# Course 2023-2024 in Financial Risk Management Lecture 9. Copulas and Extreme Value Theory

Thierry Roncalli\*

\*Amundi Asset Management<sup>1</sup>

\*University of Paris-Saclay

September 2023

<sup>&</sup>lt;sup>1</sup>The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

## General information

#### Overview

The objective of this course is to understand the theoretical and practical aspects of risk management

### Prerequisites

M1 Finance or equivalent

ECTS

4

## 4 Keywords

Finance, Risk Management, Applied Mathematics, Statistics

Hours

Lectures: 36h, Training sessions: 15h, HomeWork: 30h

#### Evaluation

There will be a final three-hour exam, which is made up of questions and exercises

#### Course website

http://www.thierry-roncalli.com/RiskManagement.html

# Objective of the course

The objective of the course is twofold:

- In knowing and understanding the financial regulation (banking and others) and the international standards (especially the Basel Accords)
- ② being proficient in risk measurement, including the mathematical tools and risk models

## Class schedule

#### Course sessions

- September 15 (6 hours, AM+PM)
- September 22 (6 hours, AM+PM)
- September 19 (6 hours, AM+PM)
- October 6 (6 hours, AM+PM)
- October 13 (6 hours, AM+PM)
- October 27 (6 hours, AM+PM)

#### Tutorial sessions

- October 20 (3 hours, AM)
- October 20 (3 hours, PM)
- November 10 (3 hours, AM)
- November 10 (3 hours, PM)
- November 17 (3 hours, PM)

Class times: Fridays 9:00am-12:00pm, 1:00pm-4:00pm, University of Evry, Room 209 IDF

# Agenda

- Lecture 1: Introduction to Financial Risk Management
- Lecture 2: Market Risk
- Lecture 3: Credit Risk
- Lecture 4: Counterparty Credit Risk and Collateral Risk
- Lecture 5: Operational Risk
- Lecture 6: Liquidity Risk
- Lecture 7: Asset Liability Management Risk
- Lecture 8: Model Risk
- Lecture 9: Copulas and Extreme Value Theory
- Lecture 10: Monte Carlo Simulation Methods
- Lecture 11: Stress Testing and Scenario Analysis
- Lecture 12: Credit Scoring Models

# Agenda

- Tutorial Session 1: Market Risk
- Tutorial Session 2: Credit Risk
- Tutorial Session 3: Counterparty Credit Risk and Collateral Risk
- Tutorial Session 4: Operational Risk & Asset Liability Management Risk
- Tutorial Session 5: Copulas, EVT & Stress Testing

## **Textbook**

 Roncalli, T. (2020), Handbook of Financial Risk Management, Chapman & Hall/CRC Financial Mathematics Series.



## Additional materials

 Slides, tutorial exercises and past exams can be downloaded at the following address:

http://www.thierry-roncalli.com/RiskManagement.html

 Solutions of exercises can be found in the companion book, which can be downloaded at the following address:

http://www.thierry-roncalli.com/RiskManagementBook.html

# Agenda

- Lecture 1: Introduction to Financial Risk Management
- Lecture 2: Market Risk
- Lecture 3: Credit Risk
- Lecture 4: Counterparty Credit Risk and Collateral Risk
- Lecture 5: Operational Risk
- Lecture 6: Liquidity Risk
- Lecture 7: Asset Liability Management Risk
- Lecture 8: Model Risk
- Lecture 9: Copulas and Extreme Value Theory
- Lecture 10: Monte Carlo Simulation Methods
- Lecture 11: Stress Testing and Scenario Analysis
- Lecture 12: Credit Scoring Models

## Sklar's theorem

A bi-dimensional copula is a function **C** which satisfies the following properties:

- **1** Dom  $\mathbf{C} = [0,1] \times [0,1]$
- **2**  $\mathbf{C}(0, u) = \mathbf{C}(u, 0) = 0$  and  $\mathbf{C}(1, u) = \mathbf{C}(u, 1) = u$  for all u in [0, 1]
- **©** C is 2-increasing:

$$\mathbf{C}(v_1, v_2) - \mathbf{C}(v_1, u_2) - \mathbf{C}(u_1, v_2) + \mathbf{C}(u_1, u_2) \ge 0$$

for all  $(u_1, u_2) \in [0, 1]^2$ ,  $(v_1, v_2) \in [0, 1]^2$  such that  $0 \le u_1 \le v_1 \le 1$  and  $0 \le u_2 \le v_2 \le 1$ 

#### Remark

This means that **C** is a cumulative distribution function with uniform marginals:

$$\mathbf{C}(u_1, u_2) = \Pr\{U_1 \leq u_1, U_2 \leq u_2\}$$

where  $U_1$  and  $U_2$  are two uniform random variables

## Sklar's theorem

We consider the function  $\mathbf{C}^{\perp}(u_1,u_2)=u_1u_2$ . We have:

- $\mathbf{C}^{\perp}(0, u) = \mathbf{C}^{\perp}(u, 0) = 0$
- $\mathbf{C}^{\perp}(1, u) = \mathbf{C}^{\perp}(u, 1) = u$
- Since we have  $v_2 u_2 \ge 0$  and  $v_1 \ge u_1$ , it follows that  $v_1 (v_2 u_2) \ge u_1 (v_2 u_2)$  and :

$$v_1v_2 + u_1u_2 - u_1v_2 - v_1u_2 \ge 0$$

 $\Rightarrow$   $\mathbf{C}^{\perp}$  is a copula function and is called the product copula

# Multivariate probability distribution with given marginals

Let  $\mathbf{F}_1$  and  $\mathbf{F}_2$  be two univariate distributions.

 $\mathbf{F}(x_1, x_2) = \mathbf{C}(\mathbf{F}_1(x_1), \mathbf{F}_2(x_2))$  is a probability distribution with marginals  $\mathbf{F}_1$  and  $\mathbf{F}_2$ :

- $u_i = \mathbf{F}_i(x_i)$  defines a uniform transformation  $(u_i \in [0,1])$
- $C(F_1(x_1), F_2(\infty)) = C(F_1(x_1), 1) = F_1(x_1)$

Sklar also shows that:

• Any bivariate distribution **F** admits a copula representation:

$$F(x_1, x_2) = C(F_1(x_1), F_2(x_2))$$

The copula C is unique if the marginals are continuous

# Multivariate probability distribution with given marginals

The Gumbel logistic distribution is equal to:

$$\mathbf{F}(x_1,x_2) = (1+e^{-x_1}+e^{-x_2})^{-1}$$

We have:

$$\mathsf{F}_1\left(x_1
ight) \equiv \mathsf{F}\left(x_1,\infty
ight) = \left(1+e^{-x_1}
ight)^{-1}$$

and  $\mathbf{F}_2(x_2) \equiv (1 + e^{-x_2})^{-1}$ . The quantile functions are then:

$$\mathbf{F}_{1}^{-1}(u_{1}) = \ln u_{1} - \ln (1 - u_{1})$$

and  $\mathbf{F}_{2}^{-1}(u_{2}) = \ln u_{2} - \ln (1 - u_{2})$ . We finally deduce that:

$$\mathbf{C}(u_1, u_2) = \mathbf{F}(\mathbf{F}_1^{-1}(u_1), \mathbf{F}_2^{-1}(u_2)) = \frac{u_1 u_2}{u_1 + u_2 - u_1 u_2}$$

is the Gumbel logistic copula

If the joint distribution function  $\mathbf{F}(x_1, x_2)$  is absolutely continuous, we obtain:

$$f(x_{1}, x_{2}) = \partial_{1,2} \mathbf{F}(x_{1}, x_{2})$$

$$= \partial_{1,2} \mathbf{C}(\mathbf{F}_{1}(x_{1}), \mathbf{F}_{2}(x_{2}))$$

$$= c(\mathbf{F}_{1}(x_{1}), \mathbf{F}_{2}(x_{2})) \cdot f_{1}(x_{1}) \cdot f_{2}(x_{2})$$

where  $f(x_1, x_2)$  is the joint probability density function,  $f_1$  and  $f_2$  are the marginal densities and c is the copula density:

$$c(u_1, u_2) = \partial_{1,2} \mathbf{C}(u_1, u_2)$$

#### Remark

The condition  $\mathbf{C}(v_1, v_2) - \mathbf{C}(v_1, u_2) - \mathbf{C}(u_1, v_2) + \mathbf{C}(u_1, u_2) \ge 0$  is equivalent to  $\partial_{1,2} \mathbf{C}(u_1, u_2) \ge 0$  when the copula density exists.

In the case of the Gumbel logistic copula, we have:

$$\mathbf{C}(u_1, u_2) = \frac{u_1 u_2}{u_1 + u_2 - u_1 u_2}$$

and:

$$c(u_1, u_2) = \frac{2u_1u_2}{(u_1 + u_2 - u_1u_2)^3}$$

We deduce that:

$$c(u_1, u_2) = \frac{f(\mathbf{F}_1^{-1}(u_1), \mathbf{F}_2^{-1}(u_2))}{f_1(\mathbf{F}_1^{-1}(u_1)) \cdot f_2(\mathbf{F}_2^{-1}(u_2))}$$

If we consider the Normal copula, we have:

$$\mathbf{C}(u_1, u_2; \rho) = \Phi(\Phi^{-1}(u_1), \Phi^{-1}(u_2); \rho)$$

and:

$$c(u_{1}, u_{2}; \rho) = \frac{2\pi \left(1 - \rho^{2}\right)^{-1/2} \exp\left(-\frac{1}{2(1 - \rho^{2})} \left(x_{1}^{2} + x_{2}^{2} - 2\rho x_{1} x_{2}\right)\right)}{\left(2\pi\right)^{-1/2} \exp\left(-\frac{1}{2} x_{1}^{2}\right) \cdot \left(2\pi\right)^{-1/2} \exp\left(-\frac{1}{2} x_{2}^{2}\right)}$$

$$= \frac{1}{\sqrt{1 - \rho^{2}}} \exp\left(-\frac{1}{2} \frac{\left(x_{1}^{2} + x_{2}^{2} - 2\rho x_{1} x_{2}\right)}{\left(1 - \rho^{2}\right)} + \frac{1}{2} \left(x_{1}^{2} + x_{2}^{2}\right)\right)$$

where 
$$x_1 = \Phi_1^{-1}(u_1)$$
 and  $x_2 = \Phi_2^{-1}(u_2)$ 



Figure: Construction of a bivariate probability distribution with given marginals and the Normal copula

# Concordance ordering

Let  $C_1$  and  $C_2$  be two copula functions. We say that the copula  $C_1$  is smaller than the copula  $C_2$  and we note  $C_1 \prec C_2$  if we have:

$$\mathbf{C}_{1}(u_{1},u_{2}) \leq \mathbf{C}_{2}(u_{1},u_{2})$$

for all  $(u_1, u_2) \in [0, 1]^2$ 

Let  $C_{\theta}(u_1, u_2) = C(u_1, u_2; \theta)$  be a family of copula functions that depends on the parameter  $\theta$ . The copula family  $\{C_{\theta}\}$  is totally ordered if, for all  $\theta_2 \geq \theta_1$ ,  $C_{\theta_2} \succ C_{\theta_1}$  (positively ordered) or  $C_{\theta_2} \prec C_{\theta_1}$  (negatively ordered)

#### Remark

The Normal copula family is positively ordered

## Fréchet bounds

We have:

$$\mathbf{C}^- \prec \mathbf{C} \prec \mathbf{C}^+$$

where:

$$\mathbf{C}^{-}(u_1, u_2) = \max(u_1 + u_2 - 1, 0)$$

and:

$$\mathbf{C}^{+}(u_{1},u_{2})=\min(u_{1},u_{2})$$

## The multivariate case

The canonical decomposition of a multivariate distribution function is:

$$\mathbf{F}(x_1,\ldots,x_n)=\mathbf{C}(\mathbf{F}_1(x_1),\ldots,\mathbf{F}_n(x_n))$$

We have:

$$\mathbf{C}^- \prec \mathbf{C} \prec \mathbf{C}^+$$

where:

$$\mathbf{C}^{-}\left(u_{1},\ldots,u_{n}\right)=\max\left(\sum_{i=1}^{n}u_{i}-n+1,0\right)$$

and:

$$\mathbf{C}^+\left(u_1,\ldots,u_n\right)=\min\left(u_1,\ldots,u_n\right)$$

#### Remark

 $\mathbf{C}^-$  is not a copula when  $n \geq 3$ 

Let  $X = (X_1, X_2)$  be a random vector with distribution  $\mathbf{F}$ . We define the copula of  $(X_1, X_2)$  by the copula of  $\mathbf{F}$ :

$$\mathbf{F}(x_1,x_2)=\mathbf{C}\langle X_1,X_2\rangle\left(\mathbf{F}_1(x_1),\mathbf{F}_2(x_2)\right)$$

#### **Definition**

- $X_1$  and  $X_2$  are countermonotonic or  $\mathbb{C}\langle X_1, X_2 \rangle = \mathbb{C}^-$  if there exists a random variable X such that  $X_1 = f_1(X)$  and  $X_2 = f_2(X)$  where  $f_1$  and  $f_2$  are respectively decreasing and increasing functions. In this case,  $X_2 = f(X_1)$  where  $f = f_2 \circ f_1^{-1}$  is a decreasing function
- $X_1$  and  $X_2$  are independent if the dependence function is the product copula  $\mathbf{C}^{\perp}$
- $X_1$  are  $X_2$  are comonotonic or  $\mathbb{C}\langle X_1, X_2 \rangle = \mathbb{C}^+$  if there exists a random variable X such that  $X_1 = f_1(X)$  and  $X_2 = f_2(X)$  where  $f_1$  and  $f_2$  are both increasing functions. In this case,  $X_2 = f(X_1)$  where  $f = f_2 \circ f_1^{-1}$  is an increasing function

• We consider a uniform random vector  $(U_1, U_2)$ :

$$egin{array}{lcl} \mathbf{C} \left\langle U_1,\, U_2 
ight
angle &=& \mathbf{C}^- \Leftrightarrow U_2 = 1 - U_1 \ \mathbf{C} \left\langle U_1,\, U_2 
ight
angle &=& \mathbf{C}^+ \Leftrightarrow U_2 = U_1 \end{array}$$

• We consider a standardized Gaussian random vector  $(X_1, X_2)$ . We have  $U_1 = \Phi(X_1)$  and  $U_2 = \Phi(X_2)$ . We deduce that:

$$\mathbf{C} \langle X_1, X_2 \rangle = \mathbf{C}^- \Leftrightarrow \Phi(X_2) = 1 - \Phi(X_1) \Leftrightarrow X_2 = -X_1$$

$$\mathbf{C} \langle X_1, X_2 \rangle = \mathbf{C}^+ \Leftrightarrow \Phi(X_2) = \Phi(X_1) \Leftrightarrow X_2 = X_1$$

• We consider a random vector  $(X_1, X_2)$  where  $X_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$ . We have

$$U_i = \Phi\left(\frac{X_i - \mu_i}{\sigma_i}\right)$$

We deduce that:

$$\mathbf{C} \langle X_1, X_2 \rangle = \mathbf{C}^- \quad \Leftrightarrow \quad \Phi\left(\frac{X_2 - \mu_2}{\sigma_2}\right) = 1 - \Phi\left(\frac{X_1 - \mu_1}{\sigma_1}\right)$$

$$\Leftrightarrow \quad \Phi\left(\frac{X_2 - \mu_2}{\sigma_2}\right) = \Phi\left(-\frac{X_1 - \mu_1}{\sigma_1}\right)$$

$$\Leftrightarrow \quad X_2 = \left(\mu_2 + \frac{\sigma_2}{\sigma_1}\mu_1\right) - \frac{\sigma_2}{\sigma_1}X_1$$

and:

$$\mathbf{C} \left\langle X_1, X_2 \right\rangle = \mathbf{C}^+ \Leftrightarrow X_2 = \left(\mu_2 - \frac{\sigma_2}{\sigma_1} \mu_1\right) + \frac{\sigma_2}{\sigma_1} X_1$$

• We consider a random vector  $(X_1, X_2)$  where  $X_i \sim \mathcal{LN}\left(\mu_i, \sigma_i^2\right)$ . We have:

$$U_i = \Phi\left(\frac{\ln X_i - \mu_i}{\sigma_i}\right)$$

We deduce that:

$$\mathbf{C} \langle X_1, X_2 \rangle = \mathbf{C}^- \quad \Leftrightarrow \quad \ln X_2 = \left( \mu_2 + \frac{\sigma_2}{\sigma_1} \mu_1 \right) - \frac{\sigma_2}{\sigma_1} \ln X_1$$

$$\Leftrightarrow \quad X_2 = e^{\left( \mu_2 + \frac{\sigma_2}{\sigma_1} \mu_1 \right)} e^{-\frac{\sigma_2}{\sigma_1} \ln X_1}$$

$$\Leftrightarrow \quad X_2 = e^{\left( \mu_2 + \frac{\sigma_2}{\sigma_1} \mu_1 \right)} X_1^{-\frac{\sigma_2}{\sigma_1}}$$

and:

$$\mathbf{C} \langle X_1, X_2 \rangle = \mathbf{C}^+ \quad \Leftrightarrow \quad \ln X_2 = \left( \mu_2 - \frac{\sigma_2}{\sigma_1} \mu_1 \right) + \frac{\sigma_2}{\sigma_1} \ln X_1$$

$$\Leftrightarrow \quad X_2 = e^{\left( \mu_2 - \frac{\sigma_2}{\sigma_1} \mu_1 \right)} X_1^{\frac{\sigma_2}{\sigma_1}}$$

• If  $X_1 \sim \mathcal{LN}\left(0,1\right)$  and  $X_2 \sim \mathcal{LN}\left(0,1\right)$ , we have:

$$\mathbf{C}\langle X_1,X_2
angle=\mathbf{C}^-\Leftrightarrow X_2=rac{1}{X_1}$$

• If  $X_1 \sim \mathcal{LN}\left(0,2^2\right)$  and  $X_2 \sim \mathcal{LN}\left(0,1\right)$ , we have:

$$\mathbf{C}\left\langle X_{1},X_{2}
ight
angle =\mathbf{C}^{+}\Leftrightarrow X_{2}=\sqrt{X_{1}}$$

### Linear dependence vs non-linear dependence

The concepts of counter- and comonotonicity concepts generalize the cases where the linear correlation of a Gaussian vector is equal to -1 or +1

## Scale invariance property

If  $h_1$  and  $h_2$  are two increasing functions on  $\operatorname{Im} X_1$  and  $\operatorname{Im} X_2$ , then we have:

$$\mathbf{C}\langle h_1(X_1), h_2(X_2)\rangle = \mathbf{C}\langle X_1, X_2\rangle$$

### Proof (marginals)

We note **F** and **G** the probability distributions of the random vectors  $(X_1, X_2)$  and  $(Y_1, Y_2) = (h_1(X_1), h_2(X_2))$ . The marginals of **G** are:

$$\mathbf{G}_{1}(y_{1}) = \Pr\{Y_{1} \leq y_{1}\}\$$
 $= \Pr\{h_{1}(X_{1}) \leq y_{1}\}\$ 
 $= \Pr\{X_{1} \leq h_{1}^{-1}(y_{1})\}\$  (because  $h_{1}$  is strictly increasing)
 $= \mathbf{F}_{1}(h_{1}^{-1}(y_{1}))$ 

and  $\mathbf{G}_{2}(y_{2}) = \mathbf{F}_{2}(h_{2}^{-1}(y_{2}))$ . We deduce that  $\mathbf{G}_{1}^{-1}(u_{1}) = h_{1}(\mathbf{F}_{1}^{-1}(u_{1}))$  and  $\mathbf{G}_{2}^{-1}(u_{2}) = h_{2}(\mathbf{F}_{2}^{-1}(u_{2}))$ 

## Proof (copula)

By definition, we have:

$$\mathbf{C} \langle Y_1, Y_2 \rangle (u_1, u_2) = \mathbf{G} (\mathbf{G}_1^{-1} (u_1), \mathbf{G}_2^{-1} (u_2))$$

Moreover, it follows that:

$$\begin{aligned} \mathbf{G}\left(\mathbf{G}_{1}^{-1}\left(u_{1}\right),\mathbf{G}_{2}^{-1}\left(u_{2}\right)\right) &= \Pr\left\{Y_{1} \leq \mathbf{G}_{1}^{-1}\left(u_{1}\right),Y_{2} \leq \mathbf{G}_{2}^{-1}\left(u_{2}\right)\right\} \\ &= \Pr\left\{h_{1}\left(X_{1}\right) \leq \mathbf{G}_{1}^{-1}\left(u_{1}\right),h_{2}\left(X_{2}\right) \leq \mathbf{G}_{2}^{-1}\left(u_{2}\right)\right\} \\ &= \Pr\left\{X_{1} \leq h_{1}^{-1}\left(\mathbf{G}_{1}^{-1}\left(u_{1}\right)\right),X_{2} \leq h_{2}^{-1}\left(\mathbf{G}_{2}^{-1}\left(u_{2}\right)\right)\right\} \\ &= \Pr\left\{X_{1} \leq \mathbf{F}_{1}^{-1}\left(u_{1}\right),X_{2} \leq \mathbf{F}_{2}^{-1}\left(u_{2}\right)\right\} \\ &= \mathbf{F}\left(\mathbf{F}_{1}^{-1}\left(u_{1}\right),\mathbf{F}_{2}^{-1}\left(u_{2}\right)\right) \end{aligned}$$

Because we have  $\mathbf{C}(X_1, X_2)(u_1, u_2) = \mathbf{F}(\mathbf{F}_1^{-1}(u_1), \mathbf{F}_2^{-1}(u_2))$ , we deduce that:

$$\mathbf{C}\langle Y_1, Y_2 \rangle = \mathbf{C}\langle X_1, X_2 \rangle$$

We have:

$$\mathbf{G}(y_{1}, y_{2}) = \mathbf{C}\langle X_{1}, X_{2}\rangle (\mathbf{G}_{1}(y_{1}), \mathbf{G}_{2}(y_{1}))$$

$$= \mathbf{C}\langle X_{1}, X_{2}\rangle (\mathbf{F}_{1}(h_{1}^{-1}(y_{1})), \mathbf{F}_{2}(h_{2}^{-1}(y_{2})))$$

Applying an increasing transformation does not change the copula function, only the marginals

The copula function is the minimum exhaustive statistic of the dependence

If  $X_1$  and  $X_2$  are two positive random variables, the previous theorem implies that:

$$\mathbf{C} \langle X_1, X_2 \rangle = \mathbf{C} \langle \ln X_1, X_2 \rangle$$

$$= \mathbf{C} \langle \ln X_1, \ln X_2 \rangle$$

$$= \mathbf{C} \langle X_1, \exp X_2 \rangle$$

$$= \mathbf{C} \langle \sqrt{X_1}, \exp X_2 \rangle$$

## Concordance measures

A numeric measure m of association between  $X_1$  and  $X_2$  is a measure of concordance if it satisfies the following properties:

- $\bullet$  if  $\mathbf{C}_1 \prec \mathbf{C}_2$ , then  $m \langle \mathbf{C}_1 \rangle \leq m \langle \mathbf{C}_2 \rangle$ ;

We have:

$$\mathbf{C} \prec \mathbf{C}^{\perp} \Rightarrow m \langle \mathbf{C} \rangle < 0$$

and:

$$\mathbf{C} \succ \mathbf{C}^{\perp} \Rightarrow m \langle \mathbf{C} \rangle > 0$$

# Kendall's tau and Spearman's rho

 Kendall's tau is the probability of concordance minus the probability of discordance:

$$\tau = \Pr\{(X_i - X_j) \cdot (Y_i - Y_j) > 0\} - \Pr\{(X_i - X_j) \cdot (Y_i - Y_j) < 0\}$$

$$= 4 \iint_{[0,1]^2} \mathbf{C}(u_1, u_2) d\mathbf{C}(u_1, u_2) - 1$$

Spearman's rho is the linear correlation of the rank statistics:

$$\varrho = \frac{\operatorname{cov}(\mathbf{F}_{X}(X), \mathbf{F}_{Y}(Y))}{\sigma(\mathbf{F}_{X}(X)) \cdot \sigma(\mathbf{F}_{Y}(Y))}$$

$$= 12 \iint_{[0,1]^{2}} u_{1} u_{2} d\mathbf{C}(u_{1}, u_{2}) - 3$$

• For the normal copula, we have:

$$au = rac{2}{\pi} \arcsin 
ho \qquad ext{and} \qquad arrho = rac{6}{\pi} \arcsin rac{
ho}{2}$$

# Exhaustive vs non-exhaustive statistics of stochastic dependence



Figure: Contour lines of bivariate densities (Normal copula with  $\tau = 50\%$ )

## Linear correlation

The linear correlation (or Pearson's correlation) is defined as follows:

$$\rho \left\langle X_{1}, X_{2} \right\rangle = \frac{\mathbb{E}\left[X_{1} \cdot X_{2}\right] - \mathbb{E}\left[X_{1}\right] \cdot \mathbb{E}\left[X_{2}\right]}{\sigma \left(X_{1}\right) \cdot \sigma \left(X_{2}\right)}$$

It satisfies the following properties:

- if  $\mathbf{C}\langle X_1,X_2\rangle=\mathbf{C}^{\perp}$ , then  $\rho\langle X_1,X_2\rangle=0$
- $\bullet$   $\rho$  is an increasing function with respect to the concordance measure:

$$\mathbf{C}_1 \succ \mathbf{C}_2 \Rightarrow \rho_1 \langle X_1, X_2 \rangle \geq \rho_2 \langle X_1, X_2 \rangle$$

•  $\rho \langle X_1, X_2 \rangle$  is bounded:

$$\rho^-\langle X_1, X_2 \rangle \le \rho \langle X_1, X_2 \rangle \le \rho^+ \langle X_1, X_2 \rangle$$

and the bounds are reached for the Fréchet copulas  $\mathbf{C}^-$  and  $\mathbf{C}^+$ 

## Linear correlation

• However, we don't have  $\rho \langle \mathbf{C}^- \rangle = -1$  and  $\rho \langle \mathbf{C}^+ \rangle = +1$ . If we use the stochastic representation of Fréchet bounds, we have:

$$\rho^{-}\left\langle X_{1},X_{2}\right\rangle =\rho^{+}\left\langle X_{1},X_{2}\right\rangle =\frac{\mathbb{E}\left[f_{1}\left(X\right)\cdot f_{2}\left(X\right)\right]-\mathbb{E}\left[f_{1}\left(X\right)\right]\cdot \mathbb{E}\left[f_{2}\left(X\right)\right]}{\sigma\left(f_{1}\left(X\right)\right)\cdot \sigma\left(f_{2}\left(X\right)\right)}$$

The solution of the equation  $\rho^-\langle X_1,X_2\rangle=-1$  is  $f_1(x)=a_1x+b_1$  and  $f_2(x)=a_2x+b_2$  where  $a_1a_2<0$ . For the equation  $\rho^+\langle X_1,X_2\rangle=+1$ , the condition becomes  $a_1a_2>0$ 

Moreover, we have:

$$\rho \langle X_1, X_2 \rangle = \rho \langle f_1(X_1), f_2(X_2) \rangle \Leftrightarrow \begin{cases} f_1(x) = a_1 x + b_1 \\ f_2(x) = a_2 x + b_2 \\ a_1 a_2 > 0 \end{cases}$$

#### Remark

The linear correlation is only valid for a linear (or Gaussian) world. The copula function generalizes the concept of linear correlation in a non-Gaussian non-linear world

## Linear correlation

### Example

We consider the bivariate log-normal random vector  $(X_1, X_2)$  where  $X_1 \sim \mathcal{LN}(\mu_1, \sigma_1^2)$ ,  $X_2 \sim \mathcal{LN}(\mu_2, \sigma_2^2)$  and  $\rho = \rho \langle \ln X_1, \ln X_2 \rangle$ .

We can show that:

$$\mathbb{E}\left[X_1^{p_1} \cdot X_2^{p_2}\right] = \exp\left(p_1 \mu_1 + p_2 \mu_2 + \frac{p_1^2 \sigma_1^2 + p_2^2 \sigma_2^2}{2} + p_1 p_2 \rho \sigma_1 \sigma_2\right)$$

and:

$$\rho \left\langle X_1, X_2 \right\rangle = \frac{\exp\left(\rho \sigma_1 \sigma_2\right) - 1}{\sqrt{\exp\left(\sigma_1^2\right) - 1} \cdot \sqrt{\exp\left(\sigma_2^2\right) - 1}}$$

# Linear correlation

If  $\sigma_1 = 1$  and  $\sigma_2 = 3$ , we obtain the following results:

| Copula           | $\rho \langle X_1, X_2 \rangle$ | $\tau \langle X_1, X_2 \rangle$ | $\varrho\left\langle X_{1},X_{2}\right angle$ |
|------------------|---------------------------------|---------------------------------|-----------------------------------------------|
|                  | -0.008                          | -1.000                          | -1.000                                        |
| ho = -0.7        | -0.007                          | -0.494                          | -0.683                                        |
| ${f C}^\perp$    | 0.000                           | 0.000                           | 0.000                                         |
| ho = 0.7         | 0.061                           | 0.494                           | 0.683                                         |
| $\mathbf{C}^{+}$ | 0.162                           | 1.000                           | 1.000                                         |

### **Definition**

We consider the following statistic:

$$\lambda^{+} = \lim_{u \to 1^{-}} \frac{1 - 2u + \mathbf{C}(u, u)}{1 - u}$$

We say that **C** has an upper tail dependence when  $\lambda^+ \in (0,1]$  and **C** has no upper tail dependence when  $\lambda^+ = 0$ 

• For the lower tail dependence  $\lambda^-$ , the limit becomes:

$$\lambda^{-} = \lim_{u \to 0^{+}} \frac{\mathbf{C}\left(u, u\right)}{u}$$

• We notice that  $\lambda^+$  and  $\lambda^-$  can also be defined as follows:

$$\lambda^{+} = \lim_{u \to 1^{-}} \Pr \{ U_2 > u \mid U_1 > u \}$$

and:

$$\lambda^{-} = \lim_{u \to 0^{+}} \Pr \{ U_{2} < u \mid U_{1} < u \}$$

- For the copula functions  $\mathbf{C}^-$  and  $\mathbf{C}^\perp$ , we have  $\lambda^- = \lambda^+ = 0$
- For the copula  ${\bf C}^+$ , we obtain  $\lambda^- = \lambda^+ = 1$
- In the case of the Gumbel copula:

$$\mathbf{C}\left(u_{1},u_{2};\theta\right)=\exp\left(-\left[\left(-\ln u_{1}\right)^{\theta}+\left(-\ln u_{2}\right)^{\theta}\right]^{1/\theta}\right)$$

we obtain  $\lambda^-=0$  and  $\lambda^+=2-2^{1/\theta}$ 

In the case of the Clayton copula:

$$\mathbf{C}\left(u_{1},u_{2}; heta
ight)=\left(u_{1}^{- heta}+u_{2}^{- heta}-1
ight)^{-1/ heta}$$

we obtain  $\lambda^-=2^{-1/\theta}$  and  $\lambda^+=0$ 

The quantile-quantile dependence function is equal to:

$$\lambda^{+}(\alpha) = \Pr\{X_{2} > \mathbf{F}_{2}^{-1}(\alpha) \mid X_{1} > \mathbf{F}_{1}^{-1}(\alpha)\}$$

$$= \frac{\Pr\{X_{2} > \mathbf{F}_{2}^{-1}(\alpha), X_{1} > \mathbf{F}_{1}^{-1}(\alpha)\}}{\Pr\{X_{1} > \mathbf{F}_{1}^{-1}(\alpha)\}}$$

$$= \frac{1 - \Pr\{X_{1} \leq \mathbf{F}_{1}^{-1}(\alpha)\} - \Pr\{X_{2} \leq \mathbf{F}_{2}^{-1}(\alpha)\}}{1 - \Pr\{X_{1} \leq \mathbf{F}_{1}^{-1}(\alpha)\}} + \frac{\Pr\{X_{2} \leq \mathbf{F}_{2}^{-1}(\alpha), X_{1} \leq \mathbf{F}_{1}^{-1}(\alpha)\}}{1 - \Pr\{\mathbf{F}_{1}(X_{1}) \leq \alpha\}}$$

$$= \frac{1 - 2\alpha + \mathbf{C}(\alpha, \alpha)}{1 - \alpha}$$



Figure: Quantile-quantile dependence measures  $\lambda^+(\alpha)$  and  $\lambda^-(\alpha)$ 

# Risk interpretation of the tail dependence

We consider two portfolios, whose losses correspond to the random variables  $L_1$  and  $L_2$  with probability distributions  $\mathbf{F}_1$  and  $\mathbf{F}_2$ . We have:

$$\lambda^{+}(\alpha) = \operatorname{Pr}\left\{L_{2} > \mathbf{F}_{2}^{-1}(\alpha) \mid L_{1} > \mathbf{F}_{1}^{-1}(\alpha)\right\}$$
$$= \operatorname{Pr}\left\{L_{2} > \operatorname{VaR}_{\alpha}(L_{2}) \mid L_{1} > \operatorname{VaR}_{\alpha}(L_{1})\right\}$$

# Archimedean copulas

### **Definition**

An Archimedean copula is defined by:

$$\mathbf{C}(u_1, u_2) = \begin{cases} \varphi^{-1}(\varphi(u_1) + \varphi(u_2)) & \text{if } \varphi(u_1) + \varphi(u_2) \leq \varphi(0) \\ 0 & \text{otherwise} \end{cases}$$

where  $\varphi$  a  $C^2$  is a function which satisfies  $\varphi(1)=0$ ,  $\varphi'(u)<0$  and  $\varphi''(u)>0$  for all  $u\in[0,1]$ 

 $\Rightarrow \varphi(u)$  is called the generator of the copula function

# Archimedean copulas

### Example

If  $\varphi(u) = u^{-1} - 1$ , we have  $\varphi^{-1}(u) = (1 + u)^{-1}$  and:

$$\mathbf{C}(u_1, u_2) = \left(1 + \left(u_1^{-1} - 1 + u_2^{-1} - 1\right)\right)^{-1} = \frac{u_1 u_2}{u_1 + u_2 - u_1 u_2}$$

The Gumbel logistic copula is then an Archimedean copula

### Remark

- The product copula  $\mathbf{C}^{\perp}$  is Archimedean and the associated generator is  $\varphi(u) = -\ln u$
- Concerning Fréchet copulas, only  ${\bf C}^-$  is Archimedean with  $\varphi\left(u\right)=1-u$

# Archimedean copulas

Table: Archimedean copula functions

$$\begin{array}{c|cccc} \mathsf{Copula} & \varphi\left(u\right) & \mathbf{C}\left(u_1,u_2\right) \\ \hline \mathbf{C}^{\perp} & -\ln u & u_1u_2 \\ \\ \mathsf{Clayton} & u^{-\theta}-1 & \left(u_1^{-\theta}+u_2^{-\theta}-1\right)^{-1/\theta} \\ \\ \mathsf{Frank} & -\ln\frac{e^{-\theta u}-1}{e^{-\theta}-1} & -\frac{1}{\theta}\ln\left(1+\frac{\left(e^{-\theta u_1}-1\right)\left(e^{-\theta u_2}-1\right)}{e^{-\theta}-1}\right) \\ \\ \mathsf{Gumbel} & \left(-\ln u\right)^{\theta} & \exp\left(-\left(\tilde{u}_1^{\theta}+\tilde{u}_2^{\theta}\right)^{1/\theta}\right) \\ \\ \mathsf{Joe} & -\ln\left(1-\left(1-u\right)^{\theta}\right) & 1-\left(\bar{u}_1^{\theta}+\bar{u}_2^{\theta}-\bar{u}_1^{\theta}\bar{u}_2^{\theta}\right)^{1/\theta} \end{array}$$

We use the notations  $\bar{u}=1-u$  and  $\tilde{u}=-\ln u$ 

# Multivariate Normal copula

The Normal copula is the dependence function of the multivariate normal distribution with a correlation matrix  $\rho$ :

$$\mathbf{C}\left(u_{1},\ldots,u_{n};\rho\right)=\Phi_{n}\left(\Phi^{-1}\left(u_{1}\right),\ldots,\Phi^{-1}\left(u_{n}\right);\rho\right)$$

By using the canonical decomposition of the multivariate density function:

$$f(x_1,\ldots,x_n)=c(\mathbf{F}_1(x_1),\ldots,\mathbf{F}_n(x_n))\prod_{i=1}^n f_i(x_i)$$

we deduce that the probability density function of the Normal copula is:

$$c\left(u_{1},\ldots,u_{n},;\rho\right)=\frac{1}{\left|\rho\right|^{\frac{1}{2}}}\exp\left(-\frac{1}{2}x^{\top}\left(\rho^{-1}-I_{n}\right)x\right)$$

where  $x_i = \Phi^{-1}(u_i)$ 

In the bivariate case, we obtain:

$$c(u_1, u_2; \rho) = \frac{1}{\sqrt{1 - \rho^2}} \exp\left(-\frac{x_1^2 + x_2^2 - 2\rho x_1 x_2}{2(1 - \rho^2)} + \frac{x_1^2 + x_2^2}{2}\right)$$

It follows that the expression of the bivariate Normal copula function is also equal to:

$$\mathbf{C}(u_1, u_2; \rho) = \int_{-\infty}^{\Phi^{-1}(u_1)} \int_{-\infty}^{\Phi^{-1}(u_2)} \phi_2(x_1, x_2; \rho) dx_1 dx_2$$

where  $\phi_2(x_1, x_2; \rho)$  is the bivariate normal density:

$$\phi_2(x_1, x_2; \rho) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{x_1^2 + x_2^2 - 2\rho x_1 x_2}{2(1-\rho^2)}\right)$$

#### Remark

Let  $(X_1, X_2)$  be a standardized Gaussian random vector, whose cross-correlation is  $\rho$ . Using the Cholesky decomposition, we write  $X_2$  as follows:  $X_2 = \rho X_1 + \sqrt{1 - \rho^2} X_3$  where  $X_3 \sim \mathcal{N}(0, 1)$  is independent from  $X_1$  and  $X_2$ . We have:

$$\Phi_{2}(x_{1}, x_{2}; \rho) = \Pr\{X_{1} \leq x_{1}, X_{2} \leq x_{2}\} 
= \mathbb{E}\left[\Pr\{X_{1} \leq x_{1}, \rho X_{1} + \sqrt{1 - \rho^{2}} X_{3} \leq x_{2} \mid X_{1}\}\right] 
= \int_{-\infty}^{x_{1}} \Phi\left(\frac{x_{2} - \rho x}{\sqrt{1 - \rho^{2}}}\right) \phi(x) dx$$

It follows that:

$$\mathbf{C}\left(u_{1}, u_{2}; \rho\right) = \int_{-\infty}^{\Phi^{-1}(u_{1})} \Phi\left(\frac{\Phi^{-1}\left(u_{2}\right) - \rho x}{\sqrt{1 - \rho^{2}}}\right) \phi\left(x\right) dx$$

• We deduce that:

$$\mathbf{C}\left(u_{1}, u_{2}; \rho\right) = \int_{0}^{u_{1}} \Phi\left(\frac{\Phi^{-1}\left(u_{2}\right) - \rho\Phi^{-1}\left(u\right)}{\sqrt{1 - \rho^{2}}}\right) du$$

• We have:

$$\tau = \frac{2}{\pi}\arcsin\rho$$

and:

$$\varrho = \frac{6}{\pi}\arcsin\frac{\rho}{2}$$

• We can show that:

$$\lambda^+ = \lambda^- = \left\{ egin{array}{ll} 0 & ext{if } 
ho < 1 \ 1 & ext{if } 
ho = 1 \end{array} 
ight.$$



Figure: Tail dependence  $\lambda^+(\alpha)$  for the Normal copula

# Multivariate Student's t copula

We have:

$$\mathbf{C}\left(u_{1},\ldots,u_{n};\rho,\nu\right)=\mathbf{T}_{n}\left(\mathbf{T}_{\nu}^{-1}\left(u_{1}\right),\ldots,\mathbf{T}_{\nu}^{-1}\left(u_{n}\right);\rho,\nu\right)$$

By using the definition of the cumulative distribution function:

$$\mathbf{T}_{n}\left(x_{1},\ldots,x_{n};\rho,\nu\right)=\int_{-\infty}^{x_{1}}\cdots\int_{-\infty}^{x_{n}}\frac{\Gamma\left(\frac{\nu+n}{2}\right)\left|\rho\right|^{-\frac{1}{2}}}{\Gamma\left(\frac{\nu}{2}\right)\left(\nu\pi\right)^{\frac{n}{2}}}\left(1+\frac{1}{\nu}x^{\top}\rho^{-1}x\right)^{-\frac{\nu+n}{2}}dx$$

we can show that the copula density function is then:

$$c(u_1,\ldots,u_n,;\rho,\nu) = |\rho|^{-\frac{1}{2}} \frac{\Gamma\left(\frac{\nu+n}{2}\right) \left[\Gamma\left(\frac{\nu}{2}\right)\right]^n}{\left[\Gamma\left(\frac{\nu+1}{2}\right)\right]^n \Gamma\left(\frac{\nu}{2}\right)} \frac{\left(1+\frac{1}{\nu}x^{\top}\rho^{-1}x\right)^{-\frac{\nu+n}{2}}}{\prod_{i=1}^n \left(1+\frac{x_i^2}{\nu}\right)^{-\frac{\nu+1}{2}}}$$

where 
$$x_i = \mathbf{T}_{\nu}^{-1}(u_i)$$

# Bivariate Student's t copula

• We have:

$$\mathbf{C}(u_1, u_2; \rho, \nu) = \int_0^{u_1} \mathbf{C}_{2|1}(u, u_2; \rho, \nu) du$$

where:

$$\mathbf{C}_{2|1}(u_{1}, u_{2}; \rho, \nu) = \mathbf{T}_{\nu+1} \left( \left( \frac{\nu+1}{\nu + \left[\mathbf{T}_{\nu}^{-1}(u_{1})\right]^{2}} \right)^{1/2} \frac{\mathbf{T}_{\nu}^{-1}(u_{2}) - \rho \mathbf{T}_{\nu}^{-1}(u_{1})}{\sqrt{1 - \rho^{2}}} \right)^{1/2} \frac{\mathbf{T}_{\nu}^{-1}(u_{2}) - \rho \mathbf{T}_{\nu}^{-1}(u_{1})}{\sqrt{1 - \rho^{2}}} \right)^{1/2} \mathbf{T}_{\nu}^{-1}(u_{2}) + \mathbf{T}_{$$

• We have:

$$\lambda^{+} = 2 - 2 \cdot \mathbf{T}_{\nu+1} \left( \left( \frac{(\nu+1)(1-\rho)}{(1+\rho)} \right)^{1/2} \right) = \begin{cases} 0 & \text{if } \rho = -1 \\ > 0 & \text{if } \rho > -1 \end{cases}$$

# Bivariate Student's t copula



Figure: Tail dependence  $\lambda^+(\alpha)$  for the Student's t copula  $(\nu=1)$ 

# Bivariate Student's t copula



Figure: Tail dependence  $\lambda^+(\alpha)$  for the Student's t copula ( $\nu=4$ )

# Dependogram

The dependogram is the scatter plot between  $u_{t,1}$  and  $u_{t,2}$  where:

$$u_{t,i} = \frac{1}{T+1} \mathfrak{R}_{t,i}$$

and  $\mathfrak{R}_{t,i}$  is the rank statistic (T is the sample size)

| Example |                                 |      |      |      |      |
|---------|---------------------------------|------|------|------|------|
|         | $X_{t,1}$                       | -3   | 4    | 1    | 8    |
|         | $X_{t,2}$                       | 105  | 65   | 17   | 9    |
|         | $\overline{\mathfrak{R}_{t,1}}$ | 1    | 3    | 2    | 4    |
|         | $\mathfrak{R}_{t,2}$            | 4    | 3    | 2    | 1    |
|         | $\overline{u_{t,1}}$            | 0.20 | 0.60 | 0.40 | 0.80 |
|         | $u_{t,2}$                       | 0.80 | 0.60 | 0.40 | 0.20 |

# Dependogram



Figure: Dependogram of EU and US equity returns ( $\rho = 57.8\%$ )

# Dependogram



Figure: Dependogram of simulated Gaussian returns ( $\rho = 57.8\%$ )

## The method of moments

If  $\tau = f_{\tau}(\theta)$  is the relationship between  $\theta$  and Kendall's tau, the MM estimator is simply the inverse of this relationship:

$$\hat{ heta} = f_{ au}^{-1} \left( \hat{ au} 
ight)$$

where  $\hat{\tau}$  is the estimate of Kendall's tau based on the sample

#### Remark

We have:

$$\hat{\tau} = \frac{c - d}{c + d}$$

where c and d are the number of concordant and discordant pairs

For instance, in the case of the Gumbel copula, we have:

$$\tau = \frac{\theta - 1}{\theta}$$

and:

$$\hat{\theta} = \frac{1}{1 - \hat{\tau}}$$

## The method of maximum likelihood

We have:

$$\mathbf{F}(x_1,\ldots,x_n)=\mathbf{C}(\mathbf{F}_1(x_1;\theta_1),\ldots,\mathbf{F}_n(x_n;\theta_n);\theta_c)$$

with two types of parameters:

- the parameters  $(\theta_1, \ldots, \theta_n)$  of univariate distribution functions
- the parameters  $\theta_c$  of the copula function

The expression of the log-likelihood function is:

$$\ell(\theta_1, \dots, \theta_n, \theta_c) = \sum_{t=1}^{T} \ln c \left( \mathbf{F}_1 \left( x_{t,1}; \theta_1 \right), \dots, \mathbf{F}_n \left( x_{t,n}; \theta_n \right); \theta_c \right) + \sum_{t=1}^{T} \sum_{i=1}^{n} \ln f_i \left( x_{t,i}; \theta_i \right)$$

The ML estimator is then defined as follows:

$$(\hat{\theta}_1, \dots, \hat{\theta}_n, \hat{\theta}_c) = \arg \max \ell (\theta_1, \dots, \theta_n, \theta_c)$$

# The method of inference functions for marginals

The IFM method is a two-stage parametric method:

- 1 the first stage involves maximum likelihood from univariate marginals
- 2 the second stage involves maximum likelihood of the copula parameters  $\theta_c$  with the univariate parameters  $\hat{\theta}_1, \ldots, \hat{\theta}_n$  held fixed from the first stage:

$$\hat{\theta}_c = \arg\max \sum_{t=1}^T \ln c \left( \mathbf{F}_1 \left( x_{t,1}; \hat{\theta}_1 \right), \dots, \mathbf{F}_n \left( x_{t,n}; \hat{\theta}_n \right); \theta_c \right)$$

## The omnibus method

The omnibus method replaces the marginals  $\mathbf{F}_1, \dots, \mathbf{F}_n$  by their non-parametric estimates:

$$\hat{\theta}_c = \arg\max \sum_{t=1}^T \ln c \left( \hat{\mathbf{F}}_1 \left( x_{t,1} \right), \dots, \hat{\mathbf{F}}_n \left( x_{t,n} \right); \theta_c \right)$$

where:

$$\mathbf{\hat{F}}_{i}\left(x_{t,i}\right) = u_{t,i} = \frac{1}{T+1}\mathfrak{R}_{t,i}$$

# Estimation of the Normal copula

In the case of the Normal copula, the matrix  $\rho$  of the parameters is estimated with the following algorithm:

• we first transform the uniform variates  $u_{t,i}$  into Gaussian variates:

$$n_{t,i} = \Phi^{-1}\left(u_{t,i}\right)$$

we then calculate the correlation matrix  $\hat{\rho}$  of the Gaussian variates  $n_{t,i}$ .

### Order statistics

### **Definition**

- Let  $X_1, \ldots, X_n$  be *iid* random variables, whose probability distribution is denoted by **F**
- We rank these random variables by increasing order:

$$X_{1:n} \leq X_{2:n} \leq \cdots \leq X_{n-1:n} \leq X_{n:n}$$

- $X_{i:n}$  is called the  $i^{\text{th}}$  order statistic in the sample of size n
- We note  $x_{i:n}$  the corresponding random variate or the value taken by  $X_{i:n}$

## Order statistics

We have:

$$\mathbf{F}_{i:n}(x) = \Pr \{ X_{i:n} \le x \}$$

$$= \Pr \{ \text{at least } i \text{ variables among } X_1, \dots, X_n \text{ are less or equal to } x \}$$

$$= \sum_{k=i}^n \Pr \{ k \text{ variables among } X_1, \dots, X_n \text{ are less or equal to } x \}$$

$$= \sum_{k=i}^n \binom{n}{k} \mathbf{F}(x)^k (1 - \mathbf{F}(x))^{n-k}$$

and:

$$f_{i:n}(x) = \frac{\partial \mathbf{F}_{i:n}(x)}{\partial x}$$

### Order statistics

### Example

If  $X_1, \ldots, X_n$  follow a uniform distribution  $\mathcal{U}_{[0,1]}$ , we obtain:

$$\mathbf{F}_{i:n}(x) = \sum_{k=i}^{n} {n \choose k} x^{k} (1-x)^{n-k} = \mathcal{IB}(x; i, n-i+1)$$

where  $\mathcal{IB}(x; \alpha, \beta)$  is the regularized incomplete beta function:

$$\mathcal{IB}(x; \alpha, \beta) = \frac{1}{\mathfrak{B}(\alpha, \beta)} \int_{0}^{x} t^{\alpha - 1} (1 - t)^{\beta - 1} dt$$

We deduce that  $X_{i:n} \sim \mathcal{B}(i, n-i+1)$  and a:

$$\mathbb{E}\left[X_{i:n}\right] = \mathbb{E}\left[\mathcal{B}\left(i, n-i+1\right)\right] = \frac{i}{n+1}$$

<sup>a</sup>We recall that  $\mathbb{E}\left[\mathcal{B}\left(\alpha,\beta\right)\right]=\alpha/\left(\alpha+\beta\right)$ 

The extreme order statistics are:

$$X_{1:n} = \min (X_1, \dots, X_n)$$

and:

$$X_{n:n} = \max(X_1, \ldots, X_n)$$

We have:

$$\mathbf{F}_{1:n}(x) = \sum_{k=1}^{n} \binom{n}{k} \mathbf{F}(x)^{k} (1 - \mathbf{F}(x))^{n-k} = 1 - \binom{n}{0} \mathbf{F}(x)^{0} (1 - \mathbf{F}(x))^{n}$$
$$= 1 - (1 - \mathbf{F}(x))^{n}$$

and:

$$\mathbf{F}_{i:n}(x) = \sum_{k=n}^{n} \binom{n}{k} \mathbf{F}(x)^{k} (1 - \mathbf{F}(x))^{n-k} = \binom{n}{n} \mathbf{F}(x)^{n} (1 - \mathbf{F}(x))^{n-n}$$
$$= \mathbf{F}(x)^{n}$$

# Alternative proof

We have:

$$\begin{aligned} \mathbf{F}_{1:n}(x) &= \Pr \left\{ \min \left( X_1, \dots, X_n \right) \leq x \right\} \\ &= 1 - \Pr \left\{ X_1 \geq x, X_2 \geq x, \dots, X_n \geq x \right\} \\ &= 1 - \prod_{i=1}^n \Pr \left\{ X_i \geq x \right\} \\ &= 1 - \prod_{i=1}^n \left( 1 - \Pr \left\{ X_i \leq x \right\} \right) \\ &= 1 - \left( 1 - \mathbf{F}(x) \right)^n \end{aligned}$$

and:

$$\mathbf{F}_{n:n}(x) = \Pr\left\{ \max\left(X_1, \dots, X_n\right) \le x \right\} = \Pr\left\{X_1 \le x, X_2 \le x, \dots, X_n \le x \right\}$$
$$= \prod_{i=1}^n \Pr\left\{X_i \le x \right\}$$
$$= \mathbf{F}(x)^n$$

We deduce that the density functions are equal to:

$$f_{1:n}(x) = n(1 - \mathbf{F}(x))^{n-1} f(x)$$

and

$$f_{n:n}(x) = n\mathbf{F}(x)^{n-1} f(x)$$

We consider the daily returns of the MSCI USA index from 1995 to 2015

 $\mathcal{H}_1$  Daily returns are Gaussian, meaning that:

$$R_t = \hat{\mu} + \hat{\sigma} X_t$$

where  $X_t \sim \mathcal{N}(0,1)$ ,  $\hat{\mu}$  is the empirical mean of daily returns and  $\hat{\sigma}$  is the daily standard deviation

 $\mathcal{H}_2$  Daily returns follow a Student's t distribution<sup>2</sup>:

$$R_t = \hat{\mu} + \hat{\sigma}\sqrt{\frac{\nu - 2}{\nu}}X_t$$

where  $X_t \sim \mathbf{t}_{\nu}$ . We consider two alternative assumptions:  $\mathcal{H}_{2a}$ :  $\nu=3$  and  $\mathcal{H}_{2b}$ :  $\nu=6$ 

<sup>&</sup>lt;sup>2</sup>We add the factor  $\sqrt{(\nu-2)/\nu}$  in order to verify that  $\mathrm{var}\left(R_t\right)=\hat{\sigma}^2$ 



Figure: Density function of the maximum order statistic (daily return of the MSCI USA index, 1995-2015)

#### Remark

The limit distributions of minima and maxima are degenerate:

$$\lim_{n \to \infty} \mathbf{F}_{1:n}(x) = \lim_{n \to \infty} 1 - (1 - \mathbf{F}(x))^n = \begin{cases} 0 & \text{if } \mathbf{F}(x) = 0 \\ 1 & \text{if } \mathbf{F}(x) > 0 \end{cases}$$

and:

$$\lim_{n\to\infty} \mathbf{F}_{n:n}(x) = \lim_{n\to\infty} \mathbf{F}(x)^n = \begin{cases} 0 & \text{if } \mathbf{F}(x) < 1\\ 1 & \text{if } \mathbf{F}(x) = 1 \end{cases}$$

#### Remark

We only consider the largest order statistic  $X_{n:n}$  because the minimum order statistic  $X_{1:n}$  is equal to  $Y_{n:n}$  by setting  $Y_i = -X_i$ 

# Univariate extreme value theory

### Fisher-Tippet theorem

Let  $X_1, \ldots, X_n$  be a sequence of *iid* random variables, whose distribution function is  $\mathbf{F}$ . If there exist two constants  $a_n$  and  $b_n$  and a non-degenerate distribution function  $\mathbf{G}$  such that:

$$\lim_{n\to\infty} \Pr\left\{\frac{X_{n:n}-b_n}{a_n} \le x\right\} = \mathbf{G}(x)$$

then **G** can be classified as one of the following three types:

Type I (Gumbel) 
$$\Lambda(x) = \exp(-e^{-x})$$
  
Type II (Fréchet)  $\Phi_{\alpha}(x) = \mathbb{1}(x \ge 0) \cdot \exp(-x^{-\alpha})$   
Type III (Weibull  $\Psi_{\alpha}(x) = \mathbb{1}(x \le 0) \cdot \exp(-(-x)^{\alpha})$ 

 $\Lambda$ ,  $\Phi_{\alpha}$  and  $\Psi_{\alpha}$  are called extreme value distributions

Fisher-Tippet theorem pprox an extreme value analog of the central limit theorem

# Univariate extreme value theory

We recall that:

$$\lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^n = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \exp(x)$$

## Univariate extreme value theory

• We consider the exponential distribution:  $\mathbf{F}(x) = 1 - \exp(-\lambda x)$ . We have:

$$\lim_{n \to \infty} \mathbf{F}_{n:n}(x) = \lim_{n \to \infty} \left( 1 - e^{-\lambda x} \right)^n = \lim_{n \to \infty} \left( 1 - \frac{ne^{-\lambda x}}{n} \right)^n$$
$$= \lim_{n \to \infty} \exp\left( -ne^{-\lambda x} \right) = 0$$

We verify that the limit distribution is degenerate

• If we consider the affine transformation with  $a_n = 1/\lambda$  et  $b_n = (\ln n)/\lambda$ , we obtain:

$$\Pr\left\{\frac{X_{n:n} - b_n}{a_n} \le x\right\} = \Pr\left\{X_{n:n} \le a_n x + b_n\right\} = \left(1 - e^{-\lambda(a_n x + b_n)}\right)^n$$
$$= \left(1 - e^{-x - \ln n}\right)^n = \left(1 - \frac{e^{-x}}{n}\right)^n$$

and:

$$\mathbf{G}(x) = \lim_{n \to \infty} \left( 1 - \frac{e^{-x}}{n} \right)^n = \exp\left( -e^{-x} \right) = \mathbf{\Lambda}(x)$$

• We combine the three distributions  $\Lambda$ ,  $\Phi_{\alpha}$  et  $\Psi_{\alpha}$  into a single distribution function  $\mathcal{GEV}(\mu, \sigma, \xi)$ :

$$\mathbf{G}(x) = \exp\left(-\left(1 + \xi\left(\frac{x - \mu}{\sigma}\right)\right)^{-1/\xi}\right)$$

defined on the support  $\Delta = \{x : 1 + \xi \sigma^{-1} (x - \mu) > 0\}$ 

- the limit case  $\xi \to 0$  corresponds to the Gumbel distribution  $\Lambda$
- $\xi = -\alpha^{-1} > 0$  defines the Fréchet distribution  $\Phi_{\alpha}$
- the Weibull distribution  $\Psi_{\alpha}$  is obtained by considering  $\xi = -\alpha^{-1} < 0$

The density function is equal to:

$$g(x) = \frac{1}{\sigma} \left( 1 + \xi \left( \frac{x - \mu}{\sigma} \right) \right)^{-(1 + \xi)/\xi} \exp \left( -\left( 1 + \xi \left( \frac{x - \mu}{\sigma} \right) \right)^{-1/\xi} \right)$$

#### Block maxima approach

The log-likelihood function is equal to:

$$\ell_t = -\ln \sigma - \left(\frac{1+\xi}{\xi}\right) \ln \left(1+\xi \left(\frac{x_t-\mu}{\sigma}\right)\right) - \left(1+\xi \left(\frac{x_t-\mu}{\sigma}\right)\right)^{-1/\xi}$$

where  $x_t$  is the observed maximum for the  $t^{\text{th}}$  period (or block maximum)

- We consider the example of the MSCI USA index
- Using daily returns, we calculate the block maximum for each period of 22 trading days and estimate the GEV distribution using the method of maximum likelihood
- We compare the estimated GEV distribution with the distribution function  $\mathbf{F}_{22:22}(x)$  when we assume that daily returns are Gaussian:

| $\alpha$ | 90%   | 95%   | 96%   | 97%   | 98%   | 99%   |
|----------|-------|-------|-------|-------|-------|-------|
| Gaussian | 3.26% | 3.56% | 3.65% | 3.76% | 3.92% | 4.17% |
| GEV      | 3.66% | 4.84% | 5.28% | 5.91% | 6.92% | 9.03% |



Figure: Probability density function of the maximum return  $R_{22:22}$ 

#### Value-at-risk estimation

We recall that the P&L between t and t+1 is equal to:

$$\Pi(w) = P_{t+1}(w) - P_t(w) = P_t(w) \cdot R(w)$$

We have:

$$\operatorname{VaR}_{\alpha}(w) = -P_{t}(w) \cdot \hat{\mathbf{F}}^{-1}(1-\alpha)$$

We now estimate the GEV distribution  $\hat{\mathbf{G}}$  of the maximum of -R(w) for a period of n trading days. The confidence level must be adjusted in order to obtain the same return time:

$$\frac{1}{1-lpha} imes 1 \; \mathsf{day} = \frac{1}{1-lpha_{\mathrm{GEV}}} imes n \; \mathsf{days} \Leftrightarrow lpha_{\mathrm{GEV}} = 1 - (1-lpha) \cdot n$$

It follows that the value-at-risk is equal to:

$$\operatorname{VaR}_{\alpha}(w) = P(t) \cdot \hat{\mathbf{G}}^{-1}(\alpha_{\operatorname{GEV}}) = P(t) \cdot \left(\hat{\mu} - \frac{\hat{\sigma}}{\hat{\xi}} \left(1 - \left(-\ln \alpha_{\operatorname{GEV}}\right)^{-\hat{\xi}}\right)\right)$$

because we have 
$$\mathbf{G}^{-1}\left(\alpha\right) = \mu - \frac{\sigma}{\xi}\left(1 - \left(-\ln\alpha\right)^{-\xi}\right)$$

### Value-at-risk estimation

Table: Comparing Gaussian, historical and GEV value-at-risk measures

| VaR        | $\alpha$ | Long US | Long EM             | Long US<br>Short EM | Long EM<br>Short US |
|------------|----------|---------|---------------------|---------------------|---------------------|
| Gaussian   | 99.0%    | 2.88%   | 2.83%               | 3.06%               | 3.03%               |
|            | 99.5%    | 3.19%   | 3.14%               | 3.39%               | 3.36%               |
|            | 99.9%    | 3.83%   | 3.77%               | 4.06%               | 4.03%               |
| Historical | 99.0%    | 3.46%   | -3.61%              | 3.37%               | 3.81%               |
|            | 99.5%    | 4.66%   | 4.73%               | 3.99%               | 4.74%               |
|            | 99.9%    | 7.74%   | 7.87%               | 6.45%               | 7.27%               |
| GEV        | 99.0%    | 2.64%   | $\bar{2.61\%}^{-2}$ | 2.72%               |                     |
|            | 99.5%    | 3.48%   | 3.46%               | 3.41%               | 3.82%               |
|            | 99.9%    | 5.91%   | 6.05%               | 5.35%               | 6.60%               |

# Expected shortfall estimation

We use the peak over threshold approach (HFRM, pages 773-777)

#### Definition

An extreme value (EV) copula satisfies the following relationship:

$$\mathbf{C}\left(u_1^t,\ldots,u_n^t\right)=\mathbf{C}^t\left(u_1,\ldots,u_n\right)$$

for all t > 0

The Gumbel copula is an EV copula:

$$\mathbf{C}\left(u_{1}^{t}, u_{2}^{t}\right) = \exp\left(-\left(\left(-\ln u_{1}^{t}\right)^{\theta} + \left(-\ln u_{2}^{t}\right)^{\theta}\right)^{1/\theta}\right)$$

$$= \exp\left(-\left(t^{\theta}\left(\left(-\ln u_{1}\right)^{\theta} + \left(-\ln u_{2}\right)^{\theta}\right)\right)^{1/\theta}\right)$$

$$= \left(\exp\left(-\left(\left(-\ln u_{1}\right)^{\theta} + \left(-\ln u_{2}\right)^{\theta}\right)^{1/\theta}\right)\right)^{t}$$

$$= \mathbf{C}^{t}\left(u_{1}, u_{2}\right)$$

The Farlie-Gumbel-Morgenstern copula is not an EV copula:

$$\mathbf{C} (u_{1}^{t}, u_{2}^{t}) = u_{1}^{t} u_{2}^{t} + \theta u_{1}^{t} u_{2}^{t} (1 - u_{1}^{t}) (1 - u_{2}^{t})$$

$$= u_{1}^{t} u_{2}^{t} (1 + \theta - \theta u_{1}^{t} - \theta u_{2}^{t} + \theta u_{1}^{t} u_{2}^{t})$$

$$\neq u_{1}^{t} u_{2}^{t} (1 + \theta - \theta u_{1} - \theta u_{2} + \theta u_{1} u_{2})^{t}$$

$$\neq \mathbf{C}^{t} (u_{1}, u_{2})$$

#### Show that:

- C<sup>+</sup> is an EV copula
- ullet C $^{\perp}$  is an EV copula
- C⁻ is not an EV copula

## Multivariate extreme value theory

Let  $X = (X_1, ..., X_n)$  be a random vector of dimension n. We note  $X_{m:m}$  the random vector of maxima:

$$X_{m:m} = \left(\begin{array}{c} X_{m:m,1} \\ \vdots \\ X_{m:m,n} \end{array}\right)$$

and  $\mathbf{F}_{m:m}$  the corresponding distribution function:

$$\mathbf{F}_{m:m}(x_1,\ldots,x_n) = \Pr\{X_{m:m,1} \le x_1,\ldots,X_{m:m,n} \le x_n\}$$

The multivariate extreme value (MEV) theory considers the asymptotic behavior of the non-degenerate distribution function  $\bf G$  such that:

$$\lim_{m \to \infty} \Pr\left(\frac{X_{m:m,1} - b_{m,1}}{a_{m,1}} \le x_1, \dots, \frac{X_{m:m,n} - b_{m,n}}{a_{m,n}} \le x_n\right) = \mathbf{G}\left(x_1, \dots, x_n\right)$$

# Multivariate extreme value theory

Using Sklar's theorem, there exists a copula function  $\mathbf{C} \langle \mathbf{G} \rangle$  such that:

$$\mathbf{G}(x_1,\ldots,x_n)=\mathbf{C}\langle\mathbf{G}\rangle\left(\mathbf{G}_1(x_1),\ldots,\mathbf{G}_n(x_n)\right)$$

We have:

- The marginals  $G_1, \ldots, G_n$  satisfy the Fisher-Tippet theorem
- C (G) is an extreme value copula

#### Remark

An extreme value copula satisfies the PQD property:

$$\mathbf{C}^{\perp} \prec \mathbf{C} \prec \mathbf{C}^{+}$$

## Tail dependence of extreme values

We can show that the (upper) tail dependence of  $\mathbf{C}\langle\mathbf{G}\rangle$  is equal to the (upper) tail dependence of  $\mathbf{C}\langle\mathbf{F}\rangle$ :

$$\lambda^{+}\left(\mathbf{C}\left\langle \mathbf{G}\right
angle 
ight)=\lambda^{+}\left(\mathbf{C}\left\langle \mathbf{F}
ight
angle 
ight)$$

 $\Rightarrow$  Extreme values are independent if the copula function  $\mathbf{C}\langle\mathbf{F}\rangle$  has no (upper) tail dependence

### Advanced topics

- Maximum domain of attraction
  - Univariate extreme value theory (HFRM, pages 765-770)
  - Multivariate extreme value theory (HFRM, pages 779 and 781-782)
- Deheuvels-Pickands representation (HFRM, pages 779-781)
- Generalized Pareto distribution  $\mathcal{GPD}(\sigma, \xi)$  (HFRM, pages 773-777)

#### Exercises

- Copulas
  - Exercise 11.5.5 Correlated loss given default rates
  - Exercise 11.5.6 Calculation of correlation bounds
  - Exercise 11.5.7 The bivariate Pareto copula
- Extreme value theory
  - Exercise 12.4.2 Order statistics and return period
  - Exercise 12.4.4 Extreme value theory in the bivariate case
  - Exercise 12.4.5 Maximum domain of attraction in the bivariate case

#### References



NELSEN, R.B. (2006)

An Introduction to Copulas, Second edition, Springer.



RONCALLI, T. (2020)

Handbook of Financial Risk Management, Chapman and Hall/CRC Financial Mathematics Series, Chapters 11 and 12.



RONCALLI, T. (2020)

Handbook of Financial Risk Management – Companion Book, Chapters 11 and 12.