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General information

Q

© 0 © o ©

o

Overview
The objective of this course is to understand the theoretical and
practical aspects of risk management

Prerequisites
M1 Finance or equivalent

ECTS

4

Keywords

Finance, Risk Management, Applied Mathematics, Statistics
Hours

Lectures: 36h, Training sessions: 15h, HomeWork: 30h
Evaluation

There will be a final three-hour exam, which is made up of questions
and exercises

Course website
http://www.thierry-roncalli.com/RiskManagement.html
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http://www.thierry-roncalli.com/RiskManagement.html

Objective of the course

The objective of the course is twofold:

@ knowing and understanding the financial regulation (banking and
others) and the international standards (especially the Basel Accords)

@ being proficient in risk measurement, including the mathematical
tools and risk models
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Class schedule

Course sessions Tutorial sessions

o September 15 (6 hours, AM+PM) @ October 20 (3 hours, AM)
@ September 22 (6 hours, AM+PM) @ October 20 (3 hours, PM)
@ September 19 (6 hours, AM+PM) @ November 10 (3 hours, AM)
@ October 6 (6 hours, AM+PM) @ November 10 (3 hours, PM)
o o
o

October 13 (6 hours, AM+PM) November 17 (3 hours, PM)
October 27 (6 hours, AM+PM)

4

Class times: Fridays 9:00am-12:00pm, 1:00pm—4:00pm, University of Evry, Room 209 IDF
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Lecture 1: Introduction to Financial Risk Management
Lecture 2: Market Risk
Lecture 3: Credit Risk
Lecture 4: Counterparty Credit Risk and Collateral Risk

Lecture 5: Operational Risk

Lecture 6: Liquidity Risk

Lecture 7: Asset Liability Management Risk
Lecture 8: Model Risk

Lecture 9: Copulas and Extreme Value Theory
Lecture 10: Monte Carlo Simulation Methods
Lecture 11: Stress Testing and Scenario Analysis
Lecture 12: Credit Scoring Models
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Thierry Roncalli

Tutorial Session 1:

Tutorial Session 2:
Tutorial Session 3:
Tutorial Session 4:
Risk

Tutorial Session b:

Market Risk

Credit Risk

Counterparty Credit Risk and Collateral Risk
Operational Risk & Asset Liability Management

Copulas, EVT & Stress Testing
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Textbook

@ Roncalli, T. (2020), Handbook of Financial Risk Management,
Chapman & Hall/CRC Financial Mathematics Series.

Thierry Roncalli

Handbook of
Financial Risk
Management

(hapman & Hall/CRC FINANCIAL MATHEMATICS SERIES
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Additional materials

@ Slides, tutorial exercises and past exams can be downloaded at the
following address:

http://www.thierry-roncalli.com/RiskManagement.html

@ Solutions of exercises can be found in the companion book, which can
be downloaded at the following address:

http://www.thierry-roncalli.com/RiskManagementBook.html
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Lecture 1: Introduction to Financial Risk Management
Lecture 2: Market Risk
Lecture 3: Credit Risk
Lecture 4: Counterparty Credit Risk and Collateral Risk

Lecture 5: Operational Risk

Lecture 6: Liquidity Risk

Lecture 7: Asset Liability Management Risk
Lecture 8: Model Risk

Lecture 9: Copulas and Extreme Value Theory
Lecture 10: Monte Carlo Simulation Methods
Lecture 11: Stress Testing and Scenario Analysis
Lecture 12: Credit Scoring Models
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Definition and properties
Parametric copula functions
Estimation

Copulas

Sklar's theorem

A bi-dimensional copula is a function C which satisfies the following
properties:

@ DomC =0,1] x [0,1]
Q@ C(0,u) =C(u,0)=0and C(l,u) =C(u,1) = u for all uin [0,1]
© C is 2-increasing:

C(Vl, Vz) — C(Vl, U2) — C(Ul, Vz) + C(Ul, U2) Z 0

for all (u1, wp) € [0,1]°, (v1, ) € [0,1]° such that 0 < 1y < vy < 1
and 0 < uw, <wn<1

This means that C is a cumulative distribution function with uniform
marginals:

C(up,up) =Pr{lUi < u, Uy < up}

where Uy and U, are two uniform random variables
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Definition and properties
Parametric copula functions
Estimation

Copulas

Sklar's theorem

We consider the function C+ (uq, un) = upun. We have:
o C-(0,u) =C+(u,0)=0
o CH(LLu)=Ct(u,1)=u
@ Since we have vo» — u, > 0 and vy > uy, it follows that
vi (vo — ) > g (va — up) and :

Vivo + Uil — u1vo — viup >0

— C* is a copula function and is called the product copula
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Definition and properties
Parametric copula functions
Estimation

Copulas

Multivariate probability distribution with given marginals

Let F; and F> be two univariate distributions.
F(x1,x2) = C(F1(x1),F2(x2)) is a probability distribution with marginals
F1 and F2:

o u; = F;(x;) defines a uniform transformation (u; € [0,1])
o C(F1(x1),F2(00)) =C(F1(x1),1)=Fi(x)

Sklar also shows that:
@ Any bivariate distribution F admits a copula representation:

F(x1,x2) = C(F1(x1),F2(x))

@ The copula C is unique if the marginals are continuous
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Definition and properties
Parametric copula functions
Estimation

Copulas

Multivariate probability distribution with given marginals

The Gumbel logistic distribution is equal to:

F (X1,X2) = (1 + e ™ + e_Xz)_l

We have: »
F1 (Xl) =F (Xl, OO) = (]. -+ e_Xl)

and F, (x2) = (1 + e_X2)_1. The quantile functions are then:
Fl_l (Ul) = In U — In (1 — Ul)

and F; ' (1) = Inws — In (1 — uy). We finally deduce that:

Lt us

C(ul’ U2) — F (Fl_l (U]_) ’ F2_1 (U2)) — Uy -+ U, — uius

is the Gumbel logistic copula
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Definition and properties
Parametric copula functions
Estimation

Copulas

Expression of the copula density function

If the joint distribution function F (x1, x2) is absolutely continuous, we
obtain:

f(Xl,Xz) = 81,2 F(Xl,XQ)
= 012C(F1(x1),F2(x))
= c(F1(xa),F2(x)) f(x) - f2(x)

where f (x1, x2) is the joint probability density function, f; and f; are the
marginal densities and c is the copula density:

C (U17 U2) = (91,2 C (U1, U2)

The condition C (vy,vn) — C(vi,u2) — C(u1, )+ C(u1,up) >0 is
equivalent to 012 C(u1, up) > 0 when the copula density exists.
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Definition and properties
Parametric copula functions
Estimation

Copulas

Expression of the copula density function

In the case of the Gumbel logistic copula, we have:

uj un
C —
(11, ) Uy + Uz — Ui
and:
2U1U2
c(u1,u2) =

(u1 + Uy — U1U2)3
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Definition and properties
Parametric copula functions
Estimation

Copulas

Expression of the copula density function

We deduce that:

f(Fr' (u1),F3t (w2))
fi (Fit(w)) - H (Fy ' (w))

If we consider the Normal copula, we have:

C(up,up;p) =9 (Cb_l (u),® (o) ; p)

C (Ul, U2) =

and:

2 (1 — pz)—1/2 exp (—ﬁ (XF + x5 — 2,0X1X2))
(27r)_1/2 exp (— xl) (2m)~ 1/2 exp (——x22)

" (1 it dee) e +x§)>
0

c(ur,uz;p) =

2 (1-p?) 2

where x; = &7 (11) and x; = &5 (1)
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Definition and properties
Parametric copula functions
Estimation

Copulas

Expression of the copula density function

Density of F{(xq) — 1G6(2,1.5) Density of Fa(x2) — B(2,2)
0.6 150
0.4} 1.0}
0.2t 05t
0.0 . : : . 0.0 : : :
0 1 2 3 4 0.00 0.25 0.50 0.75 1.00
X1 X2
Density of the copula C Density of C(Fq(x1),F2(x2))

Figure: Construction of a bivariate probability distribution with given marginals
and the Normal copula
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Definition and properties
Parametric copula functions
Estimation

Copulas

Concordance ordering

Let C; and C, be two copula functions. We say that the copula C; is
smaller than the copula C, and we note C; < C, if we have:

Ci (1, u2) < Co(u1, )
for all (u1, wp) € [0, 1]
Let Cy (u1, un) = C(u1, uo; 0) be a family of copula functions that depends

on the parameter 6. The copula family {Cy} is totally ordered if, for all
6, > 01, Cy, = Cy, (positively ordered) or Cy, < Cy, (negatively ordered)

The Normal copula family is positively ordered \
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Definition and properties
Parametric copula functions
Estimation

Copulas

Frechet bounds

We have:
C <C<C*
where:
C (u1,ur) =max(uy + uy —1,0)
and:

C+ (Ul, U2) = min (Ul, U2)
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Definition and properties
Parametric copula functions
Estimation

Copulas

The multivariate case

The canonical decomposition of a multivariate distribution function is:

F(xi,...,x,) =C(F1(x1),...,F,(xn))

We have:
C <C<C*
where:
C (u1,...,u,) = max Zu;—n+1,0
i=1
and:

C*(uy,...,up) =min(uy,...,up,)

C~ is not a copula when n > 3
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Definition and properties
Parametric copula functions
Estimation

Copulas

Countermonotonicity and comonotonicity

Let X = (X1, X2) be a random vector with distribution F. We define the
copula of (X1, X3) by the copula of F:

F (Xl, X2) =C <X1, X2> (Fl (Xl) y F2 (X2))

@ Xi and X, are countermonotonic — or C (X1, Xo) = C~ — if there
exists a random variable X such that X; = f; (X) and X; = £, (X)

where f; and f, are respectively decreasing and increasing functions.
In this case, X, = f (X1) where f = f; 0 fl_l is a decreasing function

@ X; and X5 are independent if the dependence function is the product
copula Ct

@ Xj are X, are comonotonic — or C (X1, X;) = CT — if there exists a
random variable X such that X; = £ (X) and X5 = £, (X) where f;
and f; are both increasing functions. In this case, X, = f (X1) where
f==0hHho fl_l IS an increasing function
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Definition and properties
Parametric copula functions
Estimation

Copulas

Countermonotonicity and comonotonicity

@ We consider a uniform random vector (Ui, Us):

C<U1,U2> - C s U=1-U;
C<U1,U2> = C+<:>U2:U1

@ We consider a standardized Gaussian random vector (X1, X2). We
have U; = & (X1) and Us = ® (X,). We deduce that:

C<X1,X2> — C_@q)(Xz):l—q)(Xl)@XQ:—Xl
C<X1,X2> = C+<=>¢(X2):¢(X1)¢>X2:X1
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Definition and properties
Parametric copula functions
Estimation

Copulas

Countermonotonicity and comonotonicity

@ We consider a random vector (X1, X5) where X; ~ N (,LL,', 0,-2). We

have X
U = & ( i Mi)
gj
We deduce that:

X, — Xi —
C(X;,X)=C" & <I>( 2 “2):1—¢( ! “1)
0o 01

01 01
and:
o o
C(X;,Xo) =CT & X, = (Mz — —2,u1) =X
01 01
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Definition and properties
Parametric copula functions
Estimation

Copulas

Countermonotonicity and comonotonicity

@ We consider a random vector (X1, X5) where X; ~ LN (,u,-, a,?). We

have: X
U,-z(b( n i_,ui)
Oj

C{X, X)) =C" <« |nX2=(M2+2M1)——2|nX1
o)

We deduce that:

and:
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Definition and properties
Parametric copula functions
Estimation

Copulas

Countermonotonicity and comonotonicity

o If Xy ~ LN (0,1) and X5 ~ LN (0,1), we have:

1
C<X1,X2> = C <1;>X2 = —
X1

o If Xy ~ LN (0,2%) and X; ~ LN (0, 1), we have:

C<X1,X2> =C* S Xo =/ X7

Linear dependence vs non-linear dependence

The concepts of counter- and comonotonicity concepts generalize the cases
where the linear correlation of a Gaussian vector is equal to —1 or +1
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Definition and properties
Parametric copula functions
Estimation

Copulas

Non-linear stochastic dependence

Scale invariance property

If hy and hy are two increasing functions on Im Xj; and Im X5, then we
have:

C(hy (X1), h2(X2)) = C (X1, X2)
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Definition and properties
Parametric copula functions
Estimation

Copulas

Non-linear stochastic dependence

Proof (marginals)

We note F and G the probability distributions of the random vectors
(X1, X2) and (Y1, Y2) = (h1 (X1), h2 (X2)). The marginals of G are:

G: (y1) Pri{Y1 < y1}
Prih (X1) < 1}
= Pr {Xl < ht (yl)} (because hy is strictly increasing)

= Fy(h'(n))

and G (y2) = F2 (hy ' (y2)). We deduce that Gy * (u1) = hy (Fi* (u1))
and G, ' (u2) = hy (F5 ' (w2))
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Definition and properties
Parametric copula functions
Estimation

Copulas

Non-linear stochastic dependence

Proof (copula)

By definition, we have:
C <Y1, Y2> (Ul, U2) — G (Gl_l (Ul) . G2_1 (Ug))
Moreover, it follows that:

G (Gy* (), Gy " (w2) =Pr{V1 < G M (un), Y2 < Gy (u2)}
= Pr {h (X1) < Gy (), h2 (X) < Gy (1)}
=Pr{Xy < h* (G (), Xe < hy " (G ()}
=Pr{X; <F'(n), X < Fy' (1)}
=F(F;" (1), F, ' (1))

Because we have C (X1, Xo) (u1, u2) = F (Fy* (u1),F5 ' (12)), we deduce
that:

C (Y1, Y2) = C (X, X2)
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Definition and properties
Parametric copula functions
Estimation

Copulas

Non-linear stochastic dependence

We have:

G(y1,y2) = C(X,X2)(G1(y1),G2(x1))
= C(X1,X2) (F1 (h;' (11)) . F2 (h3 " (12)))

Applying an increasing transformation does not change the copula
function, only the marginals

The copula function is the minimum exhaustive statistic of the dependence
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Definition and properties
Parametric copula functions
Estimation

Copulas

Non-linear stochastic dependence

If X1 and X5 are two positive random variables, the previous theorem
implies that:

C(X1, Xa) =
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Definition and properties
Parametric copula functions
Estimation

Copulas

Concordance measures

A numeric measure m of association between X; and X5 is a measure of
concordance if it satisfies the following properties:

Q —1=m(X,—X)<m(C) <m(X,X)=1,
@ m(Ct)—o

Q@ m(—Xy, Xo) = m (X, —Xa) = —m(Xy, Xo);
Q if C; < Cy, then m(Cy) < m(Cy);

We have:
C<Ct=m(C) <0

and:
C~C-=m(C)>0
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Definition and properties
Parametric copula functions
Estimation

Copulas

Kendall's tau and Spearman’s rho

@ Kendall's tau is the probability of concordance minus the probability
of discordance:

ro= Pr{(X;—X)-(Yi—¥}) >0} - Pr{(X = X;)- (Y - ¥}) <0}
= 4 ff C(U]_,Uz) dC(Ul, U2) —1
[0,1]?

@ Spearman’s rho is the linear correlation of the rank statistics:

0 = COV(FX (X),Fy(Y))
o (Fx (X))o (Fy (Y))

= 12 ff uruy dC (uy, up) — 3

[0,1]*

@ For the normal copula, we have:

2 . 6 . P
T = —arcsinp and 0 = —arcsin <
r 7 2
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Definition and properties
Parametric copula functions
Estimation

Copulas

Exhaustive vs non-exhaustive statistics of stochastic
dependence

N(8,1) 1G(2,1.5)

Figure: Contour lines of bivariate densities (Normal copula with 7 = 50%)

Thierry Roncalli Course 2023-2024 in Financial Risk Management




Definition and properties
Parametric copula functions
Estimation

Copulas

L inear correlation

The linear correlation (or Pearson’s correlation) is defined as follows:

E[X1 - Xo] —E[Xi]-E[X]

p<X1,X2> — o(X1) - -0(Xz)

It satisfies the following properties:
o if C(Xy,Xo) = Ct, then p (X, Xo) =0

@ p is an increasing function with respect to the concordance measure:
Ci = Co = p1 (X1, Xa) > p2 (X1, Xa)

@ p(Xy, Xa) is bounded:
p~ (X1, X2) < p (X1, Xa) < pT (X1, X2)

and the bounds are reached for the Fréchet copulas C~ and C*
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Definition and properties
Parametric copula functions
Estimation

Copulas

L inear correlation

@ However, we don't have p (C~) = —1 and p(C*) = +1. If we use the
stochastic representation of Fréchet bounds, we have:

_ _ _E[A(X)-6(X)]-E[A(X)]-E[f (X)]
p~ (X1, Xo) = pT (X1, Xo) = > (X)) o (B (X))

The solution of the equation p~ (X1, X5) = —1is f; (x) = a1x + by
and f; (x) = axx + by where aja, < 0. For the equation
pT (X1, Xo) = +1, the condition becomes aj;a; > 0

Q Moreover, we have:

f1 (X) — a1X + by
p (X1, X2) = p(h(X1),R(X2)) &  f2(x) =ax+ b
aiar, >0

The linear correlation is only valid for a linear (or Gaussian) world. The
copula function generalizes the concept of linear correlation in a
non-Gaussian non-linear world
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Definition and properties
Parametric copula functions
Estimation

Copulas

L inear correlation

We consider the bivariate log-normal random vector (X7, X5) where
X1~ LN (p1,0%), Xo ~ LN (p2,03) and p = p(In X1,In X5).

We can show that:

piot + p3o;
2

E[X{' - X3?] = exp (plul + popn + + p1p2p0102>

and:

Xl,X2 _ eXp (,00'10'2) —1
a > Vexp(o7) —1-+/exp(03) — 1
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L inear correlation

Copulas

Definition and properties
Parametric copula functions
Estimation

If 01 =1 and 0, = 3, we obtain the following results:

Thierry Roncalli

Copula p<X1,X2> 7'<X1,X2> Q<X1,X2>
C™ —0.008 —1.000 —1.000
p=-07 —0007  —0.494  —0.683
Ct 0.000 0.000 0.000
p=0.7 0.061 0.494 0.683
C* 0.162 1.000 1.000
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C Definition and properties
opulas . .
Parametric copula functions
Estimation

Tail dependence

We consider the following statistic:

A = lim L=2uFCu)
_u—>1— 1 —u

We say that C has an upper tail dependence when \* € (0,1] and C has
no upper tail dependence when A\™ =0

@ For the lower tail dependence A7, the limit becomes:

u—0t u

@ We notice that A™ and A~ can also be defined as follows:
AT = lim Pr{U; > u| U > u}
u—1—
and:
AT = lim Pr{U, < u| U; < u}

u—0~t
Thierry Roncalli
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Definition and properties
Parametric copula functions
Estimation

Copulas

Tail dependence

o For the copula functions C~ and C*, we have A~ =\t =0
@ For the copula C*, we obtain A= = \" =1

@ In the case of the Gumbel copula:

C (u1,uz;0) =exp (_ [(_ In ul)e +(=In uz)e} 1/9)

we obtain A= =0 and AT =2 — 21/¢

@ In the case of the Clayton copula:

C(u1,up;0) = (ul_e + u2_0 — 1)_1/9

we obtain A= =271/9 and At =0
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Definition and properties
Parametric copula functions
Estimation

Copulas

Tail dependence

The quantile-quantile dependence function is equal to:

A (a) = Pr{Xa>Fy'(a)| X1 >F; ' ()}
Pri{X;>F,"(a), X1 > F; ' (a)}
Pr{Xi > F;*(a)}
1—Pr{Xi <F;'(a)} —Pr{X <F,;'(a)}
1—Pr{X < Ft (o)}
PriXo <F,;"(a),X1 <F'(a)}
1 —Pr{F;(X1) <a}
1—2a+ C(a,q)
1l —«

+
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Definition and properties
Parametric copula functions
Estimation

Copulas

Tail dependence

Gumbel—Hougaard copula Clayton copula

o o
Gumbel—Hougaard copula Clayton copula
----"----;_
IR Sasatuind - -
””
”
- = 1 = 0.00
-——7 = 0.25
=== 7 = 0.50
w—— 1 = 0.90
O.‘Z O.‘4 O.‘B O.‘S WjO
o o

Figure: Quantile-quantile dependence measures A" () and A~ («)
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Definition and properties
Parametric copula functions
Estimation

Copulas

Risk interpretation of the tail dependence

We consider two portfolios, whose losses correspond to the random
variables L; and L, with probability distributions F; and F,. We have:

A (a) = Prila>F' ()| L>F(a)]
= Pr{l> > VaR, (L2) | L1 > VaR, (L1)}
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Definition and properties
Parametric copula functions
Estimation

Copulas

Archimedean copulas

An Archimedean copula is defined by:

C(u,up) = { g_l (9 () + o (u2)) icftfe(rxl/lvli)s: p (u2) < ¢ (0)

where ¢ a C? is a function which satisfies ¢ (1) = 0, ¢’ (u) < 0 and
¢" (u) > 0 for all u € [0, 1]

= @ (u) is called the generator of the copula function
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Definition and properties
Parametric copula functions
Estimation

Copulas

Archimedean copulas

If o(u) =u~t—1, we have ! (u) = (1 + u)" " and:

i us

ui + U — U Uy

C(u, )= (1—|-(u1_1—1—|—u2_1—1))_1:

The Gumbel logistic copula is then an Archimedean copula

o The product copula C+ is Archimedean and the associated generator
isp(u)=—Inu

@ Concerning Fréchet copulas, only C~ is Archimedean with
p(u)=1-u
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Definition and properties
Parametric copula functions
Estimation

Copulas

Archimedean copulas

Table: Archimedean copula functions

Copula ¢ (u) C(u1, )
C- —Inu U Us
—0 —0 —0 —1/6
Clayton v —1 (07 + uy? — 1)
—0Ou —0Ou —0Ou
e —1 1 (e 1 _ ]_) (e 2 1)
Frank — | —Zin|1
ran N g7 5 + 1
f ~0 | ~0\1/0
Gumbel (— In U) exp (_ (Ul + U2)
Joe —1n (1 —(1- U)Q) 1— (@ + af — afaf)"’
We use the notations i =1—uvand i = —Inu

Thierry Roncalli Course 2023-2024 in Financial Risk Management




Definition and properties
Parametric copula functions
Estimation

Copulas

Multivariate Normal copula

The Normal copula is the dependence function of the multivariate normal
distribution with a correlation matrix p:

C(uty.ooytim;p) =S, (O (u1),..., 0" (un);p)

By using the canonical decomposition of the multivariate density function:

f(x1,...,xn) =c(Fy (xl),...,Fn(x,,))Hﬁ(x,-)

we deduce that the probability density function of the Normal copula is:

1 1
c(ut,...,Up,; p) = —F exp (_§XT (,0_1—/,,) X)
p|?

where x; = ¢~ 1 (u;)
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Definition and properties
Parametric copula functions
Estimation

Copulas

Bivariate Normal copula

In the bivariate case, we obtain:

1 X2 4+ x2 —20x1x0 X2+ x2
C(Ul,Uz;,O): 2€Xp <_ 1 2 P 4 1 2
J2

1-— 2(1—p?) 2

It follows that the expression of the bivariate Normal copula function is
also equal to:

CD_l(ul) ¢_1(U2)
C(ul,u2;p):/ / ¢2 (x1,X2; p) dxq dxo

where ¢, (x1, x2; p) is the bivariate normal density:

o ( ) 1 ( X12—|—X22—2pX1X2)
X1, X2; p) = —
P 1P 2(1-p?)
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Definition and properties
Parametric copula functions
Estimation

Copulas

Bivariate Normal copula

Let (X1, X2) be a standardized Gaussian random vector, whose
cross-correlation is p. Using the Cholesky decomposition, we write X, as
follows: X; = pX1 + /1 — p?X3 where X3 ~ N (0,1) is independent from
X1 and X>. We have:

Dy (x1,x0;p) = Pr{Xi <x,Xo <x}
= E|Pr{X <x,pX +V1-pX < x| X }]

— : e x) dx
) /oo¢<\/1—p2>¢( ) d

It follows that:

<|>_1(u1) —1 Uy) — px
C(ul,u2;p):/ CD((D (12) — p )gb(x)dx

— o0
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Definition and properties
Parametric copula functions
Estimation

Copulas

Bivariate Normal copula

@ We deduce that:

C (u1, uz; p) :/OU1q> (cp (”2)_:0(2_ (U)> du

1—0p
@ We have: )
T = —arcsin p
T
and:
— 9 arcsin —
€= T 2

@ We can show that:

_ 0 ifp<l
+ _
AT=A _{1 if p=1
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Definition and properties
Parametric copula functions
Estimation

Copulas

Bivariate Normal copula
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Figure: Tail dependence \™ () for the Normal copula
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Definition and properties
Parametric copula functions
Estimation

Copulas

Multivariate Student's t copula

We have:
C(uty. ooyt pyv)=To (T (v1),..., T (un); pyv)

By using the definition of the cumulative distribution function:

T . |’0| 1 1 T -1 7 d
n (X1, Xn) Py V) WT)2 —l—;x 0 X X

c(u u % ST M) @+ ixTp 1X)_V2+n
N N C D

where x; = T 1 (u;)
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Definition and properties
Parametric copula functions
Estimation

Copulas

Bivariate Student’'s t copula

@ We have: "
C(u1, u2;p,v) = / Cop1 (u, u2; p,v) du
0

where:

v+ 1 )”2 51 (1) — pT* ()
)’

Cop (v, 25 pv) = Topa < 1

@ We have:

v — 1/2 if p=—
o (E555)- 2
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Definition and properties
Parametric copula functions
Estimation

Copulas

Bivariate Student’'s t copula

Figure: Tail dependence \™ () for the Student's t copula (v = 1)
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Definition and properties
Parametric copula functions
Estimation

Copulas

Bivariate Student’'s t copula

0.6

0.4

0.2

© O o o o o o v o

- _
0.0 \ | \ ‘*‘M—&Lﬂﬂ

0.0 0.2 0.4 0.6 0.8 1.0

Figure: Tail dependence \™ («) for the Student’s t copula (v = 4)
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Definition and properties
Parametric copula functions
Estimation

Copulas

Dependogram

The dependogram is the scatter plot between u; ;1 and u; > where:

Ut j = —mt,i

’ T +1

and fR; ; is the rank statistic (T is the sample size)

Xt.1 —3 4 1 38
x¢o 105 65 17 9
N1 1 3 2 4
Ri o 4 3 2 1
uz1 020 060 0.40 0.80
urp 0.80 0.60 0.40 0.20
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Definition and properties
Parametric copula functions
Estimation

Copulas

Dependogram

EU Equity

Figure: Dependogram of EU and US equity returns (p = 57.8%
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Definition and properties
Parametric copula functions
Estimation

Copulas

Dependogram

Figure: Dependogram of simulated Gaussian returns (p = 57.8%
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Definition and properties
Parametric copula functions
Estimation

Copulas

The method of moments

If 7 = f.(0) is the relationship between 6 and Kendall's tau, the MM
estimator is simply the inverse of this relationship:

0=F71(3)
where 7 is the estimate of Kendall's tau based on the sample

We have:
c—d

c+d

where ¢ and d are the number of concordant and discordant pairs

P =

For instance, in the case of the Gumbel copula, we have:
0—1

7_ —_—

0
and:

1
1—-7

0 —
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Definition and properties
Parametric copula functions
Estimation

Copulas

The method of maximum likelihood

We have:
F(xi,...,xn) =C(F1(x1;01),...,F,(xn;6,);6c)

with two types of parameters:

@ the parameters (61, ...,60,) of univariate distribution functions
@ the parameters 6. of the copula function

The expression of the log-likelihood function is:

.
£(01,...,0n,0c) = Y Inc(Fi(xe1i61), .. Fn(xen6n):0c) +
t=1

T

D> Infi(x,i:67)

t=1 j=1

The ML estimator is then defined as follows:

(51, o én,<§c> = argmax¥ (01,...,0,,0;)
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Definition and properties
Parametric copula functions
Estimation

Copulas

The method of inference functions for marginals

The IFM method is a two-stage parametric method:

Q the first stage involves maximum likelihood from univariate marginals

@ the second stage involves maximum likelihood of the copula
parameters 6. with the univariate parameters 61, ..., 0, held fixed
from the first stage:

QAC = arg maxi In c (Fl (xt’l; él) ,...,Fp (xt,n; én) ;QC)

t=1
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Definition and properties
Parametric copula functions
Estimation

Copulas

The omnibus method

The omnibus method replaces the marginals F4, ..., F, by their
non-parametric estimates:

-
0, — arg maxz In ¢ (Iel (Xt1),---s F, (Xt.n); ¢9C)

t=1

where: {
IEi (Xt,i) = Ut = T——H%t’i
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Definition and properties
Parametric copula functions
Estimation

Copulas

Estimation of the Normal copula

In the case of the Normal copula, the matrix p of the parameters is
estimated with the following algorithm:

© we first transform the uniform variates u; ; into Gaussian variates:
. — ¢ L ,
Mt,i = (t,i)

@ we then calculate the correlation matrix p of the Gaussian variates
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Order statistics
Univariate extreme value theory

Extreme value theory Multivariate extreme value theory

Order statistics

o Let Xi,...,X, be iid random variables, whose probability distribution
is denoted by F

@ We rank these random variables by increasing order:
Xl:n S X2:n S T S Xn—l:n S Xn:n

o Xj., is called the i*™ order statistic in the sample of size n

@ We note X;., the corresponding random variate or the value taken by
Xi:n
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Order statistics
Univariate extreme value theory

Extreme value theory Multivariate extreme value theory

Order statistics

We have:

Fi:n (X) — Pr{)<i:n < X}

= Pr{at least i variables among Xi,..., X, are less or equal to x}

n
= Z Pr{k variables among Xi, ..., X, are less or equal to x}
k=i

— kz (Z) F(x) (1 -F(x)"*

and:

(9 F,';n (X)
0 x

fin (X) =
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Order statistics
Univariate extreme value theory

Extreme value theory Multivariate extreme value theory

Order statistics

If X1,..., X, follow a uniform distribution U 1), we obtain:

Fin(x) = Z (Z) X1 =x)""=IB(x;i,n—i+1)

k=i

where ZB (x; a, ) is the regularized incomplete beta function:

IB(x;a,B) = %(; B /OX =L (1— )P dt

We deduce that X;., ~ B(i,n— i+ 1) and?:
I

E [Xia] =E[B(i,n—i+1)] = ——

?We recall that E [B («, 8)] = a/ (a + 5)
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Order statistics
Univariate extreme value theory

Extreme value theory Multivariate extreme value theory

Extreme order statistics

The extreme order statistics are:

Xl:n = min (Xl, ce ,Xn)

and:
Xm = max (Xq, .., X,)

We have:

Fio(x) = Z (F)Fe @y =1 (F)F00° (- F L)'
R

and:

i) = 3 ()Pt a-Fet = ()R a-Fe
— F(x)"
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Order statistics
Univariate extreme value theory

Extreme value theory Multivariate extreme value theory

Alternative proof

We have:
Fi.,(x) =Pr{min(Xy,..., X,) <x} = 1—Pr{min(Xy,...,X,) > x}
= 1—-Pr{X1>2x,X%>x,...,X, > x}
= 1-]]Pr{Xi>x}
i=1

= 1-JJ@-Pr{Xi<x})
i=1

= 1-(1-F(x))"

and:

Fon(x)=Pr{max(Xy,..., X,) <x} = Pr{Xg <x, X <x,....X, <x}
= []Pr{Xi<x}

i=1
= F(x)"
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Order statistics
Univariate extreme value theory

Extreme value theory Multivariate extreme value theory

Extreme order statistics

We deduce that the density functions are equal to:
fin(x) = n(1—F(x))""f(x)

and
fron (x) = nF (x)" 7 f (%)
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Order statistics
Univariate extreme value theory

Extreme value theory Multivariate extreme value theory

Extreme order statistics

We consider the daily returns of the MSCI USA index from 1995 to 2015
H1 Daily returns are Gaussian, meaning that:
R: = i + 0 X;

where X; ~ N (0,1), fi is the empirical mean of daily returns and & is
the daily standard deviation

Ho Daily returns follow a Student's t distribution?:

v — 2

14

Re=j+0

Xt

where X; ~ t,. We consider two alternative assumptions: Hy, : v =3
and Hop : v =6

2We add the factor /(v — 2) /v in order to verify that var (R;) = 62
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Extreme value theory

Extreme order statistics

Order statistics
Univariate extreme value theory
Multivariate extreme value theory

One trading day (n = 1) One trading month (n = 22)
60 751
”l A
[ |
40 | 8\
{7 \\
30} /
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10}
O\ L J J
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Return (in %) Return (in %)
One trading year (n = 262) Ten trading years (n = 2620)
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80 | n
g0 f
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\
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Return (in %)

Figure: Density function of the
MSCI USA index, 1995-2015)
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maximum order statistic (daily return of the
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Order statistics
Univariate extreme value theory

Extreme value theory Multivariate extreme value theory

Extreme order statistics

The limit distributions of minima and maxima are degenerate:

lim Fy,(x) = lim 1—(1—F(X))":{ (1) ﬁ?EEﬁiig

n—-oo n— oo

and:
lim F,.,(x) = lim F(x)" =

n—-0o0 n— o0

1 ifF(x)=1

{ 0 ifFF(x)<1

We only consider the largest order statistic X,., because the minimum
order statistic Xy., is equal to Y,., by setting Y; = —X;
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Order statistics
Extreme value theor Univariate extreme value theory
Y Multivariate extreme value theory

Univariate extreme value theory

Fisher-Tippet theorem

Let Xi,...,X, be a sequence of iid random variables, whose distribution
function is F. If there exist two constants a, and b, and a non-degenerate

distribution function G such that:

lim Pr{Xn:n_ n SX} = G(x)

n—-0o0 an

then G can be classified as one of the following three types:

Typel  (Gumbel) A(x)=-exp(—e™)
Type Il (Fréchet) ®,(x)=1(x>0)- -exp(—x"%)
Type Il (Weibull W, (x) =1(x <0)-exp(—(—x)%)

N, &, and W, are called extreme value distributions )

Fisher-Tippet theorem = an extreme value analog of the central limit theorem
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Order statistics
Univariate extreme value theory

Extreme value theory Multivariate extreme value theory

Univariate extreme value theory

We recall that:

x> X3

. X\ "
nIme(1+;) :1—|—X+§+§—|—...:exp(x)
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Order statistics

Extreme value theor Univariate extreme value theory
Y Multivariate extreme value theory

Univariate extreme value theory

@ We consider the exponential distribution: F(x) =1 — exp (—Ax). We
have:

n— o0 n—o0 n— o0 n

—Ax\ "
im Frp(x) = lim (1—e )" = lim (1— e )

— | e AX)
—nI|_>n;Oexp( ne )—O

We verify that the limit distribution is degenerate

o If we consider the affine transformation with a, = 1/ et
b, = (In n) /X, we obtain:

Xn'n T bn — n
dn
n e~ 1
— (1 — —x—Inn — (1=
ey (1)

G(x) = lim (1 - e;x)n — op (—e ) = A(x)

and:

Thierry Roncalli
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Order statistics
Univariate extreme value theory

Extreme value theory Multivariate extreme value theory

Generalized extreme value distribution

Thierry Roncalli

@ We combine the three distributions A, ®, et W, into a single
distribution function GEV (u, 0, &):

ctr=es(-(1+¢(54)) )

defined on the support A = {X 1+ &0 (x—p) > O}
@ the limit case & — 0 corresponds to the Gumbel distribution A
o £ = —a~! > 0 defines the Fréchet distribution ®,,
o the Weibull distribution W, is obtained by considering { = —a~! < 0
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Order statistics
Univariate extreme value theory

Extreme value theory Multivariate extreme value theory

Generalized extreme value distribution

The density function is equal to:

w03 (s () (-0 (5) )

Block maxima approach

The log-likelihood function is equal to:

oo (FEnree(552) (o (55))

tth

where x; is the observed maximum for the t"" period (or block maximum)
y
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Order statistics
Univariate extreme value theory

Extreme value theory Multivariate extreme value theory

Generalized extreme value distribution

@ We consider the example of the MSCIl USA index

@ Using daily returns, we calculate the block maximum for each period
of 22 trading days and estimate the GEV distribution using the
method of maximum likelihood

@ We compare the estimated GEV distribution with the distribution
function F25.00 (x) when we assume that daily returns are Gaussian:

Q 90% 95% 96% 97% 98% 99%
Gaussian  3.26% 3.56% 3.65% 3.76% 3.92% 4.17%
GEV 3.66% 4.84% 5.28% 5.91% 6.92% 9.03%
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Order statistics
Univariate extreme value theory
Multivariate extreme value theory

Extreme value theory

Generalized extreme value distribution

70

60 |-

Foo.02
- GEV
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Return (in %)

Figure: Probability density function of the maximum return Rap.20
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Order statistics
Univariate extreme value theory

Extreme value theory Multivariate extreme value theory

Value-at-risk estimation
We recall that the P&L between t and t + 1 is equal to:
M(w) = Pea (w) — Pe(w) = Pe(w) - R(w)

We have: A
VaR, (W) = —P; (w)-F1(1 - a)

We now estimate the GEV distribution G of the maximum of —R (w) for a
period of n trading days. The confidence level must be adjusted in order

to obtain the same return time:
1 1
x 1 day = xndays< aggy=1—(1—a)-n
1 - agrv

1 —«
It follows that the value-at-risk is equal to:

s Qp

VaRg (w) = P(t) - G (agrv) = P (t) - (ﬁ —
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Order statistics
Univariate extreme value theory

Extreme value theory Multivariate extreme value theory

Value-at-risk estimation

Table: Comparing Gaussian, historical and GEV value-at-risk measures

Long US Long EM
VaR N Long US  Long EM Short EM  Short US

99.0%  2.88% 2.83% 3.06% 3.03%
Gaussian  99.5%  3.19% 3.14% 3.39% 3.36%
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Order statistics
Univariate extreme value theory

Extreme value theory Multivariate extreme value theory

Expected shortfall estimation

We use the peak over threshold approach (HFRM, pages 773-777)
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Order statistics
Univariate extreme value theory

Extreme value theory Multivariate extreme value theory

Extreme value copulas

An extreme value (EV) copula satisfies the following relationship:
C(uf,...,u) =C"(ur,...,up)

forallt >0
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Order statistics
Univariate extreme value theory

Extreme value theory Multivariate extreme value theory

Extreme value copulas

The Gumbel copula is an EV copula:
C (uf, ub) = exp (- ((=Inuf)”+ (=1In ug)e)w)

—ep (- (¢ (- )’ + (- 1nw))) ")

_ (exp (— ((— Inu)? + (= In uz)e)w))t

— Ct (Ul, U2)
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Order statistics
Univariate extreme value theory

Extreme value theory Multivariate extreme value theory

Extreme value copulas

The Farlie-Gumbel-Morgenstern copula is not an EV copula:

C (uf,u}) = ujus + Oujul (1 — uf) (1 — uj)
= ujuy (146 — Qui — Ou} + Oujul)
£ ufub (140 —0uy — Ous + OQuywp)’
# C' (u1, u2)
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Order statistics
Univariate extreme value theory

Extreme value theory Multivariate extreme value theory

Extreme value copulas

Show that:

@ C' is an EV copula
e Ct is an EV copula

@ C™ is not an EV copula
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Order statistics
Univariate extreme value theory

Extreme value theory Multivariate extreme value theory

Multivariate extreme value theory

Let X = (Xi,...,X,) be a random vector of dimension n. We note X,.m,
the random vector of maxima:

Xm:m,n
and F,,..,, the corresponding distribution function:
Fm:m (Xla S 7Xn) = Pr {Xm:m,l < X1y oo 7Xm:m,n < Xn}

The multivariate extreme value (MEV) theory considers the asymptotic
behavior of the non-degenerate distribution function G such that:

Xm:m,l — bm,l < Xm:m,n —
S~ X190,
dm,1 dm,n

lim Pr
m—0oQ0
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Order statistics
Univariate extreme value theory

Extreme value theory Multivariate extreme value theory

Multivariate extreme value theory

Using Sklar's theorem, there exists a copula function C(G) such that:

G(xt,...,%) =C(G) (G1(x1),---,Gpn(xn))

We have:
@ The marginals Gq, ..., G, satisfy the Fisher-Tippet theorem

@ C(G) is an extreme value copula

An extreme value copula satisfies the PQD property:

Ct<C<C™
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Order statistics
Univariate extreme value theory

Extreme value theory Multivariate extreme value theory

Tail dependence of extreme values

We can show that the (upper) tail dependence of C(G) is equal to the
(upper) tail dependence of C (F):

AT(C(G)) = A" (C(F))

= Extreme values are independent if the copula function C(F) has no
(upper) tail dependence
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Order statistics
Univariate extreme value theory

Extreme value theory Multivariate extreme value theory

Advanced topics

@ Maximum domain of attraction

o Univariate extreme value theory (HFRM, pages 765-770)
o Multivariate extreme value theory (HFRM, pages 779 and 781-782)

@ Deheuvels-Pickands representation (HFRM, pages 779-781)
o Generalized Pareto distribution GPD (o,&) (HFRM, pages 773-777)
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Exercises

@ Copulas

o Exercise 11.5.5 — Correlated loss given default rates
o Exercise 11.5.6 — Calculation of correlation bounds
o Exercise 11.5.7 — The bivariate Pareto copula

@ Extreme value theory

o Exercise 12.4.2 — Order statistics and return period
o Exercise 12.4.4 — Extreme value theory in the bivariate case
o Exercise 12.4.5 — Maximum domain of attraction in the bivariate case
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