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Abstract

Risk factor models are now widely used by fund managers to construct portfolios and
assess both return and risk based on the behavior of common risk factors to which the
portfolios are exposed. However, fund managers often have subjective views on these
risk factors that they may wish to incorporate into their asset allocation strategies.
This study introduces an extension of the Black-Litterman model that allows views to
be applied to risk factors rather than individual assets, greatly simplifying the process
since the number of factors is typically much smaller than the number of assets in a
portfolio. The concept of risk premia is central to portfolio allocation, but is typically
assessed at the asset level. In our framework, risk premia are formulated and analyzed
at the factor level. This theoretical advance allows the manager to calculate factor
risk premia, formulate views based on these premia, and incorporate them into the
portfolio optimization process to create an adjusted portfolio that is consistent with
the manager’s expectations.

This new framework has many applications. It allows fund managers to analyze
the market’s implied risk premia and identify the key drivers of market returns. In
addition, the model facilitates comparisons between an actively managed portfolio and
its benchmark by calculating how both are priced and identifying the factors that
differentiate them. The approach can also be extended to incorporate economic factors,
such as economic indicators or narratives, and can be applied to macroeconomic factor-
mimicking portfolios. This article examines examples of each of these applications and
analyzes the results obtained. Finally, given that the model involves several parameters
that can be difficult to define, we provide practical guidance and demonstrate how
varying these parameters can affect the final portfolio allocation.

Keywords: Factor model, risk premium, Black-Litterman model, minimum-variance port-
folio, active management, tactical asset allocation.
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1 Introduction

The Black-Litterman model was developed in the early 1990s to address the problems faced
by institutional investors in applying Modern Portfolio Theory in practice (Black and Litter-
man, 1991, 1992). This model uses a Bayesian framework and combines the assumption of
market equilibrium with the views of the portfolio manager to produce a relevant allocation
that reflects his expectations. Starting from an initial asset allocation and using an equi-
librium argument, the Black-Litterman model first computes the implied risk premia of the
assets by solving a reverse mean-variance optimization process, then modifies the allocation
by taking into account the portfolio manager’s views on the expected return of the assets,
and finally derives the new optimized portfolio consistent with the portfolio manager’s bets.
It can also be seen as a synthesis of different approaches: portfolio optimization developed
by Harry Markowitz, the CAPM theory of William Sharpe, the introduction of constraints
in asset allocation, the Bayesian framework of active management, etc.

One challenge in applying the Black-Litterman model in practice arises when managing
portfolios with a large number of assets, such as a mix of stocks and bonds. It becomes
difficult for the portfolio manager to provide views on a large number of individual assets.
As a result, the Black-Litterman model has traditionally been used by multi-asset portfolio
managers who treat asset classes as the core securities in their portfolios. The underlying
rationale is that it is more feasible for a manager to express views on a smaller, more
manageable universe of securities, typically fewer than thirty. To address this limitation, it is
natural to combine the Black-Litterman model with a multi-factor model, which is commonly
used in finance as an asset pricing framework. In a multi-factor model, an asset’s return is
driven by its exposure to various underlying risk factors. These risk factors are defined as
common patterns that help explain the variance in an asset’s expected return. Examples
include economic risk factors such as GDP, inflation, and interest rates; market risk factors
such as value, momentum, and low beta; and statistical risk factors, such as the three-
factor model of Litterman and Scheinkman (1991), which is based on principal component
analysis and includes factors such as the level, steepness, and curvature of the yield curve.
A multi-factor model can then be viewed as a dimensionality reduction technique, since a
few factors (far fewer than the number of assets) can explain most of the variation in the
covariance matrix of asset returns. Estimating such a model involves running multiple linear
regressions to determine whether these factors can explain the returns of individual assets.
This can be done using two main methods: time-series regression, as in the Fama-French
factors (Fama and French, 1993), or cross-sectional regression, as in the Barra risk model
(Fama and MacBeth, 1973). By incorporating a multi-factor model into the Black-Litterman
model, portfolio managers can more easily and intuitively express their views on various risk
factors rather than on a large number of individual assets.

In this paper, we introduce a new model called the Black-Litterman factor model to
combine the Black-Litterman model with multi-factor models. Figure 1 shows the main
steps of the Black-Litterman factor model. This model requires an initial portfolio allocation
and a multi-factor asset pricing model. The first step is to compute the implied risk premia
for the assets in the given portfolio, as we do in the classic Black-Litterman model. We then
aggregate the implied risk premium from the asset level to the factor level. Next, using the
Bayesian framework, we integrate the portfolio manager’s views of the various factors to
derive the posterior risk premia for the factors. The posterior risk premia of the assets are
then computed, which can be viewed as the vector of expected returns in a traditional mean-
variance optimization process. Constraints can also be imposed to find the appropriate asset
allocation. The Black-Litterman factor model can provide a portfolio manager with factor-
level information about his portfolio so that he can estimate how the portfolio is priced across
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risk factors and how the portfolio is performing relative to its benchmark. This information
helps the manager develop views that are appropriate for the current market environment.
The model then allows the portfolio manager to weight his views according to confidence
levels and can combine current information about the portfolio with the portfolio manager’s
subjective views to assign new weights to the portfolio.

Figure 1: The Black-Litterman model applied to risk factors
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This is not the first time that a Black-Litterman factor model has been proposed. For
example, Kolm and Ritter (2021) developed a general framework for incorporating risk
factors into the Black-Litterman model. The two approaches are very close, although we do
not have the same prior distribution. In fact, our approach to defining the prior distribution
is based on the mathematical model developed by Roncalli and Weisang (2016), while the
prior of Kolm and Ritter (2021) is based on the Bayesian model developed by Kolm and
Ritter (2017).

This paper is organized as follows. We begin with an overview of the multi-factor model,
which we combine with the Black-Litterman model. In Section Two, we present the dif-
ferent steps of the Black-Litterman factor model, such as the calculation of the factor risk
premia, the calculation of the posterior distribution of factor risk premia under the portfolio
manager’s views, and portfolio optimization. In Section Three, we show several applications
of the Black-Litterman factor model in portfolio management: What is priced in by the
market? How can a fund manager position his portfolio relative to a benchmark? What are
the economic exposures of risk parity strategies? In this section, we also discuss parame-
ter selection issues and other details of using the Black-Litterman factor model in practice.
Finally, Section Four offers some concluding remarks.
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2 The Black-Litterman factor model

2.1 Multi-factor model

We consider an investment universe of n assets. We assume that asset returns follow a
multi-factor risk model:

R (t)− r = BF (t) + ε (t) (1)

where R (t) =
(
R1 (t) , . . . , Rn (t)

)
is the vector of asset returns, r is the return of the risk-free

asset, F (t) =
(
F1 (t) , . . . , Fm (t)

)
is the vector of risk factors, and ε (t) =

(
ε1 (t) , . . . , εn (t)

)
is the vector of idiosyncratic risks. The loading matrix B collects all the beta values:
B =

(
βi,j
)

where i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. We assume that E
[
F (t)

]
= ψ,

cov
(
F (t)

)
= Ω, E

[
ε (t)

]
= 0n, cov

(
ε (t)

)
= D and F (t) ⊥ ε (t). We deduce that the vector

of risk premia is1:
π = Bψ (2)

while the covariance matrix of asset returns is:

Σ = BΩB> +D (3)

Given a portfolio x, its risk premium and volatility are:

π (x) = x>π = x>Bψ

and:

σ (x) =
√
x>Σx =

√
x>
(
BΩB> +D

)
x

We can also calculate the vector of beta coefficients:

β (x) = B>x =


β1 (x)

...
βm (x)


where the jth beta value is equal to βj (x) =

∑n
i=1 xiβi,j .

To assess the importance of the common factors, we can calculate the proportion of the
total variance accounted for by the common factors. This statistic is known as the R-squared
coefficient, or the coefficient of determination if we are talking about linear regression. We
have:

R2
c = diag

(
BΩB>

)
� diag

(
BΩB> +D

)
where � is the element by element division operator. For a portfolio x, we have:

Rx (t) = x>R (t)

= x>r + x>BF (t) + x>ε (t)

We deduce that:

R2
c (x) =

x>
(
BΩB>

)
x

x>
(
BΩB> +D

)
x

1The vector of expected returns is given by:

µ = r + π = r +Bψ
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2.2 Computing the implied risk premia

2.2.1 Asset risk premia

Let µ and Σ be any vector of expected returns and covariance matrix2. We consider the
following optimization problem:

x? (γ) = arg min
1

2
x>Σx− γx> (µ− r1n)

s.t. 1>n x = 1

where γ is the coefficient of risk tolerance. The optimal solution is:

x? = γΣ−1 (µ− r1n)

where γ =
(
1>nΣ−1 (µ− r1n)

)−1
. Given an initial allocation x, we deduce that this portfolio

is optimal if the vector of implied risk premia is equal to:

π̃ = µ̃− r =
1

γ
Σx

By assuming that we know the Sharpe ratio of the initial allocation, we deduce that:

π̃ = SR
(
x | r

) Σx√
x>Σx

(4)

We retrieve one of the fundamental results of the capital asset pricing model. At the opti-
mum, risk premia are proportional to marginal risk (Roncalli, 2013). Equation (4) is central
to the Black-Litterman. It gives the risk premia required, or priced in, by the investor to
hold portfolio x (Bourgeron et al., 2019).

2.2.2 Factor risk premia

Following Meucci (2007) and Roncalli and Weisang (2016), we decompose the portfolio’s
asset exposures x by the portfolio’s risk factor exposures y as follows:

x = Byy + B̆y y̆

where By =
(
B>
)+

is the Moore-Penrose inverse of B> and B̆y is any n× (n−m) matrix
spanning the left null space of By. y̆ corresponds to n −m residual (or additional) factors
that have no economic interpretation. It follows that:{

y = Bxx

y̆ = B̆xx

where Bx = B> and B̆x = ker
(
B+
)>

. According to Roncalli and Weisang (2016), it is

common to use this solution3: B̆x =
(

null
(
B+
))+ (

In −
(
B+
)>
B>
)

. In order to calculate

the vector of factor risk premia, we use the relationship given in Equation (2). We deduce
that:

ψ = B+π

2The formulation is general, i.e. it is not necessarily derived from a multi-factor model.
3null (M) is the null space of the matrix M .
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and:

ψ̃ = B+π̃ = SR
(
x | r

) B+
(
BΩB> +D

)
x√

x>
(
BΩB> +D

)
x

where B+ is the Moore-Penrose inverse of B. However, we can show that:

π̃ (x) = x>π̃ 6= y>ψ̃

Indeed, we have:
∂ σ (x)

∂ x
= By

∂ σ (x)

∂ y
+ B̆y

∂ σ (x)

∂ ỹ
(5)

We deduce that the marginal risk of the jth risk factors is:

∂ σ (x)

∂ yj
=

(
Bσ

∂ σ (x)

∂ x

)
j

where Bσ = B+. For the residual factors, we have:

∂ σ (x)

∂ y̆
=

(
B̆σ

∂ σ (x)

∂ x

)
j

where B̆σ = null
(
B+
)>

= B̆x. From Equation (5), we deduce that:

π̃ (x) = y>ψ̃ + y̆>ῠ (6)

where: 
y = Bxx

y̆ = B̆xx

ψ̃ = Bσπ̃

ῠ = B̆σπ̃

(7)

Equations (6) and (7) are the core relationships for decomposing the risk premium of a
portfolio with respect to the factor risk premia.

2.2.3 Some properties

Here are some interesting properties. The proofs are given in Appendix A.2.1 on page 45.

Property 1. The factor exposures are equal to the beta sensitivities:

y = β (x)

Property 2. The covariance model is obtained by setting B = In and D = 0n,n. In this
case, we have R (t) = F (t) and Σ = Ω. We have:

ψ̃ = π̃

Property 3. The implied risk premium priced in by the tangent portfolio is equal to the
vector of risk premia:

π̃ = π := µ− r1n
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Property 4. The residual premium of the tangency portfolio is zero, which implies that the
risk premium of the tangency portfolio is fully explained by the common risk factors:

ῠ (x?) = y̆>ῠ = 0

π̃ (x?) = ψ̃ (x?) =
π>Σ−1π

1>nΣ−1π

Property 5. If the portfolio is not optimal, the residual premium does not depend on the
factor covariance Ω, but only on the idiosyncratic covariance D. The residual premium is
then positive:

ῠ (x) = x>
(
B̆>x B̆xD

)
x ≥ 0

Property 6. The factor risk premium of any portfolio is always positive:

ψ̃ (x) ≥ 0

The last three properties are very interesting because we have the decomposition of the
portfolio risk premium into the factor risk premium and the residual risk premium:

π̃ (x) = ψ̃ (x) + ῠ (x)

Using the traditional assumptions4, the two terms are positive. If the portfolio is optimal and
corresponds to the tangency portfolio, the portfolio risk premium has no residual premium.
In all other cases, there is a positive residual premium. This is normal because the investor
chooses a portfolio that is not optimal, which means that the investor believes that some
idiosyncratic risk factors are being rewarded.

Property 7. The asset risk premia admit a variance-covariance decomposition:

π̃ = π̃(var) + π̃(cov)

where π̃(var) depends on the asset variances and π̃(cov) depends on the asset covariances.

Property 8. The asset risk premia admit a factor decomposition:

π̃ = π̃(factor) + π̃(specific)

where π̃(factor) depends on the common factors and π̃(specific) depends on the idiosyncratic
factors.

Property 9. The factor risk premia allow the following decompositions:{
ψ̃ = ψ̃(var) + ψ̃(cov)

ψ̃ = ψ̃(factor) + ψ̃(specific)

where ψ̃(var), ψ̃(cov), ψ̃(factor) and ψ̃(specific) depend on the factor variances, factor covari-
ances, common factors and idiosyncratic factors.

These three properties show that we can decompose the risk premium into two dimen-
sions. The first approach considers a variance-covariance decomposition, while the second
approach considers a factor decomposition between the contribution of common risk factors
and the contribution of idiosyncratic risk factors.

4Both the Sharpe ratio SR
(
x | r

)
and the factor risk premia ψ are positive.
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2.2.4 An example

Consider an investment universe with five assets and two factors. The loading matrix B is:

B =


0.5 −0.3
1.2 0.6
1.4 −0.3
0.7 0.3
0.8 −0.9


The two factors are uncorrelated and their volatilities are 20% and 5%, respectively. We
assume a diagonal matrix D with the following idiosyncratic volatilities: 12%, 10%, 8%,
10% and 12%. The expected returns of the factors are 4% and 1%, while the return of
the risk-free asset is 2%. Below is the coefficient of determination for each asset and its
decomposition between the two common risk factors.

Asset R2
c R2

c (F1) R2
c (F2)

#1 41.52% 40.61% 0.91%
#2 85.40% 84.09% 1.31%
#3 92.47% 92.21% 0.26%
#4 66.47% 65.72% 0.75%
#5 65.73% 60.92% 4.82%

For example, the common risk factors explain 41.52% of the risk of asset 1, with the first and
second factors contributing 40.61% and 1.31% respectively. We note that the second factor
has a low contribution and that the dynamics of the second and third assets are mainly
driven by the common factors. In Table 1, we report several statistics5 for five portfolios:

Portfolio #1 #2 #3 #4 #5
x1 20% −50% 0% 50%
x2 20% 100% 100% −70%
x3 ∝ Σ−1 (µ− r15) 20% 50% 50% −50%
x4 20% 0% 0% 70%
x5 20% 0% −50% 100%

The first portfolio is the tangent portfolio:

x? =
Σ−1 (µ− r15)

1>5 Σ−1 (µ− r15)

The second portfolio corresponds to the equally-weighted portfolio, while the last three
portfolios are long/short portfolios. For each portfolio, we compute the coefficient of de-
termination R2

c (x), the asset risk premia π̃ = (π̃1, . . . , π̃n), the portfolio risk premium
π̃ (x) = x>π̃, the vector of sensitivities β (x) =

(
β1 (x) , . . . , βm (x)

)
, the factor exposures

y = (y1, . . . , ym), the factor risk premia ψ̃ =
(
ψ̃1, . . . , ψ̃m

)
, the factor risk premium of the

portfolio ψ̃ (x) = y>ψ̃ and the residual risk premium of the portfolio ῠ (x) = y̆>ῠ. By
definition, we have ψ̃ (x) + ῠ (x) = π̃ (x).

In Table 1, we check that the estimated asset risk premia π̃ are exactly equal to the
theoretical asset risk premia π in the case of the tangent portfolio. This portfolio has a beta
of 1.25 and a factor exposure of 125% with respect to the first factor. In fact, we check

5All statistics except βj (x) are expressed in %.

8



Risk Factor, Risk Premium and Black-Litterman Model

Table 1: Risk premia of the two-factor model

Statistics #1 #2 #3 #4 #5
π̃1 1.70 2.11 1.46 1.89 −0.27
π̃2 5.40 4.53 5.19 5.36 0.30
π̃3 5.30 5.22 5.48 5.57 0.08
π̃4 3.10 2.73 2.69 2.75 −0.21
π̃5 2.30 3.21 2.96 2.50 −0.58

β1 (x) 1.25 0.92 1.65 1.50 0.00
β2 (x) 1.16 −0.12 0.60 0.90 −1.11
y1 124.97 92.00 165.00 150.00 0.00
y2 115.93 −12.00 60.00 90.00 −111.00

ψ̃1 4.00 3.81 3.98 4.05 −0.02

ψ̃2 1.00 −0.12 0.42 0.71 0.48

ψ̃ (x) 6.16 3.52 6.82 6.71 −0.53
ῠ (x) 0.00 0.04 0.38 0.19 −0.58
π̃ (x) 6.16 3.56 7.20 6.90 −1.11
R2
c (x) 80.95 93.88 87.84 85.82 9.48

R2
c (x;F1) 76.82 93.78 87.12 83.94 0.00

R2
c (x;F2) 4.13 0.10 0.72 1.89 9.48

that the sensitivities and factor exposures are equal: y = β (x) = B>x. We find that the
estimated factor risk premium ψ̃j is also equal to the theoretical factor risk premium ψi.
This explains why the residual or specific premium is always zero and the risk premium of
the portfolio is fully explained by the systematic risk factors. When the portfolio is not
optimal, we have π̃ 6= π, ψ̃ 6= ψ and ῠ (x) > 0. Focusing on the fifth portfolio, we notice
that it has no exposure to the first factor. It is then normal for the implied risk premium of
the risk factor to be close to zero.

Table 2: Decomposition of the asset risk premia (Portfolio #2)

Asset π̃i π̃
(var)
i π̃

(cov)
i π̃

(factor)
i π̃

(specific)
i

1 2.11 0.49 1.62 1.82 0.28
2 4.53 1.35 3.18 4.34 0.20
3 5.22 1.68 3.54 5.09 0.13
4 2.73 0.59 2.14 2.53 0.20
5 3.21 0.83 2.39 2.93 0.28

Table 3: Decomposition of the factor risk premia (Portfolio #2)

Factor ψ̃j ψ̃
(var)
j ψ̃

(cov)
j ψ̃

(factor)
j ψ̃

(specific)
j

1 3.81 3.63 0.19 3.63 0.19
2 −0.12 −0.03 −0.09 −0.03 −0.09

Above, we illustrate the decomposition of π̃i and ψ̃j in the case of the second portfolio.
We check the identities:

π̃i = π̃
(var)
i + π̃

(cov)
i = π̃

(factor)
i + π̃

(specific)
i

and:
ψ̃j = ψ̃

(var)
j + ψ̃

(cov)
j = ψ̃

(factor)
j + ψ̃

(specific)
j

Since the covariance matrix Ω is diagonal, we get ψ̃
(var)
j = ψ̃

(factor)
j and ψ̃

(cov)
j = ψ̃

(specific)
j .
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2.3 Computing the posterior distribution of risk premia under the
portfolio manager’s view

2.3.1 Posterior distribution of asset risk premia

Let Π (t) = R (t) − r1n be the vector of excess returns. Its conditional distribution is
Π (t) | π (t) ∼ N

(
π (t) ,Σ

)
. Since an estimate of π (t) is the vector π̃ of implied risk premia,

we deduce that the prior distribution of π (t) is:

π (t) ∼ N (π̃,Γπ)

The unconditional distribution of Π (t) becomes:

Π (t) ∼ N
(
π (t) ,Σ

)
∼ π (t) +N (0n,Σ)

∼ N (π̃,Γπ) +N (0n,Σ)

∼ N (π̃,Σ + Γπ)

We assume that the portfolio manager has some views vπ (t) on π (t):

Pππ (t) = vπ (t) + επ (t)

where επ (t) is a noisy random vector, επ (t) ∼ N
(
0p,Φπ

)
and p is the number of views. We

consider the random vector:(
π (t)
vπ (t)

)
=

(
In
Pπ

)
π (t)−

(
0n,n
Ip

)
επ (t)

where π (t) ⊥ επ (t). It follows that the joint distribution of
(
π (t) , vπ (t)

)
is:(

π (t)
vπ (t)

)
∼ N

( π̃
Pππ̃

)
,

(
Γπ ΓπP

>
π

PπΓπ PπΓπP
>
π + Φπ

)
We know that the conditional distribution of π (t) | vπ (t) = v is Gaussian:

π (t) | vπ (t) = vπ ∼ N
(
π̄, Γ̄π

)
where:

π̄ = E
[
π (t) | vπ (t) = vπ

]
= π̃ + ΓπP

>
π

(
PπΓπP

>
π + Φπ

)−1

(vπ − Pππ̃)

=
(
P>π Φ−1

π Pπ + Γ−1
π

)−1 (
P>π Φ−1

π vπ + Γ−1
π π̃

)
and:

Γ̄π = Γπ − ΓπP
>
π

(
PπΓπP

>
π + Φπ

)−1

PπΓπ

=
(
P>π Φ−1

π Pπ + Γ−1
π

)−1

The distribution of π (t) | vπ (t) = vπ is called the posterior distribution of π (t). Since
ψ (t) = B+π (t), we get:

ψ (t) | vπ (t) = vπ ∼ N
(
ψ̄, Γ̄ψ

)
where ψ̄ = B+π̄ and Γ̄ψ = B+Γ̄πB

+>
.

10



Risk Factor, Risk Premium and Black-Litterman Model

2.3.2 Posterior distribution of factor risk premia

We apply the previous framework to ψ (t) instead of π (t) = Bψ (t). The prior distribution

of ψ (t) is N
(
ψ̃,Γψ

)
, while the unconditional distribution of Π (t) becomes:

Π (t) ∼ N
(
Bψ̃,Σ +BΓψB

>
)

We assume that the portfolio manager has some views vψ (t) on ψ (t):

Pψψ (t) = vψ (t) + εψ (t)

where εψ (t) is a noisy random vector, εψ (t) ∼ N
(
0p,Φψ

)
and p is the number of views. It

follows that the conditional distribution of ψ (t) given the views vψ (t) is Gaussian:

ψ (t) | vψ (t) = vψ ∼ N
(
ψ̄, Γ̄ψ

)
where:

ψ̄ = ψ̃ + ΓψP
>
ψ

(
PψΓψP

>
ψ + Φψ

)−1 (
vψ − Pψψ̃

)
=

(
P>ψ Φ−1

ψ Pψ + Γ−1
ψ

)−1 (
P>ψ Φ−1

ψ vψ + Γ−1
ψ ψ̃

)
and:

Γ̄ψ = Γψ − ΓψP
>
ψ

(
PψΓψP

>
ψ + Φψ

)−1

PψΓψ

=
(
P>ψ Φ−1

ψ Pψ + Γ−1
ψ

)−1

We conclude that:
π (t) | vψ (t) = vψ ∼ N

(
π̄, Γ̄π

)
where π̄ = Bψ̄ and Γ̄π = BΓ̄ψB

>.

2.3.3 Some properties

Here are some interesting properties when we specify absolute views. The proofs are given
in Appendix A.2.2 on page 49.

Property 10. In the case of comprehensive absolute views, the conditional formulas for
asset risk premia become: {

π̄ = π̃ +Aπ (vπ − π̃)
Γ̄π = (In −Aπ) Γπ

where Aπ = Γπ (Γπ + Φπ)
−1

. For factor risk premia, we have: ψ̄ = ψ̃ +Aψ

(
vψ − ψ̃

)
Γ̄ψ =

(
In −Aψ

)
Γψ

Property 11. If the assets are independent of each other and we have only absolute views
on the assets, these views do not affect the other assets. Moreover, the conditional covariance
matrix Γ̄π is diagonal and we have:(

Γ̄π
)
i,i

=
(Γπ)i,i (Φπ)i,i

(Γπ)i,i + (Φπ)i,i

This property also holds true when considering risk factors instead of assets.

11
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Property 12. When the certainty of the absolute views is very high, the conditional risk
premia are equal to the views:

π̄ = vπ

When implied risk premia and absolute views have the same uncertainty, conditional risk
premia are the average of implied risk premia and views:

π̄ =
vπ + π̃

2

This property also holds true when looking at risk factors rather than assets.

Property 13. The conditional covariance matrix has an upper bound in the one-factor
model, defined as:

Γ̄ψ ≤
1

2

(
Γψ + Φψ

2

)
Property 14. In the two-factor model, when the absolute views are uncorrelated, the condi-
tional risk premium on one factor is equal to a weighted average of the implied risk premium
and the absolute view on that factor, and a correction term on the second view that depends
on the correlation ρ between the two factors: ψ̄1 = w1ψ̃1 + (1− w1) v1 + ρλ1

(
v2 − ψ̃2

)
ψ̄2 = w2ψ̃2 + (1− w2) v2 + ρλ2

(
v1 − ψ̃1

)
Property 15. The conditional risk premia satisfy the following decomposition:

ψ̄ = w � ψ̃ + (1m − w)� vψ︸ ︷︷ ︸
weighted average

+ Λ
(
vψ − ψ̃

)
︸ ︷︷ ︸
correction term

where w ≥ 0m.

Property 10 shows that the conditional formulas simplify a lot when we consider absolute
views. The impact of the views is measured by the matrix Aψ which depends on the
covariance matrices Γψ and Φψ. Properties 14 and 15 demonstrate that the conditional risk
premium is an average of the implied risk premium and the view plus a correction term
that depends on the correlations of the implied risk premia and/or the views. Consider
the following example: ψ̃ =

(
5%, 3%

)
, vψ =

(
7%, 1.5%

)
,
(
Γψ
)

1,1
= 0.22,

(
Γψ
)

2,2
= 0.12,

Φψ = diag
(
0.22, 0.152

)
. Figure 2 shows the conditional risk premia ψ̄1 and ψ̄2 with respect

to the correlation ρ. If there is no correlation, we verify that ψ̄1 and ψ̄2 are between the
implied risk premia and the views. If we neglect the effect of ρ on the weights w1 and w2, it
follows that ψ̄1 is a decreasing function of ρ and ψ̄2 is an increasing function of ρ since we
have v1 − ψ̄1 = 2% > 0 and v2 − ψ̄2 = −1.5% < 0. These results are confirmed in Figure
2. It is very important to keep these cross effects in mind to understand the values of the
conditional risk premia, since the coherence of the results with respect to the views depends
on the cross correlation.

2.3.4 An example

We consider the two-factor model described on page 8. The current portfolio is the equally-
weighted portfolio. For the specification of the covariance matrix Γπ, we use the traditional

rule Γπ = τΣ where τ =
1

2
(He and Litterman, 2002; Allaj, 2013). We assume that the

12
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Figure 2: Conditional risk premia relative to the correlation ρ

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
;

0.04

0.05

0.06

0.07
First factor

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
;

0.01

0.02

0.03

0.04
Second factor

7Aj

~Aj

portfolio manager has two views: π1 = 4% and π4 = π5. The uncertainties of these views
are 10% and 5%, respectively. This means that:

Pπ =

(
1 0 0 0 0
0 0 0 1 −1

)
, vπ =

(
4%
0%

)
and Φπ =

(
0.102 0

0 0.052

)
.

Using the prior distribution of π (t) given in Table 4, we derive the posterior distribution of
π (t) | vπ (t) = vπ in Table 5 and ψ (t) | vπ (t) = vπ in Table 6. As expected, the posterior risk
premium of the first asset has increased: π̄1 > π̃1 and the risk premium discrepancy between
the fourth and fifth assets has decreased: |π̃4 − π̃5| � |π̄4 − π̄5|. In terms of risk factors,
the two views greatly increase ψ1 since we have ψ̃1 = 3.81% and ψ̄1 = 4.67%. The effect
on the second factor is less important since we have ψ̃2 = −0.12% and ψ̄2 = −0.01%. Also,
the posterior variance

(
Γ̄ψ
)

2,2
is equal to 0.26%, which is about one-sixth of the posterior

variance
(
Γ̄ψ
)

1,1
.

Table 4: Prior distribution π (t) ∼ N (π̃,Γπ)

Asset π̃ Γπ
#1 2.11 1.23 1.18 1.41 0.69 0.83
#2 4.53 1.18 3.43 3.34 1.70 1.85
#3 5.22 1.41 3.34 4.25 1.95 2.27
#4 2.73 0.69 1.70 1.95 1.49 1.09
#5 3.21 0.83 1.85 2.27 1.09 2.10

The previous analysis can be extended by considering the portfolio manager’s views on
risk factors. For the specification of the covariance matrix Γψ, we use the rule Γψ = σ2

ψIm
where σψ = 20%. We assume that we have absolute views on the two risk factors: ψ1 = 5%

13
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Table 5: Posterior distribution π (t) | vπ (t) = vπ ∼ N
(
π̄, Γ̄π

)
Asset π̄ Γ̄π
#1 3.13 0.55 0.52 0.62 0.33 0.34
#2 5.51 0.52 2.80 2.58 1.36 1.37
#3 6.33 0.62 2.58 3.33 1.58 1.61
#4 3.48 0.33 1.36 1.58 1.16 1.09
#5 3.57 0.34 1.37 1.61 1.09 1.23

Table 6: Posterior distribution ψ (t) | vπ (t) = vπ ∼ N
(
ψ̄, Γ̄ψ

)
Factor ψ̄ Γ̄ψ

#1 4.67 1.58 0.15
#2 −0.01 0.15 0.26

and ψ2 = 0%. The uncertainties of these views are 10% and 5%, respectively. This means
that:

Pψ =

(
1 0
0 1

)
, vψ =

(
5%
0%

)
and Φψ =

(
0.102 0

0 0.052

)
.

Using the prior distribution of ψ (t) given in Table 7, we derive the posterior distribution
of ψ (t) | vψ (t) = vψ in Table 8 and π (t) | vψ (t) = vψ in Table 9. As expected, the

risk premium of the first factor has increased: ψ̄1 > ψ̃1 and the posterior risk premium
of the second factor is close to zero: ψ̄2 ≈ 0. Regarding the asset risk premia, they have
all increased because they are positively correlated with the first risk factor, whose risk
premium has increased.

Table 7: Prior distribution ψ (t) ∼ N
(
ψ̃,Γψ

)
Factor ψ̃ Γψ

#1 3.81 4.00 0.00
#2 −0.12 0.00 4.00

Table 8: Posterior distribution ψ (t) | vψ (t) = vψ ∼ N
(
ψ̄, Γ̄ψ

)
Factor ψ̄ Γ̄ψ

#1 4.76 0.80 0.00
#2 −0.01 0.00 0.24

Table 9: Posterior distribution π (t) | vψ (t) = vψ ∼ N
(
π̄, Γ̄π

)
Asset π̄ Γ̄π
#1 2.38 0.22 0.44 0.58 0.26 0.38
#2 5.71 0.44 1.24 1.30 0.71 0.64
#3 6.67 0.58 1.30 1.59 0.76 0.96
#4 3.33 0.26 0.71 0.76 0.41 0.38
#5 3.82 0.38 0.64 0.96 0.38 0.70
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2.4 Portfolio optimization

2.4.1 Conditional distribution of excess returns

We recall that the vector of excess returns is defined as Π (t) = R (t)− r1n ∼ N
(
π (t) ,Σ

)
.

We deduce that:

Π (t) = π (t) + ε (t)

where ε (t) ∼ N (0n,Σ) is the noise process. We have seen that:

π (t) | vψ (t) = vψ ∼ N
(
π̄, Γ̄π

)
where π̄ = Bψ̄ and Γ̄π = BΓ̄ψB

>. Assuming that π (t) and ε (t) are independent, it follows
that:

E
[
Π (t) | vψ (t) = vψ

]
= E

[
π (t) | vψ (t) = vψ

]
+ E

[
ε (t) | vψ (t) = vψ

]
= π̄

and:

cov
(
Π (t) | vψ (t) = vψ

)
= cov

(
π (t) | vψ (t) = vψ

)
+ cov

(
ε (t) | vψ (t) = vψ

)
= Γ̄π + cov

(
ε (t)

)
= Γ̄π + Σ

We conclude that:

Π (t) | vψ (t) = vψ ∼ N
(
π̄, Σ̄

)
where:

Σ̄ = Σ + Γ̄π

2.4.2 Mean-variance optimization problem

As described in He and Litterman (2002), we can consider the following mean-variance
optimization problem:

x̄ (γ) = arg min
1

2
x>Σ̄x− γx>π̄ (8)

s.t.

{
1>n x = 1
x ≥ 0n

Alternatively, we can choose a benchmark b and use a minimum tracking-error problem:

x̄ (γ) = arg min
1

2
(x− b)> Σ̄ (x− b)− γ (x− b)> π̄ (9)

s.t.

{
1>n x = 1
x ≥ 0n

In addition, we can add other constraints to Problems (8) and (9) to obtain more practical
optimal portfolios, such as turnover control, weight bounds and asset class limits.
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2.4.3 An example

We consider the two-factor model described on page 8. To understand the impact of views,
we report the correlation matrix (in %) between asset returns below:

ρ =


100.00 57.34 61.68 50.83 51.84
57.34 100.00 87.46 75.33 69.05
61.68 87.46 100.00 77.40 76.08
50.83 75.33 77.40 100.00 61.36
51.84 69.05 76.08 61.36 100.00


Because assets are correlated, a particular view of one asset can affect other assets. The
tangent portfolio is x? =

(
−11.63%, 95.86%, 13.69%, 50.76%,−48.67%

)
, and the current

portfolio is an equal-weighted portfolio. We will illustrate two different scenarios: views
on assets and views on factors. To compute the Black-Litterman portfolio using the mean-
variance optimization framework, we need to specify the risk tolerance coefficient γ. We
assume that the Sharpe ratio of the equally-weighted portfolio is 0.30, and we set:

γ =
σ (xew)

SR
(
xew | r

) = 0.6333

We also assume that Γπ = τΣ with τ =
1

2
.

Implementing asset views

Case 1 We assume that the portfolio manager has two views: π1 = 4% and π4 = π5.
The uncertainties of these views are 10% and 5%, respectively. This means that:

Pπ =

(
1 0 0 0 0
0 0 0 1 −1

)
, vπ =

(
4%
0%

)
and Φπ =

(
0.102 0

0 0.052

)
Results are given in Table 10 and 11. For each asset, we report the vector π̃ of implied (or
prior) risk premia, the vector π̄ of posterior risk premia, the long/short posterior solution
x̄ and the long-only posterior solution x̄+. We do the same thing with the risk factors.
Since the fund manager has a more positive view on the first asset, the allocation to that
asset increases. Since the fund manager believes that the last two assets have the same risk
premium, the model increases the risk premium of the fourth asset from 4.37% to 4.78%
and decreases the risk premium of the fifth asset from 5.15% to 4.91%. Thus, the allocation
to the fourth asset increases while the allocation to the fifth asset decreases. Note also that
the risk premia of Assets 2 and 3 increase because of their correlation with Asset 1.

Table 10: Impact of views on asset allocation (Case 1)

Asset π π̃ π̄ x x̄ x̄+

#1 1.70 3.37 3.69 20.00 41.86 41.86
#2 5.40 7.26 7.55 20.00 13.23 13.23
#3 5.30 8.35 8.63 20.00 8.48 8.48
#4 3.10 4.37 4.78 20.00 30.76 30.76
#5 2.30 5.15 4.91 20.00 5.66 5.66
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Table 11: Impact of views on factor allocation (Case 1)

Factor ψ ψ̃ ψ̄ y ȳ ȳ+

#1 4.00 6.11 6.34 92.00 74.75 74.75
#2 1.00 −0.20 0.10 −12.00 −3.03 −3.03

Case 2 This is a variation of Case 1. The assumptions are the same, except that we
are more confident in the first view than in the second. We have:

Pπ =

(
1 0 0 0 0
0 0 0 1 −1

)
, vπ =

(
4%
0%

)
and Φπ =

(
0.052 0

0 0.102

)
Compared to the previous case (Table 10), the good confidence in the first view increases
the allocation to Asset 1 (Table 12) from 41.86% to 47.32%. We also observe an increase in
the allocation to Asset 3 due to the relatively high correlation between Assets 1 and 3.

Table 12: Impact of views on asset allocation (Case 2)

Asset π π̃ π̄ x x̄ x̄+

#1 1.70 3.37 3.89 20.00 47.32 47.32
#2 5.40 7.26 7.75 20.00 13.35 13.35
#3 5.30 8.35 8.88 20.00 14.00 14.00
#4 3.10 4.37 4.82 20.00 19.79 19.79
#5 2.30 5.15 5.17 20.00 5.54 5.54

Table 13: Impact of views on factor allocation (Case 2)

Factor ψ ψ̃ ψ̄ y ȳ ȳ+

#1 4.00 6.11 6.52 92.00 77.56 77.56
#2 1.00 −0.20 −0.03 −12.00 −9.44 −9.44

Case 3 We assume that the portfolio manager has correct views on the expected returns
of all assets: π1 = 1.7%, π2 = 5.4%, π3 = 5.3%, π4 = 3.1% and π5 = 2.3%. Therefore, he
formulates absolute views. The uncertainties of these absolute views are 5%. We have:

Pπ = I5, vπ = π and Φπ = 0.052I5

Table 14: Impact of views on asset allocation (Case 3)

Asset π π̃ π̄ x x̄ x̄+

#1 1.70 3.37 1.86 20.00 26.50 26.43
#2 5.40 7.26 5.27 20.00 33.95 27.74
#3 5.30 8.35 5.39 20.00 −8.86 0.00
#4 3.10 4.37 3.08 20.00 47.23 45.82
#5 2.30 5.15 2.58 20.00 1.18 0.00

The optimal allocation x̄ or x̄+ is very different from the current allocation x. The reason
for this is that the fund manager has some strong bets, in particular Assets 3 and 5. For
these two assets, the difference between what is priced in by the current portfolio and the
manager’s views is 305 and 285 basis points, respectively. Therefore, we observe a negative
reallocation to these two assets in favor of the other three assets.
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Table 15: Impact of views on factor allocation (Case 3)

Factor ψ ψ̃ ψ̄ y ȳ ȳ+

#1 4.00 6.11 4.03 92.00 75.59 78.59
#2 1.00 −0.20 0.72 −12.00 28.19 22.46

Implementing factor views In this section, we illustrate the application of the Black-
Litterman model with views on factors. For the specification of the covariance matrix Γψ,
we use the rule Γψ = τΩ where τ = 1

2 .

Case 1 We assume that the portfolio manager has a single view: ψ2 = 1%. The
uncertainty of this view is 5%. This means that:

Pψ =
(

0 1
)

, vψ = 1% and Φψ = 0.052

Results are given in Tables 18 and 19. Since the fund manager is positive on the second
factor, the exposure increases on the second factor and decreases on the first factor. Assets
two and four have positive loadings on the second factor, while the other assets have negative
loadings. But we must also consider the first factor. In fact, the second asset has a beta
of 1.2, while the fourth asset has a beta of 0.7. Therefore, it makes sense to increase the
allocation to the fourth asset. The allocation to the first asset also increases because it
helps reduce the exposure to the first factor. Conversely, the allocation to the third asset
decreases significantly because it has the highest beta and negative loadings on the second
factor.

Table 16: Impact of views on factor allocation (Case 1)

Factor ψ ψ̃ ψ̄ y ȳ ȳ+

#1 4.00 6.11 6.11 92.00 72.76 73.56
#2 1.00 −0.20 0.20 −12.00 2.37 0.70

Table 17: Impact of views on asset allocation (Case 1)

Asset π π̃ π̄ x x̄ x̄+

#1 1.70 3.37 2.99 20.00 29.75 30.09
#2 5.40 7.26 7.45 20.00 18.82 16.46
#3 5.30 8.35 8.49 20.00 −3.05 0.00
#4 3.10 4.37 4.34 20.00 40.10 39.96
#5 2.30 5.15 4.70 20.00 14.38 13.49

Case 2 We assume that the portfolio manager has two views: ψ2 = 1% and ψ2−ψ1 =
2%. However, he is more confident in the first view, and the uncertainties of these views are
5% and 10%, respectively. This means that:

Pψ =

(
0 1
−1 1

)
, vψ =

(
1%
2%

)
and Φψ =

(
0.102 0

0 0.052

)
The addition of the second bet greatly reduces the allocation to the first factor. Therefore,
it is normal for the allocations to the first and fourth assets to increase.
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Table 18: Impact of views on factor allocation (Case 2)

Factor ψ ψ̃ ψ̄ y ȳ ȳ+

#1 4.00 6.11 −0.81 92.00 20.57 57.74
#2 1.00 −0.20 0.32 −12.00 2.20 −6.77

Table 19: Impact of views on asset allocation (Case 2)

Asset π π̃ π̄ x x̄ x̄+

#1 1.70 3.37 −0.50 20.00 60.84 61.29
#2 5.40 7.26 −0.78 20.00 5.22 0.00
#3 5.30 8.35 −1.24 20.00 −60.44 0.00
#4 3.10 4.37 −0.47 20.00 70.10 38.71
#5 2.30 5.15 −0.94 20.00 24.27 0.00

Case 3 We assume that the portfolio manager has correct views on the expected return
of the factors: ψ1 = 4% and ψ2 = 1%. The uncertainties of these views are 5%. This means
that:

Pψ = I2, vψ = ψ and Φψ = 0.052I5

Table 20: Impact of views on factor allocation (Case 3)

Factor ψ ψ̃ ψ̄ y ȳ ȳ+

#1 4.00 6.11 4.23 92.00 74.56 74.92
#2 1.00 −0.20 0.20 −12.00 2.53 1.97

Table 21: Impact of views on asset allocation (Case 3)

Asset π π̃ π̄ x x̄ x̄+

#1 1.70 3.37 2.06 20.00 28.67 28.73
#2 5.40 7.26 5.20 20.00 19.38 18.60
#3 5.30 8.35 5.87 20.00 −1.12 0.00
#4 3.10 4.37 3.02 20.00 39.12 39.03
#5 2.30 5.15 3.21 20.00 13.96 13.64

The posterior risk premia ψ̄ change significantly to reflect the manager’s views. This is
also the case for the assets. In fact, the posterior risk premia π̄ are now very close to the
true values π. Again, the changes in the portfolio reflect the differences between the prior
risk premia π̃ and the posterior risk premia π̄.

Remark 1. The previous examples show that the specification of a view on one asset or
factor can have an impact on the other assets or factors due to the correlation between
the assets or factors. It is very important to take the time to understand the values of π̄
and ψ̄ to be sure that the bets the manager has formulated are the bets he really wants to
implement. For example, consider two bets on two factors that are highly correlated. The
manager believes that the risk premium on the first factor will increase and the risk premium
on the second factor will decrease. In this case, the manager formulates two conflicting bets.
The outcome of the model is unpredictable and the solution cannot be satisfactory.
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3 Applications

3.1 What is priced in by the market?

Now let us see how the previous framework can be used to extract information from a given
portfolio, strategy, or market. We consider the S&P 500 from December 1998 to May 2024.
We dynamically estimate the four-factor Carhart model:

Ri (t)− r (t) = βmkt
i (t)

(
Rmkt (t)− r (t)

)
+ βsmb

i (t)Rsmb (t) + βhml
i (t)Rhml (t) +

βwml
i (t)Rwml (t) + εi (t)

where Ri (t) is the monthly return of stock i, r (t) is the risk-free rate, Rmkt (t) is the US
market risk factor, Rsmb (t) is the US SMB risk factor, Rhml (t) is the US HML risk factor,
Rwml (t) is the US WML risk factor, and εi (t) is the idiosyncratic risk factor of stock i. The
factor data are obtained from the Kenneth French data library6. At time t, for each stock in
the S&P 500 index, we estimate the factor exposures βmkt

i (t), βsmb
i (t), βhml

i (t) and βwml
i (t)

and the residual volatility σ
(
εi (t)

)
using a linear regression with a 36-month rolling window.

Once the risk factor model is estimated at time t, we conduct a risk premium analysis of
the S&P 500 index7 and a factor decomposition.

3.1.1 Factor contribution to S&P 500 implied risk premium

Figure 3 shows the evolution of the implied risk premium π̃ (x) where x is the portfolio of
the S&P 500 index at time t. We also decompose π̃ (x) into two components:

π̃ (x) = ψ̃ (x) + ῠ (x)

As expected, the implied risk premium π̃ (x) varies over time and increases during crisis
periods as investors demand more premium to hold the portfolio and bear the higher risk.
During normal periods, the portfolio risk premium is relatively low, less than 3.0% in 2006
and 2007 and ranging from 2.70% to 3.50% in the 2015-2019 period. However, this risk
premium increases significantly during periods of stress, such as in 2011, when it peaked at
7.14%. We also find that factors and specific risk have a systematic positive contribution. In
Figure 3, we see that idiosyncratic factors contribute only 2 to 13 bps. Thus, the idiosyncratic
factors contribute almost nothing to the risk premium of the portfolio, and we can conclude
that the common factors explain almost all of the implied risk premium of the portfolio.

Figure 4 shows the contribution of the four factors:

ψ̃ (x) = ψ̃mkt (x) + ψ̃smb (x) + ψ̃hml (x) + ψ̃wml (x)

while we present statistics for specific dates in Table 22. Once again, we observe considerable
variation in implied risk premia across the four factors. The market factor is the largest
contributor. In contrast, the other three factors contribute little relative to the market,
although their impact can sometimes be relatively significant or minimal, depending on the
time period. The size factor (SMB) contributed positively to the portfolio’s implied risk
premium until early 2003, after which it started to have a negative impact, ranging from
−26 bps in 2007 to zero bps in 2018. In general, the value factor (HML) shows a pattern of
negative contribution during crisis periods. The highest positive contribution was +83 bps
in February 2000, while the highest negative contribution was −48 bps in July 2001. The
momentum factor (WML) shows two periods of significant contribution: the first from late

6The website is https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
7We assume a constant Sharpe ratio SR

(
x | r

)
= 0.30, which is a debatable hypothesis.
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Figure 3: Implied risk premium of the S&P 500 index
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Figure 4: Contribution of MKT, SMB, HML and WML risk factors to the S&P 500 risk
premium
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2001 to 2005, with contributions ranging from 10 bps to 104 bps, and the second from 2009
to 2011, with a range of 24 bps to 43 bps. The highest contribution occurred in 2003, ranging
from 71 bps to 104 bps. In late 2008 and mid-2020, momentum negatively impacted the
portfolio’s implied risk premium by −6 to −11 bps, while in other periods it made little or no
contribution. Currently, the implied risk premium of the S&P 500 is 597 bps, of which 587
bps is attributable to common factors and 10 bps to idiosyncratic factors. Of the common
factors, 577 bps are attributable to the market, while the remaining 10 bps come from the
three long/short factors. The SMB factor contributes negatively with −11 bps, while the
HML and Momentum factors contribute positively with +9 bps and +12 bps, respectively.

Table 22: Factor contribution to the S&P 500 implied risk premium (in bps)

t π̃ (x) ψ̃ (x) ῠ (x) ψ̃mkt (x) ψ̃smb (x) ψ̃hml (x) ψ̃wml (x)
02/2000 645 637 8 556 −3 83 1
07/2001 576 565 11 587 16 −48 10
09/2001 478 465 12 445 43 −34 11
08/2003 533 526 7 471 −6 −42 104
03/2007 221 215 5 245 −26 −5 1
10/2008 404 399 5 417 −7 −2 −8
06/2010 653 650 3 613 −10 12 34
03/2017 329 326 3 336 −7 1 −3
04/2020 505 500 4 534 −15 −10 −8
05/2024 597 587 10 577 −11 9 12

3.1.2 Analysis of factor risk premia

In order to compare the implied risk premium across time and across factors, we need to
normalize the risk factors. Indeed, it makes no sense to compare the implied risk premium of
a given factor at two different times, or two given factors at the same time, if the volatility
is completely different. Therefore, we normalize the risk factors such that we target the
volatility σ′:

F ′j (t) =
σ′

σj (t)
Fj (t)

In this case, we have B′ = BΛ where Λ =
1

σ′
diag

(
σ1 (t) , . . . , σm (t)

)
. We deduce that8:

y′ =
(
B′
)>
x = Λ>B>x = Λy

and9:

ψ̃′ =
(
B′
)+
π̃ = Λ−1B+π̃ = Λ−1ψ̃

Figures 5 and 6 show the evolution of the normalized factor risk premia and normalized
exposures when σ′ is set to 20%. Again, we see a lot of variation due to the dynamics of the
stock market.

8We verify that the factor contribution does not change:

ψ̃′ (x) =
(
y′
)>

ψ̃′ = y>ψ̃ = ψ̃ (x)

9We use Property I on page 53.

22



Risk Factor, Risk Premium and Black-Litterman Model

Figure 5: Normalized factor risk premia (S&P 500 index, σ′ = 20%)
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Figure 6: Normalized factor exposures (S&P 500 index, σ′ = 20%)
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For the market risk factor, the normalized risk premium is nearly constant and follows
this rule:

ψ̃mkt ≈ σmkt

20%
× 6%

However, this rule was not satisfied between 1999 and 2003. Specifically, ψ̃mkt reached its
lowest value in June 2002. The exposure of the S&P 500 index to the market risk factor is
time-varying, but this reflects the normalization of the factor’s volatility to 20%. Without
this normalization, the exposure ranges from 80% to 113%, with a median value of 103%.

The S&P 500’s exposure to the SMB factor is always negative because the portfolio is
a cap-weighted index of the 500 largest US companies. As a result, the portfolio is heavily
exposed to large-cap stocks and not small-cap stocks. The SMB premium priced into the
S&P 500 Index was negative from 1999 through early 2003. The negative exposure and
negative risk premium during this period explains the positive contribution of the SMB factor
to the portfolio’s implied risk premium. After 2003, the implied risk premium increased
sharply, peaking at 3.83% in March 2007. Since the exposure is negative, the contribution
of the SMB risk factor was negative between 2003 and 2024. In fact, investors are willing to
bear this negative contribution in order to be exposed to large-cap companies.

Regarding the HML factor, the factor risk premium priced in by the S&P 500 is positive
or negative depending on the period. In the period 1999-2008, the factor was negatively
priced by the S&P 500, then it was positively priced between 2009 and 2015. It has been
negatively priced again since 2023. In 1999 and 2000, the S&P 500 was negatively exposed
to the HML factor, which explains the positive contribution during this period. However,
the contribution became negative until 2007 due to the positive exposure of the HML factor.
However, we note that the exposure of the HML factor has been relatively low since mid-
2004. This calls into question the existence of the value factor over the last twenty years.

The momentum factor is almost always priced negatively, except for the periods from
January 1999 to January 2001 and from May 2006 to May 2008. The WML exposure is
very negative from 2001 to 2007 and from 2009 to mid-2012, which explains the positive
contribution to the implied risk premium of the S&P 500 Index. However, the low exposure
after 2012 also explains the very low contribution of this factor over the last twelve years.

The sign of ψ̃hml and ψ̃wml can sometimes be disturbing and their magnitude can be very
different from the observed performance. To better understand these patterns, we perform
the variance-covariance decomposition:

ψ̃ = ψ̃(var) + ψ̃(cov)

Figure 7 shows the values of ψ̃(var) and ψ̃(cov) for the four risk factors. Unlike the vector
π̃(var) which is always positive for a long-only portfolio, the sign of ψ̃(var) can be negative.
In fact, we have:

ψ̃(var) = ϕx

(
B+B (ω � Im)B>By

)
y

Since the matrix ω � Im is positive semi-definite, we deduce that B (ω � Im)B> and
B+B (ω � Im)B>By are also two positive semi-definite matrices. Therefore, the sign of

ψ̃(var) depends on the sign of y:
sgn ψ̃(var) = sgn y

For example, the size factor always has a negative variance premium because it always has
a negative exposure. It also has a positive covariance premium that dominates the variance
premium most of the time, which explains why the SMB risk premium is generally positive.
The variance component of the HML and WML risk factors is not significant compared to
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Figure 7: Variance-covariance decomposition of factor risk premia (S&P 500 index, σ′ =
20%)
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the covariance component. An interesting result is that the covariance component of these
two risk factors is mainly explained by the correlation between market returns and factor
returns. In other words, the S&P 500 Index does not have sufficient exposure to the HML
and WML risk factors to generate a significant variance premium for these two factors. In
addition, the market risk factor is ubiquitous. This implies that the HML and WML risk
premia reflect the correlation of these factors with the market.

3.2 How to benchmark a portfolio and measure its active bets?

In this section, we illustrate how a fund manager can position his portfolio relative to a
benchmark. To do this, we examine the MSCI USA Minimum Volatility portfolio relative to
its benchmark, the MSCI USA Index, and identify the key active bets as of March 2024. We
look at the factor model provided by Barra. This model corresponds to the Barra regional
factor model USSLOW10 and is based on 77 factors: the US country factor (which represents
the market), 16 style factors11 and 60 industry factors. To simplify the analysis of the results
and for the purposes of this paper, we group12 the 60 industry factors into 11 sector factors,
which correspond to the GICS Level 1 sectors13. The factor model is then:

Ri (t)−r (t) = βcountry
i (t)F country (t)+

16∑
j=1

βstyle
i,j (t)F style

j (t)+

11∑
j=1

βsector
i,j (t)F sector

j (t)+εi (t)

10The exact name is the Barra US Total Market Equity Model for Long-Term Investors (USSLOW).
11These are Beta, Dividend Yield, Earnings Quality, Earnings Yield, Growth, Leverage, Liquidity, Long-

Term Reversal, Management Quality, Mid-Capitalization, Momentum, Profitability, Prospect, Residual
Volatility, Size, and Value. See Appendix B on page 56 for a description of these factors.

12The details of the grouping methodology can be found in Appendix A.3 on page 54.
13These are Communication Services, Consumer Discretionary, Consumer Staples, Energy, Financials,

Health Care, Industrials, Information Technology, Materials, Real Estate, and Utilities.
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3.2.1 Factor analysis

Table 23 shows that the MSCI USA MinVol portfolio has an implied risk premium of 394
bps, which is lower than the MSCI USA Index’s implied risk premium of 530 bps. This is
consistent with the lower risk of the MSCI USA MinVol portfolio relative to the risk level of
the benchmark. Analyzing the factors contributing to the portfolios’ implied risk premia, we
find that the US country factor is the largest contributor in both portfolios. The market’s
contribution to both portfolios is almost the same (409 bps vs. 413 bps), even though the
portfolios’ risk premia are significantly different. We can conclude that the MSCI USA
MinVol portfolio relies on long/short (L/S) factors to achieve its lower risk premium (and
lower risk). This is evident from the fact that the L/S factors generate −20 bps for the
minimum volatility portfolio, while they generate +113 bps for the cap-weighted portfolio.
A decomposition between style and sector factors shows a gap of 30 bps for sectors and more
than 100 bps for style factors. Thus, style factors play an important role in differentiating the
MSCI USA MinVol portfolio from its benchmark. While style factors contribute positively
to the implied risk premium of the MSCI USA Index (+28 bps), they have a significant
negative impact of −74 bps in the MSCI USA MinVol portfolio. In fact, the MSCI USA
MinVol portfolio sacrifices potential positive risk premia from style factors and even accepts
a negative implied risk premium from these factors in order to meet its minimum volatility
target. Idiosyncratic factors contribute only +4 bps to the implied risk premia in both
portfolios, suggesting that common factors almost entirely explain the portfolios’ implied
risk premia.

Table 23: Factor contribution to the portfolio risk premium (in bps)

MSCI USA Index MSCI USA Minvol Difference
Portfolio 530 394 −136
Factors 526 390 −137
Idiosyncratic 4 4 1
Market 413 409 −4
L/S factors 113 −20 −133
Idiosyncratic 4 4 1
Market 413 409 −4
Style factors 28 −74 −102
Sectors 85 55 −30
Idiosyncratic 4 4 1

To understand the factors driving the bets in the MSCI USA MinVol portfolio, we analyze
the factor risk premia and the portfolio’s exposure to these factors. Table 24 shows that
among the style factors, the largest bet in both portfolios is on the Beta factor. Specifically,
Beta14 contributes +35 bps to the implied risk premium of the MSCI USA Index, while it
has a significant negative contribution of −75 bps in the MSCI USA MinVol portfolio. A
closer look at the exposures and risk premia reveals that the negative exposure in the MSCI
USA MinVol portfolio (−75.6%), combined with the high implied risk premium (+99 bps),
drives this negative contribution. In contrast, although the MSCI USA Index has a lower
exposure to the Beta factor (+20.1%), the factor’s contribution remains high because it is
highly valued by the benchmark, with an implied risk premium of +175 bps. The remaining
15 factors contribute only −7 bps to the MSCI USA Index and +1 bps to the MSCI USA

14Beta explains common variations in stock returns due to different stock sensitivities to market or sys-
tematic risk that are not explained by the US country factor. It can be thought of as a high beta minus low
beta risk factor.
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MinVol portfolio. Thus, Beta is the primary contributor in both portfolios. It is also
worth noting that the exposures to several factors such as Liquidity, Long-Term Reversal,
Management Quality, Profitability, Prospect, Residual Volatility and Value are quite similar
in both portfolios. However, the exposures to other factors such as Beta, Earnings Quality,
Mid Capitalization and Size differ significantly.

Table 24: Factor risk premia, exposures and contributions

MSCI USA Index MSCI USA Minvol

Factor Fj ψ̃j yj yjψ̃j ψ̃j yj yjψ̃j
(in bps) (in %) (in bps) (in bps) (in %) (in bps)

US country (market) 414 99.9 413 409 100.0 409

S
ty

le
fa

ct
or

s

Beta 175 20.1 35 99 −75.6 −75
Dividend Yield 3 −9.8 −0 7 1.3 0
Earnings Quality 13 −2.9 −0 17 25.9 4
Earnings Yield −21 −6.4 1 −8 −2.9 0
Growth 0 5.0 0 −1 −12.4 0
Leverage 9 −14.3 −1 20 0.1 0
Liquidity 13 −28.3 −4 8 −25.9 −2
Long-Term Reversal −14 −9.6 1 −16 −9.6 2
Management Quality −8 4.5 −0 −6 15.1 −1
Mid Capitalization 6 −141.4 −9 19 −66.9 −12
Momentum −18 18.1 −3 −24 −3.5 1
Profitability −1 28.3 −0 2 17.3 0
Prospect 7 −1.9 −0 4 −12.7 −1
Residual Volatility 54 9.6 5 28 15.5 4
Size 4 71.4 3 10 40.5 4
Value −3 −6.2 0 −2 −12.7 0

S
ec

to
rs

Communication Services 69 8.9 6 −73 5.0 −4
Consumer Discretionary 226 10.6 24 80 5.9 5
Consumer Staples 34 5.5 2 56 10.9 6
Energy −158 4.0 −6 −50 2.4 −1
Financials 74 10.5 8 67 13.6 9
Health Care −36 12.2 −4 14 16.7 2
Industrials 44 8.8 4 40 10.2 4
Information Technology 152 32.5 49 113 26.0 29
Materials 52 2.4 1 54 2.5 1
Real Estate 95 2.2 2 100 0.0 0
Utilities −15 2.2 −0 39 6.8 3

In terms of L/S sector factors, Information Technology and Consumer Discretionary are
the largest contributors to the MSCI USA implied risk premium, adding +49 bps and +24
bps, respectively. In contrast, for the MSCI USA MinVol portfolio, Information Technology
is the only major contributor at +29 bps. A closer look at exposures and risk premia reveals
a heavy weighting to the Information Technology sector, which has the highest exposure
in both portfolios (+32.5% in the MSCI USA Index and +26% in the MSCI USA MinVol
portfolio) and a notably high implied risk premium of +152 bps in the MSCI USA Index
and +113 bps in the MSCI USA MinVol portfolio. As for the Consumer Discretionary
sector, despite having only +10.6% exposure to the benchmark, its high contribution to
the MSCI USA Index is driven by its substantial implied risk premium of +226 bps. The
remaining nine sectors provide similar contributions and have nearly identical exposures in
both portfolios.
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3.2.2 Stock analysis

The previous analysis can be extended to the individual constituents of the portfolio. In

Figure 15 on page 58, we plot the implied risk premium π̃
(minvol)
i derived from the MinVol

portfolio against the implied risk premium π̃
(index)
i derived from the cap-weighted index. We

observe that they differ in magnitude, leading to the following linear regression model:

π̃
(minvol)
i = 2% + 0.54× π̃(index)

i + ui

This model shows less dispersion in π̃
(minvol)
i compared to π̃

(index)
i . This is confirmed by the

empirical standard deviations: σ(π̃
(index)
i ) = 2.34% and σ(π̃

(minvol)
i ) = 1.33%. Figures 16

and 17 on page 59 indicate no relationship between xi and π̃i, but a positive relationship

between σi and π̃i. Below, we present the relationship between xi, σi, and π̃
(minvol)
i . We note

that a stock’s weight in the MinVol portfolio is zero when its volatility is too high, while
stocks with weights greater than 1% are low-volatility stocks.

Figure 8: Relationship between xi, σi and π̃ (MSCI USA MinVol, March 2024)
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Tables 25 and 26 show the risk premium of the 20 largest holdings in the MSCI USA
Index and the MinVol portfolio. The risk premia in the two portfolios differ significantly
because of the different allocations. For example, Microsoft has a risk premium of 6.02% in
the MSCI USA Index and 4.98% in the MSCI MinVol portfolio. As explained earlier, when
the implied risk premium derived from the cap-weighted index is low, it is higher for the
MinVol portfolio. A typical example is Exxon Mobil (0.95% vs. 2.28%). Tables 27 and 28
show the top and bottom 10 implied risk premia. The MinVol portfolio does not hold any
of the top 10 stocks in terms of implied risk premia priced in by the cap-weighted portfolio.
This is due to the high risk of these stocks. We also note that a stock may have a high risk
premium priced in by the MinVol portfolio even if it is not held by the portfolio.
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Table 25: Risk premium in % of the 20 largest US companies (March 2024)

Stock
MSCI USA MSCI MinVol

σi R2
cxi π̃i xi π̃i

MICROSOFT 6.45 6.02 1.51 4.98 25.33 78.93
APPLE 5.47 6.18 0.81 5.39 25.47 88.69
NVIDIA 4.85 9.63 6.30 47.13 57.98
AMAZON.COM 3.64 8.03 5.29 35.52 88.33
ALPHABET 3.64 6.80 0.11 4.66 32.08 89.18
META PLATFORMS 2.34 7.76 4.60 44.74 58.80
LILLY ELI 1.36 3.53 0.82 3.58 30.00 50.67
BROADCOM 1.28 9.45 2.15 7.16 42.53 65.51
JPMORGAN CHASE 1.26 3.14 3.20 21.55 77.39
BERKSHIRE HATHAWAY 1.20 2.93 1.58 3.14 21.19 71.48
TESLA 1.09 11.53 7.77 65.14 58.50
EXXON MOBIL 1.01 0.95 0.49 2.28 28.49 95.32
UNITEDHEALTH GROUP 0.99 1.80 1.26 3.01 22.81 56.02
VISA 0.96 3.86 0.88 3.72 26.89 46.52
MASTERCARD 0.88 4.43 0.71 4.25 28.81 49.87
PROCTER & GAMBLE 0.83 2.35 1.28 3.09 16.91 73.03
HOME DEPOT 0.83 7.06 0.84 5.36 38.93 56.31
JOHNSON & JOHNSON 0.83 1.78 1.33 2.79 18.92 68.26
MERCK 0.73 2.13 1.75 2.97 23.18 40.89
COSTCO WHOLESALE 0.71 3.56 3.64 23.65 53.96

Table 26: Risk premium in % of the 20 largest holdings of the MSCI USA MinVol portfolio
(March 2024)

Stock
MSCI USA MSCI MinVol

σi R2
cxi π̃i xi π̃i

BROADCOM 1.28 9.45 2.15 7.16 42.53 65.51
MERCK 0.73 2.13 1.75 2.97 23.18 40.89
WASTE MANAGEMENT 0.19 1.30 1.69 2.62 21.43 55.20
IBM 0.38 6.03 1.68 5.31 31.76 50.98
WASTENNECTIONS 0.10 2.85 1.67 3.66 22.29 47.29
REPUBLIC SERVICES 0.09 1.53 1.63 2.77 21.31 55.31
AMPHENOL 0.15 4.63 1.61 4.58 27.60 51.57
BERKSHIRE HATHAWAY 1.20 2.93 1.58 3.14 21.19 71.48
PROGRESSIVE 0.26 2.03 1.57 2.76 28.80 38.74
MICROSOFT 6.45 6.02 1.51 4.98 25.33 78.93
MOTOROLA SOLUTIONS 0.13 4.25 1.51 4.72 28.37 46.01
T-MOBILE US 0.18 −0.07 1.49 1.66 30.76 46.40
VERIZONMMUNICATIONS 0.38 2.37 1.48 2.89 22.36 88.03
ROPER TECHNOLOGIES 0.13 2.98 1.45 3.61 22.48 54.46
DUKE ENERGY 0.16 3.02 1.42 4.38 24.79 79.44
CISCO SYSTEMS 0.44 4.86 1.41 4.59 31.35 44.85
ACCENTURE PLC 0.47 6.02 1.38 5.07 30.26 56.62
WALMART 0.58 2.58 1.35 3.30 22.01 54.00
TEXAS INSTRUMENTS 0.34 6.26 1.35 5.58 32.54 57.02
JOHNSON & JOHNSON 0.83 1.78 1.33 2.79 18.92 68.26
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Table 27: Top and bottom 10 implied risk premia in % priced in by the MSCI USA Index
(March 2024)

Stock
MSCI USA MSCI MinVol

σi R2
cxi π̃i xi π̃i

SUPER MICROMPUTER 0.11 13.30 9.07 94.34 42.29
ENPHASE ENERGY 0.04 13.09 10.18 77.56 51.17
CLOUDFLARE 0.06 11.85 9.14 68.33 42.87
TESLA 1.09 11.53 7.77 65.14 58.50
MARVELL TECHNOLOGY 0.13 11.07 8.31 55.51 57.51
ROKU 0.02 10.89 7.15 75.25 47.71
SAMSARA 0.01 10.63 7.65 51.29 75.16
PALANTIR TECHNOLOGIES 0.09 10.51 7.52 65.46 43.37
SIRIUS XM HOLDINGS 0.01 10.33 7.49 71.81 52.45
MONOLITHIC POWER SYSTEMS 0.07 10.24 7.85 51.56 55.72

...
...

...
...

NRG ENERGY 0.03 0.13 1.83 40.03 34.51
NEUROCRINE BIOSCIENCES 0.03 0.07 0.41 1.76 34.24 27.84
T-MOBILE US 0.18 −0.07 1.49 1.66 30.76 46.40
OCCIDENTAL PETROLEUM 0.09 −0.15 2.10 45.21 50.48
PIONEER NATURAL RESOURCES 0.13 −0.20 1.90 38.58 58.17
PHILLIPS 66 0.16 −0.24 0.08 1.60 38.18 66.85
CENCORA 0.09 −0.24 0.73 1.92 27.42 58.85
DIAMONDBACK ENERGY 0.07 −0.34 1.77 41.14 58.26
CHENIERE ENERGY 0.08 −0.59 0.35 2.42 49.63 57.20
COTERRA ENERGY 0.05 −0.90 1.52 41.93 58.20

Table 28: Top and bottom 10 implied risk premia in % priced in by the MSCI USA MinVol
portfolio (March 2024)

Stock
MSCI USA MSCI MinVol

σi R2
cxi π̃i xi π̃i

ENPHASE ENERGY 0.04 13.09 10.18 77.56 51.17
CLOUDFLARE 0.06 11.85 9.14 68.33 42.87
SUPER MICROMPUTER 0.11 13.30 9.07 94.34 42.29
MARVELL TECHNOLOGY 0.13 11.07 8.31 55.51 57.51
ON SEMICONDUCTOR 0.07 9.88 8.04 52.57 53.12
BOSTON PROPERTIES 0.02 9.58 7.93 48.55 74.68
ATLASSIAN 0.07 9.88 7.90 54.12 51.02
MONOLITHIC POWER SYSTEMS 0.07 10.24 7.85 51.56 55.72
TESLA 1.09 11.53 7.77 65.14 58.50
LATTICE SEMICONDUCTOR 0.02 9.99 7.71 58.81 47.81

...
...

...
...

UNITED THERAPEUTICS 0.02 0.54 0.09 1.93 31.71 29.00
CENCORA 0.09 −0.24 0.73 1.92 27.42 58.85
PIONEER NATURAL RESOURCES 0.13 −0.20 1.90 38.58 58.17
YTE 0.02 0.26 0.49 1.86 30.10 33.81
NRG ENERGY 0.03 0.13 1.83 40.03 34.51
DIAMONDBACK ENERGY 0.07 −0.34 1.77 41.14 58.26
NEUROCRINE BIOSCIENCES 0.03 0.07 0.41 1.76 34.24 27.84
T-MOBILE US 0.18 −0.07 1.49 1.66 30.76 46.40
PHILLIPS 66 0.16 −0.24 0.08 1.60 38.18 66.85
COTERRA ENERGY 0.05 −0.90 1.52 41.93 58.20
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Table 29: List of economic narratives

Narrative Themes
Back to the 70s Inflation, taxation, employment, government policy, central bank

intervention, commodity prices, exchange rate, macroeconomic
risk

Environment Natural disaster, environment law, green finance, green growth,
health, green innovation, natural resource management, protest,
resilience, adaption, mitigation

Geopolitical Risk Aid groups, attacks, country at risk, crime, crisis, ideology, justice,
politics, sanctions, tensions, trade barriers, war, weapons

Monetary Easing, quantitative restriction, monetary policy, central banks,
interest rates, financial markets

Roaring 20s Innovation, productivity, growth, technology, savings, inequality
Secular Stagnation Growth, inflation, productivity, demographics, macroeconomic

risk, savings
Social Discrimination, extreme parties, inequality, living together, sup-

ply chain, terror groups, unrest

Source: Blanqué et al. (2022).

3.3 Economic exposures of risk parity strategies

In this section, we will see how risk parity strategies are affected by economic factors. We
analyze a global risk parity strategy whose portfolio consists of futures contracts on the stocks
and bonds of different regions15. We consider portfolio returns from August 2020 through
September 2024. The risk factor model uses seven factors based on economic narratives
constructed around specific themes (Table 29):

1. Back to the 70s

2. Environment

3. Geopolitical Risk

4. Monetary

5. Roaring 20s

6. Secular Stagnation

7. Social

At each date, we estimate the following model using linear regression with a 52-week rolling
window:

Ri (t) =

7∑
j=1

βi,j (t)F narratives
j (t) + εi (t)

where Ri (t) is the weekly return of asset i, F narratives
j is the jth economic risk factor, and

εi (t) is the idiosyncratic risk factor. Once the risk factor model is estimated at time t, we
perform a risk premium analysis of the portfolio and a factor decomposition assuming a
constant Sharpe ratio SR

(
x | r

)
= 0.30.

15The assets used are: EMU stocks, Hong Kong stocks, UK stocks, US stocks, Japanese stocks, emerging
market stocks, 10-year Australian bonds, 10-year Canadian bonds, 10-year German bonds, 10-year UK
bonds, and 10-year US bonds.
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3.3.1 Analysis of the portfolio risk premium

Table 30 shows the implied risk premium π̃ (x) of the portfolio and its decomposition into
the factor risk premium ψ̃ (x) and the idiosyncratic risk premium ῠ (x). The portfolio’s
implied risk premium varies over time, ranging from 88 bps to 213 bps. The contribution
of economic risk factors ranges from +65 bps to +211 bps. Idiosyncratic factors have a
relatively high contribution to the portfolio’s implied risk premium, ranging from 0 bps to
+31 bps over the last 5 years. The contribution of these idiosyncratic factors can be as
high as 29.34% of the portfolio’s implied risk premium, as is the case on April 23, 2021.
In addition, the economic risk factor model more or less explains the portfolio’s return, as
shown by the R2

c coefficient, which ranges from 22.59% to 57.71%.

Table 30: Risk premium contribution to the risk parity portfolio (in bps)

2020 2021 2022 2022 2023 Range
14/08 23/04 21/01 01/04 20/10 Min Max

π̃ (x) 147 92 100 119 153 88 213

ψ̃ (x) 137 65 87 107 138 65 211
ῠ (x) 9 27 13 13 15 0 31

ψ̃Back to the 70s (x) 211 66 78 6 −233 −1 076 1 095

ψ̃Environment (x) −283 −2 −2 9 143 −585 438

ψ̃Geopolitical (x) −161 −33 −45 46 350 −391 553

ψ̃Monetary (x) 233 104 −4 5 121 −335 802

ψ̃Roaring 20s (x) 184 −4 43 9 −3 −539 397

ψ̃Secular Stagnation (x) −28 −46 −5 46 30 −714 1 039

ψ̃Social (x) −19 −20 22 −15 −270 −546 685
R2
c (x) 32.81% 38.09% 44.38% 44.17% 27.41% 22.59% 57.71%

Looking at the factor contribution ψ̃j (x), all factors can make a significant contribution
to the portfolio’s implied risk premium depending on the period. In fact, the contributions
range from −1076 bps to +1095 bps. Moreover, 71% of the time, at least 4 of the 7 factors
contribute more than 20 bps (positive or negative). This implies that the economic factors
have large negative and positive contributions in each period, which offset each other and
result in the portfolio’s implied risk premium. For example, looking at the 14 August
2020 results, going back to the 70s, environmental, geopolitical risk, monetary, and roaring
20s provide contributions of +211 bps, −283 bps, −161 bps, +233 bps, and +184 bps,
respectively, while secular stagnation and social provide contributions of −28 bps and −19
bps, respectively. All these significant contributions, in both directions, result in a portfolio
risk premium of only 147 bps.

A closer look at the contribution of each risk factor shows that it varies significantly in
both directions. This is the case for geopolitical narratives (Figure 9). Prior to March 2021,
this factor makes a large contribution with values between −161 bps and +180 bps. This
contribution decreases in the following period until 2023, where it peaks positively in June
with +490 bps and negatively in August with −320 bps.

3.3.2 Risk factor analysis

To understand the impact of economic narratives on the implied risk premia of the risk
parity portfolio, we analyze the factor implied risk premia and the portfolio’s exposure to
the factors. To compare values over time and across factors, we normalize to a 10% volatility
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Figure 9: Risk premium contribution of geopolitical narratives (smoothed curve)
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Table 31: Factor implied risk premia (in %)

Factor
2020 2021 2022 2022 2023 Range
14/08 23/04 21/01 01/04 20/10 Min Max

Back to the 70s 16.3 5.3 −2.9 −0.2 9.1 −31.4 26.0
Environment 13.5 −0.8 −0.6 1.4 7.9 −31.2 23.7
Geopolitical Risk 16.8 3.4 −3.2 1.8 13.0 −36.2 21.3
Monetary 18.3 5.9 −0.2 1.3 8.1 −35.2 25.6
Roaring 20s 16.4 0.5 −2.8 −0.6 0.2 −30.6 22.8
Secular Stagnation 13.6 5.4 −0.5 1.9 13.3 −40.3 30.2
Social 19.8 3.9 −3.2 1.2 11.5 −47.5 29.9

Table 32: Factor exposure (in %)

Factor
2020 2021 2022 2022 2023 Range
14/08 23/04 21/01 01/04 20/10 Min Max

Back to the 70s 13.0 15.4 −27.3 −29.3 −25.5 −70.7 66.7
Environment −20.9 −0.7 2.9 7.0 18.0 −24.0 30.5
Geopolitical Risk −9.6 −12.6 13.9 25.3 27.0 −56.2 29.2
Monetary 12.7 17.9 17.5 3.9 15.0 −17.3 67.7
Roaring 20s 11.2 −3.0 −15.3 −14.9 −15.1 −37.0 19.1
Secular Stagnation −2.0 −8.3 10.4 24.9 2.3 −40.0 56.4
Social −1.0 −7.4 −6.8 −12.9 −23.5 −32.2 59.8
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level. The results are shown in tables 31 and 32. Comparing the exposures in Table 32, we
see a significant variation in different time periods. The risk parity portfolio is most of the
time highly exposed to four or more factors simultaneously. If we look at the exposures in
20 October 2023, the portfolio had a low exposure to only one factor, secular stagnation. In
addition, the risk parity portfolio has a wide range of exposure to all factors, with exposures
ranging from −70.7% to +67.7%.

Figure 10: Implied risk premium of geopolitical narratives (smoothed curve)
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Looking at Table 31, the factor risk premia priced in by the risk parity portfolio vary
significantly from period to period. In addition, the risk parity portfolio can price in all
factors at once to a significant extent, as is the case in 8 August 2020. Indeed, the range of
factor risk premia is from −47.5% to +30.2%. Given these results, and given that ψ̃j (x) =
yjψ̃j , we can understand why the risk parity portfolio has significant contributions from
many economic factors in most of the periods in Table 30. In fact, the risk parity portfolio
is heavily influenced by all economic narratives, given the high factor implied risk premia
that it prices and its significant exposure to these factors. Moreover, given that factor risk
premia and exposures can be negative or positive, the contributions are large and in both
directions, resulting in a low portfolio implied risk premium. Focusing on the geopolitical
factor (Figure 10), its implied risk premium varies from period to period. For example, in
2022, the factor had a relatively low implied risk premium ranging from −3.6% to +2.4%,
while after 2023, the risk premium is much higher in absolute value, ranging from −19.9%
to +19.1%.

Remark 2. The previous illustration is sometimes difficult to interpret because the economic
narrative factors are based on news. A more conventional exercise is to consider economic
factor-mimicking portfolios (Jurczenko and Teiletche, 2023).
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3.4 Black-Litterman model in practice

3.4.1 The risk tolerance coefficient

Given an initial portfolio, the Black-Litterman model first calculates the implied risk pre-
mium as a prior estimate of the average return on assets. As explained in Section 2.2.1, we
use the following formula to obtain the implied risk premia:

π̃ =
1

γ
Σx = SR

(
x | r

) Σx√
x>Σx

where γ is the risk tolerance coefficient and SR
(
x | r

)
is the Sharpe ratio of the initial

allocation. In practice, it is difficult to know the true value of γ or the Sharpe ratio, so we
need to find a suitable method to select these parameters. Obviously, in the above formula,
γ is the scaling factor, and its value will greatly affect the implied risk premia. The practical
solution to this problem is to select a benchmark for the initial portfolio. Then, using the
same value of γ, we separately calculate and compare their implied risk premia. In this
case, the implied risk premium no longer has an absolute economic meaning, but rather a
relative one, so the exact value of γ no longer matters. To illustrate this point, consider the
MSCI USA MinVol portfolio and its benchmark, the MSCI USA Index, and select the Barra
USSLOW model as the risk factor model. As shown in Table 33, different values of γ have
the same degree of scaling for the implied risk premium of the portfolio and its benchmark.
Thus, we can choose any value for γ and simply refer to the benchmark value when giving
the view. When γ = 0.40, a view such as “the expected return of the momentum factor is
−27 bps” is equivalent to a view such as “the expected return of the momentum factor is
−13 bps” when γ = 0.80. By using this benchmark, portfolio managers can not only save
themselves the trouble of choosing the value of γ, but can also more easily express their
views on assets or factors based on the benchmark.

Table 33: Implied risk premia of style factors for different values of SR
(
x | r

)
and γ (in bps)

USA MinVol USA MinVol USA MinVol USA MinVol
SR
(
x | r

)
0.30 0.60 0.442 0.328 0.221 0.164

γ 0.589 0.438 0.295 0.219 0.40 0.80
Beta 175 99 349 198 257 109 129 54
Dividend Yield 3 7 7 13 5 7 2 4
Earnings Quality 13 17 27 35 20 19 10 9
Earnings Yield −21 −8 −42 −17 −31 −9 −15 −5
Growth 0 −1 0 −2 0 −1 0 −1
Leverage 9 20 17 41 13 22 6 11
Liquidity 13 8 26 16 19 9 9 4
Long-Term Reversal −14 −16 −28 −33 −20 −18 −10 −9
Management Quality −8 −6 −17 −11 −12 −6 −6 −3
Mid Capitalization 6 19 12 37 9 20 5 10
Momentum −18 −24 −37 −49 −27 −27 −13 −13
Profitability −1 2 −1 5 −1 3 −1 1
Prospect 7 4 14 9 10 5 5 2
Residual Volatility 54 28 108 56 80 31 40 15
Size 4 10 8 20 6 11 3 5
Value −3 −2 −5 −5 −4 −3 −2 −1

Remark 3. Choosing a constant value for the risk tolerance coefficient implies different
values for the Sharpe ratio, and vice versa. Therefore, it is not neutral to assume a value
for γ or SR

(
x | r

)
.
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3.4.2 The impact of Γπ

The basic assumption of the Black-Litterman model is that the prior distribution of π (t) is:

π (t) ∼ N (π̃,Γπ)

where Γπ is the covariance matrix of the prior distribution, implying the degree of uncertainty
in the implied risk premia. For the specification of Γπ, we use the traditional rule Γπ =
τΣ, i.e. we accept the assumption that the structure of the covariance matrix Γπ of the
estimate is proportional to the covariance matrix Σ of the returns, in order to simplify the
computation. However, the choice of τ is ambiguous in the literature. According to Black
and Litterman (1992), τ should take a small value close to 0 because the uncertainty in the
mean is smaller than the uncertainty in the returns. Therefore, as many academic papers
suggest (Black and Litterman, 1992; Lee, 2000; He and Litterman, 2002; Idzorek, 2004), the
value of τ is usually set between 1% and 50%. Furthermore, Blamont and Firoozy (2003)
and Meucci (2010) interpret τΣ as the standard error of the mean estimate of the implied
risk premia π̃ and set τ to be inversely proportional to the total number of observations. In
contrast to others, Satchell and Scowcroft (2000) argue that τ should be set to 100% under
the assumption that the equilibrium excess returns conditional on the individual’s forecasts
are on average equal to the individual’s forecast.

As shown in Figure 11, the covariance matrix of the posterior distribution is made up
of the covariance matrix of the prior distribution Γπ and the covariance matrix of the view
distribution Φ. Therefore, their relative values are more important than their absolute
values, and they should be determined together. Based on this idea, Idzorek (2004) proposed
a method for determining these two parameters based on a confidence level from 0% to 100%
specified by the portfolio manager. The underlying idea of Idzorek’s method is that the final
portfolio weight xfinal caused by the manager’s views should be between the initial portfolio
xinitial and the portfolio that depends only on these views x100% sure, where we are 100%
sure about this view. In this last case, Φ = 0p,p, and the tilt follows a linear relationship:

Confidence level =
xfinal − xinitial

x100% sure − xinitial
(10)

Given an arbitrary value of τ and a view with a confidence level of c%, for instance, the i-th
line of the matrix Pπ and the ith element of the vector vπ, we will find the corresponding
value (Φπ)i,i to satisfy Equation (10). We perform the same calculation for each view in the
matrix P and get the value of (Φπ)i,i for each view and summarize them in a single matrix
Φπ. This approach generally simplifies the process of specifying the uncertainty in the prior
information and the uncertainty in the views for the investor, who only needs to specify the
confidence level for each view without having to determine the scalar values for τ and Φπ.
For more details on this method, see Idzorek (2004) and Walters (2014).

By analogy, for the Black-Litterman factor model presented in this paper, we can assume
that the structure of Γψ takes the same form as the covariance matrix Ω of the factor
returns, i.e., Γψ = τΩ and we can use the same method to decide the value of Φψ based on
a confidence level from 0% to 100% for each view.

3.4.3 Optimization with Σ or Σ̄?

Another thing that is not conclusively determined in the Black-Litterman model is whether
to use the empirical covariance matrix Σ estimated from historical data or the covariance
matrix Σ̄ of the posterior distribution in the final optimization process. As explained in
Section 2.4.1 on page 15, Σ̄ is defined as:

Σ̄ = Σ + Γ̄π
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In the absence of views we have Γ̄π = Γπ, and this reduces to:

Σ̄ = Σ + Γπ = (1 + τ) Σ

Since τ is positive, the unconditional covariance matrix of asset returns Σ̄ will be larger than
the estimated covariance matrix of the historical data Σ when the Black-Litterman model
is applied in the absence of views. This has been mentioned by He and Litterman (2002)
and Kolm and Ritter (2017). This fact makes sense in theory, but it also means that the
portfolio weight will change in the absence of views. In practice, we do not want this to
happen. Therefore, Idzorek (2004) and others do not compute a new a posteriori covariance
matrix Σ̄, but instead use the known input covariance matrix Σ. In this case, the portfolio
weight does not change in the absence of views. In addition, when we use Idzorek’s method
to calibrate the covariance matrix of the view distribution, using Σ makes the mathematics
easier and allows us to use an analytical formula to obtain the result according to Walters
(2014). For these two reasons, we recommend using the empirical covariance matrix in the
final optimization process.

3.4.4 Impact of views

In this section, we will continue to use the MSCI USA Minimum Volatility Index as the
portfolio to illustrate the application of the Black-Litterman factor model. We choose the
Barra USSLOW model as the risk factor model and set the risk tolerance coefficient γ to
0.4. In Table 33 on page 35 we have reported the factor risk premia of this portfolio. The
portfolio manager can express his view on these factors by referring to the benchmark.

Case 1 We assume that the portfolio manager has an absolute view on the liquidity factor:
vLiquidity = 20 bps. We use Idzorek’s method and set the confidence level of this view to
50%. The optimized portfolio is derived from the following problem:

x̄+ = arg min
1

2
x>Σx− γx>π̄ (11)

s.t.

{
1>n x = 1
x ≥ 0n

The results of this view are shown in Table 34. For each style factor, we report the vector
of implied (or prior) risk premia ψ̃, the vector of posterior risk premia ψ̄, the prior factor
exposure y, the long/short posterior factor exposure ȳ, the long-only posterior factor ex-
posure ȳ+, and the vector of implied risk premia ψ̄+ inferred from the portfolio x̄+. Since
the portfolio manager believes that the liquidity factor has a risk premium of 20 bps at the
50% confidence level16, the model increases the risk premium of this factor from 9 bps to 13
bps and also increases the exposure from −25.9% to +1.5%. In addition, the tracking error
volatility of the portfolio x̄+ with respect to the current portfolio x is equal to 160 bps.

By changing the value of Φψ we can analyse the effect of the confidence level on the
volatility of the tracking error. We find that the minimum tracking error is 139 bps. This
result is worrying as the lower bound of zero is never reached. Let us understand this

problem. We have π̃ =
1

γ
Σx and ψ̃ = B+π̃. If we do not formulate any views, the posterior

risk premia are equal to the prior risk premia:

ψ̄ = ψ̃ = B+π̃ =
1

γ
B+Σx
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Table 34: Impact of views on factor allocation (Case 1, confidence level = 50%)

Factor
ψ̃ ψ̄ ψ̄+ y ȳ ȳ+

(in bps) (in %)
Beta 109 113 113 −75.6 −75.5 −74.5
Dividend Yield 7 8 8 1.3 4.6 4.1
Earnings Quality 19 19 19 25.9 27.3 25.7
Earnings Yield −9 −10 −10 −2.9 −3.0 −2.6
Growth −1 −1 −1 −12.4 −13.0 −12.4
Leverage 22 22 22 0.1 1.3 −0.1
Liquidity 9 14 13 −25.9 6.7 1.5
Long-Term Reversal −18 −18 −18 −9.6 −10.0 −8.7
Management Quality −6 −7 −7 15.1 15.1 12.8
Mid Capitalization 20 20 20 −66.9 −71.4 −70.1
Momentum −27 −28 −28 −3.5 −4.1 −3.8
Profitability 3 1 1 17.3 14.4 13.0
Prospect 5 4 5 −12.7 −13.6 −11.5
Residual Volatility 31 35 35 15.5 17.6 17.0
Size 11 11 11 40.5 44.1 42.3
Value −3 −3 −3 −12.7 −14.6 −12.8

We deduce that:

π̄ = Bψ̄ =
1

γ
BB+Σx 6= π̃

The solution of the MVO problem is then equal to:

x̄ = γΣ−1π̄ = Σ−1BB+Σx

We do not obtain the equality x̄ = x because BB+ 6= In. The tracking error variance of the
optimized portfolio x̄ with respect to the current portfolio is then:

σ2
(
x̄ | x

)
= (x̄− x)

>
Σ (x̄− x)

= x>Qx ≥ 0

where Q = M>Σ−1M and M =
(
BB+ − In

)
Σ. This means that when we formulate a

Black-Litterman model with a risk factor model, there are two key effects:

• The effect of the risk factor model itself;

• The effect of active views on factor risk premia.

By considering the risk factor model R (t)− r = BF (t) + ε (t), we are implicitly forming a
view on assets, even if we do not make explicit bets on factor risk premia. Thus, the tracking-
error volatility of a Black-Litterman portfolio x̄ can be decomposed into two components:

σ
(
x̄ | x

)
= σ

(
x̄(no view) | x

)
︸ ︷︷ ︸

Effect of the factor model structure

+ σ
(
x̄ | x̄(no view)

)
︸ ︷︷ ︸

Effect of the active bets formulated by the fund manager

where x̄(no view) is the optimal Black-Litterman portfolio without active views. In the pre-
vious example, the total tracking error volatility was 160 pbs, of which 139 bps were due to
the BARRA factor model, and 21 bps were attributed to the active bet on the liquidity risk
factor.
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Table 35: Impact of the confidence level of the view on posterior factor risk premia ψ̄ in bps
(Case 1)

Confidence level 1% 25% 50% 75% 99%
Beta 108.6 108.7 110.7 112.8 114.8 117.5
Dividend Yield 7.2 7.2 7.5 7.9 8.3 8.8
Earnings Quality 19.0 19.0 19.2 19.3 19.5 19.7
Earnings Yield −9.1 −9.2 −9.6 −10.2 −10.6 −11.3
Growth −1.2 −1.2 −1.1 −1.0 −0.9 −0.8
Leverage 22.3 22.3 22.4 22.4 22.5 22.5
Liquidity 8.9 9.0 11.4 14.1 16.5 19.9
Long-Term Reversal −17.9 −17.9 −18.0 −18.1 −18.2 −18.3
Management Quality −6.1 −6.1 −6.5 −6.9 −7.3 −7.9
Mid Capitalization 20.3 20.3 20.2 20.1 20.0 19.8
Momentum −26.7 −26.7 −27.3 −27.8 −28.3 −29.0
Profitability 2.6 2.6 2.0 1.4 0.8 −0.0
Prospect 4.7 4.7 4.5 4.3 4.2 3.9
Residual Volatility 30.6 30.7 32.6 34.8 36.8 39.6
Size 10.9 10.9 11.0 11.2 11.3 11.5
Value −2.6 −2.6 −2.7 −2.8 −2.9 −3.0
σ
(
x̄ | x

)
(in bps) 138.7 144.4 159.8 178.7 208.9

σ
(
x̄ | x̄(no view)

)
(in bps) 0.1 5.6 21.0 40.0 70.1

Table 35 shows the effect of the confidence level of the view on the posterior factor risk
premia ψ̄. The more confident the portfolio manager is in his view of the liquidity factor,
the closer the posterior risk premium will be to 20 bps. Since the covariance matrix Ω of the
factors in the Barra model is not a diagonal matrix, a view on one factor can affect other
factors. In our case, the factors beta and residual volatility are significantly affected when
the confidence level of the view is high. In addition, the tracking error between the prior
portfolio x and the posterior portfolio x̄+ increases with the confidence level.

Remark 4. There are several practical ways to eliminate the effect of the risk factor model.
The first approach is to impact only the allocation variation between the portfolio x̄(no view)

and x̄. In this case, we have:

x̄← x+
(
x̄− x̄(no view)

)
The second approach is to use the factor decomposition: π̃ = π̃(factor) + π̃(specific). We then
apply the views to the factor component only and calculate the posterior risk premia as
follows:

π̄ = π̄(factor) + π̃(specific)

This means that we do not change the posterior risk premia due to idiosyncratic risks17.

16This is equivalent to set Φψ = 5× 10−4.
17We have π̃(factor) = ϕxBΩB>x and π̃(specific) = ϕxDx. It follows that ψ̃ = B+π̃(factor) and:

ψ̄ = ψ̃ + ΓψP
>
ψ

(
PψΓψP

>
ψ + Φψ

)−1 (
vψ − Pψψ̃

)
We deduce that π̄(factor) = Bψ̄. Finally, the posterior risk premia are equal to π̄ = π̄(factor) + π̃(specific). In
the case of no views, we have ψ̄ = ψ̃ and π̄ = Bψ̄+π̃(specific) = Bψ̃+π̃(specific) = BB+π̃(factor)+π̃(specific) =
ϕxBB+BΩB>x+π̃(specific) = ϕxBΩB>x+π̃(specific) = π̃(factor)+π̃(specific) = π̃, implying that the portfolio
weights do not change when we consider the mean-variance optimization problem without constraints.
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Case 2 As mentioned above, a view on one factor can affect the risk premia of other factors.
Suppose the portfolio manager wants to maintain the factor risk premia for beta and residual
volatility. Therefore, we have three absolute views: vliquidity = 20 bps, vres.vol = 31 bps, and
vbeta = 109 bps. The results are shown in Table 36. First, we set the confidence level
for the second and third views to 50%. The model always increases the risk premium of
the liquidity factor from 8.9 bps to 19.9 bps, but the risk premia of the residual volatility
and beta factors reach 35.9 bps and 111.9 bps, respectively. Therefore, we perform a final
portfolio optimization by setting the confidence level to 99% for all three views. In this case,
we obtain a solution which satisfies the three views. However, this is not always the case.
In this example, we were able do so because the risk factors are more or less uncorrelated.

Table 36: Impact of the confidence level of the views on ψ̄ in bps (Case 2)

Confidence level
View 1 1% 25% 50% 75% 99% 99%
View 2 50% 50% 50% 50% 50% 99%
View 3 50% 50% 50% 50% 50% 99%

Beta 108.6 108.9 109.5 110.3 110.9 111.9 109.0
Dividend Yield 7.2 7.2 7.5 7.8 8.1 8.6 8.3
Earnings Quality 19.0 19.0 19.2 19.3 19.5 19.7 20.0
Earnings Yield −9.1 −9.2 −9.5 −9.8 −10.1 −10.6 −9.9
Growth −1.2 −1.2 −1.1 −1.0 −0.9 −0.7 −0.7
Leverage 22.3 22.3 22.4 22.6 22.7 22.9 23.5
Liquidity 8.9 9.0 11.3 13.9 16.4 19.9 19.9
Long-Term Reversal −17.9 −17.9 −18.0 −18.0 −18.0 −18.1 −17.8
Management Quality −6.1 −6.1 −6.4 −6.8 −7.2 −7.7 −7.5
Mid Capitalization 20.3 20.3 20.1 19.8 19.6 19.2 18.3
Momentum −26.7 −26.8 −27.1 −27.5 −27.8 −28.3 −28.4
Profitability 2.6 2.6 2.1 1.6 1.1 0.5 1.0
Prospect 4.7 4.7 4.5 4.3 4.0 3.7 3.6
Residual Volatility 30.6 30.8 31.9 33.1 34.3 35.9 31.0
Size 10.9 10.8 11.2 11.7 12.1 12.7 14.1
Value −2.6 −2.6 −2.6 −2.7 −2.7 −2.8 −2.3

σ
(
x̄ | x

)
(in bps) 138.8 143.8 157.8 175.9 204.7 205.4

σ
(
x̄ | x̄(no view)

)
(in bps) 0.1 5.1 19.1 37.1 65.9 66.6

4 Conclusion

This article introduces an innovative approach that integrates the Black-Litterman model
with risk factor models. This method allows fund managers to assess how risk factors are
priced by the market/benchmark and, in turn, to understand how their own portfolio is
priced relative to that benchmark. A key advantage of this approach is that it allows the
manager to express views on the underlying risk factors rather than on the individual assets
within the portfolio, which can be numerous and complex. By calculating the implicit
risk premia of these factors, the manager can refine his views and make more informed
adjustments to the portfolio in line with updated expectations. For instance, if the portfolio
consists of 500 stocks and the risk model is based on 10 factors, this approach allows the
manager to form views on the 10 factors instead of the 500 individual stocks. Of course, this
approach requires the manager to use and be familiar with top-down factor construction,
rather than traditional bottom-up stock selection.
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The first part of this article develops the theoretical framework, linking asset risk premia
to factor risk premia using a generic risk factor model. We also introduce the concept of
factor exposures and how to calculate them. This allows us to decompose the implied risk
premium of a portfolio into its factor and idiosyncratic components. Incorporating active
views on risk factors is equivalent to computing the posterior distribution of factor risk
premia. We can then optimize the portfolio according to the fund manager’s views. The
underlying framework closely mirrors the original Black-Litterman model. However, the
structure of the factor model allows us to derive several key properties. For example, we
prove that the tangent portfolio is the only portfolio for which the residual risk premium is
zero. For all other portfolios, the residual risk premium remains positive, confirming that
idiosyncratic risk is not rewarded in a well-diversified portfolio. In addition, we decompose
both asset and factor risk premia into variance and covariance risk premia. This decompo-
sition is used extensively by Portelli and Roncalli (2024) in multi-asset portfolios to explain
the hedging asset status of bonds. It is particularly important for understanding why a risk
factor may have a negative risk premium due to its covariance components.

Using the developed framework, the study of the US stock market by analyzing the S&P
500 index revealed that the market factor is the main driver of the portfolio’s implied risk
premium and that the remaining three factors (size, value and momentum) make relatively
small contributions. We found that idiosyncratic risk contributes very little to the portfolio’s
risk premium, leading us to conclude that the Carhart risk factor model explains almost all
of the implied risk premium of the US stock market. Our second study illustrates how
an actively managed portfolio can be benchmarked. We consider the Barra factor model,
the active portfolio corresponding to the MSCI USA MinVol Index, and the benchmark
corresponding to the MSCI USA Index. In March 2024, the most important factors were
the Beta style factor and the Information Technology and Consumer Discretionary sector
factors. A bottom-up analysis of both portfolios shows that the MSCI MinVol portfolio can
price a stock high but still not hold it due to its high risk. The methodology can also be
applied to economic factors. The third illustration uses a global risk parity strategy and
macroeconomic factors based on economic reports and daily news. The factor contributions
vary significantly from period to period. This exercise can also be done with macroeconomic
factor-mimicking portfolios.The article also discussed the impact of the parameters. In fact,
the coefficient of risk tolerance γ, the covariance matrix of the prior distribution Γψ, the
covariance matrix of the views Φψ, and the choice of using Σ or Σ̄ all have a significant
impact on the results of the optimization problem. Moreover, we show that not having a
view on factor risk premia is not the same as having no view at all. Indeed, the Black-
Litterman factor approach assumes that asset returns are driven by a risk factor model, and
the use of such a model is inherently an active view. Therefore, when incorporating views,
it is important to distinguish between the contribution of implicit views arising from the
structure of the factor model and the contribution of explicit views on factor risk premia.

The methodology developed here is particularly valuable for fund managers seeking to
assess portfolio risk within a risk factor framework. With the rise of factor investing (Caza-
let et al., 2014; Cazalet and Roncalli, 2014) and alternative risk premia strategies (Hamdan
et al., 2016; Roncalli, 2017), many fund managers now use risk factors, rather than indi-
vidual assets or securities, as the fundamental building blocks of their portfolios. Similarly,
multi-asset fund managers often view embedded macroeconomic risk factors as their true
exposures and active bets. In these contexts, the Black-Litterman factor model provides a
practical approach for incorporating such risk factors into portfolio management. Addition-
ally, analyzing risk premia at the factor level is crucial for active management, as it provides
insight into what is currently priced into the market or benchmark. For an active manager,
success lies in positioning the portfolio relative to this market view.
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A Mathematical results

A.1 Conditional probability distribution in the Gaussian case

Let us consider a Gaussian random vector defined as follows:(
X
Y

)
∼ N

((
µx
µy

)
,

(
Σx,x Σx,y
Σy,x Σy,y

))

The conditional probability distribution of Y given X = x is a multivariate normal distri-
bution. We have:

µy|x = E
[
Y | X = x

]
= µy + Σy,xΣ−1

x,x (x− µx)

and:

Σy,y|x = σ2
[
Y | X = x

]
= Σy,y − Σy,xΣ−1

x,xΣx,y

A.2 Proofs of mathematical properties

A.2.1 Implied risk premium

We assume that ψj ≥ 0. If this is not the case, we can always replace the jth factor Fj (t)
by its opposite −Fj (t).

Property 1. The factor exposures are equal to the beta sensitivities:

y = β (x)

Proof. We have y = Bxx = B>x = β (x). �

Property 2. The covariance model is obtained by setting B = In and D = 0n,n. In this
case, we have R (t) = F (t) and Σ = Ω. We have:

ψ̃ = π̃

Proof. We have B+ = In. �

Property 3. The implied risk premium priced in by the tangent portfolio is equal to the
vector of risk premia:

π̃ = π := µ− r1n

Proof. The tangent portfolio is given by x? = γΣ−1 (µ− r1n) where γ = 1/
(
1>nΣ−1 (µ− r1n)

)
.

Since we have Σx? = γ (µ− r1n), σ2 (x) = x?
>

Σx? = γ2 (µ− r1n)
>

Σ−1 (µ− r1n) and

µ (x)− r = x?
>

(µ− r1n) = γ (µ− r1n)
>

Σ−1 (µ− r1n), we conclude that:

π̃ = SR
(
x? | r

) Σx?√
x?>Σx?

=
γ (µ− r1n)

>
Σ−1 (µ− r1n)√

γ2 (µ− r1n)
>

Σ−1 (µ− r1n)
· γ (µ− r1n)√

γ2 (µ− r1n)
>

Σ−1 (µ− r1n)

= µ− r1n
= π

�
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Property 4. The residual premium of the tangency portfolio is zero, which implies that the
risk premium of the tangency portfolio is fully explained by the common risk factors:

ῠ (x?) = y̆>ῠ = 0

π̃ (x?) = ψ̃ (x?) =
π>Σ−1π

1>nΣ−1π

Proof. We have:

π̃ (x?) = x?
>
π̃ =

π>Σ−1π

1>nΣ−1π
=
π>Σ−1Bψ

1>nΣ−1π

and:

ψ̃ = B+π̃ = B+π

We deduce that:

ψ̃ (x?) = y>ψ̃ = x?
>
BB+π̃ = x?

>
BB+Bψ =

π>Σ−1Bψ

1>nΣ−1π

because BB+B = B. We conclude that:

ψ̃ (x?) =
π>Σ−1π

1>nΣ−1π
= π̃ (x?)

and:

ῠ (x?) = π̃ (x?)− ψ̃ (x?) = 0

�

Property 5. If the portfolio is not optimal, the residual premium does not depend on the
factor covariance Ω, but only on the idiosyncratic covariance D. The residual premium is
then positive:

ῠ (x?) = x>
(
B̆>x B̆xD

)
x ≥ 0

Proof. We have:

ῠ (x) = y̆>ῠ

=
(
B̆xx

)>
B̆σπ̃

= SR
(
x | r

)
x>B̆>x B̆x

Σx√
x>Σx

= ϕx x
>
(
B̆>x B̆xΣ

)
x

where ϕx =
SR
(
x | r

)
√
x>Σx

> 0. We deduce that:

Q = B̆>x B̆xΣ

= B̆>x B̆x

(
BΩB> +D

)
= B̆>x B̆xBΩB> + B̆>x B̆xD

= B̆>x B̆xD
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because ker
(
B+
)

= ker
(
B>
)

and B̆xB =
(
B>B̆>x

)>
=
(
B> ker

(
B>
))>

= 0. According

to Ramuzat (2022), the product of a real symmetric positive semi-definite matrix and a real
positive diagonal matrix is positive semi-definite. In our case, B̆>x B̆x is the product of a real
matrix and its transpose, so it’s a real symmetric positive semi-definite matrix and D is a
real positive diagonal matrix. Therefore, Q = B̆>x B̆xD is a positive semi-definite matrix.
We conclude that ῠ (x) is the product of a positive scalar and a quadratic form x>Qx and
is therefore positive: ∀x : ῠ (x) = ϕx x

>Qx ≥ 0. �

Property 6. The factor risk premium of any portfolio is always positive:

ψ̃ (x) ≥ 0

Proof. We have:

ψ̃ (x) = y>ψ̃

= (Bxx)
>
Bσπ̃

= x>BB+π̃

= ϕx x
>BB+Σx

We note Q = BB+Σ. We have:

Q = BB+
(
BΩB> +D

)
= BΩB> +BB+D

= Q1 +Q2

The first term Q1 = BΩB> defines a positive semi-definite matrix because Ω is positive
semi-definite matrix. We deduce that x>Q1x ≥ 0. For the second term Q2 = BB+D, we
use the property that for any matrix B ∈ Rn×m, BB+ is an orthogonal projection matrix,

which means that BB+ =
(
BB+

)>
and BB+ =

(
BB+

)2
. Furthermore, for all y ∈ Rn, we

have:
y>BB+y = y>

(
BB+

)2
y = y>

(
BB+

)> (
BB+

)
y = ‖BB+y‖2 ≥ 0

So BB+ is positive semi-definite. Then we apply the theorem that the product of a real
symmetric positive semi-definite matrix and a real positive diagonal matrix is positive semi-
definite (Ramuzat, 2022). We deduce that x>Q2x ≥ 0. We conclude that:

x>BΩB>x︸ ︷︷ ︸
≥0

+ x>BB+Dx︸ ︷︷ ︸
≥0

≥ 0

and ψ̃ (x) ≥ 0. �

Property 7. The asset risk premia admit a variance-covariance decomposition:

π̃ = π̃(var) + π̃(cov)

where π̃(var) depends on the asset variances and π̃(cov) depends on the asset covariances.

Proof. We have:

π̃i = SR
(
x | r

) (Σx)i√
x>Σx

We deduce that π̃
(var)
i = ϕx xiσ

2
i and π̃

(cov)
i = ϕx σi

∑
j 6=i xjρi,jσj . �
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Property 8. The asset risk premia admit a factor decomposition:

π̃ = π̃(factor) + π̃(specific)

where π̃(factor) depends on the common factors and π̃(specific) depends on the idiosyncratic
factors.

Proof. We have:

π̃ = SR
(
x | r

) Σx√
x>Σx

= ϕxBΩB>x+ ϕxDx

We deduce that π̃(factor) = ϕxBΩB>x and π̃(specific) = ϕxDx. �

Property 9. The factor risk premia allow the following decompositions:{
ψ̃ = ψ̃(var) + ψ̃(cov)

ψ̃ = ψ̃(factor) + ψ̃(specific)

where ψ̃(var), ψ̃(cov), ψ̃(factor) and ψ̃(specific) depend on the factor variances, factor covari-
ances, common factors and idiosyncratic factors.

Proof. We have:

ψ̃ = Bσπ̃

= ϕxBσΣx

= ϕxB
+
(
BΩB> +D

)(
Byy + B̆y y̆

)
= ϕx

(
B+BΩB>Byy +B+BΩB>B̆y y̆ +B+DByy +B+DB̆y y̆

)
The second term is equal to zero because B> and B+ have the same null space. We deduce
that:

ψ̃ = ϕx

(
B+BΩB>Byy +B+DByy +B+DB̆y y̆

)
We get the following decomposition: ψ̃(factor) = ϕxB

+BΩB>Byy

ψ̃(specific) = ϕx

(
B+DByy +B+DB̆y y̆

)
In this case, ψ̃(factor) and ψ̃(specific) depend on the covariance matrices Ω and D, respectively.
This decomposition is equivalent to:{

ψ̃(factor) = Bσπ̃
(factor)

ψ̃(specific) = Bσπ̃
(specific)

Another decomposition is:{
ψ̃(factor) = ϕx

(
B+BΩB>By +B+DBy

)
y

ψ̃(specific) = ϕxB
+DB̆y y̆
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In this case, ψ̃(factor) and ψ̃(specific) depend on the factor exposures y and y̆, respectively.
Let ω = diag (Ω) be the variance of the factors. We have:

Ω = ω � Im + (Ω− ω � Im)

We deduce that:

ψ̃ = ψ̃(var) + ψ̃(cov) = ϕx

(
B+BΩB>Byy +B+DByy +B+DB̆y y̆

)
where:

ψ̃(var) = ϕxB
+B (ω � Im)B>Byy

and:
ψ̃(cov) = ϕx

(
B+B (Ω− ω � Im)B>Byy +B+DByy +B+DB̆y y̆

)
�

A.2.2 Conditional risk premium

Property 10. In the case of comprehensive absolute views, the conditional formulas for
asset risk premia become: {

π̄ = π̃ +Aπ (vπ − π̃)
Γ̄π = (In −Aπ) Γπ

where Aπ = Γπ (Γπ + Φπ)
−1

. For factor risk premia, we have: ψ̄ = ψ̃ +Aψ

(
vψ − ψ̃

)
Γ̄ψ =

(
In −Aψ

)
Γψ

where Aψ = Γψ
(
Γψ + Φψ

)−1
.

Proof. Since Pπ = In, we have:

π̄ = π̃ + ΓπP
>
π

(
PπΓπP

>
π + Φπ

)−1

(vπ − Pππ̃)

= π̃ + Γπ (Γπ + Φπ)
−1

(vπ − π̃)

= π̃ +Aπ (vπ − π̃)

and:

Γ̄π = Γπ − ΓπP
>
π

(
PπΓπP

>
π + Φπ

)−1

PπΓπ

= Γπ − Γπ (Γπ + Φπ)
−1

Γπ

= (In −Aπ) Γπ

where Aπ = Γπ (Γπ + Φπ)
−1

. If the absolute views are on the factors instead of the assets,
we have Pψ = Im. We deduce that:

ψ̄ = ψ̃ + ΓψP
>
ψ

(
PψΓψP

>
ψ + Φψ

)−1 (
vψ − Pψψ̃

)
= ψ̃ + Γψ

(
Γψ + Φψ

)−1
(
vψ − ψ̃

)
= ψ̃ +Aψ

(
vψ − ψ̃

)
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and:

Γ̄ψ = Γψ − ΓψP
>
ψ

(
PψΓψP

>
ψ + Φψ

)−1

PψΓψ

= Γψ − Γψ
(
Γψ + Φψ

)−1
Γψ

=
(
Im −Aψ

)
Γψ

where Aψ = Γψ
(
Γψ + Φψ

)−1
. �

Property 11. If the assets are independent of each other and we have only absolute views
on the assets, these views do not affect the other assets. Moreover, the conditional covariance
matrix Γ̄π is diagonal and we have:

(
Γ̄π
)
i,i

=
(Γπ)i,i (Φπ)i,i

(Γπ)i,i + (Φπ)i,i

This property also holds true when considering risk factors instead of assets.

Proof. If the assets are independent, Γπ and Φπ are diagonal matrices andAπ = Γπ (Γπ + Φπ)
−1

is also a diagonal matrix. Therefore, the j-th element of vπ only affects the j-th element
of π̄. This means that in the case where there are only absolute views and all assets are
independent, the view on one asset does not affect the other assets. Indeed, we have:

Γ̄π =
(
P>π Φ−1

π Pπ + Γ−1
ψ

)−1

=
(

Φ−1
π + Γ−1

π

)−1

= Γπ (Γπ + Φπ)
−1

Φπ

Since Γπ and Φπ are diagonal matrices, Γ̄π is also a diagonal matrix with:

(
Γ̄π
)
i,i

= (Γπ)i,i

(
(Γπ)i,i + (Φπ)i,i

)−1

(Φπ)i,i =
(Γπ)i,i (Φπ)i,i

(Γπ)i,i + (Φπ)i,i

This conclusion also holds for Γ̄π. �

Property 12. When the certainty of the absolute views is very high, the conditional risk
premia are equal to the views:

π̄ = vπ

When implied risk premia and absolute views have the same uncertainty, conditional risk
premia are the average of implied risk premia and views:

π̄ =
vπ + π̃

2

This property also holds true when looking at risk factors rather than assets.

Proof. When the certainty of the views is very high, we have Γπ + Φπ ≈ Γπ and Aπ =
Γπ (Γπ + Φπ)

−1 ≈ ΓπΓ−1
π ≈ In. We conclude that the conditional risk premia are equal to

the views:
π̄ ≈ vπ

When the uncertainty in implied risk premia is equal to the uncertainty in the absolute
views (Γπ = Φπ), the conditional risk premia are the average of the implied risk premia and
the views:

π̄ = π̃ + Γπ (2Γπ)
−1

(vπ − π̃) = π̃ +
1

2
(vπ − π̃) =

vπ + π̃

2

�
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Property 13. The conditional covariance matrix has an upper bound in the one-factor
model, defined as:

Γ̄ψ ≤
1

2

(
Γψ + Φψ

2

)
Proof. In the one-factor model, we can only specify an absolute view: Pψ = 1 and vψ = v.
Since Γψ and Φψ are scalar values, and using Property 11, we get:

Γ̄ψ =
ΓψΦψ

Γψ + Φψ
≤ Γψ + Φψ

4

because:

(a− b)2 ≥ 0 ⇔ a2 + b2 − 2ab ≥ 0

⇔ a2 + b2 + 2ab ≥ 4ab

⇔ (a+ b)
2 ≥ 4ab

⇔ ab ≤ 1

4
(a+ b)

2

In addition, we have three special cases:

• If Φψ � Γψ, we have much more confidence in the given view than we do in the actual
portfolio and we get:

Γ̄ψ =
ΓψΦψ

Γψ + Φψ
≈ ΓψΦψ

Γψ
≈ Φψ

• If Φψ � Γψ, we have much more confidence in the actual portfolio than we do in the
given view and we get:

Γ̄ψ =
ΓψΦψ

Γψ + Φψ
≈ ΓψΦψ

Φψ
≈ Γψ

• If Φψ = Γψ, we have the same confidence in the actual portfolio as we do in the given
view and we get:

Γ̄ψ =
ΓψΦψ

Γψ + Φψ
=

Γ2
ψ

2Γψ
=

Γψ
2

�

Property 14. In the two-factor model, when the absolute views are uncorrelated, the condi-
tional risk premium on one factor is equal to a weighted average of the implied risk premium
and the absolute view on that factor, and a correction term on the second view that depends
on the correlation ρ between the two factors: ψ̄1 = w1ψ̃1 + (1− w1) v1 + ρλ1

(
v2 − ψ̃2

)
ψ̄2 = w2ψ̃2 + (1− w2) v2 + ρλ2

(
v1 − ψ̃1

)
Proof. We set Pψ = I2, vψ = (v1, v2), Γψ =

(
γ2

1 ργ1γ2

ργ1γ2 γ2
2

)
and Φψ =

(
φ2

1 0
0 φ2

2

)
.

We have:

Aψ = Γψ
(
Γψ + Φψ

)−1

=

(
γ2

1 ργ1γ2

ργ1γ2 γ2
2

)(
γ2

1 + φ2
1 ργ1γ2

ργ1γ2 γ2
2 + φ2

2

)−1
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We use the inverse formula of the 2× 2 matrix:

Aψ =
1

ξ

(
γ2

1 ργ1γ2

ργ1γ2 γ2
2

)(
γ2

2 + φ2
2 −ργ1γ2

−ργ1γ2 γ2
1 + φ2

1

)
=

1

ξ

(
γ2

1γ
2
2 + γ2

1φ
2
2 − ρ2γ2

1γ
2
2 ργ1γ2φ

2
1

ργ1γ2φ
2
2 γ2

1γ
2
2 + φ2

1γ
2
2 − ρ2γ2

1γ
2
2

)
where:

ξ =
(
γ2

1 + φ2
1

)(
γ2

2 + φ2
2

)
− ρ2γ2

1γ
2
2 = γ2

1γ
2
2 + γ2

1φ
2
2 + φ2

1γ
2
2 + φ2

1φ
2
2 − ρ2γ2

1γ
2
2

Then, we have:

ψ̄1 = ψ̃1 +
γ2

1γ
2
2 + γ2

1φ
2
2 − ρ2γ2

1γ
2
2

ξ

(
v1 − ψ̃1

)
+
ργ1γ2φ

2
1

ξ

(
v2 − ψ̃2

)
and:

ψ̄2 = ψ̃2 +
ργ1γ2φ

2
2

ξ

(
v1 − ψ̃1

)
+
γ2

1γ
2
2 + φ2

1γ
2
2 − ρ2γ2

1γ
2
2

ξ

(
v2 − ψ̃2

)
Finally, we get18:

ψ̄1 = w1ψ̃1 + (1− w1) v1 + ρλ1

(
v2 − ψ̃2

)
where: 

w1 =
φ2

1γ
2
2 + φ2

1φ
2
2

ξ

λ1 =
γ1γ2φ

2
1

ξ

and:
ψ̄2 = w2ψ̃2 + (1− w2) v2 + ρλ2

(
v1 − ψ̃1

)
where: 

w2 =
γ2

1φ
2
2 + φ2

1φ
2
2

ξ

λ2 =
γ1γ2φ

2
2

ξ

We consider some special cases:

• Assuming that γ1 = γ2 = φ1 = φ2, we have:

ψ̄1 =
2

4− ρ2
ψ̃1 +

2− ρ2

4− ρ2
v1︸ ︷︷ ︸

weighted average

+
ρ

4− ρ2

(
v2 − ψ̃2

)
︸ ︷︷ ︸

correction term

We get the following values:

ψ̄1 =


v1 + ψ̃1

2
if ρ = 0

2

3
ψ̃1 +

1

3
v1 ±

1

3

(
v2 − ψ̃2

)
if ρ = ±1

18Note that w1 and w2 form a system of weights. In fact, we have:

w1 =
φ2

1γ
2
2 + φ2

1φ
2
2

φ2
1γ

2
2 + φ2

1φ
2
2 + υ

where υ =
(
1− ρ2

)
γ2

1γ
2
2 + γ2

1φ
2
2. Since all the terms are positive, w1 ≥ 0. Moreover, w1 ≤ 0 because υ ≥ 0.

So we have 0 ≤ w1 ≤ 1, and this property holds for w2 as well.
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• Assuming that γ1 = γ2 = φ1 but φ2 = 0, we have:

ψ̄1 =
1

2− ρ2
ψ̃1 +

1− ρ2

2− ρ2
v1 +

ρ

2− ρ2

(
v2 − ψ̃2

)
and:

ψ̄2 = v2

• Assuming that γ1 = γ2 = φ1 but φ2 =∞, we have:

ψ̄1 =
1

2
ψ̃1 +

1

2
v1

and:
ψ̄2 = ψ̃2 +

ρ

2

(
v1 − ψ̃1

)
�

Property 15. The conditional risk premia satisfy the following decomposition:

ψ̄ = w � ψ̃ + (1m − w)� vψ︸ ︷︷ ︸
weighted average

+ Λ
(
vψ − ψ̃

)
︸ ︷︷ ︸
correction term

where w ≥ 0m.

Proof. We have:

ψ̄ = ψ̃ +Aψ

(
vψ − ψ̃

)
= Imψ̃ + diag

(
Aψ
) (
vψ − ψ̃

)
+
(
Aψ − diag

(
Aψ
))(

vψ − ψ̃
)

=
(
Im − diag

(
Aψ
))
ψ̃ + diag

(
Aψ
)
vψ +

(
Aψ − diag

(
Aψ
))(

vψ − ψ̃
)

= w � ψ̃ + (1m − w)� vψ + Λ
(
vψ − ψ̃

)
where w = diag

(
Im −Aψ

)
≥ 0m and Λ = Aψ−diag

(
Aψ
)
. We need to prove that Im−Aψ =

Im − Γψ
(
Γψ + Φψ

)−1
has positive diagonal elements. �

A.2.3 Moore-Penrose inverse of the product of a full-rank matrix with a diag-
onal matrix

Property I. Let A ∈ Rn×m and Λ ∈ Rm×m. We assume that Λ is a diagonal matrix with
det Λ 6= 0. In the general case, it is difficult to prove that the Moore-Penrose inverse of
the product AΛ is the product of Λ−1 and A+. However, if we assume that A is a full-rank
matrix, we have:

(AΛ)
+

= Λ−1A+

Proof. M+ is a Moore-Penrose inverse of M if M+ satisfies the four criteria: (1) MM+M =
M , (2) M+MM+ = M+, (3) MM+ is hermitian and (4) M+M is hermitian. Let B =
Λ−1A+ be the candidate Moore-Penrose matrix. In the general case, we can prove19 (1),

19We have: 
(AΛ)B (AΛ) = (AΛ) Λ−1A+ (AΛ) = AA+AΛ = AΛ
B (AΛ)B = Λ−1A+ (AΛ) Λ−1A+ = Λ−1A+AA+ = Λ−1A+ = B
(AΛB)∗ =

(
AΛΛ−1A+

)∗
=
(
AA+

)∗
= AA+ = AΛΛ−1A+ = AΛB

(BAΛ)∗ =
(
Λ−1A+AΛ

)∗
= ΛA+AΛ−1 6= Λ−1A+AΛ 6= BAΛ
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(2), and (3), but not (4). Now, assume that A is a full-rank matrix with n > m. In this

case, we have A+ =
(
A>A

)−1
A>. Since we have already proved (1), (2), and (3), we only

need to prove (4). We have

B = Λ−1A+ = Λ−1
(
A>A

)−1

A>

and:

BAΛ = Λ−1
(
A>A

)−1

A>AΛ = Λ−1Λ = Im

Since I∗m = Im, it follows that (BAΛ)
∗

= BAΛ. We conclude that B = Λ−1A+ is the
Moore-Penrose inverse of AΛ. �

A.3 Factor grouping methodology

Barra risk models typically use a mixture of different levels of the GICS hierarchy as industry
factors. In practice, we prefer to focus on the GICS sector level (11 sectors) or industry
group level (25 industry groups) and present the corresponding factor grouping method in
this section. Mathematically, the cross-section multi-factor model takes the following form:

Ri (t)− r (t) = βcountry
i F country (t) +

nstyle∑
j=1

βstyle
i,j F style

j (t) +

nindustry∑
j=1

βindustry
i,j F industry

j (t) + εi (t) (12)

where Ri (t) − r (t) is the excess return of asset i at time t, F country (t) is the country risk

factor, F industry
j (t) is a set of industry risk factors, F style

j (t) is a set of style risk factors and
εi (t) is the idiosyncratic risk factor. According to Barra (1998), the following optimization
represents the cross-sectional weighted regression that the USSLOW model uses to estimate
the model:

β̂ = arg min

n∑
i=1

ρiε
2
i (t) s.t.

nindustry∑
j=1

ωjF
industry
j (t) = 0 (13)

where ρi ∝
√
ci is the weight coefficient of stock i, ci is the market capitalization of asset i,

and ωj =
∑
i∈industryj

ci is the market capitalization of industry j. A simple approach for

factor grouping would be to re-estimate the entire model, i.e., instead of using 60 industry
factors in the USSLOW model, we would simply use 11 industry factors. The advantage
of this approach is that we use the same methodology as the Barra risk model and the
interpretation of the new industry factors remains the same. However, this method requires
a high degree of data integrity and cleanliness.

Instead of re-estimating the entire Barra risk model, we could explore an alternative
approach where we re-estimate only a portion of the current model. For example, in the
USSLOW model, we would like to replace the block of industry factors with a new one:

Ri (t)− r (t) = βcountry
i F country (t) +

nstyle∑
j=1

βstyle
i,j F style

j (t) +

nsector∑
j=1

βsector
i,j F sector

j (t) + εi (t) (14)
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With the other terms kept unchanged, we look for both βsector
i,j and F sector

j (t) to satisfy the
equality condition:

nindustry∑
j=1

βindustry
i,j F industry

j (t) =

nsector∑
j=1

βsector
i,j F sector

j (t)

The above system of equations can be solved sector by sector. For example, we want to
merge 4 industries (Banks, Diversified Financials, Insurance Brokers and Reinsurance and
Life Health and Multi-line Insurance) into a single sector called Financials:

βbanks
1

βbanks
2

...
βbanks
n

F banks (t) +


βdiv.fin

1

βdiv.fin
2

...
βdiv.fin
n

F div.fin (t) + · · · =


βfinancials

1

βfinancials
2

...
βfinancials
n

F financials (t) (15)

In this case, since we have n + 1 unknown variables and n equations, we will get infinitely
many solutions to this system of equations. Therefore, we must include an additional equa-
tion, such as:

ωbanksF banks (t) + ωdiv.finF div.fin (t) + · · · = ωfinancialsF financials (t) (16)

where ωbanks, ωdiv.fin, and ωfinancials = ωbanks + ωdiv.fin + · · · are the market capitalization
of industry factors Banks, Diversified Financials and sector Financials. Then the system of
equations has a unique solution. By solving Equations (15) and (16), we get:

F financials (t) =
ωbanksF banks (t) + ωdiv.finF div.fin (t) + · · ·

ωbanks + ωdiv.fin + · · ·
(17)

and:

βfinancials
i =

βbanks
i F banks (t) + βdiv.fin

i F div.fin (t) + · · ·
F financials (t)

(18)

The advantage of this approach is that we do not have to re-estimate the entire weighted
regression problem. In this way, F country (t), F style

j (t) and εi (t) remain unchanged. In
addition, as shown in Equation (17), the new sector factor is a linear combination of the
previous industry factors. Therefore, all style factors remain pure factors, i.e., pure style
factor portfolios have zero exposure to the new industry factors. The new sector factor
returns can still be interpreted as pure industry factor portfolios, that are 100% long the
respective sector and 100% short the country factor. However, the interpretation of the
factor exposure βfinancials

i is less straightforward.
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B Description of the Barra style factors

Table 37: List of style factors used in the USSLOW model

Style Factor Description
Beta Explains common variations in stock returns due to different stock sen-

sitivities to market or systematic risk that cannot be explained by the
US Country factor

Dividend Yield Captures differences in stock returns attributable to stock’s historical
and predicted dividend-to-price ratios

Earnings Quality Explains stock return differences due to uncertainty around company op-
erating fundamentals (sales, earnings, cash flows) and the accrual com-
ponents of their earnings

Earnings Yield Describes stock return differences due to various ratios of the company’s
earnings relative to its price

Growth Measures company growth prospects using historical sales growth and
historical and predicted earnings growth

Leverage Captures common variation in stock returns due to differences in the
level of company leverage

Liquidity Captures common variations in stock returns due to the amount of rel-
ative trading and differences in the impact of trading on stock returns

Long-Term Reversal Explains common variation in returns related to a long-term (five years
ex. recent thirteen months) stock price behavior

Management Quality A combination of asset, investment, net issuance growth measures that
captures common variation in stock returns of companies experiencing
rapid growth or contraction of assets

Mid Capitalization Explains the returns of mid-cap stocks relative to large and small-cap
stocks by capturing deviations from linearity in the relationship between
returns and the Size factor

Momentum Explains common variation in stock returns related to recent (twelve
months) stock price behavior

Profitability A combination of profitability measures that characterizes efficiency of
a firm’s operations and total activities

Prospect Explains common variation in stock returns that have exhibited a
lottery-like behavior identified through a combination of stock return
skewness over a long horizon and drawdown in returns over the recent
period

Residual Volatility Captures relative volatility in stock returns that is not explained by
differences in stock sensitivities to market returns

Size Captures differences in stock returns and risk due to differences in the
market capitalization of companies

Value Captures the extent to which a company is overpriced or underpriced us-
ing a combination of several relative valuation metrics and one structural
valuation factor

Source: MSCI (2024) & Bayraktar et al. (2014).

C Additional results
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Figure 12: Implied risk premium of style factors in bps (MSCI USA/MinVol Index, March
2024)
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Figure 13: Implied risk premium of style factors in bps (MSCI USA/MinVol Index, March
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Figure 14: Implied risk premium of sectors in bps (MSCI USA/MinVol Index, March 2024)
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Figure 15: Asset risk premia (MSCI USA/MinVol Index, March 2024)
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Figure 16: Relationship between xi and π̃ (MSCI USA/MinVol Index, March 2024)
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Figure 17: Relationship between σi and π̃ (MSCI USA/MinVol Index, March 2024)
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