpha and beta are highly related (beta strategy = successful alpha strategy)

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

The issue of backtesting

Backtesting syndrome

The blue line is above the red line \Rightarrow it's OK!

 \Rightarrow Analytical models are important to understand a risk factor

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

The professional consensus

There is now a consensus among professionals that five factors are sufficient for the equity markets:

Size

Small cap stocks \neq Large cap stocks

2 Value

Value stocks \neq Non-value stocks (including growth stocks)

Momentum

Past winners \neq **Past loosers**

Low-volatility

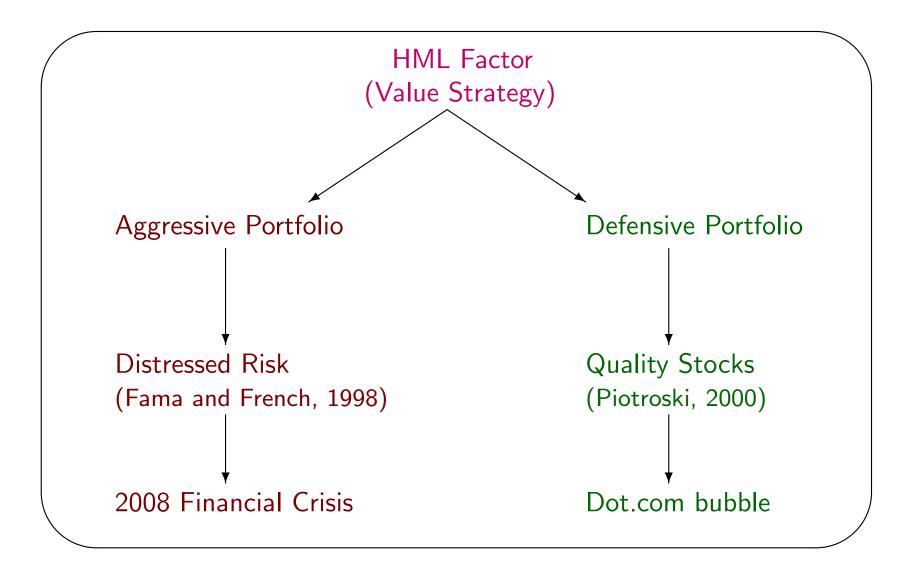
Low-vol (or low-beta) stocks \neq High-vol (or high-beta stocks)

O Quality

Quality stocks \neq Non-quality stocks (including junk stocks)

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

The example of the value risk factor



640 / 1420

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

The example of the dividend yield risk factor

• Book-to-price (value risk factor):

$$B2P = \frac{B}{P}$$

• Dividend yield (carry risk factor):

$$DY = \frac{D}{P}$$
$$= \frac{D}{B} \times \frac{B}{P}$$
$$= D2B \times B2P$$

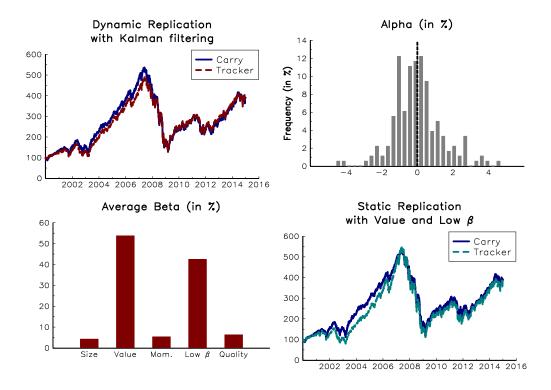
- Value component (book and dividend = low-frequency, price = high-frequency)
- Low-volatility component (bond-like stocks)

Risk factors are not orthogonal, they are correlated

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

The example of the dividend yield risk factor

Figure 51: Value, low beta and carry are not orthogonal risk factors



Source: Richard and Roncalli (2015)

Carry \simeq 60% Value + 40% Low-volatility

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

The example of the dividend yield risk factor

- Why Size + Value + Momentum + Low-volatility + Quality?
- Why not Size + Carry + Momentum + Low-volatility + Quality or Size + Carry + Momentum + Value + Quality?
- Because:

Carry \simeq 60% Value + 40% Low-volatility Value \simeq 167% Carry - 67% Low-volatility Low-volatility \simeq 250% Carry - 150% Value

Question

Why Value + Momentum + Low-volatility + Quality and not Size + Value + Momentum + Low-volatility + Quality?

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

General approach

- We consider a universe \mathcal{U} of stocks (e.g. the MSCI World Index)
- We define a rebalancing period (e.g. every month, every quarter or every year)
- At each rebalancing date t_{τ} :
 - We define a score $\mathbb{S}_i(t_{\tau})$ for each stock i
 - Stocks with high scores are selected to form the long exposure $\mathcal{L}(t_{\tau})$ of the risk factor
 - Stocks with low scores are selected to form the short exposure $S(t_{\tau})$ of the risk factor
- We specify a weighting scheme $w_i(t_{\tau})$ (e.g. value weighted or equally weighted)

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

General approach

• The performance of the risk factor between two rebalancing dates corresponds to the performance of the long/short portfolio:

$$\mathcal{F}\left(t
ight)=\mathcal{F}\left(t_{ au}
ight)\cdot\left(\sum_{i\in\mathcal{L}\left(t_{ au}
ight)}w_{i}\left(t_{ au}
ight)\left(1+R_{i}\left(t
ight)
ight)-\sum_{i\in\mathcal{S}\left(t_{ au}
ight)}w_{i}\left(t_{ au}
ight)\left(1+R_{i}\left(t
ight)
ight)
ight)$$

where $t \in]t_{\tau}, t_{\tau+1}]$ and $\mathcal{F}(t_0) = 100$.

 In the case of a long-only risk factor, we only consider the long portfolio:

$$\mathcal{F}\left(t
ight)=\mathcal{F}\left(t_{ au}
ight)\cdot\left(\sum_{i\in\mathcal{L}\left(t_{ au}
ight)}w_{i}\left(t_{ au}
ight)\left(1+R_{i}\left(t
ight)
ight)
ight)$$

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

The Fama-French approach

The SMB and HML factors are defined as follows:

$$SMB_{t} = \frac{1}{3} \left(R_{t} \left(SV \right) + R_{t} \left(SN \right) + R_{t} \left(SG \right) \right) - \frac{1}{3} \left(R_{t} \left(BV \right) + R_{t} \left(BN \right) + R_{t} \left(BG \right) \right)$$

and:

$$\mathrm{HML}_{t} = \frac{1}{2} \left(R_{t} \left(\mathrm{SV} \right) + R_{t} \left(\mathrm{BV} \right) \right) - \frac{1}{2} \left(R_{t} \left(\mathrm{SG} \right) + R_{t} \left(\mathrm{BG} \right) \right)$$

with the following 6 portfolios¹⁵:

	Value	Neutral	Growth
Small	SV	SN	SG
Big	BV	BN	BG

¹⁵We have:

- The scores are the market equity (ME) and the book equity to market equity (BE/ME)
- The size breakpoint is the median market equity (Small = 50% and Big = 50%)
- The value breakpoints are the 30th and 70th percentiles of BE/ME (Value = 30%, Neutral = 40% and Growth = 30%)

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

The Fama-French approach

Homepage of Kenneth R. French

You can download data at the following webpage:

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ data_library.html

- Asia Pacific ex Japan
- Developed
- Developed ex US
- Europe
- Japan
- North American
- US

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Quintile portfolios

In this approach, we form five quintile portfolios:

- Q_1 corresponds to the stocks with the highest scores (top 20%)
- Q_2 , Q_3 and Q_4 are the second, third and fourth quintile portfolios
- Q_5 corresponds to the stocks with the lowest scores (bottom 20%)

 \Rightarrow The long/short risk factor is the performance of $Q_1 - Q_5$, whereas the long-only risk factor is the performance of Q_1

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

The construction of risk factors

Table 59: An illustrative example

Asset	Score	Rank	Quintile	Selected	L/S	Weight
A_1	1.1	3	Q_2			
A_2	0.5	4	Q_2			
A_3	-1.3	9	Q_5	\checkmark	Short	-50%
A_4	1.5	2	Q_1	\checkmark	Long	+50%
A_5	-2.8	10	Q_5	\checkmark	Short	-50%
A_6	0.3	5	Q_3			
A_7	0.1	6	Q_3			
A_8	2.3	1	Q_1	\checkmark	Long	+50%
A_9	-0.7	8	Q_4			
A_{10}	-0.3	7	Q_4			

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

The scoring system

Variable selection

- Size: market capitalization
- Value: Price to book, price to earnings, price to cash flow, dividend yield, etc.
- Momentum = one-year price return ex 1 month, 13-month price return minus one-month price return, etc.
- Low volatility = one-year rolling volatility, one-year rolling beta, etc.
- Quality: Profitability, leverage, ROE, Debt to Assets, etc.

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

The scoring system

Variable combination

- Z-score averaging
- Ranking system
- Bottom exclusion

• Etc.

 \Rightarrow Finally, we obtain one score for each stock (e.g. the value score, the quality score, etc.)

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Single-factor exposure versus multi-factor portfolio

Single-factor

- Trading bet
- Tactical asset allocation (TAA)
- If the investor believe that value stocks will outperform growth stocks in the next six months, he will overweight value stocks or add an exposure on the value risk factor
- Active management

Multi-factor

- Long-term bet
- Strategic asset allocation (SAA)
- The investor believe that a factor investing portfolio allows to better capture the equity risk premium than a CW index
- Factor investing portfolio = diversified portfolio (across risk factors)

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Multi-factor portfolio

- Long/short: Market + Size + Value + Momentum + Low-volatility + Quality
- Long-only: Size + Value + Momentum + Low-volatility + Quality (because the market risk factor is replicated by the other risk factors)

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Risk factors in sovereign bonds

"Market participants have long recognized the importance of identifying the common factors that affect the returns on U.S. government bonds and related securities. To explain the variation in these returns, it is critical to distinguish the systematic risks that have a general impact on the returns of most securities from the specific risks that influence securities individually and hence a negligible effect on a diversified portfolio" (Litterman and Scheinkman, 1991, page 54).

 \Rightarrow The 3-factor model of Litterman and Scheinkman (1991) is based on the PCA analysis:

- the level of the yield curve
- the steepness of the yield curve
- the <u>curvature</u> of the yield curve

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Conventional bond model

• Let $B_i(t, D_i)$ be the zero-coupon bond price with maturity D_i :

$$B_i(t, D_i) = e^{-(R(t)+S_i(t))D_i}$$

where R(t) is the risk-free interest rate and $S_i(t)$ is the credit spread • L-CAPM of Acharya and Pedersen (2005):

$$R_{i}(t) = \underbrace{\left(R(t) + S_{i}(t)\right) D_{i} - L_{i}(t)}_{\text{Gross return}}$$

where $L_i(t)$ is the illiquidity cost of Bond *i*

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Conventional bond model

We deduce that:

$$B_i(t, D_i) = e^{-((R(t)+S_i(t))D_i-L_i(t))}$$

and:

$$d \ln B_i(t, D_i) = -D_i dR(t) - D_i dS_i(t) + dL_i(t) = -D_i dR(t) - DTS_i(t) \frac{dS_i(t)}{S_i(t)} + dL_i(t)$$

where $DTS_i(t) = D_i S_{i,t}$ is the duration-time-spread factor

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Conventional bond model

Liquidity premia (Acharya and Pedersen, 2005)

The illiquidity premium $dL_{i,t}$ can be decomposed into an illiquidity level component $\mathbb{E}[L_{i,t}]$ and three illiquidity covariance risks:

 (L_i, L_M)

An asset that becomes illiquid when the market becomes illiquid should have a higher risk premium.

 (R_i, L_M)

An asset that perform well in times of market illiquidity should have a lower risk premium.

 (L_i, R_M)

Investors accept a lower risk premium on assets that are liquid in a bear market.

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Conventional bond model

By assuming that:

$$\mathrm{d}L_{i,t} = \alpha_{i}(t) + \beta(L_{i}, L_{M}) \mathrm{d}L_{M}(t)$$

where α_i is the liquidity return that is not explained by the liquidity commonality, we obtain:

$$R_{i}(t) = \alpha_{i}(t) - D_{i} dR(t) - DTS_{i}(t) \frac{dS_{i}(t)}{S_{i}(t)} + \beta(L_{i}, L_{M}) dL_{M}(t)$$

or:

$$R_{i}(t) = a(t) - D_{i} dR(t) - DTS_{i}(t) \frac{dS_{i}(t)}{S_{i}(t)} + \beta(L_{i}, L_{M}) dL_{M}(t) + u_{i}(t)$$

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Risk factors in corporate bonds

Conventional bond model (or the 'equivalent' CAPM for bonds)

The total return $R_i(t)$ of Bond *i* at time *t* is equal to:

 $R_{i}(t) = a(t) - \mathrm{MD}_{i}(t) R^{\prime}(t) - \mathrm{DTS}_{i}(t) R^{S}(t) + \mathrm{LTP}_{i}(t) R^{L}(t) + u_{i}(t)$

where:

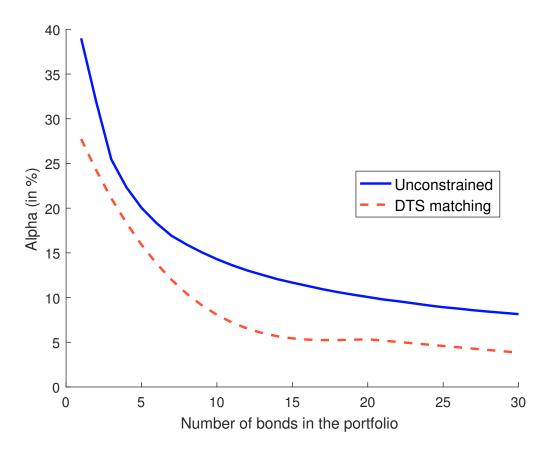
- a(t) is the constant/carry/zero intercept
- $MD_i(t)$ is the modified duration
- $DTS_i(t)$ is the duration-times-spread
- $LTP_i(t)$ is the liquidity-time-price
- $u_i(t)$ is the residual

 $\Rightarrow R^{I}(t), R^{S}(t)$ and $R^{L}(t)$ are the return components due to interest rate movements, credit spread variation and liquidity dynamics.

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Risk factors in corporate bonds

Figure 52: Conventional alpha decreases with the number of holding assets



• There is less traditional alpha in the bond market than in the stock market

EURO IG corporate bonds, 2000-2015 Source: Amundi Research (2017)

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Risk factors in corporate bonds

Since 2015

- Houweling and van Zundert (2017) HZ
- Bektic, Neugebauer, Wegener and Wenzler (2017) BNWW
- Israel, Palhares and Richardson (2017) IPR
- Bektic, Wenzler, Wegener, Schiereck and Spielmann (2019) BWWSS
- Ben Slimane, De Jong, Dumas, Fredj, Sekine and Srb (2019) BDDFSS
- Etc.

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Risk factors in corporate bonds

Study	HZ	BWWSS	IPR	BNWW
Period	1994-2015	1996-2016 (US) 2000-2016 (EU)	1997-2015	1999-2016
Universe	Bloomberg Barclays US IG & HY	BAML US IC & HY FU IC	BAML	BAML US IC & UV
Investment		US IG & HY, EU IG 1Y variation in total assets	US IG & HY	US IG & HY
Low risk	Short maturity + High rating		$\begin{bmatrix} \overline{\text{Leverage}} \times \overline{\text{Duration}} \times \\ \text{Profitability} \end{bmatrix}$	1Y equity beta
Momentum	6M bond return		6M bond return + 6M stock return	1Y stock return
Profitability		Earnings-to-book		
Size	Market value of issuer	Market capitalization		Market capitalization
Value	Comparing OAS to Ma- turity \times Rating \times 3M OAS variation	Price-to-book	$\bar{\text{Comparing OAS to Du-}}$ ration × Rating × Bondreturn volatility + Im-plied default probability	Price-to-book

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Risk factors in currency markets

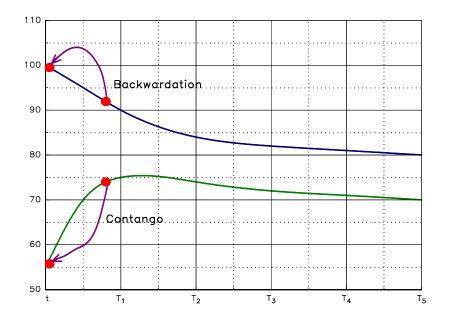
- What are the main risk factors for explaining the cross-section of currency returns?
 - Momentum (cross-section or time-series)
 - 2 Carry
 - Value (short-term, medium-term or long-term)
- The dynamics of some currencies are mainly explained by:
 - Common risk factors (e.g. NZD or CAD)
 - Idiosyncratic risk factors (e.g. IDR or PEN)
- Carry-oriented currency? (e.g. JPY \neq CHF)

Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Risk factors in commodities

- Two universal strategies:
 - Contango/backwardation strategy
 - Trend-following strategy
- CTA = Commodity Trading Advisor
- Only two risk factors?
 - Carry
 - Momentum

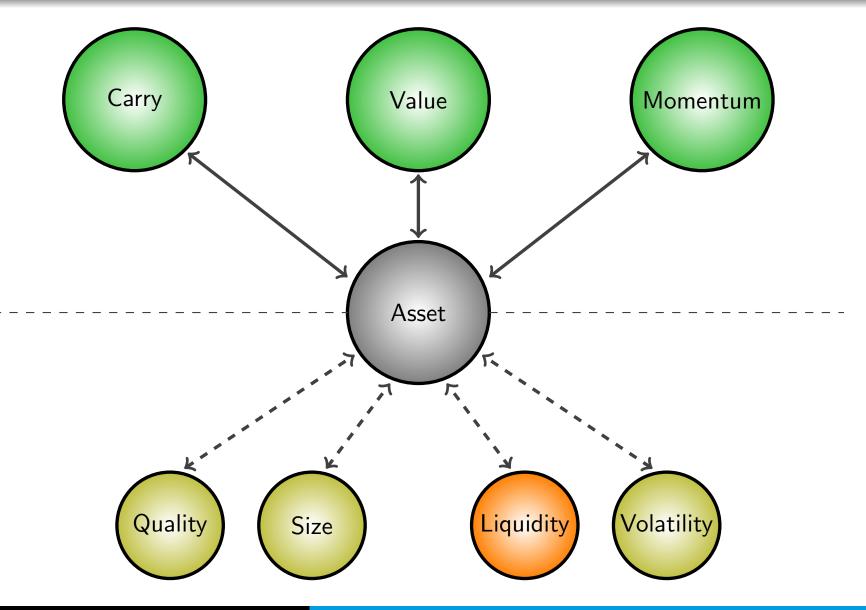
Figure 53: Contango and backwardation movements in commodity futures contracts



664 / 1420

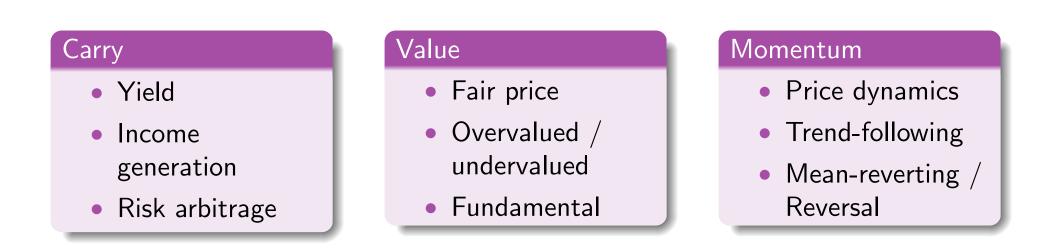
Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Factor analysis of an asset



Factor investing in equities How many risk factors? Construction of risk factors Risk factors in other asset classes

Factor analysis of an asset



Liquidity

- Tradability property (transaction cost, execution time, scarcity)
- Supply/demande imbalance
- Bad times \neq good times

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The concept of alternative risk premia

There are many definitions of ARP:

- ARP \approx factor investing (FI) (ARP = long/short portfolios, FI = long portfolios)
- ARP \approx all the other risk premia (RP) than the equity and bond risk premia
- ARP \approx quantitative investment strategies (QIS)

Sell-sideOIBs & brokersARP = QIS

Buy-side

- Asset managers & asset owners
- ARP = FI (for asset managers)
- ARP = RP (for asset owners)

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The concept of alternative risk premia

Alternative Risk Premia

Alternative (or real) assets

- Private equity
- Private debt
- Real estate
- Infrastructure

Traditional financial assets

- Long/short risk factors in equities, rates, credit, currencies & commodities
- Risk premium strategy (e.g. carry, momentum, value, etc.)

668 / 1420

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

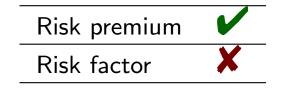
The concept of alternative risk premia

- A risk premium is the expected excess return by the investor in order to accept the risk ⇒ any (risky) investment strategy has a risk premium!
- Generally, the term "risk premium" is associated to asset classes:
 - The equity risk premium
 - The risk premium of high yield bonds
- This means that a risk premium is the expected excess return by the investor in order to accept a future economic risk that cannot be diversifiable
 - For instance, the risk premium of a security does not integrate its specific risk

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The concept of alternative risk premia

- What is the relationship between a risk factor and a risk premium?
 - A rewarded risk factor may correspond a to risk premium, while a non-rewarded risk factor is not a risk premium
 - A risk premium can be a risk factor if it helps to explain the cross-section of expected returns
 - The case of cat bonds:



Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

Risk premia & non-diversifiable risk

Consumption-based model (Lucas, 1978; Cochrane, 2001)

A risk premium is a compensation for accepting (systematic) risk in **bad times**.

We have:

$$\underbrace{\mathbb{E}_{t}\left[R_{t+1}-R_{f,t}\right]}_{\text{Risk premium}} \propto -\underbrace{\rho\left(u'\left(C_{t+1}\right),R_{t+1}\right)}_{\text{Correlation term}} \times \underbrace{\sigma\left(u'\left(C_{t+1}\right)\right)}_{\text{Smoothing term}} \times \underbrace{\sigma\left(R_{t+1}\right)}_{\text{Volatility term}}$$

where R_{t+1} is the one-period return of the asset, $R_{f,t}$ is the risk-free rate, C_{t+1} is the future consumption and u(C) is the utility function.

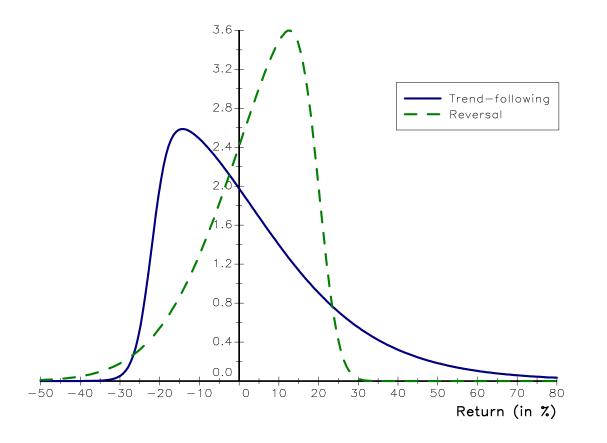
Main results

- Hedging assets help to smooth the consumption \Rightarrow low or negative risk premium
- In bad times, risk premium strategies are correlated and have a negative performance (\neq all-weather strategies)

671 / 1420

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

Risk premia & bad times



The market must reward contrarian and value investors, not momentum investors

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

Behavioral finance and limits to arbitrage

Bounded rationality

Barberis and Thaler (2003), A Survey of Behavioral Finance.

Decisions of the other economic agents $$\Downarrow$

Feedback effects on our decisions!

Killing Homo Economicus

[...] "conventional economics assumes that people are highly rational, super rational and unemotional. They can calculate like a computer and have no self-control problems" (Richard Thaler, 2009).

"The people I study are humans that are closer to Homer Simpson" (Richard Thaler, 2017).

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

Behavioral finance and social preferences

- For example, momentum may be a rational behavior if the investor is not informed and his objective is to minimize the loss with respect to the 'average' investor.
- Absolute loss \neq relative loss
- Loss aversion and performance asymmetry
- Imitations between institutional investors \Rightarrow benchmarking
- Home bias

What does the theory become if utility maximization includes the performance of other economic agents?

⇒ The crowning glory of tracking error and relative performance!

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

Behavioral finance and market anomalies

Previously

Positive expected excess returns are explained by:

• risk premia

Today

Positive expected excess returns are explained by:

- risk premia
- or market anomalies

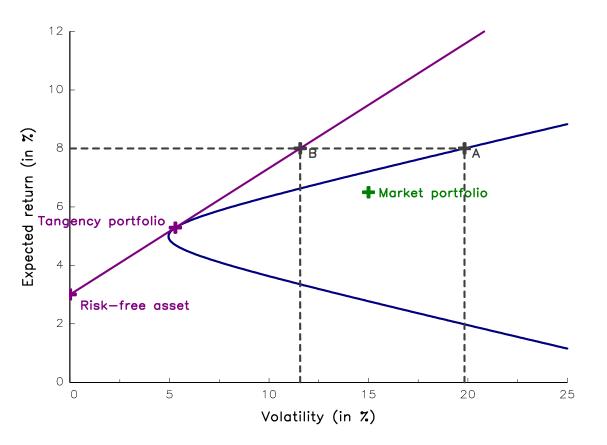
Market anomalies correspond to trading strategies that have delivered good performance in the past, but their performance cannot be explained by the existence of a systematic risk (in bad times). Their performance can only be explained by behavioral theories.

 \Rightarrow Momentum, low risk and quality risk factors are three market anomalies

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The case of low risk assets

Figure 54: What is the impact of borrowing constraints on the market portfolio?



- The investor that targets a 8% expected return must choose Portfolio B
- The demand for high beta assets is higher than this predicted by CAPM
- This effect is called the low beta anomaly

Low risk assets have a higher Sharpe ratio than high risk assets

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

Skewness risk premia & market anomalies

Characterization of alternative risk premia

- An alternative risk premium (ARP) is a risk premium, which is not traditional
 - Traditional risk premia (TRP): equities, sovereign/corporate bonds
 - Currencies and some commodities are not TRP
- The drawdown of an ARP must be positively correlated to bad times
 - Risk premia \neq insurance against bad times
 - (SMB, HML) \neq WML
- Risk premia are an increasing function of the volatility and a decreasing function of the skewness

In the market practice, alternative risk premia recover:

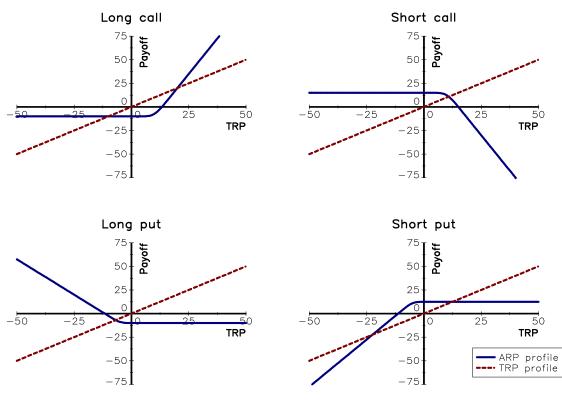
Skewness risk premia (or pure risk premia), which present high negative skewness and potential large drawdown

Markets anomalies

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

Payoff function of alternative risk premia

Figure 55: Which option profile may be considered as a skewness risk premium?



 \Rightarrow SMB, HML, DANKE, BAB, DAKE

• Long (risk adverse)

- Short call (market anomaly)
- Longout (insurance)
- Short put

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

A myriad of alternative risk premia?

Figure 56: Mapping of risk premia strategies (based on existing products)

Strategy	Equities	Rates	Credit	Currencies	Commodities
Carry	Dividend futures High dividend yield	Forward rate bias Term structure slope Cross-term-structure	Forward rate bias	Forward rate bias	Forward rate bias Term structure slope Cross-term-structure
Event	Buyback Merger arbitrage				
Growth	Growth				
Liquidity	Amihud liquidity	Turn-of-the-month	Turn-of-the-month		Turn-of-the-month
Low beta	Low beta Low volatility				
Momentum	Cross-section Time-series	Cross-section Time-series	Time-series	Cross-section Time-series	Cross-section Time-series
Quality	Quality				
Reversal	Time-series Variance	Time-series		Time-series	Time-series
Size	Size				
Value	Value	Value	Value	PPP REER, BEER, FEER NATREX	Value
Volatility	Carry Term structure	Carry		Carry	Carry

Source: Roncalli (2017)

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium

Definition

- The investor takes an investment risk
- This investment risk is rewarded by a high and known yield
- Financial theory predicts a negative mark-to-market return that may reduce or write off the performance
- The investor hopes that the impact of the mark-to-market will be lower than the predicted value
- \Rightarrow Carry strategies are highly related to the concept of risk arbitrage¹⁶
 - The carry risk premium is extensively studied by Koijen *et al.* (2018)
 - The carry risk premium has a short put option profile

 $^{^{16}}$ An example is the carry strategy between pure money market instruments and commercial papers = not the same credit risk, not the same maturity risk, but the investor believes that the default will never occur!

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium

Not one but several carry strategies

- Equity
 - Carry on dividend futures
 - Carry on stocks with high dividend yields (HDY)
- Rates (sovereign bonds)
 - Carry on the yield curve (term structure & roll-down)
- Credit (corporate bons)
 - Carry on bonds with high spreads
 - High yield strategy
- Currencies
 - Carry on interest rate differentials (uncovered interest rate parity)
- Commodities
 - Carry on contango & backwardation movements
- Volatility
 - Carry on option implied volatilities
 - Short volatility strategy

 \Rightarrow Many implementation methods: security-slope, cross-asset, long/short, long-only, basis arbitrage, etc.

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium Analytical model

- Let X_t be the capital allocated at time t to finance a futures position (or an unfunded forward exposure) on asset S_t
- By assuming that the futures price expires at the future spot price $(F_{t+1} = S_{t+1})$, Koijen *et al.* (2018) showed that:

$$R_{t+1}(X_t) - R_f = \frac{F_{t+1} - F_t}{X_t}$$

= $\frac{S_{t+1} - F_t}{X_t}$
= $\frac{S_t - F_t}{X_t} + \frac{\mathbb{E}_t [S_{t+1}] - S_t}{X_t} + \frac{S_{t+1} - \mathbb{E}_t [S_{t+1}]}{X_t}$

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium Analytical model

• At time t + 1, the excess return of this investment is then equal to:

$$R_{t+1}(X_t) - R_f = C_t + rac{\mathbb{E}_t \left[\Delta S_{t+1}
ight]}{X_t} + \varepsilon_{t+1}$$

where $\varepsilon_{t+1} = (S_{t+1} - \mathbb{E}_t [S_{t+1}]) / X_t$ is the unexpected price change and C_t is the carry:

$$\mathcal{C}_t = \frac{S_t - F_t}{X_t}$$

 It follows that the expected excess return is the sum of the carry and the expected price change:

$$\mathbb{E}_{t}\left[R_{t+1}\left(X_{t}\right)\right] - R_{f} = \mathcal{C}_{t} + \frac{\mathbb{E}_{t}\left[\Delta S_{t+1}\right]}{X_{t}}$$

- The nature of these two components is different:
 - The carry is an ex-ante observable quantity (known value)
 - 2 The price change depends on the dynamic model of S_t (unknown value)

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium Analytical model

• If we assume that the spot price does not change (no-arbitrage assumption \mathcal{H}), the expected excess return is equal to the carry:

$$\frac{\mathbb{E}_t \left[\Delta S_{t+1} \right]}{X_t} = -\mathcal{C}_t$$

• The carry investor will prefer Asset *i* to Asset *j* if the carry of Asset *i* is higher:

$$\mathcal{C}_{i,t} \geq \mathcal{C}_{j,t} \Longrightarrow A_i \succ A_j$$

• The carry strategy would then be long on high carry assets and short on low carry assets.

Remark

In the case of a fully-collateralized position $X_t = F_t$, the value of the carry becomes:

$$C_t = \frac{S_t}{F_t} - 1$$

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium Currency carry (or the carry trade strategy)

- Let S_t , i_t and r_t be the spot exchange rate, the domestic interest rate and the foreign interest rate for the period [t, t + 1]
- The forward exchange rate F_t is equal to:

$$F_t = \frac{1+i_t}{1+r_t}S_t$$

• The carry is approximately equal to the interest rate differential:

$$\mathcal{C}_t = \frac{r_t - i_t}{1 + i_t} \simeq r_t - i_t$$

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium Currency carry (or the carry trade strategy)

- The carry strategy is long on currencies with high interest rates and short on currencies with low interest rates
- We can consider the following carry scoring (or ranking) system:

$$C_t = r_t$$

Uncovered interest rate parity (UIP)

- An interest rate differential of $10\% \Rightarrow$ currency depreciation of 10% per year
- In 10 years, we must observe a depreciation of 65%!

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium Currency carry (or the carry trade strategy)

ARS	Argentine peso	KRW	Korean won		
AUD	Australian dollar	LTL	Lithuanian litas		
BGN	Bulgarian lev	LVL	Latvian lats		
BHD	Bahraini dinar	MXN	Mexican peso		
BRL	Brazilian real	MYR	Malaysian ringgit		
CAD	Canadian dollar	NOK	Norwegian krone		
CHF	Swiss franc	NZD	New Zealand dollar		
CLP	Chilean peso	PEN	Peruvian new sol		
CNY/RMB	Chinese yuan (Renminbi)	PHP	Philippine peso		
COP	Colombian peso	PLN	Polish zloty		
CZK	Czech koruna	RON	new Romanian leu		
DKK	Danish krone	RUB	Russian rouble		
EUR	Euro	SAR	Saudi riyal		
GBP	Pound sterling	SEK	Swedish krona		
HKD	Hong Kong dollar	SGD	Singapore dollar		
HUF	Hungarian forint	THB	Thai baht		
IDR	Indonesian rupiah	TRY	Turkish lira		
ILS	Israeli new shekel	TWD	new Taiwan dollar		
INR	Indian rupee	USD	US dollar		
JPY	Japanese yen	ZAR	South African rand		

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium Currency carry (or the carry trade strategy)

Baku et al. (2019, 2020) consider the most liquid currencies:

G10 AUD, CAD, CHF, EUR, GBP, JPY, NOK, NZD, SEK and USD

- EM BRL, CLP, CZK, HUF, IDR, ILS, INR, KRW, MXN, PLN, RUB, SGD, TRY, TWD and ZAR
- G25 G10 + EM

They build currency risk factors using the following characteristics:

- The portfolio is equally-weighted and rebalanced every month
- The portfolio is notional-neutral (number of long exposures = number of short exposures)
- 3/3 for G10, 4/4 for EM and 7/7 for G25
- The long (resp. short) exposures correspond to the highest (resp. lowest) scores

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium Currency carry (or the carry trade strategy)

- Scoring system: $\mathbb{S}_{i,t} = \mathcal{C}_{i,t} = r_{i,t}$
- The carry strategy is long on currencies with high interest rates and short on currencies with low interest rates

	G10	EM	G25
Excess return (in %)	3.75	11.21	7.22
Volatility (in %)	9.35	9.12	8.18
Sharpe ratio	0.40	1.23	0.88
Maximum drawdown (in %)	-31.60	-25.27	-17.89

Table 60: Risk/return statistics of the carry risk factor (2000-2018)

Source: Baku et al. (2019, 2020)

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium Currency carry (or the carry trade strategy)

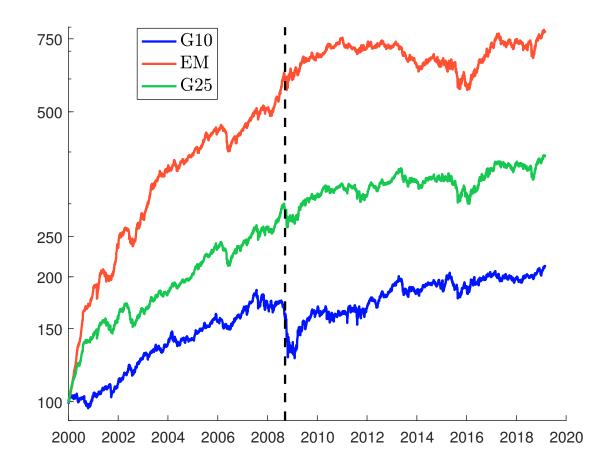


Figure 57: Cumulative performance of the carry risk factor

Source: Baku et al. (2019, 2020)

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium Equity carry

• We have:

$$\mathcal{C}_t \simeq rac{\mathbb{E}_t \left[D_{t+1}
ight]}{S_t} - r_t$$

where $\mathbb{E}_t[D_{t+1}]$ is the risk-neutral expected dividend for time t+1

• If we assume that dividends are constant, the carry is the difference between the dividend yield y_t and the risk-free rate r_t :

$$\mathcal{C}_t = \mathcal{Y}_t - r_t$$

- The carry strategy is long on stocks with high dividend yields and short on stocks with low dividend yields
- This strategy may be improved by considering forecasts of dividends. In this case, we have:

$$\mathcal{C}_t \simeq \frac{\mathbb{E}_t \left[D_{t+1} \right]}{S_t} - r_t = \frac{D_t + \mathbb{E}_t \left[\Delta D_{t+1} \right]}{S_t} - r_t = \mathcal{Y}_t + g_t - r_t$$

where g_t is the expected dividend growth

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium Equity carry

Carry strategy with dividend futures

Another carry strategy concerns dividend futures. The underlying idea is to take a long position on dividend futures where the dividend premium is the highest and a short position on dividend futures where the dividend premium is the lowest. Because dividend futures are on equity indices, the market beta exposure is generally hedged.

Why do we observe a premium on dividend futures?

 \Rightarrow Because of the business of structured products and options

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium Bond carry

• The price of a zero-coupon bond with maturity date T is equal to:

$$B_t(T) = e^{-(T-t)R_t(T)}$$

where $R_t(T)$ is the corresponding zero-coupon rate

• Let $F_t(T, m)$ denote the forward interest rate for the period [T, T + m], which is defined as follows:

$$B_t(T+m) = e^{-mF_t(T,m)}B_t(T)$$

We deduce that:

$$F_t(T,m) = -\frac{1}{m} \ln \frac{B_t(T+m)}{B_t(T)}$$

It follows that the instantaneous forward rate is given by this equation:

$$F_t(T) = F_t(T,0) = \frac{-\partial \ln B_t(T)}{\partial T}$$

693 / 1420

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium Bond carry

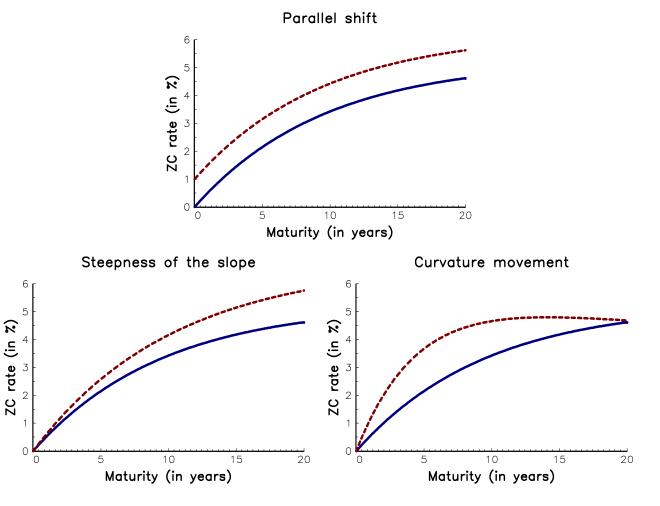


Figure 58: Movements of the yield curve

694 / 1420

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium Bond carry

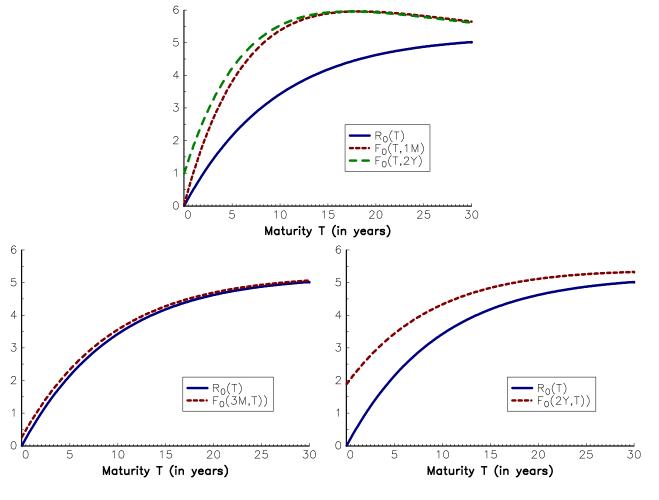


Figure 59: Sport and forward interest rates

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium Bond carry

- The first carry strategy ("forward rate bias") consists in being long the forward contract on the forward rate $F_t(T, m)$ and selling it at time t + dt with $t + dt \le T$
 - Forward rates are generally higher than spot rates
 - Under the hypothesis (*H*) that the yield curve does not change, rolling forward rate agreements can then capture the term premium and the roll down
 - The carry of this strategy is equal to:

$$C_{t} = \underbrace{R_{t}(T) - r_{t}}_{\text{term premium}} + \underbrace{\partial_{\bar{T}} \bar{R}_{t}(\bar{T})}_{\text{roll down}}$$

where $\bar{R}_t(\bar{T})$ is the zero-coupon rate with a constant time to maturity $\bar{T} = T - t$

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium Bond carry

Implementation

We notice that the difference is higher for long maturities. However, the risk associated with such a strategy is that of a rise in interest rates. This is why this carry strategy is generally implemented by using short-term maturities (less than two years)

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium Bond carry

- 2 The second carry strategy ("carry slope") corresponds to a long position in the bond with maturity T_2 and a short position in the bond with maturity T_1
 - The exposure of the two legs are adjusted in order to obtain a duration-neutral portfolio
 - This strategy is known as the slope carry trade
 - We have:

$$\mathcal{C}_{t} = \underbrace{\left(R_{t}\left(T_{2}\right)-r_{t}\right)-\frac{D_{2}\left(T_{1}\right)}{D_{t}\left(T_{1}\right)}\left(R_{t}\left(T_{1}\right)-r_{t}\right)}_{\text{duration neutral slope}} \\ \partial_{\bar{T}}\bar{R}_{t}\left(\bar{T}_{2}\right)-\frac{D_{2}\left(T_{1}\right)}{D_{t}\left(T_{1}\right)}\partial_{\bar{T}}\bar{R}_{t}\left(\bar{T}_{1}\right)}$$

duration neutral roll down

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium Bond carry

Implementation

The classical carry strategy is long 10Y/short 2Y

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium Bond carry

The third carry strategy ("cross-carry slope") is a variant of the second carry strategy when we consider the yield curves of several countries

Implementation

The portfolio is long on positive or higher slope carry and short on negative or lower slope carry

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium Credit carry

We consider a long position on a corporate bond and a short position on the government bond with the same duration

The carry is equal to:

$$\mathcal{C}_{t} = \underbrace{\mathcal{S}_{t}\left(T\right)}_{\text{spread}} + \underbrace{\partial_{\bar{T}} \bar{R}_{t}^{\star}\left(\bar{T}\right) - \partial_{\bar{T}} \bar{R}_{t}\left(\bar{T}\right)}_{\text{roll down difference}}$$

where $S_t(T) = R_t^*(T) - R_t(T)$ is the credit spread, $R_t^*(T)$ is the yield-to-maturity of the credit bond and $R_t^*(T)$ is the yield-to-maturity of the government bond

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium Credit carry

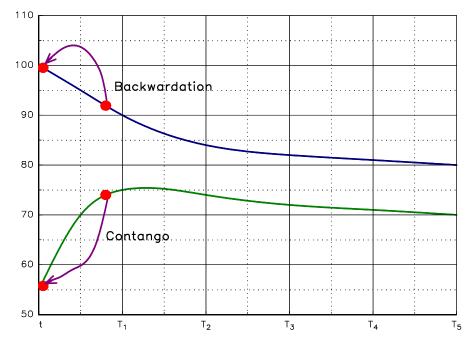
Two implementations

- The first one is to build a long/short portfolio with corporate bond indices or baskets. The bond universe can be investment grade or high yield. In the case of HY bonds, the short exposure can be an IG bond index
- The second approach consists in using credit default swaps (CDS). Typically, we sell credit protection on HY credit default indices (e.g. CDX.NA.HY) and buy protection on IG credit default indices (e.g. CDX.NA.IG)

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

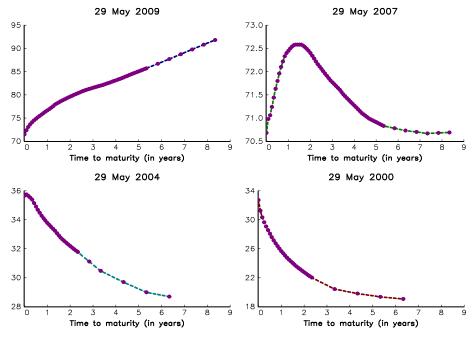
The carry risk premium Commodity carry

Figure 60: Contango and backwardation movements in commodity futures contracts



Source: Roncalli (2013)

Figure 61: Term structure of crude oil futures contracts



Source: Roncalli (2013)

703 / 1420

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium Volatility carry (or the short volatility strategy)

Volatility carry risk premium

- Long volatility \Rightarrow negative carry (\neq structural exposure)
- Short volatility \Rightarrow positive carry, but the highest skewness risk
- The P&L of selling and delta-hedging an option is equal to:

$$\Pi = \frac{1}{2} \int_0^T e^{r(T-t)} S_t^2 \Gamma_t \left(\Sigma_t^2 - \sigma_t^2 \right) \, \mathrm{d}t$$

where S_t is the price of the underlying asset, Γ_t is the gamma coefficient, Σ_t is the implied volatility and σ_t is the realized volatility

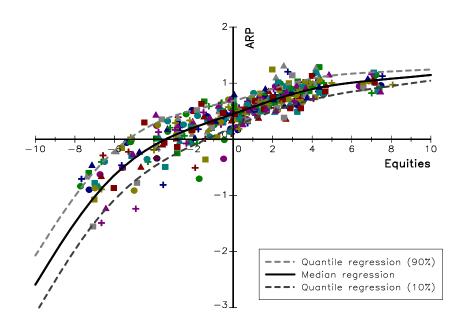
•
$$\Sigma_t \ge \sigma_t \Longrightarrow \Pi > 0$$

- 3 main reasons:
 - Asymmetric risk profile between the seller and the buyer
 - Pedging demand imbalances
 - Output State St

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The carry risk premium Volatility carry (or the short volatility strategy)

Figure 62: Non-parametric payoff of the US short volatility strategy



- Income generation
- Short put option profile
- Strategic asset allocation (≠ tactical asset allocation)
- Time horizon is crucial!

It is a skewness risk premium!

Carry strategies exhibit concave payoffs

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The value risk premium

- Let $S_{i,t}$ be the market price of Asset *i*
- Let S_i^* be the fundamental price (or the fair value) of Asset *i*
- The value of Asset *i* is the relative difference between the two prices:

$$\mathcal{V}_{i,t} = \frac{S_i^{\star} - S_{i,t}}{S_{i,t}}$$

• The value investor will prefer Asset *i* to Asset *j* if the value of Asset *i* is higher:

$$\mathcal{V}_{i,t} \geq \mathcal{V}_{j,t} \Longrightarrow A_i \succ A_j$$

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The value risk premium The value strategy is an active management bet

• The price of Asset *i* is undervalued if and only if its value is negative:

$$\mathcal{V}_{i,t} \leq 0 \Leftrightarrow S_i^{\star} \leq S_{i,t}$$

The value investor should sell securities with negative values

• The price of Asset *i* is overvalued if and only if its value is positive:

 $\mathcal{V}_{i,t} \geq 0 \Leftrightarrow S_i^{\star} \geq S_{i,t}$

The value investor should buy securities with positive values

Remark

While carry is an **objective** measure, value is a **subjective** measure, because the fair value is different from one investor to another (e.g. stock picking = value strategy)

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The value risk premium Computing the fair value

We need a model to estimate the fundamental price S_i^{\star} :

- Stocks: discounted cash flow (DCF) method, fundamental measures (B2P, PE, DY, EBITDA/EV, etc.), machine learning model, etc.
- Sovereign bonds: macroeconomic model, flows model, etc.
- Corporate bonds: Merton model, structural model, econometric model, etc.
- Foreign exchange rates: purchasing power parity (PPP), real effective exchange rate (REER), BEER, FEER, NATREX, etc.
- Commodities: statistical model (5-year average price), etc.

708 / 1420

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

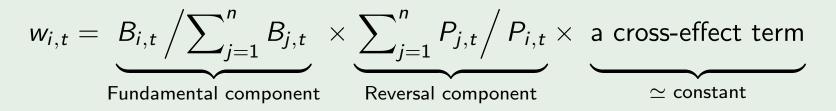
The value risk premium

The equity strategy

If we assume that the weight of asset *i* is proportional to its book-to-price:

$$w_{i,t} \propto \frac{B_{i,t}}{P_{i,t}}$$

We obtain:



The value risk factor can be decomposed into two main components:

- a fundamental indexation pattern
- a reversal-based pattern
- \Rightarrow Reversal strategies \approx value strategies

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The value risk premium

- In equities, the frequency of the reversal pattern is ≤ 1 month or ≥ 18 months
- In currencies and commodities, the frequency of the reversal pattern is very short (one or two weeks) or very long (\geq 3 years)

 \Rightarrow Value strategy in currencies and commodities?

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The value risk premium The payoff of the equity value risk premium

- We consider two Eurozone Value indices calculated by the same index sponsor
- The index sponsor uses the same stock selection process
- The index sponsor uses two different weighting schemes:
 - The first index considers a capitalization-weighted portfolio
 - The second index considers a minimum variance portfolio

 \Rightarrow We recall that the payoff of the low-volatility strategy is long put + short call

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The value risk premium

The payoff of the equity value risk premium

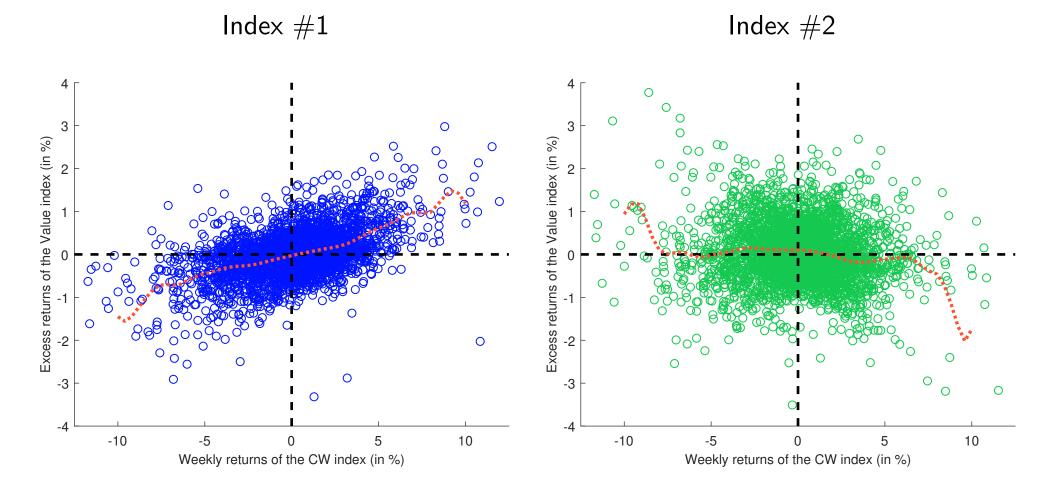


Figure 63: Which Eurozone value index has the right payoff?

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The value risk premium The payoff of the equity value risk premium

Answer

The payoff of the equity value risk premium is:

Short Put + Long Call

 \Rightarrow It is a skewness risk premium too!

- The design of the strategy is crucial (some weighting schemes may change or destroy the desired payoff!)
- Are the previous results valid for other asset classes, e.g. rates or currencies?

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The value risk premium

Misunderstanding of the equity value risk premium

The dot-com crisis (2000-2003)

If we consider the S&P 500 index, we obtain:

• 55% of stocks post a negative performance

 $\approx 75\%$ of MC

• 45% of stocks post a positive performance

Maximum drawdown = 49 %

Small caps stocks \nearrow Value stocks \nearrow

The GFC crisis (2008)

If we consider the S&P 500 index, we obtain:

• 95% of stocks post a negative performance

 $\approx 97\%$ of MC

• 5% of stocks post a positive performance

Maximum drawdown = 56 %

Small caps stocks \searrow Value stocks \searrow

What is the impact of the liquidity risk premium?

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The value risk premium

Extension to other asset classes

- Corporate bonds
 - Houweling and van Zundert (2017)
 - Ben Slimane *et al.* (2019)
 - Roncalli (2020)
- Currencies
 - MacDonald (1995)
 - Menkhoff et al. (2016)
 - Baku *et al.* (2019, 2020)

715 / 1420

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium Definition

- Let $S_{i,t}$ be the market price of Asset *i*
- We assume that:

$$\frac{\mathrm{d}S_{i,t}}{S_{i,t}} = \mu_{i,t}\,\mathrm{d}t + \sigma_{i,t}\,\mathrm{d}W_{i,t}$$

• The momentum of Asset *i* corresponds to its past trend:

$$\mathcal{M}_{i,t} = \hat{\mu}_{i,t}$$

• The momentum investor will prefer Asset *i* to Asset *j* if the momentum of Asset *i* is higher:

$$\mathcal{M}_{i,t} \geq \mathcal{M}_{j,t} \Longrightarrow A_i \succ A_j$$

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium

Computing the momentum measure

• Past return (e.g. one-month, three-month, one-year, etc.)

$$\mathcal{M}_{i,t} = \frac{S_{i,t} - S_{i,t-h}}{S_{i,t-h}}$$

- Lagged past return¹⁷
- Econometric and statistical trend estimators (see Bruder *et al.* (2011) for a survey)

$$\mathcal{M}_{i,t} = \frac{S_{i,t-1M} - S_{i,t-13M}}{S_{i,t-13M}}$$

because the stock market is reversal within a one-month time horizon

¹⁷For instance, the WML risk factor is generally implemented using the one-month lag of the twelve-month return:

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium

Three momentum strategies

Cross-section momentum (CSM)

$$\mathcal{M}_{i,t} \geq \mathcal{M}_{j,t} \Longrightarrow A_i \succ A_j$$

2 Time-series momentum (TSM)

$$\mathcal{M}_{i,t} > 0 \Longrightarrow A_i \succ 0$$
 and $\mathcal{M}_{i,t} < 0 \Longrightarrow A_i \prec 0$

Reversal strategy:

$$\mathcal{M}_{i,t} \geq \mathcal{M}_{j,t} \Longrightarrow A_i \prec A_j$$

Remark

Generally, the momentum risk premium corresponds to the CSM or TSM strategies. When we speak about momentum strategies, we can also include reversal strategies, which are more considered as trading strategies with high turnover ratios and very short holding periods (generally intra-day or daily frequency, less than one week most of the time)

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium

Cross-section versus time-series

Time-series momentum (TSM)

- The portfolio is long (resp. short) on the asset if it has a positive (resp. negative) momentum
- This strategy is also called "trend-following" or "trend-continuation"
- HF: CTA and managed futures
- Between asset classes

Cross-section momentum (CSM)

- The portfolio is long (resp. short) on assets that present a momentum higher (resp. lower) than the others
- This strategy is also called "winners minus losers" (or WML) by Carhart (1997)
- Within an asset class (equities, currencies)

 \Rightarrow These two momentum risk premia are very different and not well understood!

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium Understanding the TSM strategy

Some results (Jusselin et al., 2017)

- EWMA is the optimal trend estimator (Kalman-Bucy filtering)
- Two components
 - a short-term component given by the payoff (dynamics)
 - a long-term component given by the trading impact (performance)
- Main important parameters
 - The Sharpe ratio
 - The duration of the moving average
 - The correlation matrix
 - The term structure of the volatility
- Too much leverage kills momentum (high ruin probability)

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium Understanding the TSM strategy

Some results (Jusselin *et al.*, 2017)

- The issue of diversification
 - Time-series momentum likes zero-correlated assets (e.g. multi-asset momentum premium)
 - Cross-section momentum likes highly correlated assets (e.g. equity momentum factor)
 - The number of assets decreases the P&L dispersion
 - The symmetry puzzle
 - The \textit{n}/ρ trade-off
- Short-term versus long-term momentum
 - Short-term momentum is more risky than long-term momentum
 - The Sharpe ratio of long-term momentum is higher
 - The choice of the EWMA duration is more crucial for long-term momentum

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium Understanding the TSM strategy

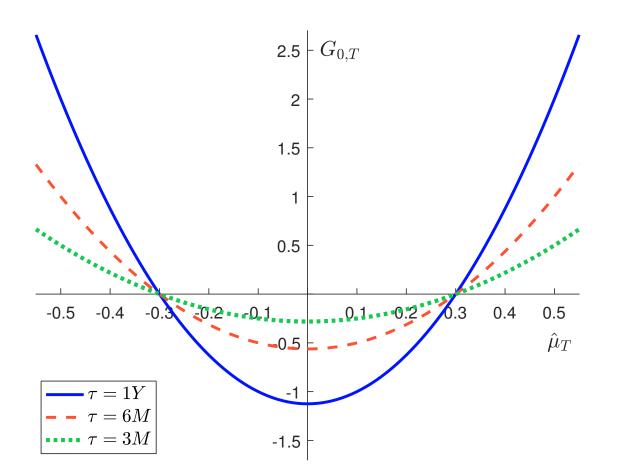
Some results (Jusselin *et al.*, 2017)

- The momentum strategy outperforms the buy-and-hold strategy when the Sharpe ratio is lower than 35%
- The specific nature of equities and bonds
 - Performance of equity momentum is explained by leverage patterns
 - Performance of bond momentum is explained by frequency patterns
- A lot of myths about the performance of CTAs (equity contribution, option profile, hedging properties)
- Momentum strategies are not alpha or absolute return strategies, but diversification strategies

Carry, value, momentum and liquidity

The momentum risk premium

Trend-following strategies (or TSM) exhibit a convex payoff



- λ is the parameter of the **EWMA** estimator
- $\tau = 1/\lambda$ is the duration of the EWMA estimator
- Market anomaly: the systematic risk is limited in bad times
- Trend-following strategies exhibit a convex payoff

Figure 64: Option profile of the trend-following strategy

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium

The loss of a trend-following strategy is bounded

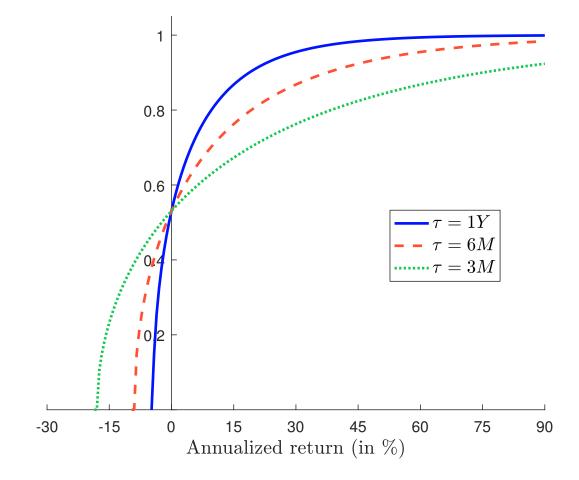


Figure 65: Cumulative distribution function of g_t $(s_t = 0)$

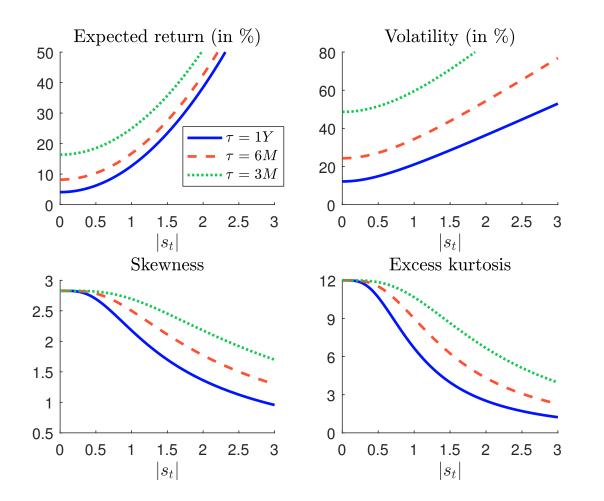
- s_t is the Sharpe ratio
- g_t is the trading impact
- The loss is bounded
- The gain may be infinite
- The return variance of short-term momentum strategies is larger than the return variance of long-term momentum strategies
- The skewness is positive

724 / 1420

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium

Trend-following strategies exhibit positive skewness



- Short-term trend-following strategies are more risky than long-term trend-following strategies
- The skewness is positive
- It is a market anomaly, not a skewness risk premium

725 / 1420

Figure 66: Statistical moments of the momentum strategy

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium

Short-term versus long-term trend-following strategies

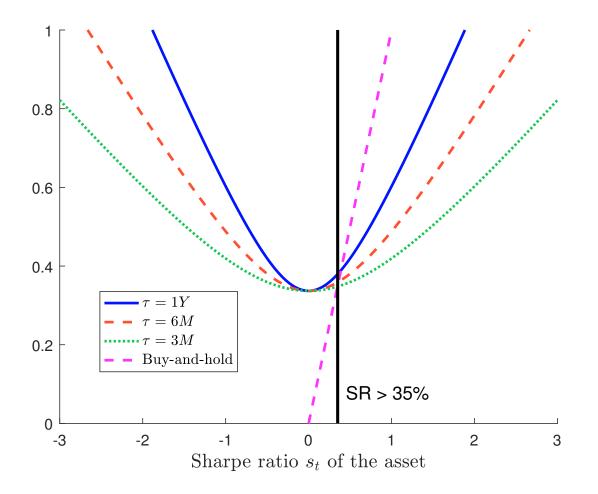


Figure 67: Sharpe ratio of the momentum strategy

- When the Sharpe ratio of the underlying is lower than 35%, the momentum strategy dominates the buy-and-hold strategy
- The Sharpe ratio of long-term momentum strategies is higher than the Sharpe ratio of short-term momentum strategies

Carry, value, momentum and liquidity

The momentum risk premium

Relationship with the Black-Scholes robustness

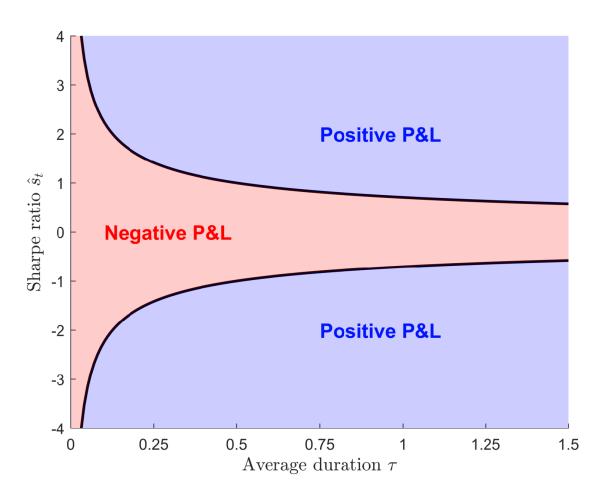


Figure 68: Admissible region for positive P&L

- Delta-hedging: implied volatility vs realized volatility
- Trend-following: duration vs realized Sharpe ratio
- The critical value for the Sharpe ratio is 1.41 for 3M and 0.71 for 1Y

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium Impact of the correlation on trend-following strategies

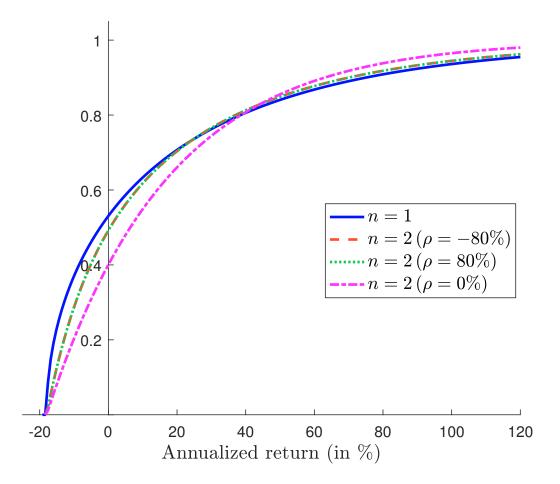


Figure 69: Cumulative distribution function of g_t $(s_t = 0)$

- Sign of correlation does not matter when the Sharpe ratio of assets is zero
- Symmetry puzzle
 positive correlation
 =
 negative correlation

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium

Long-only versus long/short diversification

We consider a portfolio (α_1, α_2) composed of two assets. We have:

$$\sigma(\rho) = \sqrt{\alpha_1^2 \sigma_1^2 + 2\rho \alpha_1 \alpha_2 \sigma_1 \sigma_2 + \alpha_2^2 \sigma_2^2}$$

• In the case of a long-only portfolio, the best case for diversification is reached when the correlation is equal to -1:

$$|\alpha_{1}\sigma_{1} - \alpha_{2}\sigma_{2}| = \sigma(-1) \leq \sigma(\rho) \leq \sigma(1) = \alpha_{1}\sigma_{1} + \alpha_{2}\sigma_{2}$$

 In the case of a long/short portfolio, we generally have sgn (α₁α₂) = sgn (ρ). Therefore, the best case for diversification is reached when the correlation is equal to zero: σ (0) ≤ σ (ρ). Indeed, when the correlation is −1, the investor is long on one asset and short on the other asset, implying that this is the same bet.

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium

The number of assets/correlation trade-off

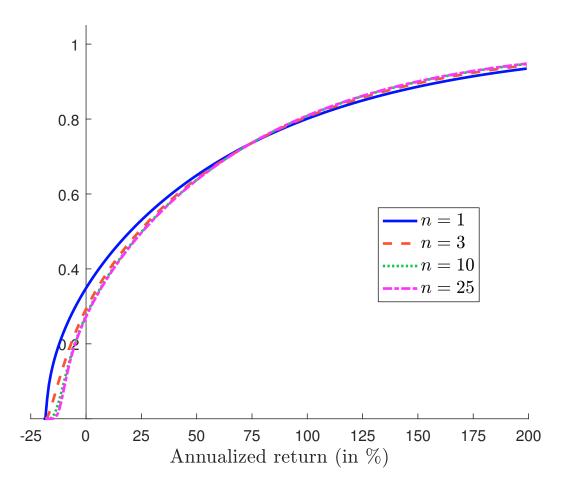


Figure 70: Impact of the number of assets on Pr { $g_t \leq g$ } ($s_t = 2, \rho = 80\%$)

- Correlation is not the friend of time-series momentum
- A momentum strategy prefers a few number of assets with high Sharpe ratio absolute values than a large number of assets with low Sharpe ratio absolute values

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium

Time-series momentum

Absolute trends

 $\left\{ egin{array}{ll} \hat{\mu}_{i,t} \geq 0 \Rightarrow e_{i,t} \geq 0 \ \hat{\mu}_{i,t} < 0 \Rightarrow e_{i,t} < 0 \end{array}
ight.$

- CTA hedge funds
- Alternative risk premia in multi-asset portfolios

Cross-section momentum

• Relative trends

$$\left\{ egin{array}{ll} \hat{\mu}_{i,t} \geq ar{\mu}_t \Rightarrow e_{i,t} \geq 0 \ \hat{\mu}_{i,t} < ar{\mu}_t \Rightarrow e_{i,t} < 0 \end{array}
ight.$$

where:

$$\bar{\mu}_t = \frac{1}{n} \sum_{j=1}^n \hat{\mu}_{j,t}$$

- Statistical arbitrage / relative value
- Factor investing in equity portfolios

Beta strategy

or

Alpha strategy?

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium

Performance of cross-section momentum risk premium

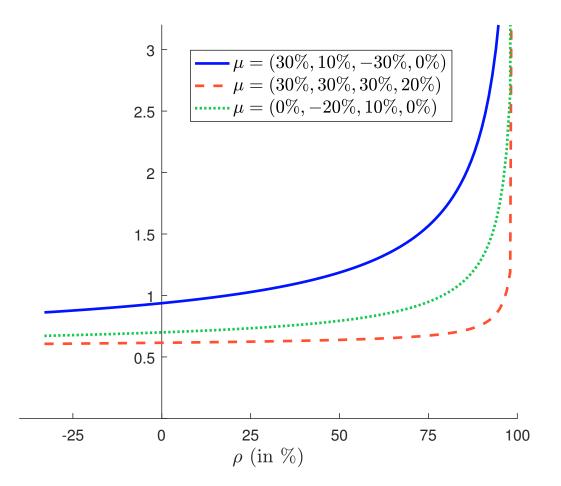


Figure 71: Sharpe ratio of the CSM strategy

• Correlation is the friend of cross-section momentum!

732 / 1420

• Statistical arbitrage / relative value

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium Naive replication of the SG CTA Index

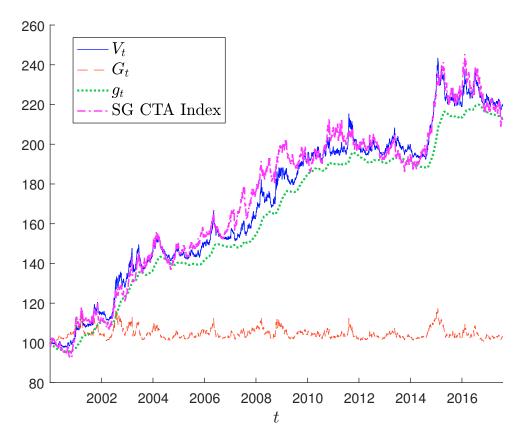


Figure 72: Comparison between the cumulative performance of the naive replication strategy and the SG CTA Index

- The performance of trend-followers comes from the trading impact
- Currencies and commodities are the main contributors!
- Mixing asset classes is the key point in order to capture the diversification premium

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium Trend-following strategies benefit from traditional risk premia

Table 61: Exposure average of the trend-following strategy (in %)

Asset	Average	Short	Long	Short	Long
Class	Exposure	Exposure	Exposure	Frequency	Frequency
Bond	58%	-100%	122%	29%	71%
Equity	52%	-88%	160 %	44%	56%
Currency	18 %	-103%	115%	45%	55%
Commodity	23%	-108%	113%	41%	59%

- The specific nature of bonds: long exposure frequency > short exposure frequency; long leverage \approx short leverage
- The specific nature of equities: short exposure frequency \approx long exposure frequency; long leverage > short leverage

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium

- Equity and bond momentum strategies benefit from the existence of a risk premium
- Currency and commodity momentum strategies benefit from (positive / negative) trend patterns
- Leverage management > short management
- The case of equities in the 2008 GFC, the stock-bond correlation and the symmetry puzzle

The good performance of CTAs in 2008 is not explained by their short exposure in equities, but by their long exposure in bonds

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium

- The reversal strategy may be defined as the opposite of the momentum strategy (CSM or TSM)
- It is also known as the mean-reverting strategy

How to reconciliate reversal and trend-following strategies?

Because they don't use the same trend windows and holding periods¹⁸

¹⁸Generally, reversal strategies use short-term or very long-term trends while trend-following strategies use medium-term trends

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium

The reversal strategy

The mean-reverting (or autocorrelation) strategy

- Let $R_{i,t} = \ln S_{i,t} \ln S_{i,t-1}$ be the one-period return
- We note $\rho_i(h) = \rho(R_{i,t}, R_{i,t-h})$ the autocorrelation function
- Asset *i* exhibits a mean-reverting pattern if the short-term autocorrelation $\rho_i(1)$ is negative
- In this case, the short-term reversal is defined by the product of the autocorrelation and the current return:

$$\mathcal{R}_{i,t} = \rho_i(1) \cdot R_{i,t}$$

• The short-term reversal strategy is then defined by the following rule:

$$\mathcal{R}_{i,t} \geq \mathcal{R}_{j,t} \Longrightarrow i \succ j$$

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium

The reversal strategy

First implementation of the autocorrelation strategy

- If R_{i,t} is positive, meaning that the current return R_{i,t} is negative, we should buy the asset, because a negative return is followed by a positive return on average
- If R_{i,t} is negative, meaning that the current return R_{i,t} is positive, we should sell the asset, because a positive return is followed by a negative return on average

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium The reversal strategy

The variance swap strategy

• We assume that the one-period asset return follows an AR(1) process:

$$R_{i,t} = \rho R_{i,t-1} + \varepsilon_t$$

where $|\rho| < 1$, $\varepsilon_t \sim \mathcal{N}\left(0, \sigma_{\varepsilon}^2\right)$ and $\operatorname{cov}\left(\varepsilon_t, \varepsilon_{t-j}\right) = 0$ for $j \geq 1$

- Let $\operatorname{RV}(h)$ be the annualized realized variance of the *h*-period asset return $R_{i,t}(h) = \ln S_{i,t} \ln S_{i,t-h}$
- Hamdan *et al.* (2016) showed that:

$$\mathbb{E}\left[\mathrm{RV}\left(h\right)\right] = \phi\left(h\right) \mathbb{E}\left[\mathrm{RV}\left(1\right)\right]$$

where:

$$\phi(h) = 1 + 2\rho \frac{1 - \rho^{h-1}}{1 - \rho} - 2\sum_{j=1}^{h-1} \frac{j}{h} \rho^{j}$$

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium

The reversal strategy

The variance swap strategy

• We notice that:

$$\lim_{h \to \infty} \mathbb{E} \left[\text{RV} \left(h \right) \right] = \left(1 + \frac{2\rho}{1 - \rho} \right) \cdot \mathbb{E} \left[\text{RV} \left(1 \right) \right]$$

- When the autocorrelation is negative, this implies that the long-term frequency variance is lower than the short-term frequency variance
- More generally, we have:

$$\left \{ egin{array}{ll} \mathbb{E}\left[\mathrm{RV}\left(h
ight)
ight] < \mathbb{E}\left[\mathrm{RV}\left(1
ight)
ight] & ext{if }
ho < 0 \ \mathbb{E}\left[\mathrm{RV}\left(h
ight)
ight] \geq \mathbb{E}\left[\mathrm{RV}\left(1
ight)
ight] & ext{otherwise} \end{array}
ight.$$

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium

The reversal strategy

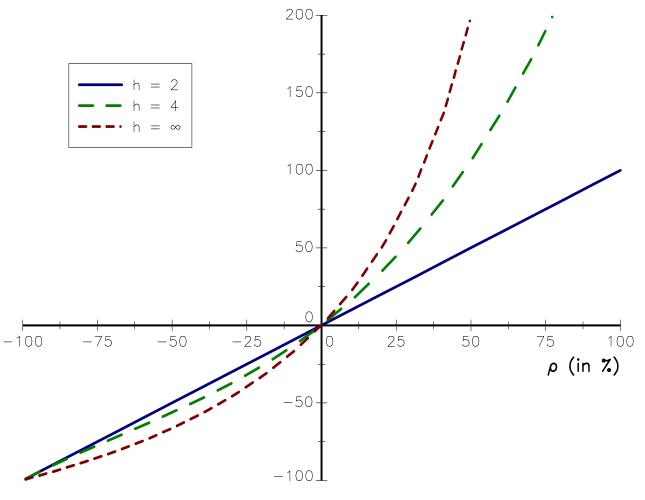


Figure 73: Variance ratio (RV(h) - RV(1)) / RV(1) (in %)

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium

The reversal strategy

Second implementation of the autocorrelation strategy

- The spread between daily/weekly and weekly/monthly variance swaps depends on the autocorrelation of daily returns
- The reversal strategy consists in being long on the daily/weekly variance swaps and short on the weekly/monthly variance swaps

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium

The reversal strategy

The long-term reversal strategy

• The long-term return reversal is defined by the difference between long-run and short-period average prices:

$$\mathcal{R}_{i,t} = ar{S}_{i,t}^{LT} - ar{S}_{i,t}^{ST}$$

- Typically, $\bar{S}_{i,t}^{ST}$ is the average price over the last year and $\bar{S}_{i,t}^{LT}$ is the average price over the last five years
- The long-term return reversal strategy follows the same rule as the short-term reversal strategy
- This reversal strategy is equivalent to a value strategy because the long-run average price can be viewed as an estimate of the fundamental price in some asset classes

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The momentum risk premium

The reversal strategy

Implementation of the long-term reversal strategy

- If *R_{i,t}* is positive, the long-term mean of the asset price is above its short-term mean ⇒ we should buy the asset
- If *R_{i,t}* is negative, the long-term mean of the asset price is below its short-term mean ⇒ we should sell the asset

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The liquidity risk premium What means "*liquidity risk*"?

"[...] there is also broad belief among users of financial liquidity — traders, investors and central bankers — that the principal challenge is not the **average level** of financial liquidity ... but its **variability** and uncertainty " (Persaud, 2003).

745 / 1420

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The liquidity risk premium The liquidity-adjusted CAPM

L-CAPM (Acharya and Pedersen, 2005)

We note L_i the relative (stochastic) illiquidity cost of Asset *i*. At the equilibrium, we have:

$$\mathbb{E}\left[\mathsf{R}_{i}-\mathsf{L}_{i}
ight] -\mathsf{R}_{\mathsf{f}}= ilde{eta}_{i}\left(\mathbb{E}\left[\mathsf{R}_{\mathsf{M}}-\mathsf{L}_{\mathsf{M}}
ight] -\mathsf{R}_{\mathsf{f}}
ight)$$

where:

$$\tilde{\beta}_i = \frac{\operatorname{cov}\left(R_i - L_i, R_M - L_M\right)}{\operatorname{var}\left(R_M - L_M\right)}$$

CAPM in the frictionless economy
$$\downarrow$$

CAPM in net returns (including illiquidity costs)

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The liquidity risk premium The liquidity-adjusted CAPM

• The liquidity-adjusted beta can be decomposed into four beta(s):

$$\tilde{\beta}_{i} = \beta_{i} + \beta \left(L_{i,}, L_{M} \right) - \beta \left(R_{i,}, L_{M} \right) - \beta \left(L_{i,}, R_{M} \right)$$

where:

- $\beta_i = \beta(R_i, R_M)$ is the standard market beta;
- $\beta(L_{i,}, L_M)$ is the beta associated to the commonality in liquidity with the market liquidity;
- $\beta(R_{i,}, L_M)$ is the beta associated to the return sensitivity to market liquidity;
- $\beta(L_{i,}, R_M)$ is the beta associated to the liquidity sensitivity to market returns.
- The risk premium is equal to:

$$\pi_{i} = \mathbb{E}[L_{i}] + (\beta_{i} + \beta(L_{i}, L_{M}))\pi_{M} - (\tilde{\beta}_{i}\mathbb{E}[L_{M}] + (\beta(R_{i}, L_{M}) + \beta(L_{i}, R_{M}))\pi_{M})$$

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The liquidity risk premium The liquidity-adjusted CAPM

Acharya and Pedersen (2005)

If assets face some liquidity costs, the relationship between the risk premium and the beta of asset *i* becomes:

$$\mathbb{E}[R_i] - R_f = \alpha_i + \beta_i \left(\mathbb{E}[R_M] - R_f\right)$$

where α_i is a function of the relative liquidity of Asset *i* with respect to the market portfolio and the liquidity beta(s):

$$\alpha_{i} = \left(\mathbb{E}\left[L_{i}\right] - \tilde{\beta}_{i}\mathbb{E}\left[L_{M}\right]\right) + \beta\left(L_{i,}, L_{M}\right)\pi_{M} - \beta\left(R_{i,}, L_{M}\right)\pi_{M} - \beta\left(L_{i,}, R_{M}\right)\pi_{M}$$

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The liquidity risk premium Disentangling the liquidity alpha

• We deduce that:

$$\alpha_i \neq \mathbb{E}\left[L_i\right]$$

meaning that the risk premium of an illiquid asset is not the systematic risk premium plus a premium due the illiquidity level:

$$\mathbb{E}[R_i] - R_f \neq \mathbb{E}[L_i] + \beta_i \left(\mathbb{E}[R_M] - R_f\right)$$

- The 4 liquidity premia are highly correlated¹⁹ ($\mathbb{E}[L_i]$, $\beta(L_{i,}, L_M)$, $\beta(R_{i,}, L_M)$ and $\beta(L_{i,}, R_M)$).
- Acharaya and Pedersen (2005) found that E [L_i] represents 75% of α_i on average. The 25% remaining are mainly explained by the liquidity sensitivity to market returns − β (L_i, R_M).

¹⁹For instance, we have $\rho\left(\beta\left(L_{i,},L_{M}\right),\beta\left(R_{i,},L_{M}\right)\right) = -57\%$, $\rho\left(\beta\left(L_{i,},L_{M}\right),\beta\left(L_{i,},R_{M}\right)\right) = -94\%$ and $\rho\left(\beta\left(R_{i,},L_{M}\right),\beta\left(L_{i,},R_{M}\right)\right) = 73\%$.

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The liquidity risk premium

In fact, we have:

 $\alpha_i =$ illiquidity level + illiquidity covariance risks

- $(L_{i,}, L_M)$
 - An asset that becomes illiquid when the market becomes illiquid should have a higher risk premium
 - Substitution effects when the market becomes illiquid
- $(\mathbf{R}_{i,}, L_{\mathbf{M}})$
 - Assets that perform well in times of market illiquidity should have a lower risk premium
 - Relationship with solvency constraints

 $(L_{i,}, R_M)$

- Investors accept a lower risk premium on assets that are liquid in a bear market
- Selling markets \neq buying markets

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The liquidity risk premium How does market liquidity impact risk premia?

Three main impacts

- Effect on the risk premium
- Effect on the price dynamics
 If liquidity is persistent, negative shock to liquidity implies low current
 returns and high predicted future returns:

$$\operatorname{cov}(L_{i,t}, R_{i,t}) < 0 \text{ and } \partial_{L_{i,t}} \mathbb{E}_t \left[R_{i,t+1} \right] > 0$$

• Effect on portfolio management

- Sovereign bonds
- Corporate bonds
- Stocks
- Small caps
- Private equities

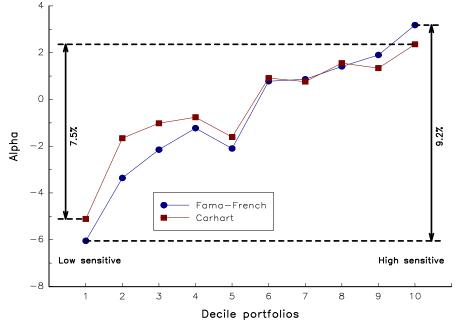
Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The liquidity risk premium Application to stocks

Pastor and Stambaugh (2003) include a liquidity premium in the Fama-French-Carhart model:

$$\mathbb{E}[R_i] - R_f = \beta_i^M \left(\mathbb{E}[R_M] - R_f\right) + \beta_i^{SMB} \mathbb{E}[R_{SMB}] + \beta_i^{HML} \mathbb{E}[R_{HML}] + \beta_i^{WML} \mathbb{E}[R_{WML}] + \beta_i^{LIQ} \mathbb{E}[R_{LIQ}]$$

where LIQ measures the shock or innovation of the aggregate liquidity.



Alphas of decile portfolios sorted on predicted liquidity beta(s)

Long Q10 / Short Q1:

- 9.2% wrt 3F Fama-French model
- 7.5% wrt 4F Carhart model

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The liquidity risk premium Impact of the liquidity on the stock market

The dot-com crisis (2000-2003)

If we consider the S&P 500 index, we obtain:

• 55% of stocks post a negative performance

 $\approx 75\%$ of MC

• 45% of stocks post a positive performance

Maximum drawdown = 49 %

Small caps stocks ↗ Value stocks ↗

The GFC crisis (2008)

If we consider the S&P 500 index, we obtain:

• 95% of stocks post a negative performance

 $\approx 97\%$ of MC

• 5% of stocks post a positive performance

Maximum drawdown = 56 %

Small caps stocks \searrow Value stocks \searrow

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The liquidity risk premium The specific status of the stock market

The interconnectedness nature of illiquid assets and liquid assets: the example of the Global Financial Crisis

- Subprime crisis \Leftrightarrow banks (credit risk)
- Banks \(\Lefta\) asset management, e.g. hedge funds (funding & leverage risk)
- Asset management \Leftrightarrow equity market (liquidity risk)
- Equity market ⇔ banks (asset-price & collateral risk)

The equity market is the ultimate liquidity provider: $GFC \gg internet \ bubble$

Remark

¹/₃ of the losses in the stock market is explained by the liquidity supply

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The liquidity risk premium Relationship between diversification & liquidity

During good times

- Medium correlation between liquid assets
- Illiquid assets have low impact on liquid assets
- Low substitution effects

Main effect:

 $\mathbb{E}\left[L_{i}\right]$

During bad times

- High correlation between liquid assets
- Illiquid assets have a high impact on liquid assets
- High substitution effects

Main effects:

$$\beta(L_i, R_M)$$
 and $\beta(R_i, L_M)$

755 / 1420

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The skewness puzzle

Skewness aggregation \neq volatility aggregation

When we accumulate long/short skewness risk premia in a portfolio, the volatility of this portfolio decreases dramatically, but its skewness risk generally increases!

• Skewness diversification \neq volatility diversification

$$\begin{aligned} \sigma\left(X_1+X_2\right) &\leq & \sigma\left(X_1\right)+\sigma\left(X_2\right) \\ |\gamma_1\left(X_1+X_2\right)| &\nleq & |\gamma_1\left(X_1\right)+\gamma_1\left(X_2\right)| \end{aligned}$$

Skewness is not a convex risk measure

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The skewness puzzle

Example 12

We assume that (X_1, X_2) follows a bivariate log-normal distribution $\mathcal{LN}(\mu_1, \sigma_1^2, \mu_2, \sigma_2^2, \rho)$. This implies that $\ln X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$, $\ln X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ and ρ is the correlation between $\ln X_1$ and $\ln X_2$.

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The skewness puzzle

We recall that the skewness of X_1 is equal to:

$$\gamma_{1}(X_{1}) = \frac{\mu_{3}(X_{1})}{\mu_{2}^{3/2}(X_{1})} = \frac{e^{3\sigma_{1}^{2}} - 3e^{\sigma_{1}^{2}} + 2}{\left(e^{\sigma_{1}^{2}} - 1\right)^{3/2}}$$

whereas the skewness of $X_1 + X_2$ is equal to:

$$\gamma_1 (X_1 + X_2) = \frac{\mu_3 (X_1 + X_2)}{\mu_2^{3/2} (X_1 + X_2)}$$

where $\mu_n(X)$ is the n^{th} central moment of X

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The skewness puzzle

In order to find the skewness of the sum $X_1 + X_2$, we need a preliminary result. By denoting $X = \alpha_1 \ln X_1 + \alpha_2 \ln X_2$, we have²⁰:

$$\mathbb{E}\left[e^{X}\right] = e^{\mu_{X} + \frac{1}{2}\sigma_{X}^{2}}$$

where:

$$\mu_X = \alpha_1 \mu_1 + \alpha_2 \mu_2$$

and:

$$\sigma_X^2 = \alpha_1^2 \sigma_1^2 + \alpha_2^2 \sigma_2^2 + 2\alpha_1 \alpha_2 \rho \sigma_1 \sigma_2$$

It follows that:

$$\mathbb{E}\left[X_{1}^{\alpha_{1}}X_{2}^{\alpha_{2}}\right] = e^{\alpha_{1}\mu_{1} + \alpha_{2}\mu_{2} + \frac{1}{2}\left(\alpha_{1}^{2}\sigma_{1}^{2} + \alpha_{2}^{2}\sigma_{2}^{2} + 2\alpha_{1}\alpha_{2}\rho\sigma_{1}\sigma_{2}\right)}$$

²⁰Because X is a Gaussian random variable

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The skewness puzzle

We have:

$$\mu_{2}(X_{1} + X_{2}) = \mu_{2}(X_{1}) + \mu_{2}(X_{2}) + 2 \operatorname{cov}(X_{1}, X_{2})$$

where:

$$\mu_{2}(X_{1}) = e^{2\mu_{1} + \sigma_{1}^{2}} \left(e^{\sigma_{1}^{2}} - 1 \right)$$

and:

$$\operatorname{cov}(X_1, X_2) = (e^{\rho \sigma_1 \sigma_2} - 1) e^{\mu_1 + \frac{1}{2}\sigma_1^2} e^{\mu_2 + \frac{1}{2}\sigma_2^2}$$

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The skewness puzzle

For the third moment of $X_1 + X_2$, we use the following formula:

$$\mu_{3}(X_{1}+X_{2}) = \mu_{3}(X_{1}) + \mu_{3}(X_{2}) + 3(\operatorname{cov}(X_{1},X_{1},X_{2}) + \operatorname{cov}(X_{1},X_{2},X_{2}))$$

where:

$$\mu_{3}(X_{1}) = e^{2\mu_{1} + \frac{3}{2}\sigma_{1}^{2}} \left(e^{3\sigma_{1}^{2}} - 3e^{\sigma_{1}^{2}} + 2 \right)$$

and:

$$\operatorname{cov}(X_1, X_1, X_2) = (e^{\rho\sigma_1\sigma_2} - 1) e^{2\mu_1 + \sigma_1^2 + \mu_2 + \frac{\sigma_2^2}{2}} \left(e^{\sigma_1^2 + \rho\sigma_1\sigma_2} + e^{\sigma_2^2} - 2\right)$$

761 / 1420

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The skewness puzzle

We deduce that:

$$\gamma_1 \left(X_1 + X_2
ight) = rac{\mu_3 \left(X_1 + X_2
ight)}{\mu_2^{3/2} \left(X_1 + X_2
ight)}$$

where:

$$\mu_2 \left(X_1 + X_2 \right) = e^{2\mu_1 + \sigma_1^2} \left(e^{\sigma_1^2} - 1 \right) + e^{2\mu_2 + \sigma_2^2} \left(e^{\sigma_2^2} - 1 \right) + 2 \left(e^{\rho\sigma_1\sigma_2} - 1 \right) e^{\mu_1 + \frac{1}{2}\sigma_1^2} e^{\mu_2 + \frac{1}{2}\sigma_2^2}$$

and:

$$\begin{split} \mu_{3}\left(X_{1}+X_{2}\right) &= e^{2\mu_{1}+\frac{3}{2}\sigma_{1}^{2}}\left(e^{3\sigma_{1}^{2}}-3e^{\sigma_{1}^{2}}+2\right)+e^{2\mu_{2}+\frac{3}{2}\sigma_{2}^{2}}\left(e^{3\sigma_{2}^{2}}-3e^{\sigma_{2}^{2}}+2\right)+\\ &\quad 3\left(e^{\rho\sigma_{1}\sigma_{2}}-1\right)e^{2\mu_{1}+\sigma_{1}^{2}+\mu_{2}+\frac{\sigma_{2}^{2}}{2}}\left(e^{\sigma_{1}^{2}+\rho\sigma_{1}\sigma_{2}}+e^{\sigma_{2}^{2}}-2\right)+\\ &\quad 3\left(e^{\rho\sigma_{1}\sigma_{2}}-1\right)e^{\mu_{1}+\frac{1}{2}\sigma_{1}^{2}+2\mu_{2}+\sigma_{2}^{2}}\left(e^{\sigma_{2}^{2}+\rho\sigma_{1}\sigma_{2}}+e^{\sigma_{1}^{2}}-2\right) \end{split}$$

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The skewness puzzle

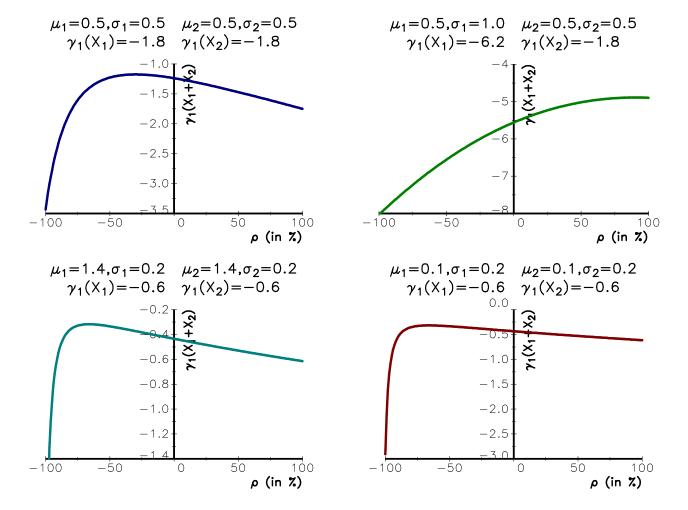


Figure 74: Skewness aggregation of the random vector $(-X_1, -X_3)$

763 / 1420

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The skewness puzzle

Why?

• Volatility diversification works very well with L/S risk premia:

$$\sigma\left(R\left(x\right)\right)\approx\frac{\bar{\sigma}}{\sqrt{n}}$$

 Drawdown diversification don't work very well because bad times are correlated and are difficult to hedge:

$$\mathrm{DD}\left(x
ight)\approx\overline{\mathrm{DD}}$$

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The skewness puzzle

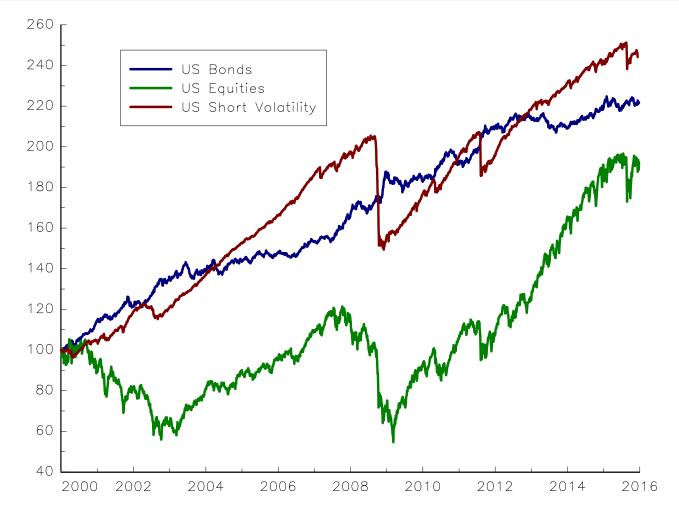


Figure 75: Cumulative performance of US 10Y bonds, US equities and US short volatility

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The correlation puzzle

We consider the Gaussian random vector (R_1, R_2, R_3) , whose volatilities are equal to 25%, 12% and 9.76%. The correlation matrix is given by:

$$\mathcal{C} = \left(egin{array}{cccc} 100\% & & \ -25.00\% & 100\% & \ 55.31\% & 66.84\% & 100\% \end{array}
ight)$$

Good diversification? (correlation approach)

If R_i represents an asset return (or an excess return), we conclude that (R_1, R_2, R_3) is a well-diversified investment universe

Bad diversification? (payoff approach)

However, we have:

$$R_3 = 0.30R_1 + 0.70R_2$$

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The correlation puzzle

Fantasies about correlations

- Negative correlations are good for diversification
- Positive correlations are bad for diversification
- If $\rho(R_1, R_2)$ is close to -1, can we hedge Asset 1 with Asset 2?
- If $\rho(R_1, R_2)$ is close to -1, can we diversify Asset 1 with Asset 2?
- If ρ(R₁, R₂) is close to +1, can we hedge Asset 1 with a short position on Asset 2?
- If $\rho(R_1, R_2)$ is close to +1, can we diversify Asset 1 with a short position on Asset 2?
- Does $\rho(R_1, R_2) = -70\%$ correspond to a better diversification pattern than $\rho(R_1, R_2) = +70\%$?

There is a confusion between diversification and hedging!

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The payoff approach

Table 62: Correlation matrix between asset classes (2000-2016)

		Equity				Bond			
		US	Euro	UK	Japan	US	Euro	UK	Japan
Equity	US	100%							
	Euro	78%	100%						
	UK	79%	87%	100%		l			
	Japan	53%	57%	55%	100%	 			
Bond	ŪS	-35%	-39%	$-\bar{3}2\bar{\%}$		100%			
	Euro	-17%	-16%	-16%	-16%	58%	100%		
	UK	-31%	-37%	-30%	-31%	72%	63%	100%	
	Japan	-17%	-18%	-16%	-33%	37%	31%	36%	100%

Correlation = Pearson correlation = Linear correlation

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The payoff approach

Let us consider a Gaussian random vector defined as follows:

$$\left(\begin{array}{c} \mathbf{Y} \\ \mathbf{X} \end{array}\right) \sim \mathcal{N}\left(\left(\begin{array}{c} \mu_{y} \\ \mu_{x} \end{array}\right), \left(\begin{array}{cc} \Sigma_{yy} & \Sigma_{yx} \\ \Sigma_{xy} & \Sigma_{xx} \end{array}\right)\right)$$

The conditional distribution of Y given X = x is a MN distribution:

$$\mu_{y|x} = \mathbb{E}\left[Y \mid X = x\right] = \mu_y + \Sigma_{yx} \Sigma_{xx}^{-1} \left(x - \mu_x\right)$$

and:

$$\Sigma_{yy|x} = \sigma^2 \left[Y \mid X = x \right] = \Sigma_{yy} - \Sigma_{yx} \Sigma_{xx}^{-1} \Sigma_{xy}$$

We deduce that:

$$Y = \mu_{y} + \Sigma_{yx} \Sigma_{xx}^{-1} (x - \mu_{x}) + u$$

=
$$\underbrace{\left(\mu_{y} - \Sigma_{yx} \Sigma_{xx}^{-1} \mu_{x}\right)}_{\beta_{0}} + \underbrace{\Sigma_{yx} \Sigma_{xx}^{-1}}_{\beta^{\top}} x + u$$

where u is a centered Gaussian random variable with variance $s^2 = \sum_{yy|x}$.

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The payoff approach

Correlation = linear payoff

It follows that the payoff function is defined by the curve:

$$y=f\left(x\right)$$

where:

$$f(x) = \mathbb{E}[R_2 | R_1 = x] \\ = (\mu_2 - \beta_{2|1}\mu_1) + \beta_{2|1}x$$

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The payoff approach

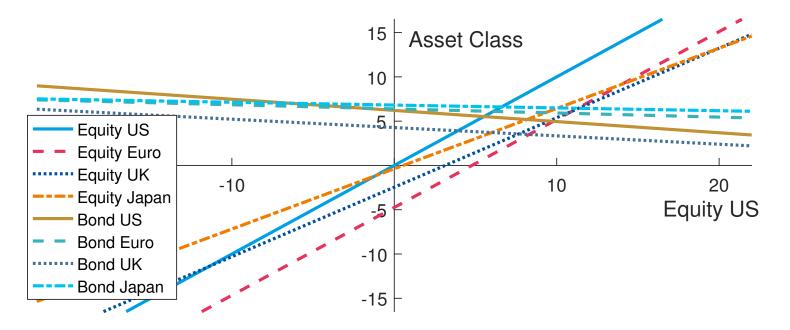


Figure 76: Linear payoff function with respect to the S&P 500 Index

A long-only diversified stock-bond portfolio makes sense!

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The payoff approach

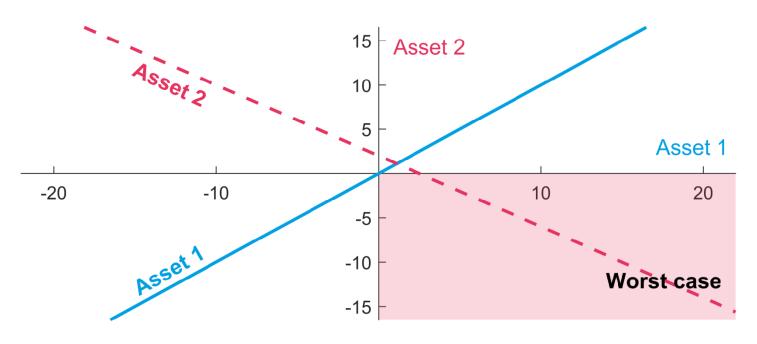


Figure 77: Worst diversification case

What is good diversification? What is bad diversification?

Negative correlation does not necessarily imply good diversification!

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The payoff approach

Concave payoff

- Negative skewness
- Positive vega
- Hit ratio $\geq 50\%$
- Gain frequency > loss frequency
- Average gain < average loss
- Positively correlated with bad times

Volatility Carry

 \neq

Convex payoff

- Positive skewness
- Negative vega
- Hit ratio $\leq 50\%$
- Gain frequency < loss frequency
- Average gain > average loss
- Negatively correlated with bad times?

Time-series Momentum

773 / 1420

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The payoff approach

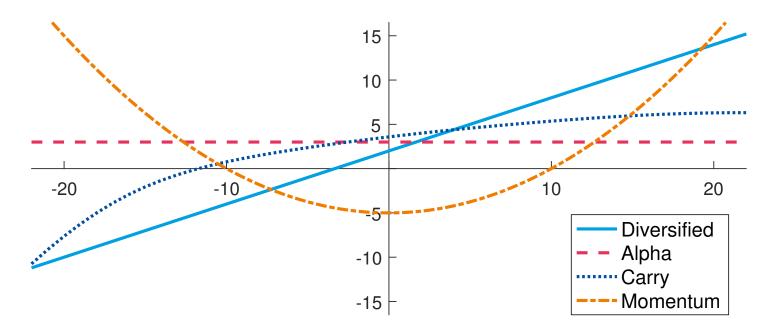


Figure 78: What does portfolio optimization produce with convex and concave strategies?

- Momentum = low allocation during good times and high allocation after bad times
- Carry = high allocation during good times and low allocation after bad times

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The payoff approach

The magic formula

Long-run positive correlations, but...

Definition Carry, value, momentum and liquidity Portfolio allocation with ARP

The payoff approach

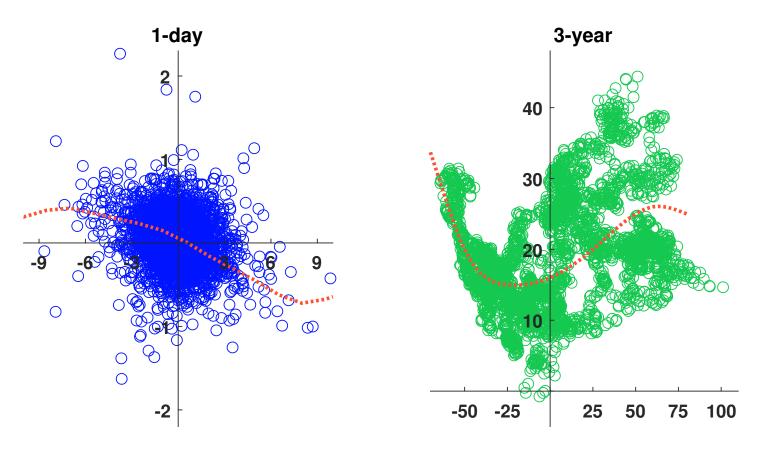


Figure 79: Stock/bond payoff (EUR)

Daily diversification is different than 3-year diversification

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

Exercise

We note Σ the covariance matrix of *n* asset returns. In what follows, we consider the equally weighted portfolio based on the universe of these *n* assets.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

Question 1

Let $\Sigma_{i,j} = \rho_{i,j}\sigma_i\sigma_j$ be the elements of the covariance matrix Σ .

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

Question 1.a

Compute the volatility $\sigma(x)$ of the EW portfolio.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

The elements of the covariance matrix are $\sum_{i,j} = \rho_{i,j}\sigma_i\sigma_j$. If we consider a portfolio $x = (x_1, \ldots, x_n)$, its volatility is:

$$\sigma(x) = \sqrt{x^{\top} \Sigma x}$$
$$= \sqrt{\sum_{i=1}^{n} x_i^2 \sigma_i^2 + 2 \sum_{i>j} x_i x_j \rho_{i,j} \sigma_i \sigma_j}$$

For the equally weighted portfolio, we have $x_i = n^{-1}$ and:

$$\sigma(x) = \frac{1}{n} \sqrt{\sum_{i=1}^{n} \sigma_i^2 + 2\sum_{i>j} \rho_{i,j} \sigma_i \sigma_j}$$

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

Question 1.b

Let $\sigma_0(x)$ and $\sigma_1(x)$ be the volatility of the EW portfolio when the asset returns are respectively independent and perfectly correlated. Calculate $\sigma_0(x)$ and $\sigma_1(x)$.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

We have:

$$\sigma_0(x) = \frac{1}{n} \sqrt{\sum_{i=1}^n \sigma_i^2}$$

and:

$$\sigma_{1}(x) = \frac{1}{n} \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{i} \sigma_{j}} = \frac{1}{n} \sqrt{\sum_{i=1}^{n} \sigma_{i} \sum_{j=1}^{n} \sigma_{j}}$$
$$= \frac{1}{n} \sqrt{\left(\sum_{i=1}^{n} \sigma_{i}\right)^{2}} = \frac{\sum_{i=1}^{n} \sigma_{i}}{n}$$
$$= \bar{\sigma}$$

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

Question 1.c

We assume that the volatilities are the same. Find the expression of the portfolio volatility with respect to the mean correlation $\bar{\rho}$. What is the value of $\sigma(x)$ when $\bar{\rho}$ is equal to zero? What is the value of $\sigma(x)$ when *n* tends to $+\infty$?

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

If $\sigma_i = \sigma_j = \sigma$, we obtain:

$$\sigma(x) = \frac{\sigma}{n} \sqrt{n + 2\sum_{i>j} \rho_{i,j}}$$

Let $\bar{\rho}$ be the mean correlation. We have:

$$\bar{\rho} = \frac{2}{n^2 - n} \sum_{i > j} \rho_{i,j}$$

We deduce that:

$$\sum_{i>j}\rho_{i,j}=\frac{n(n-1)}{2}\overline{\rho}$$

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

We finally obtain:

$$\sigma(x) = \frac{\sigma}{n} \sqrt{n + n(n-1)\overline{\rho}}$$
$$= \sigma \sqrt{\frac{1 + (n-1)\overline{\rho}}{n}}$$

When $\bar{\rho}$ is equal to zero, the volatility $\sigma(x)$ is equal to σ/\sqrt{n} . When the number of assets tends to $+\infty$, it follows that:

$$\lim_{n\to\infty}\sigma\left(x\right)=\sigma\sqrt{\bar{\rho}}$$

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

Question 1.d

We assume that the correlations are uniform $(\rho_{i,j} = \rho)$. Find the expression of the portfolio volatility as a function of $\sigma_0(x)$ and $\sigma_1(x)$. Comment on this result.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

If
$$\rho_{i,j} = \rho$$
, we obtain:

 σ

$$\begin{aligned} f(\mathbf{x}) &= \frac{1}{n} \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{i,j} \sigma_i \sigma_j} \\ &= \frac{1}{n} \sqrt{\sum_{i=1}^{n} \sigma_i^2 + \rho \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_i \sigma_j - \rho \sum_{i=1}^{n} \sigma_i^2} \\ &= \frac{1}{n} \sqrt{\left(1 - \rho\right) \sum_{i=1}^{n} \sigma_i^2 + \rho \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_i \sigma_j} \end{aligned}$$

787 / 1420

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

We have:

$$\sum_{i=1}^{n}\sigma_{i}^{2}=n^{2}\sigma_{0}^{2}\left(x\right)$$

and:

$$\sum_{i=1}^{n}\sum_{j=1}^{n}\sigma_{i}\sigma_{j}=n^{2}\sigma_{1}^{2}(x)$$

It follows that:

$$\sigma(x) = \sqrt{(1-\rho)\sigma_0^2(x) + \rho\sigma_1^2(x)}$$

When the correlation is uniform, the variance $\sigma^2(x)$ is the weighted average between $\sigma_0^2(x)$ and $\sigma_1^2(x)$.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

Question 2.a

Compute the normalized risk contributions \mathcal{RC}_i^* of the EW portfolio.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

The risk contributions are equal to:

$$\mathcal{RC}_{i}^{\star} = \frac{x_{i} \cdot (\Sigma x)_{i}}{\sigma^{2}(x)}$$

In the case of the EW portfolio, we obtain:

$$\mathcal{RC}_{i}^{\star} = \frac{\sum_{j=1}^{n} \rho_{i,j} \sigma_{i} \sigma_{j}}{n^{2} \sigma^{2} (x)}$$
$$= \frac{\sigma_{i}^{2} + \sigma_{i} \sum_{j \neq i} \rho_{i,j} \sigma_{j}}{n^{2} \sigma^{2} (x)}$$

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

Question 2.b

Deduce the risk contributions \mathcal{RC}_i^* when the asset returns are respectively independent and perfectly correlated^{*a*}.

^aWe note them $\mathcal{RC}^{\star}_{0,i}$ and $\mathcal{RC}^{\star}_{1,i}$.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

If asset returns are independent, we have:

$$\mathcal{RC}_{0,i}^{\star} = \frac{\sigma_i^2}{\sum_{i=1}^n \sigma_i^2}$$

In the case of perfect correlation, we obtain:

$$\mathcal{RC}_{1,i}^{\star} = \frac{\sigma_i^2 + \sigma_i \sum_{j \neq i} \sigma_j}{n^2 \bar{\sigma}^2}$$
$$= \frac{\sigma_i \sum_j \sigma_j}{n^2 \bar{\sigma}^2}$$
$$= \frac{\sigma_i}{n \bar{\sigma}}$$

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

Question 2.c

Show that the risk contribution \mathcal{RC}_i is proportional to the ratio between the mean correlation of asset *i* and the mean correlation of the asset universe when the volatilities are the same.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

If $\sigma_i = \sigma_j = \sigma$, we obtain:

$$\mathcal{RC}_{i}^{\star} = \frac{\sigma^{2} + \sigma^{2} \sum_{j \neq i} \rho_{i,j}}{n^{2} \sigma^{2} (x)}$$
$$= \frac{\sigma^{2} + (n-1) \sigma^{2} \overline{\rho}_{i}}{n^{2} \sigma^{2} (x)}$$
$$= \frac{1 + (n-1) \overline{\rho}_{i}}{n (1 + (n-1) \overline{\rho})}$$

It follows that:

$$\lim_{n\to\infty}\frac{1+(n-1)\,\bar{\rho}_i}{1+(n-1)\,\bar{\rho}}=\frac{\bar{\rho}_i}{\bar{\rho}}$$

We deduce that the risk contributions are proportional to the ratio between the mean correlation of asset *i* and the mean correlation of the asset universe.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

Question 2.d

We assume that the correlations are uniform $(\rho_{i,j} = \rho)$. Show that the risk contribution \mathcal{RC}_i is a weighted average of $\mathcal{RC}_{0,i}^*$ and $\mathcal{RC}_{1,i}^*$.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

We recall that we have:

$$\sigma(x) = \sqrt{(1-\rho)\sigma_0^2(x) + \rho\sigma_1^2(x)}$$

It follows that:

$$\mathcal{RC}_{i} = x_{i} \cdot \frac{(1-\rho)\sigma_{0}(x)\partial_{x_{i}}\sigma_{0}(x) + \rho\sigma_{1}(x)\partial_{x_{i}}\sigma_{1}(x)}{\sqrt{(1-\rho)\sigma_{0}^{2}(x) + \rho\sigma_{1}^{2}(x)}}$$
$$= \frac{(1-\rho)\sigma_{0}(x)\mathcal{RC}_{0,i} + \rho\sigma_{1}(x)\mathcal{RC}_{1,i}}{\sqrt{(1-\rho)\sigma_{0}^{2}(x) + \rho\sigma_{1}^{2}(x)}}$$

We then obtain:

$$\mathcal{RC}_{i}^{\star} = \frac{(1-\rho)\sigma_{0}^{2}(x)}{\sigma^{2}(x)}\mathcal{RC}_{0,i}^{\star} + \frac{\rho\sigma_{1}(x)}{\sigma^{2}(x)}\mathcal{RC}_{1,i}^{\star}$$

We verify that the risk contribution \mathcal{RC}_i is a weighted average of $\mathcal{RC}_{0,i}^*$ and $\mathcal{RC}_{1,i}^*$.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

Question 3

We suppose that the return of asset *i* satisfies the CAPM model:

$$R_i = \beta_i R_m + \varepsilon_i$$

where R_m is the return of the market portfolio and ε_i is the specific risk. We note $\beta = (\beta_1, \dots, \beta_n)$ and $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)$. We assume that $R_m \perp \varepsilon$, $\operatorname{var}(R_m) = \sigma_m^2$ and $\operatorname{cov}(\varepsilon) = D = \operatorname{diag}(\tilde{\sigma}_1^2, \dots, \tilde{\sigma}_n^2)$.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

Question 3.a

Calculate the volatility of the EW portfolio.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

We have:

$$\boldsymbol{\Sigma} = \boldsymbol{\beta} \boldsymbol{\beta}^{\top} \boldsymbol{\sigma}_{\boldsymbol{m}}^2 + \boldsymbol{D}$$

We deduce that:

$$\sigma(\mathbf{x}) = \frac{1}{n} \sqrt{\sigma_m^2 \sum_{i=1}^n \sum_{j=1}^n \beta_i \beta_j} + \sum_{i=1}^n \tilde{\sigma}_i^2$$

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

Question 3.b

Calculate the risk contribution \mathcal{RC}_i .

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

The risk contributions are equal to:

$$\mathcal{RC}_{i} = \frac{x_{i} \cdot (\Sigma x)_{i}}{\sigma(x)}$$

In the case of the EW portfolio, we obtain:

$$\mathcal{RC}_{i} = \frac{x_{i} \cdot \left(\sigma_{m}^{2}\beta_{i}\sum_{j=1}^{n}x_{j}\beta_{j} + x_{i}\tilde{\sigma}_{i}^{2}\right)}{n^{2}\sigma(x)}$$
$$= \frac{\sigma_{m}^{2}\beta_{i}\sum_{j=1}^{n}\beta_{j} + \tilde{\sigma}_{i}^{2}}{n^{2}\sigma(x)}$$
$$= \frac{n\sigma_{m}^{2}\beta_{i}\bar{\beta} + \tilde{\sigma}_{i}^{2}}{n^{2}\sigma(x)}$$

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

Question 3.c

Show that \mathcal{RC}_i is approximately proportional to β_i if the number of assets is large. Illustrate this property using a numerical example.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

When the number of assets is large and $\beta_i > 0$, we obtain:

$$\mathcal{RC}_{i} \simeq \frac{\sigma_{m}^{2}\beta_{i}\overline{\beta}}{n\sigma\left(x\right)}$$

because $\overline{\beta} > 0$. We deduce that the risk contributions are approximately proportional to the beta coefficients:

$$\mathcal{RC}_i^{\star} \simeq \frac{\beta_i}{\sum_{j=1}^n \beta_j}$$

In Figure 80, we compare the exact and approximated values of \mathcal{RC}_i^* . For that, we simulate β_i and $\tilde{\sigma}_i$ with $\beta_i \sim \mathcal{U}_{[0.5,1.5]}$ and $\tilde{\sigma}_i \sim \mathcal{U}_{[0,20\%]}$ whereas σ_m is set to 25%. We notice that the approximated value is very close to the exact value when *n* increases.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Equally-weighted portfolio

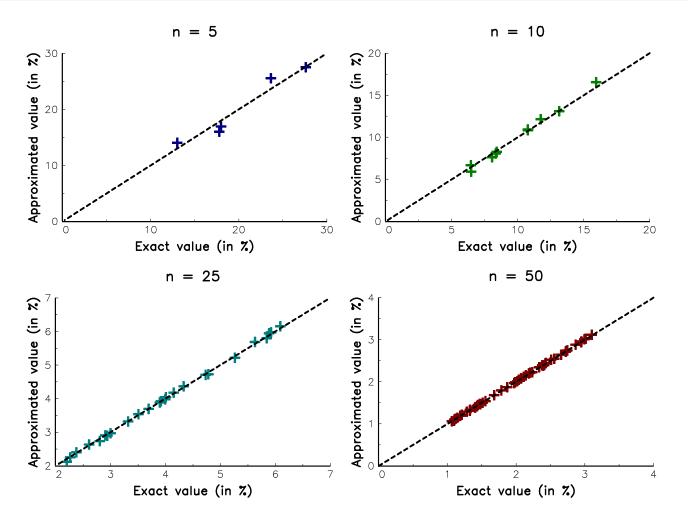


Figure 80: Comparing the exact and approximated values of \mathcal{RC}_i^{\star}

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

Exercise

We consider a universe of *n* assets. We note $\sigma = (\sigma_1, \ldots, \sigma_n)$ the vector of volatilities and Σ the covariance matrix.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

Question 1

In what follows, we consider non-constrained optimized portfolios.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

Question 1.a

Define the diversification ratioDiversification ratio $\mathcal{DR}(x)$ by considering a general risk measure $\mathcal{R}(x)$. How can one interpret this measure from a risk allocation perspective?

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

Let $\mathcal{R}(x)$ be the risk measure of the portfolio x. We note $\mathcal{R}_i = \mathcal{R}(\mathbf{e}_i)$ the risk associated to the i^{th} asset. The diversification ratio is the ratio between the weighted mean of the individual risks and the portfolio risk (TR-RPB, page 168):

$$\mathcal{DR}(x) = \frac{\sum_{i=1}^{n} x_i \mathcal{R}_i}{\mathcal{R}(x)}$$

If we assume that the risk measure satisfies the Euler allocation principle, we have:

$$\mathcal{DR}(x) = \frac{\sum_{i=1}^{n} x_i \mathcal{R}_i}{\sum_{i=1}^{n} \mathcal{RC}_i}$$

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

Question 1.b

We assume that the weights of the portfolio are positive. Show that $\mathcal{DR}(x) \ge 1$ for all risk measures satisfying the Euler allocation principle. Find an upper bound of $\mathcal{DR}(x)$.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

If $\mathcal{R}(x)$ satisfies the Euler allocation principle, we know that $\mathcal{R}_i \geq \mathcal{M}\mathcal{R}_i$ (TR-RPB, page 78). We deduce that:

$$\mathcal{DR}(x) \geq rac{\sum_{i=1}^{n} x_i \mathcal{R}_i}{\sum_{i=1}^{n} x_i \mathcal{R}_i} \geq 1$$

Let x_{mr} be the portfolio that minimizes the risk measure. We have:

$$\mathcal{DR}(x) \leq rac{\sup \mathcal{R}_i}{\mathcal{R}(x_{\mathrm{mr}})}$$

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

Question 1.c

We now consider the volatility risk measure. Calculate the upper bound of $\mathcal{DR}(x)$.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

If we consider the volatility risk measure, the minimum risk portfolio is the minimum variance portfolio. We have (TR-RPB, page 164):

$$\sigma(\mathbf{x}_{\mathrm{mv}}) = \frac{1}{\sqrt{\mathbf{1}_n^{\top} \Sigma \mathbf{1}_n}}$$

We deduce that:

$$\mathcal{DR}(x) \leq \sqrt{\mathbf{1}_n^\top \Sigma^{-1} \mathbf{1}_n} \cdot \sup \sigma_i$$

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

Question 1.d

What is the most diversified portfolio (or MDP)? In which case does it correspond to the tangency portfolio? Deduce the analytical expression of the MDP and calculate its volatility.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

The MDP is the portfolio which maximizes the diversification ratio when the risk measure is the volatility (TR-RPB, page 168). We have:

$$x^{\star} = \arg \max \mathcal{DR}(x)$$

u.c. $\mathbf{1}_{n}^{\top} x = 1$

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

If we consider that the risk premium $\pi_i = \mu_i - r$ of the asset *i* is proportional to its volatility σ_i , we obtain:

$$SR(x | r) = \frac{\mu(x) - r}{\sigma(x)}$$
$$= \frac{\sum_{i=1}^{n} x_i (\mu_i - r)}{\sigma(x)}$$
$$= s \frac{\sum_{i=1}^{n} x_i \sigma_i}{\sigma(x)}$$
$$= s \cdot \mathcal{DR}(x)$$

where *s* is the coefficient of proportionality. Maximizing the diversification ratio is equivalent to maximizing the Sharpe ratio.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

We recall that the expression of the tangency portfolio is:

$$x^{\star} = \frac{\Sigma^{-1} \left(\mu - r \mathbf{1}_n \right)}{\mathbf{1}_n^{\top} \Sigma^{-1} \left(\mu - r \mathbf{1}_n \right)}$$

We deduce that the weights of the MDP are:

$$x^{\star} = \frac{\Sigma^{-1}\sigma}{\mathbf{1}_{n}^{\top}\Sigma^{-1}\sigma}$$

The volatility of the MDP is then:

$$\sigma(x^{\star}) = \sqrt{\frac{\sigma^{\top} \Sigma^{-1}}{\mathbf{1}_{n}^{\top} \Sigma^{-1} \sigma}} \Sigma \frac{\Sigma^{-1} \sigma}{\mathbf{1}_{n}^{\top} \Sigma^{-1} \sigma}$$
$$= \frac{\sqrt{\sigma^{\top} \Sigma^{-1} \sigma}}{\mathbf{1}_{n}^{\top} \Sigma^{-1} \sigma}$$

816 / 1420

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

Question 1.e

Demonstrate then that the weights of the MDP are in some sense proportional to $\Sigma^{-1}\sigma$.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

We recall that another expression of the unconstrained tangency portfolio is:

$$x^{\star} = \frac{\sigma^2(x^{\star})}{(\mu(x^{\star}) - r)} \Sigma^{-1} (\mu - r \mathbf{1}_n)$$

We deduce that the MDP is also:

$$x^{\star} = \frac{\sigma^{2} \left(x^{\star} \right)}{\bar{\sigma} \left(x^{\star} \right)} \Sigma^{-1} \sigma$$

where $\bar{\sigma}(x^*) = x^{*\top}\sigma$. Nevertheless, this solution is endogenous.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

Question 2

We suppose that the return of asset *i* satisfies the CAPM:

$$R_i = \beta_i R_m + \varepsilon_i$$

where R_m is the return of the market portfolio and ε_i is the specific risk. We note $\beta = (\beta_1, \ldots, \beta_n)$ and $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n)$. We assume that $R_m \perp \varepsilon$, $var(R_m) = \sigma_m^2$ and $cov(\varepsilon) = D = diag(\tilde{\sigma}_1^2, \ldots, \tilde{\sigma}_n^2)$.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

Question 2.a

Compute the correlation $\rho_{i,m}$ between the asset return and the market return. Deduce the relationship between the specific risk $\tilde{\sigma}_i$ and the total risk σ_i of asset *i*.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

We have:

$$\operatorname{cov}(R_i,R_m)=\beta_i\sigma_m^2$$

We deduce that:

$$\rho_{i,m} = \frac{\operatorname{cov}(R_i, R_m)}{\sigma_i \sigma_m} \\ = \beta_i \frac{\sigma_m}{\sigma_i}$$
(4)

and:

$$\widetilde{\sigma}_{i} = \sqrt{\sigma_{i}^{2} - \beta_{i}^{2} \sigma_{m}^{2}}
= \sigma_{i} \sqrt{1 - \rho_{i,m}^{2}}$$
(5)

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

Question 2.b

Show that the solution of the MDP may be written as:

$$x_{i}^{\star} = \mathcal{DR}\left(x^{\star}\right) \frac{\sigma_{i}\sigma\left(x^{\star}\right)}{\tilde{\sigma}_{i}^{2}} \left(1 - \frac{\rho_{i,m}}{\rho^{\star}}\right)$$
(6)

with ρ^{\star} a scalar to be determined.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

We know that (TR-RPB, page 167):

$$\Sigma^{-1} = D^{-1} - \frac{1}{\sigma_m^{-2} + \tilde{\beta}^\top \beta} \tilde{\beta} \tilde{\beta}^\top$$

where $\tilde{\beta}_i = \beta_i / \tilde{\sigma}_i^2$.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

We deduce that:

$$x^{\star} = \frac{\sigma^{2}(x^{\star})}{\bar{\sigma}(x^{\star})} \left(D^{-1}\sigma - \frac{1}{\sigma_{m}^{-2} + \tilde{\beta}^{\top}\beta} \tilde{\beta} \tilde{\beta}^{\top} \sigma \right)$$

and:

$$\begin{aligned} x_{i}^{\star} &= \frac{\sigma^{2}\left(x^{\star}\right)}{\bar{\sigma}\left(x^{\star}\right)} \left(\frac{\sigma_{i}}{\tilde{\sigma}_{i}^{2}} - \frac{\tilde{\beta}^{\top}\sigma}{\sigma_{m}^{-2} + \tilde{\beta}^{\top}\beta}\tilde{\beta}_{i}\right) \\ &= \frac{\sigma_{i}\sigma^{2}\left(x^{\star}\right)}{\bar{\sigma}\left(x^{\star}\right)\tilde{\sigma}_{i}^{2}} \left(1 - \frac{\tilde{\beta}^{\top}\sigma}{\sigma_{m}^{-1} + \sigma_{m}\tilde{\beta}^{\top}\beta}\frac{\sigma_{m}\tilde{\sigma}_{i}^{2}\tilde{\beta}_{i}}{\sigma_{i}}\right) \\ &= \frac{\sigma_{i}\sigma^{2}\left(x^{\star}\right)}{\bar{\sigma}\left(x^{\star}\right)\tilde{\sigma}_{i}^{2}} \left(1 - \frac{\tilde{\beta}^{\top}\sigma}{\sigma_{m}^{-1} + \sigma_{m}\tilde{\beta}^{\top}\beta}\rho_{i,m}\right) \\ &= \mathcal{D}\mathcal{R}\left(x^{\star}\right)\frac{\sigma_{i}\sigma\left(x^{\star}\right)}{\tilde{\sigma}_{i}^{2}} \left(1 - \frac{\rho_{i,m}}{\rho^{\star}}\right) \end{aligned}$$

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

Using Equations (4) and (5), ρ^* is defined as follows:

$$\rho^{\star} = \frac{\sigma_m^{-1} + \sigma_m \tilde{\beta}^\top \beta}{\tilde{\beta}^\top \sigma}$$

$$= \left(1 + \sum_{j=1}^n \frac{\sigma_m^2 \beta_j^2}{\tilde{\sigma}_j^2} \right) / \left(\sum_{j=1}^n \frac{\sigma_m \beta_j \sigma_j}{\tilde{\sigma}_j^2} \right)$$

$$= \left(1 + \sum_{j=1}^n \frac{\rho_{j,m}^2}{1 - \rho_{j,m}^2} \right) / \left(\sum_{j=1}^n \frac{\rho_{j,m}}{1 - \rho_{j,m}^2} \right)$$

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

Question 2.c

In which case is the optimal weight x_i^* positive?

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

The optimal weight x_i^* is positive if:

$$1 - \frac{\rho_{i,m}}{\rho^\star} \ge 0$$

or equivalently:

 $\rho_{i,m} \le \rho^{\star}$

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

Question 2.d

Are the weights of the MDP a decreasing or an increasing function of the specific risk $\tilde{\sigma}_i$?

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

We recall that:

$$\rho_{i,m} = \beta_i \frac{\sigma_m}{\sigma_i}$$
$$= \frac{\beta_i \sigma_m}{\sqrt{\beta_i^2 \sigma_m^2 + \tilde{\sigma}_i^2}}$$

If $\beta_i < 0$, an increase of the idiosyncratic volatility $\tilde{\sigma}_i$ increases $\rho_{i,m}$ and decreases the ratio $\sigma_i/\tilde{\sigma}_i^2$. We deduce that the weight is a decreasing function of the specific volatility $\tilde{\sigma}_i$. If $\beta_i > 0$, an increase of the idiosyncratic volatility $\tilde{\sigma}_i$ decreases $\rho_{i,m}$ and decreases the ratio $\sigma_i/\tilde{\sigma}_i^2$. We cannot conclude in this case.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

Question 3

In this question, we illustrate that the MDP may be very different than the minimum variance portfolio.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

Question 3.a

In which case does the MDP coincide with the minimum variance portfolio?

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

The MDP coincide with the MV portfolio when the volatility is the same for all the assets.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

Question 3.b

We consider the following parameter values:

i	1	2	3	4
β_i	0.80	0.90	1.10	1.20
$ ilde{\sigma}_i$	0.02	0.05	0.15	0.15

with $\sigma_m = 20\%$. Calculate the unconstrained MDP with Formula (6). Compare it with the unconstrained MV portfolio. What is the result if we consider a long-only portfolio?

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

The formula cannot be used directly, because it depends on $\sigma(x^*)$ and $\mathcal{DR}(x^*)$. However, we notice that:

$$\mathbf{x}_{i}^{\star} \propto rac{\sigma_{i}}{\widetilde{\sigma}_{i}^{2}} \left(1 - rac{
ho_{i,m}}{
ho^{\star}}
ight)$$

It suffices then to rescale these weights to obtain the solution. Using the numerical values of the parameters, $\rho^* = 98.92\%$ and we obtain the following results:

	B	0.5		$\in \mathbb{R}$	Xi	≥ 0
	β_i	$ ho_{i,m}$	MDP	MV	MDP	MV
x_1^{\star}	0.80	99.23%	-27.94%	211.18%	0.00%	100.00%
x_2^{\star}	0.90	96.35%	43.69%	-51.98%	25.00%	0.00%
x_3^{\star}	1.10	82.62%	43.86%	-24.84%	39.24%	0.00%
x_4^{\star}	1.20	84.80%	40.39%	-34.37%	35.76%	0.00%
$\int \overline{\sigma} (x^{\star})^{-}$	<u> </u>		24.54%	13.42%	23.16%	16.12%

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

Question 3.c

We assume that the volatility of the assets is 10%, 10%, 50% and 50% whereas the correlation matrix of asset returns is:

$$p = \left(egin{array}{ccccc} 1.00 & & & \ 0.90 & 1.00 & & \ 0.80 & 0.80 & 1.00 & \ 0.00 & 0.00 & -0.25 & 1.00 \end{array}
ight)$$

Calculate the (unconstrained and long-only) MDP and MV portfolios.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

The results are:

	$x_i \in \mathbb{R}$		$x_i \ge 0$	
	MDP	MV	MDP	MV
x_1^{\star}	-36.98%	60.76%	0.00%	48.17%
x_2^{\star}	-36.98%	60.76%	0.00%	48.17%
x ₃ *	91.72%	-18.54%	50.00%	0.00%
x_4^{\star}	82.25%	-2.98%	50.00%	3.66%
$\left[\overline{\sigma} \left(x^{\star} \right) \right]$	48.59%	6.43%	30.62%	9.57%

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

Question 3.d

Comment on these results.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Most diversified portfolio

These two examples show that the MDP may have a different behavior than the minimum variance portfolio. Contrary to the latter, the most diversified portfolio is not necessarily a low-beta or a low-volatility portfolio.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Computation of risk-based portfolios

Exercise

We consider a universe of five assets. Their expected returns are 6%, 10%, 6%, 8% and 12% whereas their volatilities are equal to 10%, 20%, 15%, 25% and 30%. The correlation matrix of asset returns is defined as follows:

$$ho = \left(egin{array}{cccccc} 100\% & & & \ 60\% & 100\% & & \ 40\% & 50\% & 100\% & \ 30\% & 30\% & 20\% & 100\% & \ 20\% & 10\% & 10\% & -50\% & 100\% \end{array}
ight.$$

We assume that the risk-free rate is equal to 2%.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Computation of risk-based portfolios

Question 1

We consider unconstrained portfolios. For each portfolio, compute the risk decomposition.

Equally-weighted portfolio Most diversified portfolio **Computation of risk-based portfolios** Building a carry trade exposure

Computation of risk-based portfolios

Question 1.a

Find the tangency portfolio.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Computation of risk-based portfolios

To compute the unconstrained tangency portfolio, we use the analytical formula (TR-RPB, page 14):

$$x^{\star} = \frac{\Sigma^{-1} \left(\mu - r \mathbf{1}_n \right)}{\mathbf{1}_n^{\top} \Sigma^{-1} \left(\mu - r \mathbf{1}_n \right)}$$

We obtain the following results:

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	11.11%	6.56%	0.73%	5.96%
2	17.98%	13.12%	2.36%	19.27%
3	2.55%	6.56%	0.17%	1.37%
4	33.96%	9.84%	3.34%	27.31%
5	34.40%	16.40%	5.64%	46.09%

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Computation of risk-based portfolios

Question 1.b

Determine the equally weighted portfolio.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Computation of risk-based portfolios

We obtain the following results for the equally weighted portfolio:

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	20.00%	7.47%	1.49%	13.43%
2	20.00%	15.83%	3.17%	28.48%
3	20.00%	9.98%	2.00%	17.96%
4	20.00%	9.89%	1.98%	17.80%
5	20.00%	12.41%	2.48%	22.33%

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Computation of risk-based portfolios

Question 1.c

Compute the minimum variance portfolio.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Computation of risk-based portfolios

For the minimum variance portfolio, we have:

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	74.80%	9.08%	6.79%	74.80%
2	-15.04%	9.08%	-1.37%	-15.04%
3	21.63%	9.08%	1.96%	21.63%
4	10.24%	9.08%	0.93%	10.24%
5	8.36%	9.08%	0.76%	8.36%

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Computation of risk-based portfolios

Question 1.d

Calculate the most diversified portfolio.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Computation of risk-based portfolios

For the most diversified portfolio, we have:

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	-14.47%	4.88%	-0.71%	-5.34%
2	4.83%	9.75%	0.47%	3.56%
3	18.94%	7.31%	1.38%	10.47%
4	49.07%	12.19%	5.98%	45.24%
5	41.63%	14.63%	6.09%	46.06%

Equally-weighted portfolio Most diversified portfolio **Computation of risk-based portfolios** Building a carry trade exposure

Computation of risk-based portfolios

Question 1.e

Find the ERC portfolio.

Equally-weighted portfolio Most diversified portfolio **Computation of risk-based portfolios** Building a carry trade exposure

Computation of risk-based portfolios

For the ERC portfolio, we have:

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	27.20%	7.78%	2.12%	20.00
2	13.95%	15.16%	2.12%	20.00
3	20.86%	10.14%	2.12%	20.00
4	19.83%	10.67%	2.12%	20.00
5	18.16%	11.65%	2.12%	20.00

850 / 1420

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Computation of risk-based portfolios

Question 1.f

Compare the expected return $\mu(x)$, the volatility $\sigma(x)$ and the Sharpe ratio SR(x | r) of the different portfolios. Calculate then the tracking error volatility $\sigma(x | b)$, the beta $\beta(x | b)$ and the correlation $\rho(x | b)$ if we assume that the benchmark *b* is the tangency portfolio.

Equally-weighted portfolio Most diversified portfolio **Computation of risk-based portfolios** Building a carry trade exposure

Computation of risk-based portfolios

We recall the definition of the statistics:

$$\mu(x) = \mu^{\top} x$$

$$\sigma(x) = \sqrt{x^{\top} \Sigma x}$$

$$SR(x \mid r) = \frac{\mu(x) - r}{\sigma(x)}$$

$$\sigma(x \mid b) = \sqrt{(x - b)^{\top} \Sigma (x - b)}$$

$$\beta(x \mid b) = \frac{x^{\top} \Sigma b}{b^{\top} \Sigma b}$$

$$\rho(x \mid b) = \frac{x^{\top} \Sigma b}{\sqrt{x^{\top} \Sigma x} \sqrt{b^{\top} \Sigma b}}$$

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Computation of risk-based portfolios

We obtain the following results:

Statistic	<i>x</i> *	$X_{\rm ew}$	X _{mv}	<i>x</i> _{mdp}	X _{erc}
$\mu(\mathbf{x})$	9.46%	8.40%	6.11%	9.67%	8.04%
$\sigma(\mathbf{x})$	12.24%	11.12%	9.08%	13.22%	10.58%
$\operatorname{SR}(x \mid r)$	60.96%	57.57%	45.21%	58.03%	57.15%
$\sigma(x \mid b)$	0.00%	4.05%	8.21%	4.06%	4.35%
$\beta(x \mid b)$	100.00%	85.77%	55.01%	102.82%	81.00%
$\rho(\mathbf{x} \mid \mathbf{b})$	100.00%	94.44%	74.17%	95.19%	93.76%

We notice that all the portfolios present similar performance in terms of Sharpe Ratio. The minimum variance portfolio shows the smallest Sharpe ratio, but it also shows the lowest correlation with the tangency portfolio.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Computation of risk-based portfolios

Question 2

Same questions if we impose the long-only portfolio constraint.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Computation of risk-based portfolios

The tangency portfolio, the equally weighted portfolio and the ERC portfolio are already long-only. For the minimum variance portfolio, we obtain:

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	65.85%	9.37%	6.17%	65.85%
2	0.00%	13.11%	0.00%	0.00%
3	16.72%	9.37%	1.57%	16.72%
4	9.12%	9.37%	0.85%	9.12%
5	8.32%	9.37%	0.78%	8.32%

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Computation of risk-based portfolios

For the most diversified portfolio, we have:

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	0.00%	5.50%	0.00%	0.00%
2	1.58%	9.78%	0.15%	1.26%
3	16.81%	7.34%	1.23%	10.04%
4	44.13%	12.23%	5.40%	43.93%
5	37.48%	14.68%	5.50%	44.77%

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Computation of risk-based portfolios

The results become:

Statistic	<i>x</i> *	$X_{\rm ew}$	<i>x</i> _{mv}	$x_{ m mdp}$	X _{erc}
$\mu(\mathbf{x})$	9.46%	8.40%	6.68%	9.19%	8.04%
$\sigma(\mathbf{x})$	12.24%	11.12%	9.37%	12.29%	10.58%
$\operatorname{SR}(x \mid r)$	60.96%	57.57%	49.99%	58.56%	57.15%
$\sigma(x \mid b)$	0.00%	4.05%	7.04%	3.44%	4.35%
$\beta(x \mid b)$	100.00%	85.77%	62.74%	96.41%	81.00%
$\rho(\mathbf{x} \mid \mathbf{b})$	100.00%	94.44%	82.00%	96.06%	93.76%

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

Question 1

We would like to build a carry trade strategy using a *cash neutral* portfolio with equal weights and a notional amount of \$100 mn. We use the data given in Table 63. The holding period is equal to three months.

Table 63: Three-month interest rates (March, 15th 2000)

Currency	AUD	CAD	CHF	EUR	GBP
Interest rate (in %)	5.74	5.37	2.55	3.79	6.21
Currency	JPY	NOK	NZD	SEK	USD
Interest rate (in %)	0.14	5.97	6.24	4.18	6.17

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

Question 1.a

Build the carry trade exposure with two funding currencies and two asset currencies.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

We rank the currencies according to their interest rate from the lowest to the largest value:

1. JPY	2. CHF	3. EUR	4. SEK	5. CAD
6. AUD	7. NOK	8. USD	9. GBP	10. NZD

We deduce that the carry trade portfolio is:

- Iong \$50 mn on NZD
- Iong \$50 mn on GBP
- short \$50 mn on JPY
- short \$50 mn on CHF

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

Question 1.b

Same question with five funding currencies and two asset currencies.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

The portfolio becomes:

- Iong \$50 mn on NZD and GBP
- short \$20 mn on JPY, CHF, EUR, SEK and CAD

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

Question 1.c

What is the specificity of the portfolio if we use five funding currencies and five asset currencies.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

The portfolio is:

- Iong \$20 mn on NZD, GBP, USD, NOK and AUD
- short \$20 mn on JPY, CHF, EUR, SEK and CAD

The asset notional is not equal to the funding notional, because the funding notional is equal to \$100 mn and the asset notional is equal to \$80 mn. Indeed, we don't need to invest the \$20 mn USD exposure since the portfolio currency is the US dollar.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

Question 1.d

Calculate an approximation of the carry trade P&L if we assume that the spot foreign exchange rates remain constant during the next three months.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

If we consider the last portfolio, we have:

PnL
$$\approx 20 \times \frac{1}{4} (6.24\% + 6.21\% + 6.17\% + 5.97\% + 5.74\%) - 20 \times \frac{1}{4} (0.14\% + 2.55\% + 3.79\% + 4.18\% + 5.37\%)$$

= \$0.71 mn

If the spot foreign exchange rates remain constant during the next three months, the quarterly P&L is approximated equal to \$710000.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

Question 2

We consider the data given in Tables 64 and 65.

Table 64: Three-month interest rates (March, 21th 2005)

Currency	BRL	CZK	HUF	KRW	MXN
Interest rate (in %)	18.23	2.45	8.95	3.48	8.98
Currency	PLN	SGD	THB	TRY	TWD
Interest rate (in %)	6.63	1.44	2.00	19.80	1.30

Table 65: Annualized volatility of foreign exchange rates (March, 21th 2005)

Currency	BRL	CZK	HUF	KRW	MXN
Volatility (in %)	11.19	12.57	12.65	6.48	6.80
Currency	PLN	SGD	THB	TRY	TWD
Volatility (in %)	11.27	4.97	4.26	11.61	4.12

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

Question 2.a

Let Σ be the covariance matrix of the currency returns. Which expected returns are used by the carry investor? Write the mean-variance optimization problem if we assume a cash neutral portfolio.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

Let C_i and $C = (C_1, \ldots, C_n)$ be the carry of Currency *i* and the vector of carry values. The carry investor assumes that $\mu_i = C_i$. We deduce that the mean-variance optimization problem is:

The constraint $\mathbf{1}_n^\top x = 0$ indicates that the portfolio is cash neutral. If we target a portfolio volatility σ^* , we use the bisection algorithm in order to find the optimal value of γ such that:

$$\sigma\left(x^{\star}\left(\gamma\right)\right) = \sigma^{\star}$$

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

Question 2.b

By assuming a zero correlation between the currencies, calibrate the cash neutral portfolio when the objective function is to target a 3% portfolio volatility.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

We obtain the following solution:

Currency	BRL	CZK	HUF	KRW	MXN
Weight	15.05%	-1.28%	4.11%	-1.57%	14.30%
Currency	PLN	SGD	THB	TRY	TWD
Weight	2.76%	-13.59%	-14.42%	15.52%	-20.87%

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

Question 2.c

Same question if we use the following correlation matrix:

		/ 1.00									
		0.30	1.00								
		0.38	0.80	1.00							
		0.00	0.04	0.08	1.00						
0		0.50	0.30	0.34	0.12	1.00					
ρ	=	0.35	0.70	0.78	0.06	0.30	1.00				
		0.33	0.49	0.56	0.29	0.27	0.53	1.00			
		0.30	0.34	0.34	0.38	0.29	0.35	0.53	1.00		
		0.43	0.39	0.48	0.10	0.38	0.41	0.35	0.43	1.00	
		0.03	0.07	0.06	0.63	0.09	0.07	0.30	0.40	0.20	1.00 /

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

The solution becomes:

Currency	BRL	CZK	HUF	KRW	MXN
Weight	13.69%	-9.45%	4.58%	17.31%	6.56%
Currency	PLN	SGD	THB	TRY	TWD
Weight	2.07%	-17.79%	-20.86%	17.98%	-14.10%

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

Question 2.d

Calculate the carry of this optimized portfolio. For each currency, deduce the maximum value of the devaluation (or revaluation) rate that is compatible with a positive P&L.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

The carry of the portfolio is equal to:

$$\mathcal{C}(x) = \sum_{i=1}^{n} x_i \cdot \mathcal{C}_i$$

We find C(x) = 6.7062% per year. We deduce that the maximum value of the devaluation or revaluation rate D_i that is compatible with a positive P&L is equal to:

$$D_i = \frac{6.7062\%}{4} = 1.6765\%$$

This figure is valid for an exposure of 100%.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

By considering the weights, we deduce that:

$$D_i = -\frac{\mathcal{C}(x)}{4x_i}$$

Finally, we obtain the following compatible devaluation (negative sign -) and revaluation (positive sign +) rates:

Currency	BRL	CZK	HUF	KRW	MXN
D_i	-12.25%	+17.75%	-36.64%	-9.69%	-25.55%
Currency	PLN	SGD	THB	TRY	TWD
D_i	-81.08%	+9.43%	+8.04%	-9.32%	+11.89%

876 / 1420

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

Question 2.e

Repeat Question 2.b assuming that the volatility target is equal 5%. Calculate the leverage ratio. Comment on these results.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

We obtain the following results:

Currency	BRL	CZK	HUF	KRW	MXN
Weight	25.08%	-2.13%	6.84%	-2.62%	23.83%
Currency	PLN	SGD	THB	TRY	TWD
Weight	4.60%	-22.65%	-24.03%	25.86%	-34.78%

The leverage ratio of this portfolio is equal to $\sum_{i=1}^{n} |x_i| = 172.43\%$, whereas it is equal to 103.47% and 124.37% for the portfolios of Questions 2.b and 2.c. This is perfectly normal because the leverage is proportional to the volatility.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

Question 2.f

Find the analytical solution of the optimal portfolio x^* when we target a volatility σ^* .

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

The Lagrange function is equal to:

$$\mathcal{L}(x;\lambda_0) = \frac{1}{2}x^{\top}\Sigma x - \gamma x^{\top}C + \lambda_0 \left(\mathbf{1}_n^{\top}x - 0\right)$$

The first-order condition is equal to:

$$\frac{\partial \mathcal{L}(x;\lambda_0)}{\partial x} = \Sigma x - \gamma \mathcal{C} + \lambda_0 \mathbf{1}_n = \mathbf{0}_n$$

It follows that:

$$x = \Sigma^{-1} \left(\gamma \mathcal{C} - \lambda_0 \mathbf{1}_n \right)$$

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

The cash neutral constraint implies that:

$$\mathbf{1}_n^{\top} \boldsymbol{\Sigma}^{-1} \left(\gamma \mathcal{C} - \lambda_0 \mathbf{1}_n \right) = 0$$

We deduce that:

$$\lambda_0 = \gamma \frac{\mathbf{1}_n^\top \Sigma^{-1} \mathcal{C}}{\mathbf{1}_n^\top \Sigma^{-1} \mathbf{1}_n}$$

Therefore, the optimal solution is equal to:

$$x^{\star} = \frac{\gamma \Sigma^{-1}}{\mathbf{1}_n^{\top} \Sigma^{-1} \mathbf{1}_n} \left(\left(\mathbf{1}_n^{\top} \Sigma^{-1} \mathbf{1}_n \right) \mathcal{C} - \left(\mathbf{1}_n^{\top} \Sigma^{-1} \mathcal{C} \right) \mathbf{1}_n \right)$$

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

The volatility of the optimal portfolio is equal:

$$\begin{split} \sigma^{2}(\mathbf{x}^{\star}) &= \mathbf{x}^{\star\top} \Sigma \mathbf{x}^{\star} \\ &= \left(\gamma \mathcal{C}^{\top} - \lambda_{0} \mathbf{1}_{n}^{\top}\right) \Sigma^{-1} \Sigma \Sigma^{-1} \left(\gamma \mathcal{C} - \lambda_{0} \mathbf{1}_{n}\right) \\ &= \left(\gamma \mathcal{C}^{\top} - \lambda_{0} \mathbf{1}_{n}^{\top}\right) \Sigma^{-1} \left(\gamma \mathcal{C} - \lambda_{0} \mathbf{1}_{n}\right) \\ &= \gamma^{2} \mathcal{C}^{\top} \Sigma^{-1} \mathcal{C} + \lambda_{0}^{2} \mathbf{1}_{n}^{\top} \Sigma^{-1} \mathbf{1}_{n} - 2\gamma \lambda_{0} \mathcal{C}^{\top} \Sigma^{-1} \mathbf{1}_{n} \\ &= \gamma^{2} \left(\mathcal{C}^{\top} \Sigma^{-1} \mathcal{C} - \frac{\left(\mathbf{1}_{n}^{\top} \Sigma^{-1} \mathcal{C}\right)^{2}}{\mathbf{1}_{n}^{\top} \Sigma^{-1} \mathbf{1}_{n}}\right) \\ &= \frac{\gamma^{2}}{\mathbf{1}_{n}^{\top} \Sigma^{-1} \mathbf{1}_{n}} \left(\left(\mathbf{1}_{n}^{\top} \Sigma^{-1} \mathbf{1}_{n}\right) \left(\mathcal{C}^{\top} \Sigma^{-1} \mathcal{C}\right) - \left(\mathbf{1}_{n}^{\top} \Sigma^{-1} \mathcal{C}\right)^{2}\right) \end{split}$$

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

We deduce that:

$$\gamma = \frac{\sqrt{\mathbf{1}_{n}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{1}_{n}}}{\sqrt{(\mathbf{1}_{n}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{1}_{n}) \left(\boldsymbol{C}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{C} \right) - \left(\mathbf{1}_{n}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{C} \right)^{2}}} \sigma \left(\boldsymbol{x}^{\star} \right)$$

Finally, we obtain:

$$\begin{aligned} x^{\star} &= \sigma\left(x^{\star}\right) \frac{\Sigma^{-1}\left(\left(\mathbf{1}_{n}^{\top}\Sigma^{-1}\mathbf{1}_{n}\right)\mathcal{C}-\left(\mathbf{1}_{n}^{\top}\Sigma^{-1}\mathcal{C}\right)\mathbf{1}_{n}\right)}{\sqrt{\left(\mathbf{1}_{n}^{\top}\Sigma^{-1}\mathbf{1}_{n}\right)^{2}\left(\mathcal{C}^{\top}\Sigma^{-1}\mathcal{C}\right)-\left(\mathbf{1}_{n}^{\top}\Sigma^{-1}\mathbf{1}_{n}\right)\left(\mathbf{1}_{n}^{\top}\Sigma^{-1}\mathcal{C}\right)^{2}}} \\ &= \sigma^{\star}\frac{\Sigma^{-1}\left(\left(\mathbf{1}_{n}^{\top}\Sigma^{-1}\mathbf{1}_{n}\right)\mathcal{C}-\left(\mathbf{1}_{n}^{\top}\Sigma^{-1}\mathcal{C}\right)\mathbf{1}_{n}\right)}{\sqrt{\left(\mathbf{1}_{n}^{\top}\Sigma^{-1}\mathbf{1}_{n}\right)^{2}\left(\mathcal{C}^{\top}\Sigma^{-1}\mathcal{C}\right)-\left(\mathbf{1}_{n}^{\top}\Sigma^{-1}\mathbf{1}_{n}\right)\left(\mathbf{1}_{n}^{\top}\Sigma^{-1}\mathcal{C}\right)^{2}}} \end{aligned}$$

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

Question 2.g

We assume that the correlation matrix is the identity matrix I_n . Find the expression of the threshold value C^* such that all currencies with a carry C_i larger than C^* form the long leg of the portfolio.

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

We recall that:

$$\mathbf{x}^{\star} \propto \mathbf{\Sigma}^{-1} \left(\left(\mathbf{1}_n^{ op} \mathbf{\Sigma}^{-1} \mathbf{1}_n
ight) \mathcal{C} - \left(\mathbf{1}_n^{ op} \mathbf{\Sigma}^{-1} \mathcal{C}
ight) \mathbf{1}_n
ight)$$

If $\rho = I_n$, we have:

$$\mathbf{1}_n^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{1}_n = \sum_{j=1}^n \frac{1}{\sigma_j^2}$$

and:

$$\mathbf{1}_n^{\top} \Sigma^{-1} \mathcal{C} = \sum_{j=1}^n \frac{\mathcal{C}_j}{\sigma_j^2}$$

We deduce that:

$$x_i^{\star} \propto \frac{1}{\sigma_i^2} \left(\left(\sum_{j=1}^n \frac{1}{\sigma_j^2} \right) \mathcal{C}_i - \left(\sum_{j=1}^n \frac{\mathcal{C}_j}{\sigma_j^2} \right) \right)$$

Equally-weighted portfolio Most diversified portfolio Computation of risk-based portfolios Building a carry trade exposure

Building a carry trade exposure

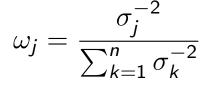
The portfolio is long on the currency *i* if:

 $C_i \geq C^{\star}$

where:

$$\mathcal{C}^{\star} = \left(\sum_{j=1}^{n} \frac{1}{\sigma_j^2}\right)^{-1} \left(\sum_{j=1}^{n} \frac{\mathcal{C}_j}{\sigma_j^2}\right) = \sum_{j=1}^{n} \omega_j \mathcal{C}_j$$

and:



 C^{\star} is the weighted mean of the carry values and the weights are inversely proportional to the variance of the currency returns.

Main references

Roncalli, T. (2013)

Introduction to Risk Parity and Budgeting, Chapman and Hall/CRC Financial Mathematics Series, Chapter 3.

RONCALLI, **T**. (2013)

Introduction to Risk Parity and Budgeting — Companion Book, Chapman and Hall/CRC Financial Mathematics Series, Chapter 3.

Roncalli, T. (2017)

Alternative Risk Premia: What Do We Know?, in Jurczenko, E. (Ed.), *Factor Investing and Alternative Risk Premia*, ISTE Press – Elsevier.

References I

- ACHARYA, V.V., and Pedersen, L.H. (2005) Asset Pricing with Liquidity Risk, *Journal of Financial Economics*, 77(2), pp. 375-410.
- BAKU, E., FORTES, R., HERVÉ, K., LEZMI, E., MALONGO, H., RONCALLI, T., and XU, J. (2019)
 Factor Investing in Currency Markets: Does it Make Sense?, Amundi Working Paper, 89, www.research-center.amundi.com.
- BAKU, E., FORTES, R., HERVÉ, K., LEZMI, E., MALONGO, H., RONCALLI, T., and XU, J. (2020) Factor Investing in Currency Markets: Does it Make Sense?, *Journal* of Portfolio Management, 46(2), pp. 141-155.

References II

- BARBERIS, N., and THALER, R.H. (2003) A Survey of Behavioral Finance, in Constantinides, G.M., Harris, M. and Stulz, R.M. (Eds), *Handbook of the Economics of Finance*, 1(B), Elsevier, pp. 1053-1128.
- BEKTIC, D., WENZLER, J.S., WEGENER, M., SCHIERECK, D., and SPIELMANN, T. (2019) Extending Fama-French Factors to Corporate Bond Markets, *Journal* of Portfolio Management, 45(3), pp. 141-158.
- BEKTIC, D., NEUGEBAUER, U., WEGENER, M. and WENZLER, J.S. (2017)
 Common Equity Factors in Corporate Bond Markets, in Jurczenko, E. (Ed.), *Factor Investing and Alternative Risk Premia*, ISTE Press-Elsevier.

References III

- BEN SLIMANE, M., DE JONG, M., DUMAS, J-M., FREDJ, H., SEKINE, T., and SRB, M. (2019) Traditional and Alternative Factors in Investment Grade Corporate Bond Investing, *Amundi Working Paper*, 78, www.research-center.amundi.com.
 - Black, F. (1972)

Capital Market Equilibrium with Restricted Borrowing, *Journal of Business*, 45(3), pp. 444-455.

BRUDER, B., DAO, T.L., RICHARD, J.C., and RONCALLI, T. (2011) Trend Filtering Methods for Momentum Strategies, *SSRN*, www.ssrn.com/abstract=2289097.

CARHART, M.M. (1997)

On Persistence in Mutual Fund Performance, *Journal of Finance*, 52(1), pp. 57-82.

References IV

- CAZALET, Z., and RONCALLI, T. (2014) Facts and Fantasies About Factor Investing, SSRN, www.ssrn.com/abstract=2524547.
- CHOUEIFATY, Y., and COIGNARD, Y. (2008) Toward Maximum Diversification, *Journal of Portfolio Management*, 35(1), pp. 40-51.
- CHOUEIFATY, Y., FROIDURE, T., and REYNIER, J. (2013) Properties of the Most Diversified Portflio, *Journal of Investment Strategies*, 2(2), pp. 49-70.
- CLARKE, R.G., DE SILVA, H., and THORLEY, S. (2011) Minimum Variance Portfolio Composition, *Journal of Portfolio Management*, 37(2), pp. 31-45.

References V

- CLARKE, R.G., DE SILVA, H., and THORLEY, S. (2013)
- Risk Parity, Maximum Diversification, and Minimum Variance: An Analytic Perspective, *Journal of Portfolio Management*, 39(3), pp. 39-53.
- COCHRANE, J.H. (2001)

Asset Pricing, Princeton University Press.

COCHRANE, J.H. (2011)

Presidential Address: Discount Rates, *Journal of Finance*, 66(4), pp. 1047-1108.

DEMIGUEL, V., GARLAPPI, L., and UPPAL, R. (2009)

Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy?, *Review of Financial Studies*, 22(5), pp. 1915-1953.

References VI

- **FAMA, E.F., and FRENCH, K.R. (1992)** The Cross-Section of Expected Stock Returns, *Journal of Finance*, 47(2), pp. 427-465.
- **FAMA, E.F., and FRENCH, K.R. (1993)**

Common Risk Factors in the Returns on Stocks and Bonds, *Journal of Financial Economics*, 33(1), pp. 3-56.

FRAZZINI, A, and PEDERSEN, L.H. (2014)

Betting Against Beta, *Journal of Financial Economics*, 111(1), pp. 1-25.

GRINBLATT, M., TITMAN, S., and WERMERS, R. (1995)

Momentum Investment Strategies, Portfolio Performance, and Herding: A Study of Mutual Fund Behavior, *American Economic Review*, 85(5), pp. 1088-1105.

References VII

- HAMDAN, R., PAVLOWSKY, F., RONCALLI, T., and ZHENG, B. (2016)
 A Primer on Alternative Risk Premia, SSRN, www.ssrn.com/abstract=2766850.
- HAUGEN, R.A. and BAKER, N.L. (1991) The Efficient Market Inefficiency of Capitalization-weighted Stock Portfolios, *Journal of Portfolio Management*, 17(3), pp. 35-40.
- HARVEY, C.R., LIU, Y., and ZHU, H. (2016) ...and the Cross-Section of Expected Returns, *Review of Financial Studies*, 29(1), pp. 5-68.
- HOUWELING, P., and VAN ZUNDERT, J. (2017)

Factor Investing in the Corporate Bond Market, *Financial Analysts Journal*, 73(2), pp. 100-115.

References VIII

ILMANEN, **A.** (2011)

Expected Returns: An Investor's Guide to Harvesting Market Rewards, Wiley.

- **I**SRAEL, R., PALHARES, D., and RICHARDSON, S.A. (2018) Common Factors in Corporate Bond and Bond Fund Returns, *Journal* of Investment Management, 16(2), pp. 17-46
- JENSEN, M.C. (1968)

The Performance of Mutual Funds in the Period 1945-1964, *Journal of Finance*, 23(2), pp. 389-416.

JURCZENKO, E., MICHEL, T. and TEÏLETCHE, J. (2015) A Unified Framework for Risk-based Investing, *Journal of Investment Strategies*, 4(4), pp. 1-29.

/ 1420

References IX

- JUSSELIN, P., LEZMI, E., MALONGO, H., MASSELIN, C., RONCALLI, T., and DAO, T-L. (2017) Understanding the Momentum Risk Premium: An In-Depth Journey Through Trend-Following Strategies, *SSRN*, www.ssrn.com/abstract=3042173.
- KOIJEN, R.S.J., MOSKOWITZ, T.J., PEDERSEN, L.H., and VRUGT, E.B. (2018)

Carry, Journal of Financial Economics, 127(2), pp. 197-225.

LUCAS, R.E. (1978)

Asset Prices in an Exchange Economy, *Econometrica*, 46(6), pp. 1429-1445.

MACDONALD, R. (1995)

Long-Run Exchange Rate Modeling: a Survey of the Recent Evidence, *IMF Staff Papers*, 42(3), pp. 437-489.

References X

MENKHOFF, L., SARNO, L., SCHMELING, M., and SCHRIMPF, A. (2016)

Currency Value, *Review of Financial Studies*, 30(2), pp. 416-441.

RONCALLI, **T**. (2017)

ESG & Factor Investing: A New Stage Has Been Reached, Amundi ViewPoint, www.research-center.amundi.com.

Roncalli, T. (2020)

Handbook of Financial Risk Management, Chapman and Hall/CRC Financial Mathematics Series.

SCHERER, **B**. (2011)

A Note on the Returns from Minimum Variance Investing, *Journal of Empirical Finance*, 18(4), pp. 652-660.

Course 2023-2024 in Portfolio Allocation and Asset Management Lecture 4. Equity Portfolio Optimization with ESG Scores (Exercise)

Thierry Roncalli*

*Amundi Asset Management²¹

*University of Paris-Saclay

January 2024

²¹The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

Agenda

- Lecture 1: Portfolio Optimization
- Lecture 2: Risk Budgeting
- Lecture 3: Smart Beta, Factor Investing and Alternative Risk Premia
- Lecture 4: Equity Portfolio Optimization with ESG Scores
- Lecture 5: Climate Portfolio Construction
- Lecture 6: Equity and Bond Portfolio Optimization with Green Preferences
- Lecture 7: Machine Learning in Asset Management

We consider the CAPM model:

$$R_i - r = \beta_i \left(R_m - r \right) + \varepsilon_i$$

where R_i is the return of asset *i*, R_m is the return of the market portfolio w_m , *r* is the risk free asset, β_i is the beta of asset *i* with respect to the market portfolio and ε_i is the idiosyncratic risk of asset *i*. We have $R_m \perp \varepsilon_i$ and $\varepsilon_i \perp \varepsilon_j$. We note σ_m the volatility of the market portfolio. Let $\tilde{\sigma}_i$, μ_i and S_i be the idiosyncratic volatility, the expected return and the ESG score of asset *i*. We use a universe of 6 assets with the following parameter values:

Asset i	1	2	3	4	5	6
β_i	0.10	0.30	0.50	0.90	1.30	2.00
$ ilde{\sigma}_i$ (in %)	17.00	17.00	16.00	10.00	11.00	12.00
μ_i (in %)	1.50	2.50	3.50	5.50	7.50	11.00
${\cal S}_i$	1.10	1.50	2.50	-1.82	-2.35	-2.91

and $\sigma_m = 20\%$. The risk-free return *r* is set to 1% and the expected return of the market portfolio w_m is equal to $\mu_m = 6\%$.

Question 1

We assume that the CAPM is valid.

Question (a)

Calculate the vector $\boldsymbol{\mu}$ of expected returns.

• Using the CAPM, we have:

$$\mu_i = r + \beta_i \left(\mu_m - r \right)$$

• For instance, we have:

$$\mu_1 = 1\% + 0.10 \times (6\% - 1\%) = 1.5\%$$

and:

$$\mu_2 = 1\% + 0.30 \times 5\% = 2.5\%$$

• Finally, we obtain $\mu = (1.5\%, 2.5\%, 3.5\%, 5.5\%, 7.5\%, 11\%)$

Question (b)

Compute the covariance matrix Σ . Deduce the volatility σ_i of the asset *i* and find the correlation matrix $\mathbb{C} = (\rho_{i,j})$ between asset returns.

• We have:

$$\Sigma = \sigma_m^2 \beta \beta^\top + D$$

where:

$$D = \operatorname{diag}\left(ilde{\sigma}_1^2, \dots, ilde{\sigma}_6^2\right)$$

• The numerical value of Σ is:

$$\Sigma = \begin{pmatrix} 293 & & & \\ 12 & 325 & & \\ 20 & 60 & 356 & & \\ 36 & 108 & 180 & 424 & & \\ 52 & 156 & 260 & 468 & 797 & \\ 80 & 240 & 400 & 720 & 1040 & 1744 \end{pmatrix} \times 10^{-4}$$

• We have:

$$\sigma_i = \sqrt{\Sigma_{i,i}}$$

• We obtain:

 $\sigma = (17.12\%, 18.03\%, 18.87\%, 20.59\%, 28.23\%, 41.76\%)$

• We have:

$$\rho_{i,j} = \frac{\Sigma_{i,j}}{\sigma_i \sigma_j}$$

• We obtain the following correlation matrix expressed in %:

$$\mathbb{C} = \begin{pmatrix} 100.00 & & & \\ 3.89 & 100.00 & & \\ 6.19 & 17.64 & 100.00 & & \\ 10.21 & 29.09 & 46.33 & 100.00 & & \\ 10.76 & 30.65 & 48.81 & 80.51 & 100.00 & \\ 11.19 & 31.88 & 50.76 & 83.73 & 88.21 & 100.00 \end{pmatrix}$$

Question (c)

Compute the tangency portfolio w^* . Calculate $\mu(w^*)$ and $\sigma(w^*)$. Deduce the Sharpe ratio and the ESG score of the tangency portfolio.

• We have:

$$w^* = \frac{\Sigma^{-1} (\mu - r\mathbf{1})}{\mathbf{1}^\top \Sigma^{-1} (\mu - r\mathbf{1})} = \begin{pmatrix} 0.94\% \\ 2.81\% \\ 5.28\% \\ 24.34\% \\ 29.06\% \\ 37.57\% \end{pmatrix}$$

• We deduce:

$$\mu(w^*) = w^{*\top}\mu = 7.9201\%$$

$$\sigma(w^*) = \sqrt{w^{*\top}\Sigma w^*} = 28.3487\%$$

$$SR(w^* \mid r) = \frac{7.9201\% - 1\%}{28.3487\%} = 0.2441$$

$$\mathcal{S}(w^*) = \sum_{i=1}^{6} w_i^* \mathcal{S}_i = -2.0347$$

908 / 1420

Question (d)

Compute the beta coefficient $\beta_i(w^*)$ of the six assets with respect to the tangency portfolio w^* , and the implied expected return $\tilde{\mu}_i$:

$$\tilde{\mu}_{i} = r + \beta_{i} \left(w^{*} \right) \left(\mu \left(w^{*} \right) - r \right)$$

• We have:

$$\beta_i(w^*) = \frac{\mathbf{e}_i^\top \Sigma w^*}{\sigma^2(w^*)}$$

• We obtain:

	(0.0723	
eta (w*) =	0.2168	1
	0.3613	1
	0.6503	1
	0.9393	I
	\ 1.4451	/

• The computation of $\tilde{\mu}_i = r + \beta_i (w^*) (\mu (w^*) - r)$ gives:

$$ilde{\mu} = \left(egin{array}{ccc} 1.50\% \ 2.50\% \ 3.50\% \ 5.50\% \ 7.50\% \ 11.00\% \end{array}
ight)$$

Question (e)

Deduce the market portfolio w_m . Comment on these results.

- $\beta_i(w^*) \neq \beta_i(w_m)$ but risk premia are exact
- Let us assume that the allocation of w_m is equal to α of the tangency portfolio w^* and 1α of the risk-free asset. We deduce that:

$$\beta(w_m) = \frac{\Sigma w_m}{\sigma^2(w_m)} = \frac{\alpha \Sigma w^*}{\alpha^2 \sigma^2(w^*)} = \frac{1}{\alpha} \beta(w^*)$$

• We have:

$$\alpha = \frac{\beta_i \left(w^* \right)}{\beta_i \left(w_m \right)} = 72.25\%$$

• The market portfolio w_m is equal to 72.25% of the tangency portfolio w^* and 27.75% of the risk-free asset

• We have:

$$\mu(w_m) = r + \alpha(\mu(w^*) - r) = 1\% + 72.25\% \times (7.9201\% - 1\%) = 6\%$$

and:

$$\sigma(w_m) = \alpha \sigma(w^*) = 72.25\% \times 28.3487\% = 20.48\%$$

• We deduce that:

SR
$$(w_m \mid r) = \frac{6\% - 1\%}{20.48\%} = 0.2441$$

• We do not obtain the true value of the Sharpe ratio:

SR
$$(w_m \mid r) = \frac{6\% - 1\%}{20\%} = 0.25$$

• The tangency portfolio has an idiosyncratic risk:

$$\sqrt{w_m^{\top}(\sigma_m^2\beta\beta^{\top})} w^{\top} = 20\% < \sigma(w_m) = 20.48\%$$

913 / 1420

Question 2

We consider long-only portfolios and we also impose a minimum threshold \mathcal{S}^{\star} for the portfolio ESG score:

$$\boldsymbol{\mathcal{S}}\left(w
ight)=w^{ op}\boldsymbol{\mathcal{S}}\geq\boldsymbol{\mathcal{S}}^{\star}$$

Question (a)

Let γ be the risk tolerance. Write the mean-variance optimization problem.

• We have:

$$w^{\star} = \arg\min\frac{1}{2}w^{\top}\Sigma w - \gamma w^{\top}\mu$$

s.t.
$$\begin{cases} \mathbf{1}_{6}^{\top}w = 1\\ w^{\top}\boldsymbol{S} \geq \boldsymbol{S}^{\star}\\ \mathbf{0}_{6} \leq w \leq \mathbf{1}_{6} \end{cases}$$

Question (b)

Find the QP form of the MVO problem.

• The matrix form of the QP problem is:

$$w^{\star} = rgmin rac{1}{2} w^{ op} Q w - w^{ op} R$$

s.t. $\begin{cases} Aw = B \\ Cw \le D \\ w^{-} \le w \le w^{+} \end{cases}$

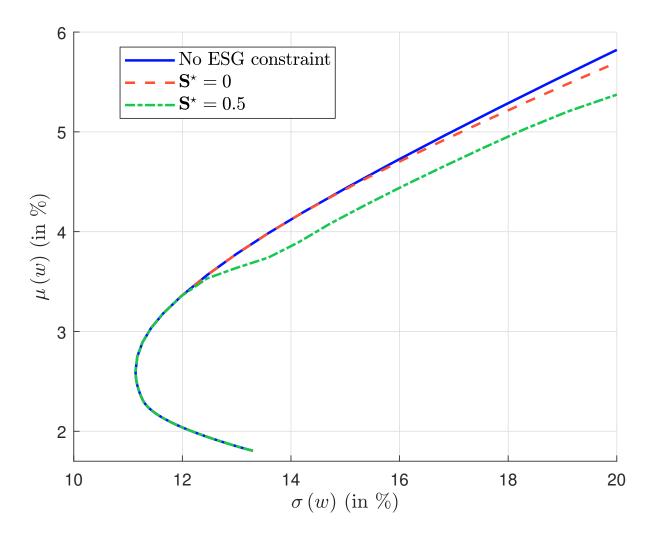
• We deduce that $Q = \Sigma$, $R = \gamma \mu$, $A = \mathbf{1}_6^{\top}$, B = 1, $C = -\mathbf{S}^{\top}$, $D = -\mathbf{S}^{\star}$, $w^- = \mathbf{0}_6$ and $w^+ = \mathbf{1}_6$

Question (c)

Compare the efficient frontier when (1) there is no ESG constraint $(S^* = -\infty)$, (2) we impose a positive ESG score $(S^* = 0)$ and (3) the minimum threshold is set to 0.5 $(S^* = 0.5)$. Comment on these results.

- To compute the efficient frontier, we consider several value of $\gamma \in [-1,2]$
- For each value of γ , we compute the optimal portfolio w^* and deduce its expected return $\mu(w^*)$ and its volatility $\sigma(w^*)$

Figure 81: Impact of the minimum ESG score on the efficient frontier



Question (d)

For each previous cases, find the tangency portfolio w^* and the corresponding risk tolerance γ^* . Compute then $\mu(w^*)$, $\sigma(w^*)$, $SR(w^* \mid r)$ and $\mathcal{S}(w^*)$. Comment on these results.

- Let $w^{\star}(\gamma)$ be the MVO portfolio when the risk tolerance is equal to γ
- By using a fine grid of γ values, we can find the optimal value γ* by solving numerically the following optimization problem with the brute force algorithm:

$$\gamma^* = rg\maxrac{\mu\left(w^{\star}\left(\gamma
ight)
ight) - r}{\sigma\left(w^{\star}\left(\gamma
ight)
ight)} \qquad ext{ for } \gamma \in \left[0,2
ight]$$

• We deduce the tangency portfolio $w^* = w^*(\gamma^*)$

Table 66: Impact of the minimum ESG score on the efficient frontier

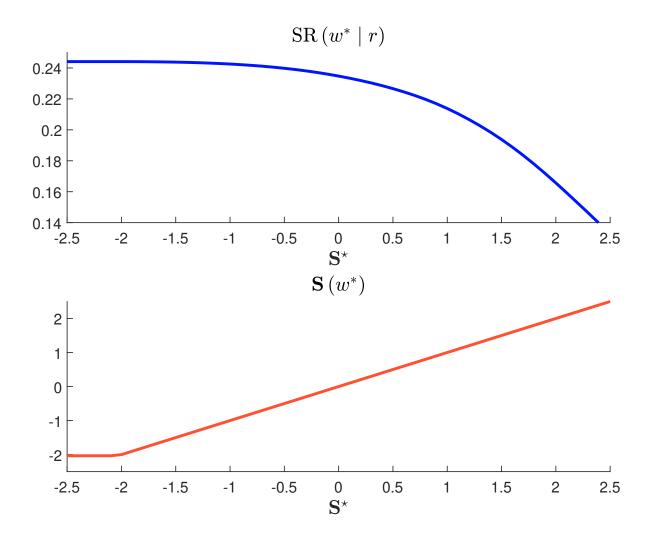
\mathcal{S}^{\star}	$-\infty$	0	0.5
γ^*	1.1613	0.8500	0.8500
w* (in %)	0.9360	9.7432	9.1481
	2.8079	16.3317	19.0206
	5.2830	31.0176	40.3500
	24.3441	5.1414	0.0000
	29.0609	11.6028	3.8248
	37.5681	26.1633	27.6565
$\bar{\mu}(w^*)(in\%)$	7.9201	5.6710	5.3541
$\sigma(w^*)(in\%)$	28.3487	19.8979	19.2112
$\overline{SR}(w^* r)$	0.2441	0.2347	0.2266
$\mathcal{S}(w^*)$	-2.0347	0.0000	0.5000

Question (e)

Draw the relationship between the minimum ESG score S^* and the Sharpe ratio $SR(w^* | r)$ of the tangency portfolio.

- We perform the same analysis as previously for several values $\mathcal{S}^{\star} \in [-2.5, 2.5]$
- ${\circ}\,$ We verify that the Sharpe ratio is a decreasing function of ${\cal S}^{\star}$

Figure 82: Relationship between the minimum ESG score S^* and the Sharpe ratio $SR(w^* | r)$ of the tangency portfolio



Question (f)

We assume that the market portfolio w_m corresponds to the tangency portfolio when $S^* = 0.5$.

• The market portfolio w_m is then equal to:

$$w_m = \begin{pmatrix} 9.15\% \\ 19.02\% \\ 40.35\% \\ 0.00\% \\ 3.82\% \\ 27.66\% \end{pmatrix}$$

• We deduce that:

$$\mu(w_m) = 5.3541\%$$

$$\sigma(w_m) = 19.2112\%$$

$$SR(w_m | r) = 0.2266$$

$$\mathcal{S}(w_m) = 0.5$$

Question (f).i

Compute the beta coefficient $\beta_i(w_m)$ and the implied expected return $\tilde{\mu}_i(w_m)$ for each asset. Deduce then the alpha return α_i of asset *i*. Comment on these results.

• We have:

$$\beta_i(w_m) = \frac{\mathbf{e}_i^\top \Sigma w_m}{\sigma^2(w_m)}$$

and:

$$\tilde{\mu}_{i}(w_{m}) = r + \beta_{i}(w_{m})(\mu(w_{m}) - r)$$

• We deduce that the alpha return is equal to:

$$\begin{aligned} \alpha_i &= \mu_i - \tilde{\mu}_i \left(w_m \right) \\ &= \left(\mu_i - r \right) - \beta_i \left(w_m \right) \left(\mu \left(w_m \right) - r \right) \end{aligned}$$

• We notice that $\alpha_i < 0$ for the first three assets and $\alpha_i > 0$ for the last three assets, implying that:

$$\begin{cases} \boldsymbol{\mathcal{S}}_i > \boldsymbol{0} \Rightarrow \alpha_i < \boldsymbol{0} \\ \boldsymbol{\mathcal{S}}_i < \boldsymbol{0} \Rightarrow \alpha_i > \boldsymbol{0} \end{cases}$$

Table 67: Computation of the alpha return due to the ESG constraint

Asset	$\beta_i(w_m)$	$\widetilde{\mu}_i(w_m)$ (in %)	$\widetilde{\mu}_i(w_m) - r$ (in %)	α_i (in bps)
1	0.1660	1.7228	0.7228	-22.28
2	0.4321	2.8813	1.8813	-38.13
3	0.7518	4.2733	3.2733	-77.33
4	0.8494	4.6984	3.6984	80.16
5	1.2395	6.3967	5.3967	110.33
6	1.9955	9.6885	8.6885	131.15

932 / 1420

Question (f).ii

We consider the equally-weighted portfolio w_{ew} . Compute its beta coefficient $\beta(w_{ew} | w_m)$, its implied expected return $\tilde{\mu}(w_{ew})$ and its alpha return $\alpha(w_{ew})$. Comment on these results.

• We have:

$$\beta\left(w_{\mathrm{ew}} \mid w_{m}\right) = \frac{w_{\mathrm{ew}}^{\top} \Sigma w_{m}}{\sigma^{2}\left(w_{m}\right)} = 0.9057$$

and:

$$ilde{\mu}\left(\textit{w}_{
m ew}
ight) = 1\% + 0.9057 imes (5.3541\% - 1\%) = 4.9435\%$$

• We deduce that:

$$lpha\left(\textit{w}_{
m ew}
ight)=\mu\left(\textit{w}_{
m ew}
ight)- ilde{\mu}\left(\textit{w}_{
m ew}
ight)=5.25\%-4.9435\%=30.65$$
 bps

• We verify that:

$$\alpha(w_{\rm ew}) = \sum_{i=1}^{6} w_{{\rm ew},i} \alpha_i = \frac{\sum_{i=1}^{6} \alpha_i}{6} = 30.65 \text{ bps}$$

• The equally-weighted portfolio has a positive alpha because:

$$\boldsymbol{\mathcal{S}}\left(w_{\mathrm{ew}}
ight)=-0.33\ll\boldsymbol{\mathcal{S}}\left(w_{m}
ight)=0.50$$

934 / 1420

Question 3

The objective of the investor is twice. He would like to manage the tracking error risk of his portfolio with respect to the benchmark b = (15%, 20%, 19%, 14%, 15%, 17%) and have a better ESG score than the benchmark. Nevertheless, this investor faces a long-only constraint because he cannot leverage his portfolio and he cannot also be short on the assets.

Question (a)

What is the ESG score of the benchmark?

• We have:

$$oldsymbol{\mathcal{S}}\left(b
ight)=\sum_{i=1}^{6}b_{i}oldsymbol{\mathcal{S}}_{i}=-0.1620$$

Question (b)

We assume that the investor's portfolio is w = (10%, 10%, 30%, 20%, 20%, 10%). Compute the excess score $S(w \mid b)$, the expected excess return $\mu(w \mid b)$, the tracking error volatility $\sigma(w \mid b)$ and the information ratio IR $(w \mid b)$. Comment on these results.

• We have:

$$\begin{cases} \boldsymbol{\mathcal{S}}(w \mid b) = (w - b)^{\top} \boldsymbol{\mathcal{S}} = 0.0470\\ \mu(w \mid b) = (w - b)^{\top} \mu = -0.5 \text{ bps}\\ \sigma(w \mid b) = \sqrt{(w - b)^{\top} \boldsymbol{\Sigma}(w - b)} = 2.8423\%\\ \text{IR}(w \mid b) = \frac{\mu(w \mid b)}{\sigma(w \mid b)} = -0.0018 \end{cases}$$

• The portfolio w is not optimal since it improves the ESG score of the benchmark, but its information ratio is negative. Nevertheless, the expected excess return is close to zero (less than -1 bps).

Question (c)

Same question with the portfolio w = (10%, 15%, 30%, 10%, 15%, 20%).

• We have: We have:

$$\begin{cases} \boldsymbol{\mathcal{S}}(w \mid b) = (w - b)^{\top} \boldsymbol{\mathcal{S}} = 0.1305 \\ \mu(w \mid b) = (w - b)^{\top} \mu = 29.5 \text{ bps} \\ \sigma(w \mid b) = \sqrt{(w - b)^{\top} \boldsymbol{\Sigma}(w - b)} = 2.4949\% \\ \text{IR}(w \mid b) = \frac{\mu(w \mid b)}{\sigma(w \mid b)} = 0.1182 \end{cases}$$

Question (d)

In the sequel, we assume that the investor has no return target. In fact, the objective of the investor is to improve the ESG score of the benchmark and control the tracking error volatility. We note γ the risk tolerance. Give the corresponding esg-variance optimization problem.

• The optimization problem is:

$$w^{\star} = \arg \min \frac{1}{2}\sigma^{2} (w \mid b) - \gamma \mathcal{S} (w \mid b)$$

s.t.
$$\begin{cases} \mathbf{1}_{6}^{\top} w = 1\\ \mathbf{0}_{6} \leq w \leq \mathbf{1}_{6} \end{cases}$$

Question (e)

Find the matrix form of the corresponding QP problem.

• The objective function is equal to:

$$(*) = \frac{1}{2}\sigma^{2}(w \mid b) - \gamma \mathcal{S}(w \mid b)$$

$$= \frac{1}{2}(w - b)^{\top} \Sigma(w - b) - \gamma (w - b)^{\top} \mathcal{S}$$

$$= \frac{1}{2}w^{\top} \Sigma w - w^{\top} (\Sigma b + \gamma \mathcal{S}) + \left(\gamma b^{\top} \mathcal{S} + \frac{1}{2}b^{\top} \Sigma b\right)$$

does not depend on w

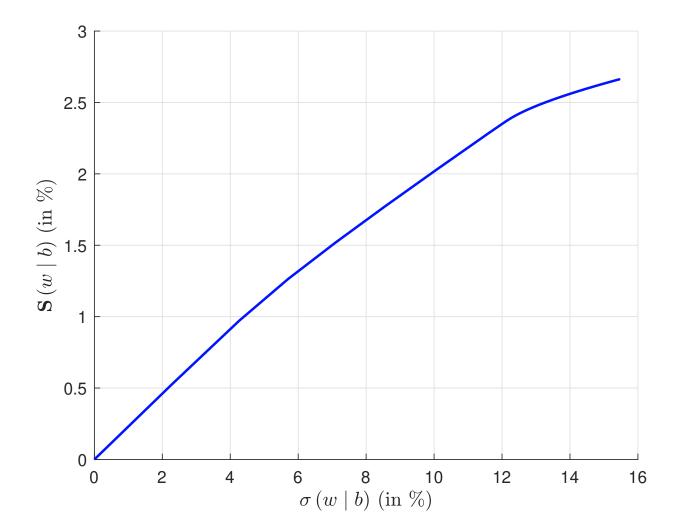
• We deduce that $Q = \Sigma$, $R = \Sigma b + \gamma S$, $A = \mathbf{1}_6^{\top}$, B = 1, $w^- = \mathbf{0}_6$ and $w^+ = \mathbf{1}_6$

Question (f)

Draw the esg-variance efficient frontier $(\sigma(w^* | b), \mathcal{S}(w^* | b))$ where w^* is an optimal portfolio.

• We solve the QP problem for several values of $\gamma \in [0,5\%]$ and obtain Figure 83

Figure 83: Efficient frontier of tracking a benchmark with an ESG score objective



Question (g)

Find the optimal portfolio w^* when we target a given tracking error volatility σ^* . The values of σ^* are 0%, 1%, 2%, 3% and 4%.

- Using the QP numerical algorithm, we compte the optimal value $\sigma(w \mid b)$ for $\gamma = 0$ and $\gamma = 5\%$
- Then, we apply the bisection algorithm to find the optimal value γ^{\star} such that:

$$\sigma(w \mid b) = \sigma^{\star}$$

Table 68: Solution of the σ -problem

Target σ^{\star}	0	1%	2%	3%	4%
γ^{\star} (in bps)	0.000	4.338	8.677	13.015	18.524
w* (in %)	$1\bar{5}.\bar{0}0\bar{0}$	15.175	15.350	15.525	14.921
	20.000	21.446	22.892	24.338	25.385
	19.000	23.084	27.167	31.251	35.589
	14.000	9.588	5.176	0.763	0.000
	15.000	12.656	10.311	7.967	3.555
	17.000	18.052	19.104	20.156	20.550
$\overline{\mathcal{S}}(w^{\star} b)$	$-\bar{0}.\bar{0}0\bar{0}$	0.230	0.461	0.691	0.915

Question (h)

Find the optimal portfolio w^* when we target a given excess score S^* . The values of S^* are 0, 0.1, 0.2, 0.3 and 0.4. • Same method as previously with the following equation:

$$\mathcal{S}(w \mid b) = \mathcal{S}^{\star}$$

• An alternative approach consists in solving the following optimization problem:

$$w^{\star} = \arg \min \frac{1}{2}\sigma^{2} (w \mid b)$$

s.t.
$$\begin{cases} \mathbf{1}_{6}^{\top} w = 1 \\ \mathcal{S} (w \mid b) = \mathcal{S}^{\star} \\ \mathbf{0}_{6} \leq w \leq \mathbf{1}_{6} \end{cases}$$

• We have: $Q = \Sigma, R = \Sigma b, A = \begin{pmatrix} \mathbf{1}_{6}^{\top} \\ \mathcal{S}^{\top} \end{pmatrix}, B = \begin{pmatrix} 1 \\ \mathcal{S}^{\star} + \mathcal{S}^{\top} b \end{pmatrix},$
 $w^{-} = \mathbf{0}_{6} \text{ and } w^{+} = \mathbf{1}_{6}$

Table 69: Solution of the \mathcal{S} -problem

Target \mathcal{S}^{\star}	0	0.1	0.2	0.3	0.4
γ^{\star} (in bps)	0.000	1.882	3.764	5.646	7.528
	15.000	$1\bar{5}.\bar{0}7\bar{6}$	15.152	15.228	15.304
	20.000	20.627	21.255	21.882	22.509
(1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	19.000	20.772	22.544	24.315	26.087
w* (in %)	14.000	12.086	10.171	8.257	6.343
	15.000	13.983	12.966	11.949	10.932
	17.000	17.456	17.913	18.369	18.825
$\overline{\sigma} (w^* \overline{b}) (\overline{in} \%)$	$-\bar{0}.\bar{0}0\bar{0}$		0.868	$-\bar{1}.\bar{3}0\bar{1}$	1.735

Question (i)

We would like to compare the efficient frontier obtained in Question 3(f) with the efficient frontier when we implement a best-in-class selection or a worst-in-class exclusion. The selection strategy consists in investing only in the best three ESG assets, while the exclusion strategy implies no exposure on the worst ESG asset. Draw the three efficient frontiers. Comment on these results.

• For the best-in-class strategy, the optimization problem becomes:

$$w^{\star} = \arg \min \frac{1}{2}\sigma^{2} (w \mid b) - \gamma \mathcal{S} (w \mid b)$$

s.t.
$$\begin{cases} \mathbf{1}_{6}^{\top} w = 1 \\ w_{4} = w_{5} = w_{6} = 0 \\ \mathbf{0}_{6} \le w \le \mathbf{1}_{6} \end{cases}$$

• The QP form is defined by $Q = \Sigma$, $R = \Sigma b + \gamma S$, $A = \mathbf{1}_6^{\top}$, B = 1, $w^- = \mathbf{0}_6$ and $w^+ = \begin{pmatrix} \mathbf{1}_3 \\ \mathbf{0}_3 \end{pmatrix}$

• For the worst-in-class strategy, the optimization problem becomes:

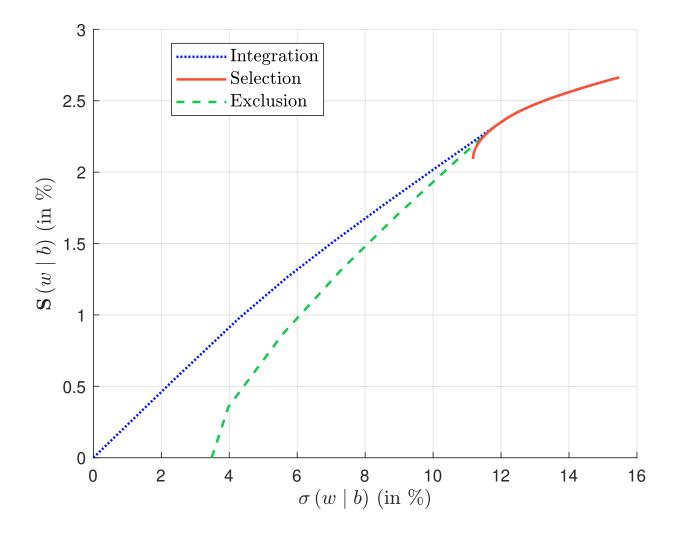
$$w^{\star} = \arg \min \frac{1}{2}\sigma^{2} (w \mid b) - \gamma \mathcal{S} (w \mid b)$$

s.t.
$$\begin{cases} \mathbf{1}_{6}^{\top} w = 1 \\ w_{6} = 0 \\ \mathbf{0}_{6} \le w \le \mathbf{1}_{6} \end{cases}$$

• The QP form is defined by
$$Q = \Sigma$$
, $R = \Sigma b + \gamma S$, $A = \mathbf{1}_6^{\top}$, $B = 1$, $w^- = \mathbf{0}_6$ and $w^+ = \begin{pmatrix} \mathbf{1}_5 \\ 0 \end{pmatrix}$

- The efficient frontiers are reported in Figure 84
- The exclusion strategy has less impact than the selection strategy
- The selection strategy implies a high tracking error risk

Figure 84: Comparison of the efficient frontiers (ESG integration, best-in-class selection and worst-in-class exclusion)



Question (j)

Which minimum tracking error volatility must the investor accept to implement the best-in-class selection strategy? Give the corresponding optimal portfolio.

- We solve the first problem of Question 3(i) with $\gamma = 0$
- We obtain:

$$\sigma\left(w\mid b\right) \geq 11.17\%$$

• The lower bound $\sigma(w^* \mid b) = 11.17\%$ corresponds to the following optimal portfolio:

$$w^{\star} = \left(egin{array}{c} 16.31\% \ 34.17\% \ 49.52\% \ 0\% \ 0\% \ 0\% \ 0\% \end{array}
ight)$$

Remark

The impact of ESG scores on optimized portfolios depends on their relationship with expected returns, volatilities, correlations, beta coefficients, etc. In the previous exercise, the results are explained because the best-in-class assets are those with the lowest expected returns and beta coefficients while the worst-in-class assets are those with the highest expected returns and beta coefficients. For instance, we obtain a high tracking error risk for the best-in-class selection strategy, because the best-in-class assets have low volatilities and correlations with respect to worst-in-class assets, implying that it is difficult to replicate these last assets with the other assets.

Course 2023-2024 in Portfolio Allocation and Asset Management Lecture 5. Climate Portfolio Construction

Thierry Roncalli*

*Amundi Asset Management²²

*University of Paris-Saclay

January 2024

²²The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

Agenda

- Lecture 1: Portfolio Optimization
- Lecture 2: Risk Budgeting
- Lecture 3: Smart Beta, Factor Investing and Alternative Risk Premia
- Lecture 4: Equity Portfolio Optimization with ESG Scores
- Lecture 5: Climate Portfolio Construction
- Lecture 6: Equity and Bond Portfolio Optimization with Green Preferences
- Lecture 7: Machine Learning in Asset Management

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Quadratic programming

Definition

We have:

$$x^{*} = \arg \min \frac{1}{2} x^{\top} Q x - x^{\top} R$$

s.t.
$$\begin{cases} Ax = B \\ Cx \le D \\ x^{-} \le x \le x^{+} \end{cases}$$

where x is a $n \times 1$ vector, Q is a $n \times n$ matrix, R is a $n \times 1$ vector, A is a $n_A \times n$ matrix, B is a $n_A \times 1$ vector, C is a $n_C \times n$ matrix, D is a $n_C \times 1$ vector, and x^- and x^+ are two $n \times 1$ vectors

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Quadratic form

A quadratic form is a polynomial with terms all of degree two

$$\mathcal{QF}(x_1,\ldots,x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{i,j} x_i x_j = x^\top A x$$

Canonical form

$$\mathcal{QF}(x_1,\ldots,x_n) = \frac{1}{2} \left(x^\top A x + x^\top A^\top x \right) = \frac{1}{2} x^\top \left(A + A^\top \right) x = \frac{1}{2} x^\top Q x$$

Generalized quadratic form

$$\mathcal{QF}(x; Q, R, c) = \frac{1}{2}x^{\top}Qx - x^{\top}R + c$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Quadratic form Main properties

•
$$\varphi \cdot Q\mathcal{F}(w; Q, R, c) = Q\mathcal{F}(w; \varphi Q, \varphi R, \varphi c)$$

• $Q\mathcal{F}(x; Q_1, R_1, c_1) + Q\mathcal{F}(x; Q_2, R_2, c_2) = Q\mathcal{F}(x; Q_1 + Q_2, R_1 + R_2, c_1 + c_2)$
• $Q\mathcal{F}(x - y; Q, R, c) = Q\mathcal{F}(x; Q, R + Qy, \frac{1}{2}y^{\top}Qy + y^{\top}R + c)$
• $Q\mathcal{F}(x - y; Q, R, c) = Q\mathcal{F}(y; Q, Qx - R, \frac{1}{2}x^{\top}Qx - x^{\top}R + c)$
• $\frac{1}{2}\sum_{i=1}^{n} q_i x_i^2 = Q\mathcal{F}(x; \mathcal{D}(q), \mathbf{0}_n, 0)$ where $q = (q_1, \dots, q_n)$ is a $n \times 1$ vector and $\mathcal{D}(q) = \text{diag}(q)$
• $\frac{1}{2}\sum_{i=1}^{n} q_i (x_i - y_i)^2 = Q\mathcal{F}(x; \mathcal{D}(q), \mathcal{D}(q)y, \frac{1}{2}y^{\top}\mathcal{D}(q)y)$
• $\frac{1}{2}(\sum_{i=1}^{n} q_i x_i)^2 = Q\mathcal{F}(x; \mathcal{T}(q), \mathbf{0}_n, 0)$ where $\mathcal{T}(q) = qq^{\top}$
• $\frac{1}{2}(\sum_{i=1}^{n} q_i (x_i - y_i))^2 = Q\mathcal{F}(x; \mathcal{T}(q), \mathcal{T}(q)y, \frac{1}{2}y^{\top}\mathcal{T}(q)y)$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Quadratic form Main properties

We note
$$\omega = (\omega_1, \dots, \omega_n)$$
 where $\omega_i = \mathbb{1} \{i \in \Omega\}$
a $\frac{1}{2} \sum_{i \in \Omega} q_i x_i^2 = \mathcal{QF}(x; \mathcal{D}(\omega \circ q), \mathbf{0}_n, 0)$
a $\frac{1}{2} \sum_{i \in \Omega} q_i (x_i - y_i)^2 = \mathcal{QF}(x; \mathcal{D}(\omega \circ q), \mathcal{D}(\omega \circ q), y, \frac{1}{2}y^\top \mathcal{D}(\omega \circ q), y)$
a $\frac{1}{2} (\sum_{i \in \Omega} q_i x_i)^2 = \mathcal{QF}(x; \mathcal{T}(\omega \circ q), \mathbf{0}_n, 0)$
a $\frac{1}{2} (\sum_{i \in \Omega} q_i (x_i - y_i))^2 = \mathcal{QF}(x; \mathcal{T}(\omega \circ q), y, \frac{1}{2}y^\top \mathcal{T}(\omega \circ q), y)$
b $(\omega \circ q) = \operatorname{diag}(\omega \circ q) = \mathcal{D}(\omega) \mathcal{D}(q)$
c $\mathcal{T}(\omega \circ q) = (\omega \circ q) (\omega \circ q)^\top = (\omega\omega^\top) \circ qq^\top = \mathcal{T}(\omega) \circ \mathcal{T}(q)$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolio Basic optimization problems

Mean-variance optimization

The long-only mean-variance optimization problem is given by:

$$w^{\star} = \arg \min \frac{1}{2} w^{\top} \Sigma w - \gamma w^{\top} \mu$$

s.t.
$$\begin{cases} \mathbf{1}_{n}^{\top} w = 1\\ \mathbf{0}_{n} \leq w \leq \mathbf{1}_{n} \end{cases}$$

where:

- γ is the risk-tolerance coefficient
- the equality constraint is the budget constraint $(\sum_{i=1}^{n} w_i = 1)$
- the bounds correspond to the no short-selling restriction ($w_i \ge 0$)

QP form

$$Q = \Sigma$$
, $R = \gamma \mu$, $A = \mathbf{1}_n^{ op}$, $B = 1$, $w^- = \mathbf{0}_n$ and $w^+ = \mathbf{1}$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolio Basic optimization problems

Tracking error optimization

The tracking error optimization problem is defined as:

$$w^{\star} = \arg \min \frac{1}{2} w^{\top} \Sigma w - w^{\top} (\gamma \mu + \Sigma b)$$

s.t.
$$\begin{cases} \mathbf{1}_{n}^{\top} w = 1 \\ \mathbf{0}_{n} \leq w \leq \mathbf{1}_{n} \end{cases}$$

QP form

$$Q = \Sigma$$
, $R = \gamma \mu + \Sigma b$, $A = \mathbf{1}_n^{\top}$, $B = 1$, $w^- = \mathbf{0}_n$ and $w^+ = \mathbf{1}$

$$\Rightarrow$$
 Portfolio replication: $R = \Sigma b$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Specification of the constraints

Sector weight constraint

• We have

$$s_j^- \leq \sum_{i \in \mathcal{S}ector_j} w_i \leq s_j^+$$

• \boldsymbol{s}_j is the $n \times 1$ sector-mapping vector: $\boldsymbol{s}_{i,j} = \mathbb{1} \{ i \in \mathcal{S}ector_j \}$

• We notice that:

$$\sum_{i \in \boldsymbol{\mathcal{S}}ector_j} w_i = \boldsymbol{s}_j^\top w$$

• We deduce that:

$$s_j^{-} \leq \sum_{i \in \mathcal{S}ector_j} w_i \leq s_j^{+} \Leftrightarrow \left\{ \begin{array}{c} s_j^{-} \leq \mathbf{s}_j^{\top} w \\ \mathbf{s}_j^{-} w \leq s_j^{+} \end{array} \Leftrightarrow \left\{ \begin{array}{c} -\mathbf{s}_j^{\top} w \leq -s_j^{-} \\ \mathbf{s}_j^{\top} w \leq s_j^{+} \end{array} \right. \Rightarrow \left\{ \begin{array}{c} \mathbf{s}_j^{\top} w \leq -s_j^{-} \\ \mathbf{s}_j^{\top} w \leq s_j^{+} \end{array} \right. \Rightarrow \left\{ \begin{array}{c} \mathbf{s}_j^{\top} w \leq -s_j^{-} \\ \mathbf{s}_j^{\top} w \leq s_j^{+} \end{array} \right\}$$

QP form

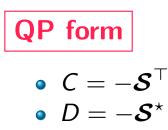
$$\underbrace{\begin{pmatrix} -\mathbf{s}_{j}^{\top} \\ \mathbf{s}_{j}^{\top} \end{pmatrix}}_{\mathbf{c}} w \leq \underbrace{\begin{pmatrix} -\mathbf{s}_{j}^{-} \\ \mathbf{s}_{j}^{+} \end{pmatrix}}_{\mathbf{D}}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Specification of the constraints

• General constraint:





Quadratic programming (QP) problem Equity portfolios Bond portfolios

Specification of the constraints

• Sector-specific constraint:

$$\begin{split} \sum_{i \in \mathcal{S}ector_{j}} w_{i} \mathcal{S}_{i} \geq \mathcal{S}_{j}^{\star} & \Leftrightarrow \quad \sum_{i=1}^{n} \mathbb{1} \left\{ i \in \mathcal{S}ector_{j} \right\} \cdot w_{i} \mathcal{S}_{i} \geq \mathcal{S}_{j}^{\star} \\ & \Leftrightarrow \quad \sum_{i=1}^{n} s_{i,j} w_{i} \mathcal{S}_{i} \geq \mathcal{S}_{j}^{\star} \\ & \Leftrightarrow \quad \sum_{i=1}^{n} w_{i} \cdot (s_{i,j} \mathcal{S}_{i}) \geq \mathcal{S}_{j}^{\star} \\ & \Leftrightarrow \quad (s_{j} \circ \mathcal{S})^{\top} w \geq \mathcal{S}_{j}^{\star} \end{split}$$

•
$$C = -(\boldsymbol{s}_j \circ \boldsymbol{\mathcal{S}})^\top$$

• $D = -\boldsymbol{\mathcal{S}}_j^\star$

973 / 1420

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios

Example #1

- The capitalization-weighted equity index is composed of 8 stocks
- The weights are equal to 23%, 19%, 17%, 13%, 9%, 8%, 6% and 5%
- The ESG score, carbon intensity and sector of the eight stocks are the following:

Stock	#1	#2	#3	#4	#5	#6	#7	#8
S	-1.20	0.80	2.75	1.60	-2.75	-1.30	0.90	-1.70
\mathcal{CI}	125	75	254	822	109	17	341	741
${\cal S}$ ector	1	1	2	2	1	2	1	2

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios

Example #1 (Cont'd)

- The stock volatilities are equal to 22%, 20%, 25%, 18%, 35%, 23%, 13% and 29%
- The correlation matrix is given by:

	/ 100%								
	80%	100%							
	70%	75%	100%						
$\mathbb{C} =$	60%	65%	80%	100%					
$\mathbb{C}\equiv$	70%	50%	70%	85%	100%				
	50%	60%	70%	80%	60%	100%			
	70%	50%	70%	75%	80%	50%	100%		
	60%	65%	70%	75%	65%	70%	80%	100% /	

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios QP problem

• We have:

$$w^{\star} = \arg \min \frac{1}{2} w^{\top} Q w - w^{\top} R$$

s.t.
$$\begin{cases} Aw = B \\ Cw \le D \\ w^{-} \le w \le w^{+} \end{cases}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios Objective function

• Using $\Sigma_{i,j} = \mathbb{C}_{i,j}\sigma_i\sigma_j$, we obtain:

$$Q = \Sigma = 10^{-4} \times$$

/	<i>4</i> 84.00	352.00	385.00	237.60	539.00	253.00	200.20	382.80 \
	352.00	400.00	375.00	234.00	350.00	276.00	130.00	377.00
	385.00	375.00	625.00	360.00	612.50	402.50	227.50	507.50
	237.60	234.00	360.00	324.00	535.50	331.20	175.50	391.50
	539.00	350.00	612.50	535.50	1225.00	483.00	364.00	659.75
	253.00	276.00	402.50	331.20	483.00	529.00	149.50	466.90
	200.20	130.00	227.50	175.50	364.00	149.50	169.00	301.60
	382.80	377.00	507.50	391.50	659.75	466.90	301.60	841.00 /

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios Objective function

• We have:

$$R = \Sigma b = \begin{pmatrix} 3.74 \\ 3.31 \\ 4.39 \\ 3.07 \\ 5.68 \\ 3.40 \\ 2.02 \\ 4.54 \end{pmatrix} \times 10^{-2}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios Constraint specification (bounds)

• The portfolio is long-only

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios Constraint specification (equality)

• The budget constraint $\sum_{i=1}^{8} w_i = 1 \Rightarrow a$ first linear equation $A_0 w = B_0$ **QP form**

•
$$A_0 = \mathbf{1}_8^{\top}$$

• $B_0 = 1$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios Constraint specification (equality)

• We can impose the sector neutrality of the portfolio meaning that:

$$\sum_{i \in \boldsymbol{\mathcal{S}}ector_i} w_i = \sum_{i \in \boldsymbol{\mathcal{S}}ector_i} b_i$$

The sector neutrality constraint can be written as:

$$\left(\begin{array}{c}A_1\\A_2\end{array}\right)w=\left(\begin{array}{c}B_1\\B_2\end{array}\right)$$

QP form

•
$$A_1 = \mathbf{s}_1^{\top} = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

• $A_2 = \mathbf{s}_2^{\top} = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$
• $B_1 = \mathbf{s}_1^{\top} b = \sum_{i \in \mathcal{S}ector_1} b_i$
• $B_2 = \mathbf{s}_2^{\top} b = \sum_{i \in \mathcal{S}ector_2} b_i$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios Constraint specification (inequality)

• We can impose a relative reduction of the benchmark carbon intensity:

$$\mathcal{CI}(w) \leq (1-\mathcal{R}) \, \mathcal{CI}(b) \Leftrightarrow C_1 w \leq D_1$$

QP form

• We can impose an absolute increase of the benchmark ESG score:

$$\boldsymbol{\mathcal{S}}\left(w
ight)\geq\boldsymbol{\mathcal{S}}\left(b
ight)+\Delta\boldsymbol{\mathcal{S}}^{\star}$$

Since $\boldsymbol{\mathcal{S}}(w) = \boldsymbol{\mathcal{S}}^{\top} w$, we deduce that $C_2 w \leq D_2$

QP form

•
$$C_2 = -\boldsymbol{\mathcal{S}}^{ op}$$

• $D_2 = -(\boldsymbol{\mathcal{S}}(b) + \Delta \boldsymbol{\mathcal{S}}^{\star})$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios Combination of constraints

Set of constraints	Carbon intensity	ESG score	Sector neutrality	A	В	С	D
#1 #2	\checkmark	√		A_0 A_0	B_0 B_0	C_1 C_2	D_1 D_2
#3	\checkmark	\checkmark		A_0	B_0	$\left[\begin{array}{c} C_1 \\ C_2 \end{array}\right]$	$\left[\begin{array}{c} D_1\\ D_2\end{array}\right]$
#4	\checkmark	\checkmark	\checkmark	$\left[\begin{array}{c}A_0\\A_1\\A_2\end{array}\right]$	$\left[\begin{array}{c}B_0\\B_1\\B_2\end{array}\right]$	$\left[\begin{array}{c} C_1 \\ C_2 \end{array}\right]$	$\left[\begin{array}{c} D_1\\ D_2\end{array}\right]$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios Results

Table 70: $\mathcal{R} = 30\%$ and $\Delta \mathcal{S}^{\star} = 0.50$ (Example #1)

	B	Benchmark	Set $\#1$	Set #2	Set #3	Set #4
	w_1^{\star}	23.00	18.17	25.03	8.64	12.04
	W_2^{\star}	19.00	24.25	14.25	29.27	23.76
	W_3^{\star}	17.00	16.92	21.95	26.80	30.55
M_{0} ; where (in $0/$)	W_4^{\star}	13.00	2.70	27.30	1.48	2.25
Weights (in %)	W_5^{\star}	9.00	12.31	3.72	10.63	8.51
	W_6^{\star}	8.00	11.23	1.34	6.30	10.20
	W ₇ *	6.00	11.28	1.68	16.87	12.69
	W ₈ *	5.00	3.15	4.74	0.00	0.00
	$\sigma(w^* \mid b)$ (in %)	0.00	0.50	1.18	1.90	2.12
	$\mathcal{CI}(w^{\star})$	261.72	183.20	367.25	183.20	183.20
	$\mathcal{R}(w^* \mid b)$ (in %)		30.00	-40.32	30.00	30.00
Statistics	$\mathcal{S}(w^{\star})$	0.17	0.05	0.67	0.67	0.67
	$\boldsymbol{\mathcal{S}}(w^{\star}) - \boldsymbol{\mathcal{S}}(b)$		-0.12	0.50	0.50	0.50
	$w^{\star}(\mathcal{S}ector_1)$ (in %)) 57.00	66.00	44.67	65.41	57.00
	$w^{\star}(\boldsymbol{\mathcal{S}}ector_2)$ (in %)) 43.00	34.00	55.33	34.59	43.00

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios Dealing with constraints on relative weights

• The carbon intensity of the j^{th} sector within the portfolio w is:

$$\mathcal{CI}(w; \mathcal{S}ector_j) = \sum_{i \in \mathcal{S}ector_j} \tilde{w}_i \mathcal{CI}_i$$

where \tilde{w}_i is the normalized weight in the sector bucket:

$$ilde{w}_i = rac{w_i}{\sum_{k \in oldsymbol{\mathcal{S}ector}_j} w_k}$$

• Another expression of $CI(w; Sector_j)$ is:

$$\mathcal{CI}(w; \mathcal{S}ector_j) = \frac{\sum_{i \in \mathcal{S}ector_j} w_i \mathcal{CI}_i}{\sum_{i \in \mathcal{S}ector_j} w_i} = \frac{(\mathbf{s}_j \circ \mathcal{CI})^\top w}{\mathbf{s}_j^\top w}$$

985 / 1420

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios Dealing with constraints on relative weights

• If we consider the constraint $\mathcal{CI}(w; \mathcal{S}ector_j) \leq \mathcal{CI}_j^*$, we obtain:

$$egin{aligned} & (*) & \Leftrightarrow & \mathcal{CI}\left(w; \mathcal{S}ector_{j}
ight) \leq \mathcal{CI}_{j}^{\star} \ & \Leftrightarrow & \left(oldsymbol{s}_{j} \circ \mathcal{CI}
ight)^{ op} w \leq \mathcal{CI}_{j}^{\star}\left(oldsymbol{s}_{j}^{ op} w
ight) \ & \Leftrightarrow & \left(\left(oldsymbol{s}_{j} \circ \mathcal{CI}
ight) - \mathcal{CI}_{j}^{\star}oldsymbol{s}_{j}
ight)^{ op} w \leq 0 \ & \Leftrightarrow & \left(oldsymbol{s}_{j} \circ \left(\mathcal{CI} - \mathcal{CI}_{j}^{\star}
ight)
ight)^{ op} w \leq 0 \end{aligned}$$

QP form

•
$$C = \left(\boldsymbol{s}_j \circ \left(\mathcal{C} \mathcal{I} - \mathcal{C} \mathcal{I}_j^\star \right) \right)^ op$$

• $D = 0$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios Dealing with constraints on relative weights

Example #2

- Example #1
- We would like to reduce the carbon footprint of the benchmark by 30%
- We impose the sector neutrality

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios Dealing with constraints on relative weights

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios Dealing with constraints on relative weights

• The optimal solution is:

 $w^{\star} = (21.54\%, 18.50\%, 21.15\%, 3.31\%, 10.02\%, 15.26\%, 6.94\%, 3.27\%)$

BUT

 $\begin{cases} \mathcal{CI}(w^*; \mathcal{S}ector_1) = 132.25 \\ \mathcal{CI}(w^*; \mathcal{S}ector_2) = 250.74 \end{cases} \text{ versus } \begin{cases} \mathcal{CI}(b; \mathcal{S}ector_1) = 128.54 \\ \mathcal{CI}(b; \mathcal{S}ector_2) = 438.26 \end{cases}$

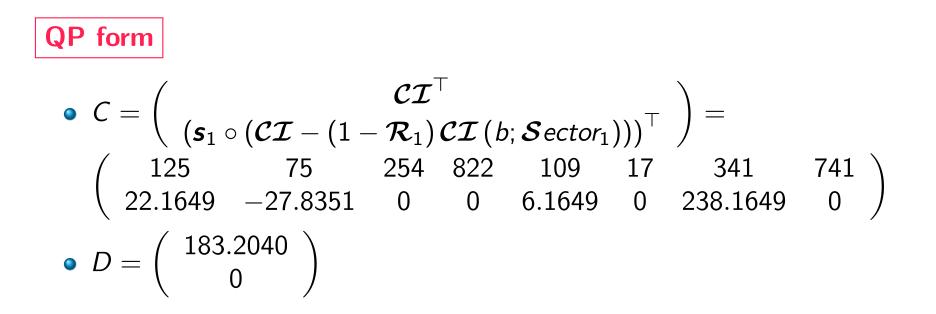
The global reduction of 30% is explained by:

- an increase of 2.89% of the carbon footprint for the first sector
- a decrease of 42.79% of the carbon footprint for the second sector

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios Dealing with constraints on relative weights

$$ullet$$
 We impose ${\cal R}_1=20\%$



990 / 1420

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios Dealing with constraints on relative weights

- Solving the new QP problem gives the following optimal portfolio:
 - $w^{\star} = (22.70\%, 22.67\%, 19.23\%, 5.67\%, 11.39\%, 14.50\%, 0.24\%, 3.61\%)$

•
$$\sigma(w^{\star} \mid b) = 144$$
 bps

•
$$CI(w^*) = 183.20$$

• $CI(w^*; Sector_1) = 102.84$ (reduction of 20%)
• $CI(w^*; Sector_2) = 289.74$ (reduction of 33.89%)

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Risk measure of a bond portfolio

• We consider a zero-coupon bond, whose price and maturity date are B(t, T) and T:

$$B_t(t, T) = e^{-(r(t)+s(t))(T-t)+L(t)}$$

where r(t), S(t) and L(t) are the interest rate, the credit spread and the liquidity premium

• We deduce that:

$$d \ln B(t, T) = -(T - t) dr(t) - (T - t) ds(t) + dL(t)$$
$$= -D dr(t) - (D s(t)) \frac{ds(t)}{s(t)} + dL(t)$$
$$= -D dr(t) - DTS(t) \frac{ds(t)}{s(t)} + dL(t)$$

where:

- D = T t is the remaining maturity (or duration)
- DTS(t) is the duration-times-spread factor

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Risk measure of a bond portfolio

 If we assume that r(t), s(t) and L(t) are independent, the risk of the defaultable bond is equal to:

$$\sigma^{2} \left(\mathrm{d} \ln B \left(t, T \right) \right) = D^{2} \sigma^{2} \left(\mathrm{d} r \left(t \right) \right) + \mathrm{DTS} \left(t \right)^{2} \sigma^{2} \left(\frac{\mathrm{d} s \left(t \right)}{s \left(t \right)} \right) + \sigma^{2} \left(\mathrm{d} L \left(t \right) \right)$$

• Three risk components

$$\sigma^{2} \left(\mathrm{d} \ln B \left(t, T \right) \right) = D^{2} \sigma_{r}^{2} + \mathrm{DTS} \left(t \right)^{2} \sigma_{s}^{2} + \sigma_{L}^{2}$$

\Longrightarrow The historical volatility of a bond price is not a relevant risk measure

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization Without a benchmark

• Duration risk:

$$\mathrm{MD}(w) = \sum_{i=1}^{n} w_i \, \mathrm{MD}_i$$

• DTS risk:

$$\mathrm{DTS}(w) = \sum_{i=1}^{n} w_i \mathrm{DTS}_i$$

- Clustering approach = generalization of the sector approach, e.g. (EUR, Financials, AAA to A-, 1Y-3Y)
- We have:

$$\mathrm{MD}_{j}(w) = \sum_{i \in \boldsymbol{\mathcal{S}}ector_{j}} w_{i} \mathrm{MD}_{i}$$

and:

$$\mathrm{DTS}_{j}(w) = \sum_{i \in \mathcal{S}ector_{j}} w_{i} \mathrm{DTS}_{i}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization Without a benchmark

Objective function without a benchmark

We have:

$$w^{\star} = \arg \min \frac{\varphi_{\text{MD}}}{2} \sum_{j=1}^{n_{sector}} \left(\text{MD}_{j} \left(w \right) - \text{MD}_{j}^{\star} \right)^{2} + \frac{\varphi_{\text{DTS}}}{2} \sum_{j=1}^{n_{sector}} \left(\text{DTS}_{j} \left(w \right) - \text{DTS}_{j}^{\star} \right)^{2} - \gamma \sum_{i=1}^{n} w_{i} C_{i}$$

where:

- $\varphi_{\rm MD} \ge$ 0 and $\varphi_{\rm DTS} \ge$ 0 indicate the relative weight of each risk component
- C_i is the expected carry of bond *i* and γ is the risk-tolerance coefficient

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization Without a benchmark

QP form

$$w^{\star} = \arg \min \mathcal{QF}(w; Q, R, c)$$

s.t.
$$\begin{cases} \mathbf{1}_{n}^{\top} w = 1\\ \mathbf{0}_{n} \leq w \leq \mathbf{1}_{n} \end{cases}$$

where $Q\mathcal{F}(w; Q, R, c)$ is the quadratic form of the objective function

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization Without a benchmark

We have:

$$\begin{aligned} \frac{1}{2} \left(\mathrm{MD}_{j} \left(w \right) - \mathrm{MD}_{j}^{\star} \right)^{2} &= \frac{1}{2} \left(\sum_{i \in \boldsymbol{\mathcal{S}ector}_{j}} w_{i} \, \mathrm{MD}_{i} - \mathrm{MD}_{j}^{\star} \right)^{2} \\ &= \frac{1}{2} \left(\sum_{i=1}^{n} \boldsymbol{s}_{i,j} w_{i} \, \mathrm{MD}_{i} - \mathrm{MD}_{j}^{\star} \right)^{2} \\ &= \frac{1}{2} \left(\sum_{i=1}^{n} \boldsymbol{s}_{i,j} \, \mathrm{MD}_{i} \, w_{i} \right)^{2} - w^{\top} \left(\boldsymbol{s}_{j} \circ \mathrm{MD} \right) \mathrm{MD}_{j}^{\star} + \frac{1}{2} \, \mathrm{MD}_{j}^{\star^{2}} \\ &= \mathcal{QF} \left(w; \mathcal{T} \left(\boldsymbol{s}_{j} \circ \mathrm{MD} \right), \left(\boldsymbol{s}_{j} \circ \mathrm{MD} \right) \, \mathrm{MD}_{j}^{\star}, \frac{1}{2} \, \mathrm{MD}_{j}^{\star^{2}} \right) \end{aligned}$$

where $MD = (MD_1, \dots, MD_n)$ is the vector of modified durations and $\mathcal{T}(u) = uu^{\top}$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization Without a benchmark

We deduce that:

$$\frac{1}{2}\sum_{j=1}^{n_{\mathcal{S}ector}} \left(\mathrm{MD}_{j}\left(w \right) - \mathrm{MD}_{j}^{\star} \right)^{2} = \mathcal{QF}\left(w; \mathcal{Q}_{\mathrm{MD}}, \mathcal{R}_{\mathrm{MD}}, \mathcal{C}_{\mathrm{MD}} \right)$$

where:

$$\begin{array}{l} \mathcal{C} \quad Q_{\mathrm{MD}} = \sum_{j=1}^{n_{\boldsymbol{\mathcal{S}}ector}} \mathcal{T} \left(\boldsymbol{s}_{j} \circ \mathrm{MD} \right) \\ R_{\mathrm{MD}} = \sum_{j=1}^{n_{\boldsymbol{\mathcal{S}}ector}} \left(\boldsymbol{s}_{j} \circ \mathrm{MD} \right) \mathrm{MD}_{j}^{\star} \\ \mathcal{C}_{\mathrm{MD}} = \frac{1}{2} \sum_{j=1}^{n_{\boldsymbol{\mathcal{S}}ector}} \mathrm{MD}_{j}^{\star^{2}} \end{array}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization Without a benchmark

In a similar way, we have:

$$\frac{1}{2}\sum_{j=1}^{n_{\mathcal{S}ector}} \left(\mathrm{DTS}_{j}\left(w\right) - \mathrm{DTS}_{j}^{\star}\right)^{2} = \mathcal{QF}\left(w; Q_{\mathrm{DTS}}, R_{\mathrm{DTS}}, c_{\mathrm{DTS}}\right)$$

where:

$$Q_{\text{DTS}} = \sum_{j=1}^{n_{sector}} \mathcal{T} (\mathbf{s}_{j} \circ \text{DTS})$$
$$R_{\text{MD}} = \sum_{j=1}^{n_{sector}} (\mathbf{s}_{j} \circ \text{DTS}) \text{DTS}_{j}^{\star}$$
$$c_{\text{DTS}} = \frac{1}{2} \sum_{j=1}^{n_{sector}} \text{DTS}_{j}^{\star^{2}}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization Without a benchmark

We have:

$$-\gamma \sum_{i=1}^{n} w_{i} C_{i} = \gamma Q \mathcal{F}(w; \mathbf{0}_{n,n}, C, 0) = Q \mathcal{F}(w; \mathbf{0}_{n,n}, \gamma C, 0)$$

where $C = (C_1, \ldots, C_n)$ is the vector of expected carry values

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization Without a benchmark

Quadratic form of the objective function

The function to optimize is:

$$\begin{aligned} \mathcal{QF}(w; Q, R, c) &= \varphi_{\mathrm{MD}} \mathcal{QF}(w; Q_{\mathrm{MD}}, R_{\mathrm{MD}}, c_{\mathrm{MD}}) + \\ \varphi_{\mathrm{DTS}} \mathcal{QF}(w; Q_{\mathrm{DTS}}, R_{\mathrm{DTS}}, c_{\mathrm{DTS}}) + \\ \mathcal{QF}(w; \mathbf{0}_{n,n}, \gamma \mathcal{C}, \mathbf{0}) \end{aligned}$$

where:

$$Q = \varphi_{\rm MD} Q_{\rm MD} + \varphi_{\rm DTS} Q_{\rm DTS}$$
$$R = \gamma C + \varphi_{\rm MD} R_{\rm MD} + \varphi_{\rm DTS} R_{\rm DTS}$$
$$c = \varphi_{\rm MD} c_{\rm MD} + \varphi_{\rm DTS} c_{\rm DTS}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization With a benchmark

• The MD- and DTS-based tracking error variances are equal to:

$$\mathcal{R}_{\mathrm{MD}}\left(w \mid b
ight) = \sigma_{\mathrm{MD}}^{2}\left(w \mid b
ight) = \sum_{j=1}^{n_{\boldsymbol{\mathcal{S}}ector}} \left(\sum_{i \in \boldsymbol{\mathcal{S}}ector_{j}} \left(w_{i} - b_{i}
ight) \mathrm{MD}_{i}
ight)^{2}$$

and:

$$\mathcal{R}_{\mathrm{DTS}}(w \mid b) = \sigma_{\mathrm{DTS}}^{2}(w \mid b) = \sum_{j=1}^{n_{\mathcal{S}ector}} \left(\sum_{i \in \mathcal{S}ector_{j}} (w_{i} - b_{i}) \mathrm{DTS}_{i} \right)^{2}$$

This means that $MD_j^* = \sum_{i \in \mathcal{S}ector_j} b_i MD_i$ and $DTS_j^* = \sum_{i \in \mathcal{S}ector_j} b_i DTS_i$. • The active share risk is defined as:

$$\mathcal{R}_{\mathrm{AS}}\left(w\mid b
ight)=\sigma_{\mathrm{AS}}^{2}\left(w\mid b
ight)=\sum_{i=1}^{n}\left(w_{i}-b_{i}
ight)^{2}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization With a benchmark

Objective function with a benchmark

The optimization problem becomes:

$$w^{\star} = \arg\min\frac{1}{2}\mathcal{R}\left(w \mid b\right) - \gamma \sum_{i=1}^{n} \left(w_{i} - b_{i}\right)\mathcal{C}_{i}$$

s.t.
$$\begin{cases} \mathbf{1}_{n}^{\top}w = 1\\ \mathbf{0}_{n} \leq w \leq \mathbf{1}_{n} \end{cases}$$

where the synthetic risk measure is equal to:

$$\mathcal{R}\left(w \mid b\right) = \varphi_{\mathrm{AS}}\mathcal{R}_{\mathrm{AS}}\left(w \mid b\right) + \varphi_{\mathrm{MD}}\mathcal{R}_{\mathrm{MD}}\left(w \mid b\right) + \varphi_{\mathrm{DTS}}\mathcal{R}_{\mathrm{DTS}}\left(w \mid b\right)$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization With a benchmark

We can show that

$$w^{\star} = \arg \min \mathcal{QF}(w; Q(b), R(b), c(b))$$

s.t.
$$\begin{cases} \mathbf{1}_{n}^{\top} w = 1 \\ \mathbf{0}_{n} \le w \le \mathbf{1}_{n} \end{cases}$$

where:

$$\begin{cases} Q(b) = \varphi_{AS}Q_{AS}(b) + \varphi_{MD}Q_{MD}(b) + \varphi_{DTS}Q_{DTS}(b) \\ R(b) = \gamma C + \varphi_{AS}R_{AS}(b) + \varphi_{MD}R_{MD}(b) + \varphi_{DTS}R_{DTS}(b) \\ c(b) = \gamma b^{\top}C + \varphi_{AS}c_{AS}(b) + \varphi_{MD}c_{MD}(b) + \varphi_{DTS}c_{DTS}(b) \end{cases}$$

$$egin{aligned} Q_{
m AS}\left(b
ight) &= I_n, \ R_{
m AS}\left(b
ight) = b, \ c_{
m AS}\left(b
ight) = rac{1}{2}b^{ op}b, \ Q_{
m MD}\left(b
ight) = Q_{
m MD}, \ R_{
m MD}\left(b
ight) &= Q_{
m MD}b = R_{
m MD}, \ c_{
m MD}\left(b
ight) = rac{1}{2}b^{ op}Q_{
m MD}b = c_{
m MD}, \ Q_{
m DTS}\left(b
ight) &= Q_{
m DTS}, \ R_{
m DTS}\left(b
ight) = Q_{
m DTS}b = R_{
m DTS}, \ {
m and} \ c_{
m DTS}\left(b
ight) = rac{1}{2}b^{ op}Q_{
m DTS}b = c_{
m DTS} \end{aligned}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization With a benchmark

Example #3

We consider an investment universe of 9 corporate bonds with the following characteristics^a:

lssuer	#1	#2	#3	#4	#5	#6	#7	#8	#9
b _i	21	19	16	12	11	8	6	4	3
\mathcal{CI}_i	111	52	369	157	18	415	17	253	900
MD_i	3.16	6.48	3.54	9.23	6.40	2.30	8.12	7.96	5.48
DTS_i	107	255	75	996	289	45	620	285	125
${\cal S}$ ector	1	1	1	2	2	2	3	3	3

We impose that $0.25 \times b_i \leq w_i \leq 4 \times b_i$. We have $\varphi_{AS} = 100$, $\varphi_{MD} = 25$ and $\varphi_{DTS} = 0.001$.

^aThe units are: b_i in %, \mathcal{CI}_i in tCO₂e/\$ mn, MD_i in years and DTS_i in bps

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization With a benchmark

The optimization problem is defined as:

where \mathcal{R} is the reduction rate

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization With a benchmark

Since the bonds are ordering by sectors, Q(b) is a block diagonal matrix:

$$Q(b) = \begin{pmatrix} Q_1 & \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} \\ \mathbf{0}_{3\times3} & Q_2 & \mathbf{0}_{3\times3} \\ \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} & Q_3 \end{pmatrix} \times 10^3$$

where:

$$Q_1 = \begin{pmatrix} 0.3611 & 0.5392 & 0.2877 \\ 0.5392 & 1.2148 & 0.5926 \\ 0.2877 & 0.5926 & 0.4189 \end{pmatrix}, \qquad Q_2 = \begin{pmatrix} 3.2218 & 1.7646 & 0.5755 \\ 1.7646 & 1.2075 & 0.3810 \\ 0.5755 & 0.3810 & 0.2343 \end{pmatrix}$$

and:

$$Q_3 = \begin{pmatrix} 2.1328 & 1.7926 & 1.1899 \\ 1.7926 & 1.7653 & 1.1261 \\ 1.1899 & 1.1261 & 0.8664 \end{pmatrix}$$

 $R(b) = (2.243, 4.389, 2.400, 6.268, 3.751, 1.297, 2.354, 2.120, 1.424) \times 10^{2}$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization With a benchmark

Table 71: Weights in % of optimized bond portfolios (Example #3)

Portfolio	#1	#2	#3	#4	#5	#6	#7	#8	#9
b	21.00	19.00	16.00	12.00	11.00	8.00	6.00	4.00	3.00
w* (10%)	21.92	19.01	15.53	11.72	11.68	7.82	6.68	4.71	0.94
w* (30%)	26.29	20.24	10.90	10.24	16.13	3.74	9.21	2.50	0.75
w* (50%)	27.48	23.97	4.00	6.94	22.70	2.00	11.15	1.00	0.75

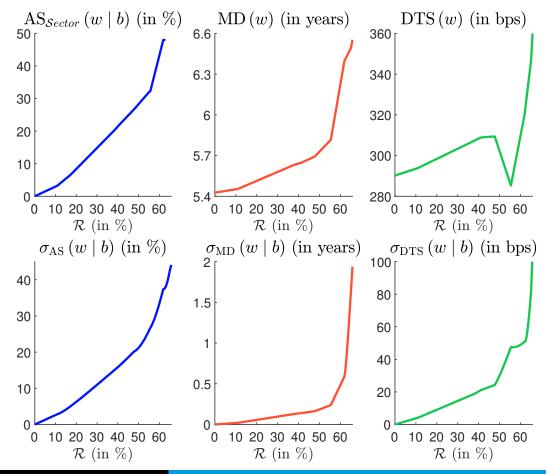
Table 72: Risk statistics of optimized bond portfolios (Example #3)

Portfolio	$\mathrm{AS}_{\boldsymbol{\mathcal{S}}ector}$	MD(w)	DTS(w)	$\sigma_{\mathrm{AS}}\left(\textit{w} \mid \textit{b} ight)$	$\sigma_{\mathrm{MD}}(w \mid b)$	$\sigma_{ m DTS} (w \mid b)$	$\mathcal{CI}(w)$
	(in %)	(in years)	(in bps)	(in %)	(in years)	(in bps)	$gCO_2e/\$$
Ь	0.00	5.43	290.18	0.00	0.00	0.00	184.39
w* (10%)	3.00	5.45	293.53	2.62	0.02	3.80	165.95
w* (30%)	14.87	5.58	303.36	10.98	0.10	14.49	129.07
w* (50%)	28.31	5.73	302.14	21.21	0.19	30.11	92.19

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization With a benchmark

Figure 85: Relationship between the reduction rate and the tracking risk (Example #3)



Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

Large bond universe

- QP: $n \leq 5000$ (the dimension of Q is $n \times n$)
- LP: $n \gg 10^6$
- Some figures as of 31/01/2023
 - MSCI World Index (DM): n = 1508 stocks
 - MSCI World IMI (DM): n = 5942 stocks
 - MSCI World AC (DM + EM): n = 2882 stocks
 - MSCI World AC IMI (DM + EM): n = 7928 stocks
 - Bloomberg Global Aggregate Total Return Index: n = 28799 securities
 - ICE BOFA Global Broad Market Index: n = 33575 securities
- Trick: \mathcal{L}_2 -norm risk measures $\Rightarrow \mathcal{L}_1$ -norm risk measures

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

We replace the synthetic risk measure by:

$$\mathcal{D}(w \mid b) = \varphi_{\mathrm{AS}}' \mathcal{D}_{\mathrm{AS}}(w \mid b) + \varphi_{\mathrm{MD}}' \mathcal{D}_{\mathrm{MD}}(w \mid b) + \varphi_{\mathrm{DTS}}' \mathcal{D}_{\mathrm{DTS}}(w \mid b)$$

where:

$$\begin{aligned} \mathcal{D}_{\mathrm{AS}}\left(w \mid b\right) &= \frac{1}{2}\sum_{i=1}^{n} |w_i - b_i| \\ \mathcal{D}_{\mathrm{MD}}\left(w \mid b\right) &= \sum_{j=1}^{n_{\mathcal{S}ector}} \left|\sum_{i \in \mathcal{S}ector_j} \left(w_i - b_i\right) \mathrm{MD}_i\right| \\ \mathcal{D}_{\mathrm{DTS}}\left(w \mid b\right) &= \sum_{j=1}^{n_{\mathcal{S}ector}} \left|\sum_{i \in \mathcal{S}ector_j} \left(w_i - b_i\right) \mathrm{DTS}_i\right| \end{aligned}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

The optimization problem becomes:

$$w^{\star} = \arg \min \mathcal{D}(w \mid b) - \gamma \sum_{i=1}^{n} (w_i - b_i) \mathcal{C}_i$$

s.t.
$$\begin{cases} \mathbf{1}_n^\top w = 1\\ \mathbf{0}_n \le w \le \mathbf{1}_n \end{cases}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

Large bond universe

Absolute value trick

If $c_i \geq 0$, then:

$$\min \sum_{i=1}^{n} c_i |f_i(x)| + g(x) \Leftrightarrow \begin{cases} \min \sum_{i=1}^{n} c_i \tau_i + g(x) \\ \int |f_i(x)| \le \tau_i \\ \tau_i \ge 0 \end{cases}$$

The problem becomes linear:

$$|f_i(x)| \leq \tau_i \Leftrightarrow -\tau_i \leq f_i(x) \wedge f_i(x) \leq \tau_i$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

Linear programming

The standard formulation of a linear programming problem is:

where x is a $n \times 1$ vector, c is a $n \times 1$ vector, A is a $n_A \times n$ matrix, B is a $n_A \times 1$ vector, C is a $n_C \times n$ matrix, D is a $n_C \times 1$ vector, and x^- and x^+ are two $n \times 1$ vectors.

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

Large bond universe

We have:

$$w^{\star} = \arg\min\frac{1}{2}\varphi_{AS}'\sum_{i=1}^{n}\tau_{i,w} + \varphi_{MD}'\sum_{j=1}^{n_{\mathcal{Sector}}}\tau_{j,MD} + \varphi_{DTS}'\sum_{j=1}^{n_{\mathcal{Sector}}}\tau_{j,DTS} - \gamma\sum_{i=1}^{n}(w_{i}-b_{i})C_{i}$$
$$\gamma\sum_{i=1}^{n}(w_{i}-b_{i})C_{i}$$
$$\begin{cases}\mathbf{1}_{n}^{\top}w = 1\\\mathbf{0}_{n} \leq w \leq \mathbf{1}_{n}\\|w_{i}-b_{i}| \leq \tau_{i,w}\\|\sum_{i \in \mathcal{Sector_{j}}}(w_{i}-b_{i})MD_{i}| \leq \tau_{j,MD}\\|\sum_{i \in \mathcal{Sector_{j}}}(w_{i}-b_{i})DTS_{i}| \leq \tau_{j,DTS}\\\tau_{i,w} \geq 0, \tau_{j,MD} \geq 0, \tau_{j,DTS} \geq 0\end{cases}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

Large bond universe

$$|w_i - b_i| \leq \tau_{i,w} \Leftrightarrow \begin{cases} w_i - \tau_{i,w} \leq b_i \\ -w_i - \tau_{i,w} \leq -b_i \end{cases}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

(*) $\Leftrightarrow \left| \sum_{i \in \mathcal{S}ector_i} (w_i - b_i) \operatorname{MD}_i \right| \leq \tau_{j, \operatorname{MD}}$ $\Leftrightarrow -\tau_{j,\mathrm{MD}} \leq \sum_{i \in \mathcal{S}ector_i} (w_i - b_i) \mathrm{MD}_i \leq \tau_{j,\mathrm{MD}}$ $\Leftrightarrow -\tau_{j,\mathrm{MD}} + \sum_{i \in \mathcal{S}ector_i} b_i \mathrm{MD}_i \leq \sum_{i \in \mathcal{S}ector_i} w_i \mathrm{MD}_i \leq \tau_{j,\mathrm{MD}} +$ $\sum_{i \in \mathcal{S}ector_i} b_i \operatorname{MD}_i$ $\Leftrightarrow -\tau_{j,\mathrm{MD}} + \mathrm{MD}_{i}^{\star} \leq (\mathbf{s}_{i} \circ \mathrm{MD})^{\top} \mathbf{w} \leq \tau_{j,\mathrm{MD}} + \mathrm{MD}_{i}^{\star}$ $\Leftrightarrow \begin{cases} (\mathbf{s}_{j} \circ \mathrm{MD})^{\top} \mathbf{w} - \tau_{j,\mathrm{MD}} \leq \mathrm{MD}_{j}^{\star} \\ -(\mathbf{s}_{j} \circ \mathrm{MD})^{\top} \mathbf{w} - \tau_{j,\mathrm{MD}} \leq -\mathrm{MD}_{i}^{\star} \end{cases}$

Bond portfolios

Advanced optimization problems

$$\left|\sum_{i\in\boldsymbol{\mathcal{S}ector}_{j}} \left(w_{i}-b_{i}\right) \mathrm{DTS}_{i}\right| \leq \tau_{j,\mathrm{DTS}} \Leftrightarrow \begin{cases} \left(\boldsymbol{s}_{j} \circ \mathrm{DTS}\right)^{\top} w - \tau_{j,\mathrm{DTS}} \leq \mathrm{DTS}_{j}^{\star} \\ -\left(\boldsymbol{s}_{j} \circ \mathrm{DTS}\right)^{\top} w - \tau_{j,\mathrm{DTS}} \leq -\mathrm{DTS}_{j}^{\star} \end{cases}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

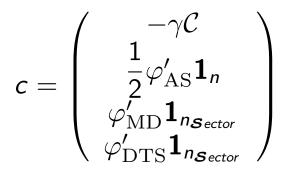
• x is a vector of dimension $n_x = 2 \times (n + n_{sector})$:

$$x = \left(egin{array}{c} w & \ au_w & \ au_{
m MD} & \ au_{
m DTS} \end{array}
ight)$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

• The vector *c* is equal to:



Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

• The linear equality constraint Ax = B is defined by:

$$A = \begin{pmatrix} \mathbf{1}_n^\top & \mathbf{0}_n^\top & \mathbf{0}_{n_{\mathcal{S}ector}}^\top & \mathbf{0}_{n_{\mathcal{S}ector}}^\top \end{pmatrix}$$

and:

$$B = 1$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

• The linear inequality constraint $Cx \leq D$ is defined by:

$$C = \begin{pmatrix} I_n & -I_n & \mathbf{0}_{n,nsector} & \mathbf{0}_{n,nsector} \\ -I_n & -I_n & \mathbf{0}_{n,nsector} & \mathbf{0}_{n,nsector} \\ C_{\mathrm{MD}} & \mathbf{0}_{nsector,n} & -I_{nsector} & \mathbf{0}_{nsector,nsector} \\ -C_{\mathrm{MD}} & \mathbf{0}_{nsector,n} & -I_{nsector} & \mathbf{0}_{nsector,nsector} \\ C_{\mathrm{DTS}} & \mathbf{0}_{nsector,n} & \mathbf{0}_{nsector,nsector} & -I_{nsector} \\ -C_{\mathrm{DTS}} & \mathbf{0}_{nsector,n} & \mathbf{0}_{nsector,nsector} \\ -C_{\mathrm{DTS}} & \mathbf{0}_{nsector,n} & \mathbf{0}_{nsector,nsector} & -I_{nsector} \\ -C_{\mathrm{DTS}} & \mathbf{0}_{nsector,n} & \mathbf{0}_{nsector,nsector} \\ -C_{\mathrm{DTS}} & \mathbf{0}_{\mathrm{DTS}} & \mathbf{0}_{\mathrm{DTS}} \\ -C_{\mathrm{DTS}} & \mathbf{0}_{\mathrm{DTS}} \\ -C_{\mathrm{DTS}} & \mathbf{0}_{\mathrm{DTS}} & \mathbf{0}_{\mathrm{DTS}} \\ -C_{\mathrm{DTS}} & \mathbf{0}$$

end:

$$D = \begin{pmatrix} b \\ -b \\ MD^{\star} \\ -MD^{\star} \\ DTS^{\star} \\ -DTS^{\star} \end{pmatrix}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

• $C_{\rm MD}$ and $C_{\rm DTS}$ are two $n_{sector} \times n$ matrices, whose elements are:

$$(\mathcal{C}_{\mathrm{MD}})_{j,i} = \boldsymbol{s}_{i,j} \operatorname{MD}_i$$

and:

$$(C_{\mathrm{DTS}})_{j,i} = \boldsymbol{s}_{i,j} \operatorname{DTS}_i$$

• We have:

$$\mathrm{MD}^{\star} = \left(\mathrm{MD}_{1}^{\star}, \ldots, \mathrm{MD}_{n_{\boldsymbol{\mathcal{S}}ector}}^{\star}\right)$$

and

$$\mathrm{DTS}^{\star} = \left(\mathrm{DTS}_{1}^{\star}, \dots, \mathrm{DTS}_{n_{\mathcal{S}ector}}^{\star}\right)$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

• The bounds are:

$$x^- = \mathbf{0}_{n_x}$$

and:

$$\mathbf{x}^+ = \infty \cdot \mathbf{1}_{n_{\mathbf{x}}}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

• Additional constraints:

$$\begin{cases} A'w = B' \\ C'w \le D' \end{cases} \Leftrightarrow \begin{cases} (A' \quad \mathbf{0}_{n_A, n_x - n}) x = B' \\ (C' \quad \mathbf{0}_{n_A, n_x - n}) x \le D' \end{cases}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

Toy example

We consider a toy example with four corporate bonds:

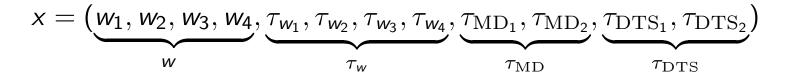
lssuer	#1	#2	#3	#4
b_i (in %)	35	15	20	30
${\cal CI}_i$ (in tCO ₂ e/\$ mn)	117	284	162.5	359
MD_i (in years)	3.0	5.0	2.0	6.0
DTS_i (in bps)	100	150	200	250
${\cal S}$ ector	1	1	2	2

We would like to reduce the carbon footprint by 20%, and we set $\varphi'_{\rm AS}=$ 100, $\varphi'_{\rm MD}=$ 25 and $\varphi'_{\rm DTS}=$ 1

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

We have
$$n = 4$$
, $n_{\mathcal{S}ector} = 2$ and:



Since the vector C is equal to $\mathbf{0}_4$, we obtain:

c = (0, 0, 0, 0, 50, 50, 50, 50, 25, 25, 1, 1)

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

The equality system Ax = B is defined by:

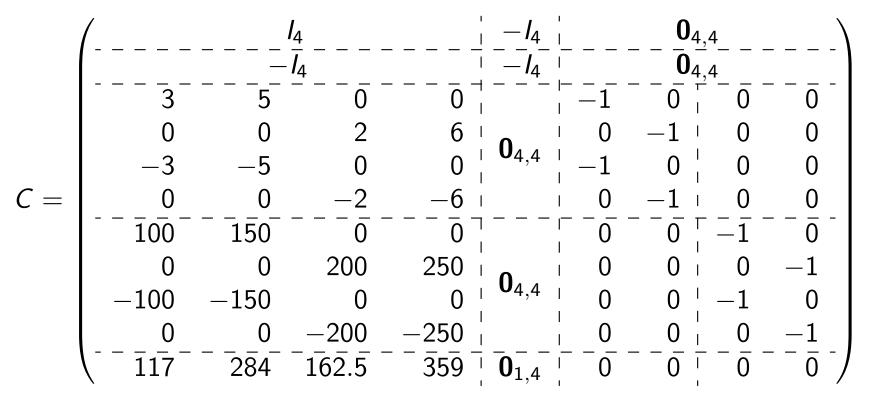
and:

B=1

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

The inequality system $Cx \leq D$ is given by:



and:

$$D = (0.35, 0.15, 0.2, 0.3, -0.35, -0.15, -0.2, -0.3, \dots \\ 1.8, 2.2, -1.8, -2.2, 57.5, 115, -57.5, -115, 179)$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

- The last row of $Cx \le D$ corresponds to the carbon footprint constraint
- We have:

$$CI(b) = 223.75 \text{ tCO}_2 \text{e}/\$ \text{ mn}$$

and:

 $(1 - \mathcal{R}) C \mathcal{I}(b) = 0.80 \times 223.75 = 179.00 \text{ tCO}_2 \text{e}/\$ \text{ mn}$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

We solve the LP program, and we obtain the following solution:

$$w^{\star} = (47.34\%, 0\%, 33.3\%, 19.36\%)$$

$$\tau^{\star}_{w} = (12.34\%, 15\%, 13.3\%, 10.64\%)$$

$$\tau^{\star}_{\text{MD}} = (0.3798, 0.3725)$$

$$\tau^{\star}_{\text{DTS}} = (10.1604, 0)$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

Large bond universe

• Interpretation of τ_w^* : $w^* \pm \tau_w^* = \begin{pmatrix} 47.34\% \\ 0.00\% \\ 33.30\% \\ 19.36\% \end{pmatrix} \begin{pmatrix} - \\ + \\ - \\ + \\ - \\ + \end{pmatrix} \begin{pmatrix} 12.34\% \\ 15.00\% \\ 13.30\% \\ 10.64\% \end{pmatrix} = \begin{pmatrix} 35\% \\ 15\% \\ 20\% \\ 30\% \end{pmatrix} = b$ • Interpretation of τ_{MD}^* : $\begin{pmatrix} \sum_{i \in \mathcal{S}ector_1} w_i^* \text{MD}_i \\ \sum_{i \in \mathcal{S}ector_2} w_i^* \text{MD}_i \end{pmatrix} \pm \tau_{\text{MD}}^* = \begin{pmatrix} 1.42 \\ 1.83 \end{pmatrix} \begin{pmatrix} + \\ + \end{pmatrix} \begin{pmatrix} 0.38 \\ 0.37 \end{pmatrix} = \begin{pmatrix} 1.80 \\ 2.20 \end{pmatrix} = \begin{pmatrix} \text{MD}_1^* \\ \text{MD}_2^* \end{pmatrix}$ • Interpretation of τ_{DTS}^* : $\begin{pmatrix} \sum_{i \in \mathcal{S}ector_1} w_i^* \text{DTS}_i \\ \sum_{i \in \mathcal{S}ector_2} w_i^* \text{DTS}_i \end{pmatrix} \pm \tau_{\text{DTS}}^* = \begin{pmatrix} 47.34 \\ 115.00 \end{pmatrix} \begin{pmatrix} + \\ + \end{pmatrix} \begin{pmatrix} 10.16 \\ 0.00 \end{pmatrix} = \begin{pmatrix} 57.50 \\ 115.00 \end{pmatrix} = \begin{pmatrix} \text{DTS}_1^* \\ \text{DTS}_2^* \end{pmatrix}$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

Example #4 (Example #3 again)

We consider an investment universe of 9 corporate bonds with the following characteristics^a:

lssuer	#1	#2	#3	#4	#5	#6	#7	#8	#9
bi	21	19	16	12	11	8	6	4	3
\mathcal{CI}_i	111	52	369	157	18	415	17	253	900
MD_i	3.16	6.48	3.54	9.23	6.40	2.30	8.12	7.96	5.48
DTS_i	107	255	75	996	289	45	620	285	125
${\cal S}$ ector	1	1	1	2	2	2	3	3	3

We impose that $0.25 \times b_i \leq w_i \leq 4 \times b_i$ and assume that $\varphi'_{AS} = \varphi_{AS} = 100, \ \varphi'_{MD} = \varphi_{MD} = 25$ and $\varphi'_{DTS} = \varphi'_{DTS} = 0.001$

^aThe units are: b_i in %, \mathcal{CI}_i in tCO₂e/\$ mn, MD_i in years and DTS_i in bps

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

Table 73: Weights in % of optimized bond portfolios (Example #4)

Portfolio	#1	#2	#3	#4	#5	#6	#7	#8	#9
b	21.00	19.00	16.00	12.00	11.00	8.00	6.00	4.00	3.00
w $^{\star}(10\%)$	21.70	19.00	16.00	12.00	11.00	8.00	7.46	4.00	0.84
w* (30%)	34.44	19.00	4.00	11.65	11.98	6.65	7.52	4.00	0.75
w* (50%)	33.69	19.37	4.00	3.91	24.82	2.00	10.46	1.00	0.75

Table 74: Risk statistics of optimized bond portfolios (Example #4)

Portfolio	$\mathrm{AS}_{\boldsymbol{\mathcal{S}}ector}$	MD(w)	DTS(w)	$\sigma_{\mathrm{AS}}(w \mid b)$	$\sigma_{\mathrm{MD}} \left(w \mid b \right)$	$\sigma_{\mathrm{DTS}}\left(w \mid b \right)$	$\mathcal{CI}(w)$
	(in %)	(in years)	(in bps)	(in %)	(in years)	(in bps)	$gCO_2e/\$$
Ь	0.00	5.43	290.18	0.00	0.00	0.00	184.39
w $^{\star}(10\%)$	2.16	5.45	297.28	2.16	0.02	7.10	165.95
w* (30%)	15.95	5.43	300.96	15.95	0.00	13.20	129.07
w* (50%)	31.34	5.43	268.66	31.34	0.00	65.12	92.19

Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

Threshold approach

The optimization problem is:

V

$$egin{aligned} & \mathbf{w}^{\star} &= & rg\minrac{1}{2}\left(\mathbf{w}-b
ight)^{ op} \mathbf{\Sigma}\left(\mathbf{w}-b
ight) \ & \mathbf{s}.\mathbf{t}. & \left\{ egin{aligned} & \mathbf{1}_n^{ op} \mathbf{w} = 1 \ & \mathbf{w} \in \Omega \ & \mathbf{0}_n \leq \mathbf{w} \leq \mathbf{1}_n \ & \mathcal{CI}\left(\mathbf{w}
ight) \leq (1-\mathcal{R})\mathcal{CI}\left(b
ight) \end{aligned}
ight. \end{aligned}$$

Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

Order-statistic approach

• $\mathcal{CI}_{i:n}$ is the order statistics of $(\mathcal{CI}_1, \ldots, \mathcal{CI}_n)$:

 $\min \mathcal{CI}_i = \mathcal{CI}_{1:n} \leq \mathcal{CI}_{2:n} \leq \cdots \leq \mathcal{CI}_{i:n} \leq \cdots \leq \mathcal{CI}_{n:n} = \max \mathcal{CI}_i$

• The carbon intensity bound $\mathcal{CI}^{(m,n)}$ is defined as:

$$\mathcal{CI}^{(m,n)} = \mathcal{CI}_{n-m+1:n}$$

where $\mathcal{CI}_{n-m+1:n}$ is the (n-m+1)-th order statistic of $(\mathcal{CI}_1, \ldots, \mathcal{CI}_n)$

• Exclusion process:

$$\mathcal{CI}_i \geq \mathcal{CI}^{(m,n)} \Rightarrow w_i = 0$$

Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

Order-statistic approach (Cont'd)

The optimization problem is:

Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

Naive approach

We re-weight the remaining assets:

$$w_i^{\star} = \frac{\mathbb{1}\left\{\mathcal{CI}_i < \mathcal{CI}^{(m,n)}\right\} \cdot b_i}{\sum_{k=1}^n \mathbb{1}\left\{\mathcal{CI}_k < \mathcal{CI}^{(m,n)}\right\} \cdot b_k}$$

Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

Example #5

We consider a capitalization-weighted equity index, which is composed of eight stocks. Their weights are equal to 20%, 19%, 17%, 13%, 12%, 8%, 6% and 5%. The carbon intensities (expressed in tCO₂e/\$ mn) are respectively equal to 100.5, 97.2, 250.4, 352.3, 27.1, 54.2, 78.6 and 426.7. To evaluate the risk of the portfolio, we use the market one-factor model: the beta β_i of each stock is equal to 0.30, 1.80, 0.85, 0.83, 1.47, 0.94, 1.67 and 1.08, the idiosyncratic volatilities $\tilde{\sigma}_i$ are respectively equal to 10%, 5%, 6%, 12%, 15%, 4%, 8% and 7%, and the estimated market volatility σ_m is 18%.

Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

The covariance matrix is:

$$\boldsymbol{\Sigma} = \boldsymbol{\beta} \boldsymbol{\beta}^\top \boldsymbol{\sigma}_m^2 + \boldsymbol{D}$$

where:

() β is the vector of beta coefficients

- **2** σ_m^2 is the variance of the market portfolio
- $D = diag(\tilde{\sigma}_1^2, \dots, \tilde{\sigma}_n^2)$ is the diagonal matrix of idiosyncratic variances

Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

Table 75: Optimal decarbonization portfolios (Example #5, threshold approach)

\mathcal{R}	0	10	20	30	40	50	\mathcal{CI}_i
w_1^{\star}	20.00	20.54	21.14	21.86	22.58	22.96	100.5
W_2^{\star}	19.00	19.33	19.29	18.70	18.11	17.23	97.2
W3*	17.00	15.67	12.91	8.06	3.22	0.00	250.4
w_4^{\star}	13.00	12.28	10.95	8.74	6.53	3.36	352.3
w_5^{\star}	12.00	12.26	12.60	13.07	13.53	14.08	27.1
w_6^{\star}	8.00	11.71	16.42	22.57	28.73	34.77	54.2
W_7^{\star}	6.00	6.36	6.69	7.00	7.30	7.59	78.6
W_8^{\star}	5.00	1.86	0.00	0.00	0.00	0.00	426.7
$\overline{\sigma} (w^* \overline{b})$	0.00	30.01	61.90	104.10	149.65	196.87	
$\mathcal{CI}(w)$	160.57	144.52	128.46	112.40	96.34	80.29	
$\mathcal{R}(w \mid b)$	0.00	10.00	20.00	30.00	40.00	50.00	

The reduction rate and the weights are expressed in % whereas the tracking error volatility is measured in bps

Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

Table 76: Optimal decarbonization portfolios (Example #5, order-statistic approach)

т	0	1	2	3	4	5	6	7	\mathcal{CI}_i
w_1^*	20.00	20.40	22.35	26.46	0.00	0.00	0.00	0.00	100.5
W_2^{\star}	19.00	19.90	20.07	20.83	7.57	0.00	0.00	0.00	97.2
<i>w</i> ₃ *	17.00	17.94	21.41	0.00	0.00	0.00	0.00	0.00	250.4
w_4^{\star}	13.00	13.24	0.00	0.00	0.00	0.00	0.00	0.00	352.3
w_5^{\star}	12.00	12.12	12.32	12.79	13.04	14.26	18.78	100.00	27.1
w_6^{\star}	8.00	10.04	17.14	32.38	74.66	75.12	81.22	0.00	54.2
W [*] 7	6.00	6.37	6.70	7.53	4.73	10.62	0.00	0.00	78.6
W ₈ *	5.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	426.7
$\overline{\sigma} (w^* \overline{b})$	0.00		1.68	2.25	3.98	4.04	4.30	15.41	
$\mathcal{CI}(w)$	160.57	145.12	113.48	73.78	55.08	52.93	49.11	27.10	
$\mathcal{R}(w \mid b)$	0.00	9.62	29.33	54.05	65.70	67.04	69.42	83.12	

The reduction rate, the weights and the tracking error volatility are expressed in %

Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

Table 77: Optimal decarbonization portfolios (Example #5, naive approach)

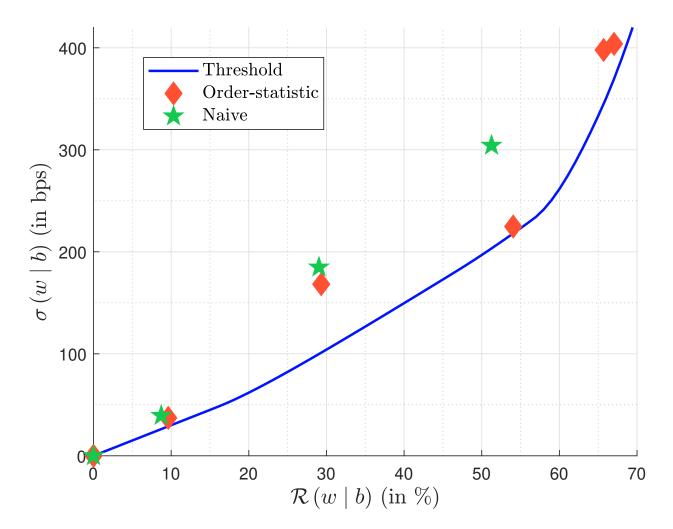
т	0	1	2	3	4	5	6	7	\mathcal{CI}_i
w_1^{\star}	20.00	21.05	24.39	30.77	0.00	0.00	0.00	0.00	100.5
W_2^{\star}	19.00	20.00	23.17	29.23	42.22	0.00	0.00	0.00	97.2
W3*	17.00	17.89	20.73	0.00	0.00	0.00	0.00	0.00	250.4
w [*]	13.00	13.68	0.00	0.00	0.00	0.00	0.00	0.00	352.3
w_5^{\star}	12.00	12.63	14.63	18.46	26.67	46.15	60.00	100.00	27.1
w_6^{\star}	8.00	8.42	9.76	12.31	17.78	30.77	40.00	0.00	54.2
W [*] 7	6.00	6.32	7.32	9.23	13.33	23.08	0.00	0.00	78.6
W_8^{\star}	5.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	426.7
$\overline{\sigma} (w^* \overline{b})$	0.00	0.39	1.85	3.04	9.46	8.08	8.65	15.41	
$\mathcal{CI}(w)$	160.57	146.57	113.95	78.26	68.38	47.32	37.94	27.10	
$\mathcal{R}(w \mid b)$	0.00	8.72	29.04	51.26	57.41	70.53	76.37	83.12	

The reduction rate, the weights and the tracking error volatility are expressed in %.

Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

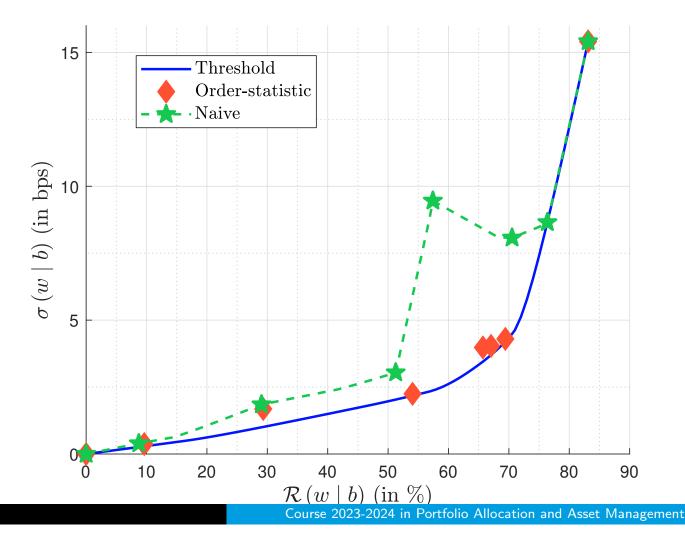
Figure 86: Efficient decarbonization frontier (Example #5)



Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

Figure 87: Efficient decarbonization frontier of the interpolated naive approach (Example #5)



Thierry Roncalli

Equity and bond portfolios Sector-specific constraints Empirical results

Bond portfolios

Example #6

We consider a debt-weighted bond index, which is composed of eight bonds. Their weights are equal to 20%, 19%, 17%, 13%, 12%, 8%, 6% and 5%. The carbon intensities (expressed in tCO₂e/\$ mn) are respectively equal to 100.5, 97.2, 250.4, 352.3, 27.1, 54.2, 78.6 and 426.7. To evaluate the risk of the portfolio, we use the modified duration which is respectively equal to 3.1, 6.6, 7.2, 5, 4.7, 2.1, 8.1 and 2.6 years, and the duration-times-spread factor, which is respectively equal to 100, 155, 575, 436, 159, 145, 804 and 365 bps. There are two sectors. Bonds #1, #3, #4 and #8 belong to *Sector*₁ while Bonds #2, #5, #6 and #7 belong to *Sector*₂

Equity and bond portfolios Sector-specific constraints Empirical results

Bond portfolios

Table 78: Optimal decarbonization portfolios (Example #6, threshold approach)

\mathcal{R}	0	10	20	30	40	50	\mathcal{CI}_i
w_1^*	20.00	21.62	23.93	26.72	30.08	33.44	100.5
w_2^{\star}	19.00	18.18	16.98	14.18	7.88	1.58	97.2
W3*	17.00	18.92	21.94	22.65	16.82	11.00	250.4
W_4^{\star}	13.00	11.34	5.35	0.00	0.00	0.00	352.3
w_5^{\star}	12.00	13.72	16.14	21.63	33.89	46.14	27.1
W_6^{\star}	8.00	9.60	10.47	10.06	7.21	4.36	54.2
W ₇ *	6.00	5.56	5.19	4.75	4.11	3.48	78.6
W ₈ *	5.00	1.05	0.00	0.00	0.00	0.00	426.7
$\overline{AS}_{\mathcal{S}ector}$	0.00	6.87	15.49	24.07	31.97	47.58	
MD(w)	5.48	5.49	5.45	5.29	4.90	4.51	
DTS(w)	301.05	292.34	282.28	266.12	236.45	206.78	
$\sigma_{\mathrm{AS}}\left(\textit{w} \mid \textit{b} ight)$	0.00	5.57	12.31	19.82	30.04	43.58	
$\sigma_{ ext{MD}} \left(\textbf{\textit{w}} \mid \textbf{\textit{b}} ight)$	0.00	0.01	0.04	0.17	0.49	0.81	
$\sigma_{ m DTS} \left(\textit{w} \mid \textit{b} ight)$	0.00	8.99	19.29	35.74	65.88	96.01	
$\mathcal{CI}(w)$	160.57	144.52	128.46	112.40	96.34	80.29	
$\mathcal{R}\left(w\mid b ight)$	0.00	10.00	20.00	30.00	40.00	50.00	

Equity and bond portfolios Sector-specific constraints Empirical results

Bond portfolios

Table 79: Optimal decarbonization portfolios (Example #6, order-statistic approach)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$,									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	т	0	1	2	3	4	5	6	7	\mathcal{CI}_i
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	w_1^{\star}	20.00	20.83	24.62	64.64	0.00	0.00	0.00	0.00	100.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	w_2^{\star}	19.00	18.60	18.13	21.32	3.32	0.00	0.00	0.00	97.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	W3*	17.00	17.79	26.30	0.00	0.00	0.00	0.00	0.00	250.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		13.00	14.53	0.00	0.00	0.00	0.00	0.00	0.00	352.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	w_5^{\star}	12.00	12.89	13.96	6.00	36.57	41.27	41.27	100.00	27.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	w_6^{\star}	8.00	9.74	11.85	0.00	60.11	58.73	58.73	0.00	54.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	W_7^{\star}	6.00	5.62	5.15	8.03	0.00	0.00	0.00	0.00	78.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	W ₈ *	5.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	426.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{AS}_{\mathcal{S}ector}$	0.00	5.78	19.72	49.00	76.68	80.00	80.00	88.00	·
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.48	5.52	5.54	4.77	3.27	3.17	3.17	4.70	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DTS(w)	301.05	295.08	284.71	171.82	150.45	150.78	150.78	159.00	l
$\sigma_{\text{DTS}}(w \mid b) = 0.00 = 6.21 = 16.87 = 128.04 = 197.22 = 197.29 = 197.29 = 199.22 = \mathcal{CI}(w) = 160.57 = 147.94 = 122.46 = 93.63 = 45.72 = 43.02 = 43.02 = 27.10$	$\sigma_{\mathrm{AS}}\left(\textit{w}\mid\textit{b} ight)$	0.00	5.73	17.94	50.85	66.96	68.63	68.63	95.33	l I
$\mathcal{CI}(w)$ 160.57 147.94 122.46 93.63 45.72 43.02 43.02 27.10	$\sigma_{ ext{MD}} \left(\textit{w} \mid \textit{b} ight)$	0.00	0.03	0.04	0.63	2.66	2.64	2.64	3.21	
		0.00	6.21	16.87	128.04	197.22	197.29	197.29	199.22	
$\mathcal{R}(w \mid b)$ 0.00 7.87 23.74 41.69 71.53 73.21 73.21 83.12	$\mathcal{CI}(w)$	160.57	147.94	122.46	93.63	45.72	43.02	43.02	27.10	
	$\mathcal{R}(w \mid b)$	0.00	7.87	23.74	41.69	71.53	73.21	73.21	83.12	

Equity and bond portfolios Sector-specific constraints Empirical results

Sector-specific constraints Sector scenario

• Decarbonization scenario per sector:

$$\mathcal{CI}(w; \mathcal{S}ector_j) \leq (1 - \mathcal{R}_j) \mathcal{CI}(b; \mathcal{S}ector_j)$$

• We have:

$$ig(oldsymbol{s}_j \circ ig(\mathcal{C}\mathcal{I} - \mathcal{C}\mathcal{I}_j^{\star} ig) ig)^{ op} w \leq 0$$

where $\mathcal{CI}_{j}^{\star}=\left(1-\mathcal{R}_{j}
ight)\mathcal{CI}\left(b;\mathcal{S}\textit{ector}_{j}
ight)$

Equity and bond portfolios Sector-specific constraints Empirical results

Sector-specific constraints

QP form

$$C = \begin{pmatrix} (\boldsymbol{s}_1 \circ (\mathcal{CI} - \mathcal{CI}_1^{\star}))^{\top} \\ \vdots \\ (\boldsymbol{s}_j \circ (\mathcal{CI} - \mathcal{CI}_j^{\star}))^{\top} \\ \vdots \\ (\boldsymbol{s}_{n_{\mathcal{S}ector}} \circ (\mathcal{CI} - \mathcal{CI}_{n_{\mathcal{S}ector}}^{\star}))^{\top} \end{pmatrix}$$

Equity and bond portfolios Sector-specific constraints Empirical results

Sector-specific constraints

Table 80: Carbon intensity and threshold in $tCO_2e/\$$ mn per GICS sector (MSCI World, 2030)

Sector		$\mathcal{CI}(b;$	\mathcal{S} ector _j)		\mathcal{R}_{j}		(\mathcal{ZI}_i^{\star}	
Sector	\mathcal{SC}_1	\mathcal{SC}_{1-2}	$\mathcal{SC}_{1-3}^{\mathrm{up}}$	\mathcal{SC}_{1-3}	(in %)	\mathcal{SC}_1	\mathcal{SC}_{1-2}	$\mathcal{SC}_{\mathrm{1-3}}^{\mathrm{up}}$	\mathcal{SC}_{1-3}
Communication Services	2	28	134	172	52.4	1	13	64	82
Consumer Discretionary	23	65	206	590	52.4	11	31	98	281
Consumer Staples	28	55	401	929	52.4	13	26	191	442
Energy	632	698	1 006	6823	56.9	272	301	434	2941
Financials	13	19	52	244	52.4	6	9	25	116
Health Care	10	22	120	146	52.4	5	10	57	70
Industrials	111	130	298	1662	18.8	90	106	242	1 350
Information Technology	7	23	112	239	52.4	3	11	53	114
Materials	478	702	1113	2957	36.7	303	445	704	1872
Real Estate	22	101	167	571	36.7	14	64	106	361
Utilities	1744	1794	2053	2840	56.9	752	773	885	1 2 2 4
MSCI World	130		310		36.6	82	103	196	629

Equity and bond portfolios Sector-specific constraints Empirical results

Sector-specific constraints

Sector and weight deviation constraints (equity portfolio)

Asset weight deviation constraint:

$$\Omega := \mathcal{C}_1\left(m_w^-, m_w^+\right) = \left\{w : m_w^- b \le w \le m_w^+ b\right\}$$

Sector weight deviation constraint:

$$\Omega := \mathcal{C}_2\left(m_s^-, m_s^+\right) == \left\{ \forall j : m_s^- \sum_{i \in \boldsymbol{\mathcal{S}ector}_j} b_i \leq \sum_{i \in \boldsymbol{\mathcal{S}ector}_j} w_i \leq m_s^+ \sum_{i \in \boldsymbol{\mathcal{S}ector}_j} b_i \right\}$$

3
$$C_2(m_s) = C_2(1/m_s, m_s)$$
4 $C_3(m_w^-, m_w^+, m_s) = C_1(m_w^-, m_w^+) \cap C_2(m_s)$

Equity and bond portfolios Sector-specific constraints Empirical results

Sector-specific constraints

Sector and weight deviation constraints (bond portfolio)

Modified duration constraint:

$$\Omega := \mathcal{C}'_1 = \{ w : \mathrm{MD}(w) = \mathrm{MD}(b) \} = \left\{ w : \sum_{i=1}^n (x_i - b_i) \mathrm{MD}_i = 0 \right\}$$

OTS constraint

$$\Omega := \mathcal{C}'_2 = \{w : \mathrm{DTS}(w) = \mathrm{DTS}(b)\} = \left\{w : \sum_{i=1}^n (x_i - b_i) \mathrm{DTS}_i = 0\right\}$$

Maturity/rating buckets:

$$\Omega := \left\{ w : \sum_{i \in \mathcal{B}ucket_j} (x_i - b_i) = 0 \right\}$$

- C'₃: Bucket_j is the jth maturity bucket, e.g., 0–1, 1–3, 3–5, 5–7, 7–10 and 10+
- C₄: Bucket_j is the jth rating category, e.g., AAA-AA (AAA, AA+, AA and AA-), A (A+, A and A-) and BBB (BBB+, BBB, BBB-)

1053 / 1420

Equity and bond portfolios Sector-specific constraints Empirical results

Sector-specific constraints

Two types of sectors:

• High climate impact sectors (HCIS):

"sectors that are key to the low-carbon transition" (TEG, 2019)

2 Low climate impact sectors (LCIS)

Let $\mathcal{HCIS}(w) = \sum_{i \in \text{HCIS}} w_i$ be the HCIS weight of portfolio w:

 $\mathcal{HCIS}(w) \geq \mathcal{HCIS}(b)$

Equity and bond portfolios Sector-specific constraints Empirical results

Sector-specific constraints

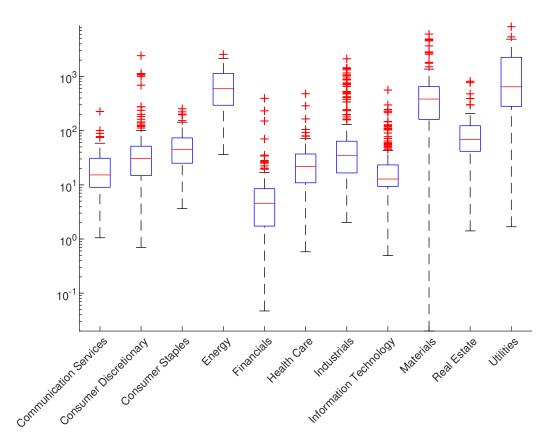
Table 81: Weight and carbon intensity when applying the HCIS filter (MSCI World, June 2022)

Sactor	Index	HCIS	S	${\cal C}_1$	SC	1-2	SC	up 1–3	SC	1-3
Sector	b_j	b'_i	\mathcal{CI}	\mathcal{CI}'	\mathcal{CI}	\mathcal{CI}'	\mathcal{CI}	$\mathcal{C}\mathcal{I}'$	\mathcal{CI}	\mathcal{CI}'
Communication Services	7.58	0.00	2		28		134		172	
Consumer Discretionary	10.56	8.01	23	14	65	31	206	189	590	462
Consumer Staples	7.80	7.80	28	28	55	55	401	401	929	929
Energy	4.99	4.99	632	632	698	698	1 006	1006	6 823	6823
Financials	13.56	0.00	13		19		52		244	
Health Care	14.15	9.98	10	13	22	26	120	141	146	177
Industrials	9.90	7.96	111	132	130	151	298	332	1 662	1921
Information Technology	21.08	10.67	7	12	23	30	112	165	239	390
Materials	4.28	4.28	478	478	702	702	1113	1113	2 957	2957
Real Estate	2.90	2.90	22	22	101	101	167	167	571	571
Utilities	3.21	3.21	1744	1744	1 7 94	1794	2 0 5 3	2053	2 840	2840
MSCI World	100.00	59.79		210	163		310	458		1498

Equity and bond portfolios Sector-specific constraints Empirical results

Empirical results (equity portfolios)

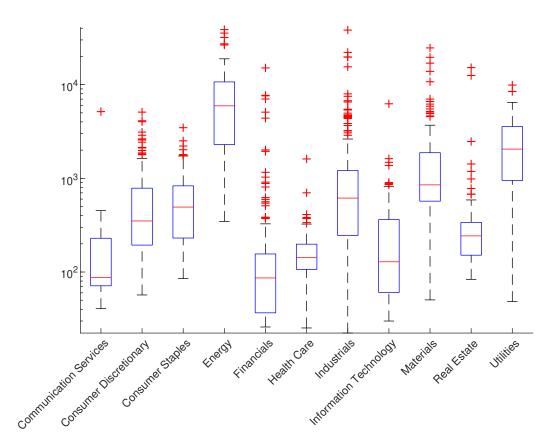
Figure 88: Boxplot of carbon intensity per sector (MSCI World, June 2022, scope \mathcal{SC}_{1-2})



Equity and bond portfolios Sector-specific constraints Empirical results

Empirical results (equity portfolios)

Figure 89: Boxplot of carbon intensity per sector (MSCI World, June 2022, scope \mathcal{SC}_{1-3})



Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

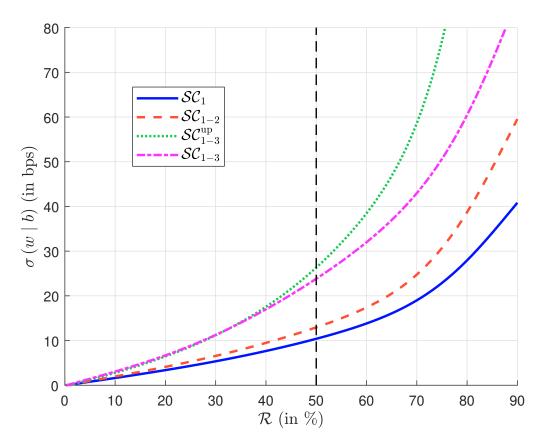
Barahhou et al. (2022) consider the basic optimization problem:

What is the impact of constraints $\Omega_0 \cap \Omega$?

Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

Figure 90: Impact of the carbon scope on the tracking error volatility (MSCI World, June 2022, C_0 constraint)



Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

Table 82: Sector allocation in % (MSCI World, June 2022, scope \mathcal{SC}_{1-3})

Sector	Index	Reduction rate \mathcal{R}								
Sector	Index	30%	40%	50%	60%	70%	80%	90%		
Communication Services	7.58	7.95	8.15	8.42	8.78	9.34	10.13	12.27		
Consumer Discretionary	10.56	10.69	10.69	10.65	10.52	10.23	9.62	6.74		
Consumer Staples	7.80	7.80	7.69	7.48	7.11	6.35	5.03	1.77		
Energy	4.99	4.14	3.65	3.10	2.45	1.50	0.49	0.00		
Financials	13.56	14.53	15.17	15.94	16.90	18.39	20.55	28.62		
Health Care	14.15	14.74	15.09	15.50	16.00	16.78	17.77	17.69		
Industrials	9.90	9.28	9.01	8.71	8.36	7.79	7.21	6.03		
Information Technology	21.08	21.68	22.03	22.39	22.88	23.51	24.12	24.02		
Materials	4.28	3.78	3.46	3.06	2.56	1.85	1.14	0.24		
Real Estate	2.90	3.12	3.27	3.41	3.57	3.72	3.71	2.51		
Utilities	3.21	2.28	1.79	1.36	0.90	0.54	0.24	0.12		

Source: MSCI (2022), Trucost (2022) & Barahhou *et al.* (2022)

Portfolio decarbonization = strategy long on Financials and short on

Energy, Materials and Utilities

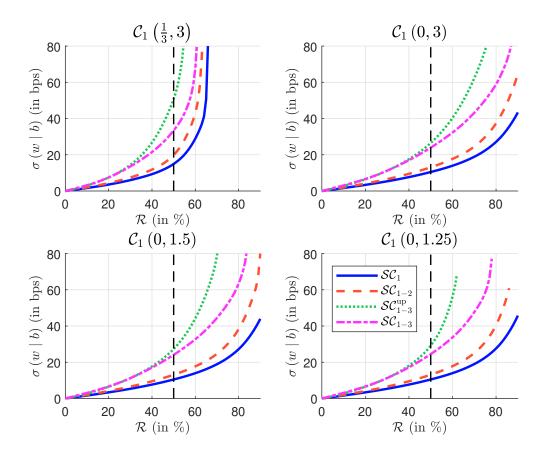
Course 2023-2024 in Portfolio Allocation and Asset Management

1060 / 1420

Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

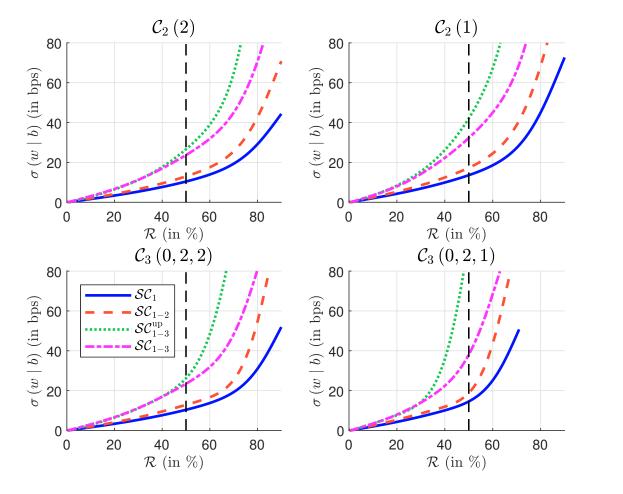
Figure 91: Impact of C_1 constraint on the tracking error volatility (MSCI World, June 2022)



Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

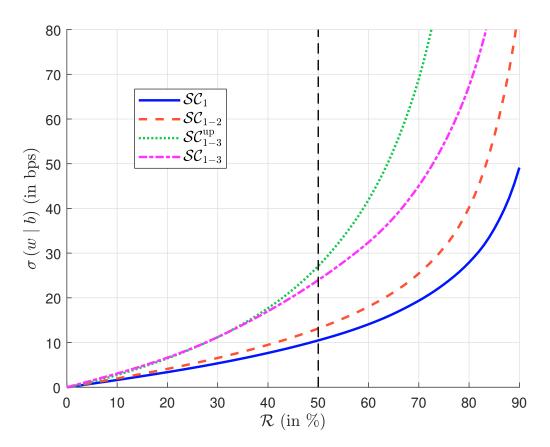
Figure 92: Impact of C_2 and C_3 constraints (MSCI World, June 2022)



Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

Figure 93: Tracking error volatility with $C_3(0, 10, 2)$ constraint (MSCI World, June 2022)



Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

First approach

• The carbon footprint contribution of the *m* worst performing assets is:

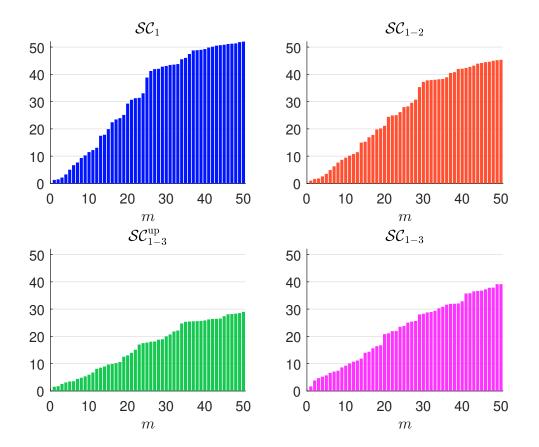
$$CFC^{(m,n)} = \frac{\sum_{i=1}^{n} \mathbb{1}\left\{C\mathcal{I}_{i} \geq C\mathcal{I}^{(m,n)}\right\} \cdot b_{i}C\mathcal{I}_{i}}{CI(b)}$$

where $\mathcal{CI}^{(m,n)} = \mathcal{CI}_{n-m+1:n}$ is the (n-m+1)-th order statistic

Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

Figure 94: Carbon footprint contribution $CFC^{(m,n)}$ in % (MSCI World, June 2022, first approach)



Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

Second approach

• Another definition:

$$CFC^{(m,n)} = \frac{\sum_{i=1}^{n} \mathbb{1}\left\{CIC_{i} \geq CIC^{(m,n)}\right\} \cdot b_{i}CI_{i}}{CI(b)}$$

where
$$\mathcal{CIC}_i = b_i \mathcal{CI}_i$$
 and $\mathcal{CIC}^{(m,n)} = \mathcal{CIC}_{n-m+1:n}$

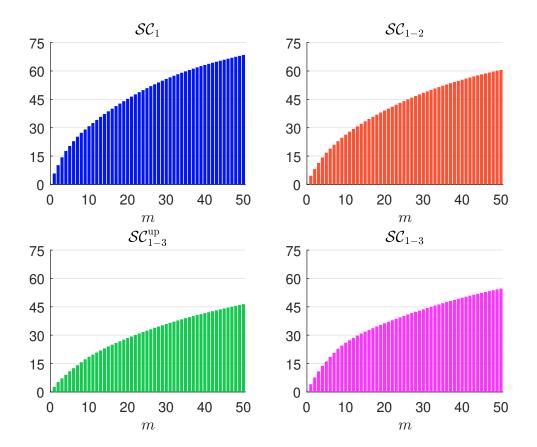
• Weight contribution:

$$\mathcal{WC}^{(m,n)} = \sum_{i=1}^{n} \mathbb{1}\left\{\mathcal{CIC}_{i} \geq \mathcal{CIC}^{(m,n)}\right\} \cdot b_{i}$$

Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

Figure 95: Carbon footprint contribution $CFC^{(m,n)}$ in % (MSCI World, June 2022, second approach)



Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

Table 83: Carbon footprint contribution $CFC^{(m,n)}$ in % (MSCI World, June 2022, second approach, SC_{1-3})

Sector					т			
Sector	1	5	10	25	50	75	100	200
Communication Services						0.44	0.44	0.73
Consumer Discretionary				0.78	1.37	2.44	2.93	4.28
Consumer Staples		2.46	2.46	2.46	3.75	4.44	4.92	5.62
Energy		9.61	17.35	23.78	29.56	31.78	33.02	33.89
Financials						0.72	1.53	1.88
Health Care							0.21	0.37
Industrials			2.16	5.59	7.13	8.70	9.48	13.05
Information Technology				0.98	1.58	1.94	2.15	3.30
Materials	4.08	4.08	4.08	5.81	7.31	8.81	9.59	10.75
Real Estate					0.77	0.77	0.77	0.85
Utilities				0.81	3.20	3.89	5.24	7.98
Total	4.08	16.15	26.06	40.21	54.66	63.94	70.29	82.70
	Course		(2022)	T	+ (2022) 0 1	haw'a aa	اما:ما

Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

Table 84: Weight contribution $WC^{(m,n)}$ in % (MSCI World, June 2022, second approach, SC_{1-3})

Sector	bj					т			
Sector	(in %)	1	5	10	25	50	75	100	200
Communication Services	7.58						0.08	0.08	3.03
Consumer Discretionary	10.56				0.58	1.79	2.44	4.51	5.89
Consumer Staples	7.80		0.70	0.70	0.70	1.90	2.50	2.84	3.84
Energy	4.99		1.71	2.25	2.96	3.62	3.99	4.33	4.65
Financials	13.56						0.74	1.17	2.33
Health Care	14.15							0.95	1.34
Industrials	9.90			0.06	0.32	0.70	0.96	1.20	4.12
Information Technology	21.08				0.16	4.70	8.42	8.78	11.62
Materials	4.28	0.29	0.29	0.29	0.47	0.88	1.10	1.40	1.87
Real Estate	2.90					0.05	0.05	0.05	0.23
Utilities	3.21				0.31	0.86	1.04	1.31	2.33
Total		0.29	2.71	3.30	5.49	14.50	21.32	26.63	41.24

Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

• The order-statistic optimization problem is:

$$w^{\star} = \arg\min\frac{1}{2}(w-b)^{\top}\Sigma(w-b)$$

s.t.
$$\begin{cases} \mathbf{1}_{n}^{\top}w = 1\\ \mathbf{0}_{n} \le w \le w^{(m,n)} \end{cases}$$

where the upper bound $w^{(m,n)}$ is equal to $\mathbb{1}\left\{\mathcal{CI} < \mathcal{CI}^{(m,n)}\right\}$ for the first ordering approach and $\mathbb{1}\left\{\mathcal{CIC} < \mathcal{CIC}^{(m,n)}\right\}$ for the second ordering approach

Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

• The naive method is:

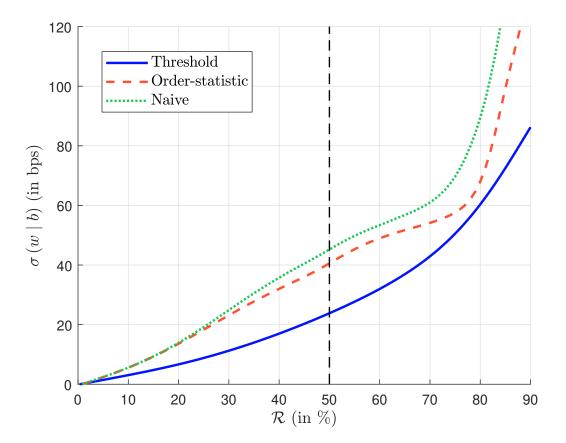
$$w_i^{\star} = \frac{e_i b_i}{\sum_{k=1}^n e_k b_k}$$

where e_i is defined as $\mathbb{1}\left\{\mathcal{CI}_i < \mathcal{CI}^{(m,n)}\right\}$ for the first ordering approach and $\mathbb{1}\left\{\mathcal{CIC}_i < \mathcal{CIC}^{(m,n)}\right\}$ for the second ordering approach

Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

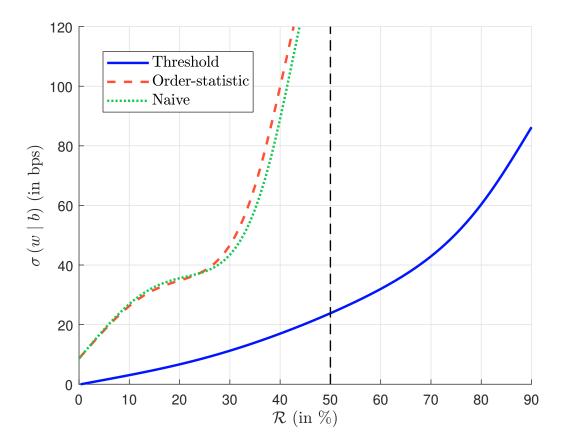
Figure 96: Tracking error volatility (MSCI World, June 2022, SC_{1-3} , first ordering method)



Equity and bond portfolios Sector-specific constraints Empirical results

Equity portfolios

Figure 97: Tracking error volatility (MSCI World, June 2022, SC_{1-3} , second ordering method)



Equity and bond portfolios Sector-specific constraints Empirical results

Bond portfolios

The optimization problem is:

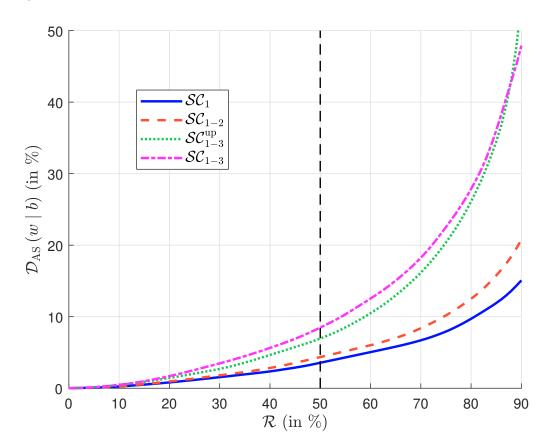
$$w^{\star} = \arg\min\frac{1}{2}\sum_{i=1}^{n}|w_{i}-b_{i}| + 50\sum_{j=1}^{n_{\mathcal{S}ector}}\left|\sum_{i\in\mathcal{S}ector_{j}}(w_{i}-b_{i})\mathrm{DTS}_{i}\right|$$

s.t.
$$\begin{cases} \mathcal{CI}(w) \leq (1-\mathcal{R})\mathcal{CI}(b)\\ w \in \mathcal{C}_{0} \cap \mathcal{C}_{1}^{\prime} \cap \mathcal{C}_{3}^{\prime} \cap \mathcal{C}_{4}^{\prime} \end{cases}$$

Equity and bond portfolios Sector-specific constraints Empirical results

Bond portfolios

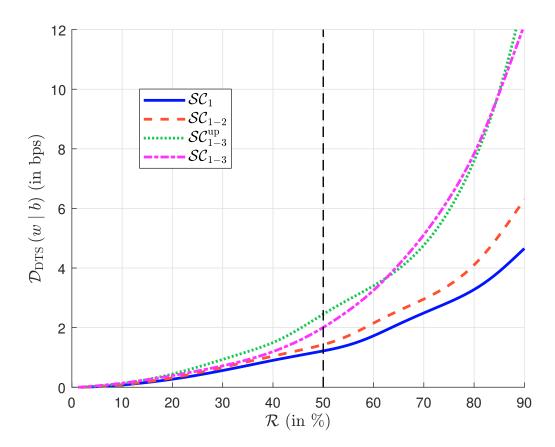
Figure 98: Impact of the carbon scope on the active share in % (ICE Global Corp., June 2022)



Equity and bond portfolios Sector-specific constraints Empirical results

Bond portfolios

Figure 99: Impact of the carbon scope on the DTS risk in bps (ICE Global Corp., June 2022)



Equity and bond portfolios Sector-specific constraints Empirical results

Bond portfolios

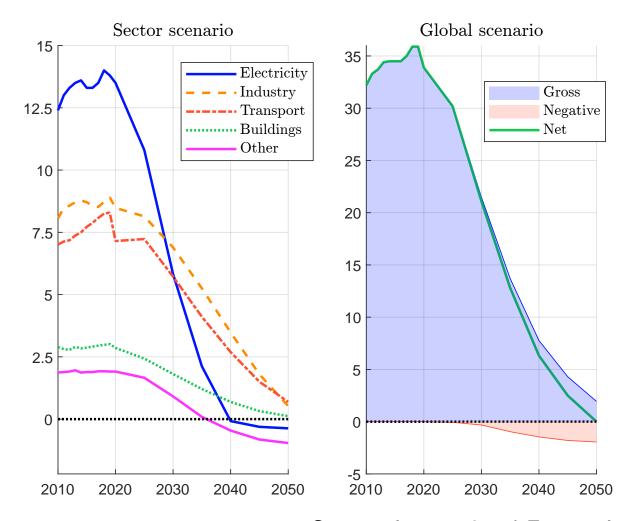
Table 85: Sector allocation in % (ICE Global Corp., June 2022, scope \mathcal{SC}_{1-3})

Sector	Index			Redi	iction ra	te ${\cal R}$		
Sector	Index	30%	40%	50%	60%	70%	80%	90%
Communication Services	7.34	7.35	7.34	7.37	7.43	7.43	7.31	7.30
Consumer Discretionary	5.97	5.97	5.96	5.94	5.93	5.46	4.48	3.55
Consumer Staples	6.04	6.04	6.04	6.04	6.04	6.02	5.39	4.06
Energy	6.49	5.49	4.42	3.84	3.69	3.23	2.58	2.52
Financials	33.91	34.64	35.66	35.96	36.09	37.36	38.86	39.00
Health Care	7.50	7.50	7.50	7.50	7.50	7.50	7.52	7.48
Industrials	8.92	9.38	9.62	10.19	11.34	12.07	13.55	18.13
Information Technology	5.57	5.57	5.59	5.59	5.60	5.60	5.52	5.27
Materials	3.44	3.43	3.31	3.18	3.12	2.64	2.25	1.86
Real Estate	4.76	4.74	4.74	4.74	4.74	4.66	4.61	3.93
Utilities	10.06	9.89	9.82	9.64	8.52	8.04	7.92	6.88

Integrated approach Core satellite approach

Choice of the decarbonization scenario

Figure 100: CO₂ emissions by sector in the IEA NZE scenario (in $GtCO_2e$)



Source: International Energy Agency (2021) Course 2023-2024 in Portfolio Allocation and Asset Management

1078 / 1420

Integrated approach Core satellite approach

The carbon emissions/intensity approach

A decarbonization scenario is defined as a function that relates a decarbonization rate to a time index t:

$$egin{array}{ccc} &\colon & \mathbb{R}^+ \longrightarrow [0,1] \ && t \longmapsto \mathcal{R}\left(t_0,t
ight) \end{array}$$

where t_0 is the base year and $\mathcal{R}(t_0, t_0^-) = 0$

Two choices

Carbon emissions

$$\mathcal{CE}\left(t
ight)=\left(1-\mathcal{R}\left(t_{0},t
ight)
ight)\mathcal{CE}\left(t_{0}
ight)$$

Our Carbon intensity (CTB/PAB)

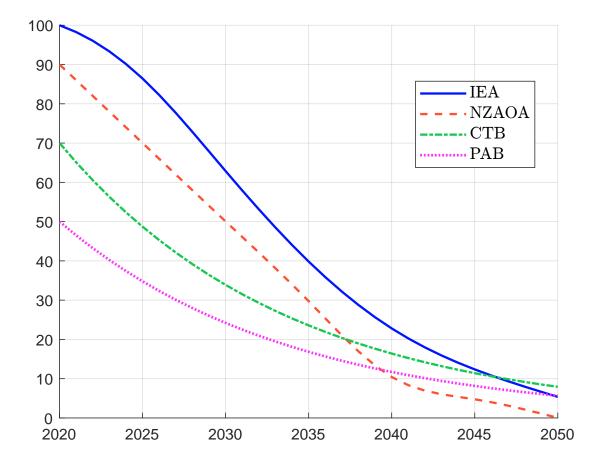
$$\mathcal{CI}\left(t
ight)=\left(1-\Delta\mathcal{R}
ight)^{t-t_{0}}\left(1-\mathcal{R}^{-}
ight)\mathcal{CI}\left(t_{0}
ight)$$

where $\Delta \mathcal{R} = 7\%$ and \mathcal{R}^- takes the values 30%/50% (CTB/PAB)

Integrated approach Core satellite approach

The carbon emissions/intensity approach

Figure 101: IEA, NZAOA, CTB and PAB decarbonization pathways



IEA = International Energy Agency, NZAOA = Net Zero Asset Owners Alliance, CTB

= Climate Transition Benchmark, PAB = Paris Aligned Benchmark

Integrated approach Core satellite approach

The carbon emissions/intensity approach

Table 86: IEA, NZAOA, CTB and PAB decarbonization rates (baseline = 2020)

Year	СТВ	PAB	NZE	NZAOA
\mathcal{R}^-	30%	50%	IEA	Average
$\Delta \mathcal{R}$	7%	7%	Scenario	Scenario
2020	30.0%	50.0%	0.0%	10.0%
2021	34.9%	53.5%	1.7%	14.0%
2022	39.5%	56.8%	3.9%	18.0%
2023	43.7%	59.8%	6.7%	22.0%
2024	47.6%	62.6%	9.9%	26.0%
2025	51.3%	65.2%	13.6%	30.0%
2026	54.7%	67.7%	17.8%	34.0%
2027	57.9%	69.9%	22.3%	38.0%
2028	60.8%	72.0%	27.2%	42.0%
2029	63.6%	74.0%	32.1%	46.0%
2030	66.1%	75.8%	37.1%	50.0%
2035	76.4%	83.2%	60.2%	70.3%
2040	83.6%	88.3%	77.2%	89.6%
2045	88.6%	91.9%	87.6%	95.2%
2050	92.1%	94.3%	94.6%	100.0%

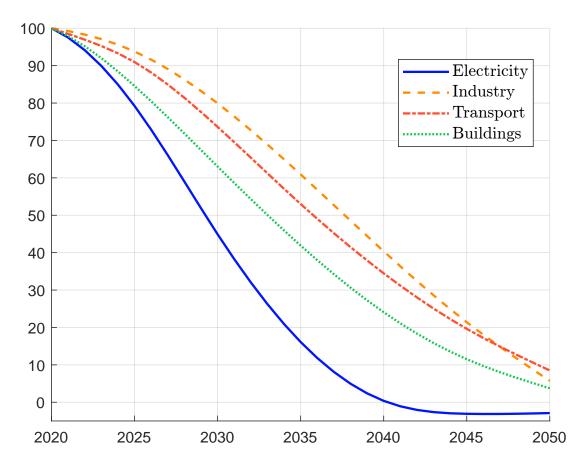
Source: Ben Slimane *et al.* (2023).

Course 2023-2024 in Portfolio Allocation and Asset Management

Integrated approach Core satellite approach

The carbon emissions/intensity approach

Figure 102: Sectoral decarbonization pathways



 $Electricity \succ Buildings \succ Transport \succ Industry$

Integrated approach Core satellite approach

The carbon budget approach

A NZE scenario is defined by the following constraints:

 $\begin{cases} \mathcal{CB}(t_0, 2050) \leq \mathcal{CB}^+ \text{ GtCO}_2 e \\ \mathcal{CE}(2050) \approx 0 \text{ GtCO}_2 e \end{cases}$

where t_0 is the base date and CB^+ is the maximum carbon budget

IPCC SR15

- $t_0 = 2019$ and $CB^+ = 580 \,\mathrm{GtCO}_2\mathrm{e}$: there is a 50% probability of limiting the global warning to $1.5^{\circ}\mathrm{C}$
- $t_0 = 2019$ and $CB^+ = 420 \,\mathrm{GtCO}_2 e$: the probability is 66%
- $t_0 = 2019$ and $CB^+ = 300 \,\mathrm{GtCO}_2\mathrm{e}$: the probability is 83%

Integrated approach Core satellite approach

The carbon budget approach

If we have:

$$\mathcal{CE}\left(t
ight)=\left(1-\Delta\mathcal{R}
ight)^{t-t_{0}}\left(1-\mathcal{R}^{-}
ight)\mathcal{CE}\left(t_{0}
ight)$$

we obtain:

$$\mathcal{CB}\left(t_{0},t
ight)=\left(rac{\left(1-\Delta\mathcal{R}
ight)^{t-t_{0}}-1}{\ln\left(1-\Delta\mathcal{R}
ight)}
ight)\left(1-\mathcal{R}^{-}
ight)\mathcal{CE}\left(t_{0}
ight)$$

Table 87: Carbon budget CB (2020, 2050) (in GtCO₂e) when defining the decarbonization pathway of carbon emissions and assuming that CE (2020) = 36 GtCO₂e

\mathcal{R}	,	0%	10%	20%	30%	50%	75%
	5%	551	496	441	386	276	138
	6%	491	442	393	344	245	123
$\Delta \mathcal{R}$	7%	440	396	352	308	220	110
$\Delta \mathbf{K}$	8%	396	357	317	277	198	99
	9%	359	323	287	251		90
	10%	327	294	262	229	164	82

Integrated approach Core satellite approach

Dynamic decarbonization and portfolio alignment

We have:

$$\mathcal{CI}(t,w) \leq \left(1 - \mathcal{R}(t_0,t)\right) \mathcal{CI}(t_0,b(t_0))$$

where:

- *t*⁰ is the base year
- $\mathcal{R}(t_0, t)$ is the decarbonization pathway of the NZE scenario
- $\mathcal{CI}(t_0, b(t_0))$ is the carbon intensity of the benchmark at time t_0

Dynamic decarbonization and portfolio alignment

Some properties:

• Decarbonizing the aligned portfolio becomes easier over time as the benchmark decarbonizes itself:

$$\mathcal{CI}(t, b(t)) \ll \mathcal{CI}(t_0, b(t_0))$$
 for $t > t_0$

• Decarbonizing the aligned portfolio becomes more difficult over time as the benchmark carbonizes itself:

$$\mathcal{CI}(t, b(t)) \gg \mathcal{CI}(t_0, b(t_0))$$
 for $t > t_0$

• The aligned portfolio matches the benchmark portfolio if the benchmark is sufficiently decarbonized:

$$\mathcal{CI}\left(t,b\left(t
ight)
ight)\leq\left(1-\mathcal{R}\left(t_{0},t
ight)
ight)\mathcal{CI}\left(t_{0},b\left(t_{0}
ight)
ight)$$

Integrated approach Core satellite approach

Equity portfolios

The optimization problem becomes:

$$egin{aligned} & w^{\star}\left(t
ight) &= & rg\minrac{1}{2}\left(w-b\left(t
ight)
ight)^{ op}\Sigma\left(t
ight)\left(w-b\left(t
ight)
ight) \ & \ ext{s.t.} & \left\{egin{aligned} & \mathcal{CI}\left(t,w
ight)\leq\left(1-\mathcal{R}\left(t_{0},t
ight)
ight)\mathcal{CI}\left(t_{0},b\left(t_{0}
ight)
ight) \ & w\in\Omega_{0}\cap\Omega \end{aligned}
ight. \end{aligned}$$

where:

- $\Omega_0 = C_0 = \{ w : \mathbf{1}_n^\top w = 1, \mathbf{0}_n \le w \le \mathbf{1}_n \}$ defines the long-only constraint
- Ω is the set of additional constraints

Integrated approach Core satellite approach

Equity portfolios

Example #7

We consider Example #5. We want to align the portfolio with respect to the CTB scenario. To compute the optimal portfolio $w^*(t)$ where $t = t_0 + h$ and h = 0, 1, 2, ... years, we assume that the benchmark b(t), the covariance matrix $\Sigma(t)$, and the vector $\mathcal{CI}(t)$ of carbon intensities do not change over time.

Integrated approach Core satellite approach

Equity portfolios

• First, we compute the mapping function between the time t and the decarbonization rate $\mathcal{R}(t_0, t)$:

$$\mathcal{R}\left(t_{0},t
ight)=1-\left(1-30\%
ight) imes\left(1-7\%
ight)^{h}$$

We get $\mathcal{R}(t_0, t_0) = 30\%$, $\mathcal{R}(t_0, t_0 + 1) = 34.90\%$, $\mathcal{R}(t_0, t_0 + 2) = 39.46\%$, and so on

Second, we solve the optimization problem for the different values of time t

Integrated approach Core satellite approach

Equity portfolios

Table 88: Equity portfolio alignment (Example #7)

t	$b(t_0)$	t_0	$t_0 + 1$	$t_0 + 2$	$t_0 + 3$	$t_0 + 4$	$t_0 + 5$	$t_0 + 10$
w_1^{\star}	20.00	21.86	22.21	22.54	22.84	23.02	22.92	8.81
w_2^{\star}	19.00	18.70	18.41	18.15	17.90	17.58	17.04	0.00
W3*	17.00	8.06	5.69	3.48	1.43	0.00	0.00	0.00
w_4^{\star}	13.00	8.74	7.66	6.65	5.72	4.56	2.70	0.00
W_5^{\star}	12.00	13.07	13.29	13.51	13.70	13.91	14.18	21.22
W_6^{\star}	8.00	22.57	25.59	28.39	31.00	33.39	35.54	62.31
W7*	6.00	7.00	7.15	7.29	7.42	7.53	7.63	7.66
W ₈ *	5.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\overline{\sigma}(w^{\star} \overline{b}(t))$		104.10	126.22	147.14	166.79	185.24	203.51	352.42
$\mathcal{CI}(t,w)$	160.57	112.40	104.53	97.22	90.41	84.08	78.20	54.40
$\mathcal{R}\left(w \mid b\left(t_{0}\right) ight)$	0.00	30.00	34.90	39.46	43.70	47.64	51.30	66.12

The reduction rate and weights are expressed in %, while the tracking error volatility is measured in bps.

Integrated approach Core satellite approach

Bond portfolios

For bonds, the tracking error volatility is replaced by the active risk function:

$$\mathcal{D}(w \mid b) = \varphi \underbrace{\sum_{s=1}^{n_{\mathcal{S}ector}} \left| \sum_{i \in s} (w_i - b_i) \operatorname{DTS}_i \right|}_{\text{DTS component}} + \underbrace{\frac{1}{2} \sum_{i \in b} |w_i - b_i|}_{\text{AS component}} + \underbrace{\mathbb{1}_{\Omega_{\text{MD}}}(w)}_{\text{MD component}}$$

where:

- DTS_i and MD_i are the duration-times-spread and modified duration factors
- $\Omega_{\mathrm{MD}} = \left\{ w : \sum_{i=1}^{n} \left(w_i b_i \right) \mathrm{MD}_i = 0 \right\}$
- $\mathbb{1}_{\Omega}(w)$ is the convex indicator function

Integrated approach Core satellite approach

Bond portfolios

The optimization problem becomes then:

Integrated approach Core satellite approach

Bond portfolios

Example #8

We consider Example #6. We want to align the portfolio with respect to the CTB scenario. To compute the optimal portfolio $w^*(t)$ where $t = t_0 + h$ and h = 0, 1, 2, ... years, we assume that the benchmark, the modified duration and the duration-times-spread factors do not change over time.

Integrated approach Core satellite approach

Bond portfolios

The corresponding LP problem is:

$$x^{\star} = \arg\min c^{\top} x$$

s.t.
$$\begin{cases} Ax = B \\ Cx \le D \\ x^{-} \le x \le x^{-1} \end{cases}$$

where:

•
$$x = (w, au_w, au_{ ext{DTS}})$$
 is a $18 imes 1$ vector

- The 18 × 1 vector *c* is equal to $\left(\mathbf{0}_{8}, \frac{1}{2}\mathbf{1}_{8}, \varphi \mathbf{1}_{2}\right)$
- The equality constraint includes the convex indicator function $\mathbbm{1}_{\Omega_{\mathrm{MD}}}(w)$ and is defined by:

$$Ax = B \Leftrightarrow \begin{pmatrix} \mathbf{1}_8^\top & \mathbf{0}_8^\top & \mathbf{0}_2^\top \\ \mathrm{MD}^\top & \mathbf{0}_8^\top & \mathbf{0}_2^\top \end{pmatrix} x = \begin{pmatrix} 1 \\ 5.476 \end{pmatrix}$$

Integrated approach Core satellite approach

Bond portfolios

• The inequality constraints are:

$$Cx \leq D \Leftrightarrow egin{pmatrix} & I_8 & -I_8 & \mathbf{0}_{8,2} \ & -I_8 & -I_8 & \mathbf{0}_{8,2} \ & C_{\mathrm{DTS}} & \mathbf{0}_{2,8} & -I_2 \ & -C_{\mathrm{DTS}} & \mathbf{0}_{2,8} & -I_2 \ & -C_{\mathrm{DTS}} & \mathbf{0}_{2,8} & -I_2 \ & \mathcal{C}\mathcal{I}\left(t
ight)^{ op} & \mathbf{0}_{1,8} & 0 \ \end{pmatrix} x \leq egin{pmatrix} & b \ & -b \ & 192.68 \ & -192.68 \ & -192.68 \ & -108.37 \ & 160.574 imes \left(1 - \mathcal{R}\left(t_0, t
ight)
ight) \end{pmatrix}$$

where:

$$C_{\rm DTS} = \left(\begin{array}{rrrrr} 100 & 0 & 575 & 436 & 0 & 0 & 0 & 365 \\ 0 & 155 & 0 & 0 & 159 & 145 & 804 & 0 \end{array}\right)$$

• Finally, the bounds are $x^- = \mathbf{0}_{18}$ and $x^+ = \infty \cdot \mathbf{1}_{18}$

Integrated approach Core satellite approach

Bond portfolios

Table 89: Bond portfolio alignment (Example #8)

t	$b(t_0)$	t_0	$t_0 + 1$	$t_0 + 2$	$t_0 + 3$	$t_0 + 4$	$t_0 + 5$	$t_0 + 10$
w_1^{\star}	20.00	20.00	20.00	20.00	13.98	17.64	16.02	5.02
W_2^{\star}	19.00	13.99	17.79	19.00	19.00	19.00	19.00	19.00
W3*	17.00	25.43	20.96	17.78	17.00	13.64	11.65	4.61
W_4^{\star}	13.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W_5^{\star}	12.00	28.97	30.71	35.84	43.52	48.80	53.33	71.37
W_6^{\star}	8.00	8.00	8.00	5.67	6.46	0.92	0.00	0.00
W7*	6.00	3.61	2.53	1.70	0.04	0.00	0.00	0.00
W_8^{\star}	5.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\bar{AS}(\bar{w})$	0.00	25.40	22.68	24.62	31.52	36.80	41.33	59.37
MD(w)	5.48	5.48	5.48	5.48	5.48	5.48	5.48	5.48
DTS(w)	301.05	274.61	248.91	230.60	220.10	204.46	197.26	174.46
$\mathcal{D}\left(w\mid b ight)$	0.00	0.39	0.49	0.60	0.72	0.85	0.99	1.57
$\mathcal{CI}(w)$	160.57	112.40	104.53	97.22	90.41	84.08	78.20	54.40
$\mathcal{R}(w \mid b)$	0.00	30.00	34.90	39.46	43.70	47.64	51.30	66.12

The reduction rate, weights, and active share metrics are expressed in %, the MD metrics are measured in years, and the DTS metrics are calculated in bps.

Integrated approach Core satellite approach

Defining a net-zero investment policy

General framework

The set of constraints to be applied must include the transition dimension:

 $\Omega = \Omega_{\text{alignment}} \cap \Omega_{\text{transition}}$

where:

$$\Omega_{\mathsf{alignment}} = \left\{ \textit{w}: \mathcal{CI}\left(t,\textit{w}
ight) \leq \left(1 - \mathcal{R}\left(t_{0},t
ight)
ight) \mathcal{CI}\left(t_{0},b\left(t_{0}
ight)
ight)
ight\}$$

and:

$$\Omega_{\text{transition}} = \Omega_{\text{self-decarbonization}} \cap \Omega_{\text{greenness}} \cap \Omega_{\text{exclusion}}$$

Integrated approach Core satellite approach

Self-decarbonization and endogeneity of the decarbonization pathway

	Bad case	Mixed case	Good case
Effective decarbonization			
at the beginning of the year <i>t</i>	30%	30%	30%
at the end of the year <i>t</i>	25%	33%	36%
Self-decarbonization		3%	6%
Relabancing requirement	10%	2%	0%

We can specify the self-decarbonization constraint as follows:

$$\Omega_{\mathsf{self} ext{-decarbonization}} = \left\{ w: \mathcal{CM}\left(t,w
ight) \leq \mathcal{CM}^{\star}\left(t
ight)
ight\}$$

where:

- $\mathcal{CM}(t, w)$ is the carbon momentum of the portfolio w at time t
- $\mathcal{CM}^{\star}(t)$ is the self-decarbonization minimum threshold

Integrated approach Core satellite approach

Green footprint

The greenness constraint can be written as follows:

$$\Omega_{ ext{greenness}} = \left\{ w : \mathcal{GI}(t, w) \geq \mathcal{GI}^{\star}(t)
ight\}$$

where:

- $\mathcal{GI}(t, w)$ is the green intensity of the portfolio w at time t
- $\mathcal{GI}^{\star}(t)$ is the minimum threshold

Remark

In general, the absolute measure $\mathcal{GI}^{\star}(t)$ is expressed as a relative value with respect to the benchmark:

$$\mathcal{GI}^{\star}\left(t
ight)=\left(1+\mathcal{G}
ight)\mathcal{GI}\left(t,b\left(t
ight)
ight)$$

where \mathcal{G} is the minimum growth value. For example, if $\mathcal{G} = 100\%$, we want to improve the green footprint of the benchmark so that the green intensity of the portfolio is at least twice the green intensity of the benchmark

1420

Integrated approach Core satellite approach

Net-zero exclusion policy

- Net-zero enemies
- Temperature score (Implied Temperature Rating or ITR)
- Barahhou *et al.* (2022) suggest excluding issuers whose carbon momentum is greater than a threshold CM^+ :

$$\Omega_{\text{exclusion}} = \left\{ w : \mathcal{CM}_i \geq \mathcal{CM}^+ \Rightarrow w_i = 0 \right\}$$

Integrated approach Core satellite approach

Equity portfolios

The optimization problem becomes:

$$w^{*}(t) = \arg \min \frac{1}{2} (w - b(t))^{\top} \Sigma(t) (w - b(t))$$

s.t.
$$\begin{cases} \mathcal{CI}(t, w) \leq (1 - \mathcal{R}(t_{0}, t)) \mathcal{CI}(t_{0}, b(t_{0})) & \leftarrow \text{Alignment} \\ \mathcal{CM}(t, w) \leq \mathcal{CM}^{*}(t) & \leftarrow \text{Self-decarbonization} \\ \mathcal{GI}(t, w) \geq (1 + \mathcal{G}) \mathcal{GI}(t, b(t)) & \leftarrow \text{Greenness} \\ 0 \leq w_{i} \leq \mathbb{1} \{ \mathcal{CM}_{i}(t) \leq \mathcal{CM}^{+} \} & \leftarrow \text{Exclusion} \\ w \in \Omega_{0} \cap \Omega & \leftarrow \text{Other constraints} \end{cases}$$

Integrated approach Core satellite approach

Equity portfolios

We deduce that the quadratic form is $Q = \Sigma(t)$, $R = \Sigma(t) b(t)$, $A = \mathbf{1}_n^{\top}$, B = 1, $w^- = \mathbf{0}_n$, $w^+ = \mathbf{1} \{ \mathcal{CM}(t) \leq \mathcal{CM}^+ \}$.

• If we assume that the carbon momentum function is a linear function:

$$\mathcal{CM}\left(t,w
ight)=w^{ op}\mathcal{CM}\left(t
ight)=\sum_{i=1}^{n}w_{i}\mathcal{CM}_{i}\left(t
ight)$$

where $\mathcal{CM}(t) = (\mathcal{CM}_1(t), \dots, \mathcal{CM}_n(t))$ is the carbon momentum vector, we get:

$$\mathcal{C} w \leq D \Leftrightarrow \left(egin{array}{c} \mathcal{C} \mathcal{I}\left(t
ight)^{ op} \ \mathcal{C} \mathcal{M}\left(t
ight)^{ op} \ -\mathcal{G} \mathcal{I}\left(t
ight)^{ op} \end{array}
ight) w \leq \left(egin{array}{c} \left(1-\mathcal{R}\left(t_{0},t
ight) \mathcal{C} \mathcal{I}\left(t_{0},b\left(t_{0}
ight)
ight) \ \mathcal{C} \mathcal{I}\left(t_{0},b\left(t_{0}
ight)
ight) \ -\mathcal{C} \mathcal{M}^{\star}\left(t
ight) \ -\mathcal{G} \mathcal{I}\left(t
ight) \mathcal{C} \mathcal{I}\left(t,b\left(t
ight)
ight)
ight)
ight)$$

Integrated approach Core satellite approach

Equity portfolios

• If we use an exact calculation of the carbon momentum at the portfolio level, we get:

$$\mathcal{C} w \leq D \Leftrightarrow \left(egin{array}{c} \mathcal{C} \mathcal{I}\left(t
ight)^{ op} \ \zeta^{ op} \ -\mathcal{G} \mathcal{I}\left(t
ight)^{ op} \end{array}
ight) w \leq \left(egin{array}{c} \left(1 - \mathcal{R}\left(t_{0},t
ight)
ight) \mathcal{C} \mathcal{I}\left(t_{0},b\left(t_{0}
ight)
ight) \ 0 \ -\left(1 + \mathcal{G}
ight) \mathcal{G} \mathcal{I}\left(t,b\left(t
ight)
ight) \end{array}
ight)$$

where $\zeta = (\zeta_1, \ldots, \zeta_n)$ and $\zeta_i = \mathcal{CI}_i(t) (\mathcal{CM}_i(t) - \mathcal{CM}^{\star}(t))$

Integrated approach Core satellite approach

Equity portfolios

Example #9

We consider Example #7. The carbon momentum values are equal to -3.1%, -1.2%, -5.8%, -1.4%, +7.4%, -2.6%, +1.2%, and -8.0%. We measure the green intensity by the green revenue share. Its values are equal to 10.2%, 45.3%, 7.5%, 0%, 0%, 35.6%, 17.8% and 3.0%. The net-zero investment policy imposes to follow the CTB decarbonization pathway with a self-decarbonization of 3%, and to improve the green intensity of the benchmark by 100%

Integrated approach Core satellite approach

Equity portfolios

Table 90: Net-zero equity portfolio (Example #9)

t	$b(t_0)$	t_0	$t_0 + 1$	$t_0 + 2$	$t_0 + 3$	$t_0 + 4$	$t_0 + 5 t_0 + 10$
w_1^{\star}	20.00	5.26	3.51	1.49	0.00	0.02	
w_2^{\star}	19.00	20.96	17.27	13.00	8.82	4.16	
<i>w</i> ₃ *	17.00	3.35	7.27	11.82	15.02	14.32	
w_4^{\star}	13.00	0.00	0.00	0.00	0.00	0.00	No feasible
w_5^{\star}	12.00	0.00	0.00	0.00	0.00	0.00	solution
w_6^{\star}	8.00	60.06	64.69	70.05	75.37	81.51	
W7*	6.00	0.00	0.00	0.00	0.00	0.00	
W_8^{\star}	5.00	10.37	7.25	3.64	0.79	0.00	
$\overline{\sigma}(w^{\star} \overline{b}(t))$	0.00	370.16	376.38	398.30	430.94	472.44	
$\mathcal{CI}(t,w)$	160.57	110.85	104.53	97.22	90.41	84.08	
$\mathcal{R}\left(w \mid b\left(t_{0}\right) ight)$	0.00	30.96	34.90	39.46	43.70	47.64	
$\mathcal{CM}(t,w)$	-1.66	-3.00	-3.00	-3.00	-3.00	-3.00	
$\mathcal{GI}(t,w)$	15.99	31.98	31.98	31.98	31.98	31.98	

The reduction rate, weights, carbon momentum and green intensity are expressed in %, while the tracking error volatility is measured in bps.

Integrated approach Core satellite approach

Bond portfolios

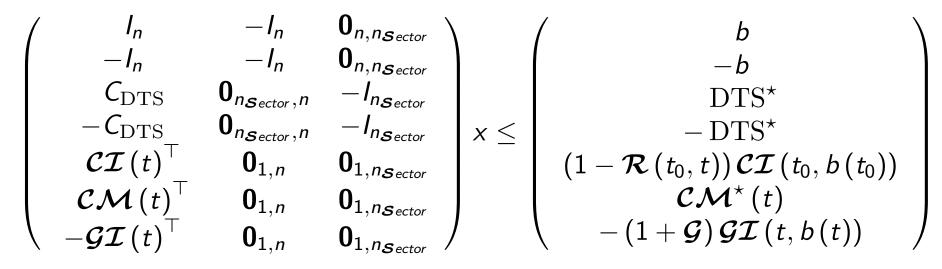
The optimization problem becomes:

$$w^{*}(t) = \arg \min \mathcal{D}(w \mid b(t))$$
s.t.
$$\begin{cases}
\mathcal{CI}(t, w) \leq (1 - \mathcal{R}(t_{0}, t))\mathcal{CI}(t_{0}, b(t_{0})) & \leftarrow \text{Alignment} \\
\mathcal{CM}(t, w) \leq \mathcal{CM}^{*}(t) & \leftarrow \text{Self-decarbonization} \\
\mathcal{GI}(t, w) \geq (1 + \mathcal{G})\mathcal{GI}(t, b(t)) & \leftarrow \text{Greenness} \\
0 \leq w_{i} \leq \mathbb{1}\left\{\mathcal{CM}_{i}(t) \leq \mathcal{CM}^{+}\right\} & \leftarrow \text{Exclusion} \\
w \in \Omega_{0} \cap \Omega & \leftarrow \text{Other constraints}
\end{cases}$$

Integrated approach Core satellite approach

Bond portfolios

We get the same LP form except for the set of inequality constraints $Cx \leq D$:



and the upper bound:

$$x^{+} = \left(\mathbb{1}\left\{\mathcal{CM}\left(t\right) \leq \mathcal{CM}^{+}\right\}, \infty \cdot \mathbf{1}_{n}, \infty \cdot \mathbf{1}_{n_{\mathcal{S}ector}}\right)$$

Integrated approach Core satellite approach

Bond portfolios

Example #10

We consider Example #8. The carbon momentum values are equal to -3.1%, -1.2%, -5.8%, -1.4%, +7.4%, -2.6%, +1.2%, and -8.0%. We measure the green intensity by the green revenue share. Its values are equal to 10.2%, 45.3%, 7.5%, 0%, 0%, 35.6%, 17.8% and 3.0%. The net-zero investment policy imposes to follow the CTB decarbonization pathway with a self-decarbonization of 2%, and to improve the green intensity of the benchmark by 100%.

Integrated approach Core satellite approach

Bond portfolios

Table 91: Net-zero bond portfolio (Example #10)

t	$b(t_0)$	t_0	$t_0 + 1$	$t_0 + 2$	$t_0 + 3$	$t_0 + 4$	$t_0 + 5 t_0 + 10$
w_1^{\star}	20.00	4.28	13.80	20.48	26.34	19.02	
w_2^{\star}	19.00	34.78	38.94	42.72	46.23	49.01	
W3*	17.00	21.03	13.86	7.73	2.11	0.00	
W_4^{\star}	13.00	0.00	0.00	0.00	0.00	0.00	No feasible
w_5^{\star}	12.00	0.00	0.00	0.00	0.00	0.00	solution
w_6^{\star}	8.00	39.91	33.40	29.07	25.32	31.97	
W ₇ *	6.00	0.00	0.00	0.00	0.00	0.00	
W ₈ *	5.00	0.00	0.00	0.00	0.00	0.00	
$\overline{AS}(w)$	0.00	51.72	45.34	45.27	50.89	53.98	
MD(w)	5.48	5.48	5.48	5.48	5.48	5.48	
DTS(w)	301.05	236.99	202.30	173.29	146.83	141.34	
$\mathcal{D}(w \mid b)$	0.00	0.87	0.95	1.09	1.28	1.48	
$\mathcal{CI}(w)$	160.57	112.40	104.53	97.22	90.41	84.08	
$\mathcal{R}(w \mid b)$	0.00	30.00	34.90	39.46	43.70	47.64	
$\mathcal{CM}(t,w)$	-1.66	-2.81	-2.57	-2.35	-2.15	-2.01	
$\mathcal{GI}(t,w)$	15.99	31.98	31.98	32.37	32.80	35.52	

The reduction rate, weights, carbon momentum, green intensity and active share metrics

Thierry Roncalli

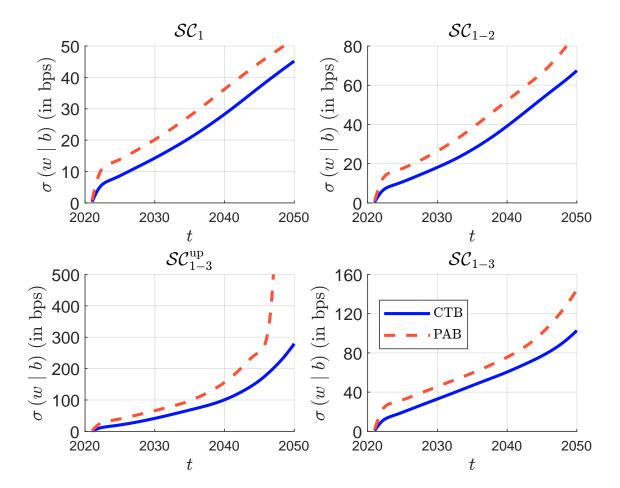
240

calculated in bps.

Integrated approach Core satellite approach

Empirical results

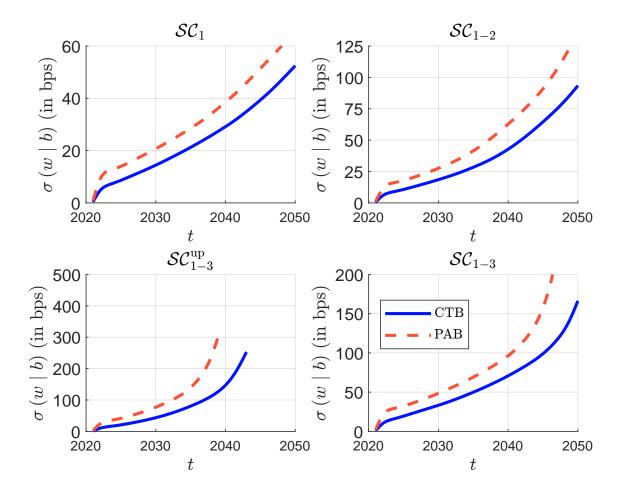
Figure 103: Tracking error volatility of dynamic decarbonized portfolios (MSCI World, June 2022, C_0 constraint)



Integrated approach Core satellite approach

Empirical results

Figure 104: Tracking error volatility of dynamic decarbonized portfolios (MSCI World, June 2022, $C_3(0, 10, 2)$ constraint)



Integrated approach Core satellite approach

Empirical results

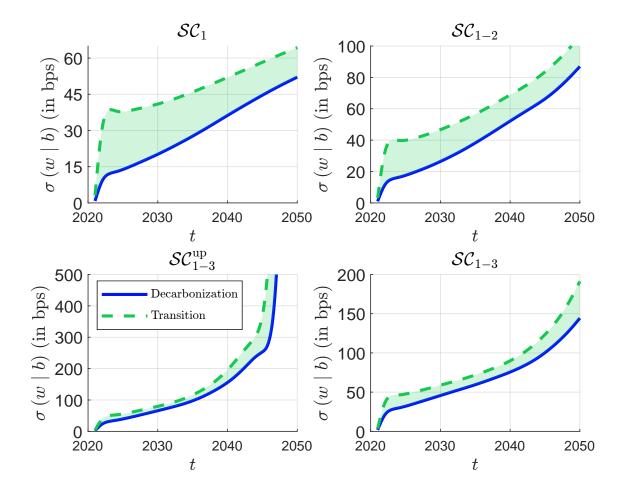
The previous analysis deals only with the decarbonization dimension. Barahhou *et al.* (2022) then introduced the transition dimension and solved the following optimization problem:

where $\mathcal{CM}^{\star}(t) = -5\%$ and $\mathcal{G} = 100\%$

Integrated approach Core satellite approach

Empirical results

Figure 105: Tracking error volatility of net-zero portfolios (MSCI World, June 2022, C_0 constraint, $\mathcal{G} = 100\%$, $\mathcal{CM}^* = -5\%$, PAB)

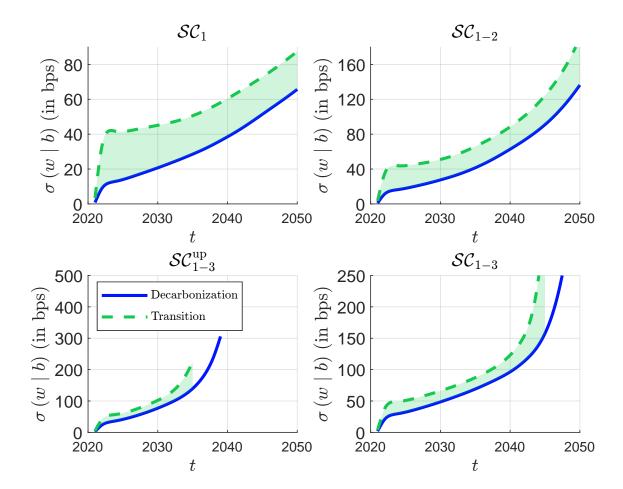


Source: MSCI (2022) Trucost (2022) & Barabbou et al. (2022) Course 2023-2024 in Portfolio Allocation and Asset Management 1113 / 1420

Integrated approach Core satellite approach

Empirical results

Figure 106: Tracking error volatility of net-zero portfolios (MSCI World, June 2022, $C_3(0, 10, 2)$ constraint, $\mathcal{G} = 100\%$, $\mathcal{CM}^* = -5\%$, PAB)

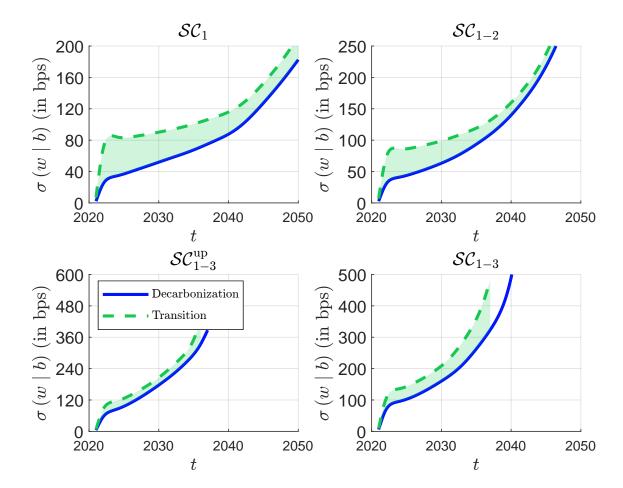


Thierry Roncalli

Integrated approach Core satellite approach

Empirical results

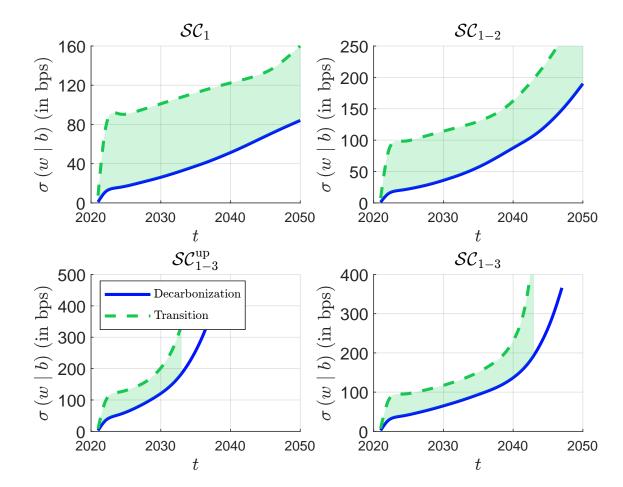
Figure 107: Tracking error volatility of net-zero portfolios (MSCI EMU, June 2022, $C_3(0, 10, 2)$ constraint, $\mathcal{G} = 100\%$, $\mathcal{CM}^* = -5\%$, PAB)



Integrated approach Core satellite approach

Empirical results

Figure 108: Tracking error volatility of net-zero portfolios (MSCI USA, Jun. 2022, $C_3(0, 10, 2)$ constraint, $\mathcal{G} = 100\%$, $\mathcal{CM}^* = -5\%$, PAB)

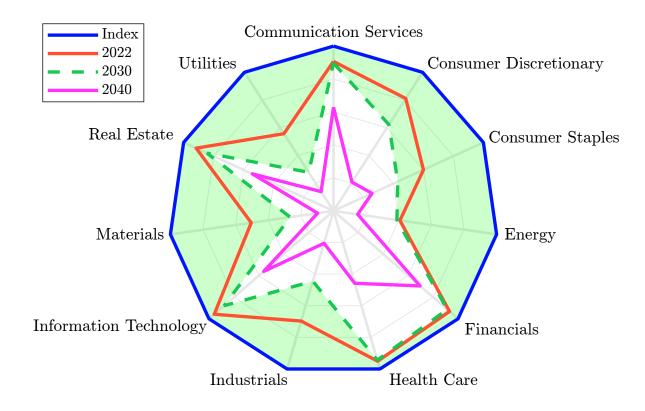


Thierry Roncalli

Integrated approach Core satellite approach

Empirical results

Figure 109: Radar chart of investment universe shrinkage (MSCI World, June 2022, $C_3(0, 10, 2)$ constraint, $\mathcal{G} = 100\%$, $\mathcal{CM}^* = -5\%$, PAB, Scope \mathcal{SC}_{1-3})

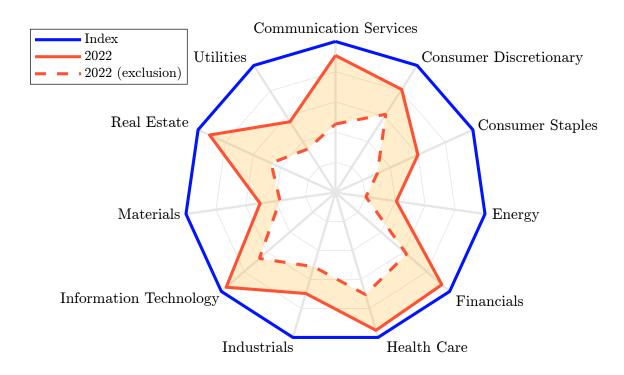


Source: MSCI (2022), Trucost (2022) & Barahhou et al. (2022).

Integrated approach Core satellite approach

Empirical results

Figure 110: Impact of momentum exclusion on universe shrinkage (MSCI World, June 2022, $C_3(0, 10, 2)$ constraint, $\mathcal{G} = 100\%$, $\mathcal{CM}^* = -5\%$, PAB, Scope \mathcal{SC}_{1-3} , $\mathcal{CM}^+ = 0\%$)

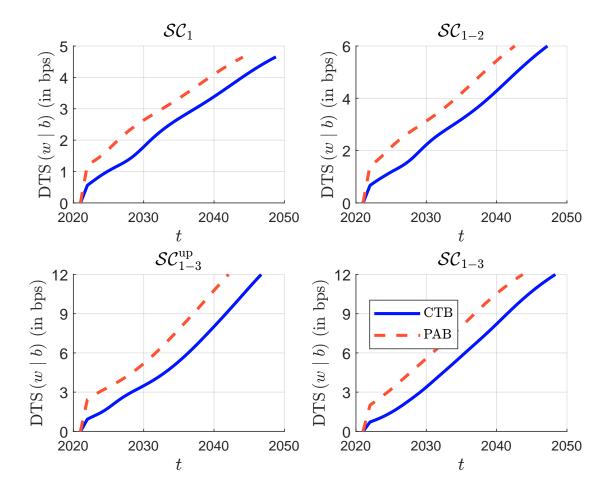


Source: MSCI (2022), Trucost (2022) & Barahhou et al. (2022).

Integrated approach Core satellite approach

Empirical results

Figure 111: Duration-times-spread cost of dynamically decarbonized portfolios (Global Corporate, June 2022)

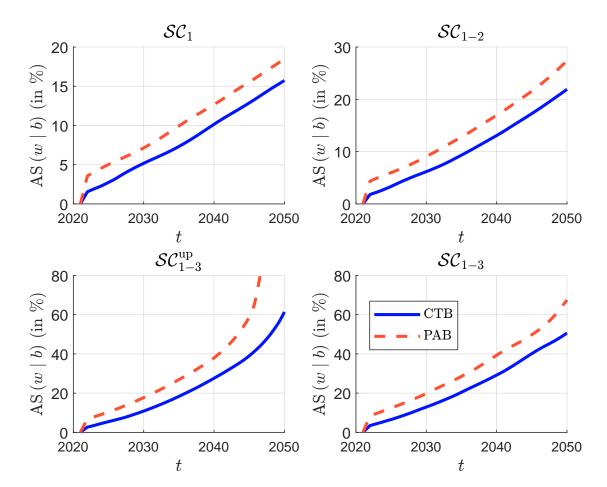


Thierry Roncalli

Integrated approach Core satellite approach

Empirical results

Figure 112: Active share of dynamically decarbonized portfolios (Global Corporate, June 2022)



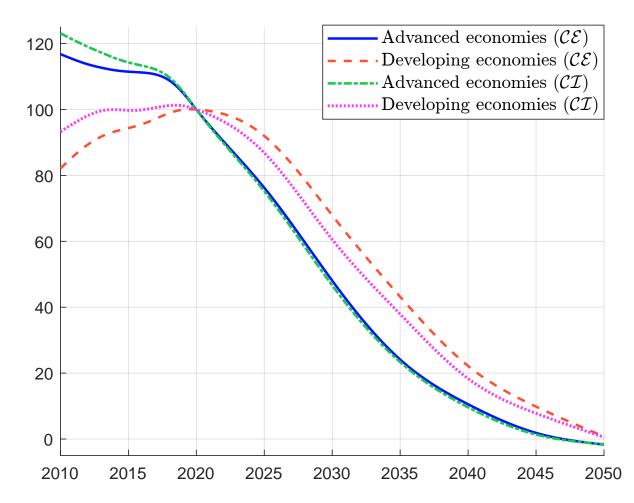
Source: MSCI (2022) Trucost (2022) & Barabbou et al. (2022) Course 2023-2024 in Portfolio Allocation and Asset Management 1120 / 1420

Thierry Roncalli

Integrated approach Core satellite approach

Empirical results

Figure 113: IEA decarbonization pathways



Integrated approach Core satellite approach

Empirical results

Table 92: First year of country exit from the NZE investment portfolio (GHG/GDP intensity metric)

Australia	2025	Finland	2029	Lithuania	2025	Romania	2029
Austria	2029	France	2029	Luxembourg	2029	Singapore	2029
Belgium	2028	Germany	2029	Mexico	2029	Slovakia	2025
Canada	2024	Hong Kong	2029	Malaysia	2028	Slovenia	2028
Chile	2029	Hungary	2029	Malta	2029	South Korea	2024
China	2028	Indonesia	2024	Netherlands	2029	Spain	2028
Colombia	2029	Ireland	2029	Norway	2029	Switzerland	2029
Cyprus	2029	Israel	2029	New Zealand	2024	Sweden	2029
Czechia	2024	Italy	2029	Peru	2029	Thailand	2025
Denmark	2029	Japan	2029	Poland	2029	United Kingdom	2029
Estonia	2025	Latvia	2028	Portugal	2028	United States	2028

Source: Barahhou et al. (2023, Table 9, page 26.

Integrated approach Core satellite approach

Empirical results

Table 93: Country exclusion year by intensity metric

Metric	GHG	GHG	CO_2 (production)	CO_2 (consumption)
Metric	GDP	Population	GDP	Population
China	2028	2031	2027	2031
France	2029	2032	2027	2031
Indonesia	2024	2032	2024	2031
Ireland	2029	2030	2027	2030
Japan	2029	2032	2027	2031
United States	2028	2030	2026	2029
United Kingdom	2029	2032	2027	2031
Sweden	2029	2032	2027	2031

Source: Barahhou et al. (2023, Table 14, page 31.

Integrated approach Core satellite approach

The core-satellite approach

The two building block approach

Decarbonizing the portfolio

- Net-zero decarbonization portfolio
- Net-zero transition portfolio
- Dynamic low-carbon portfolio

Financing the transition

- Net-zero contribution portfolio
- Net-zero funding portfolio
- Net-zero transformation portfolio

Integrated approach Core satellite approach

The core-satellite approach

The core-satellite approach

Decarbonized portfolio

- Carbon intensity
- Decarbonization pathway(s)
- Top-down approach
- Portfolio construction
- Net-zero **carbon** metrics

$$1-lpha(t)$$

Transition portfolio Green intensity Financing the transition Bottom-up approach Security selection

• Net-zero **transition** metrics

Integrated approach Core satellite approach

Core portfolio

A typical program for the equity bucket looks like this:

Integrated approach Core satellite approach

Core portfolio

For the bond bucket, we get a similar optimization problem:

Integrated approach Core satellite approach

The electricity sector scenario in the core portfolio

The constraint to meet a reduction rate for a given sector $Sector_j$ is:

$$\frac{\sum_{i=1}^{n} \mathbb{1}\left\{i \in \mathcal{S}ector_{j}\right\} w_{i} \mathcal{CI}_{i}}{\sum_{i=1}^{n} \mathbb{1}\left\{i \in \mathcal{S}ector_{j}\right\} w_{i}} = \mathcal{CI}\left(\mathcal{S}ector_{j}, \mathcal{R}_{j}\right)$$

where $CI(Sector_j, \mathcal{R}_j)$ is the carbon intensity target for the given sector:

$$\mathcal{CI}(\mathcal{S}ector_{j}, \mathcal{R}_{j}) = (1 - \mathcal{R}_{j}) \frac{\sum_{i=1}^{n} \mathbb{1}\left\{i \in \mathcal{S}ector_{j}\right\} b_{i}\mathcal{CI}_{i}}{\sum_{i=1}^{n} \mathbb{1}\left\{i \in \mathcal{S}ector_{j}\right\} b_{i}}$$

We deduce that:

$$\sum_{i=1}^{n} \mathbb{1}\left\{i \in \mathcal{S}ector_{j}\right\} w_{i}\mathcal{CI}_{i} = \mathcal{CI}\left(\mathcal{S}ector_{j}, \mathcal{R}_{j}\right) \sum_{i=1}^{n} \mathbb{1}\left\{i \in \mathcal{S}ector_{j}\right\} w_{i}$$

which is equivalent to the following constraint:

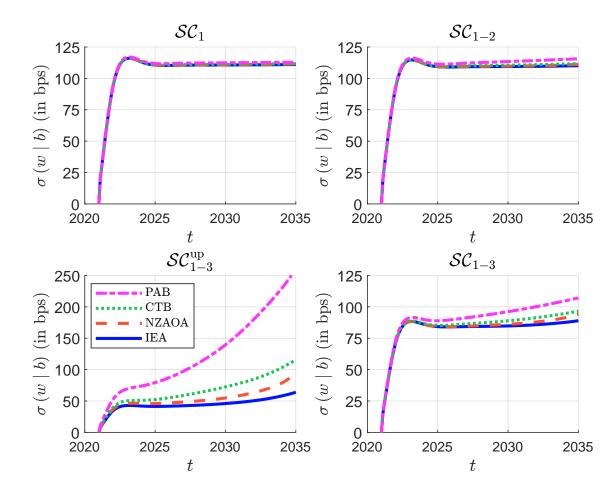
$$\sum_{i=1}^{n} \mathbb{1}\left\{i \in \mathcal{S}ector_{j}\right\} w_{i}\left(\mathcal{CI}_{i} - \mathcal{CI}\left(\mathcal{S}ector_{j}, \mathcal{R}_{j}\right)\right) = 0 \Leftrightarrow \left(\boldsymbol{s}_{j} \circ \left(\mathcal{CI}_{i} - \mathcal{CI}_{j}^{\star}\right)\right)^{\top} w = 0$$

where $\mathcal{CI}_{j}^{\star} = \mathcal{CI}\left(\mathcal{S}\textit{ector}_{j}, \mathcal{R}_{j}
ight)$

Integrated approach Core satellite approach

Core portfolio

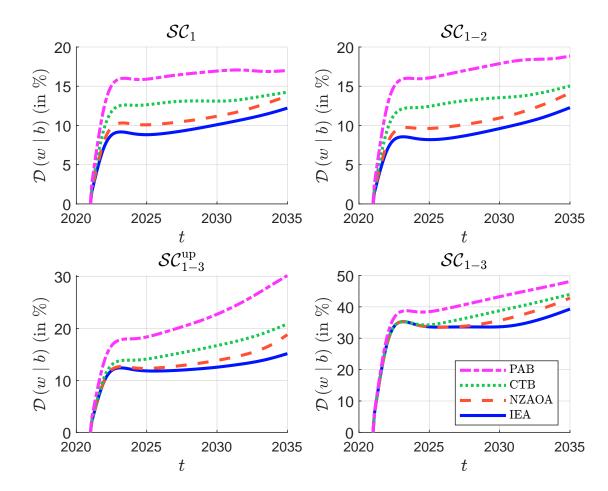
Figure 114: TE volatility of decarbonized portfolios (MSCI World, December 2021, $CM^* = -3.5\%$, $CM^+ = 10\%$, IEA NZE electricity sector scenario)



Integrated approach Core satellite approach

Core portfolio

Figure 115: Active risk of decarbonized portfolios (Global Corporate, December 2021, $CM^* = -3.5\%$, $CM^+ = 10\%$, IEA NZE electricity sector scenario)



Course 2023-2024 in Portfolio Allocation and Asset Management 1130 / 1420

Integrated approach Core satellite approach

Satellite portfolio

- Green, sustainability and sustainability-linked bonds
- Green stocks
- Green infrastructure
- Sustainable real estate

Integrated approach Core satellite approach

Satellite portfolio

Figure 116: Narrow specification of the satellite investment universegeneral]GICS

Sector	Industry Group	Industry	Sub-industry	Satellite
10				
15				
20				
25				
30				
35				
40				
45				
50				
55				
60				

Source: Ben Slimane *et al.* (2023).

Integrated approach Core satellite approach

Green bonds

Table 94: GSS+ bond issuance

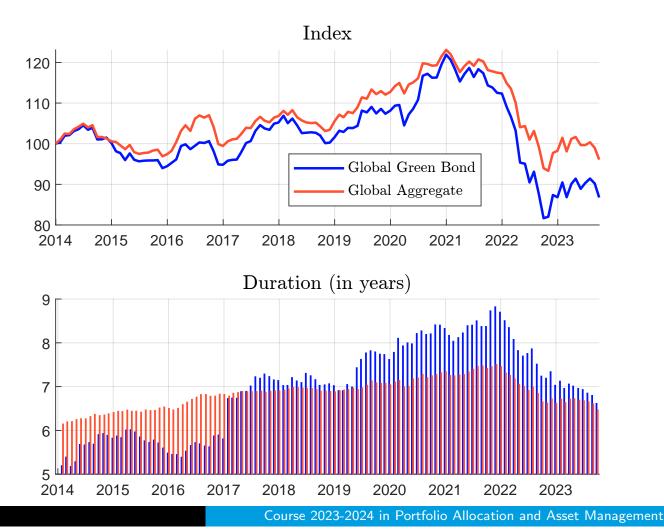
Year	Green		Social		Susta	inability	SLB	
rear	#	\$ bn	#	\$ bn	#	\$ bn	#	\$ bn
2022	1784	531.6	542	152.8	614	174.8	382	144.3
2021	1971	686.1	554	242.1	646	233.2	343	161.5
2020	1076	291.2	273	172.0	308	154.8	47	16.5
2019	877	268.0	99	22.2	333	85.2	18	8.9
2018	582	165.3	48	16.5	52	22.1	1	2.2
2017	472	160.9	46	11.8	17	9.2	1	0.2
2016	285	99.7	14	2.2	16	6.6	0	0.0

Source: Bloomberg (2023), GSS+ Instrument Indicator & Author's calculations.

Integrated approach Core satellite approach

Green bonds

Figure 117: Performance and duration of the Bloomberg Global Green Bond and Aggregate indices



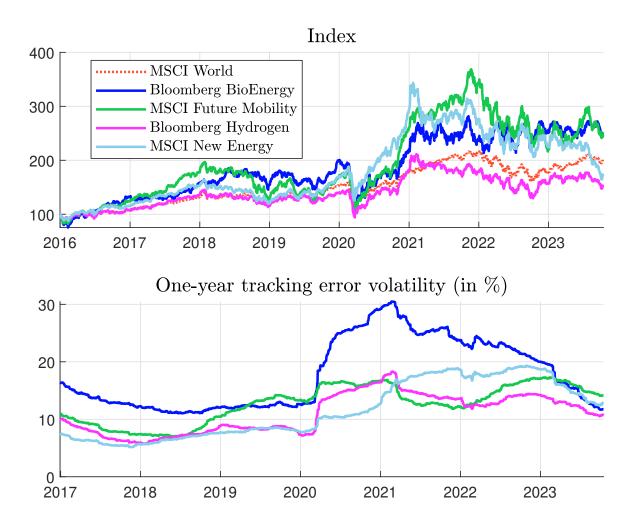
1134 / 1420

Thierry Roncalli

Integrated approach Core satellite approach

Green stocks

Figure 118: Performance and tracking error volatility of thematic equity indices



Integrated approach Core satellite approach

Green infrastructure

The European Commission defines green infrastructure as "*a strategically* planned network of natural and semi-natural areas with other environmental features, designed and managed to deliver a wide range of ecosystem services, while also enhancing biodiversity". Green infrastructure is implemented in a variety of sectors, from energy through energy transmission infrastructure, water through natural water retention measures or sustainable urban drainage systems, to the urban landscape with street trees to help sequester carbon or green roofs to help regulate the temperature of buildings. The cost of implementing green infrastructure is in the identification, mapping, planning and creation of the infrastructure, but the environmental, economic and social benefits make it worthwhile. Funds that assess infrastructure needs are emerging in the market and typically invest in owners of sustainable infrastructure assets as well as companies that are leaders in infrastructure investment. In addition to infrastructure funds, investors are also considering direct investments such as green car parks, water infrastructure and flood defences.

Integrated approach Core satellite approach

Sustainable real estate

- CRREM (Carbon Risk Real Estate Monitor) ⇒ whole-building approach for in-use emissions
- GRESB ⇒ GHG Protocol principles to the real estate industry (corporate approach)
- SBTi Building Guidelines
- PCAF/CRREM/GRESB joint technical guidance ⇒ Accounting and reporting of financed GHG emissions from real estate operations (GHG Protocol)

Integrated approach Core satellite approach

Allocation process The stock/bond mix allocation

- Let α_{equity} and α_{bond} be the proportions of stocks and bonds in the multi-asset portfolio
- Let $\alpha^{\text{satellite}}$ be the weight of the satellite portfolio
- The core allocation is given by the vector $(\alpha_{\text{equity}}^{\text{core}}, \alpha_{\text{bond}}^{\text{core}})$, while the satellite allocation is defined by $(\alpha_{\text{equity}}^{\text{satellite}}, \alpha_{\text{bond}}^{\text{satellite}})$
- We have the following identities:

$$\begin{cases} \alpha_{\text{equity}} = \left(1 - \alpha^{\text{satellite}}\right) \alpha_{\text{equity}}^{\text{core}} + \alpha^{\text{satellite}} \alpha_{\text{equity}}^{\text{satellite}} \\ \alpha_{\text{bond}} = \left(1 - \alpha^{\text{satellite}}\right) \alpha_{\text{bond}}^{\text{core}} + \left(1 - \alpha^{\text{satellite}}\right) \alpha_{\text{bond}}^{\text{satellite}} \end{cases}$$

Integrated approach Core satellite approach

Allocation process The stock/bond mix allocation

- In general, the fund manager targets a strategic asset allocation at the portfolio level, *i.e.* the proportions α_{equity} and α_{bond} are given
- For example, a defensive portfolio corresponds to a 20/80 constant mix strategy, while the 50/50 allocation is known as a balanced portfolio. Another famous allocation rule is the 60/40 portfolio, which is 60% in stocks and 40% in bonds.
- The solution is to calculate the proportion of bonds in the core portfolio relative to the proportion of bonds in the satellite portfolio:

$$\alpha_{\rm bond}^{\rm core} = \frac{\alpha_{\rm bond} - \alpha^{\rm satellite} \alpha_{\rm bond}^{\rm satellite}}{1 - \alpha^{\rm satellite}}$$

Integrated approach Core satellite approach

Allocation process The stock/bond mix allocation

Example #11

We consider a 60/40 constant mix strategy. The satellite portfolio represents 10% of the net zero investments. We assume that the satellite portfolio has 70% exposure to green bonds.

Integrated approach Core satellite approach

Allocation process The stock/bond mix allocation

<

We have $\alpha_{\text{equity}} = 60\%$, $\alpha_{\text{bond}} = 40\%$, $\alpha^{\text{core}} = 90\%$, $\alpha^{\text{satellite}} = 10\%$ and $\alpha_{\text{bond}}^{\text{satellite}} = 70\%$. We deduce that:

$$\alpha_{\text{bond}}^{\text{core}} = \frac{0.40 - 0.10 \times 0.70}{1 - 0.10} = \frac{33}{90} = 36.67\%$$

The core allocation is then (63.33%, 36.67%), while the satellite allocation is (30%, 70%). We check that:

$$\begin{cases} \alpha_{\text{equity}} = 0.90 \times \left(1 - \frac{33}{90}\right) + 0.10 \times 0.30 = 60\% \\ \alpha_{\text{bond}} = 0.90 \times \frac{33}{90} + 0.10 \times 0.70 = 40\% \end{cases}$$

Integrated approach Core satellite approach

Allocation process The stock/bond mix allocation

Table 95: Calculating the bond allocation in the core portfolio ($\alpha_{\text{bond}}^{\text{core}}$ in %)

Strategy		60/40			50/50			20/80		
$lpha_{ m bond}^{ m satellite}$		70.0	80.0	90.0	70.0	80.0	90.0	70.0	80.0	90.0
	0%	40.0	40.0	40.0	50.0	50.0	50.0	80.0	80.0	80.0
	1%	39.7	39.6	39.5	49.8	49.7	49.6	80.1	80.0	79.9
	5%	38.4	37.9	37.4	48.9	48.4	47.9	80.5	80.0	79.5
$\alpha^{\mathrm{satellite}}$	10%	36.7	35.6	34.4	47.8	46.7	45.6	81.1	80.0	78.9
	15%	34.7	32.9	31.2	46.5	44.7	42.9	81.8	80.0	78.2
	20%	32.5	30.0	27.5	45.0	42.5	40.0	82.5	80.0	77.5
	25%	30.0	26.7	23.3	43.3	40.0	36.7	83.3	80.0	76.7

Integrated approach Core satellite approach

Allocation process Tracking error risk of the core-satellite portfolio

The tracking error volatility of the core-satellite portfolio has the following expression:

$$\sigma\left(w\mid b\right) = \sqrt{\tilde{\alpha}^{\top}\tilde{\boldsymbol{\Sigma}}\left(w\mid b\right)\tilde{\alpha}} = \sqrt{\left(\tilde{\alpha}\circ\tilde{\sigma}\left(w\mid b\right)\right)^{\top}\tilde{\rho}\left(w\mid b\right)\left(\tilde{\alpha}\circ\tilde{\sigma}\left(w\mid b\right)\right)}$$

where:

• $\tilde{\alpha}$ is the vector of allocation:

$$\boldsymbol{\tilde{\alpha}} = \begin{pmatrix} \left(1 - \alpha^{\text{satellite}}\right) \alpha_{\text{equity}}^{\text{core}} \\ \left(1 - \alpha^{\text{satellite}}\right) \alpha_{\text{bond}}^{\text{core}} \\ \alpha^{\text{satellite}} \alpha_{\text{equity}}^{\text{satellite}} \\ \alpha^{\text{satellite}} \alpha_{\text{bond}}^{\text{satellite}} \end{pmatrix} \end{pmatrix}$$

ρ̃(w | b) is the correlation matrix of R(w) - R(b)
 σ̃(w | b) is the vector of tracking error volatilities:

$$oldsymbol{ ilde{\sigma}} \left(egin{array}{c} \sigma \left(egin{array}{c} w_{ ext{equity}}^{ ext{core}} \mid eta_{ ext{equity}}
ight) \\ \sigma \left(egin{array}{c} \sigma \left(egin{array}{c} w_{ ext{bond}}^{ ext{core}} \mid eta_{ ext{bond}}
ight) \\ \sigma \left(egin{array}{c} w_{ ext{equity}}^{ ext{core}} \mid eta_{ ext{bond}}
ight) \\ \sigma \left(egin{array}{c} w_{ ext{equity}}^{ ext{core}} \mid eta_{ ext{bond}}
ight) \\ \sigma \left(egin{array}{c} w_{ ext{equity}}^{ ext{core}} \mid eta_{ ext{bond}}
ight) \\ \sigma \left(egin{array}{c} w_{ ext{equity}}^{ ext{core}} \mid eta_{ ext{bond}}
ight) \\ \sigma \left(egin{array}{c} w_{ ext{equity}}^{ ext{core}} \mid eta_{ ext{bond}}
ight) \\ \sigma \left(egin{array}{c} w_{ ext{equity}}^{ ext{core}} \mid eta_{ ext{bond}}
ight) \\ \sigma \left(egin{array}{c} w_{ ext{equity}}^{ ext{core}} \mid eta_{ ext{bond}}
ight) \\ \sigma \left(egin{array}{c} w_{ ext{equity}}^{ ext{core}} \mid eta_{ ext{bond}}
ight) \\ \sigma \left(egin{array}{c} w_{ ext{equity}} \mid eta_{ ext{equity}}
ight) \\ \sigma \left(egin{array}{c} w_{ ext{equity}} \mid eta_{ ext{equity}}
ight) \\ \phi \left(eta_{ ext{core}} \mid eta_{ ext{equity}} \mid eta_{ ext{equity}}
ight) \\ \phi \left(eta_{ ext{equity}} \mid eta_{ ext{equity}} \mid eta_{ ext{equity}}
ight) \\ \phi \left(eta_{ ext{equity}} \mid eta_{ ext{equity}} \mid eta_{ ext{equity}}
ight) \\ \phi \left(eta_{ ext{equity}} \mid eta_{ ext{equity}} \mid eta_{ ext{equity}} \mid eta_{ ext{equity}}
ight) \\ \phi \left(eta_{ ext{equity}} \mid eta_{ ext{equity}} \mid eta_{ ext{equity}} \mid eta_{ ext{equity}}
ight) \\ \phi \left(eta_{ ext{equity}} \mid eta_{ ext{equ$$

Integrated approach Core satellite approach

Allocation process Tracking error risk of the core-satellite portfolio

Example #12

The tracking error volatilities are 2% for the core equity portfolio, 25 bps for the core bond portfolio, 20% for the satellite equity portfolio, and 3% for the satellite bond portfolio. To define the correlation matrix $\tilde{\rho}(w \mid b)$, we assume an 80% correlation between the two equity baskets, a 50% correlation between the two bond baskets, and a 0% correlation between the equity and bond baskets. We consider a 60/40 constant mix strategy. The satellite portfolio represents 10% of the net zero portfolio and has 70% exposure to green bonds

Allocation process Tracking error risk of the core-satellite portfolio

We compute the tracking error covariance matrix $\tilde{\Sigma}(w \mid b)$ as follows:

- The tracking error variance for the core equity portfolio is $\tilde{\Sigma}_{1,1}(w \mid b) = 0.02^2$
- The tracking error variance for the satellite equity portfolio is $\tilde{\Sigma}_{3,3}(w \mid b) = 0.20^2$
- The tracking error covariance for the two core portfolios is $\tilde{\Sigma}_{1,2}(w \mid b) = 0 \times 0.02 \times 0.0025$
- The tracking error covariance for the core equity portfolio and the satellite equity portfolio is $\tilde{\Sigma}_{1,3} (w \mid b) = 0.80 \times 0.02 \times 0.20$
- Etc.

Finally, we get:

$$\tilde{\mathbf{\Sigma}}(w \mid b) = \begin{pmatrix} 4 & 0 & 32 & 0 \\ 0 & 0.0625 & 0 & 0.375 \\ 32 & 0 & 400 & 0 \\ 0 & 0.375 & 0 & 9 \end{pmatrix} \times 10^{-4}$$

and $\sigma(w \mid b) = 1.68\%$ because $\tilde{\alpha} = (57\%, 33\%, 3\%, 7\%)$

Integrated approach Core satellite approach

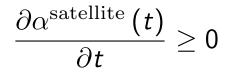
Allocation process Tracking error risk of the core-satellite portfolio

Table 96: Estimation of the tracking error volatility of the core-satellite portfolio (in %)

	$lpha^{ m satellite}$	Bond	Defensive	Balanced	60/40	Dynamic	Equity
	10%	0.38	0.62	1.36	1.62	2.15	2.69
Lower bound	20%	0.63	1.00	2.18	2.60	3.45	4.31
	30%	0.92	1.43	3.11	3.71	4.93	6.16
	10%	0.53	1.18	2.16	2.49	3.15	3.80
Upper bound	20%	0.80	1.76	3.20	3.68	4.64	5.60
	30%	1.07	2.34	4.24	4.87	6.13	7.40

Integrated approach Core satellite approach

Allocation process Tracking error risk of the core-satellite portfolio



Course 2023-2024 in Portfolio Allocation and Asset Management Lecture 6. Equity and Bond Portfolio Optimization with Green Preferences (Exercise)

Thierry Roncalli*

*Amundi Asset Management²³

*University of Paris-Saclay

January 2024

²³The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

Agenda

- Lecture 1: Portfolio Optimization
- Lecture 2: Risk Budgeting
- Lecture 3: Smart Beta, Factor Investing and Alternative Risk Premia
- Lecture 4: Equity Portfolio Optimization with ESG Scores
- Lecture 5: Climate Portfolio Construction
- Lecture 6: Equity and Bond Portfolio Optimization with Green Preferences
- Lecture 7: Machine Learning in Asset Management

We consider an investment universe of 8 issuers. In the table below, we report the carbon emissions $C\mathcal{E}_{i,j}$ (in $ktCO_2e$) of these companies and their revenues Y_i (in \$ bn), and we indicate in the last row whether the company belongs to sector $Sector_1$ or $Sector_2$:

lssuer	#1	#2	#3	#4	#5	#6	#7	#8
$\mathcal{CE}_{i,1}$	75	5 000	720	50	2 500	25	30 000	5
$\mathcal{CE}_{i,2}$	75	5 000	1030	350	4 500	5	2000	64
$\mathcal{CE}_{i,3}$	24 000	15000	1210	550	500	187	30 000	199
$\overline{Y_i}$	300	328	125	$\overline{100}$	200	102^{-1}	107	25
$\overline{\mathcal{S}}$ ector	1	2	1	1	2	1	2	2

The benchmark *b* of this investment universe is defined as:

b = (22%, 19%, 17%, 13%, 11%, 8%, 6%, 4%)

In what follows, we consider long-only portfolios.

Question 1

We want to compute the carbon intensity of the benchmark.

Question (a)

Compute the carbon intensities $\mathcal{CI}_{i,j}$ of each company *i* for the scopes 1, 2 and 3.

Carbon intensity of the benchmark Equity portfolios Bond portfolios

We have:

$$\mathcal{CI}_{i,j} = rac{\mathcal{CE}_{i,j}}{Y_i}$$

For instance, if we consider the 8^{th} issuer, we have²⁴:

$$\mathcal{CI}_{8,1} = \frac{\mathcal{CE}_{8,1}}{Y_8} = \frac{5}{25} = 0.20 \text{ tCO}_2\text{e}/\$ \text{ mn}$$
$$\mathcal{CI}_{8,2} = \frac{\mathcal{CE}_{8,2}}{Y_8} = \frac{64}{25} = 2.56 \text{ tCO}_2\text{e}/\$ \text{ mn}$$
$$\mathcal{CI}_{8,3} = \frac{\mathcal{CE}_{8,3}}{Y_8} = \frac{199}{25} = 7.96 \text{ tCO}_2\text{e}/\$ \text{ mn}$$

 $^{24}\text{Because 1 ktCO}_2\mathrm{e}/\$$ bn = 1 tCO $_2\mathrm{e}/\$$ mn.

1153 / 1420

Since we have:

lssuer	#1	#2	#3	#4	#5	#6	#7	#8
$\mathcal{CE}_{i,1}$	75	5 000	720	50	2 500	25	30 000	5
$\mathcal{CE}_{i,2}$	75	5 000	1030	350	4 500	5	2000	64
$\mathcal{CE}_{i,3}$	24 000	15000	1 210	550	500	187	30 000	199
$Y_i^{}$		328	125	100	200	102	107	25

we obtain:

lssuer	#1	#2	#3	#4	#5	#6	#7	#8
$\mathcal{CI}_{i,1}$	0.25	15.24	5.76	0.50	12.50	0.25	280.37	0.20
$\mathcal{CI}_{i,2}$	0.25	15.24	8.24	3.50	22.50	0.05	18.69	2.56
$\mathcal{CI}_{i,3}$	80.00	45.73	9.68	5.50	2.50	1.83	280.37	7.96

Question (b)

Deduce the carbon intensities $CI_{i,j}$ of each company *i* for the scopes 1+2 and 1+2+3.

Carbon intensity of the benchmark Equity portfolios Bond portfolios

We have:

$$\mathcal{CI}_{i,1-2} = rac{\mathcal{CE}_{i,1} + \mathcal{CE}_{i,2}}{Y_i} = \mathcal{CI}_{i,1} + \mathcal{CI}_{i,2}$$

and:

$$\mathcal{CI}_{i,1-3} = \mathcal{CI}_{i,1} + \mathcal{CI}_{i,2} + \mathcal{CI}_{i,3}$$

We deduce that:

lssuer	#1	#2	#3	#4	#5	#6	#7	#8
$\overline{\mathcal{CI}_{i,1}}$	0.25	15.24	5.76	0.50	12.50	0.25	280.37	0.20
$\mathcal{CI}_{i,1-2}$	0.50	30.49	14.00	4.00	35.00	0.29	299.07	2.76
$\mathcal{CI}_{i,1-3}$	80.50	76.22	23.68	9.50	37.50	2.12	579.44	10.72

Question (c)

Deduce the weighted average carbon intensity (WACI) of the benchmark if we consider the scope 1 + 2 + 3.

We have:

$$\mathcal{CI}(b) = \sum_{i=1}^{8} b_i \mathcal{CI}_i$$

= 0.22 × 80.50 + 0.19 × 76.2195 + 0.17 × 23.68 + 0.13 × 9.50 +
0.11 × 37.50 + 0.08 × 2.1275 + 0.06 × 579.4393 + 0.04 × 10.72

$$=$$
 76.9427 tCO₂e/\$ mn

Question (d)

We assume that the market capitalization of the benchmark portfolio is equal to \$10 tn and we invest \$1 bn.

Question (d).i

Deduce the market capitalization of each company (expressed in \$ bn).

We have:

$$b_i = rac{MC_i}{\sum_{k=1}^8 \mathrm{MC}_k}$$

and $\sum_{k=1}^{8} MC_k =$ \$10 tn. We deduce that:

 $MC_i = 10 \times b_i$

We obtain the following values of market capitalization expressed in \$ bn:

lssuer	#1	#2	#3	#4	#5	#6	#7	#8
MCi	2 200	1 900	1 700	1 300	1 100	800	600	400

Question (d).ii

Compute the ownership ratio for each asset (expressed in bps).

Let W be the wealth invested in the benchmark portfolio b. The wealth invested in asset i is equal to $b_i W$. We deduce that the ownership ratio is equal to:

$$\varpi_i = \frac{b_i W}{\mathrm{MC}_i} = \frac{b_i W}{b_i \sum_{k=1}^n \mathrm{MC}_k} = \frac{W}{\sum_{k=1}^n \mathrm{MC}_k}$$

When we invest in a capitalization-weighted portfolio, the ownership ratio is the same for all the assets. In our case, we have:

$$\varpi_i = \frac{1}{10 \times 1000} = 0.01\%$$

The ownership ratio is equal to 1 basis point.

Question (d).iii

Compute the carbon emissions of the benchmark portfolio^a if we invest \$1 bn and we consider the scope 1 + 2 + 3.

^aWe assume that the float percentage is equal to 100% for all the 8 companies.

Using the financed emissions approach, the carbon emissions of our investment is equal to:

$$\begin{aligned} \mathcal{CE} (\$1 \text{ bn}) &= 0.01\% \times (75 + 75 + 24\,000) + \\ &\quad 0.01\% \times (5\,000 + 5\,000 + 15\,000) + \\ &\quad \dots + \\ &\quad 0.01\% \times (5 + 64 + 199) \\ &= 12.3045 \text{ ktCO}_2 e \end{aligned}$$

Question (d).iv

Compare the (exact) carbon intensity of the benchmark portfolio with the WACI value obtained in Question 1.(c).

We compute the revenues of our investment:

$$Y(\$1 \text{ bn}) = 0.01\% \sum_{i=1}^{8} Y_i = \$0.1287 \text{ bn}$$

We deduce that the exact carbon intensity is equal to:

$$\mathcal{CI}(\$1 \text{ bn}) = \frac{\mathcal{CE}(\$1 \text{ bn})}{Y(\$1 \text{ bn})} = \frac{12.3045}{0.1287} = 95.6061 \text{ tCO}_2\text{e}/\$ \text{ mn}$$

We notice that the WACI of the benchmark underestimates the exact carbon intensity of our investment by 19.5%:

Question 2

We want to manage an equity portfolio with respect to the previous investment universe and reduce the weighted average carbon intensity of the benchmark by the rate \mathcal{R} . We assume that the volatility of the stocks is respectively equal to 22%, 20%, 25%, 18%, 40%, 23%, 13% and 29%. The correlation matrix between these stocks is given by:

	/ 100%							
	80%	100%						
	70%	75%	100%					
o —	60%	65%	80%	100%				
$\rho =$	70%	50%	70%	85%	100%			
	50%	60%	70%	80%	60%	100%		
	70%	50%	70%	75%	80%	50%	100%	
	60%	65%	70%	75%	65%	70%	60%	100% /

Question (a)

Compute the covariance matrix Σ .

The covariance matrix $\Sigma = (\Sigma_{i,j})$ is defined by:

 $\Sigma_{i,j} = \rho_{i,j}\sigma_i\sigma_j$

We obtain the following numerical values (expressed in bps):

	/ 484.0	352.0	385.0	237.6	616.0	253.0	200.2	382.8
	352.0	400.0	375.0	234.0	400.0	276.0	130.0	377.0
					700.0			
$\Sigma =$	237.6	234.0	360.0	324.0	612.0	331.2	175.5	391.5
	616.0	400.0	700.0	612.0	1600.0	552.0	416.0	754.0
	253.0	276.0	402.5	331.2	552.0	529.0	149.5	466.9
	200.2	130.0	227.5	175.5	416.0	149.5	169.0	226.2
	\ 382.8	377.0	507.5	391.5	754.0	466.9	226.2	841.0 /

Question (b)

Write the optimization problem if the objective function is to minimize the tracking error risk under the constraint of carbon intensity reduction.

The tracking error variance of portfolio w with respect to benchmark b is equal to:

$$\sigma^{2}(w \mid b) = (w - b)^{\top} \Sigma(w - b)$$

The carbon intensity constraint has the following expression:

$$\sum_{i=1}^{8} w_i \mathcal{CI}_i \leq (1-\mathcal{R}) \, \mathcal{CI}\left(b
ight)$$

where \mathcal{R} is the reduction rate and $\mathcal{CI}(b)$ is the carbon intensity of the benchmark. Let $\mathcal{CI}^{\star} = (1 - \mathcal{R}) \mathcal{CI}(b)$ be the target value of the carbon footprint. The optimization problem is then:

We add the second and third constraints in order to obtain a long-only portfolio.

Question (c)

Give the QP formulation of the optimization problem.

The objective function is equal to:

$$f(w) = \frac{1}{2}\sigma^{2}(w \mid b) = \frac{1}{2}(w - b)^{\top}\Sigma(w - b) = \frac{1}{2}w^{\top}\Sigma w - w^{\top}\Sigma b + \frac{1}{2}b^{\top}\Sigma b$$

while the matrix form of the carbon intensity constraint is:

$$\mathcal{C}\mathcal{I}^{ op}$$
w $\leq \mathcal{C}\mathcal{I}^{\star}$

where $C\mathcal{I} = (C\mathcal{I}_1, \dots, C\mathcal{I}_8)$ is the column vector of carbon intensities. Since $b^{\top}\Sigma b$ is a constant and does not depend on w, we can cast the previous optimization problem into a QP problem:

$$w^{\star} = \arg\min\frac{1}{2}w^{\top}Qw - w^{\top}R$$

s.t.
$$\begin{cases} Aw = B\\ Cw \le D\\ w^{-} \le w \le w^{+} \end{cases}$$

We have $Q = \Sigma$, $R = \Sigma b$, $A = \mathbf{1}_8^{\top}$, B = 1, $C = \mathcal{CI}^{\top}$, $D = \mathcal{CI}^{\star}$, $w^- = \mathbf{0}_8$ and $w^+ = \mathbf{1}_8$.

Question (d)

 \mathcal{R} is equal to 20%. Find the optimal portfolio if we target scope 1 + 2. What is the value of the tracking error volatility?

We have:

$$\mathcal{CI}(b) = 0.22 \times 0.50 + 0.19 \times 30.4878 + ... + 0.04 \times 2.76$$

= 30.7305 tCO₂e/\$ mn

We deduce that:

$$\mathcal{CI}^{\star} = (1 - \mathcal{R}) \, \mathcal{CI}(b) = 0.80 \times 30.7305 = 24.5844 \, tCO_2 e/\$ mn$$

Therefore, the inequality constraint of the QP problem is:

$$\left(\begin{array}{cccccccccc} 0.50 & 30.49 & 14.00 & 4.00 & 35.00 & 0.29 & 299.07 & 2.76 \end{array} \right) \left(\begin{array}{c} w_1 \\ w_2 \\ \vdots \\ w_7 \\ w_8 \end{array} \right) \leq 24.5844$$

We obtain the following optimal solution:

$$w^{\star} = \begin{pmatrix} 23.4961\% \\ 17.8129\% \\ 17.1278\% \\ 15.4643\% \\ 10.4037\% \\ 7.5903\% \\ 4.0946\% \\ 4.0104\% \end{pmatrix}$$

The minimum tracking error volatility $\sigma(w^* \mid b)$ is equal to 15.37 bps.

Question (e)

Same question if ${\cal R}$ is equal to 30%, 50%, and 70%.

Table 97: Solution of the equity optimization problem (scope \mathcal{SC}_{1-2})

\mathcal{R}	0%	20%	30%	50%	70%
w ₁	22.0000	23.4961	24.2441	25.7402	30.4117
W2	19.0000	17.8129	17.2194	16.0323	9.8310
W ₃	17.0000	17.1278	17.1917	17.3194	17.8348
W ₄	13.0000	15.4643	16.6964	19.1606	23.3934
W5	11.0000	10.4037	10.1055	9.5091	7.1088
W ₆	8.0000	7.5903	7.3854	6.9757	6.7329
W ₇	6.0000	4.0946	3.1418	1.2364	0.0000
W ₈	4.0000	4.0104	4.0157	4.0261	4.6874
$\overline{\mathcal{CI}}(w)$	30.7305	24.5844	21.5114	15.3653	9.2192
$\overline{\sigma}(w b)$	0.00	15.37	23.05	38.42	72.45

In Table 97, we report the optimal solution w^* (expressed in %) of the optimization problem for different values of \mathcal{R} . We also indicate the carbon intensity of the portfolio (in tCO₂e/\$ mn) and the tracking error volatility (in bps). For instance, if \mathcal{R} is set to 50%, the weights of assets #1, #3, #4 and #8 increase whereas the weights of assets #2, #5, #6 and #7 decrease. The carbon intensity of this portfolio is equal to 15.3653 tCO₂e/\$ mn. The tracking error volatility is below 40 bps, which is relatively low.

Question (f)

We target scope 1 + 2 + 3. Find the optimal portfolio if \mathcal{R} is equal to 20%, 30%, 50% and 70%. Give the value of the tracking error volatility for each optimized portfolio.

In this case, the inequality constraint $Cw \leq D$ is defined by:

$$C = \mathcal{CI}_{1-3}^{\top} = \begin{pmatrix} 80.5000 \\ 76.2195 \\ 23.6800 \\ 9.5000 \\ 37.5000 \\ 2.1275 \\ 579.4393 \\ 10.7200 \end{pmatrix}^{\top}$$

and:

$$D=(1-\mathcal{R}) imes 76.9427$$

We obtain the results given in Table 98.

Table 98: Solution of the equity optimization problem (scope \mathcal{SC}_{1-3})

\mathcal{R}	0%	20%	30%	50%	70%
W ₁	22.0000	23.9666	24.9499	26.4870	13.6749
<i>W</i> ₂	19.0000	17.4410	16.6615	8.8001	0.0000
W ₃	17.0000	17.1988	17.2981	19.4253	24.1464
W4	13.0000	16.5034	18.2552	25.8926	41.0535
W5	11.0000	10.2049	9.8073	7.1330	3.5676
W ₆	8.0000	7.4169	7.1254	7.0659	8.8851
W7	6.0000	3.2641	1.8961	0.0000	0.0000
W8	4.0000	4.0043	4.0065	5.1961	8.6725
$\overline{\mathcal{CI}}(w)$	76.9427	61.5541	53.8599	38.4713	23.0828
$\overline{\sigma}(w b)$	0.00	21.99	32.99	104.81	414.48

Question (g)

Compare the optimal solutions obtained in Questions 2.(e) and 2.(f).

Figure 119: Impact of the scope on the tracking error volatility

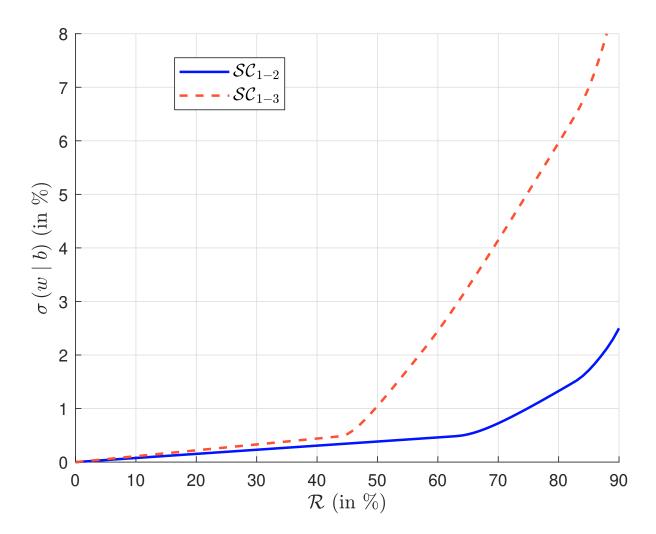
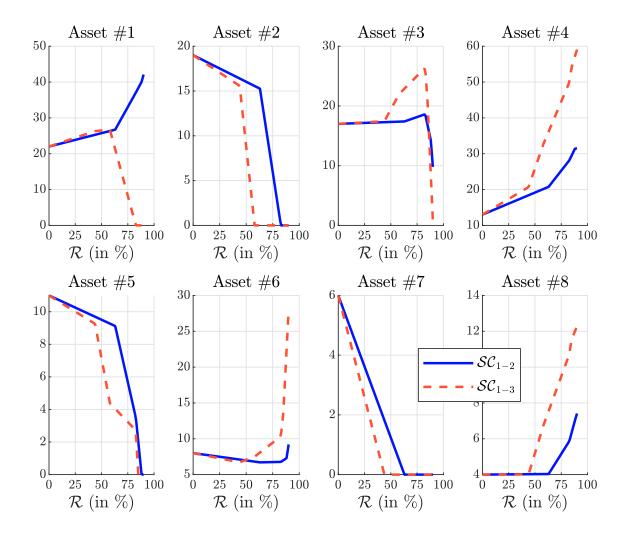


Figure 120: Impact of the scope on the portfolio allocation (in %)



In Figure 119, we report the relationship between the reduction rate \mathcal{R} and the tracking error volatility $\sigma(w \mid b)$. The choice of the scope has little impact when $\mathcal{R} \leq 45\%$. Then, we notice a high increase when we consider the scope 1 + 2 + 3. The portfolio's weights are given in Figure 120. For assets #1 and #3, the behavior is divergent when we compare scopes 1 + 2 and 1 + 2 + 3.

Question 3

We want to manage a bond portfolio with respect to the previous investment universe and reduce the weighted average carbon intensity of the benchmark by the rate \mathcal{R} . We use the scope 1 + 2 + 3. In the table below, we report the modified duration MD_i and the duration-times-spread factor DTS_i of each corporate bond *i*:

Asset	#1	#2	#3	#4	#5	#6	#7	#8
MD_i (in years)	3.56	7.48	6.54	10.23	2.40	2.30	9.12	7.96
DTS_i (in bps)	103	155	75	796	89	45	320	245
<i>S</i> ector	1	2	1	1	2	1	2	<u>-</u> <u>-</u> <u>-</u>

Question 3 (Cont'd)

We remind that the active risk can be calculated using three functions. For the active share, we have:

$$\mathcal{R}_{\mathrm{AS}}\left(w\mid b
ight)=\sigma_{\mathrm{AS}}^{2}\left(w\mid b
ight)=\sum_{i=1}^{n}\left(w_{i}-b_{i}
ight)^{2}$$

We also consider the MD-based tracking error risk:

$$\mathcal{R}_{ ext{MD}}\left(w \mid b
ight) = \sigma_{ ext{MD}}^{2}\left(w \mid b
ight) = \sum_{j=1}^{n_{m{\mathcal{S}}ector}} \left(\sum_{i \in m{\mathcal{S}}ector_{j}} \left(w_{i} - b_{i}
ight) ext{MD}_{i}
ight)^{2}$$

and the DTS-based tracking error risk:

$$\mathcal{R}_{\mathrm{DTS}}\left(w \mid b
ight) = \sigma_{\mathrm{DTS}}^{2}\left(w \mid b
ight) = \sum_{j=1}^{n_{\mathcal{S}ector}} \left(\sum_{i \in \mathcal{S}ector_{j}} \left(w_{i} - b_{i}
ight) \mathrm{DTS}_{i}
ight)^{2}$$

Question 3 (Cont'd)

Finally, we define the synthetic risk measure as a combination of AS, MD and DTS active risks:

$$\mathcal{R}\left(w \mid b\right) = \varphi_{\mathrm{AS}}\mathcal{R}_{\mathrm{AS}}\left(w \mid b\right) + \varphi_{\mathrm{MD}}\mathcal{R}_{\mathrm{MD}}\left(w \mid b\right) + \varphi_{\mathrm{DTS}}\mathcal{R}_{\mathrm{DTS}}\left(w \mid b\right)$$

where $\varphi_{AS} \ge 0$, $\varphi_{MD} \ge 0$ and $\varphi_{DTS} \ge 0$ indicate the weight of each risk. In what follows, we use the following numerical values: $\varphi_{AS} = 100$, $\varphi_{MD} = 25$ and $\varphi_{DTS} = 1$. The reduction rate \mathcal{R} of the weighted average carbon intensity is set to 50% for the scope 1 + 2 + 3.

Question (a)

Compute the modified duration MD(b) and the duration-times-spread factor DTS(b) of the benchmark.

Carbon intensity of the benchmark Equity portfolios Bond portfolios

 \mathcal{L}_2 -norm risk measures \mathcal{L}_1 -norm risk measures

We have:

$$MD(b) = \sum_{i=1}^{n} b_i MD_i$$

= 0.22 × 3.56 + 0.19 × 7.48 + ... + 0.04 × 7.96
= 5.96 years

and:

DTS(b) =
$$\sum_{i=1}^{n} b_i \text{DTS}_i$$

= 0.22 × 103 + 0.19 × 155 + ... + 0.04 × 155
= 210.73 bps

Question (b)

Let w_{ew} be the equally-weighted portfolio. Compute^a MD (w_{ew}), DTS (w_{ew}), σ_{AS} ($w_{ew} | b$), σ_{MD} ($w_{ew} | b$) and σ_{DTS} ($w_{ew} | b$).

^aPrecise the corresponding unit (years, bps or %) for each metric.

We have:

 $\begin{cases} MD(w_{ew}) = 6.20 \text{ years} \\ DTS(w_{ew}) = 228.50 \text{ bps} \\ \sigma_{AS}(w_{ew} \mid b) = 17.03\% \\ \sigma_{MD}(w_{ew} \mid b) = 1.00 \text{ years} \\ \sigma_{DTS}(w_{ew} \mid b) = 36.19 \text{ bps} \end{cases}$

Question(c)

We consider the following optimization problem:

И

$$egin{aligned} & \mathcal{V}^{\star} &= & rg\minrac{1}{2}\mathcal{R}_{\mathrm{AS}}\left(w\mid b
ight) \ & & \left\{ egin{aligned} & \sum_{i=1}^{n}w_i = 1 \ & \mathrm{MD}\left(w
ight) = \mathrm{MD}\left(b
ight) \ & \mathrm{DTS}\left(w
ight) = \mathrm{DTS}\left(b
ight) \ & \mathrm{\mathcal{CI}}\left(w
ight) \leq (1-\mathcal{R})\,\mathcal{CI}\left(b
ight) \ & 0 \leq w_i \leq 1 \end{aligned}
ight.$$

Give the analytical value of the objective function. Find the optimal portfolio w^* . Compute $MD(w^*)$, $DTS(w^*)$, $\sigma_{AS}(w^* | b)$, $\sigma_{MD}(w^* | b)$ and $\sigma_{DTS}(w^* | b)$.

We have:

$$egin{aligned} \mathcal{R}_{\mathrm{AS}}\left(w\mid b
ight) &= & \left(w_1-0.22
ight)^2+\left(w_2-0.19
ight)^2+\left(w_3-0.17
ight)^2+\left(w_4-0.13
ight)^2+\left(w_5-0.11
ight)^2+\left(w_6-0.08
ight)^2+\left(w_7-0.06
ight)^2+\left(w_8-0.04
ight)^2 \end{aligned}$$

The objective function is then:

$$f(w) = rac{1}{2}\mathcal{R}_{\mathrm{AS}}(w \mid b)$$

The optimal solution is equal to:

 $w^{\star} = (17.30\%, 17.41\%, 20.95\%, 14.41\%, 10.02\%, 11.09\%, 0\%, 8.81\%)$

The risk metrics are:

$$egin{aligned} {
m MD} \left(w^{\star}
ight) &= 5.96 \; {
m years} \ {
m DTS} \left(w^{\star}
ight) &= 210.73 \; {
m bps} \ {\sigma_{
m AS}} \left(w^{\star} \mid b
ight) &= 10.57\% \ {\sigma_{
m MD}} \left(w^{\star} \mid b
ight) &= 0.43 \; {
m years} \ {\sigma_{
m DTS}} \left(w^{\star} \mid b
ight) &= 15.21 \; {
m bps} \end{aligned}$$

Question (d)

We consider the following optimization problem:

$$w^{\star} = \arg \min \frac{\varphi_{AS}}{2} \mathcal{R}_{AS} (w \mid b) + \frac{\varphi_{MD}}{2} \mathcal{R}_{MD} (w \mid b)$$

s.t.
$$\begin{cases} \sum_{i=1}^{n} w_i = 1\\ DTS(w) = DTS(b)\\ \mathcal{CI}(w) \leq (1 - \mathcal{R}) \mathcal{CI}(b)\\ 0 \leq w_i \leq 1 \end{cases}$$

Give the analytical value of the objective function. Find the optimal portfolio w^* . Compute $MD(w^*)$, $DTS(w^*)$, $\sigma_{AS}(w^* \mid b)$, $\sigma_{MD}(w^* \mid b)$ and $\sigma_{DTS}(w^* \mid b)$.

Carbon intensity of the benchmark Equity portfolios Bond portfolios

 \mathcal{L}_2 -norm risk measures \mathcal{L}_1 -norm risk measures

We have 25 :

$$\mathcal{R}_{\mathrm{MD}}(w \mid b) = \left(\sum_{i=1,3,4,6} (w_i - b_i) \,\mathrm{MD}_i\right)^2 + \left(\sum_{i=2,5,7,8} (w_i - b_i) \,\mathrm{MD}_i\right)^2$$
$$= \left(\sum_{i=1,3,4,6} w_i \,\mathrm{MD}_i - \sum_{i=1,3,4,6} b_i \,\mathrm{MD}_i\right)^2 + \left(\sum_{i=2,5,7,8} w_i \,\mathrm{MD}_i - \sum_{i=2,5,7,8} b_i \,\mathrm{MD}_i\right)^2$$
$$= (3.56w_1 + 6.54w_3 + 10.23w_4 + 2.30w_6 - 3.4089)^2 + (7.48w_2 + 2.40w_5 + 9.12w_7 + 7.96w_8 - 2.5508)^2$$

The objective function is then:

$$f(w) = \frac{\varphi_{\mathrm{AS}}}{2} \mathcal{R}_{\mathrm{AS}}(w \mid b) + \frac{\varphi_{\mathrm{MD}}}{2} \mathcal{R}_{\mathrm{MD}}(w \mid b)$$

 25 We verify that 3.4089 + 2.5508 = 5.9597 years.

The optimal solution is equal to:

 $w^{\star} = (16.31\%, 18.44\%, 17.70\%, 13.82\%, 11.67\%, 11.18\%, 0\%, 10.88\%)$

The risk metrics are:

$$MD(w^{\star}) = 5.93$$
 years
 $DTS(w^{\star}) = 210.73$ bps
 $\sigma_{AS}(w^{\star} \mid b) = 11.30\%$
 $\sigma_{MD}(w^{\star} \mid b) = 0.03$ years
 $\sigma_{DTS}(w^{\star} \mid b) = 3.70$ bps

Question (e)

We consider the following optimization problem:

Give the analytical value of the objective function. Find the optimal portfolio w^* . Compute MD (w^*), DTS (w^*), σ_{AS} ($w^* \mid b$), σ_{MD} ($w^* \mid b$) and σ_{DTS} ($w^* \mid b$).

Carbon intensity of the benchmark Equity portfolios Bond portfolios

 \mathcal{L}_2 -norm risk measures \mathcal{L}_1 -norm risk measures

We have²⁶:

$$\begin{aligned} \mathcal{R}_{\text{DTS}}\left(w \mid b\right) &= \left(\sum_{i=1,3,4,6} \left(w_i - b_i\right) \text{DTS}_i\right)^2 + \left(\sum_{i=2,5,7,8} \left(w_i - b_i\right) \text{DTS}_i\right)^2 \\ &= \left(103w_1 + 75w_3 + 796w_4 + 45w_6 - 142.49\right)^2 + \\ \left(155w_2 + 89w_5 + 320w_7 + 245w_8 - 68.24\right)^2 \end{aligned}$$

The objective function is then:

$$f(w) = \frac{\varphi_{\text{AS}}}{2} \mathcal{R}_{\text{AS}}(w \mid b) + \frac{\varphi_{\text{MD}}}{2} \mathcal{R}_{\text{MD}}(w \mid b) + \frac{\varphi_{\text{DTS}}}{2} \mathcal{R}_{\text{DTS}}(w \mid b)$$

 26 We verify that 142.49 + 68.24 = 210.73 bps.

The optimal solution is equal to:

 $w^{\star} = (16.98\%, 17.21\%, 18.26\%, 13.45\%, 12.10\%, 9.46\%, 0\%, 12.55\%)$

The risk metrics are:

$$egin{aligned} & \mathrm{MD}\,(w^{\star}) = 5.97 \; \mathrm{years} \ & \mathrm{DTS}\,(w^{\star}) = 210.68 \; \mathrm{bps} \ & \sigma_{\mathrm{AS}}\,(w^{\star} \mid b) = 11.94\% \ & \sigma_{\mathrm{MD}}\,(w^{\star} \mid b) = 0.03 \; \mathrm{years} \ & \sigma_{\mathrm{DTS}}\,(w^{\star} \mid b) = 0.06 \; \mathrm{bps} \end{aligned}$$

Question (f)

Comment on the results obtained in Questions 3.(c), 3.(d) and 3.(e).

Carbon intensity of the benchmark Equity portfolios Bond portfolios

 \mathcal{L}_2 -norm risk measures \mathcal{L}_1 -norm risk measures

Table 99: Solution of the bond optimization problem (scope \mathcal{SC}_{1-3})

Problem	Benchmark	3.(c)	3.(d)	3.(e)
W1	22.0000	17.3049	16.3102	16.9797
<i>W</i> ₂	19.0000	17.4119	18.4420	17.2101
W ₃	17.0000	20.9523	17.6993	18.2582
W4	13.0000	14.4113	13.8195	13.4494
W ₅	11.0000	10.0239	11.6729	12.1008
W ₆	8.0000	11.0881	11.1792	9.4553
W7	6.0000	0.0000	0.0000	0.0000
W ₈	4.0000	8.8075	10.8769	12.5464
$\overline{MD}(w)$	5.9597	5.9597	5.9344	5.9683
DTS(w)	210.7300	210.7300	210.7300	210.6791
$\sigma_{\mathrm{AS}}\left(\textit{w}\mid\textit{b} ight)$	0.0000	10.5726	11.3004	11.9400
$\sigma_{ ext{MD}} \left(\textbf{\textit{w}} \mid \textbf{\textit{b}} ight)$	0.0000	0.4338	0.0254	0.0308
$\sigma_{ m DTS}\left(\textit{w} \mid \textit{b} ight)$	0.0000	15.2056	3.7018	0.0561
$\mathcal{CI}(w)$	76.9427	38.4713	38.4713	38.4713

Question (g)

How to find the previous solution of Question 3.(e) using a QP solver?

The goal is to write the objective function into a quadratic function:

$$f(w) = \frac{\varphi_{AS}}{2} \mathcal{R}_{AS} (w \mid b) + \frac{\varphi_{MD}}{2} \mathcal{R}_{MD} (w \mid b) + \frac{\varphi_{DTS}}{2} \mathcal{R}_{DTS} (w \mid b)$$
$$= \frac{1}{2} w^{\top} Q(b) w - w^{\top} R(b) + c(b)$$

where:

$$\begin{aligned} \mathcal{R}_{AS} \left(w \mid b \right) &= (w_1 - 0.22)^2 + (w_2 - 0.19)^2 + (w_3 - 0.17)^2 + (w_4 - 0.13)^2 + (w_5 - 0.11)^2 + (w_6 - 0.08)^2 + (w_7 - 0.06)^2 + (w_8 - 0.04)^2 \\ \mathcal{R}_{MD} \left(w \mid b \right) &= (3.56w_1 + 6.54w_3 + 10.23w_4 + 2.30w_6 - 3.4089)^2 + (7.48w_2 + 2.40w_5 + 9.12w_7 + 7.96w_8 - 2.5508)^2 \\ \mathcal{R}_{DTS} \left(w \mid b \right) &= (103w_1 + 75w_3 + 796w_4 + 45w_6 - 142.49)^2 + (155w_2 + 89w_5 + 320w_7 + 245w_8 - 68.24)^2 \end{aligned}$$

We use the analytical approach which is described in Section 11.1.2 on pages 332-339. Moreover, we rearrange the universe such that the first fourth assets belong to the first sector and the last fourth assets belong to the second sector. In this case, we have:

$$w = \left(\underbrace{w_1, w_3, w_4, w_6}_{\mathcal{S}ector_1}, \underbrace{w_2, w_5, w_7, w_8}_{\mathcal{S}ector_2}\right)$$

Carbon intensity of the benchmark Equity portfolios Bond portfolios

 \mathcal{L}_2 -norm risk measures \mathcal{L}_1 -norm risk measures

The matrix Q(b) is block-diagonal:

$$Q(b) = \begin{pmatrix} Q_1 & \mathbf{0}_{4,4} \\ \mathbf{0}_{4,4} & Q_2 \end{pmatrix}$$

where the matrices Q_1 and Q_2 are equal to:

$$Q_1 = \begin{pmatrix} 11\,025.8400 & 8\,307.0600 & 82\,898.4700 & 4\,839.7000 \\ 8\,307.0600 & 6\,794.2900 & 61\,372.6050 & 3\,751.0500 \\ 82\,898.4700 & 61\,372.6050 & 636\,332.3225 & 36\,408.2250 \\ 4\,839.7000 & 3\,751.0500 & 36\,408.2250 & 2\,257.2500 \end{pmatrix}$$

and:

$$Q_2 = \begin{pmatrix} 25523.7600 & 14243.8000 & 51305.4400 & 39463.5200 \\ 14243.8000 & 8165.0000 & 29027.2000 & 22282.6000 \\ 51305.4400 & 29027.2000 & 104579.3600 & 80214.8800 \\ 39463.5200 & 22282.6000 & 80214.8800 & 61709.0400 \end{pmatrix}$$

The vector R(b) is defined as follows:

$$R(b) = \begin{pmatrix} 15001.8621\\11261.1051\\114306.8662\\6616.0617\\11073.1996\\6237.4080\\22424.3824\\17230.4092 \end{pmatrix}$$

Finally, the value of c(b) is equal to:

$$c(b) = 12714.3386$$

Using a QP solver, we obtain the following numerical solution:

$$\begin{pmatrix} w_{1} \\ w_{3} \\ w_{4} \\ w_{6} \\ w_{2} \\ w_{5} \\ w_{7} \\ w_{8} \end{pmatrix} = \begin{pmatrix} 16.9796 \\ 18.2582 \\ 13.4494 \\ 9.4553 \\ 17.2102 \\ 12.1009 \\ 0.0000 \\ 12.5464 \end{pmatrix} \times 10^{-2}$$

We observe some small differences (after the fifth digit) because the QP solver is more efficient than a traditional nonlinear solver.

Question 4

We consider a variant of Question 3 and assume that the synthetic risk measure is:

$$\mathcal{D}(w \mid b) = \varphi_{AS} \mathcal{D}_{AS} (w \mid b) + \varphi_{MD} \mathcal{D}_{MD} (w \mid b) + \varphi_{DTS} \mathcal{D}_{DTS} (w \mid b)$$

where:

$$\mathcal{D}_{AS}(w \mid b) = \frac{1}{2} \sum_{i=1}^{n} |w_i - b_i|$$

$$\mathcal{D}_{MD}(w \mid b) = \sum_{j=1}^{n_{\mathcal{S}ector}} \left| \sum_{i \in \mathcal{S}ector_j} (w_i - b_i) MD_i \right|$$

$$\mathcal{D}_{DTS}(w \mid b) = \sum_{j=1}^{n_{\mathcal{S}ector}} \left| \sum_{i \in \mathcal{S}ector_j} (w_i - b_i) DTS_i \right|$$

Question (a)

Define the corresponding optimization problem when the objective is to minimize the active risk and reduce the carbon intensity of the benchmark by \mathcal{R} .

The optimization problem is:

$$egin{aligned} & w^{\star} &= & rg\min\mathcal{D}\left(w\mid b
ight) \ & \mathbf{1}_8^{ op}w = 1 \ & \mathcal{CI}^{ op}w \leq (1-\mathcal{R})\,\mathcal{CI}\left(b
ight) \ & \mathbf{0}_8 \leq w \leq \mathbf{1}_8 \end{aligned}$$

Question (b)

Give the LP formulation of the optimization problem.

We use the absolute value trick and obtain the following optimization problem:

$$w^{\star} = \arg\min\frac{1}{2}\varphi_{\mathrm{AS}}\sum_{i=1}^{8}\tau_{i,w} + \varphi_{\mathrm{MD}}\sum_{j=1}^{2}\tau_{j,\mathrm{MD}} + \varphi_{\mathrm{DTS}}\sum_{j=1}^{2}\tau_{j,\mathrm{DTS}}$$
s.t.
$$\begin{cases} \mathbf{1}_{8}^{\top}w = 1\\ \mathbf{0}_{8} \leq w \leq \mathbf{1}_{8}\\ \mathcal{C}\mathcal{I}^{\top}w \leq (1-\mathcal{R})\mathcal{C}\mathcal{I}(b)\\ |w_{i} - b_{i}| \leq \tau_{i,w}\\ \left|\sum_{i \in \mathcal{S}ector_{j}}(w_{i} - b_{i}) \mathrm{MD}_{i}\right| \leq \tau_{j,\mathrm{MD}}\\ \left|\sum_{i \in \mathcal{S}ector_{j}}(w_{i} - b_{i}) \mathrm{DTS}_{i}\right| \leq \tau_{j,\mathrm{DTS}}\\ \tau_{i,w} \geq 0, \tau_{j,\mathrm{MD}} \geq 0, \tau_{j,\mathrm{DTS}} \geq 0 \end{cases}$$

We can now formulate this problem as a standard LP problem:

$$x^{\star} = \arg\min c^{\top} x$$

s.t.
$$\begin{cases} Ax = B \\ Cx \le D \\ x^{-} \le x \le x^{+} \end{cases}$$

where x is the 20×1 vector defined as follows:

$$x = \begin{pmatrix} w \\ \tau_w \\ \tau_{\rm MD} \\ \tau_{\rm DTS} \end{pmatrix}$$

The 20×1 vector *c* is equal to:

$$m{c} = \left(egin{array}{c} m{0}_8 \ rac{1}{2}arphi_{
m AS}m{1}_8 \ arphi_{
m MD}m{1}_2 \ arphi_{
m DTS}m{1}_2 \end{array}
ight)$$

The equality constraint is defined by $A = \begin{pmatrix} \mathbf{1}_8^\top & \mathbf{0}_8^\top & \mathbf{0}_2^\top & \mathbf{0}_2^\top \end{pmatrix}$ and B = 1. The bounds are $x^- = \mathbf{0}_{20}$ and $x^+ = \infty \cdot \mathbf{1}_{20}$.

Carbon intensity of the benchmark Equity portfolios Bond portfolios

 \mathcal{L}_2 -norm risk measures \mathcal{L}_1 -norm risk measures

For the inequality constraint, we have 27 :

$$Cx \leq D \Leftrightarrow \begin{pmatrix} l_8 & -l_8 & \mathbf{0}_{8,2} & \mathbf{0}_{8,2} \\ -l_8 & -l_8 & \mathbf{0}_{8,2} & \mathbf{0}_{8,2} \\ C_{\mathrm{MD}} & \mathbf{0}_{2,8} & -l_2 & \mathbf{0}_{2,2} \\ -C_{\mathrm{MD}} & \mathbf{0}_{2,8} & -l_2 & \mathbf{0}_{2,2} \\ C_{\mathrm{DTS}} & \mathbf{0}_{2,8} & \mathbf{0}_{2,2} & -l_2 \\ -C_{\mathrm{DTS}} & \mathbf{0}_{2,8} & \mathbf{0}_{2,2} & -l_2 \\ -C_{\mathrm{DTS}} & \mathbf{0}_{2,8} & \mathbf{0}_{2,2} & -l_2 \\ \mathcal{C}\mathcal{I}^{\top} & \mathbf{0}_{1,8} & \mathbf{0} & \mathbf{0} \end{pmatrix} x \leq \begin{pmatrix} b \\ -b \\ \mathrm{MD}^{\star} \\ -\mathrm{MD}^{\star} \\ \mathrm{DTS}^{\star} \\ -\mathrm{DTS}^{\star} \\ (1-\mathcal{R})\mathcal{C}\mathcal{I}(b) \end{pmatrix}$$

where:

and:

The 2 × 1 vectors MD^* and DTS^* are respectively equal to (3.4089, 2.5508) and (142.49, 68.24). ²⁷C is a 25 × 8 matrix and D is a 25 × 1 vector.

Question (c)

Find the optimal portfolio when \mathcal{R} is set to 50%. Compare the solution with this obtained in Question 3.(e).

We obtain the following solution:

$$\begin{array}{lll} w^{\star} &=& (18.7360, 15.8657, 17.8575, 13.2589, 11, 9.4622, 0, 13.8196) \times 10^{-2} \\ \tau^{\star}_{w} &=& (3.2640, 3.1343, 0.8575, 0.2589, 0, 1.4622, 6, 9.8196) \times 10^{-2} \\ \tau_{\mathrm{MD}} &=& (0, 0) \\ \tau_{\mathrm{DTS}} &=& (0, 0) \end{array}$$

Carbon intensity of the benchmark Equity portfolios Bond portfolios

 \mathcal{L}_2 -norm risk measures \mathcal{L}_1 -norm risk measures

Table 100: Solution of the bond optimization problem (scope \mathcal{SC}_{1-3})

Problem	Benchmark	3.(e)	4.(c)
W1	22.0000	16.9796	18.7360
<i>W</i> ₂	19.0000	17.2102	15.8657
W3	17.0000	18.2582	17.8575
W4	13.0000	13.4494	13.2589
W ₅	11.0000	12.1009	11.0000
W ₆	8.0000	9.4553	9.4622
W ₇	6.0000	0.0000	0.0000
W ₈	4.0000	12.5464	13.8196
$\overline{MD}(w)$	5.9597	5.9683	5.9597
DTS(w)	210.7300	210.6791	210.7300
$\sigma_{\rm AS}(w b)$	0.0000	11.9400	12.4837
$\sigma_{ ext{MD}} \left(\textit{w} \mid \textit{b} ight)$	0.0000	0.0308	0.0000
$\sigma_{ m DTS} \left(\textit{w} \mid \textit{b} ight)$	0.0000	0.0561	0.0000
$\overline{\mathcal{D}}_{AS}(w \mid b)$	0.0000	25.6203	24.7964
$\mathcal{D}_{\mathrm{MD}}(w \mid b)$	0.0000	0.0426	0.0000
$\mathcal{D}_{\mathrm{DTS}}(w \mid b)$	0.0000	0.0608	0.0000
$\bar{\mathcal{CI}}(w)$	76.9427	38.4713	38.4713

In Table 100, we compare the two solutions²⁸. They are very close. In fact, we notice that the LP solution matches perfectly the MD and DTS constraints, but has a higher AS risk $\sigma_{AS}(w \mid b)$. If we note the two solutions $w^*(\mathcal{L}_1)$ and $w^*(\mathcal{L}_2)$, we have:

$$\begin{cases} \mathcal{R}(w^{\star}(\mathcal{L}_{2}) \mid b) = 1.4524 < \mathcal{R}(w^{\star}(\mathcal{L}_{1}) \mid b) = 1.5584 \\ \mathcal{D}(w^{\star}(\mathcal{L}_{2}) \mid b) = 13.9366 > \mathcal{D}(w^{\star}(\mathcal{L}_{1}) \mid b) = 12.3982 \end{cases}$$

There is a trade-off between the \mathcal{L}_1 - and \mathcal{L}_2 -norm risk measures. This is why we cannot say that one solution dominates the other.

²⁸The units are the following: % for the weights w_i , and the active share metrics $\sigma_{AS}(w \mid b)$ and $\mathcal{D}_{AS}(w \mid b)$; years for the modified duration metrics MD(w), $\sigma_{MD}(w \mid b)$ and $\mathcal{D}_{MD}(w \mid b)$; bps for the duration-times-spread metrics DTS(w), $\sigma_{DTS}(w \mid b)$ and $\mathcal{D}_{DTS}(w \mid b)$; tCO₂e/\$ mn for the carbon intensity DTS(w).

Course 2023-2024 in Portfolio Allocation and Asset Management Lecture 7. Machine Learning in Asset Management

Thierry Roncalli*

*Amundi Asset Management²⁹

*University of Paris-Saclay

January 2024

²⁹The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

Portfolio optimization Pattern learning and self-automated strategies Market generators Tutorial exercises

Agenda

- Lecture 1: Portfolio Optimization
- Lecture 2: Risk Budgeting
- Lecture 3: Smart Beta, Factor Investing and Alternative Risk Premia
- Lecture 4: Equity Portfolio Optimization with ESG Scores
- Lecture 5: Climate Portfolio Construction
- Lecture 6: Equity and Bond Portfolio Optimization with Green Preferences
- Lecture 7: Machine Learning in Asset Management

Prologue

- Machine learning is a hot topic in asset management (and more generally in finance)
- Machine learning and data mining are two sides of the same coin

backtesting performance \neq live performance

 Reaching for the stars: a complex/complicated process does not mean a good solution

Don't forget the 3 rules in asset management

- It is difficult to make money
- It is difficult to make money
- It is difficult to make money

Prologue

- In this lecture, we focus on ML optimization algorithms, because they have proved their worth
- We have no time to study classical ML methods that can be used by quants to build investment strategies³⁰

³⁰Don't believe that they are always significantly better than standard statistical approaches!!!

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Standard optimization algorithms

- Gradient descent methods
- Conjugate gradient (CG) methods (Fletcher–Reeves, Polak–Ribiere, etc.)
- Quasi-Newton (QN) methods (NR, BFGS, DFP, etc.)
- Quadratic programming (QP) methods
- Sequential QP methods
- Interior-point methods

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Standard optimization algorithms

• We consider the following unconstrained minimization problem:

$$x^{\star} = \arg\min_{x} f(x) \tag{7}$$

where $x \in \mathbb{R}^n$ and f(x) is a continuous, smooth and convex function

 In order to find the solution x^{*}, optimization algorithms use iterative algorithms:

$$x^{(k+1)} = x^{(k)} + \Delta x^{(k)}$$

= $x^{(k)} - \eta^{(k)} D^{(k)}$

where:

- $x^{(0)}$ is the vector of starting values
- $x^{(k)}$ is the approximated solution of Problem (7) at the k^{th} iteration
- $\eta^{(k)} > 0$ is a scalar that determines the step size
- $D^{(k)}$ is the direction

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Standard optimization algorithms

• Gradient descent:

$$D^{(k)} = \nabla f\left(x^{(k)}\right) = \frac{\partial f\left(x^{(k)}\right)}{\partial x}$$

• Newton-Raphson method:

$$D^{(k)} = \left(\nabla^2 f\left(x^{(k)}\right)\right)^{-1} \nabla f\left(x^{(k)}\right) = \left(\frac{\partial^2 f\left(x^{(k)}\right)}{\partial x \partial x^{\top}}\right)^{-1} \frac{\partial f\left(x^{(k)}\right)}{\partial x}$$

• Quasi-Newton method:

$$D^{(k)} = H^{(k)} \nabla f\left(x^{(k)}\right)$$

where $H^{(k)}$ is an approximation of the inverse of the Hessian matrix

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Standard optimization algorithms

What are the issues?

- I How to solve large-scale optimization problems?
- Output: A solve optimization problems where there are multiple solutions?
- How to just find an *"acceptable"* solution?

The case of neural networks and deep learning

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Machine learning optimization algorithms

Machine learning problems

- Non-smooth objective function
- Non-unique solution
- Large-scale dimension

Optimization in machine learning requires to reinvent numerical optimization

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Machine learning optimization algorithms

We consider 4 methods:

- Cyclical coordinate descent (CCD)
- Alternative direction method of multipliers (ADMM)
- Proximal operators (PO)
- Dykstra's algorithm (DA)

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Coordinate descent methods

The fall and the rise of the steepest descent method

In the 1980s:

- Conjugate gradient methods (Fletcher–Reeves, Polak–Ribiere, etc.)
- Quasi-Newton methods (NR, BFGS, DFP, etc.)

In the 1990s:

- Neural networks
- Learning rules: Descent, Momentum/Nesterov and Adaptive learning methods

In the 2000s:

- Gradient descent (by observations): Batch gradient descent (BGD), Stochatic gradient descent (SGD), Mini-batch gradient descent (MGD)
- Gradient descent (by parameters): Coordinate descent (CD), cyclical coordinate descent (CCD), Random coordinate descent (RCD)

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Coordinate descent methods

Descent method

The descent algorithm is defined by the following rule:

$$x^{(k+1)} = x^{(k)} + \Delta x^{(k)} = x^{(k)} - \eta^{(k)} D^{(k)}$$

At the k^{th} Iteration, the current solution $x^{(k)}$ is updated by going in the opposite direction to $D^{(k)}$ (generally, we set $D^{(k)} = \partial_x f(x^{(k)})$)

Coordinate descent method

Coordinate descent is a modification of the descent algorithm by minimizing the function along one coordinate at each step:

$$x_i^{(k+1)} = x_i^{(k)} + \Delta x_i^{(k)} = x_i^{(k)} - \eta^{(k)} D_i^{(k)}$$

 \Rightarrow The coordinate descent algorithm becomes a scalar problem

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Coordinate descent methods

Choice of the variable *i*

 Random coordinate descent (RCD)
 We assign a random number between 1 and n to the index i (Nesterov, 2012)

Cyclical coordinate descent (CCD)
 We cyclically iterate through the coordinates (Tseng, 2001):

$$x_i^{(k+1)} = \arg\min_x f\left(x_1^{(k+1)}, \dots, x_{i-1}^{(k+1)}, x, x_{i+1}^{(k)}, \dots, x_n^{(k)}\right)$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Cyclical coordinate descent (CCD)

Example 1

We consider the following function:

$$f(x_1, x_2, x_3) = (x_1 - 1)^2 + x_2^2 - x_2 + (x_3 - 2)^4 e^{x_1 - x_2 + 3}$$

We have:

$$D_{1} = \frac{\partial f(x_{1}, x_{2}, x_{3})}{\partial x_{1}} = 2(x_{1} - 1) + (x_{3} - 2)^{4} e^{x_{1} - x_{2} + 3}$$
$$D_{2} = \frac{\partial f(x_{1}, x_{2}, x_{3})}{\partial x_{2}} = 2x_{2} - 1 - (x_{3} - 2)^{4} e^{x_{1} - x_{2} + 3}$$
$$D_{3} = \frac{\partial f(x_{1}, x_{2}, x_{3})}{\partial x_{3}} = 4(x_{3} - 2)^{3} e^{x_{1} - x_{2} + 3}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Cyclical coordinate descent (CCD)

The CCD algorithm is defined by the following iterations:

$$\begin{cases} x_1^{(k+1)} = x_1^{(k)} - \eta^{(k)} \left(2\left(x_1^{(k)} - 1\right) + \left(x_3^{(k)} - 2\right)^4 e^{x_1^{(k)} - x_2^{(k)} + 3} \right) \\ x_2^{(k+1)} = x_2^{(k)} - \eta^{(k)} \left(2x_2^{(k)} - 1 - \left(x_3^{(k)} - 2\right)^4 e^{x_1^{(k+1)} - x_2^{(k)} + 3} \right) \\ x_3^{(k+1)} = x_3^{(k)} - \eta^{(k)} \left(4\left(x_3^{(k)} - 2\right)^3 e^{x_1^{(k+1)} - x_2^{(k+1)} + 3} \right) \end{cases}$$

We have the following scheme:

$$\begin{pmatrix} x_1^{(0)}, x_2^{(0)}, x_3^{(0)} \end{pmatrix} \to x_1^{(1)} \to \begin{pmatrix} x_1^{(1)}, x_2^{(0)}, x_3^{(0)} \end{pmatrix} \to x_2^{(1)} \to \begin{pmatrix} x_1^{(1)}, x_2^{(1)}, x_3^{(0)} \end{pmatrix} \to x_3^{(1)} \to x_3^{(2)} \to x_3^{(1)} \to x_3^{(2)} \to x_3^{(2)}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Cyclical coordinate descent (CCD)

Table 101: Solution obtained with the CCD algorithm ($\eta^{(k)} = 0.25$)

k	$x_1^{(k)}$	$x_{2}^{(k)}$	$x_{3}^{(k)}$	$D_1^{(k)}$	$D_2^{(k)}$	$D_{3}^{(k)}$
0	1.0000	1.0000	1.0000			
1	-4.0214	0.7831	1.1646	20.0855	0.8675	-0.6582
2	-1.5307	0.8834	2.2121	-9.9626	-0.4013	-4.1902
3	-0.2663	0.6949	2.1388	-5.0578	0.7540	0.2932
4	0.3661	0.5988	2.0962	-2.5297	0.3845	0.1703
5	0.6827	0.5499	2.0758	-1.2663	0.1957	0.0818
6	0.8412	0.5252	2.0638	-0.6338	0.0989	0.0480
7	0.9205	0.5127	2.0560	-0.3172	0.0498	0.0314
8	0.9602	0.5064	2.0504	-0.1588	0.0251	0.0222
9	0.9800	0.5033	2.0463	-0.0795	0.0126	0.0166
$\overline{\infty}$	1.0000	0.5000	2.0000	0.0000	0.0000	0.0000

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

The lasso revolution

Least absolute shrinkage and selection operator (lasso)

The lasso method consists in adding a ℓ_1 penalty function to the least square problem:

$$\hat{\beta}^{\text{lasso}}(\tau) = \arg\min\frac{1}{2}(Y - X\beta)^{\top}(Y - X\beta)$$

s.t. $\|\beta\|_1 = \sum_{j=1}^m |\beta_j| \le \tau$

This problem is equivalent to:

$$\hat{eta}^{ ext{lasso}}\left(\lambda
ight) = rg\minrac{1}{2}\left(Y - Xeta
ight)^{ op}\left(Y - Xeta
ight) + \lambda\left\|eta
ight\|_{1}$$

We have:

$$\tau = \left\| \hat{\beta}^{\text{lasso}} \left(\lambda \right) \right\|_{1}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Solving the lasso regression problem

We introduce the parametrization:

$$\beta = \left(\begin{array}{cc} I_m & -I_m \end{array} \right) \left(\begin{array}{c} \beta^+ \\ \beta^- \end{array} \right) = \beta^+ - \beta^-$$

under the constraints $\beta^+ \geq \mathbf{0}_m$ and $\beta^- \geq \mathbf{0}_m$. We deduce that:

$$\|\beta\|_{1} = \sum_{j=1}^{m} \left|\beta_{j}^{+} - \beta_{j}^{-}\right| = \sum_{j=1}^{m} \left|\beta_{j}^{+}\right| + \sum_{j=1}^{m} \left|\beta_{j}^{-}\right| = \mathbf{1}_{m}^{\top}\beta^{+} + \mathbf{1}_{m}^{\top}\beta^{-}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Solving the lasso regression problem

Augmented QP program of the lasso regression (λ -problem)

The augmented QP program is specified as follows:

$$\hat{\theta} = \arg\min\frac{1}{2}\theta^{\top}Q\theta - \theta^{\top}R$$

s.t. $\theta \ge \mathbf{0}_{2m}$

where $\theta = (\beta^+, \beta^-)$, $\tilde{X} = (X - X)$, $Q = \tilde{X}^\top \tilde{X}$ and $R = \tilde{X}^\top Y + \lambda \mathbf{1}_{2m}$. If we denote $T = (I_m - I_m)$, we obtain:

$$\hat{eta}^{ ext{lasso}}\left(\lambda
ight)= extsf{T}\hat{ heta}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Solving the lasso regression problem

Augmented QP program of the lasso regression (τ -problem)

If we consider the τ -problem, we obtain another augmented QP program:

$$egin{array}{rcl} \hat{ heta} &=& rgmin rac{1}{2} heta^ op Q heta - heta^ op R \ &\ ext{s.t.} & \left\{ egin{array}{c} C heta \leq D \ heta \geq m{0}_{2m} \end{array}
ight. \end{array}$$

where $Q = \tilde{X}^{ op} \tilde{X}$, $R = \tilde{X}^{ op} Y$, $C = \mathbf{1}_{2m}^{ op}$ and $D = \tau$. Again, we have: $\hat{\beta}(\tau) = T\hat{\theta}$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Solving the lasso regression problem

We consider the linear regression:

$$Y = X\beta + \varepsilon$$

where Y is a $n \times 1$ vector, X is a $n \times m$ matrix and β is a $m \times 1$ vector. The optimization problem is:

$$\hat{eta} = rgmin f(eta) = rac{1}{2} \left(Y - Xeta
ight)^{ op} \left(Y - Xeta
ight)$$

Since we have $\partial_{\beta} f(\beta) = -X^{\top} (Y - X\beta)$, we deduce that:

$$\begin{array}{ll} \frac{\partial f\left(\beta\right)}{\partial \beta_{j}} &=& x_{j}^{\top}\left(X\beta-Y\right) \\ &=& x_{j}^{\top}\left(x_{j}\beta_{j}+X_{(-j)}\beta_{(-j)}-Y\right) \\ &=& x_{j}^{\top}x_{j}\beta_{j}+x_{j}^{\top}X_{(-j)}\beta_{(-j)}-x_{j}^{\top}Y \end{array}$$

where x_j is the $n \times 1$ vector corresponding to the j^{th} variable and $X_{(-j)}$ is the $n \times (m-1)$ matrix (without the j^{th} variable)

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Solving the lasso regression problem

At the optimum, we have $\partial_{\beta_j} f(\beta) = 0$ or:

$$\beta_j = \frac{x_j^\top Y - x_j^\top X_{(-j)} \beta_{(-j)}}{x_j^\top x_j} = \frac{x_j^\top \left(Y - X_{(-j)} \beta_{(-j)}\right)}{x_j^\top x_j}$$

CCD algorithm for the linear regression

We have:

$$\beta_{j}^{(k+1)} = \frac{x_{j}^{\top} \left(Y - \sum_{j'=1}^{j-1} x_{j'} \beta_{j'}^{(k+1)} - \sum_{j'=j+1}^{m} x_{j'} \beta_{j'}^{(k)}\right)}{x_{j}^{\top} x_{j}}$$

 \Rightarrow Introducing pointwise constraints is straightforward

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Solving the lasso regression problem

The objective function becomes:

$$\begin{aligned} f\left(\beta\right) &= \frac{1}{2} \left(Y - X\beta\right)^{\top} \left(Y - X\beta\right) + \lambda \left\|\beta\right\|_{1} \\ &= f_{\mathrm{OLS}}\left(\beta\right) + \lambda \left\|\beta\right\|_{1} \end{aligned}$$

Since the norm is separable — $\|\beta\|_1 = \sum_{j=1}^m |\beta_j|$, the first-order condition is:

$$\frac{\partial f_{\text{OLS}}\left(\beta\right)}{\partial \beta_{j}} + \lambda \partial \left|\beta_{j}\right| = 0$$

or:

$$\underbrace{\left(x_{j}^{\top}x_{j}\right)}_{c}\beta_{j}-\underbrace{x_{j}^{\top}\left(Y-X_{(-j)}\beta_{(-j)}\right)}_{v}+\lambda\partial |\beta_{j}|=0$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Derivation of the soft-thresholding operator

We consider the following equation:

$$c\beta_j - v + \lambda \partial |\beta_j| \in \{0\}$$

where c > 0 and $\lambda > 0$. Since we have $\partial |\beta_j| = \operatorname{sign} (\beta_j)$, we deduce that:

$$eta_j^\star = \left\{ egin{array}{ccc} c^{-1} \left(v + \lambda
ight) & ext{if } eta_j^\star < 0 \ 0 & ext{if } eta_j^\star = 0 \ c^{-1} \left(v - \lambda
ight) & ext{if } eta_j^\star > 0 \end{array}
ight.$$

If $\beta_j^* < 0$ or $\beta_j^* > 0$, then we have $v + \lambda < 0$ or $v - \lambda > 0$. This is equivalent to set $|v| > \lambda > 0$. The case $\beta_j^* = 0$ implies that $|v| \le \lambda$. We deduce that:

$$\beta_{j}^{\star} = c^{-1} \cdot \mathcal{S}(\mathbf{v}; \lambda)$$

where $\mathcal{S}(v; \lambda)$ is the soft-thresholding operator:

$$\begin{aligned} \mathcal{S}(\boldsymbol{v};\lambda) &= \begin{cases} 0 & \text{if } |\boldsymbol{v}| \leq \lambda \\ \boldsymbol{v} - \lambda \operatorname{sign}(\boldsymbol{v}) & \text{otherwise} \end{cases} \\ &= \operatorname{sign}(\boldsymbol{v}) \cdot (|\boldsymbol{v}| - \lambda)_{+} \end{aligned}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Solving the lasso regression problem

CCD algorithm for the lasso regression

We have:

$$\beta_{j}^{(k+1)} = \frac{1}{x_{j}^{\top} x_{j}} \mathcal{S}\left(x_{j}^{\top} \left(Y - \sum_{j'=1}^{j-1} x_{j'} \beta_{j'}^{(k+1)} - \sum_{j'=j+1}^{m} x_{j'} \beta_{j'}^{(k)}\right); \lambda\right)$$

where $\mathcal{S}(v; \lambda)$ is the **soft-thresholding operator**:

$$\mathcal{S}\left(\mathbf{v};\lambda
ight)= ext{sign}\left(\mathbf{v}
ight)\cdot\left(|\mathbf{v}|-\lambda
ight)_{+}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Solving the lasso regression problem

Table 102: Matlab code

```
for k = 1:nIters
    for j = 1:m
        x_j = X(:, j);
        X_j = X;
        X_j(:,j) = zeros(n,1);
        if lambda > 0
            v = x_{j} * (Y - X_{j} + beta);
            beta(j) = max(abs(v) - lambda, 0) * sign(v) / (x_j'*x_j);
        else
            beta(j) = x_j'*(Y - X_j*beta) / (x_j'*x_j);
        end
    end
end
```

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Solving the lasso regression problem

Example 2

We consider the following data:

i	У	<i>x</i> ₁	<i>x</i> ₂	X ₃	<i>x</i> ₄	<i>X</i> 5
1	3.1	2.8	4.3	0.3	2.2	3.5
2	24.9	5.9	3.6	3.2	0.7	6.4
3	27.3	6.0	9.6	7.6	9.5	0.9
4	25.4	8.4	5.4	1.8	1.0	7.1
5	46.1	5.2	7.6	8.3	0.6	4.5
6	45.7	6.0	7.0	9.6	0.6	0.6
7	47.4	6.1	1.0	8.5	9.6	8.6
8	-1.8	1.2	9.6	2.7	4.8	5.8
9	20.8	3.2	5.0	4.2	2.7	3.6
10	6.8	0.5	9.2	6.9	9.3	0.7
11	12.9	7.9	9.1	1.0	5.9	5.4
12	37.0	1.8	1.3	9.2	6.1	8.3
13	14.7	7.4	5.6	0.9	5.6	3.9
14	-3.2	2.3	6.6	0.0	3.6	6.4
15	44.3	7.7	2.2	6.5	1.3	0.7

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Solving the lasso regression problem

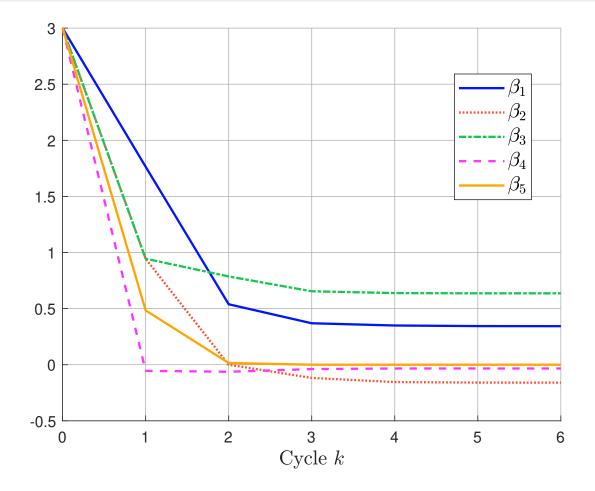


Figure 121: Convergence of the CCD algorithm (lasso regression, $\lambda = 2$)

Note: we start the CCD algorithm with $\beta_j^{(0)} = 0$ (don't forget to standardize the data!)

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Solving the lasso regression problem

- The dimension problem is (2m, 2m) for QP and (1, 0) for CCD!
- CCD is faster for lasso regression than for linear regression (because of the soft-thresholding operator)!

Suppose $n = 50\,000$ and $m = 1\,000\,000$ (DNA sequence problem!)

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Solving the lasso regression problem

Example 3

- We consider an experiment with $n = 100\,000$ observations and m = 50 variables.
- The design matrix X is built using the uniform distribution while the residuals are simulated using a Gaussian distribution and a standard deviation of 20%.
- The beta coefficients are distributed uniformly between -3 and +3 except four coefficients that take a larger value.
- We then standardize the data of X and Y.
- For initializing the coordinates, we use uniform random numbers between -1 and +1.

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Solving the lasso regression problem

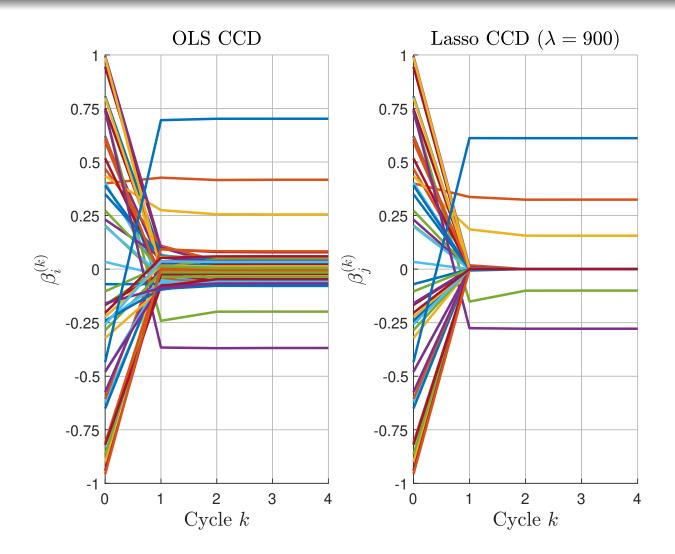


Figure 122: Convergence of the CCD algorithm (lasso vs linear regression)

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Alternative direction method of multipliers

Definition

The alternating direction method of multipliers (ADMM) is an algorithm introduced by Gabay and Mercier (1976) to solve optimization problems which can be expressed as:

$$\{x^{\star}, y^{\star}\} = \arg\min_{(x,y)} f_x(x) + f_y(y)$$

s.t. $Ax + By = c$

The algorithm is:

$$x^{(k+1)} = \arg \min_{x} \left\{ f_{x}(x) + \frac{\varphi}{2} \left\| Ax + By^{(k)} - c + u^{(k)} \right\|_{2}^{2} \right\}$$
$$y^{(k+1)} = \arg \min_{y} \left\{ f_{y}(y) + \frac{\varphi}{2} \left\| Ax^{(k+1)} + By - c + u^{(k)} \right\|_{2}^{2} \right\}$$
$$u^{(k+1)} = u^{(k)} + \left(Ax^{(k+1)} + By^{(k+1)} - c \right)$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Alternative direction method of multipliers

What is the underlying idea?

- Minimizing $f_x(x) + f_y(y)$ with respect to (x, y) is a difficult task
- Minimizing

$$g_{x}(x) = f_{x}(x) + \frac{\varphi}{2} ||Ax + By - c||_{2}^{2}$$

with respect to x and minimizing

$$g_{y}(y) = f_{y}(y) + \frac{\varphi}{2} ||Ax + By - c||_{2}^{2}$$

with respect to y is easier

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Alternative direction method of multipliers

We use the following notations:

• $f_x^{(k+1)}(x)$ is the objective function of the x-update step:

$$f_{x}^{(k+1)}(x) = f_{x}(x) + \frac{\varphi}{2} \left\| Ax + By^{(k)} - c + u^{(k)} \right\|_{2}^{2}$$

• $f_y^{(k+1)}(y)$ is the objective function of the y-update step:

$$f_{y}^{(k+1)}(y) = f_{y}(y) + \frac{\varphi}{2} \left\| Ax^{(k+1)} + By - c + u^{(k)} \right\|_{2}^{2}$$

Machine learning optimization algorithms

Alternative direction method of multipliers

When
$$A = I_n$$
 and $B = -I_n$, we have:
 $Ax + By^{(k)} - c + u^{(k)} = x - y^{(k)} - c + u^{(k)} = x - v_x^{(k+1)}$

where:

$$v_x^{(k+1)} = y^{(k)} + c - u^{(k)}$$

(2)

$$Ax^{(k+1)} + By - c + u^{(k)} = x^{(k+1)} - y - c + u^{(k)} = v_y^{(k+1)} - y$$

where:

$$v_{y}^{(k+1)} = x^{(k+1)} - c + u^{(k)}$$

3

$$f_{x}^{(k+1)}(x) = f_{x}(x) + \frac{\varphi}{2} \left\| x - v_{x}^{(k+1)} \right\|_{2}^{2}$$

$$f_{y}^{(k+1)}(y) = f_{y}(y) + \frac{\varphi}{2} \left\| y - v_{y}^{(k+1)} \right\|_{2}^{2}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Alternative direction method of multipliers

• We consider a problem of the form:

$$x^{\star} = \arg\min_{x} g\left(x\right)$$

The idea is then to write g(x) as a separable function:

$$g(x) = g_1(x) + g_2(x)$$

and to consider the following equivalent ADMM problem:

$$\{x^{\star}, y^{\star}\} = \arg \min_{(x,y)} f_x(x) + f_y(y)$$

s.t. $x = y$
where $f_x(x) = g_1(x)$ and $f_y(y) = g_2(y)$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Alternative direction method of multipliers

• We consider a problem of the form:

$$egin{array}{rl} x^{\star} &=& rg\min_{x}g\left(x
ight)\ ext{ s.t. } x\in\Omega \end{array}$$

We have:

$$\{x^{\star}, y^{\star}\} = \arg\min_{(x,y)} f_x(x) + f_y(y)$$

s.t. $x = y$

where $f_{x}(x) = g(x)$, $f_{y}(y) = \mathbb{1}_{\Omega}(y)$ and:

$$\mathbb{1}_{\Omega}\left(y
ight)=\left\{egin{array}{ccc} 0 & ext{if} & y\in\Omega\ +\infty & ext{if} & y
otin\Omega \end{array}
ight.$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Alternative direction method of multipliers

Special case

$$\Omega = \left\{ x : x^- \le x \le x^+ \right\}$$

By setting $\varphi = 1$, the *y*-step becomes:

$$y^{(k+1)} = \arg \min \left\{ \mathbb{1}_{\Omega} \left(y \right) + \frac{1}{2} \left\| x^{(k+1)} - y + u^{(k)} \right\|_{2}^{2} \right\}$$
$$= \operatorname{prox}_{f_{y}} \left(x^{(k+1)} + u^{(k)} \right)$$

where the proximal operator is the box projection or the truncation operator:

$$prox_{f_{y}}(v) = x^{-} \odot \mathbb{1} \{ v < x^{-} \} + v \odot \mathbb{1} \{ x^{-} \le v \le x^{+} \} + x^{+} \odot \mathbb{1} \{ v > x^{+} \} = \mathcal{T}(v; x^{-}, x^{+})$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Alternative direction method of multipliers

Special case

$$\Omega = \left\{ x : x^- \le x \le x^+ \right\}$$

The ADMM algorithm is then:

$$x^{(k+1)} = \arg \min \left\{ g(x) + \frac{1}{2} \left\| x - y^{(k)} + u^{(k)} \right\|_{2}^{2} \right\}$$
$$y^{(k+1)} = \operatorname{prox}_{f_{y}} \left(x^{(k+1)} + u^{(k)} \right)$$
$$u^{(k+1)} = u^{(k)} + \left(x^{(k+1)} - y^{(k+1)} \right)$$

 \Rightarrow Solving the constrained optimization problem consists in solving the unconstrained optimization problem, applying the box projection and iterating these steps until convergence

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Alternative direction method of multipliers

Lasso regression

The λ -problem of the lasso regression has the following ADMM formulation:

$$\{\beta^{\star}, \overline{\beta}^{\star}\} = \arg\min \frac{1}{2} (Y - X\beta)^{\top} (Y - X\beta) + \lambda \|\overline{\beta}\|_{1}$$

s.t. $\beta - \overline{\beta} = \mathbf{0}_{m}$

We have:

$$\begin{aligned} f_{X}(\beta) &= \frac{1}{2}(Y - X\beta)^{\top}(Y - X\beta) \\ &= \frac{1}{2}\beta^{\top}(X^{\top}X)\beta - \beta^{\top}(X^{\top}Y) + \frac{1}{2}Y^{\top}Y \end{aligned}$$

and:

$$f_{y}\left(ar{eta}
ight) = \lambda \|ar{eta}\|_{1}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Alternative direction method of multipliers

The *x*-step is:

$$\beta^{(k+1)} = \arg\min_{\beta} \left\{ \frac{1}{2} \beta^{\top} \left(X^{\top} X \right) \beta - \beta^{\top} \left(X^{\top} Y \right) + \frac{\varphi}{2} \left\| \beta - \overline{\beta}^{(k)} + u^{(k)} \right\|_{2}^{2} \right\}$$

Since we have:

$$\frac{\varphi}{2} \left\| \beta - \bar{\beta}^{(k)} + u^{(k)} \right\|_{2}^{2} = \frac{\varphi}{2} \beta^{\top} \beta - \varphi \beta^{\top} \left(\bar{\beta}^{(k)} - u^{(k)} \right) + \frac{\varphi}{2} \left(\bar{\beta}^{(k)} - u^{(k)} \right)^{\top} \left(\bar{\beta}^{(k)} - u^{(k)} \right)$$

we deduce that the *x*-update is a standard QP problem where:

$$f_{x}^{(k+1)}\left(\beta\right) = \frac{1}{2}\beta^{\top}\left(X^{\top}X + \varphi I_{m}\right)\beta - \beta^{\top}\left(X^{\top}Y + \varphi\left(\bar{\beta}^{(k)} - u^{(k)}\right)\right)$$

It follows that the solution is:

$$\beta^{(k+1)} = \arg \min f_x^{(k+1)}(\beta)$$

= $(X^{\top}X + \varphi I_m)^{-1} (X^{\top}Y + \varphi (\bar{\beta}^{(k)} - u^{(k)}))$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Alternative direction method of multipliers

The *y*-step is:

$$\overline{\beta}^{(k+1)} = \arg \min_{\overline{\beta}} \left\{ \lambda \|\overline{\beta}\|_1 + \frac{\varphi}{2} \left\| \beta^{(k+1)} - \overline{\beta} + u^{(k)} \right\|_2^2 \right\}$$

$$= \arg \min \left\{ \frac{1}{2} \left\| \overline{\beta} - \left(\beta^{(k+1)} + u^{(k)} \right) \right\|_2^2 + \frac{\lambda}{\varphi} \|\overline{\beta}\|_1 \right\}$$

We recognize the soft-thresholding problem with $v = \beta^{(k+1)} + u^{(k)}$. We have:

$$\bar{\beta}^{(k+1)} = \mathcal{S}\left(\beta^{(k+1)} + u^{(k)}; \varphi^{-1}\lambda\right)$$

where:

$$\mathcal{S}(\mathbf{v}; \lambda) = \operatorname{sign}(\mathbf{v}) \cdot (|\mathbf{v}| - \lambda)_{+}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Alternative direction method of multipliers

ADMM-Lasso algorithm (Boyd et al., 2011)

Finally, the ADMM algorithm is made up of the following steps:

$$\begin{cases} \beta^{(k+1)} = (X^{\top}X + \varphi I_m)^{-1} (X^{\top}Y + \varphi (\bar{\beta}^{(k)} - u^{(k)})) \\ \bar{\beta}^{(k+1)} = S (\beta^{(k+1)} + u^{(k)}; \varphi^{-1}\lambda) \\ u^{(k+1)} = u^{(k)} + (\beta^{(k+1)} - \bar{\beta}^{(k+1)}) \end{cases}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Alternative direction method of multipliers

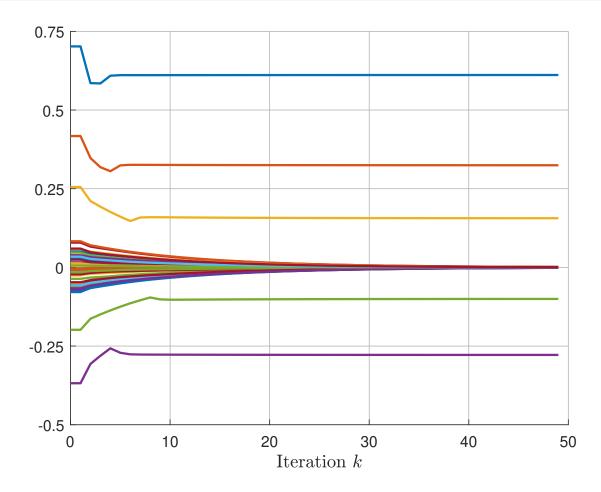


Figure 123: Convergence of the ADMM algorithm (Example 3, $\lambda = 900$)

Note: the initial values are the OLS estimates and we set $\varphi = \lambda$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Alternative direction method of multipliers

In practice, we use a time-varying parameter $\varphi^{(k)}$ (see Perrin and Roncalli, 2020).

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Proximal operator

Definition

The proximal operator $\mathbf{prox}_{f}(v)$ of the function f(x) is defined by:

$$\operatorname{prox}_{f}(v) = x^{\star} = \arg\min_{x} \left\{ f_{v}(x) = f(x) + \frac{1}{2} ||x - v||_{2}^{2} \right\}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Proximal operator

Example 4

We consider the scalar-valued logarithmic barrier function $f(x) = -\lambda \ln x$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Proximal operator

We have:

$$f_{v}(x) = -\lambda \ln x + \frac{1}{2} (x - v)^{2}$$

= $-\lambda \ln x + \frac{1}{2} x^{2} - xv + \frac{1}{2} v^{2}$

The first-order condition is $-\lambda x^{-1} + x - v = 0$. We obtain two roots with opposite signs:

$$x' = rac{v - \sqrt{v^2 + 4\lambda}}{2}$$
 and $x'' = rac{v + \sqrt{v^2 + 4\lambda}}{2}$

Since the logarithmic function is defined for x > 0, we deduce that:

$$\mathbf{prox}_{f}\left(v\right) = \frac{v + \sqrt{v^{2} + 4\lambda}}{2}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Proximal operator

In the case where $f(x) = \mathbb{1}_{\Omega}(x)$, we have:

$$\begin{aligned} \mathbf{prox}_{f}\left(v\right) &= \arg\min_{x} \left\{ \mathbb{1}_{\Omega}\left(x\right) + \frac{1}{2} \left\|x - v\right\|_{2}^{2} \right\} \\ &= \arg\min_{x \in \Omega} \left\{ \|x - v\|_{2}^{2} \right\} \\ &= \mathcal{P}_{\Omega}\left(v\right) \end{aligned}$$

where $\mathcal{P}_{\Omega}(v)$ is the standard projection of v onto Ω

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Proximal operator

Table 103: Projection for some simple polyhedra

Notation	Ω	$\mathcal{P}_{\Omega}\left(v ight)$
$\mathcal{A}_{\textit{ffineset}}\left[A,B ight]$	Ax = B	$v - A^{\dagger} (Av - B)$
$\mathcal{H}_{yperplane}\left[a,b ight]$	$a^{ op}x = b$	$v-rac{\left(a^{ op}v-b ight)}{\left\ a ight\ _{2}^{2}}a$
$\mathcal{H}_{\textit{alfspace}}\left[c,d ight]$	$c^{ op}x\leq d$	$v - \frac{(c^{\top}v - d)_{+}}{\ c\ _{2}^{2}}c$
$\mathcal{B}_{ox}\left[x^{-},x^{+} ight]$	$x^- \le x \le x^+$	$\mathcal{T}(v; x^{-}, x^{+})$

Source: Parikh and Boyd (2014)

Note: A^{\dagger} is the Moore-Penrose pseudo-inverse of A, and $\mathcal{T}(v; x^{-}, x^{+})$ is the truncation operator

Remark: No analytical formula for the (multi-dimensional) inequality constraint $Cx \le D \Rightarrow$ it may be solved using the Dykstra's algorithm

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Proximal operator

Separable sum

If $f(x) = \sum_{i=1}^{n} f_i(x_i)$ is fully separable, then the proximal of f(v) is the vector of the proximal operators applied to each scalar-valued function $f_i(x_i)$:

$$\operatorname{prox}_{f}(v) = \left(egin{array}{c} \operatorname{prox}_{f_{1}}(v_{1}) \ dots \ \operatorname{prox}_{f_{n}}(v_{n}) \end{array}
ight)$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Proximal operator

If $f(x) = -\lambda \ln x$, we have:

$$\operatorname{prox}_f(v) = \frac{v + \sqrt{v^2 + 4\lambda}}{2}$$

In the case of the vector-valued logarithmic barrier $f(x) = -\lambda \sum_{i=1}^{n} \ln x_i$, we deduce that:

$$\mathsf{prox}_f(v) = \frac{v + \sqrt{v \odot v} + 4\lambda}{2}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Proximal operator

Moreau decomposition theorem

We have:

$$\mathsf{prox}_{f}(v) + \mathsf{prox}_{f^{*}}(v) = v$$

where f^* is the convex conjugate of f.

Application

If f(x) is a ℓ_q -norm function, then $f^*(x) = \mathbb{1}_{\mathcal{B}_p}(x)$ where \mathcal{B}_p is the ℓ_p unit ball and $p^{-1} + q^{-1} = 1$. Since we have $\operatorname{prox}_{f^*}(v) = \mathcal{P}_{\mathcal{B}_p}(v)$, we deduce that:

$$\operatorname{\mathsf{prox}}_{f}(v) + \mathcal{P}_{\mathcal{B}_{p}}(v) = v$$

The proximal of the ℓ_p -ball can be deduced from the proximal operator of the ℓ_q -norm function.

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Proximal operator

Table 104: Proximal of the ℓ_p -norm function $f(x) = ||x||_p$

$$p = 1 \qquad prox_{\lambda f}(v)$$

$$p = 1 \qquad S(v; \lambda) = sign(v) \odot (|v| - \lambda \mathbf{1}_{n})_{+}$$

$$p = 2 \qquad \left(1 - \frac{\lambda}{\max(\lambda, \|v\|_{2})}\right)v$$

$$p = \infty \qquad sign(v) \odot prox_{\lambda \max x}(|v|)$$

We have:

$$\operatorname{prox}_{\lambda \max x}(v) = \min(v, s^{\star})$$

where s^* is the solution of the following equation:

$$s^{\star} = \left\{s \in \mathbb{R} : \sum_{i=1}^{n} (v_i - s)_+ = \lambda
ight\}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Proximal operator

Table 105: Proximal of the ℓ_p -ball $\mathcal{B}_p(c, \lambda) = \left\{ x \in \mathbb{R}^n : \|x - c\|_p \leq \lambda \right\}$ when c is equal to $\mathbf{0}_n$

р	$\mathcal{P}_{\mathcal{B}_{p}(0_{n},\lambda)}(\mathbf{v})$	q
p=1	$v - ext{sign}\left(v ight) \odot prox_{\lambda\max x}\left(v ight)$	$q=\infty$
<i>p</i> = 2	$v - \mathbf{prox}_{\lambda \parallel x \parallel_2} \left(v ight)$	q = 2
$p = \infty$	$\mathcal{T}(\mathbf{v};-\lambda,ar{\lambda})$	q=1

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Proximal operator

Scaling and translation

Let us define g(x) = f(ax + b) where $a \neq 0$. We have:

$$\operatorname{\mathsf{prox}}_{g}\left(v
ight)=rac{\operatorname{\mathsf{prox}}_{a^{2}f}\left(av+b
ight)-b}{a}$$

Application

We can use this property when the center c of the ℓ_p ball is not equal to $\mathbf{0}_n$. Since we have $\mathbf{prox}_g(v) = \mathbf{prox}_f(v-c) + c$ where g(x) = f(x-c) and the equivalence $\mathcal{B}_p(\mathbf{0}_n, \lambda) = \{x \in \mathbb{R}^n : f(x) \le \lambda\}$ where $f(x) = ||x||_p$, we deduce that:

$$\mathcal{P}_{\mathcal{B}_{p}(c,\lambda)}(v) = \mathcal{P}_{\mathcal{B}_{p}(\mathbf{0}_{n},\lambda)}(v-c) + c$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Application to the τ -problem of the lasso regression

We have:

$$\hat{\beta}(\tau) = \arg \min_{\beta} \frac{1}{2} (Y - X\beta)^{\top} (Y - X\beta)$$
s.t. $\|\beta\|_{1} \leq \tau$

The ADMM formulation is:

$$\{\beta^{\star}, \bar{\beta}^{\star}\} = \arg \min_{\left(\beta, \bar{\beta}\right)} \frac{1}{2} \left(Y - X\beta\right)^{\top} \left(Y - X\beta\right) + \mathbb{1}_{\Omega} \left(\bar{\beta}\right)$$

s.t. $\beta = \bar{\beta}$

where $\Omega = \mathcal{B}_1(\mathbf{0}_m, \tau)$ is the centered ℓ_1 ball with radius τ

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Application to the τ -problem of the lasso regression

1 The *x*-update is:

$$\beta^{(k+1)} = \arg \min_{\beta} \left\{ \frac{1}{2} \left(Y - X\beta \right)^{\top} \left(Y - X\beta \right) + \frac{\varphi}{2} \left\| \beta - \overline{\beta}^{(k)} + u^{(k)} \right\|_{2}^{2} \right\}$$
$$= \left(X^{\top} X + \varphi I_{m} \right)^{-1} \left(X^{\top} Y + \varphi \left(\overline{\beta}^{(k)} - u^{(k)} \right) \right)$$

where $v_x^{(k+1)} = \bar{\beta}^{(k)} - u^{(k)}$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Application to the τ -problem of the lasso regression

O The *y*-update is:

$$\bar{\beta}^{(k+1)} = \arg\min_{\bar{\beta}} \left\{ \mathbb{1}_{\Omega} \left(\bar{\beta} \right) + \frac{\varphi}{2} \left\| \beta^{(k+1)} - \bar{\beta} + u^{(k)} \right\|_{2}^{2} \right\}$$

$$= \operatorname{prox}_{f_{y}} \left(\beta^{(k+1)} + u^{(k)} \right)$$

$$= \mathcal{P}_{\Omega} \left(v_{y}^{(k+1)} \right)$$

$$= v_{y}^{(k+1)} - \operatorname{sign} \left(v_{y}^{(k+1)} \right) \odot \operatorname{prox}_{\tau \max x} \left(\left| v_{y}^{(k+1)} \right| \right)$$

$$(k+1) = e^{(k+1)} - e^{(k+1)}$$

where $v_y^{(k+1)} = \beta^{(k+1)} + u^{(k)}$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Application to the τ -problem of the lasso regression

Solution The *u*-update is:

$$u^{(k+1)} = u^{(k)} + \beta^{(k+1)} - \bar{\beta}^{(k+1)}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Application to the τ -problem of the lasso regression

ADMM-Lasso algorithm

The ADMM algorithm is :

$$\begin{cases} \beta^{(k+1)} = \left(X^{\top}X + \varphi I_{m}\right)^{-1} \left(X^{\top}Y + \varphi \left(\bar{\beta}^{(k)} - u^{(k)}\right)\right) \\ \bar{\beta}^{(k+1)} = \begin{cases} \mathcal{S}\left(\beta^{(k+1)} + u^{(k)}; \varphi^{-1}\lambda\right) & (\lambda \text{-problem}) \\ \mathcal{P}_{\mathcal{B}_{1}(\mathbf{0}_{m},\tau)}\left(\beta^{(k+1)} + u^{(k)}\right) & (\tau \text{-problem}) \\ u^{(k+1)} = u^{(k)} + \left(\beta^{(k+1)} - \bar{\beta}^{(k+1)}\right) \end{cases}$$

Remark

The ADMM algorithm is similar for λ - and τ -problems since the only difference concerns the *y*-step. However, the τ -problem is easier to solve with the ADMM algorithm from a practical point of view, because the *y*-update of the τ -problem is independent of the penalization parameter φ .

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Derivation of the soft-thresholding operator

We consider the following equation:

$$cx - v + \lambda \partial |x| \in 0$$

where c > 0 and $\lambda > 0$. Since we have $\partial |x| = \operatorname{sign}(x)$, we deduce that:

$$x^{\star} = \left\{ egin{array}{ll} c^{-1} \left(v + \lambda
ight) & ext{if } x^{\star} < 0 \ 0 & ext{if } x^{\star} = 0 \ c^{-1} \left(v - \lambda
ight) & ext{if } x^{\star} > 0 \end{array}
ight.$$

If $x^* < 0$ or $x^* > 0$, then we have $v + \lambda < 0$ or $v - \lambda > 0$. This is equivalent to set $|v| > \lambda > 0$. The case $x^* = 0$ implies that $|v| \le \lambda$. We deduce that:

$$x^{\star} = c^{-1} \cdot \mathcal{S}(\mathbf{v}; \lambda)$$

where $\mathcal{S}(v; \lambda)$ is the soft-thresholding operator:

$$\begin{aligned} \mathcal{S}(\boldsymbol{v};\lambda) &= \begin{cases} 0 & \text{if } |\boldsymbol{v}| \leq \lambda \\ \boldsymbol{v} - \lambda \operatorname{sign}(\boldsymbol{v}) & \text{otherwise} \end{cases} \\ &= \operatorname{sign}(\boldsymbol{v}) \cdot (|\boldsymbol{v}| - \lambda)_{+} \end{aligned}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Derivation of the soft-thresholding operator

We use the result on the separable sum

Remark

If $f(x) = \lambda ||x||_1$, we have $f(x) = \lambda \sum_{i=1}^n |x_i|$ and $f_i(x_i) = \lambda |x_i|$. We deduce that the proximal operator of f(x) is the vector formulation of the soft-thresholding operator:

$$\operatorname{prox}_{\lambda \|x\|_{1}}(v) = \begin{pmatrix} \operatorname{sign}(v_{1}) \cdot (|v_{1}| - \lambda)_{+} \\ \vdots \\ \operatorname{sign}(v_{n}) \cdot (|v_{n}| - \lambda)_{+} \end{pmatrix} = \operatorname{sign}(v) \odot (|v| - \lambda \mathbf{1}_{n})_{+}$$

The soft-thresholding operator is the proximal operator of the ℓ_1 -norm $f(x) = ||x||_1$. Indeed, we have $\operatorname{prox}_f(v) = \mathcal{S}(v; 1)$ and $\operatorname{prox}_{\lambda f}(v) = \mathcal{S}(v; \lambda)$.

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Dykstra's algorithm

We consider the following optimization problem:

$$x^{\star} = \arg \min f_x(x)$$

s.t. $x \in \Omega$

where Ω is a complex set of constraints:

$$\Omega = \Omega_1 \cap \Omega_2 \cap \cdots \cap \Omega_m$$

We set y = x and $f_{y}(y) = \mathbb{1}_{\Omega}(y)$. The ADMM algorithm becomes

$$x^{(k+1)} = \arg \min \left\{ f_x(x) + \frac{\varphi}{2} \left\| x - y^{(k)} + u^{(k)} \right\|_2^2 \right\}$$
$$v^{(k)} = x^{(k+1)} + u^{(k)}$$
$$y^{(k+1)} = \mathcal{P}_{\Omega} \left(v^{(k)} \right)$$
$$u^{(k+1)} = u^{(k)} + \left(x^{(k+1)} - y^{(k+1)} \right)$$

How to compute $\mathcal{P}_{\Omega}(v)$?

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Dykstra's algorithm

More generally, we consider the proximal optimization problem where the function f(x) is the convex sum of basic functions $f_j(x)$:

$$x^{\star} = \arg\min_{x} \left\{ \sum_{j=1}^{m} f_{j}(x) + \frac{1}{2} \|x - v\|_{2}^{2} \right\}$$

and the proximal of each basic function is known.

How to find the solution x^* ?

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Dykstra's algorithm The case m = 2

- We know the proximal solution of the ℓ_1 -norm function $f_1(x) = \lambda_1 \|x\|_1$
- We know the proximal solution of the logarithmic barrier function $f_2(x) = \lambda_2 \sum_{i=1}^n \ln x_i$
- We don't know how to compute the proximal operator of $f(x) = f_1(x) + f_2(x)$:

$$\begin{aligned} x^{\star} &= \arg\min_{x} f_{1}(x) + f_{2}(x) + \frac{1}{2} \|x - v\|_{2}^{2} \\ &= \mathbf{prox}_{f}(v) \end{aligned}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Dykstra's algorithm The case m = 2

The Dykstra's algorithm consists in the following iterations:

$$\begin{cases} x^{(k+1)} = \mathbf{prox}_{f_1} \left(y^{(k)} + p^{(k)} \right) \\ p^{(k+1)} = y^{(k)} + p^{(k)} - x^{(k+1)} \\ y^{(k+1)} = \mathbf{prox}_{f_2} \left(x^{(k+1)} + q^{(k)} \right) \\ q^{(k+1)} = x^{(k+1)} + q^{(k)} - y^{(k+1)} \end{cases}$$

where
$$x^{(0)} = y^{(0)} = v$$
 and $p^{(0)} = q^{(0)} = \mathbf{0}_n$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Dykstra's algorithm The case m = 2

This algorithm is related to the Douglas-Rachford splitting framework:

$$\begin{cases} x^{\left(k+\frac{1}{2}\right)} = \mathbf{prox}_{f_1} \left(x^{\left(k\right)} + p^{\left(k\right)}\right) \\ p^{\left(k+1\right)} = p^{\left(k\right)} - \Delta_{1/2} x^{\left(k+\frac{1}{2}\right)} \\ x^{\left(k+1\right)} = \mathbf{prox}_{f_2} \left(x^{\left(k+\frac{1}{2}\right)} + q^{\left(k\right)}\right) \\ q^{\left(k+1\right)} = q^{\left(k\right)} - \Delta_{1/2} x^{\left(k+1\right)} \end{cases}$$

where $\Delta_h x^{(k)} = x^{(k)} - x^{(k-h)}$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Dykstra's algorithm The case m = 2

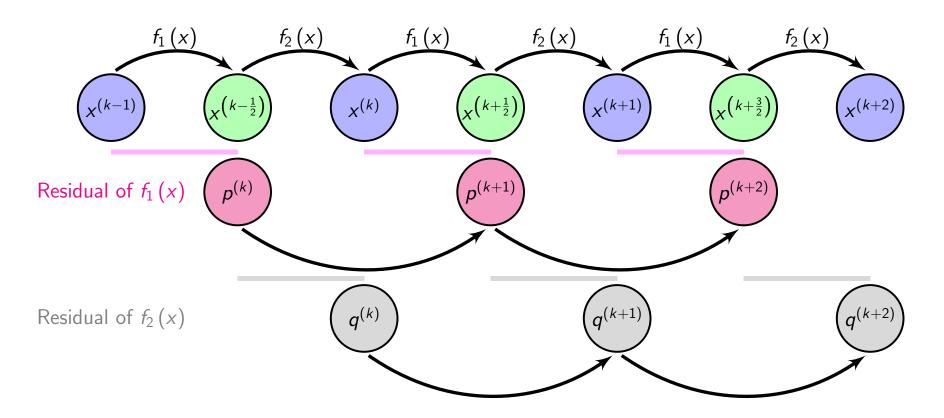


Figure 124: Splitting method of the Dykstra's algorithm

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Dykstra's algorithm The case m > 2

The case m > 2 is a generalization of the previous algorithm by considering m residuals:

The x-update is:

$$x^{(k+1)} = \mathbf{prox}_{f_{j(k)}} \left(x^{(k)} + z^{(k+1-m)} \right)$$

The z-update is:

$$z^{(k+1)} = x^{(k)} + z^{(k+1-m)} - x^{(k+1)}$$

where $x^{(0)} = v$, $z^{(k)} = \mathbf{0}_n$ for k < 0 and j(k) = mod(k + 1, m) denotes the modulo operator taking values in $\{1, \ldots, m\}$

Remark

The variable $x^{(k)}$ is updated at each iteration while the residual $z^{(k)}$ is updated every *m* iterations. This implies that the basic function $f_j(x)$ is related to the residuals $z^{(j)}$, $z^{(j+m)}$, $z^{(j+2m)}$, etc.

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Dykstra's algorithm The case m > 2

Tibshirani (2017) proposes to write the Dykstra's algorithm by using two iteration indices k and j. The main index k refers to the cycle, whereas the sub-index j refers to the constraint number

The Dykstra's algorithm becomes:

1 The *x*-update is:

$$x^{(k+1,j)} = \mathbf{prox}_{f_j} \left(x^{(k+1,j-1)} + z^{(k,j)} \right)$$

2 The *z*-update is:

$$z^{(k+1,j)} = x^{(k+1,j-1)} + z^{(k,j)} - x^{(k+1,j)}$$

where $x^{(1,0)} = v$, $z^{(k,j)} = \mathbf{0}_n$ for k = 0 and $x^{(k+1,0)} = x^{(k,m)}$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Dykstra's algorithm The case m > 2

The Dykstra's algorithm is particularly efficient when we consider the projection problem:

$$x^{\star}=\mathcal{P}_{\Omega}\left(v\right)$$

where:

$$\Omega = \Omega_1 \cap \Omega_2 \cap \cdots \cap \Omega_m$$

Indeed, the Dykstra's algorithm becomes:

1 The *x*-update is:

$$x^{(k+1,j)} = \mathbf{prox}_{f_j} \left(x^{(k+1,j-1)} + z^{(k,j)} \right) = \mathcal{P}_{\Omega_j} \left(x^{(k+1,j-1)} + z^{(k,j)} \right)$$

2 The *z*-update is:

$$z^{(k+1,j)} = x^{(k+1,j-1)} + z^{(k,j)} - x^{(k+1,j)}$$

where $x^{(1,0)} = v$, $z^{(k,j)} = \mathbf{0}_n$ for k = 0 and $x^{(k+1,0)} = x^{(k,m)}$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Dykstra's algorithm

Successive projections of $\mathcal{P}_{\Omega_i}(x^{(k+1,j-1)})$ do not work!

Successive projections of $\mathcal{P}_{\Omega_i} \left(x^{(k+1,j-1)} + z^{(k,j)} \right)$ do work!

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Dykstra's algorithm

Table 106: Solving the proximal problem with linear inequality constraints

The goal is to compute the solution $x^* = \operatorname{prox}_f(v)$ where $f(x) = \mathbb{1}_{\Omega}(x)$ and $\Omega = \{x \in \mathbb{R}^n : Cx \leq D\}$ We initialize $x^{(0,m)} \leftarrow v$ We set $z^{(0,1)} \leftarrow \mathbf{0}_n, \dots, z^{(0,m)} \leftarrow \mathbf{0}_n$ $k \leftarrow 0$ repeat $x^{(k+1,0)} \leftarrow x^{(k,m)}$ for j = 1 : m do The x-update is: (-T - (k+1)i - 1) - T - (ki) - i)

$$x^{(k+1,j)} = x^{(k+1,j-1)} + z^{(k,j)} - \frac{\left(c_{(j)}^{\top} x^{(k+1;j-1)} + c_{(j)}^{\top} z^{(k,j)} - d_{(j)}\right)_{+}}{\left\|c_{(j)}\right\|_{2}^{2}} c_{(j)}$$

The *z*-update is:

$$z^{(k+1,j)} = x^{(k+1,j-1)} + z^{(k,j)} - x^{(k+1,j)}$$

end for

 $k \leftarrow k + 1$ until Convergence return $x^* \leftarrow x^{(k,m)}$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Dykstra's algorithm

Table 107: Solving the proximal problem with general linear constraints

The goal is to compute the solution $x^* = \mathbf{prox}_f(v)$ where $f(x) = \mathbb{1}_{\Omega}(x)$, $\Omega = \Omega_1 \cap \Omega_2 \cap \Omega_3$, $\Omega_1 = \Omega_1 \cap \Omega_2 \cap \Omega_3$, $\Omega_1 = \Omega_1 \cap \Omega_2 \cap \Omega_3$, $\Omega_1 = \Omega_1 \cap \Omega_2 \cap \Omega_3$, $\Omega_2 \cap \Omega_3 \cap \Omega_3$, $\Omega_1 = \Omega_1 \cap \Omega_2 \cap \Omega_3$, $\Omega_2 \cap \Omega_3 \cap \Omega_3$, $\Omega_3 \cap \Omega_3 \cap \Omega_3$, $\Omega_1 = \Omega_1 \cap \Omega_2 \cap \Omega_3$, $\Omega_2 \cap \Omega_3 \cap \Omega_3$, $\Omega_3 \cap \Omega_3 \cap \Omega_3$, $\Omega_1 = \Omega_1 \cap \Omega_2 \cap \Omega_3$, $\Omega_1 = \Omega_1 \cap \Omega_2 \cap \Omega_3$, $\Omega_2 \cap \Omega_3 \cap \Omega_3$, $\Omega_3 \cap \Omega_3 \cap \Omega_3$, $\Omega_1 \cap \Omega_3 \cap \Omega_3$, $\Omega_1 \cap \Omega_3 \cap \Omega_3$, $\Omega_1 \cap \Omega_3 \cap \Omega_3$ $\{x \in \mathbb{R}^n : Ax = B\}, \Omega_2 = \{x \in \mathbb{R}^n : Cx < D\} \text{ and } \Omega_3 = \{x \in \mathbb{R}^n : x^- < x < x^+\}$ We initialize $x_m^{(0)} \leftarrow v$ We set $z_1^{(0)} \leftarrow \mathbf{0}_n$, $z_2^{(0)} \leftarrow \mathbf{0}_n$ and $z_3^{(0)} \leftarrow \mathbf{0}_n$ $k \leftarrow 0$ repeat $x_0^{(k+1)} \leftarrow x_m^{(k)}$ $x_1^{(k+1)} \leftarrow x_0^{(k+1)} + z_1^{(k)} - A^{\dagger} \left(A x_0^{(k+1)} + A z_1^{(k)} - B \right)$ $z_1^{(k+1)} \leftarrow x_0^{(k+1)} + z_1^{(k)} - x_1^{(k+1)}$ $x_2^{(k+1)} \leftarrow \mathcal{P}_{\Omega_2}\left(x_1^{(k+1)} + z_2^{(k)}\right)$ Previous algorithm $z_2^{(k+1)} \leftarrow x_1^{(k+1)} + z_2^{(k)} - x_2^{(k+1)}$ $x_3^{(k+1)} \leftarrow \mathcal{T}\left(x_2^{(k+1)} + z_3^{(k)}; x^-, x^+\right)$ $z_3^{(k+1)} \leftarrow x_2^{(k+1)} + z_3^{(k)} - x_3^{(k+1)}$ $k \leftarrow k + 1$ until Convergence return $x^* \leftarrow x_3^{(k)}$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Dykstra's algorithm

Remark

Since we have:

$$\frac{1}{2} \|x - v\|_2^2 = \frac{1}{2} x^\top x - x^\top v + \frac{1}{2} v^\top v$$

the two previous problems can be cast into a QP problem:

$$x^{\star} = \arg \min_{x} \frac{1}{2} x^{\top} I_{n} x - x^{\top} v$$

s.t. $x \in \Omega$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Dykstra's algorithm

Dykstra's algorithm versus QP algorithm

- The vector v is defined by the elements $v_i = \ln (1 + i^2)$
- The set of constraints is:

$$\Omega = \left\{ x \in \mathbb{R}^n : \sum_{i=1}^n x_i \leq \frac{1}{2}, \sum_{i=1}^n e^{-i} x_i \geq 0 \right\}$$

- Using a Matlab implementation, we find that the computational time of the Dykstra's algorithm when *n* is equal to 10 million is equal to the QP algorithm when *n* is equal to 12500!
- The QP algorithm requires to store the matrix I_n impossible when $n > 10^5$. For instance, the size of I_n is equal to 7450.6 GB when $n = 10^6$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Application to portfolio allocation

Table 108: Some objective functions used in portfolio optimization

Item	Portfolio	f(x)	Reference
(1)	MVO	$\frac{1}{2}x^{\top}\Sigma x - \gamma x^{\top}\mu$	Markowitz (1952)
(2)	GMV	$\frac{1}{2}x^{\top}\Sigma x$	Jagganathan and Ma (2003)
(3)	MDP	$\ln\left(\sqrt{x^{ op}\Sigma x} ight) - \ln\left(x^{ op}\sigma ight)$	Choueifaty and Coignard (2008)
(4)	KL	$\sum_{i=1}^{n} x_i \ln(x_i/\tilde{x}_i)$	Bera and Park (2008)
(5)	ERC	$\frac{1}{2}x^{\top}\Sigma x - \lambda \sum_{i=1}^{n} \ln x_i$	Maillard <i>et al.</i> (2010)
(6)	RB	$\mathcal{R}(x) - \lambda \sum_{i=1}^{n} \mathcal{R}\bar{\mathcal{B}}_{i} \cdot \ln x_{i}$	Roncalli (2015)
(7)	RQE	$\frac{1}{2}x^{\dagger}\hat{Dx}$	Carmichael <i>et al.</i> (2018)

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Application to portfolio allocation

Table 109: Some regularization penalties used in portfolio optimization

ltem	Regularization	$\Re(x)$	Reference
(8)	Ridge	$\lambda \left\ x - ilde{x} \right\ _{2}^{2}$	DeMiguel <i>et al.</i> (2009)
(9)	Lasso	$\lambda \ \mathbf{x} - \tilde{\mathbf{x}} \ _{1}^{-}$	Brodie <i>at al.</i> (2009)
(10)	Log-barrier	$-\sum_{i=1}^n \lambda_i \ln x_i$	Roncalli (2013)
(11)	Shannon's entropy	$\lambda \sum_{i=1}^{n-1} x_i \ln x_i$	Yu <i>et al.</i> (2014)

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Application to portfolio allocation

Table 110: Some constraints used in portfolio optimization

Item	Constraint	Ω
(12)	No cash and leverage	$\sum_{i=1}^{n} x_i = 1$
(13)	No short selling	$x_i \ge 0$
(14)	Weight bounds	$x_i^- \leq x_i \leq x_i^+$
(15)	Asset class limits	$c_i^- \leq \sum_{i \in C_i} x_i \leq c_i^+$
(16)	Turnover	$\sum_{i=1}^{n} x_i - \tilde{x}_i \leq \tau^+$
(17)	Transaction costs	$\sum_{i=1}^{n} \left(c_{i}^{-} \left(\tilde{x}_{i} - x_{i} \right)_{+} + c_{i}^{+} \left(x_{i} - \tilde{x}_{i} \right)_{+} \right) \leq c^{+}$
(18)	Leverage limit	$\sum_{i=1}^{n} x_i \leq \mathcal{L}^+$
(19)	Long/short exposure	$-\mathcal{LS}^{-} \leq \sum_{i=1}^{n} x_i \leq \mathcal{LS}^{+}$
(20)	Benchmarking	$\sqrt{ \left(x - ilde{x} ight)^{ op} \Sigma \left(x - ilde{x} ight) } \leq \sigma^+$
(21)	Tracking error floor	$\sqrt{\left(x- ilde{x} ight)^{ op}\Sigma\left(x- ilde{x} ight)}\geq\sigma^{-}$
(22)	Active share floor	$\frac{1}{2}\sum_{i=1}^{n} x_{i}-\widetilde{x}_{i} \geq\mathcal{AS}^{-}$
(23)	Number of active bets	$\left(x^ op x ight)^{-1} \geq \mathcal{N}^-$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Application to portfolio allocation

Most of portfolio optimization problems are a combination of:

- an objective function (Table 108)
- one or two regularization penalty functions (Table 109)
- some constraints (Table 110)

Perrin and Roncalli (2020) solve **all these problems** using CCD, ADMM, Dykstra and the appropriate proximal functions. For that, they derive:

- the semi-analytical solution of the *x*-step for all objective functions
- the proximal solution of the *y*-step for all regularization penalty functions and constraints

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Herfindahl-MV optimization Formulation of the mathematical problem

- The second generation of minimum variance strategies uses a global diversification constraint
- The most popular solution is based on the Herfindahl index:

$$\mathcal{H}\left(x\right) = \sum_{i=1}^{n} x_{i}^{2}$$

• The effective number of bets is the inverse of the Herfindahl index:

$$\mathcal{N}\left(x\right)=\mathcal{H}\left(x\right)^{-1}$$

• The optimization program is:

$$x^{\star} = \arg \min_{x} \frac{1}{2} x^{\top} \Sigma x$$

s.t.
$$\begin{cases} \mathbf{1}_{n}^{\top} x = 1 \\ \mathbf{0}_{n} \le x \le x^{+} \\ \mathcal{N}(x) \ge \mathcal{N}^{-} \end{cases}$$

where \mathcal{N}^- is the minimum number of effective bets.

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Herfindahl-MV optimization

• The Herfindhal constraint is equivalent to:

$$egin{aligned} \mathcal{N}\left(x
ight) \geq \mathcal{N}^{-} & \Leftrightarrow & \left(x^{ op}x
ight)^{-1} \geq \mathcal{N}^{-} \ & \Leftrightarrow & x^{ op}x \leq rac{1}{\mathcal{N}^{-}} \end{aligned}$$

• The QP problem is:

$$\begin{aligned} x^{\star}(\lambda) &= \arg \min_{x} \frac{1}{2} x^{\top} \Sigma x + \lambda x^{\top} x = \frac{1}{2} x^{\top} \left(\Sigma + 2\lambda I_{n} \right) x \\ \text{s.t.} &\begin{cases} \mathbf{1}_{n}^{\top} x = 1 \\ \mathbf{0}_{n} \leq x \leq x^{+} \end{cases} \end{aligned}$$

where $\lambda \geq 0$ is a scalar

- We have $\mathcal{N}(x) \in [\mathcal{N}(x^{\star}(0)), n]$
- The optimal value λ^* is found using the bi-section algorithm such that $\mathcal{N}(x^*(\lambda)) = \mathcal{N}^-$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Herfindahl-MV optimization The ADMM solution (first version)

• The ADMM form is:

$$\{x^{\star}, y^{\star}\} = \arg\min_{(x,y)} \frac{1}{2} x^{\top} \Sigma x + \mathbb{1}_{\Omega_1} (x) + \mathbb{1}_{\Omega_2} (y)$$

s.t. $x = y$

where
$$\Omega_1 = \left\{ x \in \mathbb{R}^n : \mathbf{1}_n^\top x = 1, \mathbf{0}_n \le x \le x^+ \right\}$$
 and $\Omega_2 = \mathcal{B}_2\left(\mathbf{0}_n, \sqrt{\frac{1}{\mathcal{N}^-}}\right)$

• The *x*-update is a QP problem:

$$x^{(k+1)} = \arg\min_{x} \left\{ \frac{1}{2} x^{\top} \left(\Sigma + \varphi I_n \right) x - \varphi x^{\top} \left(y^{(k)} - u^{(k)} \right) + \mathbb{1}_{\Omega_1} \left(x \right) \right\}$$

• The *y*-update is:

$$y^{(k+1)} = \frac{x^{(k+1)} + u^{(k)}}{\max\left(1, \sqrt{\mathcal{N}^{-}} \left\|x^{(k+1)} + u^{(k)}\right\|_{2}\right)}$$

1306 / 1420

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Herfindahl-MV optimization The ADMM solution (second version)

• A better approach is to write the problem as follows:

$$\{x^{\star}, y^{\star}\} = \arg\min_{(x,y)} \frac{1}{2} x^{\top} \Sigma x + \mathbb{1}_{\Omega_3} (x) + \mathbb{1}_{\Omega_4} (y)$$

s.t. $x = y$

where $\Omega_3 = \mathcal{H}_{yperplane} [\mathbf{1}_n, 1]$ and $\Omega_4 = \mathcal{B}_{ox} [\mathbf{0}_n, x^+] \cap \mathcal{B}_2 \left(\mathbf{0}_n, \sqrt{\frac{1}{N^-}}\right)$ • The *x*-update is:

$$x^{(k+1)} = (\Sigma + \varphi I_n)^{-1} \left(\varphi \left(y^{(k)} - u^{(k)} \right) + \frac{1 - \mathbf{1}_n^\top \left(\Sigma + \varphi I_n \right)^{-1} \varphi \left(y^{(k)} - u^{(k)} \right)}{\mathbf{1}_n^\top \left(\Sigma + \varphi I_n \right)^{-1} \mathbf{1}_n} \mathbf{1}_n \right)$$

• The *y*-update is:

$$y^{(k+1)} = \mathcal{P}_{\mathcal{B}\text{ox}-\mathcal{B}\text{all}}\left(x^{(k+1)} + u^{(k)}; \mathbf{0}_n, x^+, \mathbf{0}_n, \sqrt{\frac{1}{\mathcal{N}^-}}\right)$$

where $\mathcal{P}_{\mathcal{B}ox-\mathcal{B}all}$ corresponds to the Dykstra's algorithm given by Perrin and Roncalli (2020)

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Herfindahl-MV optimization

Remark

If we compare the computational time of the three approaches, we observe that the best method is the second version of the ADMM algorithm:

 $\mathcal{CT} (\text{QP}; n = 1000) = 50 \times \mathcal{CT} (\text{ADMM}_2; n = 1000)$ $\mathcal{CT} (\text{ADMM}_1; n = 1000) = 400 \times \mathcal{CT} (\text{ADMM}_2; n = 1000)$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Herfindahl-MV optimization

Example 5

We consider an investment universe of eight stocks. We assume that their volatilities are 21%, 20%, 40%, 18%, 35%, 23%, 7% and 29%. The correlation matrix is defined as follows:

	/ 100%								\rangle
	80%	100%							
	70%	75%	100%						
<u> </u>	60%	65%	90%	100%					
$\rho =$	70%	50%	70%	85%	100%				
	50%	60%	70%	80%	60%	100%			
	70%	50%	70%	75%	80%	50%	100%		
	60%	65%	70%	75%	65%	70%	80%	100%	/

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Herfindahl-MV optimization

Table 111: Minimum variance portfolios (in %)

\mathcal{N}^-	1.00	2.00	3.00	4.00	5.00	6.00	6.50	7.00	7.50	8.00
$\overline{x_1^{\star}}$	0.00	3.22	9.60	13.83	15.18	15.05	14.69	14.27	13.75	12.50
x_2^{\star}	0.00	12.75	14.14	15.85	16.19	15.89	15.39	14.82	14.13	12.50
X_3^{\star}	0.00	0.00	0.00	0.00	0.00	0.07	2.05	4.21	6.79	12.50
x_4^{\star}	0.00	10.13	15.01	17.38	17.21	16.09	15.40	14.72	13.97	12.50
x_5^{\star}	0.00	0.00	0.00	0.00	0.71	5.10	6.33	7.64	9.17	12.50
x_6^{\star}	0.00	5.36	8.95	12.42	13.68	14.01	13.80	13.56	13.25	12.50
x_7^{\star}	100.00	68.53	52.31	40.01	31.52	25.13	22.92	20.63	18.00	12.50
x_8^{\star}	0.00	0.00	0.00	0.50	5.51	8.66	9.41	10.14	10.95	12.50
λ^{\star} (in %)	0.00	1.59	3.10	5.90	10.38	18.31	23.45	31.73	49.79	∞

Note: the upper bound x^+ is set to $\mathbf{1}_n$. The solutions are those found by the ADMM algorithm. We also report the value of λ^* found by the bi-section algorithm when we use the QP algorithm.

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

ERC portfolio optimization

We recall that:

$$x^{\star} = rg\min_{x} rac{1}{2} x^{ op} \Sigma x - \lambda \sum_{i=1}^{n} \ln x_i$$

and:

$$x_{\rm erc} = \frac{x^{\star}}{\mathbf{1}_n^{\top} x^{\star}}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

ERC portfolio optimization

• The first-order condition $(\Sigma x)_i - \lambda x_i^{-1} = 0$ implies that:

$$x_i^2 \sigma_i^2 + x_i \sigma_i \sum_{j \neq i} x_j \rho_{i,j} \sigma_j - \lambda = 0$$

• The CCD algorithm is:

$$x_{i}^{(k+1)} = \frac{-v_{i}^{(k+1)} + \sqrt{\left(v_{i}^{(k+1)}\right)^{2} + 4\lambda\sigma_{i}^{2}}}{2\sigma_{i}^{2}}$$

where:

$$\mathbf{v}_i^{(k+1)} = \sigma_i \sum_{j < i} x_j^{(k+1)} \rho_{i,j} \sigma_j + \sigma_i \sum_{j > i} x_j^{(k)} \rho_{i,j} \sigma_j$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

ERC portfolio optimization

• In the case of the ADMM algorithm, we set:

$$f_{x}(x) = \frac{1}{2}x^{\top}\Sigma x$$
$$f_{y}(y) = -\lambda \sum_{i=1}^{n} \ln y_{i}$$
$$x = y$$

• The *x*-update step is:

$$x^{(k+1)} = \left(\Sigma + \varphi I_n\right)^{-1} \varphi \left(y^{(k)} - u^{(k)}\right)$$

• The *y*-update step is:

$$y_i^{(k+1)} = \frac{1}{2} \left(\left(x_i^{(k+1)} + u_i^{(k)} \right) + \sqrt{\left(x_i^{(k+1)} + u_i^{(k)} \right)^2 + 4\lambda \varphi^{-1}} \right)$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

RB portfolio optimization

The RB portfolio is equal to:

$$\mathbf{x}_{\mathrm{rb}} = \frac{\mathbf{x}^{\star}}{\mathbf{1}_{n}^{\top}\mathbf{x}^{\star}}$$

where x^* is the solution of the logarithmic barrier problem:

$$x^{\star} = \arg\min_{x} \mathcal{R}(x) - \lambda \sum_{i=1}^{n} \mathcal{RB}_{i} \cdot \ln x_{i}$$

 λ is any positive scalar and \mathcal{RB}_i is the risk budget allocated to Asset i

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

RB portfolio optimization The CCD solution (SD risk measure)

• In the case of the standard deviation-based risk measure:

$$\mathcal{R}(x) = -x^{\top} (\mu - r) + \xi \sqrt{x^{\top} \Sigma x}$$

the first-order condition for defining the CCD algorithm is:

$$-(\mu_i - r) + \xi \frac{(\Sigma x)_i}{\sqrt{x^\top \Sigma x}} - \lambda \frac{\mathcal{RB}_i}{x_i} = 0$$

• It follows that $\xi x_i (\Sigma x)_i - (\mu_i - r) x_i \sigma(x) - \lambda \sigma(x) \cdot \mathcal{RB}_i = 0$ or equivalently:

$$\alpha_i x_i^2 + \beta_i x_i + \gamma_i = 0$$

where $\alpha_i = \xi \sigma_i^2$, $\beta_i = \xi \sigma_i \sum_{j \neq i} x_j \rho_{i,j} \sigma_j - (\mu_i - r) \sigma(x)$ and $\gamma_i = -\lambda \sigma(x) \cdot \mathcal{RB}_i$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

RB portfolio optimization The CCD solution (SD risk measure)

• The CCD algorithm is:

$$x_{i}^{(k+1)} = \frac{-\beta_{i}^{(k+1)} + \sqrt{\left(\beta_{i}^{(k+1)}\right)^{2} - 4\alpha_{i}^{(k+1)}\gamma_{i}^{(k+1)}}}{2\alpha_{i}^{(k+1)}}$$

where:

$$\begin{cases} \alpha_{i}^{(k+1)} = \xi \sigma_{i}^{2} \\ \beta_{i}^{(k+1)} = \xi \sigma_{i} \left(\sum_{j < i} x_{j}^{(k+1)} \rho_{i,j} \sigma_{j} + \sum_{j > i} x_{j}^{(k)} \rho_{i,j} \sigma_{j} \right) - (\mu_{i} - r) \sigma_{i}^{(k+1)} (x) \\ \gamma_{i}^{(k+1)} = -\lambda \sigma_{i}^{(k+1)} (x) \cdot \mathcal{RB}_{i} \\ \sigma_{i}^{(k+1)} (x) = \sqrt{\chi^{\top} \Sigma \chi} \\ \chi = \left(x_{1}^{(k+1)}, \dots, x_{i-1}^{(k+1)}, x_{i}^{(k)}, x_{i+1}^{(k)}, \dots, x_{n}^{(k)} \right) \end{cases}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

RB portfolio optimization The ADMM solution (convex risk measure)

• We have:

$$\{x^{\star}, y^{\star}\} = \arg \min_{x, y} \mathcal{R}(x) - \lambda \sum_{i=1}^{n} \mathcal{R}\mathcal{B}_{i} \cdot \ln y_{i}$$

s.t. $x = y$

• The ADMM algorithm is:

$$\begin{cases} x^{(k+1)} = \operatorname{prox}_{\varphi^{-1}\mathcal{R}(x)} \left(y^{(k)} - u^{(k)} \right) \\ v_{y}^{(k+1)} = x^{(k+1)} + u^{(k)} \\ y^{(k+1)} = \frac{1}{2} \left(v_{y}^{(k+1)} + \sqrt{v_{y}^{(k+1)} \odot v_{y}^{(k+1)} + 4\lambda \varphi^{-1} \cdot \mathcal{RB}} \right) \\ u^{(k+1)} = u^{(k)} + x^{(k+1)} - y^{(k+1)} \end{cases}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Tips and tricks of portfolio optimization

• Full allocation —
$$\sum_{i=1}^{n} x_i = 1$$
:

$$\Omega = \mathcal{H}_{yperplane} \left[\mathbf{1}_{n}, 1
ight]$$

We have:

$$\mathcal{P}_{\Omega}(\mathbf{v}) = \mathbf{v} - \left(\frac{\mathbf{1}_{n}^{\top}\mathbf{v} - 1}{n}\right)\mathbf{1}_{n}$$

• Cash neutral — $\sum_{i=1}^{n} x_i = 0$:

$$\Omega = \mathcal{H}_{yperplane} \left[\mathbf{1}_n, 0
ight]$$

We have:

$$\mathcal{P}_{\Omega}(v) = v - \left(\frac{\mathbf{1}_{n}^{\top}v}{n}\right)\mathbf{1}_{n}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Tips and tricks of portfolio optimization

• No short selling — $x \ge \mathbf{0}_n$:

$$\Omega = \mathcal{B}_{ox} \left[\mathbf{0}_n, \infty
ight]$$

We have:

$$\mathcal{P}_{\Omega}(\mathbf{v}) = \mathcal{T}(\mathbf{v}; \mathbf{0}_n, \infty)$$

• Weight bounds —
$$x^- \le x \le x^+$$
:

$$\Omega = \mathcal{B}_{ox}\left[x^{-}, x^{+}\right]$$

We have:

$$\mathcal{P}_{\Omega}\left(\mathbf{v}
ight)=\mathcal{T}\left(\mathbf{v};\mathbf{x}^{-},\mathbf{x}^{+}
ight)$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Tips and tricks of portfolio optimization

•
$$\mu$$
-problem — $\mu(x) \ge \mu^*$:

$$\Omega = \mathcal{H}_{alfspace}\left[-\mu, -\mu^{\star}
ight]$$

We have:

$$\mathcal{P}_{\Omega}\left(\mathbf{v}
ight) = \mathbf{v} + rac{\left(\mu^{\star}-\mu^{+}\mathbf{v}
ight)_{+}}{\left\|\mu
ight\|_{2}^{2}}\mu$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Tips and tricks of portfolio optimization

•
$$\sigma$$
-problem — $\sigma(x) \leq \sigma^*$:

$$\Omega = \left\{ x : \sqrt{x^\top \Sigma x} \le \sigma^\star \right\}$$

We have:

$$\begin{split} \sqrt{x^{\top}\Sigma x} &\leq \sigma^{\star} \quad \Leftrightarrow \quad \sqrt{x^{\top} \left(LL^{\top} \right) x} \leq \sigma^{\star} \\ &\Leftrightarrow \quad \left\| y^{\top} y \right\|_{2} \leq \sigma^{\star} \\ &\Leftrightarrow \quad y \in \mathcal{B}_{2} \left(\mathbf{0}_{n}, \sigma^{\star} \right) \end{split}$$

where $y = L^{\top}x$ and L is the Cholesky decomposition of Σ . It follows that the proximal of the *y*-update is the projection onto the ℓ_2 ball $\mathcal{B}_2(\mathbf{0}_n, \sigma^*)$:

$$\begin{aligned} \mathcal{P}_{\Omega}\left(v\right) &= v - \mathbf{prox}_{\sigma^{\star} \|x\|_{2}}\left(v\right) \\ &= v - \left(1 - \frac{\sigma^{\star}}{\max\left(\sigma^{\star}, \|v\|_{2}\right)}\right)v \end{aligned}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Tips and tricks of portfolio optimization

• Leverage management —
$$\sum_{i=1}^{n} |x_i| \leq \mathcal{L}^+$$
:

$$\Omega = \{x : ||x||_1 \le \mathcal{L}^+\} \\ = \mathcal{B}_1(\mathbf{0}_n, \mathcal{L}^+)$$

The proximal of the *y*-update is the projection onto the ℓ_1 ball $\mathcal{B}_1(\mathbf{0}_n, \mathcal{L}^+)$:

$$\mathcal{P}_{\Omega}(v) = v - \operatorname{sign}(v) \odot \operatorname{prox}_{\mathcal{L}^{+}\max x}(|v|)$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Tips and tricks of portfolio optimization

• Leverage management —
$$\mathcal{LS}^{-} \leq \sum_{i=1}^{n} x_i \leq \mathcal{LS}^{+}$$
:

$$\Omega = \mathcal{H}_{\textit{alfspace}}\left[\mathbf{1}_{n}, \mathcal{LS}^{+}\right] \cap \mathcal{H}_{\textit{alfspace}}\left[-\mathbf{1}_{n}, -\mathcal{LS}^{-}\right]$$

The proximal of the *y*-update is obtained with the Dykstra's algorithm by combining the two half-space projections.

• Leverage management — $\left|\sum_{i=1}^{n} x_{i}\right| \leq \mathcal{L}^{+}$:

$$\Omega = \left\{ x : \left| \mathbf{1}_n^\top x \right| \le \mathcal{L}^+ \right\}$$

This is a special case of the previous result where $\mathcal{LS}^+ = \mathcal{L}^+$ and $\mathcal{LS}^- = -\mathcal{L}^+$:

$$\Omega = \mathcal{H}_{\textit{alfspace}}\left[\boldsymbol{1}_n, \mathcal{L}^+\right] \cap \mathcal{H}_{\textit{alfspace}}\left[-\boldsymbol{1}_n, \mathcal{L}^+\right]$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Tips and tricks of portfolio optimization

Concentration management³¹
 Portfolio managers can also use another constraint concerning the sum of the k largest values:

$$f(x) = \sum_{i=n-k+1}^{n} x_{(i:n)} = x_{(n:n)} + \ldots + x_{(n-k+1:n)}$$

where $x_{(i:n)}$ is the order statistics of $x: x_{(1:n)} \le x_{(2:n)} \le \cdots \le x_{(n:n)}$. Beck (2017) shows that:

$$\mathsf{prox}_{\lambda f(x)}\left(v
ight) =v-\lambda \mathcal{P}_{\Omega}\left(rac{v}{\lambda}
ight)$$

where:

$$\Omega = \left\{ x \in \left[0,1\right]^n : \mathbf{1}_n^\top x = k \right\} = \mathcal{B}_{ox}\left[\mathbf{0}_n,\mathbf{1}_n\right] \cap \mathcal{H}_{yperlane}\left[\mathbf{1}_n,k\right]$$

³¹An example is the 5/10/40 UCITS rule: A UCITS fund may invest no more than 10% of its net assets in transferable securities or money market instruments issued by the same body, with a further aggregate limitation of 40% of net assets on exposures of greater than 5% to single issuers.

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Tips and tricks of portfolio optimization

 Entropy portfolio management Bera and Park (2008) propose using a cross-entropy measure as the objective function:

$$\begin{aligned} x^{\star} &= \arg\min_{x} \operatorname{KL} \left(x \mid \tilde{x} \right) \\ \text{s.t.} & \begin{cases} \mathbf{1}_{n}^{\top} x = 1 \\ \mathbf{0}_{n} \leq x \leq \mathbf{1}_{n} \\ \mu \left(x \right) \geq \mu^{\star}, \sigma \left(x \right) \leq \sigma^{\star} \end{aligned}$$

where $KL(x | \tilde{x})$ is the Kullback-Leibler measure:

$$\mathrm{KL}\left(x \mid \tilde{x}\right) = \sum_{i=1}^{n} x_{i} \ln\left(x_{i}/\tilde{x}_{i}\right)$$

and \tilde{x} is a reference portfolio

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Tips and tricks of portfolio optimization

 Entropy portfolio management We have:

$$\operatorname{prox}_{\lambda \operatorname{KL}(v|\tilde{x})}(v) = \lambda \begin{pmatrix} W\left(\lambda^{-1}\tilde{x}_{1}e^{\lambda^{-1}v_{1}-\tilde{x}_{1}^{-1}}\right) \\ \vdots \\ W\left(\lambda^{-1}\tilde{x}_{n}e^{\lambda^{-1}v_{n}-\tilde{x}_{n}^{-1}}\right) \end{pmatrix}$$

where W(x) is the Lambert W function

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Tips and tricks of portfolio optimization

Remark

Since the Shannon's entropy is equal to $SE(x) = -KL(x | \mathbf{1}_n)$, we deduce that:

$$\operatorname{prox}_{\lambda \operatorname{SE}(x)}(v) = \lambda \begin{pmatrix} W\left(\lambda^{-1}e^{\lambda^{-1}v_{1}-1}\right) \\ \vdots \\ W\left(\lambda^{-1}e^{\lambda^{-1}v_{n}-1}\right) \end{pmatrix}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Tips and tricks of portfolio optimization

• Active share constraint — $\mathcal{AS}(x \mid \tilde{x}) \geq \mathcal{AS}^{-}$:

$$\mathcal{AS}\left(x \mid ilde{x}
ight) = rac{1}{2}\sum_{i=1}^{n} |x_i - ilde{x}_i| \geq \mathcal{AS}^-$$

We use the projection onto the complement $\overline{\mathcal{B}}_1(c, r)$ of the ℓ_1 ball and we obtain:

$$\mathcal{P}_{\Omega}(v) = v + \operatorname{sign}(v - \tilde{x}) \odot \frac{\max\left(2\mathcal{AS}^{-} - \|v - \tilde{x}\|_{1}, 0\right)}{n}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Tips and tricks of portfolio optimization

• Tracking error volatility — $\sigma(x \mid \tilde{x}) \leq \sigma^*$:

$$\sigma (x \mid \tilde{x}) \leq \sigma^{\star} \quad \Leftrightarrow \quad \sqrt{(x - \tilde{x})^{\top} \Sigma (x - \tilde{x})} \leq \sigma^{\star}$$
$$\Leftrightarrow \quad \|y\|_{2} \leq \sigma^{\star}$$
$$\Leftrightarrow \quad y \in \mathcal{B}_{2} (\mathbf{0}_{n}, \sigma^{\star})$$

where $y = L^{\top}x - L^{\top}\tilde{x}$. It follows that Ax + By = c where $A = L^{\top}$, $B = -I_n$ and $c = L^{\top}\tilde{x}$. It follows that the proximal of the *y*-update is the projection onto the ℓ_2 ball $\mathcal{B}_2(\mathbf{0}_n, \sigma^*)$:

$$\begin{aligned} \mathcal{P}_{\Omega}\left(v\right) &= v - \mathbf{prox}_{\sigma^{\star} \|x\|_{2}}\left(v\right) \\ &= v - \left(1 - \frac{\sigma^{\star}}{\max\left(\sigma^{\star}, \|v\|_{2}\right)}\right)v \end{aligned}$$

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Tips and tricks of portfolio optimization

• Bid-ask transaction cost management:

$$\boldsymbol{c}(x \mid x_0) = \lambda \sum_{i=1}^{n} \left(c_i^{-} \left(x_{0,i} - x_i \right)_{+} + c_i^{+} \left(x_i - x_{0,i} \right)_{+} \right)$$

where c_i^- and c_i^+ are the bid and ask transaction costs. We have:

$$\operatorname{prox}_{\boldsymbol{c}(x|x_0)}(\boldsymbol{v}) = x_0 + \mathcal{S}\left(\boldsymbol{v} - x_0; \lambda \boldsymbol{c}^-, \lambda \boldsymbol{c}^+\right)$$

where $S(v; \lambda_{-}, \lambda_{+}) = (v - \lambda_{+})_{+} - (v + \lambda_{-})_{-}$ is the two-sided soft-thresholding operator.

Standard optimization algorithms Machine learning optimization algorithms Application to portfolio allocation

Tips and tricks of portfolio optimization

• Turnover management:

$$\Omega = \left\{ x \in \mathbb{R}^n : \left\| x - x_0 \right\|_1 \le \tau^+ \right\}$$

The proximal operator is:

$$\mathcal{P}_{\Omega}(v) = v - \operatorname{sign}(v - x_0) \odot \min(|v - x_0|, s^{\star})$$

where
$$s^{\star} = \{s \in \mathbb{R} : \sum_{i=1}^{n} (|v_i - x_{0,i}| - s)_+ = \tau^+\}.$$

Pattern learning and self-automated strategies

Table 112: What works / What doesn't

	Bond	Stock	Trend	Mean	Index	HF	Stock	Technical
	Scoring	Picking	Filtering	Reverting	Tracking	Tracking	Classification	Analysis
Lasso		٢	٢	٢	3	٢		
NMF							٢	(2)
Boosting		٢				٢		
Bagging		٢				٢		
Random forests	٢			3				(2)
Neural nets	٢					•		
SVM	٢	۲	\odot				\odot	
Sparse Kalman					3	٢		
K-NN	٢							
K-means	٢						٢	
Testing protocols ³²	٢	٢	٢	٢		٢		

Source: Roncalli (2014), Big Data in Asset Management, ESMA/CEMA/GEA meeting, Madrid.

³²Cross-validation, training/test/probe sets, K-fold, etc.

Pattern learning and self-automated strategies

 $2021 \neq 2014$

The evolution of machine learning in finance is fast, very fast!

Pattern learning and self-automated strategies

Some examples

- Natural Language Processing (NLP)
- Deep learning (DL)
- Reinforcement learning (RL)
- Gaussian process (GP) and Bayesian optimization (BO)
- Learning to rank (MLR)
- Etc.

Some applications

- Robo-advisory
- Stock classification
- $Q_1 Q_5$ long/short strategy
- Trend-following strategies
- Mean-reverting strategies
- Scoring models
- Sentiment and news analysis
- Etc.

Market generators

 The underlying idea is to simulate artificial multi-dimensional financial time series, whose statistical properties are the same as those observed in the financial markets

\approx Monte Carlo simulation of the financial market

- 3 main approaches:
 - Restricted Boltzmann machines (RBM)
 - 2 Generative adversarial networks (GAN)
 - Convolutional Wasserstein models (W-GAN)
- The goal is to:
 - improve the the risk management of quantitative investment strategies
 - avoid the over-fitting bias of backtesting

The current research shows that results are disappointed until now

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Question 1

We consider the following optimization program:

$$x^{\star} = rgmin rac{1}{2}x^{ op} \Sigma x - \lambda \sum_{i=1}^{n} b_i \ln x_i$$

where Σ is the covariance matrix, b is a vector of positive budgets and x is the vector of portfolio weights.

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Question 1.a

Write the first-order condition with respect to the coordinate x_i and show that the solution x^* corresponds to a risk-budgeting portfolio.

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

We have:

$$\mathcal{L}(x;\lambda) = \arg\min \frac{1}{2}x^{\top}\Sigma x - \lambda \sum_{i=1}^{n} b_i \ln x_i$$

The first-order condition is:

$$\frac{\partial \mathcal{L}(x;\lambda)}{\partial x_i} = (\Sigma x)_i - \lambda \frac{b_i}{x_i} = 0$$

or:

$$x_i \cdot (\Sigma x)_i = \lambda b_i$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

If we assume that the risk measure is the portfolio volatility:

$$\mathcal{R}\left(x\right) = \sqrt{x^{\top}\Sigma x}$$

the risk contribution of Asset *i* is equal to:

$$\mathcal{RC}_{i}(x) = rac{x_{i} \cdot (\Sigma x)_{i}}{\sqrt{x^{\top} \Sigma x}}$$

We deduce that the optimization problem defines a risk budgeting portfolio:

$$\frac{x_{i} \cdot (\Sigma x)_{i}}{b_{i}} = \frac{x_{j} \cdot (\Sigma x)_{j}}{b_{j}} = \lambda \Leftrightarrow \frac{\mathcal{RC}_{i}(x)}{b_{i}} = \frac{\mathcal{RC}_{j}(x)}{b_{j}}$$

where the risk measure is the portfolio volatility and the risk budgets are (b_1, \ldots, b_n) .

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Question 1.b

Find the optimal value x_i^* when we consider the other coordinates $(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)$ as fixed.

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

The first-order condition is equivalent to:

$$x_i \cdot (\Sigma x)_i - \lambda b_i = 0$$

We have:

$$(\Sigma x)_i = x_i \sigma_i^2 + \sigma_i \sum_{j \neq i} x_j \rho_{i,j} \sigma_j$$

It follows that:

$$x_i^2 \sigma_i^2 + x_i \sigma_i \sum_{j \neq i} x_j \rho_{i,j} \sigma_j - \lambda b_i = 0$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

We obtain a second-degree equation:

$$\alpha_i x_i^2 + \beta_i x_i + \gamma_i = \mathbf{0}$$

where:

$$\begin{cases} \alpha_{i} = \sigma_{i}^{2} \\ \beta_{i} = \sigma_{i} \sum_{j \neq i} x_{j} \rho_{i,j} \sigma_{j} \\ \gamma_{i} = -\lambda b_{i} \end{cases}$$

• The polynomial function is convex because we have $\alpha_i = \sigma_i^2 > 0$ • The product of the roots is negative:

$$x_i' x_i'' = rac{\gamma_i}{lpha_i} = -rac{\lambda b_i}{\sigma_i^2} < 0$$

The discriminant is positive:

$$\Delta = \beta_i^2 - 4\alpha_i \gamma_i = \left(\sigma_i \sum_{j \neq i} \rho_{i,j} \sigma_j y_j\right)^2 + 4\lambda b_i \sigma_i^2 > 0$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

We always have two solutions with opposite signs. We deduce that the solution is the positive root of the second-degree equation:

$$x_{i}^{\star} = x_{i}^{\prime\prime} = \frac{-\beta_{i} + \sqrt{\beta_{i}^{2} - 4\alpha_{i}\gamma_{i}}}{2\alpha_{i}}$$
$$= \frac{-\sigma_{i}\sum_{j\neq i}x_{j}\rho_{i,j}\sigma_{j} + \sqrt{\sigma_{i}^{2}\left(\sum_{j\neq i}x_{j}\rho_{i,j}\sigma_{j}\right)^{2} + 4\lambda b_{i}\sigma_{i}^{2}}}{2\sigma_{i}^{2}}$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Question 1.c

We note $x_i^{(k)}$ the value of the *i*th coordinate at the *k*th iteration. Deduce the corresponding CCD algorithm. How to find the RB portfolio x_{rb} ?

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

The CCD algorithm consists in iterating the following formula:

$$x_{i}^{(k)} = \frac{-\beta_{i}^{(k)} + \sqrt{\left(\beta_{i}^{(k)}\right)^{2} - 4\alpha_{i}^{(k)}\gamma_{i}^{(k)}}}{2\alpha_{i}^{(k)}}$$

where:

$$\begin{cases} \alpha_i^{(k)} = \sigma_i^2 \\ \beta_i^{(k)} = \sigma_i \left(\sum_{j < i} \rho_{i,j} \sigma_j x_j^{(k)} + \sum_{j > i} \rho_{i,j} \sigma_j x_j^{(k-1)} \right) \\ \gamma_i^{(k)} = -\lambda b_i \end{cases}$$

The RB portfolio is the scaled solution:

$$x_{\rm rb} = \frac{x^{\star}}{\sum_{i=1}^{n} x_i^{\star}}$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Question 1.d

We consider a universe of three assets, whose volatilities are equal to 20%, 25% and 30%. The correlation matrix is equal to:

$$\rho = \left(\begin{array}{ccc} 100\% & & \\ 50\% & 100\% & \\ 60\% & 70\% & 100\% \end{array}\right)$$

We would like to compute the ERC portfolio^a using the CCD algorithm. We initialize the CCD algorithm with the following starting values $x^{(0)} = (33.3\%, 33.3\%, 33.3\%)$. We assume that $\lambda = 1$.

^aThis means that:

$$b_i=rac{1}{3}$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Question 1.d.i

Starting from $x^{(0)}$, find the optimal coordinate $x_1^{(1)}$ for the first asset.

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

We have:

$$\begin{array}{c} \alpha_1^{(1)} = 0.2^2 = 4\% \\ \beta_1^{(1)} = 0.02033 \\ \gamma_i^{(1)} = -0.333\% \end{array}$$

We obtain:

$$x_1^{(1)} = 2.64375$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Question 1.d.ii

Compute then the optimal coordinate $x_2^{(1)}$ for the second asset.

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

We have:

$$\begin{cases} \alpha_2^{(1)} = 0.25^2 = 6.25\% \\ \beta_2^{(1)} = 0.08359 \\ \gamma_2^{(1)} = -0.333\% \end{cases}$$

We obtain:

$$x_2^{(1)} = 1.73553$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Question 1.d.iii

Compute then the optimal coordinate $x_3^{(1)}$ for the third asset.

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

We have:

$$\begin{cases} \alpha_3^{(1)} = 0.3^2 = 9\% \\ \beta_3^{(1)} = 0.18629 \\ \gamma_3^{(1)} = -0.333\% \end{cases}$$

We obtain:

$$x_3^{(1)} = 1.15019$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Question 1.d.iv

Give the CCD coordinates $x_i^{(k)}$ for k = 1, ..., 10.

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Table 113: CCD coordinates (k = 1, ..., 5)

k i		$\alpha_i^{(k)}$	$\beta_i^{(k)}$	$\gamma_i^{(k)}$	$x_i^{(k)}$	CCD coordinates		
n	1	α_i	ρ_i	γ _i	x _i	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3
0						0.33333	0.33333	0.33333
1	1	0.04000	0.02033	-0.33333	2.64375	2.64375	0.33333	0.33333
1	2	0.06250	0.08359	-0.33333	1.73553	2.64375	1.73553	0.33333
1	3	0.09000	0.18629	-0.33333	1.15019	2.64375	1.73553	1.15019
2	1	0.04000	0.08480	-0.33333	2.01525	2.01525	1.73553	1.15019
2	2	0.06250	0.11077	-0.33333	1.58744	2.01525	1.58744	1.15019
2	3	0.09000	0.15589	-0.33333	1.24434	2.01525	1.58744	1.24434
3	1	0.04000	0.08448	-0.33333	2.01782	2.01782	1.58744	1.24434
3	2	0.06250	0.11577	-0.33333	1.56202	2.01782	1.56202	1.24434
3	3	0.09000	0.15465	-0.33333	1.24842	2.01782	1.56202	1.24842
4	1	0.04000	0.08399	-0.33333	2.02183	2.02183	1.56202	1.24842
4	2	0.06250	0.11609	-0.33333	1.56044	2.02183	1.56044	1.24842
4	3	0.09000	0.15471	-0.33333	1.24821	2.02183	1.56044	1.24821
5	1	0.04000	0.08395	-0.33333	2.02222	2.02222	1.56044	1.24821
5	2	0.06250	0.11609	-0.33333	1.56044	2.02222	1.56044	1.24821
5	3	0.09000	0.15472	-0.33333	1.24817	2.02222	1.56044	1.24817

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Table 114: CCD coordinates (k = 6, ..., 10)

k	;	$\alpha_i^{(k)}$	$\beta_i^{(k)}$	$\gamma_i^{(k)}$	$x_i^{(k)}$	CCD coordinates		
ĸ	1					<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3
0						0.33333	0.33333	0.33333
6	1	0.04000	0.08395	-0.33333	2.02223	2.02223	1.56044	1.24817
6	2	0.06250	0.11608	-0.33333	1.56045	2.02223	1.56045	1.24817
6	3	0.09000	0.15472	-0.33333	1.24816	2.02223	1.56045	1.24816
7	1	0.04000	0.08395	-0.33333	2.02223	2.02223	1.56045	1.24816
7	2	0.06250	0.11608	-0.33333	1.56046	2.02223	1.56046	1.24816
7	3	0.09000	0.15472	-0.33333	1.24816	2.02223	1.56046	1.24816
8	1	0.04000	0.08395	-0.33333	2.02223	2.02223	1.56046	1.24816
8	2	0.06250	0.11608	-0.33333	1.56046	2.02223	1.56046	1.24816
8	3	0.09000	0.15472	-0.33333	1.24816	2.02223	1.56046	1.24816
9	1	0.04000	0.08395	-0.33333	2.02223	2.02223	1.56046	1.24816
9	2	0.06250	0.11608	-0.33333	1.56046	2.02223	1.56046	1.24816
9	3	0.09000	0.15472	-0.33333	1.24816	2.02223	1.56046	1.24816
10	1	0.04000	0.08395	-0.33333	2.02223	2.02223	1.56046	1.24816
10	2	0.06250	0.11608	-0.33333	1.56046	2.02223	1.56046	1.24816
10	3	0.09000	0.15472	-0.33333	1.24816	2.02223	1.56046	1.24816

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Question 1.d.v

Deduce the ERC portfolio.

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

The CCD algorithm has converged to the following solution:

$$x^{\star} = \left(\begin{array}{c} 2.02223\\ 1.56046\\ 1.24816 \end{array}\right)$$

Since $\sum_{i=1}^{3} x_{i}^{*} = 4.83085$, we deduce that:

$$x_{\rm erc} = \frac{1}{4.83085} \begin{pmatrix} 2.02223\\ 1.56046\\ 1.24816 \end{pmatrix} = \begin{pmatrix} 41.86076\%\\ 32.30189\%\\ 25.83736\% \end{pmatrix}$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Question 1.d.vi

Compute the variance of the previous CCD solution. What do you notice? Explain this result.

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

We remind that the CCD solution is:

$$x^{\star} = \left(\begin{array}{c} 2.02223 \\ 1.56046 \\ 1.24816 \end{array}\right)$$

We have:

$$\sigma^2\left(x^\star\right) = x^{\star\top}\Sigma x^\star = 1$$

We notice that:

$$\sigma^2\left(x^\star\right) = \lambda$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

At the optimum, we remind that:

$$\lambda = \frac{x_i^{\star} \cdot (\Sigma x^{\star})_i}{b_i} = \frac{x_i^{\star} \cdot (\Sigma x^{\star})_i}{n^{-1}}$$

We deduce that:

$$\lambda = \frac{1}{n} \sum_{i=1}^{n} \frac{x_i^* \cdot (\Sigma x^*)_i}{n^{-1}}$$
$$= \sum_{i=1}^{n} x_i^* \cdot (\Sigma x^*)_i$$
$$= x^{*\top} \Sigma x^*$$
$$= \sigma^2 (x^*)$$

It follows that the portfolio variance of the CCD solution is exactly equal to λ .

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Question 1.d.vii

Verify that the CCD solution converges faster to the ERC portfolio when we assume that $\lambda = x_{\text{erc}}^{\top} \Sigma x_{\text{erc}}$.

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

We have:

$$\sigma(x_{\rm erc}) = \sqrt{x_{\rm erc}^{\top} \Sigma x_{\rm erc}} = 20.70029\%$$

and:

$$\sigma^2(x_{\rm erc}) = 4.28502\%$$

We obtain the results given in Table 115 when $\lambda = 4.28502\%$. If we compare with those given in Tables 113 and 114, it is obvious that the convergence is faster in the present case.

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Table 115: CCD coordinates (k = 1, ..., 5)

k i		$\alpha_i^{(k)}$	$\beta_i^{(k)}$	$\gamma_i^{(k)}$	$x_i^{(k)}$	CCD coordinates		
n	1	α_i	ρ_i	γ _i	x _i	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3
0						0.33333	0.33333	0.33333
1	1	0.04000	0.02033	-0.01428	0.39521	0.39521	0.33333	0.33333
1	2	0.06250	0.02738	-0.01428	0.30680	0.39521	0.30680	0.33333
1	3	0.09000	0.03033	-0.01428	0.26403	0.39521	0.30680	0.26403
2	1	0.04000	0.01718	-0.01428	0.42027	0.42027	0.30680	0.26403
2	2	0.06250	0.02437	-0.01428	0.32133	0.42027	0.32133	0.26403
2	3	0.09000	0.03200	-0.01428	0.25847	0.42027	0.32133	0.25847
3	1	0.04000	0.01734	-0.01428	0.41893	0.41893	0.32133	0.25847
3	2	0.06250	0.02404	-0.01428	0.32295	0.41893	0.32295	0.25847
3	3	0.09000	0.03204	-0.01428	0.25835	0.41893	0.32295	0.25835
4	1	0.04000	0.01737	-0.01428	0.41863	0.41863	0.32295	0.25835
4	2	0.06250	0.02403	-0.01428	0.32302	0.41863	0.32302	0.25835
4	3	0.09000	0.03203	-0.01428	0.25837	0.41863	0.32302	0.25837
5	1	0.04000	0.01738	-0.01428	0.41861	0.41861	0.32302	0.25837
5	2	0.06250	0.02403	-0.01428	0.32302	0.41861	0.32302	0.25837
5	3	0.09000	0.03203	-0.01428	0.25837	0.41861	0.32302	0.25837

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Question 2

We recall that the ADMM algorithm is based on the following optimization problem:

$$\{x^{\star}, y^{\star}\} = \arg \min f_x(x) + f_y(y)$$

s.t. $Ax + By = c$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Question 2.a

Describe the ADMM algorithm.

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

The ADMM algorithm consists in the following iterations:

$$\begin{cases} x^{(k+1)} = \arg\min_{x} \left\{ f_{x}(x) + \frac{\varphi}{2} \left\| Ax + By^{(k)} - c + u^{(k)} \right\|_{2}^{2} \right\} \\ y^{(k+1)} = \arg\min_{y} \left\{ f_{y}(y) + \frac{\varphi}{2} \left\| Ax^{(k+1)} + By - c + u^{(k)} \right\|_{2}^{2} \right\} \\ u^{(k+1)} = u^{(k)} + \left(Ax^{(k+1)} + By^{(k+1)} - c \right) \end{cases}$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Question 2.b

We consider the following optimization problem:

$$w^{\star}(\gamma) = \arg\min\frac{1}{2}(w-b)^{\top}\Sigma(w-b) - \gamma(w-b)^{\top}\mu$$

s.t.
$$\begin{cases} \mathbf{1}_{n}^{\top}w = 1\\ \sum_{i=1}^{n}|w_{i} - b_{i}| \leq \tau^{+}\\ \mathbf{0}_{n} \leq w \leq \mathbf{1}_{n} \end{cases}$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Question 2.b.i

Give the meaning of the symbols w, b, Σ , and μ . What is the goal of this optimization program? What is the meaning of the constraint $\sum_{i=1}^{n} |w_i - b_i| \leq \tau^+$?

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

• *w* is the vector of portfolio weights:

$$w = (w_1, \ldots, w_n)$$

• *b* is the vector of benchmark weights:

$$b = (b_1, \ldots, b_n)$$

- Σ is the covariance matrix of asset returns
- μ is the vector of expected returns

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

The goal of the optimization problem is to tilt a benchmark portfolio by controlling the volatility of the tracking error:

$$\sigma(w \mid b) = \sqrt{(w - b)^{\top} \Sigma(w - b)}$$

and improving the expected excess return:

$$\mu (\boldsymbol{w} \mid \boldsymbol{b}) = (\boldsymbol{w} - \boldsymbol{b})^{\top} \mu$$

This is a typical γ -problem when there is a benchmark

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

We remind that the turnover between the benchmark b and the portfolio w is equal to:

$$au\left(w\mid b
ight)=\sum_{i=1}^{n}\left|w_{i}-b_{i}
ight|$$

Therefore, we impose that the turnover is less than an upper limit:

 $au\left(w\mid b
ight)\leq au^+$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Question 2.b.ii

What is the best way to specify $f_x(x)$ and $f_y(y)$ in order to find numerically the solution. Justify your choice.

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

The best way to specify $f_x(x)$ and $f_y(y)$ is to split the QP problem and the turnover constraint:

$$\{x^{\star}, y^{\star}\} = \arg\min_{x,y} f_x(x) + f_y(y)$$

s.t. $x - y = \mathbf{0}_n$

where:

$$\begin{array}{lll} f_{x}\left(x\right) &=& \frac{1}{2}\left(x-b\right)^{\top}\Sigma\left(x-b\right)-\gamma\left(x-b\right)^{\top}\mu+\mathbb{1}_{\Omega_{1}}\left(x\right)+\mathbb{1}_{\Omega_{3}}\left(x\right)\\ f_{y}\left(y\right) &=& \mathbb{1}_{\Omega_{2}}\left(y\right)\\ \Omega_{1}\left(x\right) &=& \left\{x:\mathbf{1}_{n}^{\top}x=1\right\}\\ \Omega_{2}\left(y\right) &=& \left\{y:\sum_{i=1}^{n}|y_{i}-b_{i}|\leq\tau^{+}\right\}\\ \Omega_{3}\left(x\right) &=& \left\{x:\mathbf{0}_{n}\leq x\leq\mathbf{1}_{n}\right\} \end{array}$$

Indeed, the x-update step is a standard QP problem whereas the y-update step is the projection onto the ℓ_1 -ball $\mathcal{B}_1(b, \tau^+)$.

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Question 2.b.iii

Give the corresponding ADMM algorithm.

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

We have:

$$(*) = \frac{1}{2} (x - b)^{\top} \Sigma (x - b) - \gamma (x - b)^{\top} \mu$$

$$= \frac{1}{2} x^{\top} \Sigma x - x^{\top} \Sigma b + \frac{1}{2} b^{\top} \Sigma b - \gamma x^{\top} \mu + \gamma b^{\top} \mu$$

$$= \frac{1}{2} x^{\top} \Sigma x - x^{\top} (\Sigma b + \gamma \mu) + \left(\gamma b^{\top} \mu + \frac{1}{2} b^{\top} \Sigma b \right)$$

constant

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

If we note $v_x^{(k+1)} = y^{(k)} - u^{(k)}$, we have:

$$\begin{aligned} \left\| x - y^{(k)} + u^{(k)} \right\|_{2}^{2} &= \left\| x - v_{x}^{(k+1)} \right\|_{2}^{2} \\ &= \left(x - v_{x}^{(k+1)} \right)^{\top} \left(x - v_{x}^{(k+1)} \right) \\ &= x^{\top} I_{n} x - 2x^{\top} v_{x}^{(k+1)} + \underbrace{\left(v_{x}^{(k+1)} \right)^{\top} v_{x}^{(k+1)}}_{X} \end{aligned}$$

constant

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

It follows that:

$$f_{x}^{(k+1)}(x) = f_{x}(x) + \frac{\varphi}{2} \left\| x - y^{(k)} + u^{(k)} \right\|_{2}^{2}$$

$$= \frac{1}{2} (x - b)^{\top} \Sigma (x - b) - \gamma (x - b)^{\top} \mu + 1_{\Omega_{1}}(x) + 1_{\Omega_{3}}(x) + \frac{\varphi}{2} \left\| x - y^{(k)} + u^{(k)} \right\|_{2}^{2}$$

$$= \frac{1}{2} x^{\top} (\Sigma + \varphi I_{n}) x - x^{\top} \left(\Sigma b + \gamma \mu + \varphi v_{x}^{(k+1)} \right) + 1_{\Omega_{1}}(x) + 1_{\Omega_{3}}(x) + \text{constant}$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

We have:

$$\begin{aligned} f_{y}^{(k+1)}(y) &= & \mathbb{1}_{\Omega_{2}}(y) + \frac{\varphi}{2} \left\| x^{(k+1)} - y + u^{(k)} \right\|_{2}^{2} \\ &= & \mathbb{1}_{\Omega_{2}}(y) + \frac{\varphi}{2} \left\| y - v_{y}^{(k+1)} \right\|_{2}^{2} \end{aligned}$$

where $v_{y}^{(k+1)} = x^{(k+1)} + u^{(k)}$. We deduce that:

$$egin{array}{rcl} y^{(k+1)} &=& rg\min_y f_y^{(k+1)} \left(y
ight) \ &=& \mathcal{P}_{\Omega_2} \left(v_y^{(k+1)}
ight) \end{array}$$

where:

$$\Omega_{2}=\mathcal{B}_{1}\left(b,oldsymbol{ au}^{+}
ight)$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

We remind that:

$$\begin{aligned} \mathcal{P}_{\mathcal{B}_{1}(c,\lambda)}\left(v\right) &= \mathcal{P}_{\mathcal{B}_{1}\left(\mathbf{0}_{n},\lambda\right)}\left(v-c\right)+c \\ \mathcal{P}_{\mathcal{B}_{1}\left(\mathbf{0}_{n},\lambda\right)}\left(v\right) &= v-\operatorname{sign}\left(v\right)\odot\operatorname{prox}_{\lambda\max x}\left(|v|\right) \\ \operatorname{prox}_{\lambda\max x}\left(v\right) &= \min\left(v,s^{\star}\right) \end{aligned}$$

where s^{\star} is the solution of the following equation:

$$s^{\star} = \left\{s \in \mathbb{R} : \sum_{i=1}^{n} (v_i - s)_+ = \lambda
ight\}$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

We deduce that:

$$\begin{aligned} \mathcal{P}_{\Omega_{2}}\left(v_{y}^{(k+1)}\right) &= \mathcal{P}_{\mathcal{B}_{1}\left(b,\tau^{+}\right)}\left(v_{y}^{(k+1)}\right) \\ &= \mathcal{P}_{\mathcal{B}_{1}\left(\mathbf{0}_{n},\tau^{+}\right)}\left(v_{y}^{(k+1)}-b\right)+b \\ &= v_{y}^{(k+1)}-\operatorname{sign}\left(v_{y}^{(k+1)}-b\right)\odot\operatorname{prox}_{\tau^{+}\max x}\left(\left|v_{y}^{(k+1)}-b\right|\right) \\ &= v_{y}^{(k+1)}-\operatorname{sign}\left(v_{y}^{(k+1)}-b\right)\odot\operatorname{min}\left(\left|v_{y}^{(k+1)}-b\right|,s^{\star}\right) \end{aligned}$$

where s^* is the solution of the following equation:

$$s^{\star} = \left\{s \in \mathbb{R}: \sum_{i=1}^n \left(\left|v_{y,i}^{(k+1)} - b_i
ight| - s
ight)_+ = au^+
ight\}$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

The ADMM algorithm becomes:

$$\begin{cases} v_x^{(k+1)} = y^{(k)} - u^{(k)} \\ Q^{(k+1)} = \Sigma + \varphi I_n \\ R^{(k+1)} = \Sigma b + \gamma \mu + \varphi v_x^{(k+1)} \\ x^{(k+1)} = \arg \min_x \left\{ \frac{1}{2} x^\top Q^{(k+1)} x - x^\top R^{(k+1)} + \mathbb{1}_{\Omega_1} (x) + \mathbb{1}_{\Omega_3} (x) \right\} \\ v_y^{(k+1)} = x^{(k+1)} + u^{(k)} \\ s^* = \left\{ s \in \mathbb{R} : \sum_{i=1}^n \left(\left| v_{y,i}^{(k+1)} - b_i \right| - s \right)_+ = \tau^+ \right\} \\ y^{(k+1)} = v_y^{(k+1)} - \operatorname{sign} \left(v_y^{(k+1)} - b \right) \odot \min \left(\left| v_y^{(k+1)} - b \right|, s^* \right) \\ u^{(k+1)} = u^{(k)} + x^{(k+1)} - y^{(k+1)} \end{cases}$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Question 2.c

We consider the following optimization problem:

$$egin{aligned} & w^{\star} &= & rg\min \left\| w - ilde{w}
ight\|_{1} \ & & \left\{ egin{aligned} & \mathbf{1}_{n}^{ op} w = 1 \ & & \sqrt{(w-b)^{ op} \Sigma \left(w-b
ight)} \leq \sigma^{+} \ & & \mathbf{0}_{n} \leq w \leq \mathbf{1}_{n} \end{aligned}
ight.$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Question 2.c.i

What is the meaning of the objective function $\|w - \tilde{w}\|_1$? What is the meaning of the constraint $\sqrt{(w - b)^\top \Sigma (w - b)} \le \sigma^+$?

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

The objective function $||w - \tilde{w}||_1$ is the turnover between a given portfolio \tilde{w} and the optimized portfolio w

The constraint $\sqrt{(w-b)^{\top} \Sigma(w-b)} \le \sigma^+$ is a tracking error limit with respect to a benchmark b

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Question 2.c.ii

Propose an equivalent optimization problem such that $f_x(x)$ is a QP problem. How to solve the *y*-update?

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

The optimization problem is equivalent to solve the following program:

$$w^{\star} = \arg\min\frac{1}{2}(w-b)^{\top}\Sigma(w-b) + \lambda \|w-\tilde{w}\|_{1}$$

s.t.
$$\begin{cases} \mathbf{1}_{n}^{\top}w = 1\\ \mathbf{0}_{n} \le w \le \mathbf{1}_{n} \end{cases}$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

We deduce that:

$$f_{x}\left(x
ight)=rac{1}{2}\left(x-b
ight)^{ op}\Sigma\left(x-b
ight)+\mathbb{1}_{\Omega_{1}}\left(x
ight)+\mathbb{1}_{\Omega_{2}}\left(x
ight)$$

where:

$$\Omega_1(x) = \left\{ x : \mathbf{1}_n^\top x = 1 \right\}$$

and:

$$\Omega_2(x) = \{x : \mathbf{0}_n \le x \le \mathbf{1}_n\}$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

We have:

$$f_{y}(y) = \lambda \left\| w - \tilde{w} \right\|_{1}$$

We remind that:

$$\operatorname{prox}_{\lambda \|x\|_{1}}(v) = \mathcal{S}(v; \lambda) = \operatorname{sign}(v) \odot (|v| - \lambda \mathbf{1}_{n})_{+}$$

and:

$$\operatorname{prox}_{f(x+b)}(v) = \operatorname{prox}_{f}(v+b) - b$$

The *y*-update step is then equal to:

$$y^{(k+1)} = \operatorname{prox}_{\lambda \| w - \tilde{w} \|_{1}} \left(x^{(k+1)} + u^{(k)} \right)$$

= $\tilde{w} + \operatorname{sign} \left(x^{(k+1)} + u^{(k)} - \tilde{w} \right) \odot \left(\left| x^{(k+1)} + u^{(k)} - \tilde{w} \right| - \lambda \mathbf{1}_{n} \right)_{+}$

because $f_y(y)$ is fully separable³³

³³Otherwise the scaling property does not work!

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

Exercise

We consider an investment universe with 6 assets. We assume that their expected returns are 4%, 6%, 7%, 8%, 10% and 10%,, and their volatilities are 6%, 10%, 11%, 15%, 15% and 20%. The correlation matrix is given by:

	/ 100%					
$\rho =$	50%	100%				
	20%	20%	100%			
	50%	50%	80%	100%		
	0%	-20%	-50%	-30%	100%	
	0%	20%	30%	0%	0%	100% /

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

Question 1

We restrict the analysis to long-only portfolios meaning that $\sum_{i=1}^{n} x_i = 1$ and $x_i \ge 0$.

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

Question 1.a

We consider the Herfindahl index $\mathcal{H}(x) = \sum_{i=1}^{n} x_i^2$. What are the two limit cases of $\mathcal{H}(x)$? What is the interpretation of the statistic $\mathcal{N}(x) = \mathcal{H}^{-1}(x)$?

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

We consider the following optimization problem:

$$egin{argamma} x^{\star} &= & rgmin \mathcal{H}\left(x
ight) \ ext{s.t.} & \sum_{i=1}^n x_i = 1 \end{array}$$

We deduce that the Lagrange function is:

$$\mathcal{L}(x;\lambda) = \mathcal{H}(x) - \lambda \left(\sum_{i=1}^{n} x_i = 1\right)$$
$$= x^{\top} x - \lambda \left(\mathbf{1}_n^{\top} x - 1\right)$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

The first-order condition is:

$$\frac{\partial \mathcal{L}(\boldsymbol{x};\boldsymbol{\lambda})}{\partial \boldsymbol{x}} = \boldsymbol{x} - \boldsymbol{\lambda} \mathbf{1}_n = \mathbf{0}_n$$

Since we have $\mathbf{1}_n^\top x - 1 = 0$, we deduce that:

$$\lambda = \frac{1}{\mathbf{1}_n^{\top} \mathbf{1}_n} = \frac{1}{n}$$

We conclude that the lower bound is reached for the equally-weighted portfolio:

$$x_{\rm ew} = \frac{1}{n} \cdot \mathbf{1}_n$$

and we have:

$$\mathcal{H}(x_{\text{ew}}) = \frac{1}{n^2} \cdot \mathbf{1}_n^{\top} \mathbf{1}_n = \frac{1}{n}$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

Since the weights are positive, we have:

$$\mathcal{H}(x) = \sum_{i=1}^{n} x_i^2$$

$$\leq \left(\sum_{i=1}^{n} x_i\right)^2$$

$$\leq 1$$

The upper bound is reached when the portfolio is concentrated on one asset:

$$\exists i: x_i = 1$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

We conclude that:

$$\frac{1}{n} \leq \mathcal{H}(x) \leq 1$$

The statistic $\mathcal{N}(x) = \mathcal{H}^{-1}(x)$ is the effective number of assets

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

Question 1.b

We consider the following optimization problem (\mathcal{P}_1) :

$$egin{array}{rl} x^{\star}\left(\lambda
ight)&=&rgminrac{1}{2}x^{ op}\Sigma x+\lambda x^{ op}x\ ext{ s.t. } &\left\{ egin{array}{rl} \sum_{i=1}^{n}x_{i}=1\ x_{i}\geq0 \end{array}
ight. \end{array}$$

What is the link between this constrained optimization program and the weight diversification based on the Herfindahl index?

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

The optimization problem (\mathcal{P}_1) is equivalent to:

$$x^{\star} (\mathcal{H}^{+}) = \arg \min \frac{1}{2} x^{\top} \Sigma x$$

s.t.
$$\begin{cases} \sum_{i=1}^{n} x_{i} = 1 \\ x_{i} \ge 0 \\ x^{\top} x \le \mathcal{H}^{+} \end{cases}$$

We obtain a long-only minimum variance portfolio with a diversification constraint based on the Herfindahl index:

$$\mathcal{H}(x) \leq \mathcal{H}^+$$

We have the following correspondance:

$$\mathcal{H}^{+} = \mathcal{H}\left(x^{\star}\left(\lambda\right)\right) = x^{\star}\left(\lambda\right)^{\top}x^{\star}\left(\lambda\right)$$

Given a value of λ , we can then compute the implicit constraint $\mathcal{H}(x) \leq \mathcal{H}^+$.

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

Question 1.c

Solve Program (\mathcal{P}_1) when λ is equal to respectively 0, 0.001, 0.01, 0.05, 0.10 and 10. Compute the statistic $\mathcal{N}(x)$. Comment on these results.

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

Table 116: Solution of the optimization problem (\mathcal{P}_1)

λ	0.000	0.001	0.010	0.050	0.100	10.000
$x_1^{\star}(\lambda)$ (in %)	44.60	35.66	23.97	18.71	17.76	16.68
$x_{2}^{\star}\left(\lambda ight)$ (in %)	9.12	14.60	18.10	17.08	16.89	16.67
$x_{3}^{\star}(\lambda)$ (in %)	25.46	26.57	19.96	16.89	16.71	16.67
$x_{4}^{\star}\left(\lambda ight)$ (in %)	0.00	0.00	7.64	14.46	15.52	16.65
$x_{5}^{\star}\left(\lambda ight)$ (in %)	20.40	22.11	22.38	19.31	18.21	16.69
$x_{6}^{\star}(\lambda)$ (in %)	0.43	1.07	7.94	13.55	14.92	16.65
$\mathcal{H}\left(x^{\star}\left(\lambda ight) ight)$	0.3137	0.2680	0.1923	0.1693	0.1675	0.1667
$\mathcal{N}\left(x^{\star}\left(\lambda ight) ight)$	3.19	3.73	5.20	5.91	5.97	6.00

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

Question 1.d

Using the bisection algorithm, find the optimal value of λ^* that satisfies:

$$\mathcal{N}\left(x^{\star}\left(\lambda^{\star}\right)\right) = 4$$

Give the composition of $x^*(\lambda^*)$. What is the interpretation of $x^*(\lambda^*)$?

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

The optimal solution is:

 $\lambda^{\star} = 0.002301$

The optimal weights (in %) are equal to:

$$x^{\star} = \begin{pmatrix} 31.62\% \\ 17.24\% \\ 26.18\% \\ 0.00\% \\ 22.63\% \\ 2.33\% \end{pmatrix}$$

The effective number of bets $\mathcal{N}(x^*)$ is equal to 4

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

Question 2

We consider long/short portfolios and the following optimization problem (\mathcal{P}_2) :

$$x^{\star}(\lambda) = \arg \min \frac{1}{2} x^{\top} \Sigma x + \lambda \sum_{i=1}^{n} |x_i|$$

s.t. $\sum_{i=1}^{n} x_i = 1$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

Question 2.a

Solve Program (\mathcal{P}_2) when λ is equal to respectively 0, 0.0001, 0.001, 0.01, 0.05, 0.10 and 10. Comment on these results.

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

Table 117: Solution of the optimization problem (\mathcal{P}_2)

λ	0.000	0.0001	0.001	0.010	0.050	0.100	10.000
$x_1^{\star}(\lambda)$ (in %)	35.82	37.17	44.50	44.60	44.60	44.60	44.60
$x_{2}^{\star}\left(\lambda ight)$ (in %)	33.08	30.26	11.48	9.12	9.12	9.12	9.12
$x_{3}^{\star}(\lambda)$ (in %)	77.62	71.77	31.28	25.46	25.46	25.46	25.46
$x_4^{\star}(\lambda)$ (in %)	-53.48	-47.97	-7.16	0.00	0.00	0.00	0.00
$x_{5}^{\star}(\lambda)$ (in %)	20.83	20.56	19.90	20.40	20.40	20.40	20.40
$x_6^{\star}(\lambda)$ (in %)	-13.87	-11.78	0.00	0.43	0.43	0.43	0.43
$\mathcal{L}(x)$ (in %)	234.69	219.50	114.33	100.00	100.00	100.00	100.00

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

Question 2.b

For each optimized portfolio, calculate the following statistic:

$$\mathcal{L}\left(x\right) = \sum_{i=1}^{n} |x_i|$$

What is the interpretation of $\mathcal{L}(x)$? What is the impact of Lasso regularization?

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

$\mathcal{L}(x) = \sum_{i=1}^{n} |x_i|$ is the leverage ratio. Their values are reported in Table 117.

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

Question 3

We assume that the investor holds an initial portfolio $x^{(0)}$ defined as follows:

$$x^{(0)} = \begin{pmatrix} 10\% \\ 15\% \\ 20\% \\ 25\% \\ 30\% \\ 0\% \end{pmatrix}$$

We consider the optimization problem (\mathcal{P}_3) :

$$egin{aligned} & x^{\star}\left(\lambda
ight) & = & rg\minrac{1}{2}x^{ op}\Sigma x + \lambda\sum_{i=1}^{n}\left|x_{i}-x_{i}^{(0)}
ight| \ & ext{ s.t. } & \sum_{i=1}^{n}x_{i}=1 \end{aligned}$$

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

Question 3.a

Solve Program (\mathcal{P}_3) when λ is equal respectively to 0, 0.0001, 0.001, 0.001, 0.0015 and 0.01. Compute the turnover of each optimized portfolio. Comment on these results.

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

Table 118: Solution of the optimization problem (\mathcal{P}_3)

λ	0.000	0.000	0.001	0.002	0.010
$x_1^{\star}(\lambda)$ (in %)	35.82	35.55	27.90	24.28	10.00
$x_{2}^{\star}(\lambda)$ (in %)	33.08	30.61	15.00	15.00	15.00
$x_3^{\star}(\lambda)$ (in %)	77.62	72.35	33.36	22.86	20.00
$x_4^{\star}(\lambda)$ (in %)	-53.48	-48.00	-5.20	7.87	25.00
$x_5^{\star}(\lambda)$ (in %)	20.83	21.51	28.94	30.00	30.00
$x_6^{\star}(\lambda)$ (in %)	-13.87	-12.02	0.00	0.00	0.00
$\tau \left(x^{\star} \left(\lambda \right) \mid x^{(0)} \right) \text{ (in \%)}$	203.04	187.02	62.51	34.27	0.00

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

Question 3.b

Using the bisection algorithm, find the optimal value of λ^* such that the two-way turnover is equal to 60%. Give the composition of $x^*(\lambda^*)$.

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

The optimal solution is:

 $\lambda^{\star}=0.00103$

The optimal weights (in %) are equal to:

$$x^{\star} = \begin{pmatrix} 27.23\% \\ 15.00\% \\ 32.77\% \\ -4.30\% \\ 29.30\% \\ 0.00\% \end{pmatrix}$$

The turnover $\tau (x^* | x^{(0)})$ is equal to 60%

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

Question 3.c

Same question when the two-way turnover is equal to 50%.

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

The optimal solution is:

 $\lambda^{\star}=0.00119$

The optimal weights (in %) are equal to:

$$x^{\star} = \begin{pmatrix} 25.53\% \\ 15.00\% \\ 29.47\% \\ 0.00\% \\ 30.00\% \\ 0.00\% \end{pmatrix}$$

The turnover $\tau (x^* | x^{(0)})$ is equal to 50%

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

Question 3.d

What becomes the portfolio $x^*(\lambda)$ when $\lambda \to \infty$? How do you explain this result?

Portfolio optimization with CCD and ADMM algorithms Regularized portfolio optimization

Regularized portfolio optimization

We notice that:

$$\lim_{\lambda\to\infty}x^{\star}\left(\lambda\right)=x^{(0)}$$

This is normal since we have:

$$egin{array}{lll} x^{\star}\left(\lambda
ight) &=& rgminrac{1}{2}x^{ op}\Sigma x+\lambda\sum_{i=1}^{n}\left|x_{i}-x_{i}^{\left(0
ight)}
ight| \ & ext{ s.t. }& \sum_{i=1}^{n}x_{i}=1 \end{array}$$

We deduce that:

$$x^{\star}(\infty) = rgmin \sum_{i=1}^{n} \left| x_i - x_i^{(0)} \right|$$

s.t. $\sum_{i=1}^{n} x_i = 1$

The solution is $x^{\star}(\infty) = x^{(0)}$

Main references

ВЕСК, А. (2017)

First-Order Methods in Optimization, MOS-SIAM Series on Optimization, 25, SIAM.

COQUERET, G., and GUIDA, T. (2020) Machine Learning for Eactor Investing Chapman

Machine Learning for Factor Investing, Chapman and Hall/CRC Financial Mathematics Series.

PERRIN, S., and RONCALLI, T. (2020)

Machine Learning Algorithms and Portfolio Optimization, in Jurczenko, E. (Ed.), *Machine Learning in Asset Management: New Developments and Financial Applications*, Wiley, pp. 261-328, arxiv.org/abs/1909.10233.

References I

- BOURGERON, T., LEZMI, E., and RONCALLI, T. (2018) Robust Asset Allocation for Robo-Advisors, *arXiv*, arxiv.org/abs/1902.07449.
 - BOYD, S., PARIKH, N., CHU, E., PELEATO, B., and ECKSTEIN, J. (2010)

Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, *Foundations and Trends* \mathbb{R} *in Machine learning*, 3(1), pp. 1-122.

GABAY, D., and MERCIER, B. (1976)

A Dual Algorithm for the Solution of Nonlinear Variational Problems via Finite Element Approximation, *Computers & Mathematics with Applications*, 2(1), pp. 17-40.

References II

- GONZALVEZ, J., LEZMI, E., RONCALLI, T., and XU, J. (2019) Financial Applications of Gaussian Processes and Bayesian Optimization, *arXiv*, arxiv.org/abs/1903.04841.
- GRIVEAU-BILLION, T., RICHARD, J-C., and RONCALLI, T. (2013) A Fast Algorithm for Computing High-dimensional Risk Parity Portfolios, SSRN, www.ssrn.com/abstract=2325255.
 - JURCZENKO, E. (2020)

Machine Learning in Asset Management: New Developments and Financial Applications, Wiley.

KONDRATYEV, A., and SCHWARZ, C. (2020)

The Market Generator, SSRN, www.ssrn.com/abstract=3384948.

References III

LEZMI, E., ROCHE, J., RONCALLI, T., and XU, J. (2020)

Improving the Robustness of Trading Strategy Backtesting with Boltzmann Machines and Generative Adversarial Networks, *arXiv*, https://arxiv.org/abs/2007.04838.

PARIKH, N., and BOYD, S. (2014)

Proximal Algorithms, Foundations and Trends (R) in Optimization, 1(3), pp. 127-239.

TIBSHIRANI, R. (1996)

Regression Shrinkage and Selection via the Lasso, *Journal of the Royal Statistical Society B*, 58(1), pp. 267-288.

References IV

TIBSHIRANI, R.J. (2017)

Dykstra's Algorithm, ADMM, and Coordinate Descent: Connections, Insights, and Extensions, in Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R. (Eds), *Advances in Neural Information Processing Systems*, 30, pp. 517-528.

TSENG, **P.** (2001)

Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization, *Journal of Optimization Theory and Applications*, 109(3), pp. 475-494.