
Chapter 3
Credit Risk

In this chapter, we give an overview of the credit market. It concerns loans and bonds,
but also credit derivatives whose development was impressive during the 2000s. A thor-
ough knowledge of the products is necessary to understand the regulatory framework for
computing the capital requirements for credit risk. In this second section, we will there-
fore compare Basel I, Basel II and Basel III approaches. The case of counterparty credit
risk will be treated in the next chapter, which focuses on collateral risk. Finally, the last
section is dedicated to the modeling of credit risk. We will develop the statistical methods
for modeling and estimating the main parameters (probability of default, loss given default
and default correlations) and we will show the tools of credit risk management. Concerning
credit scoring models, we refer to Chapter 15, which is fully dedicated on this topic.

3.1 The market of credit risk
3.1.1 The loan market

In this section, we present the traditional debt market of loans based on banking inter-
mediation, as opposed to the financial market of debt securities (money market instruments,
bonds and notes). We generally distinguish this credit market along two main lines: coun-
terparties and products.

Counterparties are divided into 4 main categories: sovereign, financial, corporate and
retail. Banking groups have adopted this customer-oriented approach by differentiating
retail banking and corporate and investment banking (CIB) businesses. Retail banking
refers to individuals. It may also include micro-sized firms and small and medium-sized
enterprises (SME). CIBs concern middle market firms, corporates, financial institutions
and public entities. In retail banking, the bank pursues a client segmentation, meaning
that all the clients that belongs to the same segment have the same conditions in terms
of financing and financial investments. This also implies that the pricing of the loan is the
same for two individuals of the same segment. The issue for the bank is then to propose or
not a loan offer to his client. For that, the bank uses statistical decision-making methods,
which are called credit scoring models. Contrary to this binary approach (yes or no), CIBs
have a personalized approach to their clients. They estimate their probability of default and
changes the pricing condition of the loan on the basis of the results. A client with a low
default probability will have a lower rate or credit spread than a client with a higher default
probability for the same loan.

The household credit market is organized as follows: mortgage and housing debt, con-
sumer credit and student loans. A mortgage is a debt instrument secured by the collateral
of a real estate property. In the case where the borrower defaults on the loan, the lender
can take possession and sell the secured property. For instance, the home buyer pledges
his house to the bank in a residential mortgage. This type of credit is very frequent in
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English-speaking countries, notably England and the United States. In continental Europe,
home loans are generally not collateralized for a primary home. This is not always the case
for buy-to-let investments and second-home loans. Consumer credit is used for equipment
financing or leasing. We usually make the distinction between auto loans, credit cards, re-
volving credit and other loans (personal loans and sales financing). Auto loans are personal
loans to purchase a car. Credit cards and revolving credit are two forms of personal lines
of credit. Revolving credit facilities for individuals are very popular in the US. It can be
secured, as in the case of a home equity line of credit (HELOC). Student loans are used
to finance educational expenses, for instance post-graduate studies at the university. The
corporate credit market is organized differently, because large corporates have access to the
financial market for long-term financing. This explains that revolving credit facilities are
essential to provide liquidity for the firm’s day-to-day operations. The average maturity is
then lower for corporates than for individuals.

Credit statistics for the private non-financial sector (households and non-financial cor-
porations) are reported in Figures 3.1 and 3.2. These statistics include loan instruments,
but also debt securities. In the case of the United States1, we notice that the credit amount
for households2 is close to the figure for non-financial business. We also observe the signifi-
cant share of consumer credit and the strong growth of student loans. Figure 3.2 illustrates
the evolution of debt outstanding3 for different countries: China, United Kingdom, Japan,
United States and the Euro area. In China, the annual growth rate is larger than 20% these
last five years. Even if credit for households develops much faster than credit for corpora-
tions, it only represents 24% of the total credit market of the private non-financial sector.
The Chinese market contrasts with developed markets where the share of household credit
is larger4 and growth rates are almost flat since the 2008 financial crisis. The Japanese
case is also very specific, because this country experienced a strong financial crisis after
the bursting of a bubble in the 1990s. At that time, the Japanese market was the world’s
leading market followed by the United States.

3.1.2 The bond market
Contrary to loan instruments, bonds are debt securities that are traded in a financial

market. The primary market concerns the issuance of bonds whereas bond trading is or-
ganized through the secondary market. The bond issuance market is dominated by two
sectors: central and local governments (including public entities) and corporates. This is
the principal financing source for government projects and public budget deficits. Large
corporates also use extensively the bond market for investments, business expansions and
external growth. The distinction government bonds/corporate bonds was crucial before the
2008 Global Financial Crisis. Indeed, it was traditionally believed that government bonds
(in developed countries) were not risky because the probability of default was very low. In
this case, the main risk was the interest rate risk, which is a market risk. Conversely, corpo-
rate bonds were supposed to be risky because the probability of default was higher. Besides
the interest rate risk, it was important to take into account the credit risk. Bonds issued
from the financial and banking sector were considered as low risk investments. Since 2008,

1Data are from the statistical release Z.1 “Financial Accounts of the United States”. They are available
from the website of the Federal Reserve System: https://www.federalreserve.gov/releases/z1 or more
easily with the database of the Federal Reserve Bank of St. Louis: https://fred.stlouisfed.org.

2Data for households include non-profit institutions serving households (NPISH).
3Data are collected by the Bank for International Settlements and are available in the website of the

BIS: https://www.bis.org/statistics. The series are adjusted for breaks (Dembiermont et al., 2013) and
we use the average exchange rate from 2000 to 2014 in order to obtain credit amounts in USD.

4This is especially true in the UK and the US.
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FIGURE 3.1: Credit debt outstanding in the United States (in $ tn)

Source: Board of Governors of the Federal Reserve System (2019).

FIGURE 3.2: Credit to the private non-financial sector (in $ tn)

Source: Bank for International Settlements (2019) and author’s calculations.
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TABLE 3.1: Debt securities by residence of issuer (in $ bn)

Dec. 2004 Dec. 2007 Dec. 2010 Dec. 2017

Canada

Gov. 682 841 1 149 1 264
Fin. 283 450 384 655
Corp. 212 248 326 477
Total 1 180 1 544 1 863 2 400

France

Gov. 1 236 1 514 1 838 2 258
Fin. 968 1 619 1 817 1 618
Corp. 373 382 483 722
Total 2 576 3 515 4 138 4 597

Germany

Gov. 1 380 1 717 2 040 1 939
Fin. 2 296 2 766 2 283 1 550
Corp. 133 174 168 222
Total 3 809 4 657 4 491 3 712

Italy

Gov. 1 637 1 928 2 069 2 292
Fin. 772 1 156 1 403 834
Corp. 68 95 121 174
Total 2 477 3 178 3 593 3 299

Japan

Gov. 6 336 6 315 10 173 9 477
Fin. 2 548 2 775 3 451 2 475
Corp. 1 012 762 980 742
Total 9 896 9 852 14 604 12 694

Spain

Gov. 462 498 796 1 186
Fin. 434 1 385 1 442 785
Corp. 15 19 19 44
Total 910 1 901 2 256 2 015

UK

Gov. 798 1 070 1 674 2 785
Fin. 1 775 3 127 3 061 2 689
Corp. 452 506 473 533
Total 3 027 4 706 5 210 6 011

US

Gov. 6 459 7 487 12 072 17 592
Fin. 12 706 17 604 15 666 15 557
Corp. 3 004 3 348 3 951 6 137
Total 22 371 28 695 31 960 39 504

Source: Bank for International Settlements (2019).

this difference between non-risky and risky bonds has disappeared, meaning that all issuers
are risky. The 2008 GFC had also another important consequence on the bond market. It is
today less liquid even for sovereign bonds. Liquidity risk is then a concern when measuring
and managing the risk of a bond portfolio. This point is developed in Chapter 6.

3.1.2.1 Statistics of the bond market

In Table 3.1, we indicate the outstanding amount of debt securities by residence of
issuer5. The total is split into three sectors: general governments (Gov.), financial corpora-
tions (Fin.) and non-financial corporations (Corp.). In most countries, debt securities issued
by general governments largely dominate, except in the UK and US where debt securities

5The data are available in the website of the BIS: https://www.bis.org/statistics.
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issued by financial corporations (banks and other financial institutions) are more impor-
tant. The share of non-financial business varies considerably from one country to another.
For instance, it represents less than 10% in Germany, Italy, Japan and Spain, whereas it is
equal to 20% in Canada. The total amount of debt securities tends to rise, with the notable
exception of Germany, Japan and Spain.

FIGURE 3.3: US bond market outstanding (in $ tn)

Source: Securities Industry and Financial Markets Association (2019a).

The analysis of the US market is particularly interesting and relevant. Using the data
collected by the Securities Industry and Financial Markets Association6 (SIFMA), we have
reported in Figure 3.3 the evolution of outstanding amount for the following sectors: munic-
ipal bonds, treasury bonds, mortgage-related bonds, corporate related debt, federal agency
securities, money markets and asset-backed securities. We notice an important growth dur-
ing the beginning of the 2000s (see also Figure 3.4), followed by a slowdown after 2008.
However, the debt outstanding continues to grow because the average maturity of new is-
suance increases. Another remarkable fact is the fall of the liquidity, which can be measured
by the average daily volume (ADV). Figure 3.5 shows that the ADV of treasury bonds re-
mains constant since 2000 whereas the outstanding amount has been multiplied by four
during the same period. We also notice that the turnover of US bonds mainly concerns
treasury and agency MBS bonds. The liquidity on the other sectors is very poor. For in-
stance, according to SIFMA (2019a), the ADV of US corporate bonds is less than $30 bn
in 2014, which is 22 times lower than the ADV for treasury bonds7.

6Data are available in the website of the SIFMA: https://www.sifma.org/resources/archive/resear
ch/.

7However, the ratio between their outstanding amount is only 1.6.
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FIGURE 3.4: US bond market issuance (in $ tn)

Source: Securities Industry and Financial Markets Association (2019a).

FIGURE 3.5: Average daily trading volume in US bond markets (in $ bn)

Source: Securities Industry and Financial Markets Association (2019a).
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3.1.2.2 Bond pricing

We first explain how to price a bond by only considering the interest rate risk. Then,
we introduce the default risk and define the concept of credit spread, which is key in credit
risk modeling.'
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FIGURE 3.6: Cash flows of a bond with a fixed coupon rate

Without default risk We consider that the bond pays coupons C (tm) with fixing dates
tm and the notional N (or the par value) at the maturity date T . We have reported an
example of a cash flows scheme in Figure 3.6. Knowing the yield curve8, the price of the
bond at the inception date t0 is the sum of the present values of all the expected coupon
payments and the par value:

Pt0 =
nC∑
m=1

C (tm) ·Bt0 (tm) +N ·Bt0 (T )

where Bt (tm) is the discount factor at time t for the maturity date tm. When the valuation
date is not the issuance date, the previous formula remains valid if we take into account the
accrued interests. In this case, the buyer of the bond has the benefit of the next coupon.
The price of the bond then satisfies:

Pt +ACt =
∑
tm≥t

C (tm) ·Bt (tm) +N ·Bt (T ) (3.2)

8A convenient way to define the yield curve is to use a parametric model for the zero-coupon rates Rt (T ).
The most famous model is the parsimonious functional form proposed by Nelson and Siegel (1987):

Rt (T ) = θ1 + θ2

(1− exp (− (T − t)/ θ4)
(T − t)/ θ4

)
+

θ3

(1− exp (− (T − t)/ θ4)
(T − t)/ θ4

− exp (− (T − t)/ θ4)
)

(3.1)

This is a model with four parameters: θ1 is a parameter of level, θ2 is a parameter of rotation, θ3 controls
the shape of the curve and θ4 permits to localize the break of the curve. We also note that the short-term
and long-term interest rates Rt (t) and Rt (∞) are respectively equal to θ1 + θ2 and θ1.
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Here, ACt is the accrued coupon:

ACt = C (tc) ·
t− tc
365

and tc is the last coupon payment date with c = {m : tm+1 > t, tm ≤ t}. Pt +ACt is called
the ‘dirty price’ whereas Pt refers to the ‘clean price’. The term structure of interest rates
impacts the bond price. We generally distinguish three movements:

1. The movement of level corresponds to a parallel shift of interest rates.

2. A twist in the slope of the yield curve indicates how the spread between long and
short interest rates moves.

3. A change in the curvature of the yield curve affects the convexity of the term structure.

All these movements are illustrated in Figure 3.7.

FIGURE 3.7: Movements of the yield curve

The yield to maturity y of a bond is the constant discount rate which returns its market
price: ∑

tm≥t

C (tm) e−(tm−t)y +Ne−(T−t)y = Pt +ACt

We also define the sensitivity9 S of the bond price as the derivative of the clean price Pt
with respect to the yield to maturity y :

S = ∂ Pt
∂ y

= −
∑
tm≥t

(tm − t)C (tm) e−(tm−t)y − (T − t)Ne−(T−t)y

9This sensitivity is also called the $-duration or DV01.
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It indicates how the P&L of a long position on the bond moves when the yield to maturity
changes:

Π ≈ S ·∆y
Because S < 0, the bond price is a decreasing function with respect to interest rates. This
implies that an increase of interest rates reduces the value of the bond portfolio.

Example 21 We assume that the term structure of interest rates is generated by the Nelson-
Siegel model with θ1 = 5%, θ2 = −5%, θ3 = 6% and θ4 = 10. We consider a bond with a
constant annual coupon of 5%. The nominal of the bond is $100. We would like to price the
bond when the maturity T ranges from 1 to 5 years.

TABLE 3.2: Price, yield to maturity and sensitivity of bonds
T Rt (T ) Bt (T ) Pt y S

1 0.52% 99.48 104.45 0.52% −104.45
2 0.99% 98.03 107.91 0.98% −210.86
3 1.42% 95.83 110.50 1.39% −316.77
4 1.80% 93.04 112.36 1.76% −420.32
5 2.15% 89.82 113.63 2.08% −520.16

TABLE 3.3: Impact of a parallel shift of the yield curve on the bond with five-year maturity
∆R

P̆t ∆Pt P̂t ∆Pt S ×∆y(in bps)
−50 116.26 2.63 116.26 2.63 2.60
−30 115.20 1.57 115.20 1.57 1.56
−10 114.15 0.52 114.15 0.52 0.52

0 113.63 0.00 113.63 0.00 0.00
10 113.11 −0.52 113.11 −0.52 −0.52
30 112.08 −1.55 112.08 −1.55 −1.56
50 111.06 −2.57 111.06 −2.57 −2.60

Using the Nelson-Siegel yield curve, we report in Table 3.2 the price of the bond with
maturity T (expressed in years) with a 5% annual coupon. For instance, the price of the
four-year bond is calculated in the following way:

Pt = 5
(1 + 0.52%) + 5

(1 + 0.99%)2 + 5
(1 + 1.42%)3 + 105

(1 + 1.80%)4 = $112.36

We also indicate the yield to maturity y (in %) and the corresponding sensitivity S. Let P̆t
(resp. P̂t) be the bond price by taking into account a parallel shift ∆R (in bps) directly on
the zero-coupon rates (resp. on the yield to maturity). The results are given in Table 3.3 in
the case of the bond with a five-year maturity10. We verify that the computation based on

10We have:
P̌t =

∑
tm≥t

C (tm) e−(tm−t)(Rt(tm)+∆R) +Ne−(T−t)(Rt(T )+∆R)

and:
P̂t =

∑
tm≥t

C (tm) e−(tm−t)(y+∆R) +Ne−(T−t)(y+∆R)
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FIGURE 3.8: Cash flows of a bond with default risk

the sensitivity provides a good approximation. This method has been already used in the
previous chapter on page 77 to calculate the value-at-risk of bonds.

With default risk In the previous paragraph, we assume that there is no default risk.
However, if the issuer defaults at time τ before the bond maturity T , some coupons and
the notional are not paid. In this case, the buyer of the bond recovers part of the notional
after the default time. An illustration is given in Figure 3.8. In terms of cash flows, we have
therefore:

• the coupons C (tm) if the bond issuer does not default before the coupon date tm:∑
tm≥t

C (tm) · 1 {τ > tm}

• the notional if the bond issuer does not default before the maturity date:

N · 1 {τ > T}

• the recovery part if the bond issuer defaults before the maturity date:

R ·N · 1 {τ ≤ T}

where R is the corresponding recovery rate.

If we assume that the recovery part is exactly paid at the default time τ , we deduce that
the stochastic discounted value of the cash flow leg is:

SVt =
∑
tm≥t

C (tm) · e−
∫ tm
t

rs ds · 1 {τ > tm}+

N · e−
∫ T
t
rs ds · 1 {τ > T}+ R ·N · e−

∫ τ
t
rs ds · 1 {τ ≤ T}
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The price of the bond is the expected value of the stochastic discounted value11: Pt+ACt =
E [SVt | Ft]. If we assume that (H1) the default time and the interest rates are independent
and (H2) the recovery rate is known and not stochastic, we obtain the following closed-form
formula:

Pt +ACt =
∑
tm≥t

C (tm)Bt (tm) St (tm) +NBt (T ) St (T ) +

RN

∫ T

t

Bt (u) ft (u) du (3.3)

where St (u) is the survival function at time u and ft (u) the associated density function12.

Remark 20 If the issuer is not risky, we have St (u) = 1 and ft (u) = 0. In this case,
Equation (3.3) reduces to Equation (3.2).

Remark 21 If we consider an exponential default time with parameter λ – τ ∼ E (λ), we
have St (u) = e−λ(u−t), ft (u) = λe−λ(u−t) and:

Pt +ACt =
∑
tm≥t

C (tm)Bt (tm) e−λ(tm−t) +NBt (T ) e−λ(T−t) +

λRN

∫ T

t

Bt (u) e−λ(u−t) du

If we assume a flat yield curve – Rt (u) = r, we obtain:

Pt +ACt =
∑
tm≥t

C (tm) e−(r+λ)(tm−t) +Ne−(r+λ)(T−t) +

λRN

(
1− e−(r+λ)(T−t)

r + λ

)
Example 22 We consider a bond with ten-year maturity. The notional is $100 whereas the
annual coupon rate is equal to 4.5%.

If we consider that r = 0, the price of the non-risky bond is $145. With r = 5%, the
price becomes $95.19. Let us now take into account the default risk. We assume that the
recovery rate R is 40%. If λ = 2% (resp. 10%), the price of the risky bond is $86.65 (resp.
$64.63). If the yield curve is not flat, we must use the general formula (3.3) to compute
the price of the bond. In this case, the integral is evaluated with a numerical integration
procedure, typically a Gauss-Legendre quadrature13. For instance, if we consider the yield
curve defined in Example 21, the bond price is equal to $110.13 if there is no default risk,
$99.91 if λ = 2% and $73.34 if λ = 10%.

The yield to maturity of the defaultable bond is computed exactly in the same way as
without default risk. The credit spread s is then defined as the difference of the yield to
maturity with default risk y and the yield to maturity without default risk y?:

s = y − y? (3.4)

11It is also called the present value.
12We have:

St (u) = E [1 {τ > u | τ > t}] = Pr {τ > u | τ > t}
The density function is then given by ft (u) = −∂uSt (u).

13See Appendix A.1.2.3 on page 1037 for a primer on numerical integration.
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This spread is a credit risk measure and is an increasing function of the default risk. Re-
consider the simple model with a flat yield curve and an exponential default time. If the
recovery rate R is equal to zero, we deduce that the yield to maturity of the defaultable
bond is y = r+λ. It follows that the credit spread is equal to the parameter λ of the expo-
nential distribution. Moreover, if λ is relatively small (less than 20%), the annual probability
of default is:

PD = St (t+ 1) = 1− e−λ ≈ λ

In this case, the credit spread is approximately equal to the annual default probability
(s ≈ PD).

If we reuse our previous example with the yield curve specified in Example 21, we obtain
the results reported in Table 3.4. For instance, the yield to maturity of the bond is equal
to 3.24% without default risk. If λ and R are set to 200 bps and 0%, the yield to maturity
becomes 5.22% which implies a credit spread of 198.1 bps. If the recovery rate is higher,
the credit spread decreases. Indeed, with λ equal to 200 bps, the credit spread is equal to
117.1 bps if R = 40% and only 41.7 bps if R = 80%.

TABLE 3.4: Computation of the credit spread s
R λ PD Pt y s

(in %) (in bps) (in bps) (in $) (in %) (in bps)

0

0 0.0 110.1 3.24 0.0
10 10.0 109.2 3.34 9.9

200 198.0 93.5 5.22 198.1
1000 951.6 50.4 13.13 988.9

40

0 0.0 110.1 3.24 0.0
10 10.0 109.6 3.30 6.0

200 198.0 99.9 4.41 117.1
1000 951.6 73.3 8.23 498.8

80

0 0.0 110.1 3.24 0.0
10 10.0 109.9 3.26 2.2

200 198.0 106.4 3.66 41.7
1000 951.6 96.3 4.85 161.4

Remark 22 In the case of loans, we do not calculate a capital requirement for market
risk, only a capital requirement for credit risk. The reason is that there is no market price
of the loan, because it cannot be traded in an exchange. For bonds, we calculate a capital
requirement for both market and credit risks. In the case of the market risk, risk factors
are the yield curve rates, but also the parameters associated to the credit risk, for instance
the default probabilities and the recovery rate. In this context, market risk has a credit
component. To illustrate this property, we consider the previous example and we assume
that λt varies across time whereas the recovery rate R is equal to 40%. In Figure 3.9, we
show the evolution of the process λt for the next 10 years (top panel) and the clean price14
Pt (bottom/left panel). If we suppose now that the issuer defaults suddenly at time t = 6.25,
we observe a jump in the clean price (bottom/right panel). It is obvious that the market risk
takes into account the short-term evolution of the credit component (or the smooth part), but
does not incorporate the jump risk (or the discontinuous part) and also the large uncertainty
on the recovery price. This is why these risks are covered by credit risk capital requirements.

14We assume that the yield curve remains constant.
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FIGURE 3.9: Difference between market and credit risks for a bond

3.1.3 Securitization and credit derivatives
Since the 1990s, banks have developed credit transfer instruments in two directions:

credit securitization and credit derivatives. The term securitization refers to the process of
transforming illiquid and non-tradable assets into tradable securities. Credit derivatives are
financial instruments whose payoff explicitly depends on credit events like the default of
an issuer. These two topics are highly connected because credit securities can be used as
underlying assets of credit derivatives.

3.1.3.1 Credit securitization

According to AFME (2019), outstanding amount of securitization is close to e 9 tn.
Figure 3.10 shows the evolution of issuance in Europe and US since 2000. We observe that
the financial crisis had a negative impact on the growth of credit securitization, especially
in Europe that represents less than 20% of this market. This market is therefore dominated
by the US, followed by UK, France, Spain, the Netherlands and Germany.

Credit securities are better known as asset-backed securities (ABS), even if this term is
generally reserved to assets that are not mortgage, loans or corporate bonds. In its simplest
form, an ABS is a bond whose coupons are derived from a collateral pool of assets. We
generally make the following distinction with respect to the type of collateral assets:

• Mortgage-backed securities (MBS)

– Residential mortgage-backed securities (RMBS)
– Commercial mortgage-backed securities (CMBS)

• Collateralized debt obligations (CDO)

– Collateralized loan obligations (CLO)
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FIGURE 3.10: Securitization in Europe and US (in e tn)

Source: Association for Financial Markets in Europe (2019).

– Collateralized bond obligations (CBO)

• Asset-backed securities (ABS)

– Auto loans
– Credit cards and revolving credit
– Student loans

MBS are securities that are backed by residential and commercial mortgage loans. The
most basic structure is a pass-through security, where the coupons are the same for all
the investors and are proportional to the revenue of the collateral pool. Such structure is
shown in Figure 3.11. The originator (e.g. a bank) sells a pool of debt to a special purpose
vehicle (SPV). The SPV is an ad-hoc legal entity15 whose sole function is to hold the loans
as assets and issue the securities for investors. In the pass-through structure, the securities
are all the same and the cash flows paid to investors are directly proportional to interests
and principals of collateral assets. More complex structures are possible with several classes
of bonds (see Figure 3.12). In this case, the cash flows differ from one type of securities
to another one. The most famous example is the collateralized debt obligation, where the
securities are divided into tranches. This category includes also collateralized mortgage
obligations (CMO), which are both MBS and CDO. The two other categories of CDOs are
CLOs, which are backed by corporate bank debt (e.g. SME loans) and CBOs, which are
backed by bonds (e.g. high yield bonds). Finally, pure ABS principally concerns consumer
credit such as auto loans, credit cards and student loans.

15It may be a subsidiary of the originator.
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FIGURE 3.11: Structure of pass-through securities

Collateral
Pool

of Debt

Special
Purpose
Vehicle

Security A

Security B

Security C

FIGURE 3.12: Structure of pay-through securities

In Table 3.5, we report some statistics about US mortgage-backed securities. SIFMA
(2019b) makes the distinction between agency MBS and non-agency MBS. After the Great
Depression, the US government created three public entities to promote home ownership and
provide insurance of mortgage loans: the Federal National Mortgage Association (FNMA or
Fannie Mae), the Federal Home Loan Mortgage Corporation (FHLMC or Freddie Mac) and
the Government National Mortgage Association (GNMA or Ginnie Mae). Agency MBS refer
to securities guaranteed by these three public entities and represent the main part of the US
MBS market. This is especially true since the 2008 financial crisis. Indeed, non-agency MBS
represent 53.5% of the issuance in 2006 and only 3.5% in 2012. Because agency MBS are
principally based on home mortgage loans, the RMBS market is ten times more larger than
the CMBS market. CDO and ABS markets are smaller and represent together about $1.5
tn (see Table 3.6). The CDO market strongly suffered from the subprime crisis16. During
the same period, the structure of the ABS market changed with an increasing proportion
of ABS backed by auto loans and a fall of ABS backed by credit cards and student loans.

Remark 23 Even if credit securities may be viewed as bonds, their pricing is not straight-
forward. Indeed, the measure of the default probability and the recovery depends on the

16For instance, the issuance of US CDO was less than $10 bn in 2010.
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TABLE 3.5: US mortgage-backed securities

Year Agency Non-agency Total
MBS CMO CMBS RMBS (in $ bn)

Issuance
2002 57.5% 23.6% 2.2% 16.7% 2 515
2006 33.6% 11.0% 7.9% 47.5% 2 691
2008 84.2% 10.8% 1.2% 3.8% 1 394
2010 71.0% 24.5% 1.2% 3.3% 2 013
2012 80.1% 16.4% 2.2% 1.3% 2 195
2014 68.7% 19.2% 7.0% 5.1% 1 440
2016 76.3% 15.7% 3.8% 4.2% 2 044
2018 69.2% 16.6% 4.7% 9.5% 1 899

Outstanding amount
2002 59.7% 17.4% 5.6% 17.2% 5 289
2006 45.7% 14.9% 8.3% 31.0% 8 390
2008 52.4% 14.0% 8.8% 24.9% 9 467
2010 59.2% 14.6% 8.1% 18.1% 9 258
2012 64.0% 14.8% 7.2% 14.0% 8 838
2014 68.0% 13.7% 7.1% 11.2% 8 842
2016 72.4% 12.3% 5.9% 9.5% 9 023
2018 74.7% 11.3% 5.6% 8.4% 9 732

Source: Securities Industry and Financial Markets Association (2019b,c) and author’s
calculations.

TABLE 3.6: US asset-backed securities

Year Auto CDO Credit Equip- Other Student Total
Loans & CLO Cards ement Loans (in $ bn)

Issuance
2002 34.9% 21.0% 25.2% 2.6% 6.8% 9.5% 269
2006 13.5% 60.1% 9.3% 2.2% 4.6% 10.3% 658
2008 16.5% 37.8% 25.9% 1.3% 5.4% 13.1% 215
2010 46.9% 6.4% 5.2% 7.0% 22.3% 12.3% 126
2012 33.9% 23.1% 12.5% 7.1% 13.7% 9.8% 259
2014 25.2% 35.6% 13.1% 5.2% 17.0% 4.0% 393
2016 28.3% 36.8% 8.3% 4.6% 16.9% 5.1% 325
2018 20.8% 54.3% 6.1% 5.1% 10.1% 3.7% 517

Outstanding amount
2002 20.7% 28.6% 32.5% 4.1% 7.5% 6.6% 905
2006 11.8% 49.3% 17.6% 3.1% 6.0% 12.1% 1 657
2008 7.7% 53.5% 17.3% 2.4% 6.2% 13.0% 1 830
2010 7.6% 52.4% 14.4% 2.4% 7.1% 16.1% 1 508
2012 11.0% 48.7% 10.0% 3.3% 8.7% 18.4% 1 280
2014 13.2% 46.8% 10.1% 3.9% 9.8% 16.2% 1 349
2016 13.9% 48.0% 9.3% 3.7% 11.6% 13.5% 1 397
2018 13.3% 48.2% 7.4% 5.0% 16.0% 10.2% 1 677

Source: Securities Industry and Financial Markets Association (2019b,c) and author’s
calculations.
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FIGURE 3.13: Outstanding amount of credit default swaps (in $ tn)

Source: Bank for International Settlements (2019).

characteristics of the collateral assets (individual default probabilities and recovery rates),
but also on the correlation between these risk factors. Measuring credit risk of such securities
is then a challenge. Another issue concerns design and liquidity problems faced when pack-
aging and investing in these assets17 (Duffie and Rahi, 1995; DeMarzo and Duffie, 1999).
This explains that credit securities suffered a lot during the 2008 financial crisis, even if
some of them were not linked to subprime mortgages. In fact, securitization markets pose
a potential risk to financial stability (Segoviano et al., 2013). This is a topic we will return
to in Chapter 8, which deals with systemic risk.

3.1.3.2 Credit default swap

A credit default swap (CDS) may be defined as an insurance derivative, whose goal is
to transfer the credit risk from one party to another. In a standard contract, the protection
buyer makes periodic payments (known as the premium leg) to the protection seller. In
return, the protection seller pays a compensation (known as the default leg) to the protection
buyer in the case of a credit event, which can be a bankruptcy, a failure to pay or a
debt restructuring. In its most basic form, the credit event refers to an issuer (sovereign
or corporate) and this corresponds to a single-name CDS. If the credit event relates to
a universe of different entities, we speak about a multi-name CDS. In Figure 3.13, we
report the evolution of outstanding amount of CDS since 2007. The growth of this market
was very strong before 2008 with a peak close to $60 tn. The situation today is different,
because the market of single-name CDS stabilized whereas the market of basket default
swaps continues to fall significantly. Nevertheless, it remains an important OTC market
with a total outstanding around $9 tn.

17The liquidity issue is treated in Chapter 6.
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FIGURE 3.14: Cash flows of a single-name credit default swap

In Figure 3.14, we report the mechanisms of a single-name CDS. The contract is defined
by a reference entity (the name), a notional principal N , a maturity or tenor T , a payment
frequency, a recovery rate R and a coupon rate18 ccc. From the inception date t to the
maturity date T or the default time τ , the protection buyer pays a fixed payment, which
is equal to ccc · N ·∆tm at the fixing date tm with ∆tm = tm − tm−1. This means that the
annual premium leg is equal to ccc ·N . If there is no credit event, the protection buyer will
also pay a total of ccc ·N · (T − t). In case of credit event before the maturity, the protection
seller will compensate the protection buyer and will pay (1−R) ·N .

Example 23 We consider a credit default swap, whose notional principal is $10 mn, ma-
turity is 5 years and payment frequency is quarterly. The credit event is the bankruptcy of
the corporate entity A. We assume that the recovery rate is set to 40% and the coupon rate
is equal to 2%.

Because the payment frequency is quarterly, there are 20 fixing dates, which are 3M, 6M,
9M, 1Y, . . . , 5Y. Each quarter, if the corporate A does not default, the protection buyer
pays a premium, which is approximately equal to $10mn×2%×0.25 = $50 000. If there is no
default during the next five years, the protection buyer will pay a total of $50 000×20 = $1
mn whereas the protection seller will pay nothing. Suppose now that the corporate defaults
two years and four months after the CDS inception date. In this case, the protection buyer
will pay $50 000 during 9 quarters and will receive the protection leg from the protection
seller at the default time. This protection leg is equal to (1− 40%)× $10 mn = $6 mn.

To compute the mark-to-market value of a CDS, we use the reduced-form approach as
in the case of bond pricing. If we assume that the premium is not paid after the default
time τ , the stochastic discounted value of the premium leg is19:

SVt (PL) =
∑
tm≥t

ccc ·N · (tm − tm−1) · 1 {τ > tm} · e
−
∫ tm
t

rs ds

18We will see that the coupon rate ccc is in fact the CDS spread s for par swaps.
19In order to obtain a simple formula, we do not deal with the accrued premium (see Remark 26 on page

149).
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Using the standard assumptions that the default time is independent of interest rates and
the recovery rate, we deduce the present value of the premium leg as follows:

PVt (PL) = E

 ∑
tm≥t

ccc ·N ·∆tm · 1 {τ > tm} · e
−
∫ tm
t

rs ds

∣∣∣∣∣∣Ft


=
∑
tm≥t

ccc ·N ·∆tm · E [1 {τ > tm}] · E
[
e
−
∫ tm
t

rs ds
]

= ccc ·N ·
∑
tm≥t

∆tmSt (tm)Bt (tm)

where St (u) is the survival function at time u. If we assume that the default leg is exactly
paid at the default time τ , the stochastic discount value of the default (or protection) leg
is20:

SVt (DL) = (1−R) ·N · 1 {τ ≤ T} · e−
∫ τ
t
r(s) ds

It follows that its present value is:

PVt (DL) = E
[

(1−R) ·N · 1 {τ ≤ T} · e−
∫ τ
t
rs ds

∣∣∣∣Ft]
= (1−R) ·N · E [1 {τ ≤ T} ·Bt (τ )]

= (1−R) ·N ·
∫ T

t

Bt (u) ft (u) du

where ft (u) is the density function associated to the survival function St (u). We deduce
that the mark-to-market of the swap is21:

Pt (T ) = PVt (DL)− PVt (PL)

= (1−R)N
∫ T

t

Bt (u) ft (u) du− cccN
∑
tm≥t

∆tmSt (tm)Bt (tm)

= N

(
(1−R)

∫ T

t

Bt (u) ft (u) du− ccc · RPV01

)
(3.5)

where RPV01 =
∑
tm≥t ∆tmSt (tm)Bt (tm) is called the risky PV01 and corresponds to the

present value of 1 bp paid on the premium leg. The CDS price is then inversely related
to the spread. At the inception date, the present value of the premium leg is equal to the
present value of the default leg meaning that the CDS spread corresponds to the coupon
rate such that P buyer

t = 0. We obtain the following expression:

s =
(1−R)

∫ T
t
Bt (u) ft (u) du∑

tm≥t ∆tmSt (tm)Bt (tm) (3.6)

The spread s is in fact the fair value coupon rate ccc in such a way that the initial value of
the credit default swap is equal to zero.

20Here the recovery rate R is assumed to be deterministic.
21Pt is the swap price for the protection buyer. We have then Pbuyer

t (T ) = Pt (T ) and P seller
t (T ) =

−Pt (T ).
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We notice that if there is no default risk, this implies that St (u) = 1 and we get s = 0.
In the same way, the spread is also equal to zero if the recovery rate is set to 100%. If we
assume that the premium leg is paid continuously, the formula (3.6) becomes:

s =
(1−R)

∫ T
t
Bt (u) ft (u) du∫ T

t
Bt (u) St (u) du

If the interest rates are equal to zero (Bt (u) = 1) and the default times is exponential with
parameter λ – St (u) = e−λ(u−t) and ft (u) = λe−λ(u−t), we get:

s =
(1−R) · λ ·

∫ T
t
e−λ(u−t) du∫ T

t
e−λ(u−t) du

= (1−R) · λ

If λ is relatively small, we also notice that this relationship can be written as follows:

s ≈ (1−R) · PD

where PD is the one-year default probability22. This relationship is known as the ‘credit
triangle’ because it is a relationship between three variables where knowledge of any two is
sufficient to calculate the third (O’Kane, 2008). It basically states that the CDS spread is
approximatively equal to the one-year loss. The spread contains also the same information
than the survival function and is an increasing function of the default probability. It can
then be interpreted as a credit risk measure of the reference entity.

We recall that the first CDS was traded by J.P. Morgan in 1994 (Augustin et al., 2014).
The CDS market structure has been organized since then, especially the standardization
of the CDS contract. Today, CDS agreements are governed by 2003 and 2014 ISDA credit
derivatives definitions. For instance, the settlement of the CDS contract can be either phys-
ical or in cash. In the case of cash settlement, there is a monetary exchange from the pro-
tection seller to the protection buyer23. In the case of physical settlement, the protection
buyer delivers a bond to the protection seller and receives the notional principal amount.
Because the price of the defaulted bond is equal to R ·N , this means that the implied mark-
to-market of this operation is N −R · N or equivalently (1−R) · N . Or course, physical
settlement is only possible if the reference entity is a bond or if the credit event is based
on the bond default. Whereas physical settlement was prevailing in the 1990s, most of the
settlements are today in cash. Another standardization concerns the price of CDS. With
the exception of very specific cases24, CDS contracts are quoted in (fair) spread expressed
in bps. In Figures 3.15 and 3.16, we show the evolution of some CDS spreads for a five-year
maturity. We notice the increase of credit spreads since the 2008 financial turmoil and the

22We have:

PD = Pr {τ ≤ t+ 1 | τ ≤ t}
= 1− St (t+ 1)
= 1− e−λ

' λ

For instance, if λ is equal respectively to 1%, 5%, 10% and 20% , the one-year default probability takes the
values 1.00%, 4.88%, 9.52% and 18.13%.

23 This monetary exchange is equal to (1−R) ·N .
24When the default probability is high (larger than 20%), CDS contracts can be quoted with an upfront

meaning that the protection seller is asking an initial amount to enter into the swap. For instance, it was
the case of CDS on Greece in spring 2013.
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FIGURE 3.15: Evolution of some sovereign CDS spreads

FIGURE 3.16: Evolution of some financial and corporate CDS spreads



146 Handbook of Financial Risk Management

default of Lehman Brothers bankruptcy, the sensitivity of German and Italian spreads with
respect to the Eurozone crisis and also the difference in level between the different countries.
Indeed, the spread is globally lower for US than for Germany or Japan. In the case of Italy,
the spread is high and has reached 600 bps in 2012. We observe that the spread of some
corporate entities may be lower than the spread of many developed countries (see Figure
3.16). This is the case of Walmart, whose spread is lower than 20 bps since 2014. When a
company (or a country) is in great difficulty, the CDS spread explodes as in the case of Ford
in February 2009. CDS spreads can be used to compare the default risk of two entities in
the same sector. For instance, Figure 3.16 shows than the default risk of Citigroup is higher
that this of JPMorgan Chase.

The CDS spread changes over time, but depends also on the maturity or tenor. This
implies that we have a term structure of credit spreads for a given date t. This term structure
is known as the credit spread curve and is noted st (T ) where T is the maturity time. Figure
3.17 shows the credit curve for different entities as of 17 September 2015. We notice that
the CDS spread increases with the maturity. This is the most common case for investment
grade (IG) entities, whose short-term default risk is low, but long-term default risk is higher.
Nevertheless, we observe some distinguishing patterns between these credit curves. For
instance, the credit risk of Germany is lower than the credit risk of US if the maturity is
less than five years, but it is higher in the long run. There is a difference of 4 bps between
Google and Apple on average when the time-to-maturity is less than 5 years. In the case of
10Y CDS, the spread of Apple is 90.8 bps whereas it is only 45.75 bps for Google.

FIGURE 3.17: Example of CDS spread curves as of 17 September 2015

Remark 24 In other cases, the credit curve may be decreasing (for some high yield cor-
porates) or have a complex curvature (bell-shaped or U-shaped). In fact, Longstaff et al.
(2005) showed that the dynamics of credit default swaps also depends on the liquidity risk.
For instance, the most liquid CDS contract is generally the 5Y CDS. The liquidity on the
other maturities depends on the reference entity and other characteristics such as the bond
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market liquidity. For example, the liquidity may be higher for short maturities when the
credit risk of the reference entity is very high.

Initially, CDS were used to hedge the credit risk of corporate bonds by banks and
insurance companies. This hedging mechanism is illustrated in Figure 3.18. We assume that
the bond holder buys a protection using a CDS, whose fixing dates of the premium leg are
exactly the same as the coupon dates of the bond. We also assume that the credit even is
the bond default and the notional of the CDS is equal to the notional of the bond. At each
fixing date tm, the bond holder receives the coupon C (tm) of the bond and pays to the
protection seller the premium s ·N . This implies that the net cash flow is C (tm)− s ·N . If
the default occurs, the value of the bond becomes R ·N , but the protection seller pays to
the bond holder the default leg (1−R)·N . In case of default, the net cash flow is then equal
to R ·N +(1−R) ·N = N , meaning that the exposure on the defaultable bond is perfectly
hedged. We deduce that the annualized return R of this hedged portfolio is the difference
between the yield to maturity y of the bond and the annual cost s of the protection:

R = y − s (3.7)

We recognize a new formulation of Equation (3.4) on page 135. In theory, R is then equal
to the yield to maturity y? of the bond without credit risk.'

&

$

%
t τ time

R ·N

(1−R) ·N

C (tm)

s ·N

t1 t2 t3 t4 t5 t6

FIGURE 3.18: Hedging a defaultable bond with a credit default swap

Since the 2000s, end-users of CDS are banks and securities firms, insurance firms in-
cluding pension funds, hedge funds and mutual funds. They continue to be used as hedging
instruments, but they have also become financial instruments to express views about credit
risk. In this case, ‘long credit’ refers to the position of the protection seller who is exposed
to the credit risk, whereas ‘short credit’ is the position of the protection buyer who sold the
credit risk of the reference entity25. To understand the mark-to-market of such positions,
we consider the initial position at the inception date t of the CDS contract. In this case, the
CDS spread st (T ) verifies that the face value of the swap is equal to zero. Let us introduce
the notation Pt,t′ (T ), which defines the mark-to-market of a CDS position whose inception
date is t, valuation date is t′ and maturity date is T . We have:

P seller
t,t (T ) = P buyer

t,t (T ) = 0

25Said differently, a long exposure implies that the default results in a loss, whereas a short exposure
implies that the default results in a gain.
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At date t′ > t, the mark-to-market price of the CDS is:

P buyer
t,t′ (T ) = N

(
(1−R)

∫ T

t′
Bt′ (u) ft′ (u) du− st (T ) · RPV01

)

whereas the value of the CDS spread satisfies the following relationship:

P buyer
t′,t′ (T ) = N

(
(1−R)

∫ T

t′
Bt′ (u) ft′ (u) du− st′ (T ) · RPV01

)
= 0

We deduce that the P&L of the protection buyer is:

Πbuyer = P buyer
t,t′ (T )− P buyer

t,t (T ) = P buyer
t,t′ (T )

Using Equation (3.8), we know that P buyer
t′,t′ (T ) = 0 and we obtain:

Πbuyer = P buyer
t,t′ (T )− P buyer

t′,t′ (T )

= N

(
(1−R)

∫ T

t′
Bt′ (u) ft′ (u) du− st (T ) · RPV01

)
−

N

(
(1−R)

∫ T

t′
Bt′ (u) ft′ (u) du− st′ (T ) · RPV01

)
= N · (st′ (T )− st (T )) · RPV01 (3.8)

This equation highlights the role of the term RPV01 when calculating the P&L of the CDS
position. Because Πseller = −Πbuyer, we distinguish two cases:

• If st′ (T ) > st (T ), the protection buyer makes a profit, because this short credit
exposure has benefited from the increase of the default risk.

• If st′ (T ) < st (T ), the protection seller makes a profit, because the default risk of the
reference entity has decreased.

Suppose that we are in the first case. To realize its P&L, the protection buyer has three
options (O’Kane, 2008):

1. He could unwind the CDS exposure with the protection seller if the latter agrees. This
implies that the protection seller pays the mark-to-market P buyer

t,t′ (T ) to the protection
buyer.

2. He could hedge the mark-to-market value by selling a CDS on the same reference
entity and the same maturity. In this situation, he continues to pay the spread st (T ),
but he now receives a premium, whose spread is equal to st′ (T ).

3. He could reassign the CDS contract to another counterparty as illustrated in Figure
3.19. The new counterparty (the protection buyer C in our case) will then pay the
coupon rate st (T ) to the protection seller. However, the spread is st′ (T ) at time t′,
which is higher than st (T ). This is why the new counterparty also pays the mark-to-
market P buyer

t,t′ (T ) to the initial protection buyer.
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Transfers the agreement

Pays the mark-to-market

Time t Time t′

st (T ) st (T )

(1−R) ·N (1−R) ·N

Protection
Seller
A

Protection
Buyer
B

Protection
Buyer
C

FIGURE 3.19: An example of CDS offsetting

Remark 25 When the default risk is very high, CDS are quoted with an upfront26. In this
case, the annual premium leg is equal to ccc? · N where ccc? is a standard value27, and the
protection buyer has to pay an upfront UFt to the protection seller defined as follows:

UFt = N

(
(1−R)

∫ T

t

Bt (u) ft (u) du− ccc? · RPV01

)
Remark 26 Until now, we have simplified the pricing of the premium leg in order to avoid
complicated calculations. Indeed, if the default occurs between two fixing dates, the protection
buyer has to pay the premium accrual. For instance, if τ ∈ ]tm−1, tm[, the accrued premium
is equal to ccc ·N · (τ − tm−1) or equivalently to:

AP =
∑
tm≥t

ccc ·N · (τ − tm−1) · 1 {tm−1 ≤ τ ≤ tm}

We deduce that the stochastic discount value of the accrued premium is:

SVt (AP) =
∑
tm≥t

ccc ·N · (τ − tm−1) · 1 {tm−1 ≤ τ ≤ tm} · e
−
∫ τ
t
rs ds

It follows that:

PVt (AP) = ccc ·N ·
∑
tm≥t

∫ tm

tm−1

(u− tm−1)Bt (u) ft (u) du

All the previous formulas remain valid by replacing the expression of the risky PV01 by the
following term:

RPV01 =
∑
tm≥t

(
∆tmSt (tm)Bt (tm) +

∫ tm

tm−1

(u− tm−1)Bt (u) ft (u) du
)

(3.9)

26It was the case several times for CDS on Greece.
27For distressed names, the default coupon rate ccc? is typically equal to 500 bps.
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Example 24 We assume that the yield curve is generated by the Nelson-Siegel model with
the following parameters: θ1 = 5%, θ2 = −5%, θ3 = 6% and θ4 = 10. We consider several
credit default swaps on the same entity with quarterly coupons and a notional of $1 mn. The
recovery rate R is set to 40% whereas the default time τ is an exponential random variable,
whose parameter λ is equal to 50 bps. We consider seven maturities (6M, 1Y, 2Y, 3Y, 5Y,
7Y and 10Y) and two coupon rates (10 and 100 bps).

To calculate the prices of these CDS, we use Equation (3.5) with N = 106, ccc = 10
(or 100) ×10−4, ∆tm = 1/4, λ = 50 × 10−4 = 0.005, R = 0.40, St (u) = e−0.005(u−t),
ft (u) = 0.005 · e−0.005(u−t) and Bt (u) = e−(u−t)Rt(u) where the zero-coupon rate is given
by Equation (3.1). To evaluate the integral, we consider a Gauss-Legendre quadrature of
128th order. By including the accrued premium28, we obtain results reported in Table 3.7.
For instance, the price of the 5Y CDS is equal to $9 527 if ccc = 10 × 10−4 and −$33 173 if
ccc = 100×10−4. In the first case, the protection buyer has to pay an upfront to the protection
seller because the coupon rate is too low. In the second case, the protection buyer receives
the upfront because the coupon rate is too high. We also indicate the spread s and the risky
PV01. We notice that the CDS spread is almost constant. This is normal since the default
rate is constant. This is why the CDS spread is approximatively equal to (1− 40%) × 50
bps or 30 bps. The difference between the several maturities is due to the yield curve. The
risky PV01 is a useful statistic to compute the mark-to-market. Suppose for instance that
the two parties entered in a 7Y credit default swap of 10 bps spread two years ago. Now,
the residual maturity of the swap is five years, meaning that the mark-to-market of the
protection buyer is equal to:

Πbuyer = 106 ×
(
30.08× 10−4 − 10× 10−4)× 4.744

= $9 526

We retrieve the 5Y CDS price (subject to rounding error).

TABLE 3.7: Price, spread and risky PV01 of CDS contracts

T
Pt (T ) s RPV01ccc = 10 ccc = 100

1/2 998 −3 492 30.01 0.499
1 1 992 −6 963 30.02 0.995
2 3 956 −13 811 30.04 1.974
3 5 874 −20 488 30.05 2.929
5 9 527 −33 173 30.08 4.744
7 12 884 −44 804 30.10 6.410

10 17 314 −60 121 30.12 8.604

Example 25 We consider a variant of Example 24 by assuming that the default time fol-
lows a Gompertz distribution:

St (u) = exp
(
φ
(

1− eγ(u−t)
))

The parameters φ and γ are set to 5% and 10%.

28This means that the risky PV01 corresponds to Equation (3.9). We also report results without taking
into account the accrued premium in Table 3.8. We notice that its impact is limited.
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TABLE 3.8: Price, spread and risky PV01 of CDS contracts (without the accrued pre-
mium)

T
Pt (T ) s RPV01ccc = 10 ccc = 100

1/2 999 −3 489 30.03 0.499
1 1 993 −6 957 30.04 0.994
2 3 957 −13 799 30.06 1.973
3 5 876 −20 470 30.07 2.927
5 9 530 −33 144 30.10 4.742
7 12 888 −44 764 30.12 6.406

10 17 319 −60 067 30.14 8.598

Results are reported in Table 3.9. In this example, the spread is increasing with the
maturity of the CDS. Until now, we have assumed that we know the survival function
St (u) in order to calculate the CDS spread. However, in practice, the CDS spread s is a
market price and St (u) has to be determined thanks to a calibration procedure. Suppose
for instance that we postulate that τ is an exponential default time with parameter λ. We
can calibrate the estimated value λ̂ such that the theoretical price is equal to the market
price. For instance, Table 3.9 shows the parameter λ̂ for each CDS. We found that λ̂ is
equal to 51.28 bps for the six-month maturity and 82.92 bps for the ten-year maturity. We
face here an issue, because the parameter λ̂ is not constant, meaning that we cannot use an
exponential distribution to represent the default time of the reference entity. This is why
we generally consider a more flexible survival function to calibrate the default probabilities
from a set of CDS spreads29.

TABLE 3.9: Calibration of the CDS spread curve using the exponential model

T
Pt (T ) s RPV01 λ̂

ccc = 10 ccc = 100
1/2 1 037 −3 454 30.77 0.499 51.28

1 2 146 −6 808 31.57 0.995 52.59
2 4 585 −13 175 33.24 1.973 55.34
3 7 316 −19 026 35.00 2.927 58.25
5 13 631 −28 972 38.80 4.734 64.54
7 21 034 −36 391 42.97 6.380 71.44

10 33 999 −42 691 49.90 8.521 82.92

3.1.3.3 Basket default swap

A basket default swap is similar to a credit default swap except that the underlying
asset is a basket of reference entities rather than one single reference entity. These products
are part of multi-name credit default swaps with collateralized debt obligations.

First-to-default and kth-to-default credit derivatives Let us consider a credit port-
folio with n reference entities, which are referenced by the index i. With a first-to-default
(FtD) credit swap, the credit event corresponds to the first time that a reference entity of the

29This problem will be solved later in Section 3.3.3.1 on page 203.
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credit portfolio defaults. We deduce that the stochastic discounted values of the premium
and default legs are30:

SVt (PL) = ccc ·N ·
∑
tm≥t

∆tm · 1 {τ1:n > tm} · e
−
∫ tm
t

r(s) ds

and:
SVt (DL) = X · 1 {τ1:n ≤ T} · e

−
∫ τ1:n
t

rs ds

where τi is the default time of the ith reference entity, τ1:n = min (τ1, . . . , τn) is the first
default time in the portfolio and X is the payout of the protection leg:

X =
n∑
i=1

1 {τ1:n = τi} · (1−Ri) ·Ni

= (1−Ri?) ·Ni?

In this formula, Ri and Ni are respectively the recovery and the notional of the ith reference
entity whereas the index i? = {i : τi = τ1:n} corresponds to the first reference entity that
defaults. For instance, if the portfolio is composed by 10 names and the third name is the
first default, the value of the protection leg will be equal to (1−R3) ·N3. Using the same
assumptions than previously, we deduce that the FtD spread is:

sFtD = E [X · 1 {τ1:n ≤ T} ·Bt (τ1:n)]
N
∑
tm≥t ∆tm · S1:n,t (tm) ·Bt (tm)

where S1:n,t (u) is the survival function of τ1:n. If we assume a homogenous basket (same
recovery Ri = R and same notional Ni = N), the previous formula becomes:

sFtD =
(1−R)

∫ T
t
Bt (u) f1:n,t (u) du∑

tm≥t ∆tmS1:n,t (tm)Bt (tm) (3.10)

where f1:n,t (u) is the survival function of τ1:n.
To compute the spread31, we use Monte Carlo simulation (or numerical integration

when the number of entities is small). In fact, the survival function of τ1:n is related to
the individual survival functions, but also to the dependence between the default times
τ1, . . . , τn. The spread of the FtD is then a function of default correlations32. If we denote
by sCDS

i the CDS spread of the ith reference, we can show that:

max
(
sCDS
1 , . . . , sCDS

n

)
≤ sFtD ≤

n∑
i=1

sCDS
i (3.11)

When the default times are uncorrelated, the FtD is equivalent to buy the basket of all
the credit defaults swaps. In the case of a perfect correlation, one default is immediately
followed by the other n− 1 defaults, implying that the FtD is equivalent to the CDS with
the worst spread. In practice, the FtD spread is therefore located between these two bounds
as expressed in Equation (3.11). From the viewpoint of the protection buyer, a FtD is seen
as a hedging method of the credit portfolio with a lower cost than buying the protection

30In order to simplify the notations, we do not take into account the accrued premium.
31Laurent and Gregory (2005) provide semi-explicit formulas that are useful for pricing basket default

swaps.
32This point is developed in Section 3.3.4 on page 220 and in Chapter 11 dedicated to copula functions.
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for all the credits. For example, suppose that the protection buyer would like to be hedged
to the default of the automobile sector. He can buy a FtD on the basket of the largest
car manufacturers in the world, e.g. Volkswagen, Toyota, Hyundai, General Motors, Fiat
Chrysler and Renault. If there is only one default, the protection buyer is hedged. However,
the protection buyer keeps the risk of multiple defaults, which is a worst-case scenario.

Remark 27 The previous analysis can be extended to kth-to-default swaps. In this case,
the default leg is paid if the kth default occurs before the maturity date. We then obtain a
similar expression as Equation (3.10) by considering the order statistic τk:n in place of τ1:n.

From a theoretical point of view, it is equivalent to buy the CDS protection for all the
components of the credit basket or to buy all the kth-to-default swaps. We have therefore
the following relationship:

n∑
i=1

sCDS
i =

n∑
i=1

s i:n (3.12)

We see that the default correlation highly impacts the distribution of the kth-to-default
spreads33.

Credit default indices Credit derivative indices34 have been first developed by J.P.
Morgan, Morgan Stanley and iBoxx between 2001 and 2003. A credit default index (or
CDX) is in fact a credit default swap on a basket of reference entities. As previously, we
consider a portfolio with n credit entities. The protection buyer pays a premium leg with a
coupon rate ccc. Every time a reference entity defaults, the notional is reduced by a factor,
which is equal to 1/n. At the same time, the protection buyer receives the portfolio loss
between two fixing dates. The expression of the notional outstanding is then given by:

Nt (u) = N ·

(
1− 1

n

n∑
i=1

1 {τi ≤ u}

)

At the inception date, we verify that Nt (t) = N . After the first default, the notional
outstanding is equal to N (1− 1/n). After the kth default, its value is N (1− k/n). At time
u ≥ t, the cumulative loss of the credit portfolio is:

Lt (u) = 1
n

n∑
i=1

N · (1−Ri) · 1 {τi ≤ u}

meaning that the incremental loss between two fixing dates is:

∆Lt (tm) = Lt (tm)− Lt (tm−1)

We deduce that the stochastic discounted value of the premium and default legs is:

SVt (PL) = ccc ·
∑
tm≥t

∆tm ·Nt (tm) · e−
∫ tm
t

rs ds

and:
SVt (DL) =

∑
tm≥t

∆Lt (tm) · e−
∫ tm
t

rs ds

33See page 762 for an illustration.
34 They are also known as synthetic credit indices, credit default swap indices or credit default indices.
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We deduce that the spread of the CDX is:

sCDX =
E
[∑

tm≥t ∆Lt (tm) ·Bt (tm)
]

E
[∑

tm≥t ∆tm ·Nt (tm) ·Bt (tm)
] (3.13)

Remark 28 A CDX is then equivalent to a portfolio of CDS whose each principal notional
is equal to N/n. Indeed, when a default occurs, the protection buyer receives N/n · (1−Ri)
and stops to pay the premium leg of the defaulted reference entity. At the inception date,
the annual premium of the CDX is then equal to the annual premium of the CDS portfolio:

sCDX ·N =
n∑
i=1

sCDS
i · N

n

We deduce that the spread of the CDX is an average of the credit spreads that compose the
portfolio35:

sCDX = 1
n

n∑
i=1

sCDS
i (3.14)

Today, credit default indices are all managed by Markit and have been standardized. For
instance, coupon payments are made on a quarterly basis (March 20, June 20, September
20, December 20) whereas indices roll every six months with an updated portfolio36. With
respect to the original credit indices, Markit continues to produces two families:

• Markit CDX
It focuses on North America and Emerging Markets credit default indices. The three
major sub-indices are IG (investment grade), HY (high yield) and EM (emerging
markets). A more comprehensive list is provided in Table 3.10. Besides these credit
default indices, Markit CDX produces also four other important indices: ABX (basket
of ABS), CMBX (basket of CMBS), LCDX (portfolio of 100 US secured senior loans)
and MCDX (basket of 50 municipal bonds).

• Markit iTraxx
It focuses on Europe, Japan, Asia ex-Japan and Australia (see the list in Table 3.11).
Markit iTraxx also produces LevX (portfolio of 40 European secured loans), sec-
tor indices (e.g. European financials and industrials) and SovX, which corresponds
to a portfolio of sovereign issuers. There are 7 SovX indices: Asia Pacific, BRIC,
CEEMEA37, G7, Latin America, Western Europe and Global Liquid IG.

In Table 3.12, we report the spread of some CDX/iTraxx indices. We note that the spread
of the CDX.NA.HY index is on average four times larger than the spread of the CDX.NA.IG
index. While spreads of credit default indices have generally decreased between December
2012 and December 2014, we observe a reversal in 2015. For instance, the spread of the
CDX.NA.IG index is equal to 93.6 bps in September 2015 whereas it was only equal to
66.3 bps nine months ago. We observe a similar increase of 30 bps for the iTraxx Europe
index. For the CDX.NA.HY index, it is more impressive with a variation of +150 bps in
nine months.

35In fact, this is an approximation because the payment of the default leg does not exactly match between
the CDX index and the CDS portfolio.

36See Markit (2014) for a detailed explanation of the indices’ construction.
37Central and Eastern Europe, Middle East and Africa.
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TABLE 3.10: List of Markit CDX main indices
Index name Description n R
CDX.NA.IG Investment grade entities 125 40%
CDX.NA.IG.HVOL High volatility IG entities 30 40%
CDX.NA.XO Crossover entities 35 40%
CDX.NA.HY High yield entities 100 30%
CDX.NA.HY.BB High yield BB entities 37 30%
CDX.NA.HY.B High yield B entities 46 30%
CDX.EM EM sovereign issuers 14 25%
LCDX Secured senior loans 100 70%
MCDX Municipal bonds 50 80%

Source: Markit (2014).

TABLE 3.11: List of Markit iTraxx main indices
Index name Description n R
iTraxx Europe European IG entities 125 40%
iTraxx Europe HiVol European HVOL IG entities 30 40%
iTraxx Europe Crossover European XO entities 40 40%
iTraxx Asia Asian (ex-Japan) IG entities 50 40%
iTraxx Asia HY Asian (ex-Japan) HY entities 20 25%
iTraxx Australia Australian IG entities 25 40%
iTraxx Japan Japanese IG entities 50 35%
iTraxx SovX G7 G7 governments 7 40%
iTraxx LevX European leveraged loans 40 40%

Source: Markit (2014).

TABLE 3.12: Historical spread of CDX/iTraxx indices (in bps)

Date CDX iTraxx
NA.IG NA.HY EM Europe Japan Asia

Dec. 2012 94.1 484.4 208.6 117.0 159.1 108.8
Dec. 2013 62.3 305.6 272.4 70.1 67.5 129.0
Dec. 2014 66.3 357.2 341.0 62.8 67.0 106.0
Sep. 2015 93.6 505.3 381.2 90.6 82.2 160.5

3.1.3.4 Collateralized debt obligations

A collateralized debt obligation (CDO) is another form of multi-name credit default
swaps. It corresponds to a pay-through ABS structure38, whose securities are bonds linked
to a series of tranches. If we consider the example given in Figure 3.20, they are 4 types of
bonds, whose returns depend on the loss of the corresponding tranche (equity, mezzanine,
senior and super senior). Each tranche is characterized by an attachment point A and a

38See Figure 3.12 on page 139.



156 Handbook of Financial Risk Management

detachment point D. In our example, we have:

Tranche Equity Mezzanine Senior Super senior
A 0% 15% 25% 35%
D 15% 25% 35% 100%

The protection buyer of the tranche [A,D] pays a coupon rate ccc[A,D] on the nominal out-
standing amount of the tranche to the protection seller. In return, he receives the protection
leg, which is the loss of the tranche [A,D]. However, the losses satisfy a payment priority
which is the following:

Credit
portfolio

Equity

Mezzanine

Senior

Super
Senior

Assets Liabilities

0− 15%

15− 25%

25− 35%

35− 100%

P
riority

of
paym

ent
w
aterfall

FIGURE 3.20: Structure of a collateralized debt obligation

• the equity tranche is the most risky security, meaning that the first losses hit this
tranche alone until the cumulative loss reaches the detachment point;

• from the time the portfolio loss is larger than the detachment point of the equity
tranche, the equity tranche no longer exists and this is the protection seller of the
mezzanine tranche, who will pay the next losses to the protection buyer of the mez-
zanine tranche;

• the protection buyer of a tranche pays the coupon from the inception of the CDO until
the death of the tranche, i.e., when the cumulative loss is larger than the detachment
point of the tranche; moreover, the premium payments are made on the reduced
notional after each credit event of the tranche.

Each CDO tranche can then be viewed as a CDS with a time-varying notional principal to
define the premium leg and a protection leg, which is paid if the portfolio loss is between
the attachment and detachment points of the tranche. We can therefore interpret a CDO
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as a basket default swap, where the equity, mezzanine, senior and super senior tranches
correspond respectively to a first-to-default, second-to-default, third-to-default and last-to-
default swaps.

Let us now see the mathematical framework to price a CDO tranche. Assuming a port-
folio of n credits, the cumulative loss is equal to:

Lt (u) =
n∑
i=1

Ni · (1−Ri) · 1 {τi ≤ u}

whereas the loss of the tranche [A,D] is given by39:

L
[A,D]
t (u) = (Lt (u)−A) · 1 {A ≤ Lt (u) ≤ D}+

(D −A) · 1 {Lt (u) > D}

where A and D are the attachment and detachment points expressed in $. The nominal
outstanding amount of the tranche is therefore:

N
[A,D]
t (u) = (D −A)− L[A,D]

t (u)

This notional principal decreases then by the loss of the tranche. At the inception of the
CDO, N [A,D]

t (t) is equal to the tranche thickness: (D −A). At the maturity date T , we
have:

N
[A,D]
t (T ) = (D −A)− L[A,D]

t (T )

=

 (D −A) if Lt (T ) ≤ A
(D − Lt (T )) if A < Lt (T ) ≤ D
0 if Lt (T ) > D

We deduce that the stochastic discounted value of the premium and default legs is:

SVt (PL) = ccc[A,D] ·
∑
tm≥t

∆tm ·N [A,D]
t (tm) · e−

∫ tm
t

rs ds

and:
SVt (DL) =

∑
tm≥t

∆L[A,D]
t (tm) · e−

∫ tm
t

rs ds

Therefore, the spread of the CDO tranche is40:

s [A,D] =
E
[∑

tm≥t ∆L[A,D]
t (tm) ·Bt (tm)

]
E
[∑

tm≥t ∆tm ·N [A,D]
t (tm) ·Bt (tm)

] (3.15)

We obviously have the following inequalities:

sEquity > sMezzanine > sSenior > sSuper senior

39Another expression is:
L

[A,D]
t (u) = min

(
D −A, (Lt (u)−A)+)

40This formula is obtained by assuming no upfront and accrued interests.
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As in the case of kth-to-default swaps, the distribution of these tranche spreads highly
depends on the default correlation41. Depending on the model and the parameters, we can
therefore promote the protection buyer/seller of one specific tranche with respect to the
other tranches.

When collateralized debt obligations emerged in the 1990s, they were used to transfer
credit risk from the balance sheet of banks to investors (e.g. insurance companies). They
were principally portfolios of loans (CLO) or asset-backed securities (ABS CDO). With
these balanced-sheet CDOs, banks could recover regulatory capital in order to issue new
credits. In the 2000s, a new type of CDOs was created by considering CDS portfolios as
underlying assets. These synthetic CDOs are also called arbitrage CDOs, because they have
used by investors to express their market views on credit.

The impressive success of CDOs with investors before the 2008 Global Financial Cri-
sis is due to the rating mechanism of tranches. Suppose that the underlying portfolio is
composed of BB rated credits. It is obvious that the senior and super senior tranches will
be rated higher than BB, because the probability that these tranches will be impacted is
very low. The slicing approach of CDOs enables then to create high-rated securities from
medium or low-rated debts. Since the appetite of investors for AAA and AA rated bonds
was very important, CDOs were solutions to meet this demand. Moreover, this lead to the
development of rating methods in order to provide an attractive spread. This explains that
most of AAA-rated CDO tranches promised a return higher than AAA-rated sovereign and
corporate bonds. In fact, the 2008 GFC has demonstrated that many CDO tranches were
more risky than expected, because the riskiness of the assets were underestimated42.

TABLE 3.13: List of Markit credit default tranches
Index name Tranche
CDX.NA.IG 0− 3 3− 7 7− 15 15− 100
CDX.NA.HY 0− 10 10− 15 15− 25 25− 35 35− 100
LCDX 0− 5 5− 8 8− 12 12− 15 15− 100
iTraxx Europe 0− 3 3− 6 6− 9 9− 12 12− 22 22− 100
iTraxx Europe XO 0− 10 10− 15 15− 25 25− 35 35− 100
iTraxx Asia 0− 3 3− 6 6− 9 9− 12 12− 22
iTraxx Australia 0− 3 3− 6 6− 9 9− 12 12− 22
iTraxx Japan 0− 3 3− 6 6− 9 9− 12 12− 22

Source: Markit (2014).

For some years now, CDOs have been created using credit default indices as the under-
lying portfolio. For instance, Table 3.13 provides the list of available tranches on Markit
indices43. We notice that attachment and detachment points differ from one index to another
index. The first tranche always indicates the equity tranche. For IG underlying assets, the
notional corresponds to the first 3% losses of the portfolio, whereas the detachment point
is higher for crossover or high yield assets. We also notice that some senior tranches are not
traded (Asia, Australia and Japan). These products are mainly used in correlation trading
activities and also served as benchmarks for all the other OTC credit debt obligations.

41See Section 3.3.4 on page 220.
42More details of the impact of the securitization market on the 2008 Global Financial Crisis are developed

in Chapter 8 dedicated to systemic risk.
43They are also called credit default tranches (CDT).
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3.2 Capital requirement
This section deals with regulatory aspects of credit risk. From a historical point of view,

this is the first risk which has requested regulatory capital before market risk. Nevertheless,
the development of credit risk management is more recent and was accelerated with the Basel
II Accord. Before presenting the different approaches for calculating capital requirements,
we need to define more precisely what credit risk is.

It is the risk of loss on a debt instrument resulting from the failure of the borrower to
make required payments. We generally distinguish two types of credit risk. The first one is
the ‘default risk’, which arises when the borrower is unable to pay the principal or interests.
An example is a student loan or a mortgage loan. The second type is the ‘downgrading risk’,
which concerns debt securities. In this case, the debt holder may face a loss, because the
price of the debt security is directly related to the credit risk of the borrower. For instance,
the price of the bond may go down because the credit risk of the issuer increases and even
if the borrower does not default. Of course, default risk and downgrading risk are highly
correlated, because it is rare that a counterparty suddenly defaults without downgrading of
its credit rating.

To measure credit risk, we first need to define the default of the obligor. BCBS (2006)
provides the following standard definition:

“A default is considered to have occurred with regard to a particular obligor
when either or both of the two following events have taken place.

• The bank considers that the obligor is unlikely to pay its credit obligations
to the banking group in full, without recourse by the bank to actions such
as realizing security (if held).
• The obligor is past due more than 90 days on any material credit obligation
to the banking group. Overdrafts will be considered as being past due once
the customer has breached an advised limit or been advised of a limit
smaller than current outstandings” (BCBS, 2006, page 100).

This definition contains both objective elements (when a payment has been missed or de-
layed) and subjective elements (when a loss becomes highly probable). This last case gener-
ally corresponds to an extreme situation (specific provision, distressed restructuring, etc.).
The Basel definition of default covers then two types of credit: debts under litigation and
doubtful debts.

Downgrading risk is more difficult to define. If the counterparty is rated by an agency, it
can be measured by a single or multi-notch downgrade. However, it is not always the case
in practice, because the credit quality decreases before the downgrade announcement. A
second measure is to consider a market-based approach by using CDS spreads. However, we
notice that the two methods concern counterparties, which are able to issue debt securities,
in particular bonds. For instance, the concept of downgrading risk is difficult to apply for
retail assets.

The distinction between default risk and downgrading risk has an impact on the credit
risk measure. For loans and debt-like instruments that cannot be traded in a market, the
time horizon for managing credit risk is the maturity of the credit. Contrary to this held-to-
maturity approach, the time horizon for managing debt securities is shorter, typically one
year. In this case, the big issue is not to manage the default, but the mark-to-market of the
credit exposure.
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3.2.1 The Basel I framework
According to Tarullo (2008), two explanatory factors were behind the Basel I Accord.

The first motivation was to increase capital levels of international banks, which were very
low at that time and had continuously decreased for many years. For instance, the ratio of
equity capital to total assets44 was 5.15% in 1970 and only 3.83% in 1981 for the 17 largest
US banks. In 1988, this capital ratio was equal to 2.55% on average for the five largest bank
in the world. The second motivation concerned the distortion risk of competition resulting
from heterogeneous national capital requirements. One point that was made repeatedly,
especially by US bankers, was the growth of Japanese banks. In Table 3.14, we report the
ranking of the 10 world’s largest banks in terms of assets ($ bn) between 2001 and 2008.
While there is only one Japanese bank in the top 10 in 1981, nine Japanese banks are
included in the ranking seven years later. In this context, the underlying idea of the Basel
I Accord was then to increase capital requirements and harmonize national regulations for
international banks.

TABLE 3.14: World’s largest banks in 1981 and 1988
1981 1988

Bank Assets Bank Assets
1 Bank of America (US) 115.6 Dai-Ichi Kangyo (JP) 352.5
2 Citicorp (US) 112.7 Sumitomo (JP) 334.7
3 BNP (FR) 106.7 Fuji (JP) 327.8
4 Crédit Agricole (FR) 97.8 Mitsubishi (JP) 317.8
5 Crédit Lyonnais (FR) 93.7 Sanwa (JP) 307.4
6 Barclays (UK) 93.0 Industrial Bank (JP) 261.5
7 Société Générale (FR) 87.0 Norinchukin (JP) 231.7
8 Dai-Ichi Kangyo (JP) 85.5 Crédit Agricole (FR) 214.4
9 Deutsche Bank (DE) 84.5 Tokai (JP) 213.5

10 National Westminster (UK) 82.6 Mitsubishi Trust (JP) 206.0

Source: Tarullo (2008).

The Basel I Accord provides a detailed definition of bank capital C and risk-weighted
assets RWA. We reiterate that tier one (T1) capital consists mainly of common stock and
disclosed reserves, whereas tier two (T2) capital includes undisclosed reserves, general pro-
visions, hybrid debt capital instruments and subordinated term debt. Risk-weighted assets
are simply calculated as the product of the asset notional (the exposure at default or EAD)
by a risk weight (RW). Table 3.15 shows the different values of RW with respect to the
category of the asset. For off-balance sheet assets, BCBS (1988) defines credit conversion
factor (CCF) for converting the amount E of a credit line or off-balance sheet asset to an
exposure at default:

EAD = E · CCF

The CCF values are 100% for direct credit substitutes (standby letters of credit), sale and
repurchase agreements, forward asset purchases, 50% for standby facilities and credit lines
with an original maturity of over one year, note issuance facilities and revolving underwriting
facilities, 20% for short-term self-liquidating trade-related contingencies and 0% for standby
facilities and credit lines with an original maturity of up to one year. The above framework
is used to calculate the Cooke ratio, which is in fact a set of two capital ratios. The core

44All the statistics of this section comes from Chapters 2 and 3 of Tarullo (2008).
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TABLE 3.15: Risk weights by category of on-balance sheet assets
RW Instruments

0%

Cash
Claims on central governments and central banks denominated in
national currency and funded in that currency
Other claims on OECD central governments and central banks
Claims† collateralized by cash of OECD government securities

20%

Claims† on multilateral development banks
Claims† on banks incorporated in the OECD and claims guaranteed
by OECD incorporated banks
Claims† on securities firms incorporated in the OECD subject to
comparable supervisory and regulatory arrangements
Claims† on banks incorporated in countries outside the OECD with
a residual maturity of up to one year
Claims† on non-domestic OECD public-sector entities
Cash items in process of collection

50% Loans fully secured by mortgage on residential property

100%

Claims on the private sector
Claims on banks incorporated outside the OECD with a residual
maturity of over one year
Claims on central governments outside the OECD and non denom-
inated in national currency
All other assets

†or guaranteed by these entities.

Source: BCBS (1988).

capital ratio includes only tier one capital whereas the total capital ratio considers both tier
one C1 and tier two C2 capital:

Tier 1 ratio = C1

RWA ≥ 4%

Tier 2 ratio = C1 + C2

RWA ≥ 8%

Example 26 The assets of the bank are composed of $100 mn of US treasury bonds, $20
mn of Mexico government bonds denominated in US dollar, $20 mn of Argentine debt de-
nominated in Argentine peso, $500 mn of residential mortgage, $500 mn of corporate loans,
$20 mn of non-used standby facilities for OECD governments and $100 mn of retail credit
lines, which are decomposed as follows: $40 mn are used and 70% of non-used credit lines
have a maturity greater than one year.

For each asset, we calculate RWA by choosing the right risk weight and credit conversion
factor for off-balance sheet items. We obtain the results below. The risk-weighted assets of
the bank are then equal to $831 mn. We deduce that the required capital K is $33.24 mn
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for tier one.

Balance Asset E CCF EAD RW RWASheet

On-

US bonds 100 0% 0
Mexico bonds 20 100% 20
Argentine debt 20 0% 0
Home mortgage 500 50% 250
Corporate loans 500 100% 500
Credit lines 40 100% 40

Off-
Standby facilities 20 100% 20 0% 0
Credit lines (> 1Y) 42 50% 21 100% 21
Credit lines (≤ 1Y) 18 0% 0 100% 0
Total 831

3.2.2 The Basel II standardized approach
The main criticism of the Cooke ratio is the lack of economic rationale with respect to

risk weights. Indeed, most of the claims have a 100% risk weight and do not reflect the
real credit risk of the borrower. Other reasons have been given to justify a reformulation of
capital requirements for credit risk with the goal to:

• obtain a better credit risk measure by taking into account the default probability of
the counterparty;

• avoid regulatory arbitrage, in particular by using credit derivatives;

• have a more coherent framework that supports credit risk mitigation.

3.2.2.1 Standardized risk weights

In Basel II, the probability of default is the key parameter to define risk weights. For
the standardized approach (SA), they depend directly on external ratings whereas they are
based on internal rating for the IRB approach. Table 3.16 shows the new matrix of risk
weights, when we consider the Standard & Poor’s rating system45. We notice that there are
four main categories of claims46: sovereigns, banks, corporates and retail portfolios.

The sovereign exposure category include central governments and central banks, whereas
non-central public sector entities are treated with the bank exposure category. We note that
there are two options for the latter, whose choice is left to the discretion of the national
supervisors47. Under the first option, the risk weight depends on the rating of the country
where the bank is located. Under the second option, it is the rating of the bank that
determines the risk weight, which is more favorable for short-term claims (three months or
less). The risk weight of a corporate is calculated with respect to the rating of the entity, but
uses a slightly different breakdown of ratings than the second option of the bank category.
Finally, the Basel Committee uses lower levels for retail portfolios than those provided in
the Basel I Accord. Indeed, residential mortgages and retail loans are now risk-weighted at
35% and 75% instead of 50% and 100% previously. Other comparisons between Basel I and
Basel II (with the second option for banks) are shown in Table 3.17.

45NR stands for non-rated entities.
46The regulatory framework is more comprehensive by considering three other categories (public sector

entities, multilateral development banks and securities firms), which are treated as banks. For all other
assets, the standard risk weight is 100%.

47The second option is more frequent and was implemented in Europe, US and Japan for instance.
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TABLE 3.16: Risk weights of the SA approach (Basel II)

Rating
AAA A+ BBB+ BB+ CCC+
to to to to to NR

AA− A− BBB− B− C
Sovereigns 0% 20% 50% 100% 150% 100%

Banks
1 20% 50% 100% 100% 150% 100%
2 20% 50% 50% 100% 150% 50%

2 ST 20% 20% 20% 50% 150% 20%

Corporates BBB+ to BB− B+ to C
20% 50% 100% 150% 100%

Retail 75%
Residential mortgages 35%
Commercial mortgages 100%

TABLE 3.17: Comparison of risk weights between Basel I and Basel II
Entity Rating Maturity Basel I Basel II
Sovereign (OECD) AAA 0% 0%
Sovereign (OECD) A- 0% 20%
Sovereign BBB 100% 50%
Bank (OECD) BBB 2Y 20% 50%
Bank BBB 2M 100% 20%
Corporate AA+ 100% 20%
Corporate BBB 100% 100%

The SA approach is based on external ratings and then depends on credit rating agencies.
The most famous are Standard & Poor’s, Moody’s and Fitch. However, they cover only large
companies. This is why banks will also consider rating agencies specialized in a specific sector
or a given country48. Of course, rating agencies must be first registered and certified by the
national supervisor in order to be used by the banks. The validation process consists of
two steps, which are the assessment of the six required criteria (objectivity, independence,
transparency, disclosure, resources and credibility) and the mapping process between the
ratings and the Basel matrix of risk weights.

Table 3.18 shows the rating systems of S&P, Moody’s and Fitch, which are very similar.
Examples of S&P’s rating are given in Tables 3.19, 3.20 and 3.21. We note that the rating
of many sovereign counterparties has been downgraded by at least one notch, except China
which has now a better rating than before the 2008 GFC. For some countries, the rating
in local currency is different from the rating in foreign currency, for instance Argentina,
Brazil, Russia and Ukraine49. We observe the same evolution for banks and it is now rare
to find a bank with a AAA rating. This is not the case of corporate counterparties, which
present more stable ratings across time.

Remark 29 Credit conversion factors for off-balance sheet items are similar to those de-
fined in the original Basel Accord. For instance, any commitment that is unconditionally
cancelable receives a 0% CCF. A CCF of 20% (resp. 50%) is applied to commitments with

48For instance, banks may use Japan Credit Rating Agency Ltd for Japanese public and corporate en-
tities, DBRS Ratings Limited for bond issuers, Cerved Rating Agency for Italian small and medium-sized
enterprises, etc.

49An SD rating is assigned in case of selective default of the obligor.
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TABLE 3.18: Credit rating system of S&P, Moody’s and Fitch
Prime High Grade Upper

Maximum Safety High Quality Medium Grade
S&P/Fitch AAA AA+ AA AA− A+ A A−
Moody’s Aaa Aa1 Aa2 Aa3 A1 A2 A3

Lower Non Investment Grade
Medium Grade Speculative

S&P/Fitch BBB+ BBB BBB− BB+ BB BB−
Moody’s Baa1 Baa2 Baa3 Ba1 Ba2 Ba3

Highly Substantial In Poor Extremely
Speculative Risk Standing Speculative

S&P/Fitch B+ B B− CCC+ CCC CCC− CC
Moody’s B1 B2 B3 Caa1 Caa2 Caa3 Ca

TABLE 3.19: Examples of country’s S&P rating

Country Local currency Foreign currency
Jun. 2009 Oct. 2015 Jun. 2009 Oct. 2015

Argentina B- CCC+ B- SD
Brazil BBB+ BBB- BBB- BB+
China A+ AA- A+ AA-
France AAA AA AAA AA
Italy A+ BBB- A+ BBB-
Japan AA A+ AA A+
Russia BBB+ BBB- BBB BB+
Spain AA+ BBB+ AA+ BBB+
Ukraine B- CCC+ CCC+ SD
US AAA AA+ AA+ AA+

Source: Standard & Poor’s, www.standardandpoors.com.

TABLE 3.20: Examples of bank’s S&P rating
Bank Oct. 2001 Jun. 2009 Oct. 2015
Barclays Bank PLC AA AA- A-
Credit Agricole S.A. AA AA- A
Deutsche Bank AG AA A+ BBB+
International Industrial Bank CCC+ BB-
JPMorgan Chase & Co. AA- A+ A
UBS AG AA+ A+ A

Source: Standard & Poor’s, www.standardandpoors.com.
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TABLE 3.21: Examples of corporate’s S&P rating
Corporate Jul. 2009 Oct. 2015
Danone A- A-
Exxon Mobil Corp. AAA AAA
Ford Motor Co. CCC+ BBB-
General Motors Corp. D BBB-
L’Oreal S.A. NR NR
Microsoft Corp. AAA AAA
Nestle S.A. AA AA
The Coca-Cola Co. A+ AA
Unilever PLC A+ A+

Source: Standard & Poor’s, www.standardandpoors.com.

an original maturity up to one year (resp. greater than one year). For revolving underwriting
facilities, the CCF is equal to 50% whereas it is equal to 100% for other off-balance sheet
items (e.g. direct credit substitutes, guarantees, sale and repurchase agreements, forward
asset purchases).

3.2.2.2 Credit risk mitigation

Credit risk mitigation (CRM) refers to the various techniques used by banks for reducing
the credit risk. These methods allow to decrease the credit exposure or to increase the
recovery in case of default. The most common approaches are collateralized transactions,
guarantees, credit derivatives and netting agreements.

Collateralized transactions In such operations, the credit exposure of the bank is par-
tially hedged by collateral posted by the counterparty. BCBS (2006) defines then the fol-
lowing eligible instruments:

1. Cash and comparable instruments;

2. Gold;

3. Debt securities which are rated AAA to BB- when issued by sovereigns or AAA to BBB-
when issued by other entities or at least A-3/P-3 for short-term debt instruments;

4. Debt securities which are not rated but fulfill certain criteria (senior debt issued by
banks, listed on a recognisee exchange and sufficiently liquid);

5. Equities that are included in a main index;

6. UCITS and mutual funds, whose assets are eligible instruments and which offer a
daily liquidity;

7. Equities which are listed on a recognized exchange and UCITS/mutual funds which
include such equities.

The bank has the choice between two approaches to take into account collateralized
transactions. In the simple approach50, the risk weight of the collateral (with a floor of

50Collateral instruments (7) are not eligible for this approach.
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20%) is applied to the market value of the collateral C whereas the non-hedged exposure
(EAD−C) receives the risk weight of the counterparty:

RWA = (EAD−C) · RW +C ·max (RWC , 20%) (3.16)

where EAD is the exposure at default, C is the market value of the collateral, RW is the
risk weight appropriate to the exposure and RWC is the risk weight of the collateral. The
second method, called the comprehensive approach, is based on haircuts. The risk-weighted
asset amount after risk mitigation is RWA = RW ·EAD? whereas EAD? is the modified
exposure at default defined as follows:

EAD? = max (0, (1 +HE) · EAD− (1−HC −HFX) · C) (3.17)

where HE is the haircut applied to the exposure, HC is the haircut applied to the collateral
and HFX is the haircut for currency risk. Table 3.22 gives the standard supervisory values
of haircuts. If the bank uses an internal model to calculate haircuts, they must be based on
the value-at-risk with a 99% confidence level and an holding period which depends on the
collateral type and the frequency of remargining. The standard supervisory haircuts have
been calibrated by assuming daily mark-to-market, daily remargining and a 10-business day
holding period.

TABLE 3.22: Standardized supervisory haircuts for collateralized transactions

Rating Residual Sovereigns OthersMaturity
0−1Y 0.5% 1%

AAA to AA− 1−5Y 2% 4%
5Y+ 4% 8%
0−1Y 1% 2%

A+ to BBB− 1−5Y 3% 6%
5Y+ 6% 12%

BB+ to BB− 15%
Cash 0%
Gold 15%
Main index equities 15%
Equities listed on a recognized exchange 25%
FX risk 8%

Example 27 We consider a 10-year credit of $100 mn to a corporate firm rated A. The
credit is guaranteed by five collateral instruments: a cash deposit ($2 mn), a gold deposit ($5
mn), a sovereign bond rated AA with a 2-year residual maturity ($15 mn) and repurchase
transactions on Microsoft stocks ($20 mn) and Wirecard51 stocks ($20 mn).

Before credit risk mitigation, the risk-weighted asset amount is equal to:

RWA = 100× 50% = $50 mn

If we consider the simple approach, the repurchase transaction on Wirecard stocks is not
eligible, because it does not fall within categories (1)-(6). The risk-weighted asset amount

51Wirecard is a German financial company specialized in payment processing and issuing services. The
stock belongs to the MSCI Small Cap Europe index.
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becomes52:

RWA = (100− 2− 5− 15− 20)× 50% + (2 + 5 + 15 + 20)× 20%
= $37.40 mn

The repurchase transaction on Wirecard stocks is eligible in the comprehensive approach,
because these equity stocks are traded in Börse Frankfurt. The haircuts are 15% for gold, 2%
for the sovereign bond and 15% for Microsoft stocks53. For Wirecard stocks, a first haircut
of 25% is applied because this instrument belongs to the seventh category and a second
haircut of 8% is applied because there is a foreign exchange risk. The adjusted exposure at
default is then equal to:

EAD? = (1 + 8%)× 100− 2− (1− 15%)× 5− (1− 2%)× 15−
(1− 15%)× 20− (1− 25%− 8%)× 20

= $73.65 mn

It follows that:
RWA = 73.65× 50% = $36.82 mn

Guarantees and credit derivatives Banks can use these credit protection instruments
if they are direct, explicit, irrevocable and unconditional. In this case, banks use the simple
approach given by Equation (3.16). The case of credit default tranches is covered by rules
described in the securitization framework.

Maturity mismatches A maturity mismatch occurs when the residual maturity of the
hedge is less than that of the underlying asset. In this case, the bank uses the following
adjustment:

CA = C · min (TG, T, 5)− 0.25
min (T, 5)− 0.25 (3.18)

where T is the residual maturity of the exposure and TG is the residual maturity of the
collateral (or guarantee).

Example 28 The bank A has granted a credit of $30 mn to a corporate firm B, which
is rated BB. In order to hedge the default risk, the bank A buys $20 mn of a 3-year CDS
protection on B to the bank C, which is rated A+.

If the residual maturity of the credit is lower than 3 years, we obtain:

RWA = (30− 20)× 100% + 20× 50% = $20 mn

If the residual maturity is greater than 3 years, we first have to calculate the adjusted value
of the guarantee. Assuming that the residual maturity is 4 years, we have:

GA = 20× min (3, 4, 5)− 0.25
min (4, 5)− 0.25 = $14.67 mn

It follows that:

RWA = (30− 14.67)× 100% + 14.67× 50% = $22.67 mn
52The floor of 20% is applied to the cash, gold and sovereign bond collateral instruments. The risk weight

for Microsoft stocks is 20% because the rating of Microsoft is AAA.
53Because Microsoft belongs to the S&P 500 index, which is a main equity index.
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3.2.3 The Basel II internal ratings-based approach
The completion of the internal ratings-based (IRB) approach was a complex task, be-

cause it required many negotiations between regulators, banks and politics. Tarullo (2008)
points out that the publication of the first consultative paper (CP1) in June 1999 was
both “anticlimactic and contentious”. The paper is curiously vague without a precise di-
rection. The only tangible proposal is the use of external ratings. The second consultative
paper is released in January 2001 and includes in particular the IRB approach, which has
been essentially developed by US members of the Basel Committee with the support of
large international banks. The press release dated 16 January 2001 indicated that the Basel
Committee would finalize the New Accord by the end of 2001, for an implementation in
2004. However, it has taken much longer than originally anticipated and the final version
of the New Accord was published in June 2004 and implemented from December 200654.
The main reason is the difficulty of calibrating the IRB approach in order to satisfy a large
part of international banks. The IRB formulas of June 2004 are significantly different from
the original ones and reflect compromises between the different participants without really
being satisfactory.

3.2.3.1 The general framework

Contrary to the standardized approach, the IRB approach is based on internal rating
systems. With such a method, the objectives of the Basel Committee were to propose a
more sensitive credit risk measure and define a common basis between internal credit risk
models. The IRB approach may be seen as an external credit risk model, whose parameters
are provided by the bank. Therefore, it is not an internal model, but a first step to harmonize
the internal risk management practices by focusing on the main risk components, which are:

• the exposure at default (EAD);

• the probability of default (PD);

• the loss given default (LGD);

• the effective maturity (M).

The exposure at default is defined as the outstanding debt at the time of default. For
instance, it is equal to the principal amount for a loan. The loss given default is the expected
percentage of exposure at default that is lost if the debtor defaults. At first approximation,
one can consider that LGD ' 1−R, where R is the recovery rate. While EAD is expressed
in $, LGD is measured in %. For example, if EAD is equal to $10 mn and LGD is set to 70%,
the expected loss due to the default is equal to $7 mn. The probability of default measures
the default risk of the debtor. In Basel II, the time horizon of PD is set to one year. When
the duration of the credit is not equal to one year, one has to specify its effective maturity
M. This is the combination of the one-year default probability PD and the effective maturity
M that measures the default risk of the debtor until the duration of the credit.

In this approach, the credit risk measure is the sum of individual risk contributions:

R (w) =
n∑
i=1
RCi

54See Chapter 4 entitled “Negotiating Basel II” of Tarullo (2008) for a comprehensive story of the Basel
II Accord.
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where RCi is a function of the four risk components:

RCi = fIRB (EADi,LGDi,PDi,Mi)

and fIRB is the IRB fomula. In fact, there are two IRB methodologies. In the foundation
IRB approach (FIRB), banks use their internal estimates of PD whereas the values of the
other components (EAD, LGD and M) are set by regulators. Banks that adopt the advanced
IRB approach (AIRB) may calculate all the four parameters (PD, EAD, LGD and M) using
their own internal models and not only the probability of default. The mechanism of the
IRB approach is then the following:

• a classification of exposures (sovereigns, banks, corporates, retail portfolios, etc.);

• for each credit i, the bank estimates the probability of default PDi;

• it uses the standard regulatory values of the other risk components (EADi, LGDi and
Mi) or estimates them in the case of AIRB;

• the bank calculate then the risk-weighted assets RWAi of the credit by applying the
right IRB formula fIRB to the risk components.

Internal ratings are central to the IRB approach. Table 3.23 gives an example of an internal
rating system, where risk increases with the number grade (1, 2, 3, etc.). Another approach
is to consider alphabetical letter grades55. A third approach is to use an internal rating
scale similar to that of S&P56.

3.2.3.2 The credit risk model of Basel II

Decomposing the value-at-risk into risk contributions BCBS (2004a) used the
Merton-Vasicek model (Merton, 1974; Vasicek, 2002) to derive the IRB formula. In this
framework, the portfolio loss is equal to:

L =
n∑
i=1

wi · LGDi ·1 {τi ≤ Ti} (3.19)

where wi and Ti are the exposure at default and the residual maturity of the ith credit.
We assume that the loss given default LGDi is a random variable and the default time
τi depends on a set of risk factors X, whose probability distribution is denoted by H. Let
pi (X) be the conditional default probability. It follows that the (unconditional or long-term)
default probability is:

pi = EX [1 {τi ≤ Ti}]
= EX [pi (X)]

We also introduce the notation Di = 1 {τi ≤ Ti}, which is the default indicator function.
Conditionally to the risk factors X, Di is a Bernoulli random variable with probability
pi (X). If we consider the standard assumption that the loss given default is independent

55For instance, the rating system of Crédit Agricole is: A+, A, B+, B, C+, C, C-, D+, D, D-, E+, E and
E- (source: Credit Agricole, Annual Financial Report 2014, page 201).

56This is the case of JPMorgan Chase & Co. (source: JPMorgan Chase & Co., Annual Report 2014, page
104).
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TABLE 3.23: An example of internal rating system

Degree
of risk

Borrower
Rating Definition category by

self-assessment

1 No essential
risk

Extremely high degree of certainty of
repayment

Normal

2 Negligible
risk High degree of certainty of repayment

3 Some risk Sufficient certainty of repayment

4
A
B
C

Better
than

average

There is certainty of repayment but
substantial changes in the
environment in the future may have
some impact on this uncertainty

5
A
B
C

Average

There are no problems foreseeable in
the future, but a strong likelihood of
impact from changes in the
environment

6
A

Tolerable
There are no problems foreseeable in
the future, but the future cannot be
considered entirely safe

B
C

7
Lower
than

average

There are no problems at the current
time but the financial position of the
borrower is relatively weak

8
A

B

Needs
preventive

management

There are problems with lending
terms or fulfilment, or the borrower’s
business conditions are poor or
unstable, or there are other factors
requiring careful management

Needs
attention

9 Needs
serious

management

There is a high likelihood of
bankruptcy in the future

In danger
of bankruptcy

10 I The borrower is in serious financial
straits and “effectively bankrupt”

Effectively
bankruptcy

II The borrower is bankrupt Bankrupt

Source: Ieda et al. (2000).

from the default time and we also assume that the default times are conditionally indepen-
dent57, we obtain:

E [L | X] =
n∑
i=1

wi · E [LGDi] · E [Di | X]

=
n∑
i=1

wi · E [LGDi] · pi (X) (3.20)

and58:

σ2 (L | X) = E
[
L2 | X

]
− E2 [L | X]

=
n∑
i=1

w2
i ·
(
E
[
LGD2

i

]
· E
[
D2
i | X

]
− E2 [LGDi] · p2

i (X)
)

57The default times are not independent, because they depend on the common risk factors X. However,
conditionally to these factors, they become independent because idiosyncratic risk factors are not correlated.

58Because the conditional covariance between Di and Dj is equal to zero. The derivation of this formula
is given in Exercise 3.4.8 on page 255.
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We have E
[
D2
i | X

]
= pi (X) and E

[
LGD2

i

]
= σ2 (LGDi) + E2 [LGDi]. We deduce that:

σ2 (L | X) =
n∑
i=1

w2
i ·Ai (3.21)

where:
Ai = E2 [LGDi] · pi (X) · (1− pi (X)) + σ2 (LGDi) · pi (X)

BCBS (2004a) assumes that the portfolio is infinitely fine-grained, which means that there
is no concentration risk:

lim
n→∞

max wi∑n
j=1 wj

= 0 (3.22)

In this case, Gordy (2003) shows that the conditional distribution of L degenerates to its
conditional expectation E [L | X]. The intuition of this result is given by Wilde (2001a).
He considers a fine-grained portfolio equivalent to the original portfolio by replacing the
original credit i by m credits with the same default probability pi, the same loss given
default LGDi but an exposure at default divided by m. Let Lm be the loss of the equivalent
fine-grained portfolio. We have:

E [Lm | X] =
n∑
i=1

 m∑
j=1

wi
m

 · E [LGDi] · E [Di | X]

=
n∑
i=1

wi · E [LGDi] · pi (X)

= E [L | X]

and:

σ2 (Lm | X) =
n∑
i=1

 m∑
j=1

w2
i

m2

 ·Ai
= 1

m

n∑
i=1

w2
i ·Ai

= 1
m
σ2 (Lm | X)

When m tends to ∞, we obtain the infinitely fine-grained portfolio. We note that
E [L∞ | X] = E [L | X] and σ2 (L∞ | X) = 0. Conditionally to the risk factors X, the
portfolio loss L∞ is equal to the conditional mean E [L | X]. The associated probability
distribution F is then:

F (`) = Pr {L∞ ≤ `}
= Pr {E [L | X] ≤ `}

= Pr
{

n∑
i=1

wi · E [LGDi] · pi (X) ≤ `
}

Let g (x) be the function
∑n
i=1 wi · E [LGDi] · pi (x). We have:

F (`) =
∫
· · ·
∫
1 {g (x) ≤ `} dH (x)
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However, it is not possible to obtain a closed-form formula for the value-at-risk F−1 (α)
defined as follows:

F−1 (α) = {` : Pr {g (X) ≤ `} = α}

If we consider a single risk factor and assume that g (x) is an increasing function, we obtain:

Pr {g (X) ≤ `} = α ⇔ Pr
{
X ≤ g−1 (`)

}
= α

⇔ H
(
g−1 (`)

)
= α

⇔ ` = g
(
H−1 (α)

)
We finally deduce that the value-at-risk has the following expression:

F−1 (α) = g
(
H−1 (α)

)
=

n∑
i=1

wi · E [LGDi] · pi
(
H−1 (α)

)
(3.23)

Equation (3.23) is appealing because the value-at-risk satisfies the Euler allocation principle.
Indeed, we have:

RCi = wi ·
∂ F−1 (α)
∂ wi

= wi · E [LGDi] · pi
(
H−1 (α)

)
(3.24)

and:
n∑
i=1
RCi = F−1 (α)

Remark 30 If g (x) is a decreasing function, we obtain Pr
{
X ≥ g−1 (`)

}
= α and:

F−1 (α) =
n∑
i=1

wi · E [LGDi] · pi
(
H−1 (1− α)

)
The risk contribution becomes:

RCi = wi · E [LGDi] · pi
(
H−1 (1− α)

)
(3.25)

We reiterate that Equation (3.24) has been obtained under the following assumptions:

H1 the loss given default LGDi is independent from the default time τi;

H2 the default times (τ1, . . . , τn) depend on a single risk factor X and are conditionally
independent with respect to X;

H3 the portfolio is infinitely fine-grained, meaning that there is no exposure concentration.

Equation (3.24) is a very important result for two main reasons. First, it implies that,
under the previous assumptions, the value-at-risk of an infinitely fine-grained portfolio can
be decomposed as a sum of independent risk contributions. Indeed, RCi depends solely on
the characteristics of the ith credit (exposure at default, loss given default and probability
of default). This facilitates the calculation of the value-at-risk for large portfolios. Second,
the risk contribution RCi is related to the expected value of the loss given default. We don’t
need to model the probability distribution of LGDi, only the mean E [LGDi] is taken into
account.
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Closed-form formula of the value-at-risk In order to obtain a closed-form formula,
we need a model of default times. BCBS (2004a) has selected the one-factor model of Merton
(1974), which has been formalized by Vasicek (1991). Let Zi be the normalized asset value
of the entity i. In the Merton model, the default occurs when Zi is below a given barrier
Bi:

Di = 1⇔ Zi < Bi

By assuming that Zi is Gaussian, we deduce that:

pi = Pr {Di = 1}
= Pr {Zi < Bi}
= Φ (Bi)

The value of the barrier Bi is then equal to Φ−1 (pi). We assume that the asset value Zi
depends on the common risk factor X and an idiosyncratic risk factor εi as follows:

Zi = √ρX +
√

1− ρεi

X and εi are two independent standard normal random variables. We note that59:

E [ZiZj ] = E
[(√

ρX +
√

1− ρεi
)(√

ρX +
√

1− ρεj
)]

= E
[
ρX2 + (1− ρ) εiεj +X

√
ρ (1− ρ) (εi + εj)

]
= ρ

where ρ is the constant asset correlation. We now calculate the conditional default proba-
bility:

pi (X) = Pr {Di = 1 | X}
= Pr {Zi < Bi | X}

= Pr
{√

ρX +
√

1− ρεi < Bi

}
= Pr

{
εi <

Bi −
√
ρX

√
1− ρ

}
= Φ

(
Bi −

√
ρX

√
1− ρ

)
Using the framework of the previous paragraph, we obtain:

g (x) =
n∑
i=1

wi · E [LGDi] · pi (x)

=
n∑
i=1

wi · E [LGDi] · Φ
(Φ−1 (pi)−

√
ρx

√
1− ρ

)
We note that g (x) is a decreasing function if wi ≥ 0. Using Equation (3.25) and the
relationship Φ−1 (1− α) = −Φ−1 (α), it follows that:

RCi = wi · E [LGDi] · Φ
(Φ−1 (pi) +√ρΦ−1 (α)

√
1− ρ

)
(3.26)

59We have E [εiεj ] = 0 because εi and εj are two specific risk factors.
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Remark 31 We verify that pi is the unconditional default probability. Indeed, we have:

EX [pi (X)] = EX
[
Φ
(Φ−1 (pi)−

√
ρX

√
1− ρ

)]
=

∫ ∞
−∞

Φ
(Φ−1 (pi)−

√
ρx

√
1− ρ

)
φ (x) dx

We recognize the integral function analyzed in Appendix A.2.2.5 on page 1063. We deduce
that:

EX [pi (X)] = Φ2

(
∞, Φ−1 (pi)√

1− ρ
·
(

1
1− ρ

)−1/2

;
√
ρ

√
1− ρ

(
1

1− ρ

)−1/2
)

= Φ2
(
∞,Φ−1 (pi) ;√ρ

)
= Φ

(
Φ−1 (pi)

)
= pi

Example 29 We consider a homogeneous portfolio with 100 credits. For each credit, the
exposure at default, the expected LGD and the probability of default are set to $1 mn, 50%
and 5%.

Let us assume that the asset correlation ρ is equal to 10%. We have reported the nu-
merical values of F−1 (α) for different values of α in Table 3.24. If we are interested in the
cumulative distribution function, F (`) is equal to the numerical solution α of the equation
F−1 (α) = `. Using a bisection algorithm, we find the probabilities given in Table 3.24. For
instance, the probability to have a loss less than or equal to $3 mn is equal to 70.44%. Fi-
nally, to calculate the probability density function of the portfolio loss, we use the following
relationship60:

f (x) = 1
∂α F−1 (F (x))

where:

∂α F−1 (α) =
n∑
i=1

wi · E [LGDi] ·
√

ρ

1− ρ ·
1

φ (Φ−1 (α)) ·

φ

(Φ−1 (pi) +√ρΦ−1 (α)
√

1− ρ

)
In Figure 3.21, we compare the probability functions for two different values of the asset
correlation ρ. We note that the level of ρ has a big impact on the quantile function and the
shape of the density function.

TABLE 3.24: Numerical values of f (`), F (`) and F−1 (α) when ρ is equal to 10%

` (in $ mn) 0.10 1.00 2.00 3.00 4.00 5.00
F (`) (in %) 0.03 16.86 47.98 70.44 83.80 91.26
f (`) (in %) 1.04 31.19 27.74 17.39 9.90 5.43
α (in %) 10.00 25.00 50.00 75.00 90.00 95.00
F−1 (α) (in $ mn) 0.77 1.25 2.07 3.28 4.78 5.90

60See Appendix A.2.2.3 on page 1062.
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FIGURE 3.21: Probability functions of the credit portfolio loss

The risk contribution RCi depends on three credit parameters (the exposure at default
wi, the expected loss given default E [LGDi] and the probability of default pi) and two
model parameters (the asset correlation ρ and the confidence level α of the value-at-risk). It
is obvious that RCi is an increasing function of the different parameters with the exception
of the correlation. We obtain:

sign ∂RCi
∂ ρ

= sign 1
2 (1− ρ)3/2

(
Φ−1 (pi) + Φ−1 (α)

√
ρ

)
We deduce that the risk contribution is not a monotone function with respect to ρ. It
increases if the term √ρΦ−1 (pi)+Φ−1 (α) is positive. This implies that the risk contribution
may decrease if the probability of default is very low and the confidence level is larger than
50%. The two limiting cases are ρ = 0 and ρ = 1. In the first case, the risk contribution is
equal to the expected loss:

RCi = E [Li] = wi · E [LGDi] · pi

In the second case, the risk contribution depends on the value of the probability of default:

lim
ρ→1
RCi =

 0 if pi < 1− α
0.5 · wi · E [LGDi] if pi = 1− α
wi · E [LGDi] if pi > 1− α

The behavior of the risk contribution is illustrated in Figure 3.22 with the following base
parameter values: wi = 100, E [LGDi] = 70%, ρ = 20% and α = 90%. We verify that the
risk contribution is an increasing function of E [LGDi] (top/left panel) and α (top/right
panel). When pi and α are set to 10% and 90%, the risk contribution increases with ρ and
reaches the value 35, which corresponds to half of the nominal loss given default. When
pi and α are set to 5% and 90%, the risk contribution increases in a first time and then



176 Handbook of Financial Risk Management

decreases (bottom/left panel). The maximum is reached for the value61 ρ? = 60.70%. When
α is equal to 99%, this behavior vanishes (bottom/right panel).

FIGURE 3.22: Relationship between the risk contribution RCi and model parameters

In this model, the maturity Ti is taken into account through the probability of default.
Indeed, we have pi = Pr {τi ≤ Ti}. Let us denote PDi the annual default probability of the
obligor. If we assume that the default time is Markovian, we have the following relationship:

pi = 1− Pr {τi > Ti}
= 1− (1− PDi)Ti

We can then rewrite Equation (3.26) such that the risk contribution depends on the exposure
at default, the expected loss given default, the annualized probability of default and the
maturity, which are the 4 parameters of the IRB approach.

3.2.3.3 The IRB formulas

A long process to obtain the finalized formulas The IRB formula of the second
consultative portfolio was calibrated with α = 99.5%, ρ = 20% and a standard maturity
of three years. To measure the impact of this approach, the Basel Committee conducted a
quantitative impact study (QIS) in April 2001. A QIS is an Excel workbook to be filled by the
bank. It allows the Basel Committee to gauge the impact of the different proposals for capital
requirements. The answers are then gathered and analyzed at the industry level. Results
were published in November 2001. Overall, 138 banks from 25 countries participated in the
QIS. Not all participating banks managed to calculate the capital requirements under the

61We have:

ρ? = max2
(

0,−
Φ−1 (α)
Φ−1 (pi)

)
=
(1.282

1.645

)2
= 60.70%



Credit Risk 177

three methods (SA, FIRB and AIRB). However, 127 banks provided complete information
on the SA approach and 55 banks on the FIRB approach. Only 22 banks were able to
calculate the AIRB approach for all portfolios.

TABLE 3.25: Percentage change in capital requirements under CP2 proposals
SA FIRB AIRB

G10 Group 1 6% 14% −5%
Group 2 1%

EU Group 1 6% 10% −1%
Group 2 −1%

Others 5%

Source: BCBS (2001b).

In Table 3.25, we report the difference in capital requirements between CP2 proposals
and Basel I. Group 1 corresponds to diversified, internationally active banks with tier 1
capital of at least e 3 bn whereas Group 2 consists of smaller or more specialized banks.
BCBS (2001b) concluded that “on average, the QIS2 results indicate that the CP2 proposals
for credit risk would deliver an increase in capital requirements for all groups under both
the SA and FIRB approaches”. It was obvious that these figures were not satisfactory. The
Basel Committee considered then several modifications in order to (1) maintain equivalence
on average between current required capital and the revised SA approach and (2) provide
incentives under the FIRB approach. A third motivation has emerged rapidly. According
to many studies62, Basel II may considerably increase the procyclicality of capital require-
ments. Indeed, capital requirements may increase in an economic meltdown, because LGD
increases in bad times and credits receive lower ratings. In this case, capital requirements
may move in an opposite direction than the macroeconomic cycle, leading banks to reduce
their supply of credit during a crisis. In this scenario, Basel II proposals may amplify credit
crises and economic downturns. All these reasons explain the long period to finalize the
Basel II Accord. After two new QIS (QIS 2.5 in July 2002 and QIS 3 in May 2003) and
a troubled period at the end of 2003, the new Capital Accord is finally published in June
2004. However, there was a shared feeling that it was more a compromise than a terminated
task. Thus, several issues remained unresolved and two new QIS will be conducted in 2004
and 2005 before the implementation in order to confirm the calibration.

The supervisory formula If we use the notations of the Basel Committee, the risk
contribution has the following expression:

RC = EAD ·LGD ·Φ

Φ−1
(

1− (1− PD)M
)

+√ρΦ−1 (α)
√

1− ρ


where EAD is the exposure at default, LGD is the (expected) loss given default, PD is the
(one-year) probability of default and M is the effective maturity. Because RC is directly the
capital requirement (RC = 8%× RWA), we deduce that the risk-weighted asset amount is
equal to:

RWA = 12.50 · EAD ·K? (3.27)

62See for instance Goodhart et al. (2004) or Kashyap and Stein (2004).
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where K? is the normalized required capital for a unit exposure:

K? = LGD ·Φ

Φ−1
(

1− (1− PD)M
)

+√ρΦ−1 (α)
√

1− ρ

 (3.28)

In order to obtain the finalized formulas, the Basel Committee has introduced the following
modifications:

• a maturity adjustment ϕ (M) has been added in order to separate the impact of the
one-year probability of default and the effect of the maturity; the function ϕ (M) has
then been calibrated such that Expression (3.28) becomes:

K? ≈ LGD ·Φ
(Φ−1 (PD) +√ρΦ−1 (α)

√
1− ρ

)
· ϕ (M) (3.29)

• it has used a confidence level of 99.9% instead of the 99.5% value;

• it has defined a parametric function ρ (PD) for the default correlation in order that
low ratings are not too penalizing for capital requirements;

• it has considered the unexpected loss as the credit risk measure:

ULα = VaRα−E [L]

In summary, the risk-weighted asset amount in the IRB approach is calculated using Equa-
tion (3.27) and the following normalized required capital:

K? =
(

LGD ·Φ
(

Φ−1 (PD) +
√
ρ (PD)Φ−1 (99.9%)√

1− ρ (PD)

)
− LGD ·PD

)
· ϕ (M) (3.30)

Risk-weighted assets for corporate, sovereign, and bank exposures The three
asset classes use the same formula:

K? =
(

LGD ·Φ
(

Φ−1 (PD) +
√
ρ (PD)Φ−1 (99.9%)√

1− ρ (PD)

)
− LGD ·PD

)
·(

1 + (M− 2.5) · b (PD)
1− 1.5 · b (PD)

)
(3.31)

with b (PD) = (0.11852− 0.05478 · ln (PD))2 and:

ρ (PD) = 12%×
(

1− e−50×PD

1− e−50

)
+ 24%×

(
1− 1− e−50×PD

1− e−50

)
(3.32)

We note that the maturity adjustment ϕ (M) vanishes when the effective maturity is one
year. For a defaulted exposure, we have:

K? = max (0,LGD−EL)

where EL is the bank’s best estimate of the expected loss63.

63We can assimilate it to specific provisions.
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For small and medium-sized enterprises64, a firm-size adjustment is introduced by defin-
ing a new parametric function for the default correlation:

ρSME (PD) = ρ (PD)− 0.04 ·
(

1− (max (S, 5)− 5)
45

)
where S is the reported sales expressed in e mn. This adjustment has the effect to reduce
the default correlation and then the risk-weighted assets. Similarly, the Basel Committee
proposes specific arrangements for specialized lending and high-volatility commercial real
estate (HVCRE).

In the foundation IRB approach, the bank estimates the probability of default, but uses
standard values for the other parameters. In the advanced IRB approach, the bank always
estimates the parameters PD and M, and may use its own estimates for the parameters
EAD and LGD subject to certain minimum requirements. The risk components are defined
as follows:

1. The exposure at default is the amount of the claim, without taking into account
specific provisions or partial write-offs. For off-balance sheet positions, the bank uses
similar credit conversion factors for the FIRB approach as for the SA approach. In
the AIRB approach, the bank may use its own internal measures of CCF.

2. In the FIRB approach, the loss given default is set to 45% for senior claims and
75% for subordinated claims. In the AIRB approach, the bank may use its own es-
timates of LGD. However, they must be conservative and take into account adverse
economic conditions. Moreover, they must include all recovery costs (litigation cost,
administrative cost, etc.).

3. PD is the one-year probability of default calculated with the internal rating system.
For corporate and bank exposures, a floor of 3 bps is applied.

4. The maturity is set to 2.5 years in the FIRB approach. In the advanced approach, M
is the weighted average time of the cash flows, with a one-year floor and a five-year
cap.

Example 30 We consider a senior debt of $3 mn on a corporate firm. The residual maturity
of the debt is equal to 2 years. We estimate the one-year probability of default at 5%.

To determine the capital charge, we first calculate the default correlation:

ρ (PD) = 12%×
(

1− e−50×0.05

1− e−50

)
+ 24%×

(
1− 1− e−50×0.05

1− e−50

)
= 12.985%

We have:

b (PD) = (0.11852− 0.05478× ln (0.05))2

= 0.0799

It follows that the maturity adjustment is equal to:

ϕ (M) = 1 + (2− 2.5)× 0.0799
1− 1.5× 0.0799

= 1.0908
64They are defined as corporate entities where the reported sales for the consolidated group of which the

firm is a part is less than e 50 mn.



180 Handbook of Financial Risk Management

The normalized capital charge with a one-year maturity is:

K? = 45%× Φ
(

Φ−1 (5%) +
√

12.985%Φ−1 (99.9%)√
1− 12.985%

)
− 45%× 5%

= 0.1055

When the maturity is two years, we obtain:

K? = 0.1055× 1.0908
= 0.1151

We deduce the value taken by the risk weight:

RW = 12.5× 0.1151
= 143.87%

It follows that the risk-weighted asset amount is equal to $4.316 mn whereas the capital
charge is $345 287. Using the same process, we have calculated the risk weight for different
values of PD, LGD and M in Table 3.26. The last two columns are for a SME claim by
considering that sales are equal to e 5 mn.

TABLE 3.26: IRB risk weights (in %) for corporate exposures

Maturity M = 1 M = 2.5 M = 2.5 (SME)
LGD 45% 75% 45% 75% 45% 75%

PD (in %)

0.10 18.7 31.1 29.7 49.4 23.3 38.8
0.50 52.2 86.9 69.6 116.0 54.9 91.5
1.00 73.3 122.1 92.3 153.9 72.4 120.7
2.00 95.8 159.6 114.9 191.4 88.5 147.6
5.00 131.9 219.8 149.9 249.8 112.3 187.1

10.00 175.8 292.9 193.1 321.8 146.5 244.2
20.00 223.0 371.6 238.2 397.1 188.4 314.0

Risk-weighted assets for retail exposures Claims can be included in the regulatory
retail portfolio if they meet certain criteria: in particular, the exposure must be to an
individual person or to a small business; it satisfies the granularity criterion, meaning that
no aggregate exposure to one counterpart can exceed 0.2% of the overall regulatory retail
portfolio; the aggregated exposure to one counterparty cannot exceed e 1 mn. In these cases,
the bank uses the following IRB formula:

K? = LGD ·Φ
(

Φ−1 (PD) +
√
ρ (PD)Φ−1 (99.9%)√

1− ρ (PD)

)
− LGD ·PD (3.33)

We note that this IRB formula correspond to a one-year fixed maturity. The value of the
default correlation depends on the categories. For residential mortgage exposures, we have
ρ (PD) = 15% whereas the default correlation ρ (PD) is equal to 4% for qualifying revolving
retail exposures. For other retail exposures, it is defined as follows:

ρ (PD) = 3%×
(

1− e−35×PD

1− e−35

)
+ 16%×

(
1− 1− e−35×PD

1− e−35

)
(3.34)

In Table 3.27, we report the corresponding risk weights for the three categories and for two
different values of LGD.
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TABLE 3.27: IRB risk weights (in %) for retail exposures

Mortgage Revolving Other retail
LGD 45% 25% 45% 85% 45% 85%

PD (in %)

0.10 10.7 5.9 2.7 5.1 11.2 21.1
0.50 35.1 19.5 10.0 19.0 32.4 61.1
1.00 56.4 31.3 17.2 32.5 45.8 86.5
2.00 87.9 48.9 28.9 54.6 58.0 109.5
5.00 148.2 82.3 54.7 103.4 66.4 125.5

10.00 204.4 113.6 83.9 158.5 75.5 142.7
20.00 253.1 140.6 118.0 222.9 100.3 189.4

The other two pillars The first pillar of Basel II, which concerns minimum capital re-
quirements, is completed by two new pillars. The second pillar is the supervisory review
process (SRP) and is composed of two main processes: the supervisory review and evaluation
process (SREP) and the internal capital adequacy assessment process (ICAAP). The SREP
defines the regulatory response to the first pillar, in particular the validation processes of
internal models. Nevertheless, the SREP is not limited to capital requirements. More gen-
erally, the SREP evaluates the global strategy and resilience of the bank. ICAAP addresses
risks that are not captured in Pillar 1 like concentration risk or non-granular portfolios
in the case of credit risk65. For instance, stress tests are part of Pillar 2. The goal of the
second pillar is then to encourage banks to continuously improve their internal models and
processes for assessing the adequacy of their capital and to ensure that supervisors have
the adequate tools to control them. The third pillar, which is also called market discipline,
requires banks to publish comprehensive information about their risk management process.
This is particularly true since the publication in January 2015 of the revised Pillar 3 dis-
closure requirements. Indeed, BCBS (2015a) imposes the use of templates for quantitative
disclosure with a fixed format in order to facilitate the comparison between banks.

3.2.4 The Basel III revision
For credit risk capital requirements, Basel III is close to the Basel II framework with some

adjustments, which mainly concern the parameters66. Indeed, the SA and IRB methods
continue to be the two approaches for computing the capital charge for credit risk.

3.2.4.1 The standardized approach

Risk-weighted exposures External credit ratings continue to be the backbone of the
standardized approach in Basel III. Nevertheless, they are not the only tool for measuring
the absolute riskiness of debtors and loans. First, the Basel Committee recognizes that
external credit ratings are prohibited in some jurisdictions for computing regulatory capital.
For example, this is the case of the United States, which had abandoned in 2010 the use of
commercial credit ratings after the Dodd-Frank reform. Second, the Basel Committee links
risk weights to the loan-to-value ratio (LTV) for some categories.

When external ratings are allowed67, the Basel Committee defines a new table of risk
weights, which is close to the Basel II table. In Table 3.28, we indicate the main cate-
gories and the risk weights associated to credit ratings. We notice that the risk weights for

65Since Basel III, ICAAP is completed by the internal liquidity adequacy assessment process (ILAAP).
66The Basel III framework for credit risk is described in BCBS (2017c).
67This method is called the external credit risk assessment approach (ECRA).
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TABLE 3.28: Risk weights of the SA approach (ECRA, Basel III)

Rating
AAA A+ BBB+ BB+ CCC+
to to to to to NR

AA− A− BBB− B− C
Sovereigns 0% 20% 50% 100% 150% 100%

PSE 1 20% 50% 100% 100% 150% 100%
2 20% 50% 50% 100% 150% 50%

MDB 20% 30% 50% 100% 150% 50%

Banks
2 20% 30% 50% 100% 150% SCRA

2 ST 20% 20% 20% 50% 150% SCRA
Covered 10% 20% 20% 50% 100% (∗)

Corporates 20% 50% 75% 100% 150% 100%
Retail 75%

(∗) For unrated covered bonds, the risk weight is generally half of the risk weight of the issuing
bank.

sovereign exposures and non-central government public sector entities (PSE) are unchanged.
The risk weights for multilateral development banks (MDB) continue to be related to the
risk weights for banks. However, we notice that the first option is removed and we observe
some differences for exposures to banks. First, the risk weight for the category A+/A−
is reduced from 50% to 30%. Second, for unrated exposures, the standard figure of 50%
is replaced by the standardized credit risk approach (SCRA). Third, the Basel Commit-
tee considers the special category of covered bonds, whose development has emerged after
the 2008 Global Financial Crisis and the introduction of capital requirements for systemic
risks68. For exposures to corporates, the Basel Committee uses the same scale than for
other categories contrary to Basel II (see Table 3.16 on page 163). Finally, the risk weight
for retail exposures remains unchanged.

The standardized credit risk approach (SCRA) must be used for all exposures to banks
in two situations: (1) when the exposure is unrated; (2) when external credit ratings are
prohibited. In this case, the bank must conduct a due diligence analysis in order to classify
the exposures into three grades: A, B, and C. Grade A refers to the most solid banks, whose
capital exceeds the minimum regulatory capital requirements, whereas Grade C refers to
the most vulnerable banks. The risk weight is respectively equal to 40%, 75% and 150%
(20%, 50% and 150% for short-term exposures).

When external credit ratings are prohibited, the risk weight of exposures to corporates is
equal to 100% with two exceptions. A 65% risk weight is assigned to corporates, which can
be considered investment grade (IG). For exposures to small and medium-sized enterprises,
a 75% risk weight can be applied if the exposure can be classified in the retail category and
85% for the others.

The case of retail is particular because we have to distinguish real estate exposures
and other retail exposures. By default, the risk weight is equal to 75% for this last cat-
egory, which includes revolving credits, credit cards, consumer credit loans, auto loans,
student loans, etc. For real estate exposures, the risk weights depend on the loan-to-value
ratio (LTV). Suppose that someone borrows $100 000 to purchase a house of $150 000, the
LTV ratio is 100 000/150 000 or 66.67%. This ratio is extensively used in English-speaking

68See Chapter 8 on page 453.
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countries (e.g. the United States) to measure the risk of the loan. The idea is that the
lender’s haircut ($100 000 in our example) represents the lender risk. If the borrower de-
faults, the lender recovers the property, that will be sold. The risk is then to sell the property
below the lender’s haircut. The higher the LTV ratio, the riskier the loan is for the lender.
In continental Europe, the risk of home property loans is measured by the ability of the
borrower to repay the capital and service his debt. In this case, the risk of the loan is
generally related to the income of the borrower. It is obvious that these two methods for
assessing the credit risk are completely different and this explains the stress in Europe to
adopt the LTV approach. In Table 3.29, we have reported the value of risk weights with
respect to the LTV (expressed in %) in the case of residential real estate exposures. The
Basel Committee considers two categories depending if the repayment depends on the cash
flows generated by property (D) or not (ND). The risk weight ranges from 20% to 105% in
Basel III, whereas it was equal to 35% in Basel II.

TABLE 3.29: Risk weights of the SA approach (ECRA, Basel III)

Residential real estate Commercial real estate
Cash flows ND D Cash flows ND D
LTV ≤ 50 20% 30% LTV ≤ 60 min (60%, 70%50 < LTV ≤ 60 25% 35% RWC)

60 < LTV ≤ 80 30% 45% 60 < LTV ≤ 80 RWC 90%
80 < LTV ≤ 90 40% 60%
90 < LTV ≤ 100 50% 75% LTV > 80 RWC 110%

LTV > 100 70% 105%

The LTV ratio is also used to determine the risk weight of commercial real estate,
land acquisition, development and construction exposures. Table 3.29 gives the risk weight
for commercial real estate exposures. If the repayment does not depend on the cash flows
generated by property (ND), we use the risk weight of the counterparty with a cap of
60%. If the repayment depends on the cash flows generated by the property (D), the risk
weight ranges from 70% to 110%, whereas it was equal to 100% in Basel II. Commercial real
estate exposures that do not meet specific qualitative requirements will be risk-weighted at
150%, which is also the default figure for land acquisition, development and construction
exposures.

For off-balance sheet items, credit conversion factors (CCF) have been revised. They
can take the values 10%, 20%, 40%, 50% and 100%. This is a more granular scale without
the possibility to set the CCF to 0%. Generally speaking, the CCF values in Basel III are
more conservative than in Basel II.

Credit risk mitigation The regulatory framework for credit risk mitigation techniques
changes very little from Basel II to Basel III: the two methods remain the simple and
comprehensive approaches; the treatment of maturity mismatches is the same; the formulas
for computing the risk weighted assets are identical, etc. Minor differences concern the
description of eligible financial collateral and the haircut parameters, which are given in
Table 3.30. For instance, we see that the Basel Committee makes the distinction of issuers
for debt securities between sovereigns, other issuers and securitization exposures. While the
haircuts do not change for sovereign debt securities with respect to Basel II, the scale is
more granular for the two other categories. Haircuts are also increased by 5% for gold and
equity collateral instruments.

The major difference concerns the treatment of securities financing transactions (SFT)
such as repo-style transactions, since the Basel Committee has developed a specific approach
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TABLE 3.30: Standardized supervisory haircuts for collateralized transactions (Basel III)

Rating Residual Sovereigns Others Securitization
Maturity exposures
0−1Y 0.5% 1% 2%
1−3Y 2% 3% 8%

AAA to AA− 3−5Y 2% 4% 8%
5Y−10Y 4% 6% 16%
10Y+ 4% 12% 16%
0−1Y 1% 2% 4%
1−3Y 3% 4% 12%

A+ to BBB− 3−5Y 3% 6% 12%
5Y−10Y 6% 12% 24%
10Y+ 6% 20% 24%

BB+ to BB− 15%
Cash 0%
Gold 20%
Main index equities 20%
Equities listed on a recognized exchange 30%
FX risk 8%

for calculating the modified exposure EAD? of these instruments in the comprehensive
approach (BCBS, 2017c, pages 43-47).

3.2.4.2 The internal ratings-based approach

The methodology of the IRB approach does not change with respect to Basel II, since
the formulas are the same69. The only exception is the correlation parameter for bank
exposures70, which becomes:

ρ (PD) = 1.25×
(

12%×
(

1− e−50×PD

1− e−50

)
+ 24%×

1−
(
1− e−50×PD)
1− e−50

)

= 15%×
(

1− e−50×PD

1− e−50

)
+ 30%×

(
1−

(
1− e−50×PD)
1− e−50

)
(3.35)

Therefore, the correlation range for the bank category increases from 12%− 24% to 15%−
30%. In fact, the main differences concern the computation of the LGD parameter, and
the validation of the IRB approach, which is much more restrictive. For instance, the IRB
approaches are not permitted for exposures to equities, and we cannot develop an AIRB
approach for exposures to banks and exposures to corporates with annual revenues greater
than e500 mn. For banks and large corporates, only the FIRB approach is available.

The Basel Committee still considers five asset classes: corporates, sovereigns, banks,
retail and equities. In the FIRB approach, the bank estimates the PD parameter, while

69This concerns Equation (3.27) for risk-weighted assets, Equations (3.31) and (3.32) for corporate,
sovereign, and bank exposures, Equations (3.33) and (3.34) for retail exposures, the maturity adjustment
b (PD), the correlation formula ρSME (PD) for SME exposures, the correlation parameters for retail expo-
sures, etc.

70The multiplier of 1.25 is applied for regulated financial institutions with a total asset larger than $100
bn and all unregulated financial institutions.
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it uses the regulatory estimates of EAD, LGD and M71. In the AIRB approach, the bank
estimates all the parameters, but they are subject to some input floors. For example, the
minimum PD is set to 5 bps for corporate and bank exposures.

Certainly, LGD is the most challenging parameter in Basel III. In the FIRB approach,
the default values are 75% for subordinated claims, 45% for senior claims on financial
institutions and 40% for senior claims on corporates. When considering a collateral, the
LGD parameter becomes:

LGD? = ω · LGD + (1− ω) · LGDC

where LGD and LGDC apply to the unsecured exposure and the collateralized part, and ω
is the relative weight between LGD and LGDC :

ω = 1− (1−HC) · C
(1 +HE) · EAD

Here, HE is the SA haircut for the exposure, C is the value of the collateral, and HC is
the specific haircut for the collateral. LGDC is equal to 0% for financial collateral, 20%
for receivables and real estate and 25% for other physical collateral, whereas HC can be
from 0% to 100%. In the AIRB approach, the LGD parameter may be estimated by the
bank, under the constraint that it is greater than the input floor LGDFloor. For unsecured
exposures, we have LGD ≥ LGDFloor where LGDFloor = 25%. For secured exposures, we
have LGD? ≥ LGDFloor

? where:

LGDFloor
? = ω · LGDFloor + (1− ω) · LGDFloor

C

LGDFloor = 25% and LGDFloor
C depends on the collateral type: 0% for financial collateral,

10% for receivables and real estate and 15% for other physical collateral.

Remark 32 Since the capital requirement is based on the unexpected loss, the Basel Com-
mittee imposes that the expected loss is deduced from regulatory capital.

3.2.5 The securitization framework
Capital calculations for securitization require developing a more complex approach than

the IRB approach, because the bank is not directly exposed to the loss of the credit portfolio,
but to the conditional loss of the credit portfolio. This is particularly true if we consider
a CDO tranche since we cannot measure the risk of equity, mezzanine and senior tranches
in the same way. In what follows, we do not study the Basel II framework, which was very
complex, but presented many weaknesses during the 2008 Global Financial Crisis. We prefer
to focus on the Basel III framework (BCBS, 2016e), which is implemented since January
2018.

3.2.5.1 Overview of the approaches

The securitization framework consists of three approaches:

1. Securitization internal ratings-based approach (SEC-IRBA)

2. Securitization external ratings-based approach (SEC-ERBA)

3. Securitization standardized approach (SEC-SA)

71We recall that M is set to 2.5 years for all exposures, except for repo-style and retail exposures where
the maturity is set to 6 and 12 months.
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Contrary to credit risk, the hierarchy is reversed. The SEC-IRBA must be first used and is
based on the capital charge KIRB of the underlying exposures. If the bank cannot calculate
KIRB for a given securitization exposure, because it has not access to the collateral pool of
the debt72, it has to use the SEC-ERBA. If the tranche is unrated or if external ratings are
not allowed, the bank must finally use the SEC-SA. When it is not possible to use one of
the three approaches, the risk weight of the securitization exposure is set to 1 250%.

This framework has been developed for three types of exposures: STC securitization,
non-STC securitization and resecuritization. STC stands for simple, transparent and com-
parable securitizations. In July 2015, the BCBS and the Board of IOSCO have published a
set of 14 criteria for identifying STC exposures. These criteria are related to the collateral
pool (asset risk), the transparency (structural risk) and the governance (fiduciary and ser-
vicer risk) of the SPV. Examples of criteria are the nature of the assets, the payment status,
alignment of interests, transparency to investors, etc. Resecuritization implies that some un-
derlying assets are themselves securitization exposures. For example, a CDO-squared is a
resecuritization, because the asset pool is a basket of CDO tranches.

3.2.5.2 Internal ratings-based approach (SEC-IRBA)

In order to implement SEC-IRBA, the bank must conduct a strict due diligence of the
pay-through securitization exposure in order to have a comprehensive information of the
underlying exposures. For each asset that composes the collateral pool, it calculates the
capital charge. Then, the bank determines KIRB as the ratio between the sum of individual
capital charges and the exposure amount of the collateral pool. If the bank has not all the
information, it can use the following formula:

KIRB = ω ·K?
IRB + (1− ω) ·KSA

where K?
IRB is the IRB capital requirement for the IRB pool73, KSA is the SA capital

requirement for the underlying exposures and ω is the percentage of the IRB pool. However,
this formula is only valid if ω ≥ 95%. Otherwise, the bank must use the SEC-SA.

We consider a tranche, where A is the attachment point and D is the detachment point.
If KIRB ≥ D, the Basel Committee considers that the risk is very high and RW is set to
1 250%. Otherwise, we have:

RW = 12.5 ·
(

max (KIRB, A)−A
D −A

)
+

12.5 ·
(
D −max (KIRB, A)

D −A

)
·KSSFA (KIRB) (3.36)

where KSSFA (KIRB) is the capital charge for one unit of securitization exposure74. There-
fore, we obtain two cases. If A < KIRB < D, we replace max (KIRB, A) by KIRB in the
previous formula. It follows that the capital charge between the attachment point A and
KIRB is risk-weighted by 1 250% and the remaining part between KIRB and the detachment
point D is risk-weighted by 12.5 · KSSFA (KIRB). This is equivalent to consider that the
sub-tranche KIRB − A has already defaulted, while the credit risk is on the sub-tranche
D −KIRB. In the second case KIRB < A < D, the first term of the formula vanishes, and
we retrieve the RWA formula (3.27) on page 177.

72The structure of pay-through securitization is shown in Figure 3.12 on page 139.
73It corresponds to the part of the collateral pool, for which the bank has the information on the individual

underlying exposures.
74It corresponds to the variable K? in the IRB formula on page 177.
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The capital charge for one unit of securitization exposure is equal to75:

KSSFA (KIRB) = exp (cu)− exp (cl)
c (u− l)

where c = − (pKIRB)−1, u = D −KIRB, l = (A−KIRB)+ and:

p = max
(

0.3;mSTC

(
α+ β

N
+ γ ·KIRB + δ · LGD +ε ·M[A;D]

))
The parameter p is called the supervisory parameter and is a function of the effective num-
ber76 of loans N , the average LGD and the effective maturity77 M[A;D] of the tranche. The
coefficient mSTC is equal to 1 for non-STC securitizations and 0.5 for STC securitizations,
while the other parameters α, β, γ, δ and ε are given in Table 3.31. We notice that the
values depend on the underlying portfolio (wholesale or retail), the granularity (N < 25 or
N ≥ 25) and the seniority.

TABLE 3.31: Value of the parameters α, β, γ, δ and ε (SEC-IRBA)

Category Senior Granularity α β γ δ ε

Wholesale

X N ≥ 25 0.00 3.56 −1.85 0.55 0.07
X N < 25 0.11 2.61 −2.91 0.68 0.07

N ≥ 25 0.16 2.87 −1.03 0.21 0.07
N < 25 0.22 2.35 −2.46 0.48 0.07

Retail X 0.00 0.00 −7.48 0.71 0.24
0.00 0.00 −5.78 0.55 0.27

Remark 33 The derivation of these formulas is based on the model of Gordy and Jones
(2003).

Example 31 We consider a non-STC CDO based on wholesale assets with three tranches:
equity (0%−5%), mezzanine (5%−30%) and senior (30%−100%). The remaining maturity
is equal to 10 years. The analysis of the underlying portfolio shows that the effective number
of loans N is equal to 30 and the average LGD is equal to 30%. We also assume that
K?

IRB = 18%, KSA = 20% and ω = 95%.

We have KIRB = 0.95 × 18% + 0.05 × 20% = 18.1%. Since KIRB > Dequity, we deduce
that RWequity = 1 250%. For the mezzanine tranche, we have 1 + 0.8× (M − 1) = 8.2 years,
meaning that the 5-year cap is applied. Using Table 3.31 (fourth row), we deduce that
α = 0.16, β = 2.87, γ = −1.03, δ = 0.21 and ε = 0.07. It follows that:

p = max
(

0.30; 0.16 + 2.87
30 − 1.03× 18.1% + 0.21× 30% + 0.07× 5

)
= 48.22%

75SSFA means simplified supervisory formula approach.
76The effective number is equal to the inverse of the Herfindahl index H where H =

∑n

i=1 w
2
i and wi is

the weight of the ith asset. In our case, we have wi = EADi /
∑n

j=1 EADj , implying that:

N =

(∑n

i=1 EADi
)2∑n

i=1 EAD2
i

77Like for the IRB approach,M[A;D] is the effective maturity with a one-year floor and five-year cap. The
effective maturity can be calculated as the weighted-average maturity of the cash-flows of the tranche or
1 + 0.8 · (M − 1) where M is the legal maturity of the tranche.
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Since we have c = −11.46, u = 11.90% and l = 0%, we obtain KSSFA (KIRB) = 54.59%.
Finally, Equation (3.36) gives RWmezzanine = 979.79%. If we perform the same analysis for
the senior tranche78, we obtain RWsenior = 10.84%.

3.2.5.3 External ratings-based approach (SEC-ERBA)

Under the ERBA, we have:
RWA = EAD ·RW

where EAD is the securitization exposure amount and RW is the risk weight that depends
on the external rating79 and four other parameters: the STC criterion, the seniority of the
tranche, the maturity and the thickness of the tranche. In the case of short-term ratings,
the risk weights are given below:

Rating A-1/P-1 A-2/P-2 A-3/P-3 Other
STC 10% 30% 60% 1 250%

non-STC 15% 50% 100% 1 250%

For long term ratings, the risk weight goes from 15% for AAA-grade to 1 250% (Table 2,
BCBS 2016e, page 27). An example of risk weights for non-STC securitizations is given
below:

Rating Senior Non-senior
1Y 5Y 1Y 5Y

AAA 15% 20% 15% 70%
AA 25% 40% 30% 120%
A 50% 65% 80% 180%

BBB 90% 105% 220% 310%
BB 160% 180% 620% 760%
B 310% 340% 1 050% 1 050%

CCC 460% 505% 1 250% 1 250%
Below CCC- 1 250% 1 250% 1 250% 1 250%

These risk weights are then adjusted for taking into account the effective maturity M[A;D]
and the thickness D − A of the tranche. The maturity adjustment corresponds to a linear
interpolation between one and five years. The thickness adjustment must be done for non-
senior tranches by multiplying the risk weight by the factor 1−min (D −A; 0.5).

Example 32 We consider Example 31 and we assume that the mezzanine and senior
tranches are rated BB and AAA.

Using the table above, we deduce that the non-adjusted risk weights are equal to
1 250% for the equity tranche, 760% for the mezzanine tranche and 20% for the se-
nior tranche. There is no maturity adjustment because M[A;D] is equal to five years. Fi-
nally, we obtain RWequity = 1 250% × (1−min (5%, 50%)) = 1187.5%, RWmezzanine =
760%× (1−min (25%, 50%)) = 570% and RWsenior = 20%.

3.2.5.4 Standardized approach (SEC-SA)

The SA is very close to the IRBA since it uses Equation (3.36) by replacing KIRB
by KA and the supervisory parameter p by the default values 0.5 and 1 for STC and non-
STC securitizations. To calculate KA, we first determine KSA which is the ratio between the

78In this case, the parameters are α = 0, β = 3.56, γ = −1.85, δ = 0.55 and ε = 0.07 (second row
in Table 3.31). We have p = max (30%; 29.88%) = 30%, c = −18.42, u = 81.90%, l = 11.90%, and
KSSFA (KIRB) = 0.87%.

79By definition, this approach is only available for tranches that are rated.
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weighted average capital charge of the underlying portfolio computed with the SA approach
and the exposure amount of the underlying portfolio. Then, we have:

KA = (1−$) ·KSA +$ · 50%

where $ is the percentage of underlying exposures that are 90 days or more past due.

Remark 34 The SEC-SA is the only approach allowed for calculating the capital require-
ment of resecuritization exposures. In this case, $ is set to zero and the supervisory param-
eter p is equal to 1.5.

If we consider Example 31 on page 187 and assume that $ = 0, we obtain RWequity =
1 250%, RWmezzanine = 1 143% and RWsenior = 210.08%.

FIGURE 3.23: Risk weight of securitization exposures

Example 33 We consider a CDO tranche, whose attachment and detachment points are
A and D. We assume that KIRB = KA = 20%, N = 30, LGD = 50% and $ = 0.

In Figure 3.23, we have represented the evolution of the risk weight RW of the tranche
[A,D] for different values of A and D. For the first third panels, the thickness of the tranche
is equal to 5%, while the detachment point is set to 100% for the fourth panel. In each panel,
we consider two cases: non-STC and STC. If we compare the first and second panels, we
notice the impact of the asset category (wholesale vs retail) on the risk weight. The third
panel shows that the SA approach penalizes more non-STC securitization exposures. Since
the detachment point is equal to 100%, the fourth panel corresponds to a senior tranche for
high values of the attachment point A and a non-senior tranche when the attachment point
A is low. In this example, we assume that the tranche becomes non-senior when A < 30%.
We observe a small cliff effect for non-STC securitization exposures.
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3.3 Credit risk modeling
We now address the problem of parameter specification. This mainly concerns the ex-

posure at default, the loss given default and the probability of default because the effective
maturity is well defined. This section also analyzes default correlations and non granular
portfolios when the bank develops its own credit model for calculating economic capital and
satisfying Pillar 2 requirements.

3.3.1 Exposure at default
According to BCBS (2017c), the exposure at default “for an on-balance sheet or off-

balance sheet item is defined as the expected gross exposure of the facility upon default of
the obligor”. Generally, the computation of EAD for on-balance sheet assets is not an issue.
For example, EAD corresponds to the gross notional in the case of a loan or a credit. In
fact, the big issue concerns off-balance sheet items, such as revolving lines of credit, credit
cards or home equity lines of credit (HELOC). At the default time τ , we have (Taplin et
al., 2007):

EAD (τ | t) = B (t) + CCF · (L (t)−B (t)) (3.37)

where B (t) is the outstanding balance (or current drawn) at time t, L (t) is the current un-
drawn limit of the credit facility80 and CCF is the credit conversion factor. This means that
the exposure at default for off-balance sheet items has two components: the current drawn,
which is a non-random component and the future drawn, which is a random component.

From Equation (3.37), we deduce that:

CCF = EAD (τ | t)−B (t)
L (t)−B (t) (3.38)

At first sight, it looks easy to estimate the credit conversion factor. Let us consider the
off-balance sheet item i that has defaulted. We have:

CCFi (τi − t) = Bi (τi)−Bi (t)
Li (t)−Bi (t)

At time τi, we observe the default of Asset i and the corresponding exposure at default,
which is equal to the outstanding balance Bi (τi). Then, we have to choose a date t < τi
to observe Bi (t) and Li (t) in order to calculate the CCF. We notice that it is sensitive to
the time period τi − t, but banks generally use a one-year time period. Therefore, we can
calculate the mean or the quantile α of a sample {CCF1, . . . ,CCFn} for a given homogenous
category of off-balance sheet items. Like the supervisory CCF values, the estimated CCF is
a figure between 0% and 100%.

In practice, it is difficult to estimate CCF values for five reasons:

1. As explained by Qi (2009), there is a ‘race to default’ between borrowers and lenders.
Indeed, “as borrowers approach default, their financial conditions deteriorate and they
may use the current undrawn as a source of funding, whereas lenders may cut back
credit lines to reduce potential losses” (Qi, 2009, page 4).

2. Li (t) depends on the current time t, meaning that it could evolve over time.

80The current undrawn L (t) − B (t) is the amount that the debtor is able to draw upon in addition to
the current drawn B (t).
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3. The computation of the CCF is sensitive to the denominator Li (t)−Bi (t), which can
be small. When Li (t) ≈ Bi (t), the CCF ratio is unstable.

4. We have made the assumption that CCFi (τi − t) ∈ [0, 1], implying that Bi (τi) ≥
Bi (t) and Bi (τi) ≤ Li (t). This is not always true. We can imagine that the outstand-
ing balance decreases between the current time and the default time (CCFi (τi − t) <
0) or the outstanding balance at the default time is greater than the limit Li (t). Ja-
cobs, Jr. (2010) reports extreme variation larger than ±3 000% when computing raw
CCF values!

5. The credit conversion factor is generally an increasing function of the default proba-
bility of the borrower.

Because of the previous issues, the observed CCF is floored at 0% and capped at 100%.
Tong et al. (2016) report the distribution of the credit conversion factor of credit cards from
a UK bank81, and notice that the observations are mainly concentred on the two extreme
points 0% and 100% after truncation. Another measure for modeling the exposure at default
is to consider the facility utilization change factor (Yang and Tkachenko, 2012):

UCF = Bi (τi)−Bi (t)
Li (t)

It corresponds to the credit conversion factor, where the current undrawn amount Li (t)−
Bi (t) is replaced by the current authorized limit Li (t). It has the advantage to be more
stable, in particular around the singularity Li (t) = Bi (t).

The econometrics of CCF is fairly basic. As said previously, it consists in estimating the
mean or the quantile α of a sample {CCF1, . . . ,CCFn}. For that, we can use the cohort
method or the time horizon approach (Witzany, 2011). In the cohort method, we divide
the study period into fixed intervals (6 or 12 months). For each asset, we identify if it has
defaulted during the interval, and then we set t to the starting date of the interval. In the
time horizon approach, t is equal to the default time τi minus a fixed horizon (e.g. one,
three or 12 months). Sometimes, it can be useful to include some explanatory variables. In
this case, the standard model is the Tobit linear regression, which is presented on page 708,
because data are censored and the predicted value of CCF must lie in the interval [0, 1].

3.3.2 Loss given default
3.3.2.1 Definition

The recovery rate R is the percentage of the notional on the defaulted debt that can be
recovered. In the Basel framework, the recovery rate is not explicitly used, and the concept
of loss given default is preferred for measuring the credit portfolio loss. The two metrics are
expressed as a percentage of the face value, and we have:

LGD ≥ 1−R

Let us consider a bank that is lending $100 mn to a corporate firm. We assume that the
firm defaults at one time and the bank recovers $60 mn. We deduce that the recovery rate
is equal to:

R = 60
100 = 60%

81See Figure 1 on page 912 in Tong et al. (2016).
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In order to recover $60 mn, the bank has incurred some operational and litigation costs,
whose amount is $5 mn. In this case, the bank has lost $40 mn plus $5 mn, implying that
the loss given default is equal to:

LGD = 40 + 5
100 = 45%

In fact, this example shows that R and LGD are related in the following way:

LGD = 1−R + c

where c is the litigation cost. We now understand why the loss given default is the right
measure when computing the portfolio loss.

Schuermann (2004) identifies three approaches for calculating the loss given default:

1. Market LGD

2. Implied LGD

3. Workout LGD

The market LGD is deduced from the bond price just after the default82. It is easy to
calculate and available for large corporates and banks. The implied LGD is calculated from
a theoretical pricing model of bonds or CDS. The underlying idea is to estimate the implied
loss given default, which is priced by the market. As for the first method, this metric
is easy to calculate, but it depends on the model assumptions. The last approach is the
workout or ultimate LGD. Indeed, the loss given default has three components: the direct
loss of principal, the loss of carrying non-performing loans and the workout operational and
legal costs. The workout LGD is the right measure when considering the IRB approach.
Nevertheless, Schuermann (2004) notices that between two and three years are needed on
average to obtain the recovery.

In what follows, we present two approaches for modeling LGD. The first approach con-
siders that LGD is a random variable, whose probability distribution has to be estimated:

LGD ∼ F (x) (3.39)

However, we recall that the loss given default in the Basel IRB formulas does not correspond
to the random variable, but to its expectation E [LGD]. Therefore, the second approach
consists in estimating the conditional expectation:

E [LGD] = E [LGD | X1 = x1, . . . , Xm = xm]
= g (x1, . . . , xm) (3.40)

where (X1, . . . , Xm) are the risk factors that determine the loss given default.

Remark 35 We notice that R ∈ [0, 1], but LGD ≥ 0. Indeed, we can imagine that the
litigation cost can be high compared to the recovery part of the debt. In this case, we can
have c >R, implying that LGD > 100%. For instance, if R = 20% and c = 30%, we obtain
LGD = 110%. This situation is not fanciful, because R and c are not known at the default
time. The bank will then begin to engage costs without knowing the recovery amount. For
example, one typical situation is R = 0% and c > 0, when the bank discovers that there is
no possible recovery, but has already incurs some litigation costs. Even if LGD can be larger
than 100%, we assume that LGD ∈ [0, 1] because these situations are unusual.

82This measure is also called ‘trading price recovery’.
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3.3.2.2 Stochastic modeling

Using a parametric distribution In this case, we generally use the beta distribution
B (α, β), which is described on page 1053. Its density function is given by:

f (x) = xα−1 (1− x)β−1

B (α, β)

where B (α, β) =
∫ 1

0 t
α−1 (1− t)β−1

dt. The mean and the variance are:

µ (X) = E [X] = α

α+ β

and:
σ2 (X) = var (X) = αβ

(α+ β)2 (α+ β + 1)
When α and β are greater than 1, the distribution has one mode xmode =
(α− 1) / (α+ β − 2). This probability distribution is very flexible and allows to obtain
various shapes that are given in Figure 3.24:

• if α = 1 and β = 1, we obtain the uniform distribution; if α → ∞ and β → ∞, we
obtain the Dirac distribution at the point x = 0.5; if one parameter goes to zero, we
obtain a Bernoulli distribution;

• if α = β, the distribution is symmetric around x = 0.5; we have a bell curve when
the two parameters α and β are higher than 1, and a U-shape curve when the two
parameters α and β are lower than 1;

• if α > β, the skewness is negative and the distribution is left-skewed, if α < β, the
skewness is positive and the distribution is right-skewed.

Given the estimated mean µ̂LGD and standard deviation σ̂LGD of a sample of losses given
default, we can calibrate the parameters α and β using the method of moments83:

α̂ = µ̂2
LGD (1− µ̂LGD)

σ̂2
LGD

− µ̂LGD (3.41)

and:

β̂ = µ̂LGD (1− µ̂LGD)2

σ̂2
LGD

− (1− µ̂LGD) (3.42)

The other approach is to use the method of maximum likelihood, which is described in
Section 10.1.2 on page 614.

Example 34 We consider the following sample of losses given default: 68%, 90%, 22%,
45%, 17%, 25%, 89%, 65%, 75%, 56%, 87%, 92% and 46%.

We obtain µ̂LGD = 59.77% and σ̂LGD = 27.02%. Using the method of moments, the
estimated parameters are α̂MM = 1.37 and β̂MM = 0.92, whereas we have α̂ML = 1.84
and β̂ML = 1.25 for the method of maximum likelihood. We notice that the two calibrated
probability distributions have different shapes (see Figure 3.25).

83See Section 10.1.3.1 on page 628.



194 Handbook of Financial Risk Management

FIGURE 3.24: Probability density function of the beta distribution B (α, β)

FIGURE 3.25: Calibration of the beta distribution
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FIGURE 3.26: Maximum standard deviation σ+ (µ)

Remark 36 We can calibrate the beta distribution as long as we respect some constraints
on µ̂LGD and σ̂LGD. Using Equations (3.41) and (3.42), we deduce that:

σ̂LGD <
√
µ̂LGD (1− µ̂LGD)

because α̂ and β̂ must be positive. This condition is not well restrictive. Indeed, if we consider
a general random variable X on [0, 1], we have E

[
X2] ≤ E [X], implying that:

σ (X) ≤ σ+ (µ) =
√
µ (1− µ)

where µ = E [X]. Therefore, only the limit case cannot be reached by the beta distribution84.
However, we notice that the standard deviation cannot be arbitrary fixed to a high level. For
example, Figure 3.26 shows that there is no random variable on [0, 1] such that µ = 10%
and σ > 30%, µ = 20% and σ > 40%, µ = 50% and σ > 50%, etc.

In Figure 3.27, we have reported the calibrated beta distribution using the method of
moments for several values of µLGD and σLGD = 30%. We obtain U-shaped probability dis-
tributions. In order to obtain a concave (or bell-shaped) distribution, the standard deviation
σLGD must be lower (see Figure 3.28).

Remark 37 The previous figures may leave us believing that the standard deviation must
be very low in order to obtain a concave beta probability density function. In fact, this is not
a restriction due to the beta distribution, since it is due to the support [0, 1] of the random
variable. Indeed, we can show that the standard deviation is bounded85 by

√
1/12 ' 28.86%

when the probability distribution has one mode on [0, 1].

84The limit case corresponds to the Bernoulli distribution B (p) where p = µ.
85The bound is the standard deviation of the uniform distribution U[0,1].
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FIGURE 3.27: Calibration of the beta distribution when σLGD = 30%

FIGURE 3.28: Calibration of the beta distribution when σLGD = 10%
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As noted by Altman and Kalotay (2014), the beta distribution is not always appropriate
for modeling loss given default even if it is widespread used by the industry. Indeed, we ob-
serve that losses given default tend to be bimodal, meaning that the recovery rate is quite
high or quite low (Loterman et al., 2012). This is why Altman and Kalotay (2014) propose
to model the loss given default as a Gaussian mixture model. They first apply the transfor-
mation yi = Φ−1 (LGDi) to the sample, then calibrate86 the 4-component mixture model on
the transformed data (y1, . . . , yn) and finally perform the inverse transform for estimating
the parametric distribution. They show that the estimated distribution fits relatively well
the non-parametric distribution estimated with the kernel method.

Using a non-parametric distribution The beta distribution is either bell-shaped or
U-shaped. In this last case, the limit is the Bernoulli distribution:

LGD 0% 100%
Probability (1− µLGD) µLGD

This model is not necessarily absurd, since it means that the recovery can be very high or
very low. Figure 2 in Bellotti and Crook (2012) represents the histogram of recovery rates of
55 000 defaulted credit card accounts from 1999 to 2005 in the UK. The two extreme cases
(R = 0% andR = 100%) are the most frequent cases. Therefore, it is interesting to consider
the empirical distribution instead of an estimated distribution. In this case, we generally
consider risk classes, e.g. 0%− 5%, 5%− 10%, 10%− 20%, . . . , 80%− 90%, 90%− 100%.

Example 35 We consider the following empirical distribution of LGD:

LGD (in %) 0 10 20 25 30 40 50 60 70 75 80 90 100
p̂ (in %) 1 2 10 25 10 2 0 2 10 25 10 2 1

This example illustrates the shortcoming of the beta modeling when we have a bimodal
LGD distribution. In Figure 3.29, we have reported the empirical distribution, and the
corresponding (rescaled) calibrated beta distribution. We notice that it is very far from the
empirical distribution.

Remark 38 Instead of using the empirical distribution by risk classes, we can also consider
the kernel approach, which is described on page 637.

Example 36 We consider a credit portfolio of 10 loans, whose loss is equal to:

L =
10∑
i=1

EaDi ·LGDi ·1 {τi ≤ Ti}

where the maturity Ti is equal to 5 years, the exposure at default EaDi is equal to $1 000
and the default time τi is exponential with the following intensity parameter λi:

i 1 2 3 4 5 6 7 8 9 10
λi (in bps) 10 10 25 25 50 100 250 500 500 1 000

The loss given default LGDi is given by the empirical distribution, which is described in
Example 35.

86The estimation of Gaussian mixture models is presented on page 624.
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FIGURE 3.29: Calibration of a bimodal LGD distribution

In Figure 3.30, we have calculated the distribution of the portfolio loss with the Monte
Carlo method. We compare the loss distribution when we consider the empirical distribution
and the calibrated beta distribution for the loss given default. We also report the loss
distribution when we replace the random variable LGDi by its expected value E [LGDi] =
50%. We observe that the shape of L highly depends on the LGD model. For example, we
observe a more pronounced fat tail with the calibrated beta distribution. This implies that
the LGD model has a big impact for calculating the value-at-risk. For instance, we have
reported the loss distribution using the beta model for different values of (µLGD, σLGD)
in Figure 3.31. We conclude that the modeling of LGD must not be overlooked. In many
cases, the model errors have more impact when they concern the loss given default than the
probability of default.

Remark 39 The expression of the portfolio loss is:

L =
n∑
i=1

EADi ·LGDi ·1 {τi ≤ Ti}

If the portfolio is fined grained, we have:

E [L | X] =
n∑
i=1

EADi ·E [LGDi] · pi (X)

We deduce that the distribution of the portfolio loss is equal to:

Pr {L ≤ `} =
∫
· · ·
∫
1

{
n∑
i=1

EADi ·E [LGDi] · pi (x) ≤ `
}

dH (x)

This loss distribution does not depend on the random variables LGDi, but on their expected
values E [LGDi]. This implies that it is not necessary to model the loss given default, but
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FIGURE 3.30: Loss frequency in % of the three LGD models

FIGURE 3.31: Loss frequency in % for different values of µLGD and σLGD
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only the mean. Therefore, we can replace the previous expression of the portfolio loss by:

L =
n∑
i=1

EADi ·E [LGDi] · 1 {τi ≤ Ti}

3.3.2.3 Economic modeling

There are many factors that influence the recovery process. In the case of corporate
debt, we distinguish between specific and economic factors. For instance, specific factors
are the relative seniority of the debt or the guarantees. Senior debt must be repaid before
subordinated or junior debt is repaid. If the debt is collateralized, this affects the loss given
default. Economic factors are essentially the business cycle and the industry. In the third
version of Moody’s LossCalc, Dwyer and Korablev (2009) consider seven factors that are
grouped in three major categories:

1. factors external to the issuer: geography, industry, credit cyle stage;

2. factors specific to the issuer: distance-to-default, probability of default (or leverage
for private firms);

3. factors specific to the debt issuance: debt type, relative standing in capital structure,
collateral.

Curiously, Dwyer and Korablev (2009) explain that “some regions have been characterized
as creditor-friendly, while others are considered more creditor-unfriendly”. For instance,
recovery rates are lower in the UK and Europe than in the rest of the world. However, the
most important factors are the seniority followed by the industry, as it is illustrated by the
Moody’s statistics on ultimate recoveries. From 1987 to 2017, the average corporate debt
recovery rate is equal to 80.4% for loans, 62.3% for senior secured bonds, 47.9% for senior
unsecured bonds and 28.0% for subordinated bonds (Moody’s, 2018). It is interesting to
notice that the recovery rate and the probability of default are negatively correlated. Indeed,
Dwyer and Korablev (2009) take the example of two corporate firms A and B, and they
assume that PDB � PDA. In this case, we may think that the assets of A relative to its
liabilities is larger than the ratio of B. Therefore, we must observe a positive relationship
between the loss given default and the probability of default.

Remark 40 The factors depend of the asset class. For instance, we will consider more
microeconomic variables when modeling the loss given default for mortgage loans (Tong et
al., 2013).

Once the factors are identified, we must estimate the LGD model:

LGD = f (X1, . . . , Xm)

where X1, . . . , Xm are the m factors, and f is a non-linear function. Generally, we consider
a transformation of LGD in order to obtain a more tractable variable. We can apply a logit
transform Y = ln (LGD) − ln (1− LGD), a probit transform Y = Φ−1 (LGD) or a beta
transformation (Bellotti and Crook, 2012). In this case, we can use the different statistical
tools given in Chapters 10 and 15 to model the random variable Y . The most popular models
are the logistic regression, regression trees and neural networks (Bastos, 2010). However,
according to EBA (2017), multivariate regression remains the most widely used methods,
despite the strong development of machine learning techniques, that are presented on page
943.
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Remark 41 We do not develop here the econometric approach, because it is extensively
presented in Chapter 15 dedicated to the credit scoring. Indeed, statistical models of LGD
use the same methods than statistical models of PD. We also refer to Chapter 14 dedicated
to stress testing methods when we would like to calculate stressed LGD parameters.

3.3.3 Probability of default
3.3.3.1 Survival function

The survival function is the main tool to characterize the probability of default. It is
also known as reduced-form modeling.

Definition and main properties Let τ be a default (or survival) time. The survival
function87 is defined as follows:

S (t) = Pr {τ > t}
= 1− F (t)

where F is the cumulative distribution function. We deduce that the probability density
function is related to the survival function in the following manner:

f (t) = −∂ S (t)
∂ t

(3.43)

In survival analysis, the key concept is the hazard function λ (t), which is the instantaneous
default rate given that the default has not occurred before t:

λ (t) = lim
dt→0+

Pr {t ≤ τ ≤ t+ dt | τ ≥ t}
dt

We deduce that:

λ (t) = lim
dt→0+

Pr {t ≤ τ ≤ t+ dt}
dt · 1

Pr {τ ≥ t}

= f (t)
S (t)

Using Equation (3.43), another expression of the hazard function is:

λ (t) = −∂t S (t)
S (t)

= −∂ ln S (t)
∂ t

The survival function can then be rewritten with respect to the hazard function and we
have:

S (t) = e
−
∫ t

0
λ(s) ds (3.44)

In Table 3.32, we have reported the most common hazard and survival functions. They can
be extended by adding explanatory variables in order to obtain proportional hazard models
(Cox, 1972). In this case, the expression of the hazard function is λ (t) = λ0 (t) exp

(
β>x

)
where λ0 (t) is the baseline hazard rate and x is the vector of explanatory variables, which
are not dependent on time.

87Previously, we have noted the survival function as St0 (t). Here, we assume that the current time t0 is
0.
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TABLE 3.32: Common survival functions
Model S (t) λ (t)
Exponential exp (−λt) λ
Weibull exp (−λtγ) λγtγ−1

Log-normal 1− Φ (γ ln (λt)) γt−1φ (γ ln (λt)) / (1− Φ (γ ln (λt)))
Log-logistic 1/

(
1 + λt

1
γ

)
λγ−1t

1
γ /
(
t+ λt1+ 1

γ

)
Gompertz exp (λ (1− eγt)) λγ exp (γt)

The exponential model holds a special place in default time models. It can be justified
by the following problem in physics:

“Assume that a system consists of n identical components which are connected
in series. This means that the system fails as soon as one of the components fails.
One can assume that the components function independently. Assume further
that the random time interval until the failure of the system is one nth of the
time interval of component failure” (Galambos, 1982).

We have Pr {min (τ1, . . . , τn) ≤ t} = Pr {τi ≤ n · t}. The problem is then equivalent to solve
the functional equation S (t) = Sn (t/n) with S (t) = Pr {τ1 > t}. We can show that the
unique solution for n ≥ 1 is the exponential distribution. Following Galambos and Kotz
(1978), its other main properties are:

1. the mean residual life E [τ | τ ≥ t] is constant;

2. it satisfies the famous lack of memory property:

Pr {τ ≥ t+ u | τ ≥ t} = Pr {τ ≥ u}

or equivalently S (t+ u) = S (t) S (u);

3. the probability distribution of n · τ1:n is the same as probability distribution of τi.

Piecewise exponential model In credit risk models, the standard probability distri-
bution to define default times is a generalization of the exponential model by considering
piecewise constant hazard rates:

λ (t) =
M∑
m=1

λm · 1
{
t?m−1 < t ≤ t?m

}
= λm if t ∈

]
t?m−1, t

?
m

]
where t?m are the knots of the function88. For t ∈

]
t?m−1, t

?
m

]
, the expression of the survival

function becomes:

S (t) = exp
(
−
m−1∑
k=1

λk
(
t?k − t?k−1

)
− λm

(
t− t?m−1

))
= S

(
t?m−1

)
e−λm(t−t?m−1)

88We have t?0 = 0 and t?M+1 =∞.
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It follows that the density function is equal to89:

f (t) = λm exp
(
−
m−1∑
k=1

λk
(
t?k − t?k−1

)
− λm

(
t− t?m−1

))

In Figure 3.32, we have reported the hazard, survival and density functions for three set
of parameters {(t?m, λm) ,m = 1, . . . ,M}:

{(1, 1%) , (2, 1.5%) , (3, 2%) , (4, 2.5%) , (∞, 3%)} for λ1 (t)
{(1, 10%) , (2, 7%) , (5, 5%) , (7, 4.5%) , (∞, 6%)} for λ2 (t)

and λ3 (t) = 4%. We note the special shape of the density function, which is not smooth at
the knots.

FIGURE 3.32: Example of the piecewise exponential model

Estimation To estimate the parameters of the survival function, we can use the cohort
approach. Under this method, we estimate the empirical survival function by counting the
number of entities for a given population that do not default over the period ∆t:

Ŝ (∆t) = 1−
∑n
i=1 1 {t < τi ≤ t+ ∆t}

n

where n is the number of entities that compose the population. We can then fit the survival
function by using for instance the least squares method.

89We verify that:
f (t)
S (t)

= λm if t ∈
]
t?m−1, t

?
m

]
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Example 37 We consider a population of 1 000 corporate firms. The number of defaults
nD (∆t) over the period ∆t is given in the table below:

∆t (in months) 3 6 9 12 15 18 21 22
nD (∆t) 2 5 9 12 16 20 25 29

We obtain Ŝ (0.25) = 0.998, Ŝ (0.50) = 0.995, Ŝ (0.75) = 0.991, Ŝ (1.00) = 0.988,
Ŝ (1.25) = 0.984, Ŝ (1.50) = 0.980, Ŝ (1.75) = 0.975 and Ŝ (2.00) = 0.971. For the exponen-
tial model, the least squares estimator λ̂ is equal to 1.375%. In the case of the Gompertz
survival function, we obtain λ̂ = 2.718% and γ̂ = 0.370. If we consider the piecewise expo-
nential model, whose knots correspond to the different periods ∆t, we have λ̂1 = 0.796%,
λ̂2 = 1.206%, λ̂3 = 1.611%, λ̂4 = 1.216%, λ̂5 = 1.617%, λ̂6 = 1.640%, λ̂7 = 2.044% and
λ̂8 = 1.642%. To compare these three calibrations, we report the corresponding hazard
functions in Figure 3.33. We deduce that the one-year default probability90 is respectively
equal to 1.366%, 1.211% and 1.200%.

FIGURE 3.33: Estimated hazard function

In the piecewise exponential model, we can specify an arbitrary number of knots. In the
previous example, we use the same number of knots than the number of observations to
calibrate. In such case, we can calibrate the parameters using the following iterative process:

1. We first estimate the parameter λ1 for the earliest maturity ∆t1.

2. Assuming that
(
λ̂1, . . . , λ̂i−1

)
have been estimated, we calculate λ̂i for the next ma-

turity ∆ti.

3. We iterate step 2 until the last maturity ∆tm.

90We have PD = 1− S (1).
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This algorithm works well if the knots t?m exactly match the maturities. It is known as
the bootstrap method and is very popular to estimate the survival function from market
prices. Let {s (T1) , . . . , s (TM )} be a set of CDS spreads for a given name. Assuming that
T1 < T2 < . . . < TM , we consider the piecewise exponential model with t?m = Tm. We
first estimate λ̂1 such that the theoretical spread is equal to s (T1). We then calibrate the
hazard function in order to retrieve the spread s (T2) of the second maturity. This means
to consider that λ (t) is known and equal to λ̂1 until time T1 whereas λ (t) is unknown from
T1 to T2:

λ (t) =
{
λ̂1 if t ∈ ]0, T1]
λ2 if t ∈ ]T1, T2]

Estimating λ̂2 is therefore straightforward because it is equivalent to solve one equation
with one variable. We proceed in a similar way for the other maturities.

Example 38 We assume that the term structure of interest rates is generated by the Nelson-
Siegel model with θ1 = 5%, θ2 = −5%, θ3 = 6% and θ4 = 10. We consider three credit
curves, whose CDS spreads expressed in bps are given in the following table:

Maturity #1 #2 #3(in years)
1 50 50 350
3 60 60 370
5 70 90 390
7 80 115 385

10 90 125 370

The recovery rate R is set to 40%.

TABLE 3.33: Calibrated piecewise exponential model from CDS prices
Maturity #1 #2 #3(in years)

1 83.3 83.3 582.9
3 110.1 110.1 637.5
5 140.3 235.0 702.0
7 182.1 289.6 589.4

10 194.1 241.9 498.5

Using the bootstrap method, we obtain results in Table 3.33. We notice that the piecewise
exponential model coincide for the credit curves #1 and #2 for t < 3 years. This is normal
because the CDS spreads of the two credit curves are equal when the maturity is less or
equal than 3 years. The third credit curve illustrates that the bootstrap method is highly
sensitive to small differences. Indeed, the calibrated intensity parameter varies from 499 to
702 bps while the CDS spreads varies from 350 to 390 bps. Finally, the survival function
associated to these 3 bootstrap calibrations are shown in Figure 3.34.

Remark 42 Other methods for estimating the probability of default are presented in Chap-
ter 19 dedicated to credit scoring models.
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FIGURE 3.34: Calibrated survival function from CDS prices

3.3.3.2 Transition probability matrix

When dealing with risk classes, it is convenient to model a transition probability matrix.
For instance, this approach is used for modeling credit rating migration.

Discrete-time modeling We consider a time-homogeneous Markov chainR, whose tran-
sition matrix is P = (pi,j). We note S = {1, 2, . . . ,K} the state space of the chain and pi,j
is the probability that the entity migrates from rating i to rating j. The matrix P satisfies
the following properties:

• ∀i, j ∈ S, pi,j ≥ 0;

• ∀i ∈ S,
∑K
j=1 pi,j = 1.

In credit risk, we generally assume that K is the absorbing state (or the default state),
implying that any entity which has reached this state remains in this state. In this case, we
have pK,K = 1. Let R (t) be the value of the state at time t. We define p (s, i; t, j) as the
probability that the entity reaches the state j at time t given that it has reached the state
i at time s. We have:

p (s, i; t, j) = Pr {R (t) = j | R (s) = i}
= p

(t−s)
i,j

This probability only depends on the duration between s and t because of the Markov prop-
erty. Therefore, we can restrict the analysis by calculating the n-step transition probability:

p
(n)
i,j = Pr {R (t+ n) = j | R (t) = i}
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and the associated n-step transition matrix P (n) =
(
p

(n)
i,j

)
. For n = 2, we obtain:

p
(2)
i,j = Pr {R (t+ 2) = j | R (t) = i}

=
K∑
k=1

Pr {R (t+ 2) = j,R (t+ 1) = k | R (t) = i}

=
K∑
k=1

Pr {R (t+ 2) = j | R (t+ 1) = k} · Pr {R (t+ 1) = k | R (t) = i}

=
K∑
k=1

pi,k · pk,j

In a similar way, we obtain:

p
(n+m)
i,j =

K∑
k=1

p
(n)
i,k · p

(m)
k,j ∀n,m > 0 (3.45)

This equation is called the Chapman-Kolmogorov equation. In matrix form, we have:

P (n+m) = P (n) · P (m)

with the convention P (0) = I. In particular, we have:

P (n) = P (n−1) · P (1)

= P (n−2) · P (1) · P (1)

=
n∏
t=1

P (1)

= Pn

We deduce that:
p (t, i; t+ n, j) = p

(n)
i,j = e>i Pnej (3.46)

When we apply this framework to credit risk, R (t) denotes the rating (or the risk class)
of the firm at time t, pi,j is the one-period transition probability from rating i to rating j
and pi,K is the one-period default probability of rating i. In Table 3.34, we report the S&P
one-year transition probability matrix for corporate bonds estimated by Kavvathas (2001).
We read the figures as follows91: a firm rated AAA has a one-year probability of 92.82% to
remain AAA; its probability to become AA is 6.50%; a firm rated CCC defaults one year
later with a probability equal to 23.50%; etc. In Tables 3.35 and 3.36, we have reported the
two-year and five-year transition probability matrices. We detail below the calculation of
p

(2)
AAA,AAA:

p
(2)
AAA,AAA = pAAA,AAA × pAAA,AAA + pAAA,AA × pAA,AAA + pAAA,A × pA,AAA +

pAAA,BBB × pBBB,AAA + pAAA,BB × pBB,AAA + pAAA,B × pB,AAA +
pAAA,CCC × pCCC,AAA

= 0.92832 + 0.0650× 0.0063 + 0.0056× 0.0008 +
0.0006× 0.0005 + 0.0006× 0.0004

= 86.1970%
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TABLE 3.34: Example of credit migration matrix (in %)

AAA AA A BBB BB B CCC D
AAA 92.82 6.50 0.56 0.06 0.06 0.00 0.00 0.00
AA 0.63 91.87 6.64 0.65 0.06 0.11 0.04 0.00
A 0.08 2.26 91.66 5.11 0.61 0.23 0.01 0.04

BBB 0.05 0.27 5.84 87.74 4.74 0.98 0.16 0.22
BB 0.04 0.11 0.64 7.85 81.14 8.27 0.89 1.06
B 0.00 0.11 0.30 0.42 6.75 83.07 3.86 5.49

CCC 0.19 0.00 0.38 0.75 2.44 12.03 60.71 23.50
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

Source: Kavvathas (2001).

We note π(n)
i the probability of the state i at time n:

π
(n)
i = Pr {R (n) = i}

and π(n) =
(
π

(n)
1 , . . . , π

(n)
K

)
the probability distribution. By construction, we have:

π(n+1) = P>π(n)

The Markov chain R admits a stationary distribution π? if92:

π? = P>π?

In this case, π?i is the limiting probability of state i:

lim
n→∞

p
(n)
k,i = π?i

We can interpret π?i as the average duration spent by the chain R in the state i. Let Ti be
the return period93 of state i:

Ti = inf {n : R (n) = i | R (0) = i}

The average return period is then equal to:

E [Ti] = 1
π?i

For credit migration matrices, there is no stationary distribution because the long-term
rating R (∞) is the absorbing state as noted by Jafry and Schuermann:

“Given sufficient time, all firms will eventually sink to the default state. This
behavior is clearly a mathematical artifact, stemming from the idealized linear,
time invariant assumptions inherent in the simple Markov model. In reality
the economy (and hence the migration matrix) will change on time-scales far
shorter than required to reach the idealized default steady-state proscribed by an
assumed constant migration matrix” (Jafry and Schuermann, 2004, page 2609).

91The rows represent the initial rating whereas the columns indicate the final rating.
92Not all Markov chains behave in this way, meaning that π? does not necessarily exist.
93This concept plays an important role when designing stress scenarios (see Chapter 18).
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TABLE 3.35: Two-year transition probability matrix P 2 (in %)

AAA AA A BBB BB B CCC D
AAA 86.20 12.02 1.47 0.18 0.11 0.01 0.00 0.00
AA 1.17 84.59 12.23 1.51 0.18 0.22 0.07 0.02
A 0.16 4.17 84.47 9.23 1.31 0.51 0.04 0.11

BBB 0.10 0.63 10.53 77.66 8.11 2.10 0.32 0.56
BB 0.08 0.24 1.60 13.33 66.79 13.77 1.59 2.60
B 0.01 0.21 0.61 1.29 11.20 70.03 5.61 11.03

CCC 0.29 0.04 0.68 1.37 4.31 17.51 37.34 38.45
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

TABLE 3.36: Five-year transition probability matrix P 5 (in %)

AAA AA A BBB BB B CCC D
AAA 69.23 23.85 5.49 0.96 0.31 0.12 0.02 0.03
AA 2.35 66.96 24.14 4.76 0.86 0.62 0.13 0.19
A 0.43 8.26 68.17 17.34 3.53 1.55 0.18 0.55

BBB 0.24 1.96 19.69 56.62 13.19 5.32 0.75 2.22
BB 0.17 0.73 5.17 21.23 40.72 20.53 2.71 8.74
B 0.07 0.47 1.73 4.67 16.53 44.95 5.91 25.68

CCC 0.38 0.24 1.37 2.92 7.13 18.51 9.92 59.53
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

We note that the survival function Si (t) of a firm whose initial rating is the state i is
given by:

Si (t) = 1− Pr {R (t) = K | R (0) = i}
= 1− e>i P teK (3.47)

In the piecewise exponential model, we recall that the survival function has the following
expression:

S (t) = S
(
t?m−1

)
e−λm(t−t?m−1)

for t ∈
]
t?m−1, t

?
m

]
. We deduce that S (t?m) = S

(
t?m−1

)
e−λm(t?m−t?m−1), implying that:

ln S (t?m) = ln S
(
t?m−1

)
− λm

(
t?m − t?m−1

)
and:

λm =
ln S

(
t?m−1

)
− ln S (t?m)

t?m − t?m−1
It is then straightforward to estimate the piecewise hazard function:
• the knots of the piecewise function are the years m ∈ N∗;

• for each initial rating i, the hazard function λi (t) is defined as:

λi (t) = λi,m if t ∈ ]m− 1,m]

where:

λi,m = ln Si (m− 1)− ln Si (m)
m− (m− 1)

= ln
(

1− e>i Pm−1eK
1− e>i PmeK

)
and P 0 = I.
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If we consider the credit migration matrix given in Table 3.34 and estimate the piecewise
exponential model, we obtain the hazard function94 λi (t) shown in Figure 3.35. For good
initial ratings, hazard rates are low for short maturities and increase with time. For bad
initial ratings, we obtain the opposite effect, because the firm can only improve its rating if
it did not default. We observe that the hazard function of all the ratings converges to the
same level, which is equal to 102.63 bps. This indicates the long-term hazard rate of the
Markov chain, meaning that 1.02% of firms default every year on average.

FIGURE 3.35: Estimated hazard function λi (t) from the credit migration matrix

Continuous-time modeling We now consider the case t ∈ R+. We note P (s; t) the
transition matrix defined as follows:

Pi,j (s; t) = p (s, i; t, j)
= Pr {R (t) = j | R (s) = i}

Assuming that the Markov chain is time-homogenous, we have P (t) = P (0; t). Jarrow et
al. (1997) introduce the generator matrix Λ = (λi,j) where λi,j ≥ 0 for all i 6= j and:

λi,i = −
K∑
j 6=i

λi,j

In this case, the transition matrix satisfies the following relationship:

P (t) = exp (tΛ) (3.48)

94Contrary to what the graph suggests, λi (t) is a piecewise constant function (see details of the curve in
the fifth panel for very short maturities).
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where exp (A) is the matrix exponential of A. Let us give a probabilistic interpretation of
Λ. If we assume that the probability of jumping from rating i to rating j in a short time
period ∆t is proportional to ∆t, we have:

p (t, i; t+ ∆t, j) = λi,j∆t

The matrix form of this equation is P (t; t+ ∆t) = Λ ∆t. We deduce that:

P (t+ ∆t) = P (t)P (t; t+ ∆t)
= P (t) Λ ∆t

and:
dP (t) = P (t) Λ dt

Because we have exp (0) = I, we obtain the solution P (t) = exp (tΛ). We then interpret
λi,j as the instantaneous transition rate of jumping from rating i to rating j.

Remark 43 In Appendix A.1.1.3, we present the matrix exponential function and its math-
ematical properties. In particular, we have eA+B = eAeB and eA(s+t) = eAseAt where A
and B are two square matrices such that AB = BA and s and t are two real numbers.

Example 39 We consider a rating system with three states: A (good rating), B (bad rating)
and D (default). The Markov generator is equal to:

Λ =

 −0.30 0.20 0.10
0.15 −0.40 0.25
0.00 0.00 0.00


The one-year transition probability matrix is equal to:

P (1) = eΛ =

 75.16% 14.17% 10.67%
10.63% 68.07% 21.30%
0.00% 0.00% 100.00%


For the two-year maturity, we get:

P (2) = e2Λ =

 58.00% 20.30% 21.71%
15.22% 47.85% 36.93%
0.00% 0.00% 100.00%


We verify that P (2) = P (1)2. This derives from the property of the matrix exponential:

P (t) = etΛ =
(
eΛ)t = P (1)t

The continuous-time framework allows to calculate transition matrices for non-integer ma-
turities, which do not correspond to full years. For instance, the one-month transition prob-
ability matrix of the previous example is equal to:

P (2) = e
1
12 Λ =

 97.54% 1.62% 0.84%
1.21% 96.73% 2.05%
0.00% 0.00% 100.00%


One of the issues with the continuous-time framework is to estimate the Markov gen-

erator Λ. One solution consists in using the empirical transition matrix P̂ (t), which have
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been calculated for a given time horizon t. In this case, the estimate Λ̂ must satisfy the
relationship P̂ (t) = exp

(
tΛ̂
)
. We deduce that:

Λ̂ = 1
t

ln
(
P̂ (t)

)
where lnA is the matrix logarithm of A. However, the matrix Λ̂ cannot verify the Markov
conditions λ̂i,j ≥ 0 for all i 6= j and

∑K
j=1 λi,j = 0. For instance, if we consider the previous

S&P transition matrix, we obtain the generator Λ̂ given in Table 3.37. We notice that six off-
diagonal elements of the matrix are negative95. This implies that we can obtain transition
probabilities which are negative for short maturities. In this case, Israel et al. (2001) propose
two estimators to obtain a valid generator:

1. the first approach consists in adding the negative values back into the diagonal values: λ̄i,j = max
(
λ̂i,j , 0

)
i 6= j

λ̄i,i = λ̂i,i +
∑
j 6=i min

(
λ̂i,j , 0

)
2. in the second method, we carry forward the negative values on the matrix entries

which have the correct sign:

Gi =
∣∣∣λ̂i,i∣∣∣+

∑
j 6=i max

(
λ̂i,j , 0

)
Bi =

∑
j 6=i max

(
−λ̂i,j , 0

)
λ̃i,j =


0 if i 6= j and λ̂i,j < 0
λ̂i,j −Bi

∣∣∣λ̂i,j∣∣∣ /Gi if Gi > 0
λ̂i,j if Gi = 0

Using the estimator Λ̂ and the two previous algorithms, we obtain the valid generators given
in Tables 3.39 and 3.40. We find that

∥∥∥P̂ − exp
(
Λ̄
)∥∥∥

1
= 11.02×10−4 and

∥∥∥P̂ − exp
(
Λ̃
)∥∥∥

1
=

10.95 × 10−4, meaning that the Markov generator Λ̃ is the estimator that minimizes the
distance to P̂ . We can then calculate the transition probability matrix for all maturities,
and not only for calendar years. For instance, we report the 207-day transition probability

matrix P
(

207
365

)
= exp

(
207
365Λ̃

)
in Table 3.41.

Remark 44 The continuous-time framework is more flexible when modeling credit risk.
For instance, the expression of the survival function becomes:

Si (t) = Pr {R (t) = K | R (0) = i} = 1− e>i exp (tΛ) eK
We can therefore calculate the probability density function in an easier way:

fi (t) = −∂t Si (t) = e>i Λ exp (tΛ) eK
For illustration purposes, we represent the probability density function of S&P ratings esti-
mated with the valid generator Λ̃ in Figure 3.36.

95We have also calculated the estimator described in Israel et al. (2001):

Λ̆ =
∞∑
n=1

(−1)n+1

(
P̂ − I

)n
n

We do not obtain the same matrix as for the estimator Λ̂, but there are also six negative off-diagonal
elements (see Table 3.38).
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TABLE 3.37: Markov generator Λ̂ (in bps)

AAA AA A BBB BB B CCC D
AAA −747.49 703.67 35.21 3.04 6.56 −0.79 −0.22 0.02
AA 67.94 −859.31 722.46 51.60 2.57 10.95 4.92 −1.13
A 7.69 245.59 −898.16 567.70 53.96 20.65 −0.22 2.80

BBB 5.07 21.53 650.21 −1352.28 557.64 85.56 16.08 16.19
BB 4.22 10.22 41.74 930.55 −2159.67 999.62 97.35 75.96
B −0.84 11.83 30.11 8.71 818.31 −1936.82 539.18 529.52

CCC 25.11 −2.89 44.11 84.87 272.05 1678.69 −5043.00 2941.06
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 3.38: Markov generator Λ̆ (in bps)

AAA AA A BBB BB B CCC D
AAA −745.85 699.11 38.57 2.80 6.27 −0.70 −0.16 −0.05
AA 67.54 −855.70 716.56 54.37 2.81 10.81 4.62 −1.01
A 7.77 243.62 −891.46 560.45 56.33 20.70 0.07 2.53

BBB 5.06 22.68 641.55 −1335.03 542.46 91.05 16.09 16.15
BB 4.18 10.12 48.00 903.40 −2111.65 965.71 98.28 81.96
B −0.56 11.61 29.31 19.39 789.99 −1887.69 491.46 546.49

CCC 23.33 −1.94 42.22 81.25 272.44 1530.66 −4725.22 2777.25
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 3.39: Markov generator Λ̄ (in bps)

AAA AA A BBB BB B CCC D
AAA −748.50 703.67 35.21 3.04 6.56 0.00 0.00 0.02
AA 67.94 −860.44 722.46 51.60 2.57 10.95 4.92 0.00
A 7.69 245.59 −898.38 567.70 53.96 20.65 0.00 2.80

BBB 5.07 21.53 650.21 −1352.28 557.64 85.56 16.08 16.19
BB 4.22 10.22 41.74 930.55 −2159.67 999.62 97.35 75.96
B 0.00 11.83 30.11 8.71 818.31 −1937.66 539.18 529.52

CCC 25.11 0.00 44.11 84.87 272.05 1678.69 −5045.89 2941.06
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 3.40: Markov generator Λ̃ (in bps)

AAA AA A BBB BB B CCC D
AAA −747.99 703.19 35.19 3.04 6.55 0.00 0.00 0.02
AA 67.90 −859.88 721.98 51.57 2.57 10.94 4.92 0.00
A 7.69 245.56 −898.27 567.63 53.95 20.65 0.00 2.80

BBB 5.07 21.53 650.21 −1352.28 557.64 85.56 16.08 16.19
BB 4.22 10.22 41.74 930.55 −2159.67 999.62 97.35 75.96
B 0.00 11.83 30.10 8.71 818.14 −1937.24 539.06 529.40

CCC 25.10 0.00 44.10 84.84 271.97 1678.21 −5044.45 2940.22
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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TABLE 3.41: 207-day transition probability matrix (in %)

AAA AA A BBB BB B CCC D
AAA 95.85 3.81 0.27 0.03 0.04 0.00 0.00 0.00
AA 0.37 95.28 3.90 0.34 0.03 0.06 0.02 0.00
A 0.04 1.33 95.12 3.03 0.33 0.12 0.00 0.02

BBB 0.03 0.14 3.47 92.75 2.88 0.53 0.09 0.11
BB 0.02 0.06 0.31 4.79 88.67 5.09 0.53 0.53
B 0.00 0.06 0.17 0.16 4.16 89.84 2.52 3.08

CCC 0.12 0.01 0.23 0.45 1.45 7.86 75.24 14.64
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

3.3.3.3 Structural models

The previous approaches are purely statistical and are called reduced-form models. We
now consider economic models for modeling default times. These approaches are based on
accounting and market data and are called structural models.

The Merton model The structural approach of credit risk has been formalized by Mer-
ton (1974). In this framework, the bond holders will liquidate the corporate firm if the asset
value A (t) goes below a threshold B related to the total amount of debt. The underlying
idea is that bond holders monitor the asset value and compare A (t) to the default barrier
B.

Merton (1974) assumes that the dynamics of the assets A (t) follows a geometric Brow-
nian motion:

dA (t) = µAA (t) dt+ σAA (t) dW (t)

where A (0) = A0. The default occurs if the asset value A (t) falls under the threshold B:

τ := inf {t : A (t) ≤ B}

In this case, the bond holders receive A (T ), and lose B−A (T ). The payoff of bond holders
is then equal to:

D = B −max (B −A (T ) , 0)

where D is the debt value of maturity T . The holding of a risky bond can be interpreted as
a trading strategy where we have bought a zero-coupon and financed the cost by selling a
put on A (t) with an exercise price B and a maturity T . From the viewpoint of the equity
holders, the payoff is equal to max (A (T )−D, 0). The holding of an equity share can be
interpreted as a trading strategy where we have bought a call option with a strike equal to
the debt value D. It follows that the current value E0 of the equity is:

E0 = e−rT · E [max (A (T )−D, 0)]
= A0Φ (d1)− e−rTDΦ (d2)

where:
d1 = lnA0 − lnD + rT

σA
√
T

+ 1
2σA
√
T

and d2 = d1 − σA
√
T . We notice that the equity value depends on the current asset value

A0, the leverage ratio L = D/A0, the asset volatility σA and the time of repayment T .
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FIGURE 3.36: Probability density function fi (t) of S&P ratings

The KMV implementation In the nineties, the Merton model has been implemented
by KMV96 with a lot of success. The underlying idea of the KMV implementation is to
estimate the default probability of a firm. One of the difficulties is to estimate the asset
volatility σA. However, Jones et al. (1984) show that it is related to the equity volatility
σE . Indeed, we have E (t) = C (t, A (t)), implying that:

dE (t) = ∂tC (t, A (t)) dt+ µAA (t) ∂AC (t, A (t)) dt+
1
2σ

2
AA

2 (t) ∂2
AC (t, A (t)) dt+ σAA (t) ∂AC (t, A (t)) dW (t)

Since the stochastic term is also equal to σEE (t) dW (t), we obtain the following equality
at time t = 0:

σEE0 = σAA0Φ (d1)
Therefore, Crosbie and Bohn (2002) deduce the following system of equations:{

A0Φ (d1)− e−rTDΦ (d2)− E0 = 0
σEE0 − σAA0Φ (d1) = 0 (3.49)

Once we have estimated A0 and σA, we can calculate the survival function:

S (t) = Pr {A (t) ≥ D | A (0) = A0}

= Φ
(

lnA0 − lnD + µAt

σA
√
t

+ 1
2σA
√
t

)
and deduce the probability of default F (t) = 1−S (t) and the distance to default DD (t) =
Φ−1 (S (t)).

96KMV was a company dedicated to credit risk modeling, and was founded by Stephen Kealhofer, John
McQuown and Oldrich Vasícek. In 2002, they sold KMV to Moody’s.
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Example 40 Crosbie and Bohn (2002) assume that the market capitalization E0 of the
firm is $3 bn, its debt liability D is $10 bn, the corresponding equity volatility σE is equal
to 40%, the maturity T is one year and the expected return µA is set to 7%.

Using an interest rate r = 5% and solving Equation (3.49), we find that the asset valueA0
is equal to $12.512 bn and the implied asset volatility σA is equal to 9.609%. Therefore, we
can calculate the distance-to-default DD (1) = 3.012 and the one-year probability PD (1) =
12.96 bps. In Figure 3.37, we report the probability of default for different time horizons.
We also show the impact of the equity volatility σE and the expected return µA, which can
be interpreted as a return-on-equity ratio (ROE). We verify that the probability of default
is an increasing function of the volatility risk and a decreasing function of the profitability.

FIGURE 3.37: Probability of default in the KMV model

Remark 45 The KMV model is more complex than the presentation above. In particular,
the key variable is not the probability of default, but the distance-to-default (see Figure 3.38).
Once this measure is calculated, it is converted into an expected default frequency (EDF)
by considering an empirical distribution of PD conditionally to the distance-to-default. For
instance, DD (1) = 4 is equivalent to PD (1) = 100 bps (Crosbie and Bohn, 2002).

The CreditGrades implementation The CreditGrades approach is an extension of
the Merton model, uses the framework of Black and Cox (1976) and has been developed by
Finkelstein et al. (2002). They assume that the asset-per-share value A (t) is a geometric
Brownian motion without drift:

dA (t) = σAA (t) dW (t)

whereas the default barrier B is defined as the recovery value of bond holders. B is equal to
the product R ·D, where R ∈ [0, 1] is the recovery rate and D is the debt-per-share value.
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FIGURE 3.38: Distance-to-default in the KMV model

They also assume that R and A (t) are independent and R ∼ LN (µR, σR). We recall that
the default time is defined by:

τ := inf {t ≥ 0 : t ∈ D}

where D = {A (t) ≤ B}. Since we have A (t) = A0e
σAW (t)−σ2

At/2 and B = DeµR+σRε where
ε ∼ N (0, 1), it follows that:

D =
{
A0e

σAW (t)−σ2
At/2 ≤ DeµR+σRε

}
The authors introduce the average recovery rate R̄ = E [R] = eµR+σ2

R/2. We deduce that:

D =
{
A0e

σAW (t)−σ2
At/2 ≤ R̄DeσRε−σ2

R/2
}

=
{
A0e

σAW (t)−σ2
At/2−σRε+σ2

R/2 ≤ R̄D
}

(3.50)

Finkelstein et al. (2002) introduce the process X (t) defined by:

X (t) = σAW (t)− 1
2σ

2
At− σRε−

1
2σ

2
R

It follows that Inequality (3.50) becomes:

D =
{
X (t) ≤ ln

(
R̄D

A0e
σ2
R

)}
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By assuming that X (t) can be approximated by a geometric Brownian motion with drift
−σ2

A/2 and diffusion rate σA, we can show that97:

S (t) = Φ
(
−σ (t)

2 + lnϕ
σ (t)

)
− ϕΦ

(
−σ (t)

2 − lnϕ
σ (t)

)
where σ (t) =

√
σ2
At+ σ2

R and:

ϕ = A0e
σ2
R

R̄D

This survival function is then calibrated by assuming that A0 = S0 + R̄D and:

σA = σS
S?

S? + R̄D

where S0 is the current stock price, S? is the reference stock price and σS is the stock (implied
or historical) volatility. All the parameters (S0, S?, σS , R̄, D) are easy to calibrate, except
the volatility of the recovery rate σR. We have:

σ2
R = var (lnR) = var (lnB)

We deduce that σR is the uncertainty of the default barrier B.

FIGURE 3.39: Probability of default in the CreditGrades model

97By considering the reflection principle and Equation (A.24) defined on page 1074, we deduce that:

Pr
{

infs≤t µs+ σW (s) > c
}

= Φ
(
µt− c
σ
√
t

)
− e2µc/σ

2
Φ
(
µt+ c

σ
√
t

)
The expression of S (t) is obtained by setting µ = −σ2

A/2, σ = σA and c = ln
(
R̄D
)
− ln

(
A0e

σ2
R

)
, and

using the change of variable u = t+ σ2
R/σ2

A.
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In Figure 3.39, we illustrate the CreditGrades model by computing the probability of
default when S0 = 100, S? = 100, σS = 20%, R̄ = 50%, σR = 10% and D = 100. We notice
that PD (t) is an increasing function of S?, σS , R̄, and σR. The impact of the recovery
rate may be curious, but bond holders may be encouraged to cause the default when the
recovery rate is high.

Relationship with intensity (or reduced-form) models Let λ (s) be a positive con-
tinuous process. We define the default time by τ := inf

{
t ≥ 0 :

∫ t
0 λ (s) ds ≥ θ

}
where θ is

a standard exponential random variable. We have:

S (t) = Pr {τ > t}

= Pr
{∫ t

0
λ (s) ds ≤ θ

}
= E

[
exp

(
−
∫ t

0
λ (s) ds

)]
Let Λ (t) =

∫ t
0 λ (s) ds be the integrated hazard function. If λ (s) is deterministic, we obtain

S (t) = exp (−Λ (t)). In particular, if λ (s) is a piecewise constant function, we obtain the
piecewise exponential model.

FIGURE 3.40: Intensity models and the default barrier issue

We now consider the stochastic case λ (t) = σW 2 (t) where W (t) is a Brownian motion.
In Figure 3.40, we illustrate the simulation mechanism of defaults. First, we simulate the
exponential variable B. In our example, it is equal to 1.157. Second, we simulate the Brow-
nian motion W (t) (top/left panel). Then, we calculate λ (t) where σ = 1.5% (top/right
panel), and the integrated hazard function Λ (t) (bottom/left panel). Finally, we determine
the default time when the integrated hazard function crosses the barrier B. In our example,
τ is equal to 3.30. In fact, the simulation mechanism may be confusing. Indeed, we have the
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impression that we know the barrier B, implying that the default is predictable. In intensity
models, this is the contrary. We don’t know the stochastic barrier B, but the occurrence of
the default unveils the barrier B as illustrated in the bottom/right panel in Figure 3.40. In
structural models, we assume that the barrier B is known and we can predict the default
time because we observe the distance to the barrier. Intensity and structural models are
then the two faces of the same coin. They use the same concept of default barrier, but its
interpretation is completely different.

3.3.4 Default correlation
In this section, we consider the modeling of default correlations, which corresponds

essentially to two approaches: the copula model and the factor model. Then, we see how to
estimate default correlations. Finally, we show how to consider the dependence of default
times in the pricing of basket derivatives.

3.3.4.1 The copula model

Copula functions are extensively studied in Chapter 11, and we invite the reader to
examine this chapter before to go further. Let F be the joint distribution of the random
vector (X1, . . . , Xn), we show on page 719 that F admits a copula representation:

F (x1, . . . , xn) = C (F1 (x1) , . . . ,Fn (xn))

where Fi is the marginal distribution of Xi and C is the copula function associated to F.
Since there is a strong relationship between probability distributions and survival functions,
we can also show that the survival function S of the random vector (τ1, . . . , τn) has a copula
representation:

S (t1, . . . , tn) = C̆ (S1 (t1) , . . . ,Sn (tn))

where Si is the survival function of τi and C̆ is the survival copula associated to S. The
copula C̆ is unique if the marginals are continuous. The copula functions C and C̆ are not
necessarily the same, except when the copula C is radially symmetric (Nelsen, 2006). This
is for example the case of the Normal (or Gaussian) copula and the Student’s t copula.
Since these two copula functions are the only ones that are really used by professionals98,
we assume that C̆ = C in the sequel.

The Basel model We have seen that the Basel framework for modeling the credit risk
is derived from the Merton model. Let Zi ∼ N (0, 1) be the (normalized) asset value of the
ith firm. In the Merton model, the default occurs when Zi is below a non-stochastic barrier
Bi:

Di = 1⇔ Zi ≤ Bi
The Basel Committee assumes that Zi = √ρX +

√
1− ρεi where X ∼ N (0, 1) is the

systematic risk factor and εi ∼ N (0, 1) is the specific risk factor. We have shown that the
default barrier Bi is equal to Φ−1 (pi) where pi is the unconditional default probability. We
have also demonstrated that the conditional default probability is equal to:

pi (X) = Φ
(Φ−1 (pi)−

√
ρX

√
1− ρ

)
98They can also use some Archimedean copulas that are not radially symmetric such as the Clayton

copula, but it generally concerns credit portfolios with a small number of exposures.
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Remark 46 In the Basel framework, we assume a fixed maturity. If we introduce the time
dimension, we obtain:

pi (t) = Pr {τi ≤ t}
= 1− Si (t)

and:
pi (t,X) = Φ

(Φ−1 (1− Si (t))−√ρX
√

1− ρ

)
where Si (t) is the survival function of the ith firm.

The vector of assets Z = (Z1, . . . , Zn) is Gaussian with a constant covariance matrix
C = Cn (ρ):

C =


1 ρ · · · ρ

ρ 1
...

...
. . . ρ

ρ · · · ρ 1


It follows that the joint default probability is:

p1,...,n = Pr {D1 = 1, . . . , Dn = 1}
= Pr {Z1 ≤ B1, . . . , Zn ≤ Bn}
= Φ (B1, . . . , Bn;C)

Since we have Bi = Φ−1 (pi), we deduce that the Basel copula between the default indicator
functions is a Normal copula, whose parameters are a constant correlation matrix Cn (ρ):

p1,...,n = Φ
(
Φ−1 (p1) , . . . ,Φ−1 (pn) ;C

)
= C (p1, . . . , pn;Cn (ρ))

Let us now consider the dependence between the survival times:

S (t1, . . . , tn) = Pr {τ1 > t1, . . . , τn > tn}
= Pr

{
Z1 > Φ−1 (p1 (t1)) , . . . , Zn > Φ−1 (pn (tn))

}
= C (1− p1 (t1) , . . . , 1− pn (tn) ;C)
= C (S1 (t1) , . . . ,Sn (tn) ;Cn (ρ))

The dependence between the default times is again the Normal copula with the matrix of
parameters Cn (ρ).

Extension to other copula models The Basel model assumes that the asset correlation
is the same between the different firms. A first extension is to consider that the dependence
between the default times remain a Normal copula, but with a general correlation matrix:

C =


1 ρ1,2 · · · ρ1,n

1
...

. . . ρn−1,n
1

 (3.51)
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This approach is explicitly proposed by Li (2000), but it was already implemented in Cred-
itMetrics (Gupton et al., 1997). The correlation matrix can be estimated using a structural
model or approximated by the correlation of stock returns. However, this approach is only
valid for publicly traded companies and is not always stable. This is why professionals prefer
to use direct extensions of the one-factor model.

Let Xj be a Gaussian factor where j = 1, . . . ,m. We assume that the asset value Zi
depends on one of these common risk factors:

Zi =
m∑
j=1

βi,jXj + εi (3.52)

with
∑m
j=1 1 {βi,j > 0} = 1. We assume that the common risk factors are correlated with

each other, but they are independent of the specific risks (ε1, . . . , εn), which are by definition
not correlated. For instance, Xj can represent the systematic risk factor of the jth sector
or industry. Of course, we can extend this approach to a higher dimension such as sector
× region. For example, if we consider three sectors (S1, S2 and S3) and two geographical
regions (R1 and R2), we obtain six common risk factors:

S1 S2 S3
R1 X1 X2 X3
R2 X4 X5 X6

These risk factors can then be seen as composite sectors. We note map (i) the mapping
function, which indicates the composite sector j (or the risk factor j): map (i) = j if i ∈ Xj .
We assume that the dependence between the default times (τ1, . . . , τn) is a Normal copula
function, whose correlation matrix C is equal to:

C =


1 ρ (map (1) ,map (2)) · · · ρ (map (1) ,map (n))

1
...

. . . ρ (map (n− 1) ,map (n))
1

 (3.53)

In practice, we have m � n and many elements of the correlation matrix C are equal. In
fact, there are only m × (m+ 1) /2 different values, which correspond to inter-sector and
intra-sector correlations.

Example 41 Let us consider the case of four sectors:

Factor X1 X2 X3 X4
X1 30% 20% 10% 0%
X2 40% 30% 20%
X3 50% 10%
X4 60%

The inter-sector correlations are indicated in bold, whereas the intra-sector correlations are
underlined.

If the portfolio is composed of seven loans of corporate firms that belong to the following
sectors:

i 1 2 3 4 5 6 7
j = map (i) 1 1 2 3 3 3 4
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we obtain the following correlation matrix:

C =



1.00 0.30 0.20 0.10 0.10 0.10 0.00
1.00 0.20 0.10 0.10 0.10 0.00

1.00 0.30 0.30 0.30 0.20
1.00 0.50 0.50 0.10

1.00 0.50 0.10
1.00 0.10

1.00


Simulation of copula models With the exception of the Normal copula with a constant
correlation matrix and an infinitely fine-grained portfolio, we cannot calculate analytically
the value-at-risk or the expected shortfall of the portfolio loss. In this case, we consider
Monte Carlo methods, and we use the method of transformation for simulating copula
functions99. Since we have Si (τi) ∼ U[0,1], the simulation of correlated default times is
obtained with the following algorithm:

1. we simulate the random vector (u1, . . . , un) from the copula function C;

2. we set τi = S−1
i (ui).

In many cases, we don’t need to simulate the default time τi, but the indicator function
Di (ti) = 1 {τi ≤ ti}. Indeed, Di is a Bernoulli random variable with parameter Fi (t) =
1 − Si (t), implying that D (t) = (D1 (t1) , . . . , Dn (tn)) is a Bernoulli random vector with
parameter p (t) = (p1 (t1) , . . . , pn (tn)). Since the copula of D (t) is the copula of the random
vector τ = (τ1, . . . , τn), we obtain the following algorithm to simulate correlated indicator
functions:

1. we simulate the random vector (u1, . . . , un) from the copula function C;

2. we set Di (ti) = 1 if ui > Si (ti).

In the case of the Normal copula, the simulation of u = (u1, . . . , un) requires calculating
the Cholesky decomposition of the correlation matrix C. However, this approach is valid for
a small size n of the credit portfolio, because we are rapidly limited by the memory storage
capacity of the computer. In a 32-bit computer, the storage of a double requires 8 bytes,
meaning that the storage of a n× n Cholesky matrix requires 78.125 KB if n = 100, 7.629
MB if n = 1 000, 762.94 MB if n = 10 000, etc. It follows that the traditional Cholesky
algorithm is not adapted when considering a large credit portfolio. However, if we consider
the Basel model, we can simulate the correlated default times using the following [BASEL]
algorithm:

1. we simulate n+ 1 Gaussian independent random variables X and (ε1, . . . , εn);

2. we simulate the Basel copula function:

(u1, . . . , un) =
(

Φ
(√

ρX +
√

1− ρε1

)
, . . . ,Φ

(√
ρX +

√
1− ρεn

))
(3.54)

3. we set τi = S−1
i (ui).

99See Section 13.1.3.2 on page 802.
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The [BASEL] algorithm is the efficient way to simulate the one-factor model and demon-
strates that we don’t always need to use the Cholesky decomposition for simulating the
Normal (or the Student’s t) copula function. Let us generalize the [BASEL] algorithm when
we consider the Normal copula with the correlation matrix given by Equation (3.53). The
eigendecomposition of C is equal to V ΛV >, where V is the matrix of eigenvectors and Λ is
the diagonal matrix of eigenvalues. Let u be a vector of n independent Gaussian standard-
ized random numbers. Then, Z = V Λ1/2u is a Gaussian vector with correlation C. We note
C? =

(
ρ?j1,j2

)
the m×m correlation matrix based on intra- and inter-sector correlations100

and we consider the corresponding eigendecomposition C? = V ?Λ?V ?>. Let X? be a m× 1
Gaussian standardized random vector. It follows that the random vector Z = (Z1, . . . , Zn)
is a Gaussian random vector with correlation matrix C = map (C?) where101:

Zi =
m∑
j=1

A?map(i),jX
?
j +

√
1− ρ?map(i),map(i)εi

and A? = V ? (Λ?)1/2 and V ? are the L2-normalized eigenvectors. The [EIG] algorithm
proposed by Jouanin et al. (2004) consists then in replacing the second step of the [BASEL]
algorithm:

1. we simulate n + m Gaussian independent random variables (X?
1 , . . . , X

?
m) and

(ε1, . . . , εn);

2. for the ith credit, we calculate:

Zi =
m∑
j=1

A?map(i),jX
?
j +

√
1− ρ?map(i),map(i)εi (3.55)

3. we simulate the copula function:

(u1, . . . , un) = (Φ (Z1) , . . . ,Φ (Zn))

4. we set τi = S−1
i (ui).

Here is a comparison of the efficiency of the [EIG] algorithm with respect to the traditional
[CHOL] algorithm:

Algorithm Matrix Random Number of operations
dimension numbers + ×

CHOL n× n n n× (n− 1) n× n
EIG m×m n+m n× (m+ 1) n× (m+ 1)

10 000 loans + 20 sectors
CHOL 108 10 000 ' 108 108

EIG 400 10 020 2.1× 105 2.1× 105

These results explain why the [EIG] algorithm is faster than the [CHOL] algorithm102. We
also notice that the [EIG] algorithm corresponds to the [BASEL] algorithm in the case m = 1
when there is only one common factor.

100The diagonal elements correspond to intra-sector correlations, whereas the off-diagonal elements corre-
spond to inter-sector correlations.

101Jouanin et al. (2004) showed that if the eigenvalues of C? are positive, then C = map (C?) is a correlation
matrix.

102On average, the computational time is divided by a factor of n/m.
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Let us consider Example 41. We obtain:

A? =


−0.2633 0.1302 −0.3886 0.2504
−0.5771 −0.1980 −0.1090 0.1258
−0.5536 0.0943 0.3281 0.2774
−0.4897 0.0568 −0.0335 −0.5965


We deduce that the second step of the [EIG] algorithm is:

• if the credit belongs to the first sector, we simulate Zi as follows:

Zi = −0.263 ·X?
1 − 0.130 ·X?

2 + 0.389 ·X?
3 + 0.250 ·X?

4 + 0.837 · εi

• if the credit belongs to the second sector, we simulate Zi as follows:

Zi = −0.577 ·X?
1 − 0.198 ·X?

2 − 0.109 ·X?
3 + 0.126 ·X?

4 + 0.775 · εi

• if the credit belongs to the third sector, we simulate Zi as follows:

Zi = −0.554 ·X?
1 + 0.094 ·X?

2 + 0.328 ·X?
3 + 0.277 ·X?

4 + 0.707 · εi

• if the credit belongs to the fourth sector, we simulate Zi as follows:

Zi = −0.490 ·X?
1 + 0.057 ·X?

2 − 0.034 ·X?
3 − 0.597 ·X?

4 + 0.632 · εi

Remark 47 The extension to the Student’s t copula is straightforward, because the multi-
variate Student’s t distribution is related to the multivariate normal distribution103.

3.3.4.2 The factor model

In the previous paragraph, the multivariate survival function writes:

S (t1, . . . , tn) = C (S1 (t1) , . . . ,Sn (tn) ;C)

where C is the Normal copula and C is the matrix of default correlations. In the sector
approach, we note C = map (C?) where map is the mapping function and C? is the matrix
of intra- and inter-correlations. In this model, we characterize the default time by the
relationship τi < t⇔ Zi < Bi (t) where Zi =

∑m
j=1A

?
map(i),jX

?
j +
√

1− ρ?map(i),map(i)εi and
Bi (t) = Φ−1 (PDi (t)) = Φ−1 (1− Si (t)).

The risk factors X?
j are not always easy to interpret. If m = 1, we retrieve Zi = √ρ ·

X +
√

1− ρ · εi where ρ is the uniform correlation and X is the common factor. It generally
corresponds to the economic cycle. Let us consider the case m = 2:

C? =
(
ρ1 ρ
ρ ρ2

)
where ρ1 and ρ2 are the intra-sector correlations and ρ is the inter-sector correlation. We
have:

Zi = A?map(i),1 ·X
?
1 +A?map(i),2 ·X

?
2 +

√
1− ρmap(i) · εi

It is better to consider the following factor decomposition:

Zi = √ρ ·X +
√
ρmap(i) − ρ ·Xmap(i) +

√
1− ρmap(i) · εi (3.56)

103See pages 737 and 1055.
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In this case, we have three factors, and not two factors: X is the common factor, whereas
X1 and X2 are the two specific sector factors. We can extend the previous approach to a
factor model with m+ 1 factors:

Zi = √ρ ·X +
√
ρmap(i) − ρ ·Xmap(i) +

√
1− ρmap(i) · εi (3.57)

Equations (3.56) and (3.57) are exactly the same, except the number of factors. However,
the copula function associated to the factor model described by Equation (3.57) is the
copula of the sector model, when we assume that the inter-sector correlation is the same
for all the sectors, meaning that the off-diagonal elements of C? are equal. In this case, we
can use the previous decomposition for simulating the default times. This algorithm called
[CISC] (constant inter-sector correlation) requires simulating one additional random number
compared to the [EIG] algorithm. However, the number of operations is reduced104.

Let τ1 and τ2 be two default times, whose joint survival function is S (t1, t2) =
C (S1 (t1) ,S2 (t2)). We have:

S1 (t | τ2 = t?) = Pr {τ1 > t | τ2 = t?}
= ∂2C (S1 (t) ,S2 (t?))
= C2|1 (S1 (t) ,S2 (t?))

where C2|1 is the conditional copula function105. If C 6= C⊥, the default probability of one
firm changes when another firm defaults (Schmidt and Ward, 2002). This implies that the
credit spread of the first firm jumps at the default time of the second firm. This phenomenon
is called spread jump or jump-to-default (JTD). Sometimes it might be difficult to explain
the movements of these spread jumps in terms of copula functions. The interpretation is
easier when we consider a factor model. For example, we consider the Basel model. Figures
3.41 to 3.45 show the jumps of the hazard function of the S&P one-year transition matrix
for corporate bonds given in Table 3.34 on page 208. We recall that the rating R (t) = K
corresponds to the default state and we note R (t) = i the initial rating of the firm. We
have seen that Si (t) = 1 − e>i exp (tΛ) eK where Λ is the Markov generator. The hazard
function is equal to:

λi (t) = fi (t)
Si (t) = e>i Λ exp (tΛ) eK

1− e>i exp (tΛ) eK
We deduce that:

λi1 (t | τi2 = t?) = fi1 (t | τi2 = t?)
Si1 (t | τi2 = t?)

With the Basel copula, we have:

Si1 (t | τi2 = t?) = Φ
(

Φ−1 (Si1 (t))− ρΦ−1 (Si2 (t?))√
1− ρ2

)
and:

fi1 (t | τi2 = t?) = φ

(
Φ−1 (Si1 (t))− ρΦ−1 (Si2 (t?))√

1− ρ2

)
·

fi1 (t)√
1− ρ2φ (Φ−1 (Si1 (t)))

104For the [EIG] algorithm, we have n × (m+ 1) operations (+ and ×), while we have 3n elementary
operations for the [CISC] algorithm.

105The mathematical analysis of conditional copulas is given on page 737.
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The reference to the factor model allows an easier interpretation of the jumps of the hazard
rate. For example, it is obvious that the default of a CCC-rated company in ten years implies
a negative jump for the well rated companies (Figure 3.45). Indeed, this indicates that the
high idiosyncratic risk of the CCC-rated firm has been compensated by a good economic
cycle (the common risk factor X). If the default of the CCC-rated company has occurred
at an early stage, the jumps were almost zero, because we can think that the default is due
to the specific risk of the company. On the contrary, if a AAA-rated company defaults, the
jump would be particularly high as the default is sudden, because it is more explained by
the common risk factor than by the specific risk factor (Figure 3.42). We deduce that there
is a relationship between jump-to-default and default correlation.

FIGURE 3.41: Hazard function λi (t) (in bps)

3.3.4.3 Estimation methods

The Normal copula model with sector correlations requires the estimation of the matrix
C?, which is abusively called the default correlation matrix. In order to clarify this notion,
we make the following distinctions:

• the ‘canonical or copula correlations’ correspond to the parameter matrix of the copula
function that models the dependence between the defaults;

• the ‘default time correlations’ are the correlations between the default times
(τ1, . . . , τn); they depend on the copula function, but also on the unidimensional
survival functions;

• the ‘discrete default correlations’ are the correlations between the indicator functions
(D1 (t) , . . . , Dn (t)); they depend on the copula function, the unidimensional survival
functions and the time horizon t; this is why we don’t have a unique default correlation
between two firms, but a term structure of default correlations;



228 Handbook of Financial Risk Management

FIGURE 3.42: Hazard function λi (t) (in bps) when a AAA-rated company defaults after
10 years (ρ = 5%)

FIGURE 3.43: Hazard function λi (t) (in bps) when a AAA-rated company defaults after
10 years (ρ = 50%)
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FIGURE 3.44: Hazard function λi (t) (in bps) when a BB-rated company defaults after
10 years (ρ = 50%)

FIGURE 3.45: Hazard function λi (t) (in bps) when a CCC-rated company defaults after
10 years (ρ = 50%)
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• the ‘asset correlations’ are the correlations between the asset values in the Merton
model;

• the ‘equity correlations’ are the correlations between the stock returns; in a Merton-
like model, they are assumed to be equal to the asset correlations.

In practice, the term ‘default correlation’ is used as a generic term for these different mea-
sures.

Relationship between the different default correlations We consider two firms. Li
(2000) introduces two measures of default correlation. The discrete default correlation is
equal to:

ρ (t1, t2) = E [D1 (t1)D2 (t2)]− E [D1 (t1)]E [D2 (t2)]
σ (D1 (t1))σ (D2 (t2))

where Di (ti) = 1 {τi ≤ ti}, whereas the default (or survival) time correlation is equal to:

ρ (τ1, τ2) = E [τ1τ2]− E [τ1]E [τ2]
σ (τ1)σ (τ2)

These two measures give very different numerical results. Concerning the asset correlation,
it is equal to:

ρ (Z1, Z2) = E [Z1Z2]− E [Z1]E [Z2]
σ (Z1)σ (Z2)

These three measures depend on the canonical correlation. Let us denote by ρ the copula
parameter of the Normal copula between the two default times τ1 and τ2. We have:

ρ (t1, t2) = C (PD1 (t1) ,PD2 (t2) ; ρ)− PD1 (t1) · PD2 (t2)√
PD1 (t1) (1− PD1 (t1)) ·

√
PD2 (t2) (1− PD2 (t2))

and:
ρ (τ1, τ2) = cov (τ1, τ2)√

var (τ1) · var (τ1)
where cov (τ1, τ2) =

∫∞
0
∫∞

0 (S (t1, t2)− S1 (t1) S2 (t2)) dt1 dt2 and var (τi) = 2
∫∞

0 tSi (t) dt−[∫∞
0 Si (t) dt

]2. We verify that ρ (t1, t2) 6= ρ and ρ (τ1, τ2) 6= ρ. We can also show that
ρ (t1, t2) < ρ and ρ (τ1, τ2) < ρ for the Normal copula. In the Basel model, we have
ρ (Z1, Z2) = ρ.

We consider two exponential default times τ1 ∼ E (λ1) and τ2 ∼ E (λ2). In Tables 3.42,
3.43 and 3.44, we report the discrete default correlations ρ (t1, t2) for different time horizons.
We notice that ρ (t1, t2) is much lower than 20%„ which is the copula correlation. We have
also calculated ρ (τ1, τ2), which is respectively equal to 17.0%, 21.5% and 18.0%. We notice
that the correlations are higher for the Student’s t copula than for the Normal copula106.

Statistical inference of the default correlation In the case of a factor model, we
have:

Z̃i,t = β>X̃i,t +
√

1− ‖β‖22 · ε̃i,t

where Z̃i,t is the standardized asset value of the ith firm at time t and X̃i,t is the standardized
vector of risk factors at time t for the ith firm. We can then estimate the parameter β using
OLS or GMM techniques. Let us consider the constant inter-sector correlation model:

Zi = √ρ ·X +
√
ρmap(i) − ρ ·Xmap(i) +

√
1− ρmap(i) · εi

106This phenomenon is explained in the chapter dedicated to the copula functions.
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TABLE 3.42: Discrete default correlation in % (λ1 = 100 bps, λ2 = 50 bps, Normal copula
with ρ = 20%)

t1 / t2 1 2 3 4 5 10 25 50
1 2.0 2.4 2.7 2.9 3.1 3.6 4.2 4.5
2 2.3 2.9 3.3 3.6 3.8 4.5 5.3 5.7
3 2.6 3.2 3.6 4.0 4.2 5.0 6.0 6.5
4 2.7 3.4 3.9 4.2 4.5 5.4 6.5 7.1
5 2.9 3.6 4.1 4.5 4.8 5.7 6.9 7.5

10 3.2 4.1 4.7 5.1 5.5 6.6 8.2 9.1
25 3.4 4.5 5.1 5.7 6.1 7.5 9.6 10.9
50 3.3 4.4 5.1 5.6 6.1 7.6 9.9 11.5

TABLE 3.43: Discrete default correlation in % (λ1 = 100 bps, λ2 = 50 bps, Student’s t
copula with ρ = 20% and ν = 4)

t1 / t2 1 2 3 4 5 10 25 50
1 13.9 14.5 14.5 14.3 14.0 12.6 9.8 7.2
2 12.8 14.3 14.8 14.9 14.9 14.3 11.9 9.2
3 11.9 13.7 14.5 14.9 15.1 15.0 13.1 10.4
4 11.2 13.1 14.1 14.6 14.9 15.3 13.8 11.3
5 10.6 12.6 13.7 14.3 14.7 15.4 14.3 11.9

10 8.5 10.5 11.8 12.6 13.3 14.8 15.2 13.6
25 5.5 7.2 8.3 9.2 9.9 11.9 14.0 14.3
50 3.3 4.5 5.3 5.9 6.5 8.3 11.0 12.6

TABLE 3.44: Discrete default correlation in % (λ1 = 20%, λ2 = 10%, Normal copula with
ρ = 20%)

t1 / t2 1 2 3 4 5 10 25 50
1 8.8 10.2 10.7 11.0 11.1 10.4 6.6 2.4
2 9.4 11.0 11.8 12.1 12.3 11.9 7.9 3.1
3 9.3 11.0 11.9 12.4 12.7 12.5 8.6 3.4
4 9.0 10.8 11.7 12.2 12.6 12.6 8.9 3.7
5 8.6 10.4 11.3 11.9 12.3 12.4 9.0 3.8

10 6.3 7.8 8.7 9.3 9.7 10.3 8.1 3.7
25 1.9 2.4 2.8 3.1 3.3 3.8 3.5 1.9
50 0.2 0.3 0.3 0.3 0.4 0.5 0.5 0.3
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The corresponding linear regression is:

Z̃i,t = β0 · X̃0,t + β>X̃i,t +
√

1− ρmap(i) · ε̃i,t

where X̃i,t is equal to ei � X̃t, X̃t is the set of the risk factors, which are specific to the
sectors at time t and X̃0,t is the common risk factor. We deduce that the estimation of ρ
and ρ1, . . . , ρm are given by the following relationships: ρ̂ = β̂2

0 and ρ̂j = β̂2
0 + β̂2

j .
A second approach is to consider the correlation between the default rates of homoge-

neous cohorts107. This correlation converges asymptotically to the survival time correlation.
Then, we have to inverse the relationship between the survival time correlation and the cop-
ula correlation for estimating the parameters of the copula function.

The third approach has been suggested by Gordy and Heitfield (2002). They consider
the Basel model: Zi = √ρ ·X +

√
1− ρ · εi, where X ∼ H and εi ∼ N (0, 1). The default

probability conditionally to X = x is equal to:

pi (x;Bi, ρ) = Φ
(
Bi −

√
ρx

√
1− ρ

)
We note dt the number of defaulted firms and nt the total number of firms at time t. If we
have a historical sample of default rates, we can estimate ρ using the method of maximum
likelihood. Let `t (θ) be the log-likelihood of the observation t. If we assume that there is
only one risk class C (Bi = B), the conditional number of defaults D is a binomial random
variable:

Pr {D = dt | X = x} =
(
nt
dt

)
p (x;B, ρ)dt (1− p (x;B, ρ))nt−dt

We deduce that:

`t (θ) = ln
∫

Pr {D = dt | X = x} dH (x)

= ln
∫ (

nt
dt

)
p (x;B, ρ)dt (1− p (x;B, ρ))nt−dt dH (x)

Generally, we consider a one-year time horizon for calculating default rates. Moreover, if we
assume that the common factor X is Gaussian, we deduce that B = Φ−1 (PD) where PD
is the one-year default probability for the risk class C. It follows that:

`t (θ) = ln
∫ (

nt
dt

)
p
(
x; Φ−1 (PD) , ρ

)dt (1− p (x; Φ−1 (PD) , ρ
))nt−dt dΦ (x)

Therefore, we can estimate the parameter ρ. If there are several risk classes, we can assume
that:

`t (θ) = ln
∫ (

nt
dt

)
p (x;B, ρ)dt (1− p (x;B, ρ))nt−dt dΦ (x)

In this case, we have two parameters to estimate: the copula correlation ρ and the implied
default barrier B.

The underlying idea of this approach is that the distribution of the default rate depends
on the default probability and the copula correlation. More specifically, the mean of the
default rate of a risk class C is equal to the default probability of C whereas the volatility
of the default rate is related to the default correlation. We introduce the notation:

ft = dt
nt

107Each cohort corresponds to a risk class.
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FIGURE 3.46: Distribution of the default rate (in %)

where ft is the default rate at time t. We assume that the one-year default probability of
C is equal to 20%. In Figure 3.46, we report the distribution of the one-year default rate
for different values of ρ when the number of firms nt is equal to 1 000. We also report some
statistics (mean, standard deviation and quantile functions) in Table 3.45. By definition,
the four probability distributions have the same mean, which is equal to 20%, but their
standard deviations are different. If ρ = 0%, σ (ft) is equal to 1.3% while σ (ft) = 33.2% in
the case ρ = 90%.

TABLE 3.45: Statistics of the default rate (in %))

ρ µ (ft) σ (ft)
Qα (ft)

1% 10% 25% 50% 75% 90% 99%
0% 20.0 1.3 17.1 18.4 19.1 20.0 20.8 21.6 23.0

20% 20.0 13.0 1.7 5.6 10.0 17.4 27.3 38.3 59.0
50% 20.0 21.7 0.0 0.6 3.1 11.7 30.3 53.8 87.3
90% 20.0 33.2 0.0 0.0 0.0 0.4 26.3 88.2 100.0

Example 42 We consider a risk class C, whose probability of default is equal to 200 bps.
Over the last 20 years, we have observed the following annual number of defaults: 3, 1, 14,
0, 33, 3, 53, 1, 4, 0, 1, 8, 7, 3, 5, 5, 0, 49, 0 and 7. We assume that the number of firms is
equal to 500 every year.

If we estimate the Basel model with the method of maximum likelihood by assuming
that B = Φ−1 (PD), we obtain ρ̂ = 28.93%. If we estimate both the default correlation
and the default barrier, we have ρ̂ = 28.58% and B̂ = −2.063, which is equivalent to a
default probability of 195 bps. It is better to estimate the barrier if we don’t trust the
default probability of the risk class because the estimation can be biased. For instance, if



234 Handbook of Financial Risk Management

we assume that PD = 100 bps, we obtain ρ̂ = 21.82%, which is relatively lower than the
previous estimate.

The previous estimation method has been generalized by Demey et al. (2004) to the
CISC model with several intra-sector correlations, but a unique inter-sector correlation. In
Table 3.46, we report their results for the period between 1981 and 2002. We notice that
the default correlations are relatively low between 7% and 36%. The largest correlations are
observed for the sectors of energy, finance, real estate, telecom and utilities. We also notice
some significant differences between the Basel model and the CISC model.

TABLE 3.46: Estimation of canonical default correlations
Sector CISC model Basel model
Aerospace/Automobile 11.2% 11.6%
Consumer/Service sector 8.7% 7.5%
Energy/Natural resources 21.3% 11.5%
Financial institutions 15.7% 12.2%
Forest/Building products 6.8% 14.5%
Health 8.3% 9.2%
High technology 6.8% 4.7%
Insurance 12.2% 7.6%
Leisure time/Media 7.0% 7.0%
Real estate 35.9% 27.7%
Telecom 27.1% 34.3%
Transportation 6.8% 8.3%
Utilities 18.3% 21.2%
Inter-sector 6.8% X

Source: Demey et al. (2004).

Remark 48 There are very few publications on the default correlations. Moreover, they
generally concern the one-year discrete default correlations ρ (1, 1), not the copula correla-
tion. For example, Nagpal and Bahar (2001) estimate ρ (t1, t2) for US corporates and the
period 1981-1999. They distinguish the different sectors, three time horizons (1Y, 5Y and
7Y) and IG/HY credit ratings. Even if the range goes from −5.35% to 39.35%, they obtain a
very low correlation on average. However, these results should be taken with caution, because
we know that the default correlation has increased since the 2008 Global Financial Crisis
(Christoffersen et al., 2017).

3.3.4.4 Dependence and credit basket derivatives

Interpretation and pitfalls of the Basel copula The Basel copula is the basic model
for pricing CDO tranches, just as the Black-Scholes model is for options. We define the
implied correlation as the parameter ρ that gives the market spread of the CDO tranche.
In some sense, the implied correlation for CDOs is the equivalent of the implied volatility
for options. Since the implied correlation depends on attachment and detachment points of
the CDO tranche, we don’t have a single value, but a curve which is not flat. Therefore, we
observe a correlation smile or skew, meaning that the correlation is not constant.

In order to understand this phenomenon, we come back to the economic interpretation
of the Basel model. In Figure 3.47, we report the mapping between the economic cycle and
the common risk factor X. In this case, negative values of X correspond to bad economic
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times whereas positive values of X correspond to good economic times. We notice that the
factor model does not encompass the dynamics of the economic cycle. The Basel model is
typically a through-the-cycle approach, and not a point-in-time approach, meaning that the
time horizon is the long-run (typically an economic cycle of 7 years).

FIGURE 3.47: Economic interpretation of the common factor X

We recall that the loss function is L =
∑n
i=1 EADi ·LGDi ·1 {τi ≤ Ti}. Let A and D be

the attachment and detachment points of the tranche. We have:

E [L | A ≤ L < D] = EX [L (X) | A ≤ L < D]

where L (X) is the conditional loss with respect to the common factor X. With this model,
the pricing of a CDO tranche uses all the economic scenarios, which are equally weighted.
In practice, we know that market participants are more sensitive to bad economic times and
have a shorter time horizon than the duration of an economic cycle. From a mathematical
point of view, this implies that the factor component √ρX is certainly not Gaussian and
symmetric about 0. Two directions have then been investigated in order to introduce skew-
ness in credit risk modeling. The first approach assumes that the copula correlation ρ is not
constant but stochastic, while the second approach states that the copula correlation is a
function of the common factor X. These two approaches are two visions of the link between
default correlations and the economic cycle.

Stochastic correlation model We consider an extension of the Basel model:

Zi =
√
RiX +

√
1−Ri εi

where Ri ∈ [0, 1] is a random variable that represents the stochastic correlation (Andersen
and Sidenius, 2005). We notice that the conditional process Zi | Ri = ρ remains Gaussian,
whereas the conditional probability of default becomes:

pi (X) =
∫ 1

0
Φ
(
Bi −

√
ρX

√
1− ρ

)
dG (ρ)
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where G is the probability distribution of Ri. Burtschell et al. (2007) propose to model the
stochastic correlation Ri as a binary random variable:

Ri = (1− Yi)
√
ρ1 + Yi

√
ρ2

where Yi is a Bernoulli random variable B (p). For example, if p = 5%, ρ1 = 0% and
ρ2 = 100%, the defaults are uncorrelated most of the time and perfectly correlated in 5%
of cases. The copula of default times is then a mixture of the copula functions C⊥ and C+

as shown in Figure 3.48. From an economic point of view, we obtain a two-regime model.

FIGURE 3.48: Dependogram of default times in the stochastic correlation model

Local correlation model In this model, we have:

Zi = β (X)X +
√

1− ‖β (X) ‖22 εi

where the factor loading β (X) is a function of the factor X, meaning that β (X) depends
on the position in the economic cycle. In Figure 3.49, we consider two functions: β0 (X)
is constant (Basel model) and β1 (X) decreases with the common factor. In this last case,
the factor loading is high in bad economic times, meaning that the default correlation
ρ = β2 (X) is larger at the bottom of the economic cycle than at its top. This implies that
the latent variable Zi is not Gaussian and exhibits a skewness and an excess kurtosis. We
verify this property on the normalized probability density function of the factor component
β (X)X (bottom/right panel in Figure 3.49). This specification has an impact of the joint
distribution of defaults. For example, we report the empirical copula of default times in
Figure 3.50 when the factor loading is β1 (X). We notice that this copula function is not
symmetric and the joint dependence of defaults is very high in bad economic times when
the value of X is low. When β (X) is a decreasing function of X, we observe a correlation
skew. It is equivalent to change the probability measure in order to penalize the bad states
of the economic cycle or to introduce a risk premium due to the misalignment between the
time horizon of investors and the duration of the economic cycle.
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FIGURE 3.49: Distribution of the latent variable Z in the local correlation model

FIGURE 3.50: Dependogram of default times in the local correlation model
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To implement this model, we consider the normalization Z?i = σ−1
Z (Zi −mZ) where:

mZ = E [Zi] =
∫ +∞

−∞
β (x)xφ(x) dx

and:
σ2
Z = var (Zi) =

∫ +∞

−∞

(
1− β2 (x) + β2 (x)x2)φ(x) dx−m2

Z

We notice that the probability distribution of the latent variable Z?i is equal to:

F? (z) = Pr {Z?i ≤ z}

=
∫ +∞

−∞
Φ
(
mz + σZz − β (x)x√

1− ‖β (x) ‖22

)
φ(x) dx

To simulate correlated defaults108, we use the inversion method such that Ui = F? (Zi).
We consider the following parametrization:

β (x) =
{

1−
(
1−√ρ

)
e−

1
2αx

2 if x < 0√
ρ if x ≥ 0

The function β (x) depends on two parameters ρ and α. The local correlation ρ (x) = β2 (x)
is given in Figure 3.51. The parameter ρ represents the default correlation when the economic
cycle is good or the common factor X is positive. We also notice that the local correlation
ρ (x) tends to 1 when x tends to −∞. This implies an absolute contagion of the default
times when the economic situation is dramatic. The parameter α is then a measure of the
contagion intensity when the economic cycle is unfavorable. Figure 3.52 shows the base
correlation109 which are generated by this model110. We observe that these concave skews
are coherent with respect to those observed in the market.

In Figure 3.53, we report the base correlation of the 5Y European iTraxx index at
the date of 14 June 2005. The estimation of the local correlation model gives ρ = 0.5%
and α = 60%. We notice that the calibrated model fits well the correlation skew of the
market. Moreover, the calibrated model implies an asymmetric distribution and a left fat
tail of the factor component (top/right panel in Figure 3.54) and an implied economic cycle,
which is more flattened than the economic cycle derived from a Gaussian distribution. In
particular, we observe small differences within good economic times and large differences
within bad economic times. If we consider the copula function, we find that defaults are
generally weakly correlated except during deep economic crisis. Let us consider the ordinal
sum of the two copula functions C⊥ and C+. This copula is represented in Figure 3.55. The
10% worst economic scenarios correspond to the perfect dependence (copula C+) whereas
the remaining 90% economic scenarios correspond to the zero-correlation situation (copula
C⊥). We notice that this copula function fits very well the correlation skew. We conclude
that market participants underestimate default correlations in good times and overestimate
default correlations in bad times.

108We calculate mZ , σZ and F? (z). For F? (z), we consider a meshgrid (zk). When z ∈ (zk, zk+1), we use
the linear or the Gaussian interpolation.

109The base correlation is the implied correlation of an equity tranche, where the attachment point is equal
to 0 and the detachment point is equal to the strike.

110We consider a CDO with a five-year maturity. The coupons are paid every quarter. The portfolio of
underlying assets is homogenous with a spread of 100 bps and a recovery rate of 40%. The pricing is done
with the method of Monte Carlo and one million simulations
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FIGURE 3.51: Local correlation ρ (x) = β2 (x)

FIGURE 3.52: Correlation skew generated by the local correlation model
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FIGURE 3.53: Calibration of the correlation skew (local correlation model)

FIGURE 3.54: Implied local correlation model
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FIGURE 3.55: Calibration of the correlation skew (ordinal sum of C⊥ and C+)

3.3.5 Granularity and concentration
The risk contribution of the Basel model has been obtained under the assumption that

the portfolio is infinitely fine-grained. In this case, the common risk factor X largely dom-
inates the specific risk factors εi. When the portfolio is concentrated in a few number of
credits, the risk contribution formula, which has been derived on page 173, is not valid.
In this case, the Basel regulation implies to calculate an additional capital. In the second
consultative paper on the Basel II Accord (BCBS, 2001a), the Basel Committee suggested
to complement the IRB-based capital by a ‘granularity adjustment’ that captures the risk
of concentration. Finally, the Basel Committee has abandoned the idea to calculate the ad-
ditional capital in the first pillar. In fact, this granularity adjustment is today treated in the
second pillar, and falls under the internal capital adequacy assessment process (ICAAP).

3.3.5.1 Difference between fine-grained and concentrated portfolios

Definition of the granularity adjustment We recall that the portfolio loss is given
by:

L =
n∑
i=1

EADi ·LGDi ·1 {τi ≤ Ti} (3.58)

Under the assumption that the portfolio is infinitely fine-grained (IFG), we have shown that
the one-year value-at-risk is given by111:

VaRα (wIFG) =
n∑
i=1

EADi ·E [LGDi] · Φ
(Φ−1 (PDi) +√ρΦ−1 (PDi)√

1− ρ

)
(3.59)

However, this assumption does not always hold, and the portfolio w cannot be fine-grained
and present some concentration issues. In this case, the one-year value-at-risk is equal to

111Without any loss of generality, we assume that Ti = 1 in the sequel.
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the quantile α of the loss distribution:

VaRα (w) = F−1
L (α)

The granularity adjustment GA is the difference between the two risk measures. In the case
of the VaR and UL credit risk measures, we obtain:

GA = VaRα (w)−VaRα (wIFG)

In most cases, we expect that the granularity adjustment is positive, meaning that the
IRB-based capital underestimates the credit risk of the portfolio.

The case of a perfectly concentrated portfolio Let us consider a portfolio that is
composed of one credit. We have:

L = EAD ·LGD ·1 {τ ≤ T}

Let G be the distribution function of the loss given default. It follows that:

FL (`) = Pr {EAD ·LGD ·1 {τ ≤ T} ≤ `}

Since we have ` = 0 ⇔ τ > T , we deduce that FL (0) = Pr {τ > T} = 1 − PD. If ` 6= 0,
this implies that the default has occurred and we have:

FL (`) = FL (0) + Pr {EAD ·LGD ≤ ` | τ ≤ T}

= (1− PD) + PD ·G
(

`

EAD

)
The value-at-risk of this portfolio is then equal to:

VaRα (w) =

 EAD ·G−1
(
α+ PD−1

PD

)
if α ≥ 1− PD

0 otherwise

In figure 3.56, we consider an illustration when the exposure at default is equal to one.
The first panel compares the value-at-risk VaRα (w) when LGD ∼ U [0, 1] and LGD =
50%. Except for low default probabilities, VaRα (w) is larger when the loss given default
is stochastic than when the loss given default is set to the mean E [LGD]. The next panels
also shows that the IRB value-at-risk VaRα (wIFG) underestimates the true value-at-risk
VaRα (w) when PD is high. We conclude that the granularity adjustment depends on two
main factors:

• the discrepancy between LGD and its expectation E [LGD];

• the specific risk that can increase or decrease112 the credit risk of the portfolio.

The diversification effect and the default correlation We also notice that the gran-
ularity adjustment is equal to zero when the default correlation tends to one:

lim
ρ→1

VaRα (w) = VaRα (wIFG)

112For instance, the true value-at-risk can be lower than the sum of IRB contributions for well-rated
portfolios.
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FIGURE 3.56: Comparison between the 99.9% value-at-risk of a loan and its risk contri-
bution in an IFG portfolio

Indeed, when ρ = 1, there is no diversification effect. To illustrate this property, we re-
port the loss distribution of an infinitely fine-grained portfolio113 in Figure 3.57. When the
correlation is equal to zero, the conditional expected loss does not depend on X and we
have:

L = E [L | X] = EAD ·LGD ·PD

When the correlation is different from zero, we have:{
E [L | X] > E [L] for low values of X
E [L | X] < E [L] for high values of X

Since the value-at-risk considers a bad economic scenario, it is normal that the value-at-risk
increases with respect to ρ because E [L | X] is an increasing function of ρ in bad economic
times.

In Figure 3.58, we compare the normalized loss distribution114 of non fined-grained,
but homogenous portfolios. We notice that the loss distribution of the portfolio converges
rapidly to the loss distribution of the IFG portfolio. It suffices that the number of credits is
larger than 50. However, this result assumes that the portfolio is homogenous. In the case of
non-homogenous portfolio, it is extremely difficult to define a rule to know if the portfolio
is fine-grained or not.

113This is a homogeneous portfolio of 50 credits with the following characteristics: EAD = 1, E [LGD] =
50% and PD = 10%.

114This is the loss of the portfolio divided by the number n of credits in the portfolio.
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FIGURE 3.57: Loss distribution of an IFG portfolio

FIGURE 3.58: Comparison of the loss distribution of non-IFG and IFG portfolios
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3.3.5.2 Granularity adjustment

Monte Carlo approach The first approach to compute the granularity adjustment is to
estimate the quantile F̂−1

L (α) of the portfolio loss using the Monte Carlo method. In Table
3.47, we have reported the (relative) granularity adjustment, which is defined as:

GA? = F̂−1
L (α)−VaRα (wIFG)

VaRα (wIFG)

for different homogenous credit portfolios when EAD = 1. We consider different values of
the default probability PD (1% and 10%), the size n of the portfolio (50, 100 and 500) and
the confidence level α of the value-at-risk (90%, 99% and 99.9%). For the loss given default,
we consider two cases: LGD = 50% and LGD ∼ U [0, 1]. For each set of parameters, we
use 10 million simulations for estimating the quantile F̂−1

L (α) and the same seed for the
random number generator115 in order to compare the results. For example, when n = 50,
PD = 10%, ρ = 10%, LGD ∼ U [0, 1] and α = 90%, we obtain GA? = 13.8%. This means
that the capital charge is underestimated by 13.8% if we consider the IRB formula. We
notice that the granularity adjustment is positive in the different cases we have tested. We
verify that it decreases with respect to the portfolio size. However, it is difficult to draw
other conclusions. For instance, it is not necessarily an increasing function of the confidence
level.

TABLE 3.47: Granularity adjustment GA? (in %)

n 50 100 500 50 100 500
Parameters α LGD ∼ U[0,1] LGD = 50%

PD = 10%
ρ = 10%

90% 13.8 7.4 1.6 12.5 6.8 1.2
99% 19.3 10.0 2.1 13.3 6.2 1.2

99.9% 21.5 10.9 2.3 12.2 6.9 1.6

PD = 10%
ρ = 20%

90% 8.1 4.2 0.9 2.7 2.7 0.9
99% 10.3 5.3 1.1 6.7 4.1 0.6

99.9% 11.3 5.6 1.2 6.5 2.8 0.6

PD = 1%
ρ = 20%

90% 43.7 23.5 5.0 60.1 20.1 4.0
99% 36.7 18.8 3.9 32.9 19.6 3.7

99.9% 30.2 15.3 3.1 23.7 9.9 1.7

Analytical approach Let w be a credit portfolio. We have the following identity:

VaRα (w) = VaRα (wIFG) + VaRα (w)−VaRα (wIFG)︸ ︷︷ ︸
Granularity adjustment GA

(3.60)

The granularity adjustment is then the capital we have to add to the IRB value-at-risk in
order to obtain the true value-at-risk (Wilde, 2001b; Gordy, 2003). Since we have seen that
VaRα (wIFG) is the conditional expected loss when the risk factor X corresponds to the
quantile 1− α, we obtain:

VaRα (w) = VaRα (wIFG) + GA
= E [L | X = xα] + GA

115See Chapter 13 on page 787.
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where xα = H−1 (1− α) and H (x) is the cumulative distribution function of X. In order
to derive the expression of the granularity adjustment, we rewrite Equation (3.60) in terms
of portfolio loss:

L = E [L | X] + (L− E [L | X])

Since we have VaRα (w) = F−1 (α) where F (`) is the loss distribution, we deduce that:

VaRα (w) = VaRα (L)
= VaRα (E [L | X] + η (L− E [L | X]))|η=1

Emmer and Tasche (2005) consider the second-order Taylor expansion of the value-at-risk:

VaRα (w) ≈ VaRα (E [L | X]) +
∣∣∣∣∂ VaRα (E [L | X] + η (L− E [L | X]))

∂ η

∣∣∣∣
η=1

+1
2

∣∣∣∣∂2 VaRα (E [L | X] + η (L− E [L | X]))
∂ η2

∣∣∣∣
η=1

Under some assumptions (homogeneous portfolio, regularity of the conditional expected
loss, single factor model, etc.), Wilde (2001b) and Gordy (2003) show that the second-order
Taylor expansion reduces to116:

VaRα (w) ≈ µ (xα)− 1
2h (x)

d
dx

(
h (x) υ (x)
∂xµ (x)

)∣∣∣∣
x=xα

where h (x) is the probability density function of X, µ (x) is the conditional expected loss
function:

µ (x) = E [L | X = x]

and υ (x) is the conditional variance function:

υ (x) = σ2 (L | X = x)

Since µ (xα) = VaRα (wIFG), we deduce that:

VaRα (w) ≈ VaRα (wIFG) + GA

where the granularity adjustment is equal to:

GA = − 1
2h (x)

d
dx

(
h (x) υ (x)
∂xµ (x)

)∣∣∣∣
x=xα

= 1
2υ (xα) ∂2

xµ (xα)
(∂xµ (xα))2 −

1
2
∂xυ (xα)
∂xµ (xα) −

1
2υ (xα) ∂x ln h (xα)

∂xµ (xα)

The granularity adjustment has been extensively studied117. Originally, the Basel Commit-
tee proposed to include the granularity adjustment in the first pillar (BCBS, 2001a), but it
has finally preferred to move this issue into the second pillar118.

116In fact, we can show that the first derivative vanishes (Gouriéroux et al., 2000). If we remember the
Euler allocation principle presented on page 105, this is not surprising since VaRα (E [L | X]) is the sum of
risk contributions and already includes the first-order effects. In this case, it only remains the second-order
effects.

117See for example Gordy (2003, 2004), Gordy and Marrone (2012), Gordy and Lütkebohmert (2013). The
works of Wilde (2001a,b) and Emmer and Tasche (2005) are a good introduction to this topic.

118See Exercise 3.4.7 on page 253 for a derivation of the original Basel granularity adjustment.



Credit Risk 247

3.4 Exercises
3.4.1 Single- and multi-name credit default swaps

1. We assume that the default time τ follows an exponential distribution with parameter
λ. Write the cumulative distribution function F, the survival function S and the
density function f of the random variable τ . How do we simulate this default time?

2. We consider a CDS 3M with two-year maturity and $1 mn notional principal. The
recovery rate R is equal to 40% whereas the spread s is equal to 150 bps at the
inception date. We assume that the protection leg is paid at the default time.

(a) Give the cash flow chart. What is the P&L of the protection seller A if the
reference entity does not default? What is the P&L of the protection buyer B if
the reference entity defaults in one year and two months?

(b) What is the relationship between s , R and λ? What is the implied one-year
default probability at the inception date?

(c) Seven months later, the CDS spread has increased and is equal to 450 bps.
Estimate the new default probability. The protection buyer B decides to realize
his P&L. For that, he reassigns the CDS contract to the counterparty C. Explain
the offsetting mechanism if the risky PV01 is equal to 1.189.

3. We consider the following CDS spread curves for three reference entities:

Maturity #1 #2 #3
6M 130 bps 1 280 bps 30 bps
1Y 135 bps 970 bps 35 bps
3Y 140 bps 750 bps 50 bps
5Y 150 bps 600 bps 80 bps

(a) Define the notion of credit curve. Comment the previous spread curves.
(b) Using the Merton Model, we estimate that the one-year default probability is

equal to 2.5% for #1, 5% for #2 and 2% for #3 at a five-year time horizon.
Which arbitrage position could we consider about the reference entity #2?

4. We consider a basket of n single-name CDS.

(a) What is a first-to-default (FtD), a second-to-default (StD) and a last-to-default
(LtD)?

(b) Define the notion of default correlation. What is its impact on the three previous
spreads?

(c) We assume that n = 3. Show the following relationship:

sCDS
1 + sCDS

2 + sCDS
3 = sFtD + sStD + sLtD

where sCDS
i is the CDS spread of the ith reference entity.

(d) Many professionals and academics believe that the subprime crisis is due to the
use of the Normal copula. Using the results of the previous question, what could
you conclude?
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3.4.2 Risk contribution in the Basel II model
1. We note L the portfolio loss of n credit and wi the exposure at default of the ith

credit. We have:

L (w) = w>ε =
n∑
i=1

wi · εi (3.61)

where εi is the unit loss of the ith credit. Let F be the cumulative distribution function
of L (w).

(a) We assume that ε = (ε1, . . . , εn) ∼ N (0,Σ). Compute the value-at-risk VaRα (w)
of the portfolio when the confidence level is equal to α.

(b) Deduce the marginal value-at-risk of the ith credit. Define then the risk contri-
bution RCi of the ith credit.

(c) Check that the marginal value-at-risk is equal to:

∂ VaRα (w)
∂ wi

= E
[
εi | L (w) = F−1 (α)

]
Comment on this result.

2. We consider the Basel II model of credit risk and the value-at-risk risk measure. The
expression of the portfolio loss is given by:

L =
n∑
i=1

EADi ·LGDi ·1 {τi < Ti} (3.62)

(a) Define the different parameters EADi, LGDi, τi and Ti. Show that Model (3.62)
can be written as Model (3.61) by identifying wi and εi.

(b) What are the necessary assumptions H to obtain this result:

E
[
εi | L = F−1 (α)

]
= E [LGDi] · E

[
Di | L = F−1 (α)

]
with Di = 1 {τi < Ti}.

(c) Deduce the risk contribution RCi of the ith credit and the value-at-risk of the
credit portfolio.

(d) We assume that the credit i defaults before the maturity Ti if a latent variable
Zi goes below a barrier Bi:

τi ≤ Ti ⇔ Zi ≤ Bi

We consider that Zi = √ρ ·X +
√

1− ρ · εi where Zi, X and εi are three inde-
pendent Gaussian variables N (0, 1). X is the factor (or the systematic risk) and
εi is the idiosyncratic risk.
i. Interpret the parameter ρ.
ii. Calculate the unconditional default probability:

pi = Pr {τi ≤ Ti}

iii. Calculate the conditional default probability:

pi (x) = Pr {τi ≤ Ti | X = x}
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(e) Show that, under the previous assumptions H, the risk contribution RCi of the
ith credit is:

RCi = EADi ·E [LGDi] · Φ
(Φ−1 (pi) +√ρΦ−1 (α)

√
1− ρ

)
(3.63)

when the risk measure is the value-at-risk.

3. We now assume that the risk measure is the expected shortfall:

ESα (w) = E [L | L ≥ VaRα (w)]

(a) In the case of the Basel II framework, show that we have:

ESα (w) =
n∑
i=1

EADi ·E [LGDi] · E
[
pi (X) | X ≤ Φ−1 (1− α)

]
(b) By using the following result:∫ c

−∞
Φ(a+ bx)φ(x) dx = Φ2

(
c,

a√
1 + b2

; −b√
1 + b2

)
where Φ2 (x, y; ρ) is the cdf of the bivariate Gaussian distribution with correlation
ρ on the space [−∞, x] · [−∞, y], deduce that the risk contribution RCi of the ith
credit in the Basel II model is:

RCi = EADi ·E [LGDi] ·
C
(
1− α, pi;

√
ρ
)

1− α (3.64)

where C (u1, u2; θ) is the Normal copula with parameter θ.
(c) What do the results (3.63) and (3.64) become if the correlation ρ is equal to

zero? Same question if ρ = 1.

4. The risk contributions (3.63) and (3.64) were obtained by considering the assumptions
H and the default model defined in Question 2(d). What are the implications in terms
of Pillar 2?

3.4.3 Calibration of the piecewise exponential model
1. We denote by F and S the distribution and survival functions of the default time τ .

Define the function S (t) and deduce the expression of the associated density function
f (t).

2. Define the hazard rate λ (t). Deduce that the exponential model corresponds to the
particular case λ (t) = λ.

3. We assume that the interest rate r is constant. In a continuous-time model, we recall
that the CDS spread is given by the following expression:

s (T ) =
(1−R) ·

∫ T
0 e−rtf (t) dt∫ T

0 e−rtS (t) dt
(3.65)

where R is the recovery rate and T is the maturity of the CDS. Find the triangle
relationship when τ ∼ E (λ).
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4. Let us assume that:

λ (t) =

 λ1 if t ≤ 3
λ2 if 3 < t ≤ 5
λ3 if t > 5

(a) Give the expression of the survival function S (t) and calculate the density func-
tion f (t). Verify that the hazard rate λ (t) is a piecewise constant function.

(b) Find the expression of the CDS spread using Equation (3.65).
(c) We consider three credit default swaps, whose maturities are respectively equal

to 3, 5 and 7 years. Show that the calibration of the piecewise exponential model
implies to solve a set of 3 equations with the unknown variables λ1, λ2 and λ3.
What is the name of this calibration method?

(d) Find an approximated solution when r is equal to zero and λm is small. Comment
on this result.

(e) We consider the following numerical application: r = 5%, s (3) = 100 bps, s (5) =
150 bps, s (7) = 160 bps and R = 40%. Estimate the implied hazard function.

(f) Using the previous numerical results, simulate the default time with the uniform
random numbers 0.96, 0.23, 0.90 and 0.80.

3.4.4 Modeling loss given default
1. What is the difference between the recovery rate and the loss given default?

2. We consider a bank that grants 250 000 credits per year. The average amount of a
credit is equal to $50 000. We estimate that the average default probability is equal to
1% and the average recovery rate is equal to 65%. The total annual cost of the litigation
department is equal to $12.5 mn. Give an estimation of the loss given default?

3. The probability density function of the beta probability distribution B (α, β) is:

f (x) = xα−1 (1− x)β−1

B (α, β)

where B (α, β) =
∫ 1

0 u
α−1 (1− u)β−1 du.

(a) Why is the beta probability distribution a good candidate to model the loss given
default? Which parameter pair (α, β) does correspond to the uniform probability
distribution?

(b) Let us consider a sample (x1, . . . , xn) of n losses in case of default. Write the log-
likelihood function. Deduce the first-order conditions of the maximum likelihood
estimator.

(c) We recall that the first two moments of the beta probability distribution are:

E [X] = α

α+ β

σ2 (X) = αβ

(α+ β)2 (α+ β + 1)

Find the method of moments estimator.
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4. We consider a risk class C corresponding to a customer/product segmentation specific
to retail banking. A statistical analysis of 1 000 loss data available for this risk class
gives the following results:

LGDk 0% 25% 50% 75% 100%
nk 100 100 600 100 100

where nk is the number of observations corresponding to LGDk.

(a) We consider a portfolio of 100 homogeneous credits, which belong to the risk class
C. The notional is $10 000 whereas the annual default probability is equal to 1%.
Calculate the expected loss of this credit portfolio with a one-year time horizon
if we use the previous empirical distribution to model the LGD parameter.

(b) We assume that the LGD parameter follows a beta distribution B (α, β). Cali-
brate the parameters α and β with the method of moments.

(c) We assume that the Basel II model is valid. We consider the portfolio described
in Question 4(a) and calculate the unexpected loss. What is the impact if we
use a uniform probability distribution instead of the calibrated beta probability
distribution? Why does this result hold even if we consider different factors to
model the default time?

3.4.5 Modeling default times with a Markov chain
We consider a rating system with 4 risk classes (A, B, C and D), where rating D

represents the default. The transition probability matrix with a two-year time horizon is
equal to:

P (2) =


94% 3% 2% 1%
10% 80% 5% 5%
10% 10% 60% 20%
0% 0% 0% 100%


We also have:

P (4) =


88.860% 5.420% 3.230% 2.490%
17.900% 64.800% 7.200% 10.100%
16.400% 14.300% 36.700% 32.600%
0.000% 0.000% 0.000% 100.000%


and:

P (6) =


84.393% 7.325% 3.986% 4.296%
24.026% 53.097% 7.918% 14.959%
20.516% 15.602% 23.063% 40.819%
0.000% 0.000% 0.000% 100.000%


Let us denote by SA (t), SB (t) and SC (t) the survival functions of each risk class A, B and
C.

1. How are the matrices P (4) and P (6) calculated?

2. Assuming a piecewise exponential model, calibrate the hazard function of each risk
class for 0 < t ≤ 2, 2 < t ≤ 4 and 4 < t ≤ 6.
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3. Give the definition of a Markovian generator. How can we estimate the generator Λ
associated to the transition probability matrices? Verify numerically that the direct
estimator is equal to:

Λ̂ =


−3.254 1.652 1.264 0.337

5.578 −11.488 3.533 2.377
6.215 7.108 −25.916 12.593
0.000 0.000 0.000 0.000

× 10−2

4. In Figure 3.59, we show the hazard function λ (t) deduced from Questions 2 and 3.
Explain how do we calculate λ (t) in both cases. Why do we obtain an increasing
curve for rating A, a decreasing curve for rating C and an inverted U-shaped curve
for rating B?

FIGURE 3.59: Hazard function λ (t) (in bps) estimated respectively with the piecewise
exponential model and the Markov generator

3.4.6 Continuous-time modeling of default risk
We consider a credit rating system with four risk classes (A, B, C and D), where rating

D represents the default. The one-year transition probability matrix is equal to:

P = P (1) =


94% 3% 2% 1%
10% 80% 7% 3%
5% 15% 60% 20%
0% 0% 0% 0%


We denote by SA (t), SB (t) and SC (t) the survival functions of each risk class A, B and
C.
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1. Explain how we can calculate the n-year transition probability matrix P (n)? Find
the transition probability matrix P (10).

2. Let V =
(
V1

...V2
...V3

...V4

)
andD = diag (λ1, λ2, λ3, λ4) be the matrices of eigenvectors

and eigenvalues associated to P .

(a) Show that:
P (n)V = V Dn

Deduce a second approach for calculating the n-year transition probability matrix
P (n).

(b) Calculate the eigendecomposition of the transition probability matrix P . Deduce
the transition probability matrix P (10).

3. We assume that the default time follows a piecewise exponential model. Let Si (n)
and λi (n) be the survival function and the hazard rate of a firm whose initial rating
is the state i (A, B or C). Give the expression of Si (n) and λi (n). Show that:

λi (1) = − ln
(
1− e>i Pne4

)
Calculate Si (n) and λi (n) for n ∈ {0, . . . , 10, 50, 100}.

4. Give the definition of a Markov generator. How can we estimate the generator Λ
associated to the transition probability matrices? Give an estimate Λ̂.

5. Explain how we can calculate the transition probability matrix P (t) for the time
horizon t ≥ 0. Give the theoretical approximation of P (t) based on Taylor expansion.
Calculate the 6-month transition probability matrix.

6. Deduce the expression of Si (t) and λi (t).

3.4.7 Derivation of the original Basel granularity adjustment
In this exercise, we derive the formula of the granularity adjustment that was proposed

by the Basel Committee in 2001. The mathematical proof follows Chapter 8 (§422 to §457)
of BCBS (2001a) and the works of Wilde (2001a,b) and Gordy (2003, 2004). We encourage
the reader to consult carefully these references. Most of the time, we use the notations of
the Basel Committee119. We consider the Basel model that has been presented in Section
3.2.3.2 on page 169.

1. We consider the normalized loss:

Li = LGDi ·Di

We assume that the conditional probability of default is given by the CreditRisk+
model (Gordy, 2000):

pi (X) = pi (1 +$i (X − 1))

where $i ∈ [0, 1] is the factor weight and X is the systematic risk factor, which follows
the gamma distribution G (αg, βg). Calculate the conditional expected loss120:

µ (x) = E [Li | X = x]

119When they are different, we indicate the changes in footnotes.
120We use the notation Ei = E [LGDi].
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and the conditional variance:

υ (x) = σ2 (Li | X = x)

The Basel Committee assumes that (BCBS, 2001a, §447):

σ (LGDi) = 1
2
√
Ei (1− Ei)

Deduce that we have the following approximation:

υ (x) ≈ Ei
(

1
4 + 3

4Ei
)
pi (1 +$i (x− 1))

2. Calculate the granularity adjustment function:

β (x) = 1
2h (x)

d
dx

(
h (x) υ (x)
∂xµ (x)

)
3. In order to maintain the coherency with the IRB formula, the Basel Committee im-

poses that the conditional probabilities are the same for the IRB formula (Vasicek
model) and the granularity formula (CreditRisk+ model). Show that:

$i = 1
(x− 1)

Fi
pi

where:
Fi = Φ

(Φ−1 (pi) +√ρΦ−1 (α)
√

1− ρ

)
− pi

Deduce the expression of β (x).

4. The calibration has been done by assuming that E [X] = 1 and σ (X) = 2 (BCBS,
2001a, §445). Show that:

β (xα) = (0.4 + 1.2 · Ei)
(

0.76229640 + 1.0747964 · pi
Fi

)
We recall that the Basel Committee finds the following expression of β (xα):

β (xα) = (0.4 + 1.2 · Ei)
(

0.76 + 1.10 · pi
Fi

)
How to obtain exactly this formula?

5. In order to transform the granularity adjustment function β (xα) into risk-weighted
assets, the Basel Committee indicates that it uses a scaling factor c = 1.5 (BCBS,
2001a, §457). Moreover, the Basel Committee explains that the “the baseline IRB risk-
weights for non-retail assets (i.e. the RWA before granularity adjustment) incorporate
a margin of 4% to cover average granularity”. Let w? be the equivalent homogenous
portfolio of the current portfolio w. Show that the granularity adjustment is equal
to121:

GA = EAD?

n?
·GSF−0.04 · RWANR

121The Basel Committee uses the notation �AG instead of �? for the equivalent homogeneous portfolio.
The global exposure EAD? corresponds to the variable TNRE (total non-retail exposure) of the Basel
Committee.
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where RWANR are the risk-weighted assets for non-retail assets and:

GSF = (0.6 + 1.8 · E?)
(

9.5 + 13.75 · p
?

F ?

)
6. The Basel Committee considers the following definition of the portfolio loss:

L =
nC∑
j=1

∑
i∈Cj

EADi ·LGDi ·Di

where Cj is the jth class of risk. Find the equivalent homogeneous portfolio w? of size
n? and exposure EAD?. Calibrate the parameters p?, E? and σ (LGD?).

7. Using the notations of BCBS (2001a), summarize the different steps for computing
the original Basel granularity adjustment.

3.4.8 Variance of the conditional portfolio loss
The portfolio loss is given by:

L =
n∑
i=1

wi · LGDi ·Di

where wi is the exposure at default of the ith credit, LGDi is the loss given default, Ti is the
residual maturity and Di = 1 {τi ≤ Ti} is the default indicator function. We suppose the
assumptions of the Basel II model are satisfied. We note Di (X) and pi (X) the conditional
default indicator function and the conditional default probability with respect to the risk
factor X.

1. Define Di (X). Calculate E [Di (X)], E
[
D2
i (X)

]
and E [Di (X)Dj (X)].

2. Define the conditional portfolio loss L (X).

3. Calculate the expectation of L (X).

4. Show that the variance of L (X) is equal to:

σ2 (L (X)) =
n∑
i=1

w2
i

(
E [Di (X)]σ2 (LGDi) + E2 [LGDi]σ2 (Di (X))

)


