
Chapter 12
Extreme Value Theory

This chapter is dedicated to tail (or extreme) risk modeling. Tail risk recovers two notions.
The first one is related to rare events, meaning that a severe loss may occur with a very small
probability. The second one concerns the magnitude of a loss that is difficult to reconciliate
with the observed volatility of the portfolio. Of course, the two notions are connected, but
the second is more frequent. For instance, stock market crashes are numerous since the end
of the eighties. The study of these rare or abnormal events needs an appropriate framework
to analyze their risk. This is the subject of this chapter. In a first section, we consider order
statistics, which are very useful to understand the underlying concept of tail risk. Then, we
present the extreme value theory (EVT) in the unidimensional case. Finally, the last section
deals with the correlation issue between extreme risks.

12.1 Order statistics
12.1.1 Main properties

Let X1, . . . , Xn be iid random variables, whose probability distribution is denoted by
F. We rank these random variables by increasing order:

X1:n ≤ X2:n ≤ · · · ≤ Xn−1:n ≤ Xn:n

Xi:n is called the ith order statistic in the sample of size n. We note xi:n the corresponding
random variate or the value taken by Xi:n. We have:

Fi:n (x) = Pr {Xi:n ≤ x}
= Pr {at least i variables among X1, . . . , Xn are less or equal to x}

=
n∑
k=i

Pr {k variables among X1, . . . , Xn are less or equal to x}

=
n∑
k=i

(
n

k

)
F (x)k (1− F (x))n−k (12.1)

We note f the density function of F. We deduce that the density function of Xi:n has the
following expression:

fi:n (x) =
n∑
k=i

(
n

k

)
kF (x)k−1 (1− F (x))n−k f (x)−

n−1∑
k=i

(
n

k

)
F (x)k (n− k) (1− F (x))n−k−1

f (x) (12.2)
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It follows that:

fi:n (x) =
n∑
k=i

n!
(k − 1)! (n− k)!F (x)k−1 (1− F (x))n−k f (x)−

n−1∑
k=i

n!
k! (n− k − 1)!F (x)k (1− F (x))n−k−1

f (x)

=
n∑
k=i

n!
(k − 1)! (n− k)!F (x)k−1 (1− F (x))n−k f (x)−

n∑
k=i+1

n!
(k − 1)! (n− k)!F (x)k−1 (1− F (x))n−k f (x)

= n!
(i− 1)! (n− i)!F (x)i−1 (1− F (x))n−i f (x) (12.3)

Remark 142 When k is equal to n, the derivative of (1− F (x))n−k is equal to zero. This
explains that the second summation in Equation (12.2) does not include the case k = n.

Example 126 If X1, . . . , Xn follow a uniform distribution U[0,1], we obtain:

Fi:n (x) =
n∑
k=i

(
n

k

)
xk (1− x)n−k

= IB (x; i, n− i+ 1)

where IB (x;α, β) is the regularized incomplete beta function1:

IB (x;α, β) = 1
B (α, β)

∫ x

0
tα−1 (1− t)β−1 dt

We deduce that Xi:n ∼ B (i, n− i+ 1). It follows that the expected value of the order statistic
Xi:n is equal to:

E [Xi:n] = E [B (i, n− i+ 1)]

= i

n+ 1
We verify the stochastic ordering:

j > i⇒ Fi:n � Fj:n
Indeed, we have:

Fi:n (x) =
n∑
k=i

(
n

k

)
F (x)k (1− F (x))n−k

=
j−1∑
k=i

(
n

k

)
F (x)k (1− F (x))n−k +

n∑
k=j

(
n

k

)
F (x)k (1− F (x))n−k

= Fj:n (x) +
j−1∑
k=i

(
n

k

)
F (x)k (1− F (x))n−k

meaning that Fi:n (x) ≥ Fj:n (x). In Figure 12.1, we illustrate this property when the
random variables X1, . . . , Xn follow the normal distribution N (0, 1). We verify that Fi:n (x)
increases with the ordering value i.

1It is also the Beta probability distribution IB (x;α, β) = Pr {B (α, β) ≤ x}.
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FIGURE 12.1: Distribution function Fi:n when the random variables X1, . . . , Xn are
Gaussian

12.1.2 Extreme order statistics
Two order statistics are particularly interesting for the study of rare events. They are

the lowest and highest order statistics:

X1:n = min (X1, . . . , Xn)

and:
Xn:n = max (X1, . . . , Xn)

We can find their probability distributions by setting i = 1 and i = n in Formula (12.1).
We can also retrieve their expression by noting that:

F1:n (x) = Pr {min (X1, . . . , Xn) ≤ x} = 1− Pr {min (X1, . . . , Xn) ≥ x}
= 1− Pr {X1 ≥ x,X2 ≥ x, . . . ,Xn ≥ x}

= 1−
n∏
i=1

Pr {Xi ≥ x}

= 1−
n∏
i=1

(1− Pr {Xi ≤ x})

= 1− (1− F (x))n

and:

Fn:n (x) = Pr {max (X1, . . . , Xn) ≤ x} = Pr {X1 ≤ x,X2 ≤ x, . . . ,Xn ≤ x}

=
n∏
i=1

Pr {Xi ≤ x}

= F (x)n
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We deduce that the density functions are equal to:

f1:n (x) = n (1− F (x))n−1
f (x)

and
fn:n (x) = nF (x)n−1

f (x)

Let us consider an example with the Gaussian distribution N (0, 1). Figure 12.2 shows the
evolution of the density function fn:n with respect to the sample size n. We verify the
stochastic ordering: n > m⇒ Fn:n � Fm:m.

FIGURE 12.2: Density function fn:n of the Gaussian random variable N (0, 1)

Let us now illustrate the impact of the probability distribution tails on order statistics.
We consider the daily returns of the MSCI USA index from 1995 to 2015. We consider three
hypotheses:

H1 Daily returns are Gaussian, meaning that:

Rt = µ̂+ σ̂Xt

where Xt ∼ N (0, 1), µ̂ is the empirical mean of daily returns and σ̂ is the daily
standard deviation.

H2 Daily returns follow a Student’s t distribution2:

Rt = µ̂+ σ̂

√
ν − 2
ν

Xt

where Xt ∼ tν . We consider two alternative assumptions: H2a : ν = 3 and H2b : ν = 6.

2We add the factor
√

ν − 2
ν

in order to verify that var (Rt) = σ̂2.
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FIGURE 12.3: Density function of the maximum order statistic (daily return of the MSCI
USA index, 1995-2015)

We represent the probability density function of Rn:n for several values of n in Figure
12.3. When n is equal to one trading day, Rn:n is exactly the daily return. We notice that
it is difficult to observe the impact of the probability distribution tail. However, when n
increases, the impact becomes more and more important. Order statistics allow amplifying
local phenomena of probability distributions. In particular, extreme order statistics are a
very useful tool to analyze left and right tails.

Remark 143 The limit distributions of minima and maxima are given by the following
results:

lim
n→∞

F1:n (x) = lim
n→∞

1− (1− F (x))n

=
{

0 if F (x) = 0
1 if F (x) > 0

and:

lim
n→∞

Fn:n (x) = lim
n→∞

F (x)n

=
{

0 if F (x) < 1
1 if F (x) = 1

We deduce that the limit distributions are degenerate as they only take values of 0 and
1. This property is very important, because it means that we cannot study extreme events
by considering these limit distributions. This is why the extreme value theory is based on
another convergence approach of extreme order statistics.
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12.1.3 Inference statistics
The common approach to estimate the parameters θ of the probability density function

f (x; θ) is to maximize the log-likelihood function of a given sample {x1, . . . , xT }:

θ̂ = arg max
T∑
t=1

ln f (xt; θ)

In a similar way, we can consider the sample3
{
x′1, . . . , x

′
nS

}
of the order statistic Xi:n and

estimate the parameters θ by the method of maximum likelihood:

θ̂i:n = arg max `i:n (θ)

where:

`i:n (θ) =
nS∑
s=1

ln fi:n (x′s; θ)

=
nS∑
s=1

ln n!
(i− 1)! (n− i)!F (x′s; θ)

i−1 (1− F (x′s; θ))
n−i

f (x′s; θ)

The computation of the log-likelihood function gives:

`i:n (θ) = nS lnn!− nS ln (i− 1)!− nS ln (n− i)! +

(i− 1)
nS∑
s=1

ln F (x′s; θ) + (n− i)
nS∑
s=1

ln (1− F (x′s; θ)) +

nS∑
s=1

ln f (x′s; θ)

By definition, the traditional ML estimator is equal to new ML estimator when n = 1 and
i = 1:

θ̂ = θ̂1:1

In the other cases (n > 1), there is no reason that the two estimators coincide exactly:

θ̂i:n 6= θ̂

However, if the random variates are drawn from the distribution function X ∼ F (x; θ), we
can test the hypothesis H : θ̂i:n = θ for all n and i ≤ n. If two estimates θ̂i:n and θ̂i′:n′ are
very different, this indicates that the distribution function is certainly not appropriate for
modeling the random variable X.

Let us consider the previous example with the returns of the MSCI USA index. We
assume that the daily returns can be modeled with the Student’s t distribution:

Rt − µ
σ

∼ tν

The vector of parameters to estimate is then θ = (µ, σ). In Tables 12.1, 12.2 and 12.3,
we report the values taken by the ML estimator σ̂i:n obtained by considering several order
statistics and three values of ν. For instance, the ML estimate σ̂1:1 in the case of the t1
distribution is equal to 50 bps. We notice that the values taken by σ̂i:n are not very stable

3The size of the sample nS is equal to the size of the original sample T divided by n.
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TABLE 12.1: ML estimate of σ (in bps) for the probability distribution t1

Size n Order i
1 2 3 4 5 6 7 8 9 10

1 50
2 48 49
3 44 54 44
4 41 53 53 41
5 38 52 55 51 37
6 35 51 56 56 48 33
7 32 49 55 56 55 45 29
8 31 48 53 55 54 50 43 26
9 29 46 55 56 57 55 49 40 25
10 28 43 53 58 57 56 53 48 37 20

TABLE 12.2: ML estimate of σ (in bps) for the probability distribution t6

Size n Order i
1 2 3 4 5 6 7 8 9 10

1 88
2 89 87
3 91 91 85
4 95 92 89 87
5 98 99 87 90 88
6 101 104 95 88 92 89
7 101 112 100 88 94 95 89
8 102 116 103 89 85 89 98 89
9 105 121 117 97 85 86 94 101 88
10 105 123 120 108 91 87 92 99 104 88

TABLE 12.3: ML estimate of σ (in bps) for the probability distribution t∞

Size n Order i
1 2 3 4 5 6 7 8 9 10

1 125
2 125 124
3 136 116 129
4 147 116 112 140
5 155 133 103 114 150
6 163 142 118 107 122 157
7 171 152 125 105 117 134 162
8 175 165 130 106 99 111 139 170
9 180 174 155 122 95 99 128 152 171
10 183 182 162 136 110 100 111 127 155 181
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with respect to i and n. This indicates that the three probability distribution functions
(t1, t6 and t∞) are not well appropriate to represent the index returns. In Figure 12.4, we
have reported the corresponding annualized volatility4 calculated from the order statistics
Ri:10. In the case of the t1 distribution, we notice that it is lower for median order statistics
than extreme order statistics. The t1 distribution has then the property to overestimate
extreme events. In the case of the Gaussian (or t∞) distribution, we obtain contrary results.
The Gaussian distribution has the property to underestimate extreme events. In order to
compensate this bias, the method of maximum likelihood applied to extreme order statistics
will overestimate the volatility.

FIGURE 12.4: Annualized volatility (in %) calculated from the order statistics Ri:10

Remark 144 The approach based on extreme order statistics to calculate the volatility is
then a convenient way to reduce the under-estimation of the Gaussian value-at-risk.

12.1.4 Extension to dependent random variables
Let us now assume that X1, . . . , Xn are not iid. We note C the copula of the correspond-

ing random vector. It follows that:

Fn:n (x) = Pr {Xn:n ≤ x}
= Pr {X1 ≤ x, . . . ,Xn ≤ x}
= C (F1 (x) , . . . ,Fn (x))

4The annualized volatility takes the value
√

260 · c · σ̂i:n where the constant c is equal to
√
ν/ (ν − 2).

In the case of the t1 distribution, c is equal to 3.2.
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and:

F1:n (x) = Pr {X1:n ≤ x}
= 1− Pr {X1:n ≥ x}
= 1− Pr {X1 ≥ x, . . . ,Xn ≥ x}
= 1− C̆ (1− F1 (x) , . . . , 1− Fn (x))

where C̆ is the survival copula associated to C.

Remark 145 In the case of the product copula and identical probability distributions, we
retrieve the previous results:

Fn:n (x) = C⊥ (F (x) , . . . ,F (x))
= F (x)n

and:

F1:n (x) = 1−C⊥ (1− F (x) , . . . , 1− F (x))
= 1− (1− F (x))n

If we are interested in other order statistics, we use the following formula given in Georges
et al. (2001):

Fi:n (x) =
n∑
k=i

 k∑
l=i

(−1)k−l
(
k

l

) ∑
v(F1(x),...,Fn(x))∈Z(n−k,n)

C (u1, . . . , un)


where:

Z (m,n) =
{

v ∈ [0, 1]n | vi ∈ {ui, 1} ,
n∑
i=1

1 {vi = 1} = m

}
In order to understand this formula, we consider the case n = 3. We have5:

F1:3 (x) = F1 (x) + F2 (x) + F3 (x)−
C (F1 (x) ,F2 (x) , 1)−C (F1 (x) , 1,F3 (x))−C (1,F2 (x) ,F3 (x)) +
C (F1 (x) ,F2 (x) ,F3 (x))

F2:3 (x) = C (F1 (x) ,F2 (x) , 1) + C (F1 (x) , 1,F3 (x)) + C (1,F2 (x) ,F3 (x))−
2C (F1 (x) ,F2 (x) ,F3 (x))

F3:3 (x) = C (F1 (x) ,F2 (x) ,F3 (x))

We verify that:

F1:3 (x) + F2:3 (x) + F3:3 (x) = F1 (x) + F2 (x) + F3 (x)

The dependence structure has a big impact on the distribution of order statistics. For
instance, if we assume that X1, . . . , Xn are iid, we obtain:

Fn:n (x) = F (x)n

5Because C (F1 (x) , 1, 1) = F1 (x).
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If the copula function is the upper Fréchet copula, this result becomes:

Fn:n (x) = C+ (F (x) , . . . ,F (x))
= min (F (x) , . . . ,F (x))
= F (x)

This implies that the occurrence probability of extreme events is lower in this second case.
We consider n Weibull default times τi ∼ W (λi, γi). The survival function is equal

to Si (t) = exp (−λitγi). The hazard rate λi (t) is then λiγitγi−1 and the expression of the
density is fi (t) = λi (t) Si (t). If we assume that the survival copula is the Gumbel-Hougaard
copula with parameter θ ≥ 1, the survival function of the first-to-default time is equal to:

S1:n (t) = exp
(
−
(

(− ln S1 (t))θ + . . .+ (− ln Sn (t))θ
)1/θ

)
= exp

(
−
(∑n

i=1
λθi t

θγi
)1/θ

)
We deduce the expression of the density function:

f1:n (t) =
(∑n

i=1
λθi t

θγi
)1/θ−1

·
(∑n

i=1
γiλ

θ
i t
θγi−1

)
·

exp
(
−
(∑n

i=1
λθi t

θγi
)1/θ

)
In the case where the default times are identically distributed, the first-to-default time is a
Weibull default time: τ1:n ∼ W

(
n1/θλ, γ

)
. In Figure 12.5, we report the density function

f1:10 (t) for the parameters λ = 3% and γ = 2. We notice that the parameter θ of the copula
function has a big influence on the first-to-default time. The case θ = 1 corresponds to the
product copula and we retrieve the previous result:

S1:n (t) = S (t)n

When the Gumbel-Hougaard is the upper Fréchet copula (θ → ∞), we verify that the
density function of τ1:n is this of any default time τi.

12.2 Univariate extreme value theory
The extreme value theory consists in studying the limit distribution of extreme order

statistics X1:n and Xn:n when the sample size tends to infinity. We will see that the limit
distribution converges to three probability distributions. This result will help to evaluate
stress scenarios and to build a stress testing framework.

Remark 146 In what follows, we only consider the largest order statistic Xn:n. Indeed, the
minimum order statistic X1:n can be defined with respect to the maximum order statistic
Yn:n by setting Yi = −Xi:

X1:n = min (X1, . . . , Xn)
= min (−Y1, . . . ,−Yn)
= −max (Y1, . . . , Yn)
= −Yn:n
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FIGURE 12.5: Density function of the first-to-default time τ1:10

12.2.1 Fisher-Tippet theorem
We follow Embrechts et al. (1997) for the formulation of the Fisher-Tippet theorem. Let

X1, . . . , Xn be a sequence of iid random variables, whose distribution function is F. If there
exist two constants an and bn and a non-degenerate distribution function G such that:

lim
n→∞

Pr
{
Xn:n − bn

an
≤ x

}
= G (x) (12.4)

then G can be classified as one of the following three types6:

Type I (Gumbel) Λ (x) = exp (−e−x)

Type II (Fréchet) Φα (x) = 1 (x ≥ 0) · exp (−x−α)

Type III (Weibull) Ψα (x) = 1 (x ≤ 0) · exp (− (−x)α)

The distribution functions Λ, Φα et Ψα are called extreme value distributions. The Fisher-
Tippet theorem is very important, because the set of extreme value distributions is very
small although the set of distribution functions is very large. We can draw a parallel with
the normal distribution and the sum of random variables. In some sense, the Fisher-Tippet
theorem provides an extreme value analog of the central limit theorem.

6In terms of probability density functions, we have:

g (x) =

 exp
(
−x− e−x

)
(Gumbel)

1 (x ≥ 0) · αx−(1+α) · exp
(
−x−α

)
(Fréchet)

1 (x ≤ 0) · α (−x)α−1 · exp (− (−x)α) (Weibull)
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Let us consider the case of exponential random variables, whose probability distribution
is F (x) = 1− exp (−λx). We have7:

lim
n→∞

Fn:n (x) = lim
n→∞

(
1− e−λx

)n
= lim
n→∞

(
1− ne−λx

n

)n
= lim
n→∞

exp
(
−ne−λx

)
= 0

We verify that the limit distribution is degenerate. If we consider the affine transformation
with an = 1/λ et bn = (lnn) /λ, we obtain:

Pr
{
Xn:n − bn

an
≤ x

}
= Pr {Xn:n ≤ anx+ bn}

=
(

1− e−λ(anx+bn)
)n

=
(
1− e−x−lnn)n

=
(

1− e−x

n

)n
We deduce that:

G (x) = lim
n→∞

(
1− e−x

n

)n
= exp

(
−e−x

)
It follows that the limit distribution of the affine transformation is not degenerate. In Figure
12.6, we illustrate the convergence of Fn (anx+ bn) to the Gumbel distribution Λ (x).

Example 127 If we consider the Pareto distribution, we have:

F (x) = 1−
(
x

x−

)−α
The normalizing constants are an = x−n

1/α and bn = 0. We obtain:

Pr
{
Xn:n − bn

an
≤ x

}
=

(
1−

(
x−n

1/αx

x−

)−α)n

=
(

1− x−α

n

)n
We deduce that the law of the maximum tends to the Fréchet distribution:

lim
n→∞

(
1− x−α

n

)n
= exp

(
−x−α

)
7Because we have:

lim
n→∞

(
1 +

x

n

)n
= 1 + x+

x2

2!
+
x3

3!
+ . . .

= exp (x)
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FIGURE 12.6: Max-convergence of the exponential distribution E (1) to the Gumbel dis-
tribution

Example 128 For the uniform distribution, the normalizing constants become an = n−1

and bn = 1 and we obtain the Weibull distribution with α = 1:

lim
n→∞

Pr
{
Xn:n − bn

an
≤ x

}
=

(
1 + x

n

)n
= exp (x)

12.2.2 Maximum domain of attraction
The application of the Fisher-Tippet theorem is limited because it can be extremely

difficult to find the normalizing constants and the extreme value distribution for a given
probability distribution F. However, the graphical representation of Λ, Φα and Ψα given
in Figure 12.7 already provides some information. For instance, the Weibull probability
distribution concerns random variables that are right bounded. This is why it has less
interest in finance than the Fréchet or Gumbel distribution functions8. We also notice some
differences in the shape of the curves. In particular, the Gumbel distribution is more ‘normal’
than the Fréchet distribution, whose shape and tail depend on the parameter α (see Figure
12.8).

We say that the distribution function F belongs to the max-domain of attraction of
the distribution function G and we write F ∈ MDA (G) if the distribution function of
the normalized maximum converges to G. For instance, we have already seen that E (λ) ∈
MDA (Λ). In what follows, we indicate how to characterize the set MDA (G) and which
normalizing constants are9.

8However, the Weibull probability distribution is related to the Fréchet probability distribution thanks
to the relationship Ψα (x) = Φα

(
−x−1

)
.

9Most of the following results come from Resnick (1987).
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FIGURE 12.7: Density function of Λ, Φ1 and Ψ1

FIGURE 12.8: Density function of the Fréchet probability distribution
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12.2.2.1 MDA of the Gumbel distribution

F ∈ MDA (Λ) if and only if there exists a function h (t) such that:

lim
t→x0

1− F (t+ x · h (t))
1− F (t) = exp (−x)

where x0 ≤ ∞. The normalizing constants are then an = h
(
F−1 (1− n−1)) and bn =

F−1 (1− n−1).
The previous characterization of MDA (Λ) is difficult to use because we have to define

the function h (t). However, we can show that if the distribution function F is C2, a sufficient
condition is:

lim
x→∞

(1− F (x)) · ∂2
x F (x)

(∂x F (x))2 = −1

For instance, in the case of the exponential distribution, we have F (x) = 1 − exp (−λx),
∂x F (x) = λ exp (−λx) and ∂2

x F (x) = −λ2 exp (−λx). We verify that:

lim
x→∞

(1− F (x)) · ∂2
x F (x)

(∂x F (x))2 = lim
x→∞

exp (−λx) ·
(
−λ2 exp (−λx)

)
(λ exp (−λx))2 = −1

If we consider the Gaussian distribution N (0, 1), we have F (x) = Φ (x), ∂x F (x) = φ (x)
and ∂2

x F (x) = −xφ (x). Using L’Hospital’s rule, we deduce that:

lim
x→∞

(1− F (x)) · ∂2
x F (x)

(∂x F (x))2 = lim
x→∞

−x · Φ (−x)
φ (x) = −1

12.2.2.2 MDA of the Fréchet distribution

We say that a function f is regularly varying with index α and we write f ∈ RVα if we
have:

lim
t→∞

f (t · x)
f (t) = xα

for every x > 0. We can then show the following theorem: F ∈ MDA (Φα) if and only if
1− F ∈ RV−α, and the normalizing constants are an = F−1 (1− n−1) and bn = 0.

Using the previous theorem, we deduce that the distribution function F ∈ MDA (Φα) if
it satisfies the following condition:

lim
t→∞

1− F (t · x)
1− F (t) = x−α

If we apply this result to the Pareto distribution, we obtain:

lim
t→∞

1− F (t · x)
1− F (t) = lim

t→∞

(t · x/x−)−α

(t/x−)−α

= x−α

We deduce that 1−F ∈ RV−α, F ∈ MDA (Φα), an = F−1 (1− n−1) = x−n
1/α and bn = 0.

Remark 147 The previous theorem suggests that:

1− F (t · x)
1− F (t) ≈ x−α
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FIGURE 12.9: Graphical validation of the regular variation property for the normal dis-
tribution N (0, 1)

when t is sufficiently large. This means that we must observe a linear relationship between
ln (x) and ln (1− F (t · x)):

ln (1− F (t · x)) ≈ ln (1− F (t))− α ln (x)

This property can be used to check graphically if a given distribution function belongs or not
to the maximum domain of attraction of the Fréchet distribution. For instance, we observe
that N (0, 1) /∈ MDA (Φα) in Figure 12.9, because the curve is not a straight line.

12.2.2.3 MDA of the Weibull distribution

For the Weibull distribution, we can show that F ∈ MDA (Ψα) if and only if 1 −
F
(
x0 − x−1) ∈ RV−α and x0 <∞. The normalizing constants are an = x0−F−1 (1− n−1)

and bn = x0.
If we consider the uniform distribution with x0 = 1, we have:

F
(
x0 − x−1) = 1− 1

x

and:

lim
t→∞

1− F
(
1− t−1x−1)

1− F (1− t−1) = lim
t→∞

t−1x−1

t−1

= x−1

We deduce that F ∈ MDA (Ψ1), an = 1− F−1 (1− n−1) = n−1 and bn = 1.
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TABLE 12.4: Maximum domain of attraction and normalizing constants of some distri-
bution functions

Distribution G (x) an bn

E (λ) Λ λ−1 λ−1 lnn
G (α, β) Λ β−1 β−1 (lnn+ (α− 1) ln (lnn)− ln Γ (α))

N (0, 1) Λ (2 lnn)−1/2 4 lnn− ln 4π − ln (lnn)
2
√

2 lnn
LN

(
µ, σ2) Λ σ (2 lnn)−1/2

bn exp
(
µ+ σ

(
4 lnn− ln 4π + ln (lnn)

2
√

2 lnn

))

P (α, x−) Φα x−n
1/α 0

LG (α, β) Φβ

(
n (lnn)α−1

)1/β

Γ (α) 0

tν Φν T−1
ν

(
1− n−1) 0

U[0,1] Ψ1 n−1 1

B (α, β) Ψα

(
nΓ (α+ β)

Γ (α) Γ (β + 1)

)−1/β
1

Source: Embrechts et al. (1997).

12.2.2.4 Main results

In Table 12.4, we report the maximum domain of attraction and normalizing constants
of some well-known distribution functions.

Remark 148 Let G (x) be the non-degenerate distribution of Xn:n. We note an and bn
the normalizing constants. We consider the linear transformation Y = cX + d with c > 0.
Because we have Yn:n = cXn:n + d, we deduce that:

G (x) = lim
n→∞

Pr {Xn:n ≤ anx+ bn}

= lim
n→∞

Pr
{
Yn:n − d

c
≤ anx+ bn

}
= lim

n→∞
Pr {Yn:n ≤ ancx+ bnc+ d}

= lim
n→∞

Pr {Yn:n ≤ a′nx+ b′n}

where a′n = anc and b′n = bnc+ d. This means that G (x) is also the non-degenerate distri-
bution of Yn:n, and a′n and b′n are the normalizing constants. For instance, if we consider
the distribution function N

(
µ, σ2), we deduce that the normalizing constants are:

an = σ (2 lnn)−1/2
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and:
bn = µ+ σ

(
4 lnn− ln 4π + ln (lnn)

2
√

2 lnn

)
The normalizing constants are uniquely defined. In the case of the Gaussian distribution

N (0, 1), they are equal to an = h (bn) = bn/
(
1 + b2n

)
and bn = Φ−1 (1− n−1). In Table

12.4, we report an approximation which is not necessarily unique. For instance, Gasull et
al. (2015) propose the following alternative value of bn:

bn ≈

√
ln
(
n2

2π

)
− ln

(
ln
(
n2

2π

))
+ ln (0.5 + lnn2)− 2

lnn2 − ln 2π

and show that this solution is more accurate than the classical approximation.

12.2.3 Generalized extreme value distribution
12.2.3.1 Definition

From a statistical point of view, the previous results of the extreme value theory are
difficult to use. Indeed, they are many issues concerning the choice of the distribution
function, the normalizing constants or the convergence rate as explained by Coles (2001):

“The three types of limits that arise in Theorem 12.2.1 have distinct forms of
behavior, corresponding to the different forms of tail behaviour for the distribu-
tion function F of the Xi. This can be made precise by considering the behavior
of the limit distribution G at x+, its upper end-point. For the Weibull distribu-
tion x+ is finite, while for both the Fréchet and Gumbel distributions x+ =∞.
However, the density of G decays exponentially for the Gumbel distribution and
polynomially for the Fréchet distribution, corresponding to relatively different
rates of decay in the tail of F. It follows that in applications the three different
families give quite different representations of extreme value behavior. In early
applications of extreme value theory, it was usual to adopt one of the three
families, and then to estimate the relevant parameters of that distribution. But
there are two weakness: first, a technique is required to choose which of the three
families is most appropriate for the data at hand; second, once such a decision is
made, subsequent inferences presume this choice to be correct, and do not allow
for the uncertainty such a selection involves, even though this uncertainty may
be substantial”.

In practice, the statistical inference on extreme values takes another route. Indeed, the three
types can be combined into a single distribution function:

G (x) = exp
(
−
(

1 + ξ

(
x− µ
σ

))−1/ξ
)

defined on the support ∆ =
{
x : 1 + ξσ−1 (x− µ) > 0

}
. It is known as the ‘generalized

extreme value’ distribution and we denote it by GEV (µ, σ, ξ). We obtain the following cases:

• the limit case ξ → 0 corresponds to the Gumbel distribution;

• ξ = −α−1 > 0 defines the Fréchet distribution;

• the Weibull distribution is obtained by considering ξ = −α−1 < 0.
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We also notice that the parameters µ and σ are the limits of the normalizing constants bn
and an. The corresponding density function is equal to:

g (x) = 1
σ
·
(

1 + ξ

(
x− µ
σ

))−(1+ξ)/ξ
· exp

(
−
(

1 + ξ

(
x− µ
σ

))−1/ξ
)

It is represented in Figure 12.10 for various values of the parameters. We notice that µ is a
parameter of localization, σ controls the standard deviation and ξ is related to the tail of
the distribution. The parameters can be estimated using the method of maximum likelihood
and we obtain:

`t = − ln σ −
(

1 + ξ

ξ

)
ln
(

1 + ξ

(
xt − µ
σ

))
−
(

1 + ξ

(
xt − µ
σ

))−1/ξ

where xt is the observed maximum for the tth period.
We consider again the example of the MSCI USA index. Using daily returns, we cal-

culate the block maximum for each period of 22 trading days. We then estimate the GEV
distribution using the method of maximum likelihood. For the period 1995-2015, we obtain
µ̂ = 0.0149, σ̂ = 0.0062 and ξ̂ = 0.3736. In Figure 12.11, we compared the estimated GEV
distribution with the distribution function F22:22 (x) when we assume that daily returns are
Gaussian. We notice that the Gaussian hypothesis largely underestimates extreme events
as illustrated by the quantile function in the table below:

α 90% 95% 96% 97% 98% 99%
Gaussian 3.26% 3.56% 3.65% 3.76% 3.92% 4.17%
GEV 3.66% 4.84% 5.28% 5.91% 6.92% 9.03%

For instance, the probability is 1% to observe a maximum daily return during a period of
one month larger than 4.17% in the case of the Gaussian distribution and 9.03% in the case
of the GEV distribution.

12.2.3.2 Estimating the value-at-risk

Let us consider a portfolio w, whose mark-to-market value is Pt (w) at time t. We recall
that the P&L between t and t+ 1 is equal to:

Π (w) = Pt+1 (w)− Pt (w)
= Pt (w) ·R (w)

where R (w) is the daily return of the portfolio. If we note F̂ the estimated probability
distribution of R (w), the expression of the value-at-risk at the confidence level α is equal
to:

VaRα (w) = −Pt (w) · F̂−1 (1− α)

We now estimate the GEV distribution Ĝ of the maximum of −R (w) for a period of
n trading days10. We have to define the confidence level αGEV when we consider block
minima of daily returns that corresponds to the same confidence level α when we consider
daily returns. For that, we assume that the two exception events have the same return
period, implying that:

1
1− α × 1 day = 1

1− αGEV
× n days

10We model the maximum of the opposite of daily returns, because we are interested in extreme losses,
and not in extreme profits.
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FIGURE 12.10: Probability density function of the GEV distribution

FIGURE 12.11: Probability density function of the maximum return R22:22
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We deduce that:
αGEV = 1− (1− α) · n

It follows that the value-at-risk calculated with the GEV distribution is equal to11:

VaRα (w) = P (t) · Ĝ−1 (αGEV)

We consider four portfolios invested in the MSCI USA index and the MSCI EM index:
(1) long on the MSCI USA, (2) long on the MSCI EM index, (3) long on the MSCI USA
and short on the MSCI EM index and (4) long on the MSCI EM index and short on the
MSCI USA index. Using daily returns from January 1995 to December 2015, we estimate
the daily value-at-risk of these portfolios for different confidence levels α. We report the
results in Table 12.5 for Gaussian and historical value-at-risk measures and compare them
with those calculated with the GEV approach. In this case, we estimate the parameters of
the extreme value distribution using block maxima of 22 trading days. When we consider a
99% confidence level, the lowest value is obtained by the GEV method followed by Gaussian
and historical methods. For a higher quantile, the GEV VaR is between the Gaussian VaR
and the historical VaR. The value-at-risk calculated with the GEV approach can therefore
be interpreted as a parametric value-at-risk, which is estimated using only tail events.

TABLE 12.5: Comparing Gaussian, historical and GEV value-at-risk measures

VaR α Long US Long EM Long US Long EM
Short EM Short US

99.0% 2.88% 2.83% 3.06% 3.03%
Gaussian 99.5% 3.19% 3.14% 3.39% 3.36%

99.9% 3.83% 3.77% 4.06% 4.03%
99.0% 3.46% 3.61% 3.37% 3.81%

Historical 99.5% 4.66% 4.73% 3.99% 4.74%
99.9% 7.74% 7.87% 6.45% 7.27%
99.0% 2.64% 2.61% 2.72% 2.93%

GEV 99.5% 3.48% 3.46% 3.41% 3.82%
99.9% 5.91% 6.05% 5.35% 6.60%

12.2.4 Peak over threshold
12.2.4.1 Definition

The estimation of the GEV distribution is a ‘block component-wise’ approach. This
means that from a sample of random variates, we build a sample of maxima by considering
blocks with the same length. This implies a loss of information, because some blocks may
contain several extreme events whereas some other blocks may not be impacted by extremes.
Another approach consists in using the ‘peak over threshold’ (POT) method. In this case,
we are interested in estimating the distribution of exceedance over a certain threshold u:

Fu(x) = Pr {X − u ≤ x | X > u}

11The inverse function of the probability distribution GEV (µ, σ, ξ) is equal to:

G−1 (α) = µ−
σ

ξ

(
1− (− lnα)−ξ

)
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where 0 ≤ x < x0−u and x0 = sup {x ∈ R : F(x) < 1}. Fu(x) is also called the conditional
excess distribution function. It is also equal to:

Fu(x) = 1− Pr {X − u ≤ x | X ≤ u}

= 1−
(

1− F (u+ x)
1− F (u)

)
= F(u+ x)− F(u)

1− F(u)

Pickands (1975) showed that, for very large u, Fu(x) follows a generalized Pareto distribu-
tion (GPD): Fu(x) ≈ H (x) where12:

H (x) = 1−
(

1 + ξx

σ

)−1/ξ

The distribution function GPD (σ, ξ) depends on two parameters: σ is the scale parameter
and ξ is the shape parameter.

Example 129 If F is an exponential distribution E (λ), we have:

1− F (u+ x)
1− F (u) = exp (−λx)

This is the generalized Pareto distribution when σ = 1/λ and ξ → 0.

Example 130 If F is a uniform distribution, we have:

1− F (u+ x)
1− F (u) = 1− x

1− u

It corresponds to the generalized Pareto distribution with the following parameters: σ = 1−u
and ξ = −1.

In fact, there is a strong link between the block maxima approach and the peak over
threshold method. Suppose that Xn:n ∼ GEV (µ, σ, ξ). It follows that:

Fn (x) ≈ exp
{
−
(

1 + ξ

(
x− µ
σ

))−1/ξ
}

We deduce that:

n ln F (x) ≈ −
(

1 + ξ

(
x− µ
σ

))−1/ξ

Using the approximation ln F (x) ≈ − (1− F (x)) for large x, we obtain:

1− F (x) ≈ 1
n

(
1 + ξ

(
x− µ
σ

))−1/ξ

We find that Fu(x) is a generalized Pareto distribution GPD (σ̃, ξ):

Pr {X > u+ x | X > u} = 1− F (u+ x)
1− F (u)

=
(

1 + ξx

σ̃

)−1/ξ

12If ξ → 0, we have H (x) = 1− exp (−x/σ).
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where:
σ̃ = σ + ξ (u− µ)

Therefore, we have a duality between GEV and GPD distribution functions:

“[...] if block maxima have approximating distribution G, then threshold
excesses have a corresponding approximate distribution within the generalized
Pareto family. Moreover, the parameters of the generalized Pareto distribution
of threshold excesses are uniquely determined by those of the associated GEV
distribution of block maxima. In particular, the parameter ξ is equal to that
of the corresponding GEV distribution. Choosing a different, but still large,
block size n would affect the values of the GEV parameters, but not those
of the corresponding generalized Pareto distribution of threshold excesses: ξ is
invariant to block size, while the calculation of σ̃ is unperturbed by the changes
in µ and σ which are self-compensating” (Coles, 2001, page 75).

The estimation of the parameters (σ, ξ) is not obvious because it depends on the value
taken by the threshold u. It must be sufficiently large to apply the previous theorem, but
we also need enough data to obtain good estimates. We notice that the mean residual life
e (u) is a linear function of u:

e (u) = E [X − u | X > u]

= σ + ξu

1− ξ

when ξ < 1. If the GPD approximation is valid for a value u0, it is therefore valid for any
value u > u0. To determine u0, we can use a mean residual life plot, which consists in
plotting u against the empirical mean excess ê (u):

ê (u) =
∑n
i=1 (xi − u)+∑n
i=1 1 {xi > u}

Once u0 is found, we estimate the parameters (σ, ξ) by the method of maximum likelihood
or the linear regression13.

Let us consider our previous example. In Figure 12.12, we have reported the mean
residual life plot for the left tail of the four portfolios14. The determination of u0 consists
in finding linear relationships. We have a first linear relationship between u = −3% and
u = −1%, but it is not valid because it is followed by a change in slope. We prefer to
consider that the linear relationship is valid for u ≥ 2%. By assuming that u0 = 2% for all
the four portfolios, we obtain the estimates given in Table 12.6.

12.2.4.2 Estimating the expected shortfall

We recall that:
Fu(x) = F(u+ x)− F(u)

1− F(u) ≈ H (x)

where H ∼ GPD (σ, ξ). We deduce that:

F (x) = F (u) + (1− F (u)) · Fu (x− u)
≈ F (u) + (1− F (u)) ·H (x− u)

13In this case, we estimate the linear model ê (u) = a+b ·u+ε for u ≥ u0 and deduce that σ̂ = â/
(
1 + b̂

)
and ξ̂ = b̂/

(
1 + b̂

)
.

14This means that ê (u) is calculated using the portfolio loss, that is the opposite of the portfolio return.
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FIGURE 12.12: Mean residual life plot

TABLE 12.6: Estimation of the generalized Pareto distribution

Parameter Long US Long EM Long US Long EM
Short EM Short US

â 0.834 1.029 0.394 0.904
b̂ 0.160 0.132 0.239 0.142
σ̂ 0.719 0.909 0.318 0.792
ξ̂ 0.138 0.117 0.193 0.124

We consider a sample of size n. We note nu the number of observations whose value xi is
larger than the threshold u. The non-parametric estimate of F (u) is then equal to:

F̂ (u) = 1− nu
n

Therefore, we obtain the following semi-parametric estimate of F (x) for x larger than u:

F̂ (x) = F̂ (u) +
(

1− F̂ (u)
)
· Ĥ (x− u)

=
(

1− nu
n

)
+ nu

n

1−
(

1 + ξ̂ (x− u)
σ̂

)−1/ξ̂


= 1− nu
n

(
1 + ξ̂ (x− u)

σ̂

)−1/ξ̂
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We can interpret F̂ (x) as the historical estimate of the probability distribution tail that is
improved by the extreme value theory. We deduce that:

VaRα = F̂−1 (α)

= u+ σ̂

ξ̂

((
n

nu
(1− α)

)−ξ̂
− 1
)

and:

ESα = E [X | X > VaRα]
= VaRα +E [X −VaRα | X > VaRα]

= VaRα + σ̂ + ξ̂ (VaRα−u)
1− ξ̂

= VaRα

1− ξ̂
+ σ̂ − ξ̂u

1− ξ̂

= u− σ̂

ξ̂
+ σ̂(

1− ξ̂
)
ξ̂

(
n

nu
(1− α)

)−ξ̂

We consider again the example of the four portfolios with exposures on US and EM
equities. In the sample, we have 3 815 observations, whereas the value taken by nu when
u is equal to 2% is 171, 161, 174 and 195 respectively. Using the estimates given in Table
12.6, we calculate the daily value-at-risk and expected shortfall of the four portfolios. The
results are reported in Table 12.7. If we compare them with those obtained in Table 12.5
on page 773, we notice that the GPD VaR is close to the GEV VaR.

TABLE 12.7: Estimating value-at-risk and expected shortfall risk measures using the
generalized Pareto distribution

Risk
α Long US Long EM Long US Long EM

measure Short EM Short US
99.0% 3.20% 3.42% 2.56% 3.43%

VaR 99.5% 3.84% 4.20% 2.88% 4.13%
99.9% 5.60% 6.26% 3.80% 6.02%
99.0% 4.22% 4.64% 3.09% 4.54%

ES 99.5% 4.97% 5.52% 3.48% 5.34%
99.9% 7.01% 7.86% 4.62% 7.49%

12.3 Multivariate extreme value theory
The extreme value theory is generally formulated and used in the univariate case. It can

be easily extended to the multivariate case, but its implementation is more difficult. This
section is essentially based on the works of Deheuvels (1978), Galambos (1987) and Joe
(1997).
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12.3.1 Multivariate extreme value distributions
12.3.1.1 Extreme value copulas

An extreme value (EV) copula satisfies the following relationship:

C
(
ut1, . . . , u

t
n

)
= Ct (u1, . . . , un)

for all t > 0. For instance, the Gumbel copula is an EV copula:

C
(
ut1, u

t
2
)

= exp
(
−
((
− ln ut1

)θ +
(
− ln ut2

)θ)1/θ
)

= exp
(
−
(
tθ
(

(− ln u1)θ + (− ln u2)θ
))1/θ

)
=
(

exp
(
−
(

(− ln u1)θ + (− ln u2)θ
)1/θ

))t
= Ct (u1, u2)

but it is not the case of the Farlie-Gumbel-Morgenstern copula:

C
(
ut1, u

t
2
)

= ut1u
t
2 + θut1u

t
2
(
1− ut1

) (
1− ut2

)
= ut1u

t
2
(
1 + θ − θut1 − θut2 + θut1u

t
2
)

6= ut1u
t
2 (1 + θ − θu1 − θu2 + θu1u2)t

6= Ct (u1, u2)

The term ‘extreme value copula’ suggests a relationship between the extreme value
theory and these copula functions. Let X = (X1, . . . , Xn) be a random vector of dimension
n. We note Xm:m the random vector of maxima:

Xm:m =

 Xm:m,1
...

Xm:m,n


and Fm:m the corresponding distribution function:

Fm:m (x1, . . . , xn) = Pr {Xm:m,1 ≤ x1, . . . , Xm:m,n ≤ xn}

The multivariate extreme value (MEV) theory considers the asymptotic behavior of the
non-degenerate distribution function G such that:

lim
m→∞

Pr
(
Xm:m,1 − bm,1

am,1
≤ x1, . . . ,

Xm:m,n − bm,n
am,n

≤ xn
)

= G (x1, . . . , xn)

Using Sklar’s theorem, there exists a copula function C 〈G〉 such that:

G (x1, . . . , xn) = C 〈G〉 (G1 (x1) , . . . ,Gn (xn))

It is obvious that the marginals G1, . . . ,Gn satisfy the Fisher-Tippet theorem, meaning that
the marginals of a multivariate extreme value distribution can only be Gumbel, Fréchet or
Weibull distribution functions. For the copula C 〈G〉, we have the following result: C 〈G〉
is an extreme value copula.
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With the copula representation, we can then easily define MEV distributions. For in-
stance, if we consider the random vector (X1, X2), whose joint distribution function is:

F (x1, x2) = exp
(
−
(

(− ln Φ (x1))θ + (− ln x2)θ
)1/θ

)
we notice that X1 is a Gaussian random variable and X2 is a uniform random variable. We
conclude that the corresponding limit distribution function of maxima is:

G (x1, x2) = exp
(
−
(

(− ln Λ (x1))θ + (− ln Ψ1 (x2))θ
)1/θ

)
In Figure 12.13, we have reported the contour plot of four MEV distribution functions, whose
marginals are GEV (0, 1, 1) and GEV (0, 1, 1.5). For the dependence function, we consider the
Gumbel-Hougaard copula and calibrate the parameter θ with respect to the Kendall’s tau.

FIGURE 12.13: Multivariate extreme value distributions

12.3.1.2 Deheuvels-Pickands representation

Let D be a multivariate distribution function, whose survival marginals are exponen-
tial and the dependence structure is an extreme value copula. By using the relationship15
C (u1, . . . , un) = C

(
e−ũ1 , . . . , e−ũn

)
= D (ũ1, . . . , ũn), we have Dt (ũ) = D (tũ). Therefore,

D is a min-stable multivariate exponential (MSMVE) distribution.
We now introduce the Deheuvels/Pickands MSMVE representation. Let D (ũ) be a

survival function with exponential marginals. D satisfies the relationship:

− ln D (t · ũ) = −t · ln D (ũ) ∀ t > 0

15We recall that ũ = − lnu.
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if and only if the representation of D is:

− ln D (ũ) =
∫
· · ·
∫
Sn

max
1≤i≤n

(qiũi) dS (q) ∀ ũ ≥ 0

where Sn is the n-dimensional unit simplex and S is a finite measure on Sn. This is the
formulation16 given by Joe (1997). Sometimes, the Deheuvels/Pickands representation is
presented using a dependence function B (w) defined by:

D (ũ) = exp
(
−

(
n∑
i=1

ũi

)
B (w1, . . . , wn)

)

B (w) =
∫
· · ·
∫
Sn

max
1≤i≤n

(qiwi) dS (q)

where wi = (
∑n
i=1 ũi)

−1
ũi. Tawn (1990) showed that B is a convex function and satisfies

the following condition:

max (w1, . . . , wn) ≤ B (w1, . . . , wn) ≤ 1 (12.5)

We deduce that an extreme value copula satisfies the PQD property:

C⊥ ≺ C ≺ C+

In the bivariate case, the formulation can be simplified because the convexity of B and
the condition (12.5) are sufficient (Tawn, 1988). We have:

C (u1, u2) = D (ũ1, ũ2)

= exp
(
− (ũ1 + ũ2)B

(
ũ1

ũ1 + ũ2
,

ũ2

ũ1 + ũ2

))
= exp

(
ln (u1u2)B

(
ln u1

ln (u1u2) ,
ln u2

ln (u1u2)

))
= exp

(
ln (u1u2)A

(
ln u1

ln (u1u2)

))
where A (w) = B (w, 1− w). A is a convex function where A (0) = A (1) = 1 and satisfies
max (w, 1− w) ≤ A (w) ≤ 1.

Example 131 For the Gumbel copula, we have:

− ln D (ũ1, ũ2) =
(
ũθ1 + ũθ2

)1/θ
B (w1, w2) =

(
ũθ1 + ũθ2

)1/θ
(ũ1 + ũ2) =

(
wθ1 + wθ2

)1/θ
A (w) =

(
wθ + (1− w)θ

)1/θ

16Note that it is similar to Proposition 5.11 of Resnick (1987), although the author does not use copulas.
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We verify that a bivariate EV copula satisfies the PQD property:

max (w, 1− w) ≤ A (w) ≤ 1

⇔ max
(

ln u1

ln (u1u2) ,
ln u2

ln (u1u2)

)
≤ A

(
ln u1

ln (u1u2)

)
≤ 1

⇔ min (ln u1, ln u2) ≥ ln (u1u2) ·A
(

ln u1

ln (u1u2)

)
≥ ln (u1u2)

⇔ min (u1, u2) ≥ exp
(

ln (u1u2) ·A
(

ln u1

ln (u1u2)

))
≥ u1u2

⇔ C+ � C � C⊥

When the extreme values are independent, we have A (w) = 1 whereas the case of perfect
dependence corresponds to A (w) = max (w, 1− w):

C (u1, u2) = exp
(

ln (u1u2) ·max
(

ln u1

ln (u1u2) ,
ln u2

ln (u1u2)

))
= min (u1, u2)
= C+ (u1, u2)

In Table 12.8, we have reported the dependence function A (w) of the most used EV copula
functions.

TABLE 12.8: List of extreme value copulas
Copula θ C (u1, u2) A (w)
C⊥ u1u2 1
Gumbel [1,∞) exp

(
−
(
ũθ1 + ũθ2

)1/θ) (
wθ + (1− w)θ

)1/θ
Gumbel II [0, 1] u1u2 exp

(
θ
ũ1ũ2

ũ1 + ũ2

)
θw2 − θw + 1

Galambos [0,∞) u1u2 exp
((
ũ−θ1 + ũ−θ2

)−1/θ
)

1−
(
w−θ + (1− w)−θ

)−1/θ

Hüsler-Reiss [0,∞) exp (−ũ1ϑ (u1, u2; θ)− ũ2ϑ (u2, u1; θ)) wκ (w; θ) + (1− w)κ (1− w; θ)
Marshall-Olkin [0, 1]2 u1−θ1

1 u1−θ2
2 min

(
uθ11 , u

θ2
2
)

max (1− θ1w, 1− θ2 (1− w))
C+ min (u1, u2) max (w, 1− w)

ϑ (u1, u2; θ) = Φ
(

1
θ

+ θ
2 ln (lnu1/ lnu2)

)
κ (w; θ) = ϑ (w, 1− w; θ)

Source: Ghoudi et al. (1998).

12.3.2 Maximum domain of attraction
Let F be a multivariate distribution function whose marginals are F1, . . . ,Fn and the

copula is C 〈F〉. We note G the corresponding multivariate extreme value distribution,
G1, . . . ,Gn the marginals of G and C 〈G〉 the associated copula function. We can show that
F ∈ MDA (G) if and only if Fi ∈ MDA (Gi) for all i = 1, . . . , n and C 〈F〉 ∈ MDA (C 〈G〉).
Previously, we have seen how to characterize the max-domain of attraction in the univariate
case and how to calculate the normalizing constants. These constants remains the same in
the multivariate case, meaning that the only difficulty is to determine the EV copula C 〈G〉.
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We can show that C 〈F〉 ∈ MDA (C 〈G〉) if C 〈F〉 satisfies the following relationship:

lim
t→∞

Ct 〈F〉
(
u

1/t
1 , . . . , u1/t

n

)
= C 〈G〉 (u1, . . . , un)

Moreover, if C 〈F〉 is an EV copula, then C 〈F〉 ∈ MDA (C 〈F〉). This important result is
equivalent to:

lim
u→0

1−C 〈F〉 ((1− u)w1 , . . . , (1− u)wn)
u

= B (w1, . . . , wn)

In the bivariate case, we obtain:

lim
u→0

1−C 〈F〉
(

(1− u)1−t
, (1− u)t

)
u

= A (t)

for all t ∈ [0, 1].

Example 132 We consider the random vector (X1, X2) defined by the following distribu-
tion function:

F (x1, x2) =
((

1− e−x1
)−θ + x−θ2 − 1

)−1/θ

on [0,∞] × [0, 1]. The marginals of F (x1, x2) are F1 (x1) = F (x1, 1) = 1 − e−x1 and
F2 (x2) = F (∞, x2) = x2. It follows that X1 is an exponential random variable and X2 is
a uniform random variable. We know that:

lim
n→∞

Pr
(
Xn:n,1 − lnn

1 ≤ x1

)
= Λ (x1)

and:
lim
n→∞

Pr
(
Xn:n,2 − 1

n−1 ≤ x2

)
= Ψ1 (x2)

Since the dependence function of F is the Clayton copula: C 〈F〉 (u1, u2) =(
u−θ1 + u−θ2 − 1

)−1/θ, we have:

lim
u→0

1−C 〈F〉
(

(1− u)t , (1− u)1−t
)

u
= lim

u→0

1− (1 + θu+ o (u))−1/θ

u

= lim
u→0

u+ o (u)
u

= 1

We deduce that C 〈G〉 = C⊥. Finally, we obtain:

G (x1, x2) = lim
n→∞

Pr {Xn:n,1 − lnn ≤ x1, n (Xn:n,2 − 1) ≤ x2}

= Λ (x1) ·Ψ1 (x2)
= exp

(
−e−x1

)
· exp (x2)

If we change the copula C 〈F〉, only the copula C 〈G〉 is modified. For instance, when C 〈F〉
is the Normal copula with parameter ρ < 1, then G (x1, x2) = exp (−e−x1) · exp (x2). When
the copula parameter ρ is equal to 1, we obtain G (x1, x2) = min (exp (−e−x1) , exp (x2)).
When C 〈F〉 is the Gumbel copula, the MEV distribution becomes G (x1, x2) =

exp
(
−
(
e−θx1 + (−x2)θ

)1/θ
)
.
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12.3.3 Tail dependence of extreme values
We can show that the (upper) tail dependence of C 〈G〉 is equal to the (upper) tail

dependence of C 〈F〉:
λ+ (C 〈G〉) = λ+ (C 〈F〉)

This implies that extreme values are independent if the copula function C 〈F〉 has no (upper)
tail dependence.

12.4 Exercises
12.4.1 Uniform order statistics

We assume that X1, . . . , Xn are independent uniform random variables.

1. Show that the density function of the order statistic Xi:n is:

fi:n (x) = Γ (n+ 1)
Γ (i) Γ (n− i+ 1)x

i−1 (1− x)n−i

2. Calculate the mean E [Xi:n].

3. Show that the variance is equal to:

var (Xi:n) = i (n− i+ 1)
(n+ 1)2 (n+ 2)

4. We consider 10 samples of 8 independent observations from the uniform probability
distribution U[0,1]:

Sample Observation
1 2 3 4 5 6 7 8

1 0.24 0.45 0.72 0.14 0.04 0.34 0.94 0.55
2 0.12 0.32 0.69 0.64 0.31 0.25 0.97 0.57
3 0.69 0.50 0.26 0.17 0.50 0.85 0.11 0.17
4 0.53 0.00 0.77 0.58 0.98 0.15 0.98 0.03
5 0.89 0.25 0.15 0.62 0.74 0.85 0.65 0.46
6 0.74 0.65 0.86 0.05 0.93 0.15 0.25 0.07
7 0.16 0.12 0.63 0.33 0.55 0.61 0.34 0.95
8 0.96 0.82 0.01 0.87 0.57 0.11 0.14 0.47
9 0.68 0.83 0.73 0.78 0.27 0.85 0.55 0.57
10 0.89 0.94 0.91 0.28 0.99 0.40 0.99 0.68

For each sample, find the order statistics. Calculate the empirical mean and standard
deviation of Xi:8 for i = 1, . . . , 8 and compare these values with the theoretical results.

5. We assume that n is odd, meaning that n = 2k+ 1. We consider the median statistic
Xk+1:n. Show that the density function of Xi:n is right asymmetric if i ≤ k, symmetric
about .5 if i = k + 1 and left asymmetric otherwise.

6. We now assume that the density function of X1, . . . , Xn is symmetric. How are im-
pacted the results obtained in Question 5?
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12.4.2 Order statistics and return period
1. Let X and F be the daily return of a portfolio and the associated probability distri-

bution. We note Xn:n the maximum of daily returns for a period of n trading days.
Using the standard assumptions, define the cumulative distribution function Fn:n of
Xn:n if we suppose that X ∼ N

(
µ, σ2).

2. How could we test the hypothesis H0 : X ∼ N
(
µ, σ2) using Fn:n?

3. Define the notion of return period. What is the return period associated to the statis-
tics F−1 (99%), F−1

1:1 (99%), F−1
5:5 (99%) and F−1

21:21 (99%)?

4. We consider the random variable X20:20. Find the confidence level α which ensures
that the return period associated to the quantile F−1

20:20 (α) is equivalent to the return
period of the daily value-at-risk with a 99.9% confidence level.

12.4.3 Extreme order statistics of exponential random variables
1. We note τ ∼ E (λ). Show that:

Pr {τ > t | τ > s} = Pr {τ > t− s}

where t > s. Comment on this result.

2. Let τi be the random variable of distribution E (λi). Calculate the probability distri-
bution of min (τ1, . . . , τn) and max (τ1, . . . , τn) in the independent case. Show that:

Pr {min (τ1, . . . , τn) = τi} = λi∑n
j=1 λj

3. Same question if the random variables τ1, . . . , τn are comonotone.

12.4.4 Extreme value theory in the bivariate case
1. What is an extreme value (EV) copula C?

2. Show that C⊥ and C+ are EV copulas. Why C− cannot be an EV copula?

3. We define the Gumbel-Hougaard copula as follows:

C (u1, u2) = exp
(
−
[
(− ln u1)θ + (− ln u2)θ

]1/θ)
with θ ≥ 1. Verify that it is an EV copula.

4. What is the definition of the upper tail dependence λ? What is its usefulness in
multivariate extreme value theory?

5. Let f (x) and g (x) be two functions such that limx→x0 f (x) = limx→x0 g (x) = 0. If
g′ (x0) 6= 0, L’Hospital’s rule states that:

lim
x→x0

f (x)
g (x) = lim

x→x0

f ′ (x)
g′ (x)

Deduce that the upper tail dependence λ of the Gumbel-Hougaard copula is 2− 21/θ.
What is the correlation of two extremes when θ = 1?
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6. We define the Marshall-Olkin copula as follows:

C (u1, u2) = u1−θ1
1 · u1−θ2

2 ·min
(
uθ11 , u

θ2
2

)
where (θ1, θ2) ∈ [0, 1]2.

(a) Verify that it is an EV copula.
(b) Find the upper tail dependence λ of the Marshall-Olkin copula.
(c) What is the correlation of two extremes when min (θ1, θ2) = 0?
(d) In which case are two extremes perfectly correlated?

12.4.5 Maximum domain of attraction in the bivariate case
1. We consider the following probability distributions:

Distribution F (x)
Exponential E (λ) 1− e−λx
Uniform U[0,1] x

Pareto P (α, θ) 1−
(
θ+x
θ

)−α
For each distribution, we give the normalization parameters an and bn of the Fisher-
Tippet theorem and the corresponding limit probability distribution G (x):

Distribution an bn G (x)
Exponential λ−1 λ−1 lnn Λ (x) = e−e

−x

Uniform n−1 1− n−1 Ψ1 (x− 1) = ex−1

Pareto θα−1n1/α θn1/α − θ Φα

(
1 + x

α

)
= e−(1+ x

α )−α

We note G (x1, x2) the asymptotic distribution of the bivariate random vector
(X1,n:n, X2,n:n) where X1,i (resp. X2,i) are iid random variables.

(a) What is the expression of G (x1, x2) when X1,i and X2,i are independent, X1,i ∼
E (λ) and X2,i ∼ U[0,1]?

(b) Same question when X1,i ∼ E (λ) and X2,i ∼ P (θ, α).
(c) Same question when X1,i ∼ U[0,1] and X2,i ∼ P (θ, α).

2. What happen to the previous results when the dependence function between X1,i and
X2,i is the Normal copula with parameter ρ < 1?

3. Same question when the parameter of the Normal copula is equal to one.

4. Find the expression of G (x1, x2) when the dependence function is the Gumbel-
Hougaard copula.
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