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General information

1 Overview
The objective of this course is to understand the theoretical and
practical aspects of risk management

2 Prerequisites
M1 Finance or equivalent

3 ECTS
4

4 Keywords
Finance, Risk Management, Applied Mathematics, Statistics

5 Hours
Lectures: 36h, Training sessions: 15h, HomeWork: 30h

6 Evaluation
There will be a final three-hour exam, which is made up of questions
and exercises

7 Course website
http://www.thierry-roncalli.com/RiskManagement.html
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Objective of the course

The objective of the course is twofold:

1 knowing and understanding the financial regulation (banking and
others) and the international standards (especially the Basel Accords)

2 being proficient in risk measurement, including the mathematical
tools and risk models
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Class schedule

Course sessions

September 15 (6 hours, AM+PM)

September 22 (6 hours, AM+PM)

September 19 (6 hours, AM+PM)

October 6 (6 hours, AM+PM)

October 13 (6 hours, AM+PM)

October 27 (6 hours, AM+PM)

Tutorial sessions

October 20 (3 hours, AM)

October 20 (3 hours, PM)

November 10 (3 hours, AM)

November 10 (3 hours, PM)

November 17 (3 hours, PM)

Class times: Fridays 9:00am-12:00pm, 1:00pm–4:00pm, University of Evry, Room 209 IDF
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Agenda

Lecture 1: Introduction to Financial Risk Management

Lecture 2: Market Risk

Lecture 3: Credit Risk

Lecture 4: Counterparty Credit Risk and Collateral Risk

Lecture 5: Operational Risk

Lecture 6: Liquidity Risk

Lecture 7: Asset Liability Management Risk

Lecture 8: Model Risk

Lecture 9: Copulas and Extreme Value Theory

Lecture 10: Monte Carlo Simulation Methods

Lecture 11: Stress Testing and Scenario Analysis

Lecture 12: Credit Scoring Models
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Agenda

Tutorial Session 1: Market Risk

Tutorial Session 2: Credit Risk

Tutorial Session 3: Counterparty Credit Risk and Collateral Risk

Tutorial Session 4: Operational Risk & Asset Liability Management
Risk

Tutorial Session 5: Copulas, EVT & Stress Testing
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Textbook

Roncalli, T. (2020), Handbook of Financial Risk Management,
Chapman & Hall/CRC Financial Mathematics Series.
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Additional materials

Slides, tutorial exercises and past exams can be downloaded at the
following address:

http://www.thierry-roncalli.com/RiskManagement.html

Solutions of exercises can be found in the companion book, which can
be downloaded at the following address:

http://www.thierry-roncalli.com/RiskManagementBook.html
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Agenda

Lecture 1: Introduction to Financial Risk Management

Lecture 2: Market Risk

Lecture 3: Credit Risk

Lecture 4: Counterparty Credit Risk and Collateral Risk

Lecture 5: Operational Risk

Lecture 6: Liquidity Risk

Lecture 7: Asset Liability Management Risk

Lecture 8: Model Risk

Lecture 9: Copulas and Extreme Value Theory

Lecture 10: Monte Carlo Simulation Methods

Lecture 11: Stress Testing and Scenario Analysis

Lecture 12: Credit Scoring Models
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Uniform random numbers
Non-uniform random numbers
Random vectors
Random matrices

Uniform random numbers

The idea is to build a pseudorandom sequence S and repeat this sequence
as often as necessary
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Linear congruential generator

The most famous and used algorithm is the linear congruential
generator (LCG):

xn = (a · xn−1 + c) modm

un = xn/m

where:

a is the multiplicative constant
c is the additive constant
m is the modulus (or the order of the congruence)

The initial number x0 is called the seed

{x1, x2, . . . , xn} is a sequence of pseudorandom integer numbers
(0 ≤ xn < m)

{u1, u2, . . . , un} is a sequence of uniform random variates

The maximum period is m
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Linear congruential generator

Example #1

If we consider that a = 3, c = 0, m = 11 and x0 = 1, we obtain the
following sequence:

{1, 3, 9, 5, 4, 1, 3, 9, 5, 4, 1, 3, 9, 5, 4, . . .}

The period length is only five, meaning that only five uniform random
variates can be generated: 0.09091, 0.27273, 0.81818, 0.45455 and
0.36364
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Linear congruential generator

The minimal standard LCG proposed by Lewis et al. (1969) is defined by
a = 75, c = 0 and m = 231 − 1
Its period length is equal to m − 1 = 231 − 2 ≈ 2.15× 109

Table: Simulation of 10 uniform pseudorandom numbers

n xn un xn un
0 1 0.000000 123 456 0.000057
1 16 807 0.000008 2 074 924 992 0.966212
2 282 475 249 0.131538 277 396 911 0.129173
3 1 622 650 073 0.755605 22 885 540 0.010657
4 984 943 658 0.458650 237 697 967 0.110687
5 1 144 108 930 0.532767 670 147 949 0.312062
6 470 211 272 0.218959 1 772 333 975 0.825307
7 101 027 544 0.047045 2 018 933 935 0.940139
8 1 457 850 878 0.678865 1 981 022 945 0.922486
9 1 458 777 923 0.679296 466 173 527 0.217079

10 2 007 237 709 0.934693 958 124 033 0.446161
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Linear congruential generator

Figure: Lattice structure of the linear congruential generator
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Multiple recursive generator

We have

xn =

(
k∑

i=1

ai · xn−i + c

)
modm

The famous MRG32k3a generator of L’Ecuyer (1999) uses two 32-bit
multiple recursive generators:{

xn = (1403580 · xn−2 − 810728 · xn−3) modm1

yn = (527612 · yn−1 − 1370589 · yn−3) modm2

where m1 = 232 − 209 and m2 = 232 − 22853. The uniform random
variate is then equal to:

un =
xn − yn + 1 {xn ≤ yn} ·m1

m1 + 1

The period length of this generator is equal to 2191 ≈ 3× 1057
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We now consider X a random variable whose distribution function is noted
F. There are many ways to simulate X , but all of them are based on
uniform random variates
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Method of inversion
Continuous random variables

We assume that F is continuous

Let Y = F (X ) be the integral transform of X

Its cumulative distribution function G is equal to:

G (y) = Pr {Y ≤ y}
= Pr {F (X ) ≤ y}
= Pr

{
X ≤ F−1 (y)

}
= F

(
F−1 (y)

)
= y

where G (0) = 0 and G (1) = 1
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Method of inversion
Continuous random variables

We deduce that F (X ) has a uniform distribution U[0,1]:

F (X ) ∼ U[0,1]

IIf U is a uniform random variable, then F−1 (U) is a random variable
whose distribution function is F:

U ∼ U[0,1] ⇒ F−1 (U) ∼ F

To simulate a sequence of random variates {x1, . . . , xn}, we can
simulate a sequence of uniform random variates {u1, . . . , un} and
apply the transform xi ← F−1 (ui )
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Example #2

If we consider the generalized uniform distribution U[a,b], we have
F (x) = (x − a) / (b − a) and F−1 (u) = a + (b − a) u. The simulation of
random variates xi is deduced from the uniform random variates ui by
using the following transform:

xi ← a + (b − a) ui
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Example #3

In the case of the exponential distribution E (λ), we have
F (x) = 1− exp (−λx). We deduce that:

xi ← −
ln (1− ui )

λ

Since 1− U is also a uniform distributed random variable, we have:

xi ← −
ln (ui )

λ
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Example #4

In the case of the Pareto distribution P (α, x−), we have

F (x) = 1− (x/x−)−α and F−1 (u) = x− (1− u)−1/α. We deduce that:

xi ←
x−

(1− ui )
1/α
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The method of inversion is easy to implement when we know the
analytical expression of F−1

When it is not the case, we use the Newton-Raphson algorithm:

xm+1
i = xmi +

ui − F (xmi )

f (xmi )

where xmi is the solution of the equation F (x) = u at the iteration m

If we apply this algorithm to the Gaussian distribution N (0, 1), we
have:

xm+1
i = xmi +

ui − Φ (xmi )

φ (xmi )
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In the case of a discrete probability distribution
{(x1, p1) , (x2, p2) , . . . , (xn, pn)} where x1 < x2 < . . . < xn, we have:

F−1 (u) =


x1 if 0 ≤ u ≤ p1

x2 if p1 < u ≤ p1 + p2

...

xn if
∑n−1

k=1 pk < u ≤ 1
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We assume that:

xi 1 2 4 6 7 9 10
pi 10% 20% 10% 5% 20% 30% 5%

F (xi ) 10% 30% 40% 45% 65% 95% 100%

The inverse function is a step function

If u = 0.5517, Then X = F−1 (u) = F−1 (0.5517) = 7
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Figure: Inversion method when X is a discrete random variable
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Example #5

If we apply the method of inversion to the Bernoulli distribution B (p), we
have:

x ←
{

0 if 0 ≤ u ≤ 1− p
1 if 1− p < u ≤ 1

or:

x ←
{

1 if u ≤ p
0 if u > p

Thierry Roncalli Course 2023-2024 in Financial Risk Management 26 / 195



Random variate generation
Simulation of stochastic processes

Monte Carlo methods

Uniform random numbers
Non-uniform random numbers
Random vectors
Random matrices

Method of inversion
Piecewise distribution functions

A piecewise distribution function is defined as follows:

F (x) = Fm (x) if x ∈
]
x?m−1, x

?
m

]
where x?m are the knots of the piecewise function and:

Fm+1 (x?m) = Fm (x?m)

In this case, the simulated value xi is obtained using a search
algorithm:

xi ← F−1
m (ui ) if F

(
x?m−1

)
< ui ≤ F (x?m)
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We consider the piecewise exponential model

The survival function has the following expression:

S (t) = S
(
t?m−1

)
e−λm(t−t?m−1) if t ∈

]
t?m−1, t

?
m

]
We know that S (τ ) ∼ U

It follows that:

ti ← t?m−1 +
1

λm
ln

S
(
t?m−1

)
ui

if S (t?m) < ui ≤ S
(
t?m−1

)
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Example #6

We model the default time τ with the piecewise exponential model and
the following parameters:

λ =

 5% if t is less or equal than one year
8% if t is between one and five years
12% if t is larger than five years
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We have S (0) = 1, S (1) = 0.9512 and S (5) = 0.6907. We deduce that:

ti ←

 0 + (1/0.05) · ln (1/ui ) if ui ∈ [0.9512, 1]
1 + (1/0.08) · ln (0.9512/ui ) if ui ∈ [0.6907, 0.9512[
5 + (1/0.12) · ln (0.6907/ui ) if ui ∈ [0, 0.6907[

Table: Simulation of the piecewise exponential model

ui t?m−1 S
(
t?m−1

)
λm ti

0.9950 0 1.0000 0.05 0.1003
0.3035 5 0.6907 0.12 11.8531
0.5429 5 0.6907 0.12 7.0069
0.9140 1 0.9512 0.08 1.4991
0.7127 1 0.9512 0.08 4.6087
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Method of transformation

Let {Y1,Y2, . . .} be a vector of independent random variables. The
simulation of the random variable X = g (Y1,Y2, . . .) is straightforward if
we know how to easily simulate the random variables Yi . We notice that
the inversion method is a particular case of the transform method, because
we have:

X = g (U) = F−1 (U)
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Method of transformation

The Binomial random variable is the sum of n iid Bernoulli random
variables:

B (n, p) =
n∑

i=1

Bi (p)

We simulate the Binomial random variate x using n uniform random
numbers:

x =
n∑

i=1

1 {ui ≤ p}
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Method of transformation

To simulate the chi-squared random variable χ2 (ν), we can use the
following relationship:

χ2 (ν) =
ν∑

i=1

χ2
i (1) =

ν∑
i=1

(Ni (0, 1))2
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Box-Muller algorithm

if U1 and U2 are two independent uniform random variables, then X1 and
X2 defined by: {

X1 =
√
−2 lnU1 · cos (2πU2)

X2 =
√
−2 lnU1 · sin (2πU2)

are independent and follow the Gaussian distribution distribution N (0, 1)
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Method of transformation

If Nt is a Poisson process with intensity λ, the duration T between
two consecutive events is an exponential:

Pr (T ≤ t) = 1− e−λt

Since the durations are independent, we have:

T1 + T2 + . . .+ Tn =
n∑

i=1

Ei

where Ei ∼ E (λ)

Because the Poisson random variable is the number of events that
occur in the unit interval of time, we also have:

X = max {n : T1 + T2 + . . .+ Tn ≤ 1} = max

{
n :

n∑
i=1

Ei ≤ 1

}
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Method of transformation

We notice that:

n∑
i=1

Ei = − 1

λ

n∑
i=1

lnUi = − 1

λ
ln

n∏
i=1

Ui

where Ui are iid uniform random variables

We deduce that:

X = max

{
n : − 1

λ
ln

n∏
i=1

Ui ≤ 1

}
= max

{
n :

n∏
i=1

Ui ≥ e−λ

}
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Method of transformation

We can then simulate the Poisson random variable with the following
algorithm:

1 set n = 0 and p = 1;

2 calculate n = n + 1 and p = p · ui where ui is a uniform random
variate;

3 if p ≥ e−λ, go back to step 2; otherwise, return X = n − 1
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Theorem

F (x) and G (x) are two distribution functions such that
f (x) ≤ cg (x) for all x with c > 1

We note X ∼ G and consider an independent uniform random
variable U ∼ U[0,1]

Then, the conditional distribution function of X given that
U ≤ f (X ) / (cg (X )) is F (x)
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Proof

Let us introduce the random variables B and Z :

B = 1

{
U ≤ f (X )

cg (X )

}
and Z = X

∣∣∣∣U ≤ f (X )

cg (X )

We have:

Pr {B = 1} = Pr

{
U ≤ f (X )

cg (X )

}
= E

[
f (X )

cg (X )

]
=

∫ +∞

−∞

f (x)

cg (x)
g (x) dx

=
1

c

∫ +∞

−∞
f (x) dx

=
1

c
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Proof

The distribution function of Z is defined by:

Pr {Z ≤ x} = Pr

{
X ≤ x

∣∣∣∣U ≤ f (X )

cg (X )

}
We deduce that:

Pr {Z ≤ x} =

Pr

{
X ≤ x ,U ≤ f (X )

cg (X )

}
Pr

{
U ≤ f (X )

cg (X )

} = c

∫ x

−∞

∫ f (x)/(cg(x))

0

g (x) du dx

= c

∫ x

−∞

f (x)

cg (x)
g (x) dx =

∫ x

−∞
f (x) dx

= F (x)

This proves that Z ∼ F
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Acceptance-rejection algorithm

1 generate two independent random variates x and u from G and U[0,1];

2 calculate v as follows:

v =
f (x)

cg (x)

3 if u ≤ v , return x (‘accept’); otherwise, go back to step 1 (‘reject’)

Remark

The underlying idea of this algorithm is then to simulate the distribution
function F by assuming that it is easier to generate random numbers from
G, which is called the proposal distribution. However, some of these
random numbers must be ‘rejected ’, because the function c · g (x)
‘dominates’ the density function f (x)
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The number of iterations N needed to successfully generate Z has a
geometric distribution G (p), where p = Pr {B = 1} = c−1 is the
acceptance ratio

The average number of iterations is equal to:

E [N] = 1/p = c

To maximize the efficiency (or the acceptance ratio) of the algorithm,
we have to choose the constant c such that:

c = sup
x

f (x)

g (x)

Thierry Roncalli Course 2023-2024 in Financial Risk Management 42 / 195



Random variate generation
Simulation of stochastic processes

Monte Carlo methods

Uniform random numbers
Non-uniform random numbers
Random vectors
Random matrices

Rejection sampling

We consider the normal distribution N (0, 1)

We use the Cauchy distribution function as the proposal distribution:

g (x) =
1

π (1 + x2)

We can show that:

φ (x) ≤
√

2π

e0.5
g (x)

meaning that c ≈ 1.52

We have:

G (x) =
1

2
+

1

π
arctan x

and:

G−1 (u) = tan

(
π

(
u − 1

2

))
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Figure: Rejection sampling applied to the normal distribution
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Acceptance-rejection algorithm for simulating N (0, 1)

1 generate two independent uniform random variates u1 and u2 and set:

x ← tan

(
π

(
u1 −

1

2

))
2 calculate v as follows:

v =
e0.5φ (x)√

2πg (x)
=

(
1 + x2

)
2e(x2−1)/2

3 if u2 ≤ v , accept x ; otherwise, go back to step 1

The acceptance ratio is 1/1.52 ≈ 65.8%
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Table: Simulation of the standard Gaussian distribution using the
acceptance-rejection algorithm

u1 u2 x v test z
0.9662 0.1291 9.3820 0.0000 reject
0.0106 0.1106 −30.0181 0.0000 reject
0.3120 0.8253 −0.6705 0.9544 accept −0.6705
0.9401 0.9224 5.2511 0.0000 reject
0.2170 0.4461 −1.2323 0.9717 accept −1.2323
0.6324 0.0676 0.4417 0.8936 accept 0.4417
0.6577 0.1344 0.5404 0.9204 accept 0.5404
0.1596 0.6670 −1.8244 0.6756 accept −1.8244
0.4183 0.3872 −0.2625 0.8513 accept −0.2625
0.9625 0.0752 8.4490 0.0000 reject
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Figure: Comparison of the exact and simulated densities
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Method of mixtures

A finite mixture can be decomposed as a weighted sum of distribution
functions:

F (x) =
n∑

k=1

πk · Gk (x)

where πk ≥ 0 and
∑n

k=1 πk = 1
The probability density function is:

f (x) =
n∑

k=1

πk · gk (x)

To simulate the probability distribution F, we introduce the random
variable B, whose probability mass function is defined by:

p (k) = Pr {B = k} = πk

It follows that:

F (x) =
n∑

k=1

Pr {B = k} · Gk (x)
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Method of mixtures

We deduce the following algorithm:

1 generate the random variate b from the probability mass function
p (k)

2 generate the random variate x from the probability distribution Gb (x)
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Method of mixtures

The previous approach can be easily extended to continuous mixtures:

f (x) =

∫
Ω

π (ω) g (x ;ω) dω

where ω ∈ Ω is a parameter of the distribution G
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Method of mixtures

The negative binomial distribution is a gamma-Poisson mixture
distribution: {

NB (r , p) ∼ P (Λ)
Λ ∼ G (r , (1− p) /p)

To simulate the negative binomial distribution, we simulate

1 the gamma random variate g ∼ G (r , (1− p) /p)

2 and then the Poisson random variable p, whose parameter λ is equal
to g
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Random vectors

The random vector X = (X1, . . . ,Xn) has a given distribution function
F (x) = F (x1, . . . , xn)
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Method of conditional distributions

If X1, . . . ,Xn are independent, we have:

F (x1, . . . , xn) =
n∏

i=1

Fi (xi )

To simulate X , we can then generate each component Xi ∼ Fi

individually, for example by applying the method of inversion
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Method of conditional distributions

If X1, . . . ,Xn are dependent, we have:

F (x1, . . . , xn) = F1 (x1)F2|1 (x2 | x1)F3|1,2 (x3 | x1, x2)× · · · ×
Fn|1,...,n−1 (xn | x1, . . . , xn−1)

=
n∏

i=1

Fi|1,...,i−1 (xi | x1, . . . , xi−1)

where Fi|1,...,i−1 (xi | x1, . . . , xi−1) is the conditional distribution of Xi

given X1 = x1, . . . ,Xi−1 = xi−1

This ‘conditional ’ random variable is denoted by
Yi = Xi | X1 = x1, . . . ,Xi−1 = xi−1

The random variables (Y1, . . . ,Yn) are independent
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Method of conditional distributions

We obtain the following algorithm:

1 generate x1 from F1 (x) and set i = 2

2 generate xi from Fi|1,...,i−1 (x | x1, . . . , xi−1) given
X1 = x1, . . . ,Xi−1 = xi−1 and set i = i + 1

3 repeat step 2 until i = n
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Method of conditional distributions

Fi|1,...,i−1 (x | x1, . . . , xi−1) is a univariate distribution function, which
depends on the argument x and parameters x1, . . . , xi−1. To simulate it,
we can therefore use the method of inversion:

xi ← F−1
i|1,...,i−1 (ui | x1, . . . , xi−1)

where F−1
i|1,...,i−1 is the inverse of the conditional distribution function and

ui is a uniform random variate
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Method of conditional distributions

Example #7

We consider the bivariate logistic distribution defined as:

F (x1, x2) =
(
1 + e−x1 + e−x2

)−1
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Method of conditional distributions

We have F1 (x1) = F (x1,+∞) = (1 + e−x1 )
−1

. We deduce that the
conditional distribution of X2 given X1 = x1 is:

F2|1 (x2 | x1) =
F (x1, x2)

F1 (x1)

=
1 + e−x1

1 + e−x1 + e−x2

We obtain:
F−1

1 (u) = ln u − ln (1− u)

and:
F−1

2|1 (u | x1) = ln u − ln (1− u)− ln
(
1 + e−x1

)
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Method of conditional distributions

We deduce the following algorithm:

1 generate two independent uniform random variates u1 and u2;

2 generate x1 from u1:

x1 ← ln u1 − ln (1− u1)

3 generate x2 from u2 and x1:

x2 ← ln u2 − ln (1− u2)− ln
(
1 + e−x1

)
Because we have (1 + e−x1 )

−1
= u1, the last step can be replaced by:

3 generate x2 from u2 and u1:

x2 ← ln

(
u1u2

1− u2

)
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Method of conditional distributions

The method of conditional distributions can be used for simulating
uniform random vectors (U1, . . . ,Un) generated by copula functions

We have

C (u1, . . . , un) = C1 (u1)C2|1 (u2 | u1)C3|1,2 (u3 | u1, u2)× · · · ×
Cn|1,...,n−1 (un | u1, . . . , un−1)

=
n∏

i=1

Ci|1,...,i−1 (ui | u1, . . . , ui−1)

where Ci|1,...,i−1 (ui | u1, . . . , ui−1) is the conditional distribution of Ui

given U1 = u1, . . . ,Ui−1 = ui−1

By definition, we have C1 (u1) = u1
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Method of conditional distributions

We obtain the following algorithm:

1 generate n independent uniform random variates v1, . . . , vn;

2 generate u1 ← v1 and set i = 2;

3 generate ui by finding the root of the equation:

Ci|1,...,i−1 (ui | u1, . . . , ui−1) = vi

and set i = i + 1;

4 repeat step 3 until i = n.

For some copula functions, there exists an analytical expression of the
inverse of the conditional copula. In this case, the third step is replaced by:

3 generate ui by the inversion method:

ui ← C−1
i|1,...,i−1 (vi | u1, . . . , ui−1)
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Method of conditional distributions

For any probability distribution, the conditional distribution can be
calculated as follows:

Fi|1,...,i−1 (xi | x1, . . . , xi−1) =
F (x1, . . . , xi−1, xi )

F (x1, . . . , xi−1)

In particular, we have:

∂1 F (x1, x2) = ∂1

(
F1 (x1) · F2|1 (x2 | x1)

)
= f1 (x1) · F2|1 (x2 | x1)

For copula functions, the density f1 (x1) is equal to 1, meaning that:

C2|1 (u2 | u1) = ∂1 C (u1, u2)

We can generalize this result and show that the conditional copula given
some random variables Ui for i ∈ Ω is equal to the cross-derivative of the
copula function C with respect to the arguments ui for i ∈ Ω
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Method of conditional distributions

Archimedean copulas are defined as:

C (u1, u2) = ϕ−1 (ϕ (u1) + ϕ (u2))

where ϕ (u) is the generator function

We have:
ϕ (C (u1, u2)) = ϕ (u1) + ϕ (u2)

and:

ϕ′ (C (u1, u2)) · ∂ C (u1, u2)

∂ u1
= ϕ′ (u1)

We deduce the following expression of the conditional copula:

C2|1 (u2 | u1) =
∂ C (u1, u2)

∂ u1
=

ϕ′ (u1)

ϕ′ (ϕ−1 (ϕ (u1) + ϕ (u2)))

The calculation of the inverse function gives:

C−1
2|1 (v | u1) = ϕ−1

(
ϕ

(
ϕ′−1

(
ϕ′ (u1)

v

))
− ϕ (u1)

)
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Method of conditional distributions

We obtain the following algorithm for simulating Archimedean copulas:

1 generate two independent uniform random variates v1 and v2;

2 generate u1 ← v1;

3 generate u2 by the inversion method:

u2 ← ϕ−1

(
ϕ

(
ϕ′−1

(
ϕ′ (u1)

v2

))
− ϕ (u1)

)
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Method of conditional distributions

Example #8

We consider the Clayton copula:

C (u1, u2) =
(
u−θ1 + u−θ2 − 1

)−1/θ
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Method of conditional distributions

The Clayton copula is an Archimedean copula, whose generator function is:

ϕ (u) = u−θ − 1

We deduce that:

ϕ−1 (u) = (1 + u)−1/θ

ϕ′ (u) = −θu−(θ+1)

ϕ′−1 (u) = (−u/θ)−1/(θ+1)

We obtain:

C−1
2|1 (v | u1) =

(
1 + u−θ1

(
v−θ/(θ+1) − 1

))−1//θ

Thierry Roncalli Course 2023-2024 in Financial Risk Management 66 / 195



Random variate generation
Simulation of stochastic processes

Monte Carlo methods

Uniform random numbers
Non-uniform random numbers
Random vectors
Random matrices

Method of conditional distributions

Table: Simulation of the Clayton copula

Random uniform Clayton copula
variates θ = 0.01 θ = 1.5

v1 v2 u1 u2 u1 u2

0.2837 0.4351 0.2837 0.4342 0.2837 0.3296
0.0386 0.2208 0.0386 0.2134 0.0386 0.0297
0.3594 0.5902 0.3594 0.5901 0.3594 0.5123
0.3612 0.3268 0.3612 0.3267 0.3612 0.3247
0.0797 0.6479 0.0797 0.6436 0.0797 0.1704
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Method of transformation

To simulate a Gaussian random vector X ∼ N (µ,Σ), we consider the
following transformation:

X = µ+ A · N

where AA> = Σ and N ∼ N (0, I )

Since Σ is a positive definite symmetric matrix, it has a unique
Cholesky decomposition:

Σ = PP>

where P is a lower triangular matrix
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Method of transformation

The decomposition AA> = Σ is not unique. For instance, if we use the
eigendecomposition:

Σ = UΛU>

we can set A = UΛ1/2. Indeed, we have:

AA> = UΛ1/2Λ1/2U>

= UΛU>

= Σ
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Method of transformation

To simulate a multivariate Student’s t distribution
Y = (Y1, . . . ,Yn) ∼ Tn (Σ, ν), we use the relationship:

Yi =
Xi√
Z/ν

where the random vector X = (X1, . . . ,Xn) ∼ N (0,Σ) and the random
variable Z ∼ χ2 (ν) are independent
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Method of transformation

If X = (X1, . . . ,Xn) ∼ F, then the probability distribution of the
random vector U = (U1, . . . ,Un) defined by:

Ui = Fi (X )

is the copula function C associated to F

To simulate the Normal copula with the matrix of parameters ρ, we
simulate N ∼ N (0, I ) and apply the transformation:

U = Φ (P · N)

where P is the Cholesky decomposition of the correlation matrix ρ

To simulate the Student’s t copulawith the matrix of parameters ρ
and ν degrees of freedom, we simulate T ∼ Tn (ρ, ν) and apply the
transformation:

Ui = Tv (Ti )
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Figure: Simulation of the Normal copula
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Figure: Simulation of the t1 copula
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Method of transformation

Frailty copulas are defined as:

C (u1, . . . , un) = ψ
(
ψ−1 (u1) + . . .+ ψ−1 (un)

)
where ψ (x) is the Laplace transform of a random variable X
They can be generated using the following algorithm:

1 simulate n independent uniform random variates v1, . . . , vn;

2 simulate the frailty random variate x with the Laplace transform ψ;

3 apply the transformation:

(u1, . . . , un)←
(
ψ

(
− ln u1

x

)
, . . . , ψ

(
− ln un

x

))
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Method of transformation

The Clayton copula is a frailty copula where ψ (x) = (1 + x)−1/θ is
the Laplace transform of the gamma random variable G (1/θ, 1)

The algorithm to simulate the Clayton copula is:
x ← G (1/θ, 1)

(u1, . . . , un)←

((
1− ln u1

x

)−1/θ

, . . . ,

(
1− ln un

x

)−1/θ
)
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Figure: Simulation of the Clayton copula

Thierry Roncalli Course 2023-2024 in Financial Risk Management 76 / 195



Random variate generation
Simulation of stochastic processes

Monte Carlo methods

Uniform random numbers
Non-uniform random numbers
Random vectors
Random matrices

Method of transformation

We consider the multivariate distribution F (x1, . . . , xn), whose
canonical decomposition is defined as:

F (x1, . . . , xn) = C (F1 (x1) , . . . ,Fn (xn))

If (U1, . . . ,Un) ∼ C, the random vector
(X1, . . . ,Xn) =

(
F−1

1 (U1) , . . . ,F−1
n (Un)

)
follows the distribution

function F

We deduce the following algorithm:{
(u1, . . . , un)← C
(x1, . . . , xn)←

(
F−1

1 (u1) , . . . ,F−1
n (un)

)
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We assume that τ ∼ E (5%) and LGD ∼ B (2, 2)

We also assume that the default time and the loss given default are
correlated and the dependence function is a Clayton copula
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Figure: Simulation of the correlated random vector (τ ,LGD)
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Remark

The previous algorithms suppose that we know the analytical expression Fi

of the univariate probability distributions in order to calculate the quantile
F−1
i . This is not always the case. For instance, in the operational risk, the

loss of the bank is equal to the sum of aggregate losses:

L =
K∑

k=1

Sk

where Sk is also the sum of individual losses for the kth cell of the
mapping matrix. In practice, the probability distribution of Sk is estimated
by the method of simulations
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The method of the empirical quantile function is implemented as follows:

1 for each random variable Xi , simulate m1 random variates x?i,m and

estimate the empirical distribution F̂i ;

2 simulate a random vector (u1, . . . , un) from the copula function
C (u1, . . . , un);

3 simulate the random vector (x1, . . . , xn) by inverting the empirical
distributions F̂i :

xi ← F̂−1
i (ui )

we also have:

xi ← inf

{
x

∣∣∣∣ 1

m1

∑m1

m=1
1
{
x ≤ x?i,m

}
≥ ui

}
4 repeat steps 2 and 3 m2 times
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X1 ∼ N (0, 1)

X2 ∼ N (0, 1)

The dependence function of (X1,X2) is the Clayton copula with
parameter θ = 3
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Figure: Convergence of the method of the empirical quantile function
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X1 ∼ N (−1, 2), X2 ∼ N (0, 1), Y1 ∼ G (0.5) and Y2 ∼ G (1, 2) are
four independent random variables

Let (Z1 = X1 + Y1,Z2 = X2 · Y2) be the random vector

The dependence function of Z is the t copula with parameters ν = 2
and ρ = −70%

It is not possible to find an analytical expression of the marginal
distributions of Z1 and Z2
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Figure: Simulation of the random variables Z1 and Z2
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Figure: Simulation of the random vector (Z1,Z2)
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Random matrices

Orthogonal and covariance matrices

Correlation matrices

Wishart matrices

⇒ HFRM, Chapter 13, Section 13.1.4, pages 807-813
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Brownian motion

A Brownian motion (or a Wiener process) is a stochastic process
W (t), whose increments are stationary and independent:

W (t)−W (s) ∼ N (0, t − s)

We have: {
W (0) = 0
W (t) = W (s) + ε (s, t)

where ε (s, t) ∼ N (0, t − s) are iid random variables

To simulate W (t) at different dates t1, t2, . . ., we have:

Wm+1 = Wm +
√
tm+1 − tm · εm

where Wm is the numerical realization of W (tm) and εm ∼ N (0, 1)
are iid random variables

In the case of fixed-interval times tm+1 − tm = h, we obtain the
recursion:

Wm+1 = Wm +
√
h · εm
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Geometric Brownian motion

The geometric Brownian motion is described by the following SDE:{
dX (t) = µX (t) dt + σX (t) dW (t)
X (0) = x0

Its solution is given by:

X (t) = x0 · exp

((
µ− 1

2
σ2

)
t + σW (t)

)
= g (W (t))
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1 Simulating the geometric Brownian motion X (t) can be done by
applying the transform method to the process W (t)

2 Another approach to simulate X (t) consists in using the following
formula:

X (t) = X (s) · exp

((
µ− 1

2
σ2

)
(t − s) + σ (W (t)−W (s))

)
We have:

Xm+1 = Xm · exp

((
µ− 1

2
σ2

)
(tm+1 − tm) + σ

√
tm+1 − tm · εm

)
where Xm = X (tm) and εm ∼ N (0, 1) are iid random variables

3 If we consider fixed-interval times, the numerical realization becomes:

Xm+1 = Xm · exp

((
µ− 1

2
σ2

)
h + σ

√
h · εm

)
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Figure: Simulation of the geometric Brownian motion
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Ornstein-Uhlenbeck process

The stochastic differential equation of the Ornstein-Uhlenbeck
process is: {

dX (t) = a (b − X (t)) dt + σ dW (t)
X (0) = x0

The solution of the SDE is:

X (t) = x0e
−at + b

(
1− e−at

)
+ σ

∫ t

0

ea(θ−t) dW (θ)

We also have:

X (t) = X (s) e−a(t−s) + b
(

1− e−a(t−s)
)

+ σ

∫ t

s

ea(θ−t) dW (θ)

where: ∫ t

s

ea(θ−t) dW (θ) ∼ N
(

0,
1− e−2a(t−s)

2a

)
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If we consider fixed-interval times, we obtain the following simulation
scheme:

Xm+1 = Xme
−ah + b

(
1− e−ah

)
+ σ

√
1− e−2ah

2a
· εm

where εm ∼ N (0, 1) are iid random variables
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Figure: Simulation of the Ornstein-Uhlenbeck process
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Let X (t) be the solution of the following SDE:{
dX (t) = µ (t,X ) dt + σ (t,X ) dW (t)
X (0) = x0

The Euler-Maruyama scheme uses the following approximation:

X (t)− X (s) ≈ µ (t,X (s)) · (t − s) + σ (t,X (s)) · (W (t)−W (s))

If we consider fixed-interval times, the Euler-Maruyama scheme
becomes:

Xm+1 = Xm + µ (tm,Xm) h + σ (tm,Xm)
√
h · εm

where εm ∼ N (0, 1) are iid random variables
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The fixed-interval Milstein scheme is:

Xm+1 = Xm + µ (tm,Xm) h + σ (tm,Xm)
√
h · εm +

1

2
σ (tm,Xm) ∂xσ (tm,Xm) h

(
ε2
m − 1

)
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If we consider the geometric Brownian motion, the Euler-Maruyama
scheme is:

Xm+1 = Xm + µXmh + σXm

√
h · εm

whereas the Milstein scheme is:

Xm+1 = Xm + µXmh + σXm

√
h · εm +

1

2
σ2Xmh

(
ε2
m − 1

)
= Xm +

(
µ− 1

2
σ2

)
Xmh + σXm

√
h

(
1 +

1

2
σ
√
hεm

)
εm
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Figure: Comparison of exact, Euler-Maruyama and Milstein schemes (monthly
discretization)
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When we don’t know the analytical solution of X (t), it is natural to
simulate the numerical solution of X (t) using Euler-Maruyama and
Milstein schemes. However, it may be sometimes more efficient to find the
numerical solution of Y (t) = f (t,X (t)) instead of X (t) itself, in
particular when Y (t) is more regular than X (t)
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By It’s lemma, we have:

dY (t) =

(
∂t f (t,X ) + µ (t,X ) ∂x f (t,X ) +

1

2
σ2 (t,X ) ∂2

x f (t,X )

)
dt +

σ (t,X ) ∂x f (t,X ) dW (t)

By using the inverse function X (t) = f −1 (t,Y (t)), we obtain:

dY (t) = µ′ (t,Y ) dt + σ′ (t,Y ) dW (t)

where µ′ (t,Y ) and σ′ (t,Y ) are functions of µ (t,X ), σ (t,X ) and
f (t,X )

We can then simulate the solution of Y (t) using an approximation
scheme and deduce the numerical solution of X (t) by applying the
transformation method:

Xm = f −1 (tm,Ym)
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Let us consider the geometric Brownian motion X (t). The solution of
Y (t) = lnX (t) is equal to:

dY (t) =

(
µ− 1

2
σ2

)
dt + σ dW (t)

We deduce that the Euler-Maruyama (or Milstein) scheme with
fixed-interval times is:

Ym+1 = Ym +

(
µ− 1

2
σ2

)
h + σ

√
h · εm

It follows that:

lnXm+1 = lnXm +

(
µ− 1

2
σ2

)
h + σ

√
h · εm
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The CIR process is dX (t) = (α + βX (t)) dt + σ
√

X (t)dW (t). Using

the transformation Y (t) =
√

X (t), we obtain the following SDE:

dY (t) =

(
1

2

(α + βX (t))√
X (t)

− 1

8

σ2X (t)

X (t)3/2

)
dt +

1

2

σ
√

X (t)√
X (t)

dW (t)

=
1

2Y (t)

(
α + βY 2 (t)− 1

4
σ2

)
dt +

1

2
σ dW (t)

We deduce that the Euler-Maruyama scheme of Y (t) is:

Ym+1 = Ym +
1

2Ym

(
α + βY 2

m −
1

4
σ2

)
h +

1

2
σ
√
h · εm

It follows that:

Xm+1 =

(√
Xm +

1

2
√
Xm

(
α + βXm −

1

4
σ2

)
h +

1

2
σ
√
h · εm

)2
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Let tm be the time when the mth event occurs. The numerical algorithm is
then:

1 we set t0 = 0 and N (t0) = 0

2 we generate a uniform random variate u and calculate the random
variate e ∼ E (λ) with the formula:

e = − ln u

λ

3 we update the Poisson process with:

tm+1 ← tm + e and N (tm+1)← N (tm) + 1

4 we go back to step 2
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The algorithm is initialized with a realization λ of the random intensity Λ
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λ (t) varies with time

The inter-arrival times remain independent and exponentially
distributed with:

Pr {T1 > t} = exp (−Λ (t))

where T1 is the duration of the first event and Λ (t) is the integrated
intensity function:

Λ (t) =

∫ t

0

λ (s) ds

It follows that:

Pr
{
T1 > Λ−1 (t)

}
= exp (−t)⇔ Pr {Λ (T1) > t} = exp (−t)
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We deduce that if {t1, t2, . . . , tM} are the occurrence times of the NHPP
of intensity λ (t), then {Λ (t1) ,Λ (t2) , . . . ,Λ (tM)} are the occurrence
times of the homogeneous Poisson process (HPP) of intensity one.
Therefore, the algorithm is:

1 we simulate t ′m the time arrivals of the homogeneous Poisson process
with intensity λ = 1

2 we apply the transform tm = Λ−1 (t ′m)
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Figure: Simulation of a non-homogenous Poisson process with cyclical intensity
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Let W (t) = (W1 (t) , . . . ,Wn (t)), be a n-dimensional Brownian
motion

Each component Wi (t) is a Brownian motion:

Wi (t)−Wi (s) ∼ N (0, t − s)

We have:
E [Wi (t)Wj (s)] = min (t, s) · ρi,j

where ρi,j is the correlation between the two Brownian motions Wi

and Wj

We deduce that: {
W (0) = 0
W (t) = W (s) + ε (s, t)

where ε (s, t) ∼ Nn (0, (t − s) ρ) are iid random vectors
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It follows that the numerical solution is:

Wm+1 = Wm +
√
tm+1 − tm · P · εm

where P is the Cholesky decomposition of the correlation matrix ρ
and εm ∼ Nn (0, I ) are iid random vectors

In the case of fixed-interval times, the recursion becomes:

Wm+1 = Wm +
√
h · P · εm
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Figure: Brownian motion in the plane (independent case)
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Figure: Brownian motion in the plane (ρ1,2 = 85%)
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We consider the multidimensional geometric Brownian motion:{
dX (t) = µ� X (t) dt + diag (σ � X (t)) dW (t)
X (0) = x0

where X (t) = (X1 (t) , . . . ,Xn (t)), µ = (µ1, . . . , µn),
σ = (σ1, . . . , σn) and W (t) = (W1 (t) , . . . ,Wn (t)) is a

n-dimensional Brownian motion with E
[
W (t)W (t)>

]
= ρ t

If we consider the jth component of X (t), we have:

dXj (t) = µjXj (t) dt + σjXj (t) dWj (t)

The solution of the multidimensional SDE is a multivariate log-normal
process with:

Xj (t) = Xj (0) · exp

((
µj −

1

2
σ2
j

)
t + σjWj (t)

)
where W (t) ∼ Nn (0, ρ t)
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We deduce that the exact scheme to simulate the multivariate GBM
is:

X1,m+1 = X1,m · exp
((
µ1 − 1

2σ
2
1

)
(tm+1 − tm) + σ1

√
tm+1 − tm · ε1,m

)
...

Xj,m+1 = Xj,m · exp
((
µj − 1

2σ
2
j

)
(tm+1 − tm) + σj

√
tm+1 − tm · εj,m

)
...

Xn,m+1 = Xn,m · exp
((
µn − 1

2σ
2
n

)
(tm+1 − tm) + σn

√
tm+1 − tm · εn,m

)
where (ε1,m, . . . , εn,m) ∼ Nn (0, ρ)
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We consider the general SDE:{
dX (t) = µ (t,X (t)) dt + σ (t,X (t)) dW (t)
X (0) = x0

where X (t) and µ (t,X (t)) are n × 1 vectors, σ (t,X (t)) is a n × p
matrix and W (t) is a p × 1 vector

We assume that E
[
W (t)W (t)>

]
= ρ t, where ρ is a p × p

correlation matrix
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The corresponding Euler-Maruyama scheme is:

Xm+1 = Xm + µ (tm,Xm) · (tm+1 − tm) + σ (tm,Xm)
√
tm+1 − tm · εm

where εm ∼ Np (0, ρ)

In the case of a diagonal system, we retrieve the one-dimensional
scheme:

Xj,m+1 = Xj,m+µj (tm,Xj,m)·(tm+1 − tm)+σj,j (tm,Xj,m)·
√
tm+1 − tmεj,m

However, the random variables εj,m and εj′,m may be correlated
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We consider the Heston model:{
dX (t) = µX (t) dt +

√
v (t)X (t) dW1 (t)

dv (t) = a (b − v (t)) dt + σ
√

v (t)dW2 (t)

where E [W1 (t)W2 (t)] = ρ t. By applying the fixed-interval
Euler-Maruyama scheme to (lnX (t) , v (t)), we obtain:

lnXm+1 = lnXm +

(
µ− 1

2
vm

)
h +

√
vmh · ε1,m

and:
vm+1 = vm + a (b − vm) h + σ

√
vmh · ε2,m

Here, ε1,m and ε2,m are two standard Gaussian random variables with
correlation ρ
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The multidimensional version of the Milstein scheme is:

Xj,m+1 = Xj,m + µj (tm,Xm) (tm+1 − tm) +

p∑
k=1

σj,k (tm,Xm) ∆Wk,m +

p∑
k=1

p∑
k′=1

L(k)σj,k′ (tm,Xm) I(k,k′)

where ∆Wk,m = Wk (tm+1)−Wk (tm) and:

L(k)f (t, x) =
n∑

k′′=1

σk′′,k (tm,Xm)
∂ f (t, x)

∂ xk′′

and:

I(k,k′) =

∫ tm+1

tm

∫ s

tm

dWk (t) dWk′ (s)
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In the case of a diagonal system, the Milstein scheme may be simplified as
follows:

Xj,m+1 = Xj,m + µj (tm,Xj,m) (tm+1 − tm) + σj,j (tm,Xj,m) ∆Wj,m +

L(j)σj,j (tm,Xj,m) I(j,j)

where:

I(j,j) =

∫ tm+1

tm

∫ s

tm

dWj (t) dWj (s)

=

∫ tm+1

tm

(Wj (s)−Wj (tm)) dWj (s)

=
1

2

(
(∆Wj,m)2 − (tm+1 − tm)

)
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We deduce that the Milstein scheme is:

Xj,m+1 = Xj,m + µj (tm,Xj,m) (tm+1 − tm) +

σj,j (tm,Xj,m)
√
tm+1 − tmεj,m +

1

2
σj,j (tm,Xj,m) ∂xj σj,j (tm,Xj,m) (tm+1 − tm)

(
ε2
j,m − 1

)
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If we apply the fixed-interval Milstein scheme to the Heston model, we
obtain:

lnXm+1 = lnXm +

(
µ− 1

2
vm

)
h +

√
vmh · ε1,m

and:

vm+1 = vm + a (b − vm) h + σ
√
vmh · ε2,m +

1

4
σ2h

(
ε2

2,m − 1
)

Here, ε1,m and ε2,m are two standard Gaussian random variables with
correlation ρ
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Remark

The multidimensional Milstein scheme is generally not used, because the
terms L(k)σj,k′ (tm,Xm) I(k,k′) are complicated to simulate. For the Heston
model, we obtain a very simple scheme, because we only apply the Milstein
scheme to the process v (t) and not to the vector process (lnX (t) , v (t))
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If we also apply the Milstein scheme to lnX (t), we obtain:

lnXm+1 = lnXm +

(
µ− 1

2
vm

)
h +

√
vmh · ε1,m + Am

where:

Am =
2∑

k=1

2∑
k′=1

(
2∑

k′′=1

σk′′,k (tm,Xm)
σ1,k′ (tm,Xm)

∂ xk′′

)
I(k,k′)

= σ
√
v (t) · 1

2
√

v (t)
· I(2,1)

=
σ

2
· I(2,1)
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Let W2 (t) = ρW1 (t) +
√

1− ρ2W ? (t) where W ? (t) is a Brownian
motion independent from W1 (t). It follows that:

I(2,1) =

∫ tm+1

tm

∫ s

tm

dW2 (t) dW1 (s)

=

∫ tm+1

tm

(
ρW1 (s) +

√
1− ρ2W ? (s)

)
dW1 (s)−∫ tm+1

tm

(
ρW1 (tm) +

√
1− ρ2W ? (tm)

)
dW1 (s)

= ρ

∫ tm+1

tm

(W1 (s)−W1 (tm)) dW1 (s) +

√
1− ρ2

∫ tm+1

tm

(W ? (s)−W ? (tm)) dW1 (s)

and:

I(2,1) =
1

2
ρ
(

(∆W1,m)2 − (tm+1 − tm)
)

+ Bm
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We finally deduce that the multidimensional Milstein scheme of the Heston
model is:

lnXm+1 = lnXm +

(
µ− 1

2
vm

)
h +

√
vmh · ε1,m +

1

4
ρσh

(
ε2

1,m − 1
)

+ Bm

and:

vm+1 = vm + a (b − vm) h + σ
√
vmh · ε2,m +

1

4
σ2h

(
ε2

2,m − 1
)

where Bm is a correction term defined by:

Bm =
√

1− ρ2

∫ tm+1

tm

(W ? (s)−W ? (tm)) dW1 (s)
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A basic example

Suppose we have a circle with radius r and a 2r × 2r square of the
same center. Since the area of the circle is equal to πr2, the
numerical calculation of π is equivalent to compute the area of the
circle with r = 1

In this case, the area of the square is 4, and we have:

π = 4
A (circle)

A (square)

To determine π, we simulate nS random vectors (us , vs) of uniform
random variables U[−1,1] and we obtain:

π = lim
nS→∞

4
nc
n

where nc is the number of points (us , vs) in the circle:

nc =

nS∑
s=1

1
{
u2
s + v2

s ≤ r2
}
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A basic example

Figure: Computing π with 1 000 simulations
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Theoretical framework

We consider the multiple integral:

I =

∫
· · ·
∫

Ω

ϕ (x1, . . . , xn) dx1 · · · dxn

Let X = (X1, . . . ,Xn) be a uniform random vector with probability
distribution U[Ω], such that Ω is inscribed within the hypercube [Ω]
The pdf is:

f (x1, . . . , xn) = 1

We deduce that:

I =

∫
· · ·
∫

[Ω]

1 {(x1, . . . , xn) ∈ Ω} · ϕ (x1, . . . , xn) dx1 · · · dxn

= E [1 {(X1, . . . ,Xn) ∈ Ω} · ϕ (X1, . . . ,Xn)]

= E [h (X1, . . . ,Xn)]

where:

h (x1, . . . , xn) = 1 {(x1, . . . , xn) ∈ Ω} · ϕ (x1, . . . , xn)
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Theoretical framework

Let ÎnS be the random variable defined by:

ÎnS =
1

nS

nS∑
s=1

h (X1,s , . . . ,Xn,s)

where {X1,s , . . . ,Xn,s}s≥1 is a sequence of iid random vectors with
probability distribution U[Ω]

Using the strong law of large numbers, we obtain:

lim
ns→∞

Îns = E [h (X1, . . . ,Xn)]

=

∫
· · ·
∫

Ω

ϕ (x1, . . . , xn) dx1 · · · dxn

Moreover, the central limit theorem states that:

lim
ns→∞

√
nS

(
Îns − I

σ (h (X1, . . . ,Xn))

)
= N (0, 1)
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When nS is large, we can deduce the following confidence interval:[
ÎnS − cα ·

ŜnS√
nS
, ÎnS + cα ·

ŜnS√
nS

]

where α is the confidence level, cα = Φ−1 ((1 + α) /2) and ŜnS is the
usual estimate of the standard deviation:

ŜnS =

√√√√ 1

nS − 1

nS∑
s=1

h2 (X1,s , . . . ,Xn,s)− Îns
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Theoretical framework

Figure: Density function of π̂nS
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Extension to the calculation of mathematical expectations

Let X = (X1, . . . ,Xn) be a random vector with probability distribution
F. We have:

E [ϕ (X1, . . . ,Xn)] =

∫
· · ·
∫
ϕ (x1, . . . , xn) dF (x1, · · · , xn)

=

∫
· · ·
∫
ϕ (x1, . . . , xn) f (x1, · · · , xn) dx1 · · · dxn

=

∫
· · ·
∫

h (x1, . . . , xn) dx1 · · · dxn

where f is the density function

The Monte Carlo estimator of this integral is:

ÎnS =
1

nS

nS∑
s=1

ϕ (X1,s , . . . ,Xn,s)

where {X1,s , . . . ,Xn,s}s≥1 is a sequence of iid random vectors with
probability distribution F
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Extension to the calculation of mathematical expectations

The price of the look-back option with maturity T is given by:

C = e−rTE

[(
S (T )− min

0≤t≤T
S (t)

)+
]

The price S (t) of the underlying asset is given by the following SDE:

dS (t) = rS (t) dt + σS (t) dW (t)

where r is the interest rate and σ is the volatility of the asset
For a given simulation s, we have:

S
(s)
m+1 = S (s)

m · exp

((
r − 1

2
σ2

)
(tm+1 − tm) + σ

√
tm+1 − tm · ε(s)

m

)
where ε

(s)
m ∼ N (0, 1) and T = tM

The Monte Carlo estimator of the option price is then equal to:

Ĉ =
e−rT

nS

nS∑
s=1

(
S

(s)
M −min

m
S (s)
m

)+

Thierry Roncalli Course 2023-2024 in Financial Risk Management 132 / 195



Random variate generation
Simulation of stochastic processes

Monte Carlo methods

Computing integrals
Variance reduction
Quasi-Monte Carlo simulation methods

Extension to the calculation of mathematical expectations

Figure: Computing the look-back option price
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Extension to the calculation of mathematical expectations

Let us consider the following integral:

I =

∫
· · ·
∫

h (x1, . . . , xn) dx1 · · · dxn

We can write it as follows:

I =

∫
· · ·
∫

h (x1, . . . , xn)

f (x1, · · · , xn)
f (x1, · · · , xn) dx1 · · · dxn

where f (x1, · · · , xn) is a multidimensional density function

We deduce that:

I = E
[
h (X1, . . . ,Xn)

f (X1, . . . ,Xn)

]
This implies that we can compute an integral with the MC method by
using any multidimensional distribution function
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Extension to the calculation of mathematical expectations

If we apply this result to the calculation of π, we have:

π =
x

x2+y2≤1
dx dy =

x
1
{
x2 + y2 ≤ 1

}
dx dy

=
x 1

{
x2 + y2 ≤ 1

}
φ (x)φ (y)

φ (x)φ (y) dx dy

We deduce that:

π = E

[
1
{
X 2 + Y 2 ≤ 1

}
φ (X )φ (Y )

]
where X and Y are two independent standard Gaussian random variables.
We can then estimate π by:

π̂nS =
1

nS

nS∑
s=1

1
{
x2
s + y2

s ≤ 1
}

φ (xs)φ (ys)

where xs and ys are two independent random variates from the probability
distribution N (0, 1)
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Extension to the calculation of mathematical expectations

Figure: Computing pi with normal random numbers
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Variance reduction

We consider two unbiased estimators Î
(1)
nS and Î

(2)
nS of the integral I ,

meaning that E
[
Î

(1)
nS

]
= E

[
Î

(2)
nS

]
= I

We say that Î
(1)
nS is more efficient than Î

(2)
nS if the inequality

var
(
Î

(1)
nS

)
≤ var

(
Î

(2)
nS

)
holds for all values of nS that are larger than

n?S
Variance reduction is then the search of more efficient estimators
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Antithetic variates

We have:
I = E [ϕ (X1, . . . ,Xn)] = E [Y ]

where Y = ϕ (X1, . . . ,Xn) is a one-dimensional random variable

It follows that:

ÎnS = ȲnS =
1

nS

nS∑
s=1

Ys

We now consider the estimators ȲnS and Ȳ ′nS based on two different

samples and define Ȳ ? as follows:

Ȳ ? =
ȲnS + Ȳ ′nS

2
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Antithetic variates

We have:

E
[
Ȳ ?
]

= E

[
ȲnS + Ȳ ′nS

2

]
= E

[
ȲnS

]
= I

and:

var
(
Ȳ ?
)

= var

(
ȲnS + Ȳ ′nS

2

)

=
1

4
var
(
ȲnS

)
+

1

4
var
(
Ȳ ′nS
)

+
1

2
cov

(
ȲnS , Ȳ

′
nS

)
=

1 + ρ
〈
ȲnS , Ȳ

′
nS

〉
2

var
(
ȲnS

)
=

1 + ρ 〈Ys ,Y
′
s 〉

2
var
(
ȲnS

)
where ρ 〈Ys ,Y

′
s 〉 is the correlation between Ys and Y ′s
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Because we have ρ 〈Ys ,Y
′
s 〉 ≤ 1, we deduce that:

var
(
Ȳ ?
)
≤ var

(
ȲnS

)
If we simulate the random variates Ys and Y ′s independently,
ρ 〈Ys ,Y

′
s 〉 is equal to zero and the variance of the estimator is divided

by 2

However, the number of simulations have been multiplied by two.
The efficiency of the estimator has then not been improved
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Antithetic variates

The underlying idea of antithetic variables is therefore to use two
perfectly dependent random variables Ys and Y ′s :

Y ′s = ψ (Ys)

where ψ is a deterministic function

This implies that:

Ȳ ?
nS =

1

nS

nS∑
s=1

Y ?
s

where:

Y ?
s =

Ys + Y ′s
2

=
Ys + ψ (Ys)

2

It follows that:

ρ
〈
ȲnS , Ȳ

′
nS

〉
= ρ 〈Y ,Y ′〉 = ρ 〈Y , ψ (Y )〉
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Antithetic variates

Minimizing the variance var
(
Ȳ ?
)

is then equivalent to minimize the
correlation ρ 〈Y , ψ (Y )〉
We also know that the correlation reaches its lower bound if the
dependence function between Y and ψ (Y ) is equal to the lower
Frchet copula:

C 〈Y , ψ (Y )〉 = C−

However, ρ 〈Y , ψ (Y )〉 is not necessarily equal to −1 except in some
special cases
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Antithetic variates

We consider the one-dimensional case with Y = ϕ (X )

If we assume that ϕ is an increasing function, it follows that:

C 〈Y , ψ (Y )〉 = C 〈ϕ (X ) , ψ (ϕ (X ))〉 = C 〈X , ψ (X )〉

To obtain the lower bound C−, X and ψ (X ) must be
countermonotonic:

ψ (X ) = F−1 (1− F (X ))

where F is the probability distribution of X

For instance, if X ∼ U[0,1], we have X ′ = 1− X . In the case where
X ∼ N (0, 1), we have:

X ′ = Φ−1 (1− Φ (X )) = Φ−1 (Φ (−X )) = −X
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Example #9

We consider the following functions:

1 ϕ1 (x) = x3 + x + 1

2 ϕ2 (x) = x4 + x2 + 1

3 ϕ3 (x) = x4 + x3 + x2 + x + 1
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For each function, we want to estimate I = E [ϕ (N (0, 1))] using the
antithetic estimator:

Ȳ ?
nS =

1

nS

nS∑
s=1

ϕ (Xs) + ϕ (−Xs)

2

where Xs ∼ N (0, 1)

Let X ∼ N (0, 1). We have E
[
X 2
]

= 1,

E
[
X 2m

]
= (2m − 1)E

[
X 2m−2

]
and E

[
X 2m+1

]
= 0 for m ∈ N

We obtain the following results:

ϕ (x) ϕ1 (x) ϕ2 (x) ϕ3 (x)
E [ϕ (Xs)] or E [ϕ (−Xs)] 1 5 5

var (ϕ (Xs)) or var (ϕ (−Xs)) 22 122 144
cov (ϕ (Xs) , ϕ (−Xs)) −22 122 100
ρ 〈ϕ (Xs) , ϕ (−Xs)〉 −1 1 25/36
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Antithetic variates

To understand these numerical results, we must study the relationship
between C 〈X ,X ′〉 and C 〈Y ,Y ′〉. Indeed, we have:{

C 〈X ,X ′〉 = C− ⇒ C 〈Y ,Y ′〉 = C−
}
⇔ ϕ′ (x) ≥ 0
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Figure: Functions ϕ1 (x), ϕ2 (x) and ϕ3 (x)
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Application to the geometric Brownian motion

In the Gaussian case X ∼ N (0, 1), the antithetic variable is:

X ′ = −X

As the simulation of Y ∼ N
(
µ, σ2

)
is obtained using the relationship

Y = µ+ σX , we deduce that the antithetic variable is:

Y ′ = µ− σX = µ− σ (Y − µ)

σ
= 2µ− Y

If we consider the geometric Brownian motion, the fixed-interval
scheme is:

Xm+1 = Xm · exp

((
µ− 1

2
σ2

)
h + σ

√
h · εm

)
whereas the antithetic path is given by:

X ′m+1 = X ′m · exp

((
µ− 1

2
σ2

)
h − σ

√
h · εm

)
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Application to the geometric Brownian motion

Figure: Antithetic simulation of the GBM process
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Application to the geometric Brownian motion

In the multidimensional case, we recall that:

Xj,m+1 = Xj,m · exp

((
µj −

1

2
σ2
j

)
h + σj

√
h · εj,m

)
where εm = (ε1,m, . . . , εn,m) ∼ Nn (0, ρ)

We simulate εm by using the relationship εm = P · ηm where
ηm ∼ Nn (0, In) and P is the Cholesky matrix satisfying PP> = ρ

The antithetic trajectory is then:

X ′j,m+1 = X ′j,m · exp

((
µj −

1

2
σ2
j

)
h + σj

√
k · ε′j,m

)
where:

ε′m = −P · ηm = −εm
We verify that ε′m =

(
ε′1,m, . . . , ε

′
n,m

)
∼ Nn (0, ρ)
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Application to the geometric Brownian motion

In the Black-Scholes model, the price of the spread option with maturity T
and strike K is given by:

C = e−rTE
[
(S1 (T )− S2 (T )− K )+

]
where the prices S1 (t) and S2 (t) of the underlying assets are given by the
following SDE: {

dS1 (t) = rS1 (t) dt + σ1S1 (t) dW1(t)
dS2 (t) = rS2 (t) dt + σ2S2 (t) dW2(t)

and E [W1 (t)W2 (t)] = ρ t
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Application to the geometric Brownian motion

To calculate the option price using Monte Carlo methods, we simulate
the bivariate GBM S1 (t) and S2 (t) and the MC estimator is:

ĈMC =
e−rT

nS

nS∑
s=1

(
S

(s)
1 (T )− S

(s)
2 (T )− K

)+

where S
(s)
j (T ) is the sth simulation of the terminal value Sj (T )

For the AV estimator, we obtain:

ĈAV =
e−rT

nS

nS∑
s=1

(
S

(s)
1 (T )− S

(s)
2 (T )− K

)+

+
(
S
′(s)
1 (T )− S

′(s)
2 (T )− K

)+

2

where S
′(s)
j (T ) is the antithetic variate of S

(s)
j (T )
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Application to the geometric Brownian motion

Figure: Probability density function of ĈMC and ĈAV (nS = 1 000)
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Control variates

Let Y = ϕ (X1, . . . ,Xn) and V be a random variable with known
mean E [V ]

We define Z as follows: Z = Y + c · (V − E [V ])

We deduce that:

E [Z ] = E [Y + c · (V − E [V ])]

= E [Y ] + c · E [V − E [V ]]

= E [ϕ (X1, . . . ,Xn)]

and:

var (Z ) = var (Y + c · (V − E [V ]))

= var (Y ) + 2 · c · cov (Y ,V ) + c2 · var (V )
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Control variates

It follows that:

var (Z ) ≤ var (Y ) ⇔ 2 · c · cov (Y ,V ) + c2 · var (V ) ≤ 0

⇒ c · cov (Y ,V ) ≤ 0

In order to obtain a lower variance, a necessary condition is that c
and cov (Y ,V ) have opposite signs

The minimum is obtained when ∂c var (Z ) = 0 or equivalently when:

c? = −cov (Y ,V )

var (V )
= −β
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Control variates

The optimal value c? is then equal to the opposite of the beta of Y
with respect to the control variate V . In this case, we have:

Z = Y − cov (Y ,V )

var (V )
· (V − E [V ])

and:

var (Z ) = var (Y )− cov2 (Y ,V )

var (V )
=
(
1− ρ2 〈Y ,V 〉

)
· var (Y )

This implies that we have to choose a control variate V that is highly
(positively or negatively) correlated with Y in order to reduce the
variance
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Example

We consider that X ∼ U[0,1] and ϕ (x) = ex . We would like to estimate:

I = E [ϕ (X )] =

∫ 1

0

ex dx
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We set Y = eX and V = X

We know that E [V ] = 1/2 and var (V ) = 1/12

It follows that:

var (Y ) = E
[
Y 2
]
− E2 [Y ]

=

∫ 1

0

e2x dx −
(∫ 1

0

ex dx

)2

=

[
e2x

2

]1

0

−
(
e1 − e0

)2

=
4e − e2 − 3

2
≈ 0.2420

Thierry Roncalli Course 2023-2024 in Financial Risk Management 158 / 195



Random variate generation
Simulation of stochastic processes

Monte Carlo methods

Computing integrals
Variance reduction
Quasi-Monte Carlo simulation methods

Control variates

We have:

cov (Y ,V ) = E [VY ]− E [V ]E [Y ]

=

∫ 1

0

xex dx − 1

2

(
e1 − e0

)
=

[
xex
]1

0

−
∫ 1

0

ex dx − 1

2

(
e1 − e0

)
=

3− e

2
≈ 0.1409

If we consider the VC estimator Z defined by:

Z = Y − cov (Y ,V )

var (V )
· (V − E [V ])

= Y − (18− 6e) ·
(
V − 1

2

)
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Control variates

We have β ≈ 1.6903

We obtain:

var (Z ) = var (Y )− cov2 (Y ,V )

var (V )

=
4e − e2 − 3

2
− 3 · (3− e)2

≈ 0.0039

We conclude that we have dramatically reduced the variance of the
estimator, because we have:

var
(
ÎCV

)
var
(
ÎMC

) =
var (Z )

var (Y )
= 1.628%
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Figure: Understanding the variance reduction in control variates
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Control variates

Ŷ is the conditional expectation of Y with respect to V :

E [Y | V ] = E [Y ] + β (V − E [V ])

This is the best linear estimator of Y

The residual U of the linear regression is then equal to:

U = Y − Ŷ = (Y − E [Y ])− β (V − E [V ])

The CV estimator Z is a translation of the residual in order to satisfy
E [Z ] = E [Y ]:

Z = E [Y ] + U = Y − β (V − E [V ])

By construction, the variance of the residual U is lower than the
variance of the random variable Y . We conclude that:

var (Z ) = var (U) ≤ var (Y )
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Control variates

We can therefore obtain a large variance reduction if the following
conditions are satisfied:

the control variate V largely explains the random variable Y

the relationship between Y and V is almost linear
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Control variates

The price of an arithmetic Asian call option is given by:

C = e−rTE
[(
S̄ − K

)+
]

where K is the strike of the option and S̄ denotes the average of S (t) on
a given number of fixing dates2 {t1, . . . , tnF }:

S̄ =
1

nF

nF∑
m=1

S (tm)

We can estimate the option price using the Black-Scholes model

2We have tnF = T .
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We can also reduce the variance of the MC estimator by considering the
following control variates:

1 the terminal value V1 = S (T ) of the underlying asset;

2 the average value V2 = S̄ ;

3 the discounted payoff of the call option V3 = e−rT (S (T )− K )+;

4 the discounted payoff of the geometric Asian call option

V4 = e−rT
(
S̃ − K

)+

where:

S̃ =
(∏nF

m=1
S (tm)

)1/nF
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Control variates

For these control variates, we know the expected value

In the first case, we have:

E [S (T )] = S0e
rT

In the first case, we have:

E
[
S̄
]

=
S0

nF

nF∑
m=1

ertm
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Control variates

The expected value of the third control variate is the Black-Scholes
formula of the European call option:

S̃ =
(∏nF

m=1
S0e

(r− 1
2σ

2)tm+σW (tm)
)1/nF

= S0·exp

((
r − 1

2
σ2

)
t̄ + σW̄

)
where:

t̄ =
1

nF

∑nF

m=1
tm

and:

W̄ =
1

nF

∑nF

m=1
W (tm)

Because S̃ has a log-normal distribution, we deduce that the expected
value of the fourth control variate is also given by a Black-Scholes
formula
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Figure: CV estimator of the arithmetic Asian call option
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The previous approach can be extended in the case of several control
variates:

Z = Y +

nCV∑
i=1

ci · (Vi − E [Vi ]) = Y + c> (V − E [V ])

where c = (c1, . . . , cnCV ) and V = (V1, . . . ,VnCV )
We can show that the optimal value of c is equal to:

c? = − cov (V ,V )−1 · cov (V ,Y )

Minimizing the variance of Z is equivalent to minimize the variance of
U:

U = Y − Ŷ = Y −
(
α + β>V

)
We deduce that c? = −β. It follows that

var (Z ) = var (U) =
(
1− R2

)
· var (Y )

where R2 is the R-squared coefficient of the linear regression
Y = α + β>V + U
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Table: Linear regression between the Asian call option and the control variates

α̂ β̂1 β̂2 β̂3 β̂4 R2 1− R2

−51.482 0.036 0.538 90.7% 9.3%
−24.025 −0.346 0.595 0.548 96.5% 3.5%
−4.141 0.069 0.410 81.1% 18.9%
−38.727 0.428 0.174 92.9% 7.1%
−1.559 −0.040 0.054 0.111 0.905 99.8% 0.2%
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Let X = (X1, . . . ,Xn) be a random vector with distribution function F

We have:

I = E [ϕ (X1, . . . ,Xn) | F]

=

∫
· · ·
∫
ϕ (x1, . . . , xn) f (x1, . . . , xn) dx1 · · · dxn

where f (x1, . . . , xn) is the probability density function of X
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It follows that:

I =

∫
· · ·
∫ (

ϕ (x1, . . . , xn)
f (x1, . . . , xn)

g (x1, . . . , xn)

)
g (x1, . . . , xn) dx1 · · · dxn

= E
[
ϕ (X1, . . . ,Xn)

f (X1, . . . ,Xn)

g (X1, . . . ,Xn)

∣∣∣∣G]
= E [ϕ (X1, . . . ,Xn)L (X1, . . . ,Xn) | G]

where g (x1, . . . , xn) is the probability density function of G and L is
the likelihood ratio:

L (x1, . . . , xn) =
f (x1, . . . , xn)

g (x1, . . . , xn)

The values taken by L (x1, . . . , xn) are also called the importance
sampling weights
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Using the vector notation, the relationship becomes:

E [ϕ (X ) | F] = E [ϕ (X )L (X ) | G]

It follows that:
E
[
ÎMC

]
= E

[
ÎIS
]

= I

where ÎMC and ÎIS are the Monte Carlo and importance sampling
estimators of I

We also deduce that:

var
(
ÎIS
)

= var (ϕ (X )L (X ) | G)
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It follows that:

var
(
ÎIS
)

= E
[
ϕ2 (X )L2 (X ) | G

]
− E2 [ϕ (X )L (X ) | G]

=

∫
ϕ2 (x)L2 (x) g (x) dx − I 2

=

∫
ϕ2 (x)

f 2 (x)

g2 (x)
g (x) dx − I 2

=

∫
ϕ2 (x)

f 2 (x)

g (x)
dx − I 2
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If we compare the variance of the two estimators ÎMC and ÎIS, we
obtain:

var
(
ÎIS
)
− var

(
ÎMC

)
=

∫
ϕ2 (x)

f 2 (x)

g (x)
dx −

∫
ϕ2 (x) f (x) dx

=

∫
ϕ2 (x)

(
f (x)

g (x)
− 1

)
f (x) dx

=

∫
ϕ2 (x) (L (x)− 1) f (x) dx

The difference may be negative if the weights L (x) are small
(L (x)� 1) because the values of ϕ2 (x) f (x) are positive

The importance sampling approach changes then the importance of
some values x by transforming the original probability distribution F
into another probability distribution G
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The first-order condition is:

−ϕ2 (x) · f
2 (x)

g2 (x)
= λ

where λ is a constant

We have:

g? (x) = arg min var
(
ÎIS
)

= arg min

∫
ϕ2 (x)

f 2 (x)

g (x)
dx

= c · |ϕ (x)| · f (x)

where c is the normalizing constant such that
∫
g? (x) dx = 1

A good choice of the IS density g (x) is then an approximation of
|ϕ (x)| · f (x) such that g (x) can easily be simulated

Thierry Roncalli Course 2023-2024 in Financial Risk Management 176 / 195



Random variate generation
Simulation of stochastic processes

Monte Carlo methods

Computing integrals
Variance reduction
Quasi-Monte Carlo simulation methods

Importance sampling

Remark

In order to simplify the notation and avoid confusions, we consider that
X ∼ F and Z ∼ G in the sequel. This means that ÎMC = ϕ (X ) and
ÎIS = ϕ (Z )L (Z )
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We consider the estimation of the probability
p = Pr {X ≥ 3} ≈ 0.1350% when X ∼ N (0, 1)

We have:
ϕ (x) = 1 {x ≥ 3}

Importance sampling with Z ∼ N
(
µz , σ

2
z

)
, µz = 3 and σz = 1⇒ the

probability Pr {Z ≥ 3} is equal to 50%
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Figure: Histogram of the MC and IS estimators (nS = 1 000)
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Figure: Standard deviation (in %) of the estimator p̂IS (nS = 1 000)
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We consider the pricing of the put option:

P = e−rTE
[
(K − S (T ))+

]
We can estimate the option price by using the Monte Carlo method
with:

ϕ (x) = e−rT (K − x)+

In the case where K � S (0), the probability of exercise
Pr {S (T ) ≤ K} is very small

Therefore, we have to increase the probability of exercise in order to
obtain a more efficient estimator
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In the case of the Black-Scholes model, the density function of S (T )
is equal to:

f (x) =
1

xσx
φ

(
ln x − µx

σx

)
where µx = lnS0 +

(
r − σ2/2

)
T and σx = σ

√
T

We consider the IS density g (x) defined by:

g (x) =
1

xσz
φ

(
ln x − µz

σz

)
where µz = θ + µx and σz = σx
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For instance, we can choose θ such that the probability of exercise is
equal to 50%. It follows that:

Pr {Z ≤ K} =
1

2
⇔ Φ

(
lnK − θ − µx

σx

)
=

1

2

⇔ θ = lnK − µx

⇔ θ = ln
K

S0
−
(
r − 1

2
σ2

)
T
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We deduce that:

P = E [ϕ (S (T ))] = E [ϕ (S ′ (T )) · L (S ′ (T ))]

where:

L (x) =

1

xσx
φ

(
ln x − µx

σx

)
1

xσz
φ

(
ln x − µz

σz

) = exp

(
θ2

2σ2
x

−
(

ln x − µx

σx

)
· θ
σx

)

and S ′ (T ) is the same geometric Brownian motion than S (T ), but
with another initial value:

S ′ (0) = S (0) eθ = Ke−(r−σ2/2)T
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Example #10

We assume that S0 = 100, K = 60, r = 5%, σ = 20% and T = 2. If we
consider the previous method, the IS process is simulated using the initial

value S ′ (0) = Ke−(r−σ2/2)T = 56.506, whereas the value of θ is equal to
−0.5708
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Figure: Density function of the estimators P̂MC and P̂IS (nS = 1 000)
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We consider the following Monte Carlo problem:

I =

∫
· · ·
∫

[0,1]n
ϕ (x1, . . . , xn) dx1 · · · dxn

Let X be the random vector of independent uniform random
variables. It follows that I = E [ϕ (X )]

The Monte Carlo method consists in generating uniform coordinates
in the hypercube [0, 1]n

Quasi-Monte Carlo methods use non-random coordinates in order to
obtain a more nicely uniform distribution
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A low discrepancy sequence U = {u1, . . . , unS} is a set of deterministic
points distributed in the hypercube [0, 1]n
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Figure: Comparison of different low discrepancy sequences
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Figure: The Sobol generator
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Figure: Quasi-random points on the unit sphere
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Example #11

We consider a spread option whose payoff is equal to
(S1 (T )− S2 (T )− K )+. The price is calculated using the Black-Scholes
model, and the following parameters: S1 (0) = S2 (0) = 100,
σ1 = σ2 = 20%, ρ = 50% and r = 5%. The maturity T of the option is
set to one year, whereas the strike K is equal to 5. The true price of the
spread option is equal to 5.8198.
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Table: Pricing of the spread option using quasi-Monte Carlo methods

nS 102 103 104 105 106 5× 106

LCG (1) 4.3988 5.9173 5.8050 5.8326 5.8215 5.8139
LCG (2) 6.1504 6.1640 5.8370 5.8219 5.8265 5.8198
LCG (3) 6.1469 5.7811 5.8125 5.8015 5.8142 5.8197
Hammersley (1) 32.7510 26.5326 21.5500 16.1155 9.0914 5.8199
Hammersley (2) 32.9082 26.4629 21.5465 16.1149 9.0914 5.8199
Halton (1) 8.6256 6.1205 5.8493 5.8228 5.8209 5.8208
Halton (2) 10.6415 6.0526 5.8544 5.8246 5.8208 5.8207
Halton (3) 8.5292 6.0575 5.8474 5.8235 5.8212 5.8208
Sobol 5.7181 5.7598 5.8163 5.8190 5.8198 5.8198
Faure 5.7256 5.7718 5.8157 5.8192 5.8197 5.8198

Thierry Roncalli Course 2023-2024 in Financial Risk Management 193 / 195



Random variate generation
Simulation of stochastic processes

Monte Carlo methods

Exercises

Exercise 13.4.1 – Simulating random numbers using the inversion
method

Exercise 13.4.6 – Simulation of the bivariate Normal copula

Exercise 13.4.7 – Computing the capital charge for operational risk
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