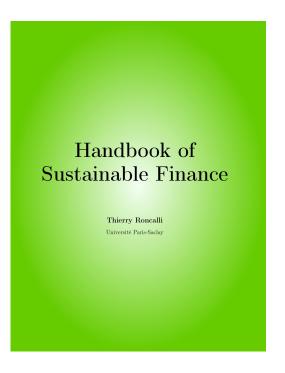
Course 2022-2023 in Sustainable Finance

Thierry Roncalli*

*Amundi Asset Management¹

*University of Paris-Saclay

March 2023


¹The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

General information

Overview

The objective of this course is to understand the concepts of sustainable finance from the viewpoint of asset owners and managers

2 Textbook

General information

Textbook

SSRN: https://ssrn.com/abstract=4277875 ResearchGate: https://www.researchgate.net/publication/365355205

Olides

SSRN: https://ssrn.com/abstract=4339823 ResearchGate: https://www.researchgate.net/publication/367479551

Additional materials (PTEX + Figures + Matlab programs)

http://www.thierry-roncalli.com/SustainableFinanceBook.html http://www.thierry-roncalli.com/SustainableFinanceCourse.html

Part 1. Introduction

- Many words, one concept
- Historical perspective
- Extensive use of acronyms
- 2 ESG ecosystem
 - Many financial actors
 - Reporting frameworks
 - Regulatory framework
- 3 The Market of ESG Investing
 - ESG strategies
 - The market share of ESG investing

Part 2. ESG Scoring

Data and variables

- Sovereign ESG data
- Corporate ESG data

5 Scoring system

- Tree-based scoring method
- Other statistical methods
- Performance evaluation criteria

6

Rating system

- Definition
- ESG rating process
- Rating migration matrix

Part 3. Impact of ESG Investing on Asset Prices and Portfolio Returns

Theoretical models

- Modern portfolio theory
- ESG risk premium
- ESG efficient frontier

Empirical results

- Equity markets
- ESG and factor investing
- Fixed-income markets

Cost of capital

- Equities
- Corporate bonds
- Sovereign bonds

Part 4. Exercise — Equity Portfolio Optimization with **ESG** Scores

10 CAPM and implied expected returns

Mean-variance optimization with ESG scores

Benchmark with ESG scores

Part 5. Sustainable Financial Products, Impact Investing & Engagement

13 Sustainable financial products

- SRI Investment funds
- Green and social bonds
- Sustainable real assets

Impact investing

- Definition
- Sustainable development goals (SDG)
- The challenge of reporting

15 Engagement & voting policy

- Stewardship
- Active ownership
- ESG voting

Part 6. Global Warning & Climate Change

Some definitions

Awareness of climate change impacts

The ecosystem of climate change

- IPCC and climate scenarios
- Regulation of climate risk

Part 7. Economic Modeling of Climate Change

19 Limits of economic models

- Economic growth
- Natural capital and negative externalities

20 Integrated assessment models

- The DICE model
- Social cost of carbon
- Other IAMs

Scenarios

- Climate scenarios
- Shared socioeconomic pathways
- NGFS scenarios

Part 8. Climate Risk Measures

Carbon footprint

- Global warming potential
- Carbon emissions
- Carbon intensity

23

Dynamic risk measures

- Carbon budget
- Carbon trend
- The \mathcal{PAC} framework

Greenness measures

- Green taxonomy
- Green revenue share
- Other greenness metrics

Part 9. Transition Risk Modeling

Stranded assets 26

27 Other topics

- Implied temperature rating
- Carbon beta

Part 10. Climate Portfolio Construction

28 Portfolio optimization in practice

- Quadratic programming (QP) problem
- Equity portfolios
- Bond portfolios

Climate portfolio allocation

- Portfolio decarbonization
- Net zero portfolio alignment
- Core satellite approach

30 Climate risk hedging

Part 11. Exercise — Equity and Bond Portfolio Optimization with Green Preferences

Carbon intensity of the benchmark

Bond portfolios● *L*₂-norm risk measures

• \mathcal{L}_1 -norm risk measures

Part 12. Physical Risk Modeling

Definition

• Chronic vs. acute risk

- General framework
- Geolocation

36 Applications

- Cyclones and hurricanes
- Floods
- Other physical risks

Part 13. Climate Stress Testing and Risk Management

Course 2022-2023 in Sustainable Finance Lecture 1. Introduction

Thierry Roncalli*

*Amundi Asset Management²

*University of Paris-Saclay

March 2023

²The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

Many words, one concept Historical perspective Extensive use of acronyms

Definition

"Sustainable finance refers to the process of taking environmental, social and governance (ESG) considerations into account when making investment decisions in the financial sector, leading to more long-term investments in sustainable economic activities and projects. Environmental considerations might include climate change mitigation and adaptation, as well as the environment more broadly, for instance the preservation of biodiversity, pollution prevention and the circular economy. Social considerations could refer to issues of inequality, inclusiveness, labour relations, investment in human capital and communities, as well as human rights issues. The **governance** of public and private institutions — including management structures, employee relations and executive remuneration — plays a fundamental role in ensuring the inclusion of social and environmental considerations in the decision-making process." (European Commission).

Many words, one concept Historical perspective Extensive use of acronyms

Many words, one concept

Figure 1: Many words, one concept

Many words, one concept Historical perspective Extensive use of acronyms

RI, SI, SRI, ESG, etc.

Responsible investment (RI)

Responsible investment is an approach to investment that explicitly acknowledges the relevance to the investor of environmental, social and governance factors, and of the long-term health of the market as a whole

Sustainable investing (SI)

Sustainable investing is an investment approach that considers environmental, social and governance factors in portfolio selection

Socially responsible investing (SRI)

SRI is an investment strategy that is considered socially responsible, because it invests in companies that have ethical practices

Environmental, Social and Governance (ESG)

Environmental, Social, and Corporate Governance (ESG) refers to the factors that measure the sustainability of an investment

Many words, one concept Historical perspective Extensive use of acronyms

Definition

Sustainable Investing \approx Socially Responsible Investing (SRI) \approx Environmental, Social, and Governance (ESG)

Remark

Blue Finance \subset **Green Finance**, Climate Finance \subset Sustainable Finance

Many words, one concept Historical perspective Extensive use of acronyms

Historical perspective

- Responsible investment (RI): 2000's
- ESG investing (ESG): 2010's
- Sustainable finance (SF): 2020's

Why?

Many words, one concept Historical perspective Extensive use of acronyms

Historical perspective

- At the beginning, sustainable finance mainly concerns final investors and asset owners (ethics) ⇒ responsible investment
- Then, it gains momentum in asset management \Rightarrow **ESG investing**
- Finally, it spreads across all financial actors (e.g. issuers, banks, central banks, etc.) \Rightarrow Sustainable finance

Many words, one concept Historical perspective Extensive use of acronyms

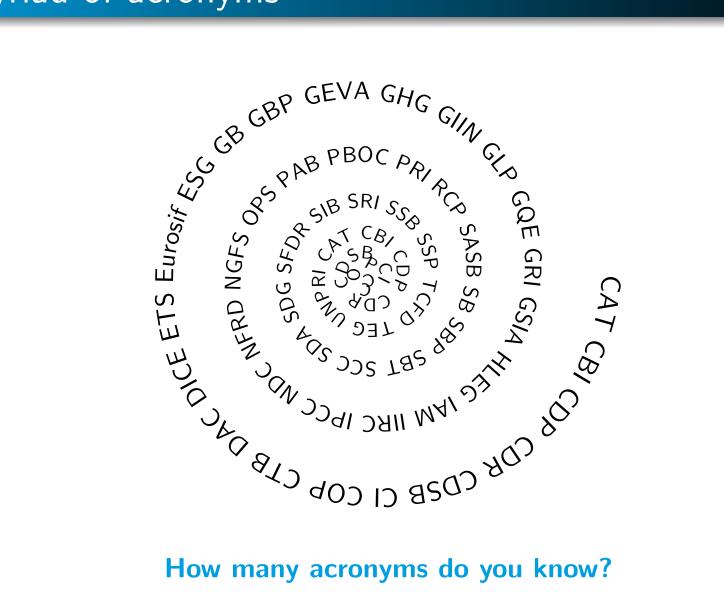

ESG motivations

Figure 2: The raison d'être of ESG investing

Extensive use of acronyms

A myriad of acronyms

How many acronyms do you know?

Many words, one concept Historical perspective Extensive use of acronyms

A myriad of acronyms

CAT: Cap-And-Trade, CBI: Climate Bonds Initiative, CDP: Carbon Disclosure Project, CDR: Carbon Dioxide Removal, CDSB: Climate Disclosure Standards Board, CI: Carbon Intensity, COP: Conference of the Parties, CTB: Climate Transition Benchmark, DAC: Direct Air Capture, DICE: Dynamic Integrated Climate-Economy Model, ETS: Emissions Trading Scheme, Eurosif: European Sustainable Investment Forum, ESG: Environmental, Social and Governance, GB: Green Bond, GBP: Green Bonds Principles, : Greenhouse gas Emissions per unit of Value Added, GHG: Greenhouse Gaz, **GIIN: Global Impact Investing Network**, GLP: Green Loans Principles, GQE: Green Quantitative Easing, GRI: Global Reporting Initiative, GSIA: Global Sustainable Investment Alliance, HLEG: High Level Expert Group on Sustainable Finance, IAM: Integrated Assessment Model (economic model of climate risk), IIRC: International Integrated Reporting Council, IPCC: Intergovernmental Panel on Climate Change, NDC: Nationally Determined Contribution, NFRD: Non-financial Reporting Directive, NGFS: Network for Greening the Financial System, OPS: One Planet Summit, PAB: Paris Aligned Benchmark, PBOC: People's Bank of China (China green bonds), PRI: Principles for **Responsible Investment, RCP: Representative Concentration Pathway (climate** scenario), SASB: Sustainability Accounting Standards Board, SB: Social Bond, SBP: Social Bonds Principles, SBT: Science-Based Target, SCC: Social Cost of Carbon (= optimal carbon tax), SDA: Sectoral Decarbonisation Approach SDG: Sustainable Development Goals, SFDR: Sustainable Finance Disclosure Reporting, SIB: Social Impact Bond, SRI: Socially Responsible Investing, SSB: Sustainability Standards Board (IFRS), SSP: Shared Socioeconomic Pathway, TCFD: Task Force on Climate-Related **Financial Disclosures**, TEG: Technical Expert Group on Sustainable Finance, UNPRI: Principles for Responsible Investment (PRI)

Many financial actors Reporting frameworks Regulatory framework

Many financial actors

ESG financial ecosystem

- Asset owners (pension funds, sovereign wealth funds (SWF), insurance and institutional investors, retail investors, etc.)
- Asset managers
- ESG rating agencies
- ESG index sponsors
- Banks
- ESG associations (GSIA, UNPRI, etc.)
- Regulators and international bodies (governments, financial and industry regulators, central banks, etc.)
- Issuers (equities, bonds, loans, etc.)
- Society and people

ESG Investing \Leftrightarrow **ESG** Financing (= Sustainable Finance)

Many financial actors Reporting frameworks Regulatory framework

The issuer point of view of ESG

Corporate financial performance (CFP)

- Friedman (1970)
- Shareholder theory
- Corporations have no social responsibility to the public or society
- Their only responsibility is to its shareholders (profit maximization)

Corporate social responsibility (CSR)

- Freeman (2010)
- Stakeholder theory
- Corporations create negative externalities
- They must have social and moral responsibilities
- Impact on the cost-of-capital and business risk

Many financial actors Reporting frameworks Regulatory framework

Sustainable investment forums

GSIA members

- The European Sustainable Investment Forum (Eurosif), http://www.eurosif.org
- Responsible Investment Association Australasia (RIAA), https://responsibleinvestment.org
- Responsible Investment Association Canada (RIA Canada), https://www.riacanada.ca
- UK Sustainable Investment & Finance Association (UKSIF), https://www.uksif.org
- The Forum for Sustainable & Responsible Investment (US SIF), https://www.ussif.org
- Dutch Association of Investors for Sustainable Development (VBDO), https://www.vbdo.nl/en/
- Japan Sustainable Investment Forum (JSIF), https://japansif.com/english

Many financial actors Reporting frameworks Regulatory framework

Sustainable investment forums

Figure 3: 2018 GSIA report

Figure 4: 2020 GSIA report

Many financial actors Reporting frameworks Regulatory framework

Initiatives

Initiatives

- Principles for responsible investment (PRI)
- Climate Action 100+
- Net zero alliances: (NZAOA, NZAM, PAII, NZBA, NZIA, etc) \Rightarrow GFANZ

Many financial actors Reporting frameworks Regulatory framework

PRI (or UNPRI)

Figure 5: Principles for Responsible Investment (PRI)

https://www.unpri.org

PRI

PRI (or UNPRI)

- Early 2005: UN Secretary-General Kofi Annan invited a group of the world's largest institutional investors to join a process to develop the Principles for Responsible Investment
- April 2006: The Principles were launched at the New York Stock Exchange
- 6 ESG principles
- The 63 founding signatories are 32 asset owners^a and 31 asset managers^b and data providers^c

^aAP2, CDC, CDPQ, CalPERS, ERAFP, FRR, IFC, NZSF, NGPF, PGGM, UNJSPF, USS, etc.

^bAmundi (CAAM), Sumitomo Trust, BNP PAM, Mitsubishi Trust, Threadneedle, Aviva, Candriam, etc.

^cTrucost, Vigeo, etc.

PRI

Signatories' commitment

"As institutional investors, we have a duty to act in the best long-term interests of our beneficiaries. In this fiduciary role, we believe that environmental, social, and corporate governance (ESG) issues can affect the performance of investment portfolios (to varying degrees across companies, sectors, regions, asset classes and through time). We also recognise that applying these Principles may better align investors with broader objectives of society. There-fore, where consistent with our fiduciary responsibilities, we commit to the following:

- Principle 1: We will incorporate ESG issues into investment analysis and decision-making processes.
- Principle 2: We will be active owners and incorporate ESG issues into our ownership policies and practices.
- Principle 3: We will seek appropriate disclosure on ESG issues by the entities in which we invest.
- Principle 4: We will promote acceptance and implementation of the Principles within the investment industry.
- Principle 5: We will work together to enhance our effectiveness in implementing the Principles.
- Principle 6: We will each report on our activities and progress towards implementing the Principles.

The Principles for Responsible Investment were developed by an international group of institutional investors reflecting the increasing relevance of environmental, social and corporate governance issues to investment practices. The process was convened by the United Nations Secretary-General.

In signing the Principles, we as investors publicly commit to adopt and implement them, where consistent with our fiduciary responsibilities. We also commit to evaluate the effectiveness and improve the content of the Principles over time. We believe this will improve our ability to meet commitments to beneficiaries as well as better align our investment activities with the broader interests of society.

We encourage other investors to adopt the Principles."

Source: https://www.unpri.org

Many financial actors Reporting frameworks Regulatory framework

PRI

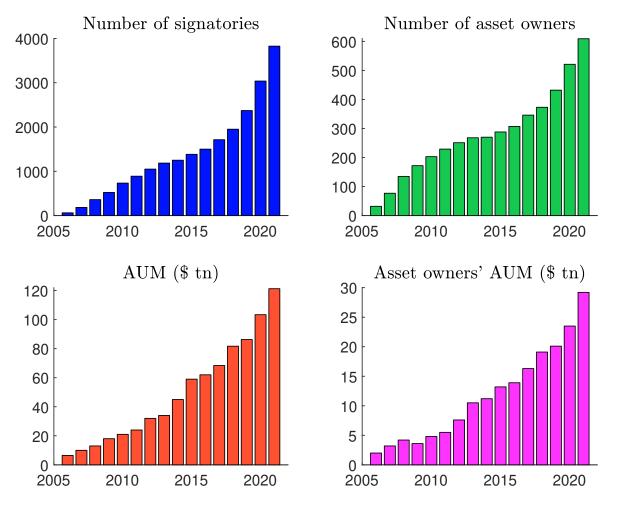


Figure 6: PRI Signatory growth

Source: https://www.unpri.org

Many financial actors Reporting frameworks Regulatory framework

Rating agencies

- Early stage (1990-2010): Eiris (1985, UK), KLD (1988, US), Jantzi Research (1992, Canada), GES (1992, Sweden), Innovest (1995, US), SAM (1995, Switzerland), RepRisk (1998, Switzerland), Oekom (1999, Germany), Ethix (1999, Sweden), Trucost (2000, UK), Inrate (2001, Switzerland), Vigeo (2002, France), DSR (2002, Netherlands), EthiFinance (2004, France), etc.
- Consolidation of the industry (2010-2020): ISS ESG, Moody's, MSCI, Refinitiv, Reprisk, S&P Global, Sustainalytics.

Many financial actors Reporting frameworks Regulatory framework

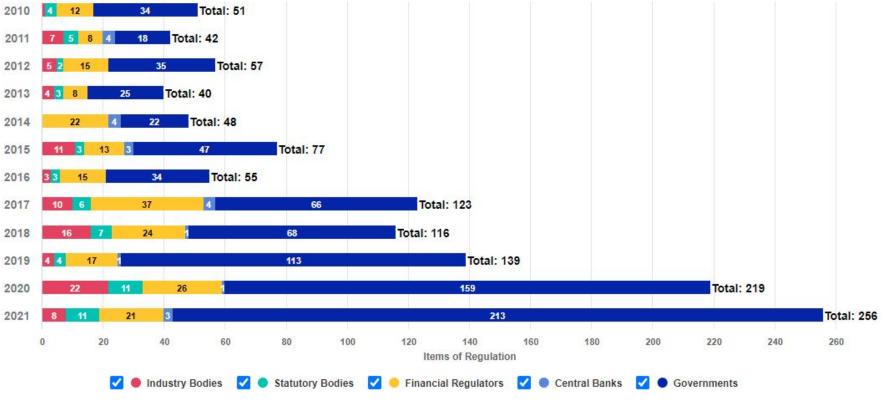
Rating agencies

- ESG scores and ratings
- 2 ESG data
- SG indices

Many financial actors Reporting frameworks Regulatory framework

Regulators: Who? Why?

Table 1: The supervision institutions in finance

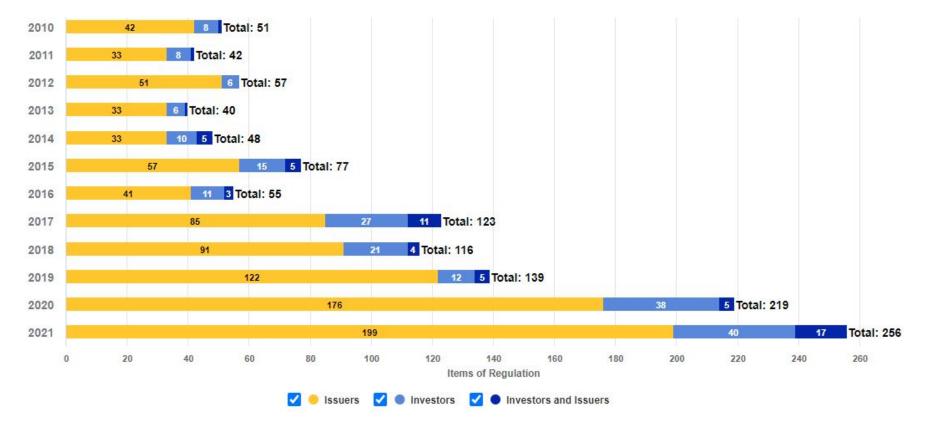

	Banks	Insurers	Markets	All sectors
Global	BCBS	IAIS	IOSCO	FSB
EU	EBA/ECB	EIOPA	ESMA	ESFS
US	FDIC/FRB	FIO	SEC	FSOC

• Greenwashing

- Explicit & deliberate greenwashing;
- Unintentional greenwashing.
- Fiduciary duties

ESG regulations

Figure 7: Who will regulate ESG? — The regulators viewpoint (MSCI, 2022)



Source: https://www.msci.com/who-will-regulate-esg.

Many financial actors Reporting frameworks Regulatory framework

ESG regulations

Figure 8: Who will regulate ESG? — The regulated viewpoint (MSCI, 2022)

Source: https://www.msci.com/who-will-regulate-esg.

Many financial actors Reporting frameworks Regulatory framework

ESG regulations

Visit the MSCI website

https://www.msci.com/who-will-regulate-esg

and obtain the detailed list of regulations

by year, country, regulator, regulated investors, etc.

Many financial actors Reporting frameworks Regulatory framework

The example of central banks

Figure 9: Network of Central Banks and Supervisors for Greening the Financial System (NGFS)

- Launched at the Paris One Planet Summit (OPS) on December 2017
- 8 founding members: Banco de Mexico, BoE, BdF, Dutch Central Bank, Buba, Swedish FSA, HKMA, MAS and PBOC
- As of March 19th 2021, the NGFS consists of 89 members (CBs, EBA, EIOPA, ESMA) and 13 observers (BCBS, IMF, IAIS, IOSCO)

Many financial actors Reporting frameworks Regulatory framework

The example of central banks

Go the NGFS website (https://www.ngfs.net) and download the NGFS climate scenarios: https://www.ngfs.net/en/publications/ ngfs-climate-finance-research-portal

See also https://data.ene.iiasa.ac.at/ngfs (NGFS scenario explorer hosted by IIASA³)

³International Institute for Applied Systems Analysis

Many financial actors Reporting frameworks Regulatory framework

Reporting frameworks

Table 2: List of the main reporting frameworks

Perimeter	Acronym	Name	Dates
	GC	UN Global Compact Initiative	2000/2000
	GRI	Global Reporting Initiative	1997/2000
General	IIRC	International Integrated Reporting Council	2010/2013
General	ISSB	International SustainabilityStandards Board	2021/2023
	SASB	Sustainability Accounting Standards Board	2011/2016
	SDGs	UN Sustainable Development Goals	2015/2016
	CDP	Carbon Disclosure Project	2000/2000
	CDSB	Climate Disclosure Standards Board	2007/2015
Climate	GHG Protocol	Greenhouse Gas Protocol	1998/2001
Climate	PCAF	Partnership for Carbon Accounting Financials	2019/2020
	SBTi	Science Based Targets initiative	2015/2015
	TCFD	Task Force on Climate-Related Financial Disclosures	2015/2017

Many financial actors Reporting frameworks Regulatory framework

Sustainable Development Goals

Figure 10: The SDGs icons

Source: https://sdgs.un.org/goals#icons.

Sustainable Development Goals

Table 3: The 17 SDGs

#	Name	Description	E	S	G
1	No poverty	End poverty in all its forms everywhere		\checkmark	
2	Zero hunger End hunger, achieve food security and improved nutrition and promote sustainable agriculture			✓	
3	Good health and well-being Ensure healthy lives and promote well-being for all at all ages			$\overline{\checkmark}$	
4	Quality education	Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all		✓	
5	Gender equality	ender equality Achieve gender equality and empower all women and girls		$\overline{\checkmark}$	$\overline{\checkmark}$
6	Clean water and sanitation	Ensure availability and sustainable management of water and sanitation for all	✓	 ✓ 	
7	Affordable and clean energy	Ensure access to affordable, reliable, sustainable and modern energy for all	✓		
8	Decent work and economic growth	Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all		✓	√
9	Industry, innovation andBuild resilient infrastructure, promote inclusive andinfrastructuresustainable industrialization and foster innovation			✓	✓

Source: https://sdgs.un.org/goals.

Sustainable Development Goals

Table 4: The 17 SDGs

#	Name	Description	E	S	G
10	Reduced inequality	Reduce inequality within and among countries		\checkmark	
11	Sustainable cities and communities	Make cities and human settlements inclusive, safe, resilient and sustainable	· · · · · · · · · · · · · · · ·		✓
12	Responsible consumption and production	Ensure sustainable consumption and production patterns	\checkmark	\checkmark	\checkmark
13	Climate action	Take urgent action to combat climate change and its impacts	$\overline{\checkmark}$		$\overline{\checkmark}$
14	Life below water	Conserve and sustainably use the oceans, seas and marine resources for sustainable development	\checkmark		
15	Life on land	Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss	✓	`	
16	Peace, justice, and strong institutions	Promote peaceful and inclusive societies for sustainable development, provide access to justice for all and build effective, accountable and inclusive institutions at all levels		✓	✓
17	Partnerships for the goals Global Partnership for Sustainable Development				✓

Source: https://sdgs.un.org/goals.

GHG Protocol

The GHG Protocol corporate standard classifies a company's greenhouse gas emissions in three scopes⁴:

- **Scope 1**: Direct GHG emissions (°)
- **Scope 2**: Consumption of purchased energy (○ ○)
- **Scope 3**: Other indirect GHG emissions (● ●)
 - Scope 3 upstream: emissions associated to the supply side
 - First tier direct (●)
 - **2** Tier 2 and 3 suppliers $(\bullet \bullet)$
 - Scope 3 downstream: emissions associated with the product sold by the entity
 - **(**) Use of the product $(\bullet \bullet \bullet)$
 - ② Waste disposal & recycling (●●●)

⁴Measurement robustness: from $\circ \circ \circ \circ$ (very high) to $\bullet \bullet \bullet \bullet$ (very low)

Many financial actors Reporting frameworks Regulatory framework

Carbon Disclosure Project (CDP)

Each year, CDP sends a questionnaire to organizations and collects information on three environmental dimensions:

- Climate change (based on the GHG Protocol)
- Porest management
- Water security

Many financial actors Reporting frameworks Regulatory framework

Carbon Disclosure Project (CDP)

Table 5: Examples of 2019 carbon emissions and intensity

Compony		Emission	(in tCO ₂ e)		Revenue	Int	ensity (i	in tCO ₂ e/S	\$ mn)
Company	\mathcal{SC}_1	\mathcal{SC}_2	$\mathcal{SC}_3^{\mathrm{up}}$	$\mathcal{SC}_3^{ m down}$	(in \$ mn)	\mathcal{SC}_1	\mathcal{SC}_2	$\mathcal{SC}_3^{\mathrm{up}}$	$\mathcal{SC}_3^{ m down}$
Amazon	5 760 000	5 500 000	20 054 722	10 438 551	280 522	20.5	19.6	71.5	37.2
Apple	50 549	862 127	27 624 282	5 470 771	260 174	0.2	3.3	106.2	21.0
BNP Paribas	64 829	280 789	1 923 307	1 884	78 244	0.8	3.6	24.6	0.0
BP	49 199 999	5 200 000	103 840 194	582 639 687	276 850	177.7	18.8	375.1	2104.5
Caterpillar	905 000	926 000	15 197 607	401 993 744	53 800	16.8	17.2	282.5	7 472.0
Danone	722 122	944 877	28 969 780	4 464 773	28 308	25.5	33.4	1023.4	157.7
Exxon	111 000 000	9 000 000	107 282 831	594 131 943	255 583	434.3	35.2	419.8	2 324.6
JPMorgan Chase	81 655	692 299	3 101 582	15 448 469	115 627	0.7	6.0	26.8	133.6
LVMH	67 613	262 609	11853749	942 520	60 083	1.1	4.4	197.3	15.7
Microsoft	113 414	3 556 553	5 977 488	4 003 770	125 843	0.9	28.3	47.5	31.8
Nestle	3 291 303	3 206 495	61 262 078	33 900 606	93 153	35.3	34.4	657.6	363.9
Pfizer	734 638	762 840	4 667 225	133 468	51 750	14.2	14.7	90.2	2.6
Samsung Electronics	5 067 000	10998000	33 554 245	60 978 947	197 733	25.6	55.6	169.7	308.4
Volkswagen	4 494 066	5 973 894	65 335 372	354 913 446	282 817	15.9	21.1	231.0	1 254.9
Walmart	6 101 641	13 057 352	40 651 079	32 346 229	514 405	11.9	25.4	79.0	62.9

Source: Trucost (2022) & Authors' calculations.

Many financial actors Reporting frameworks Regulatory framework

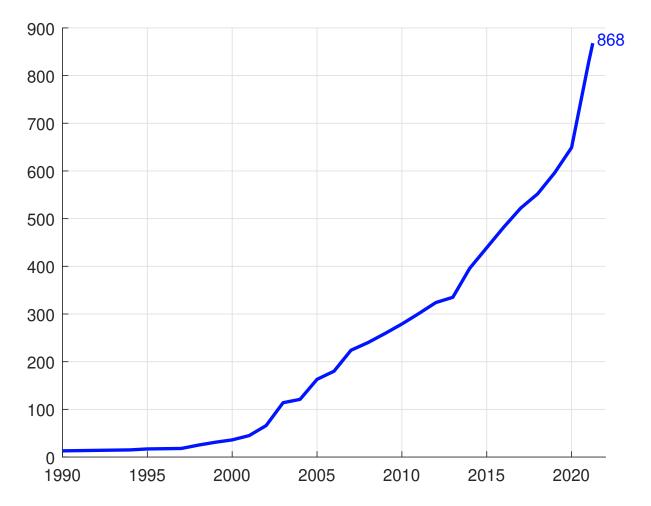
TCFD

Table 6: The 11 recommended disclosures (TCFD, 2017)

Recommendation	#	Recommended Disclosure
Governance	1	Board oversight
Governance	2	Management's role
	3	Risks and opportunities
Strategy	4	Impact on organization
	5	Resilience of strategy
	6	Risk ID and assessment processes
Risk management	7	Risk management processes
	8	Integration into overall risk management
	9	Climate-related metrics
Metrics and targets	10	Scope 1, 2, 3 GHG emissions
	11	Climate-related targets

Source: https://www.fsb-tcfd.org.

TCFD

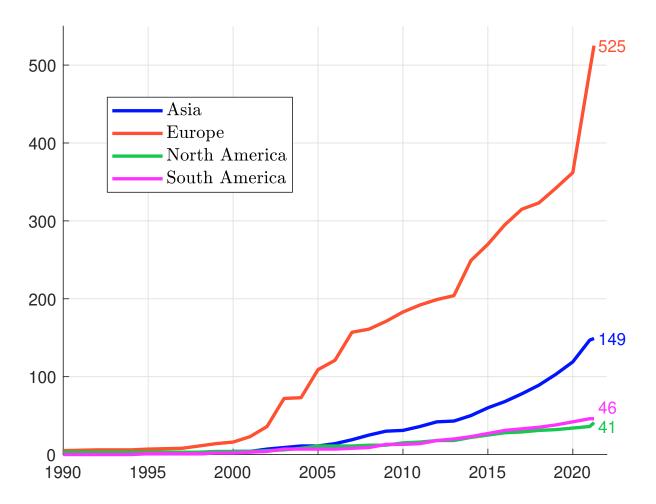

Examples of recommended metrics

- GHG emissions (absolute scope 1, scope 2, and scope 3 GHG emissions; financed emissions by asset class; weighted average carbon intensity)
- Transition risks (volume of real estate collaterals highly exposed to transition risk; concentration of credit exposure to carbon-related assets; percent of revenue from coal mining)
- Physical risks (number and value of mortgage loans in 100-year flood zones; proportion of real assets exposed to 1:100 or 1:200 climate-related hazards)
- Climate-related opportunities (proportion of green buildings, green revenues)
- Capital deployment (green CAPEX)
- Internal carbon prices (internal carbon price, shadow carbon price)
- Remuneration

Many financial actors Reporting frameworks Regulatory framework

Regulatory framework

Figure 11: Total number of ESG regulations



Source: PRI (2022), https://www.unpri.org/policy/regulation-database.

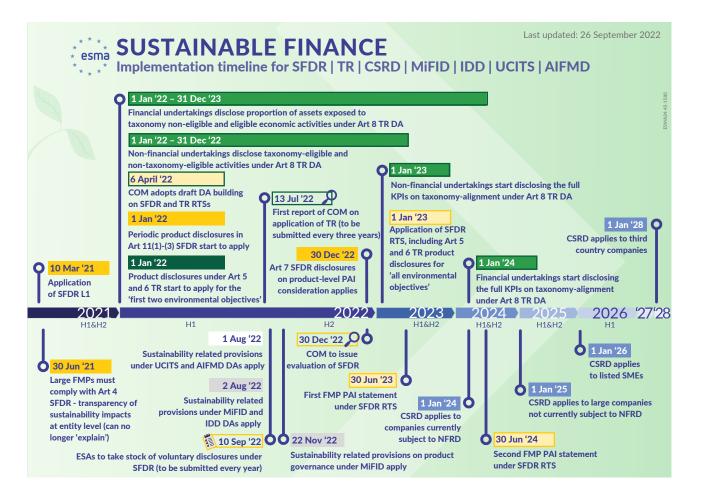
Many financial actors Reporting frameworks Regulatory framework

Regulatory framework

Figure 12: Number of ESG regulations per region

Source: PRI (2022), https://www.unpri.org/policy/regulation-database.

European Union


- The action plan on sustainable finance (May 2018)
- The European Green Deal (December 2019)
- The Fit-for-55 package (July 2021)
- The REPowerEU plan or energy security package (May 2022)

European Union

- EU taxonomy regulation
- Climate benchmarks (PAB)
- Sustainable finance disclosure regulation (SFDR)
- MiFID II & IDD
- Corporate sustainability reporting directive (CSRD)


European Union

Figure 13: Sustainable finance — implementation timeline

European Union

Figure 14: Sustainable finance — implementation timeline

Many financial actors Reporting frameworks Regulatory framework

EU taxonomy regulation

- Climate change mitigation
- Olimate change adaptation
- Sustainable use and protection of water and marine resources
- Transition to a circular economy
- Pollution prevention and control
- O Protection and restoration of biodiversity and ecosystem

Climate benchmarks

The common principles are:

- A year-on-year self-decarbonization of 7% on average per annum, based on scope 1, 2 and 3 emissions
- A minimum carbon intensity reduction \mathcal{R}^- compared to the investable universe
- A minimum exposure to sectors highly exposed to climate change

Two labels:

- CTB: (climate transition benchmark) $\Rightarrow \mathcal{R}^- = 30\%$
- ② PAB: (Paris aligned benchmark) $\Rightarrow \mathcal{R}^- = 50\%$

SFDR

- Article 6 (or non-ESG products)
 - It covers standard financial products that cannot be Article 8 or Article 9
- Article 8 (or ESG products) It corresponds to financial products which "promote, among other characteristics, environmental or social characteristics, or a combination of those characteristics, provided that the companies in which the investments are made follow good governance practices"
- Article 9 (or sustainable products) In addition to the points covered by Article 8, these financial products have a sustainable investment objective
- + SI, PAI, etc.

Many financial actors Reporting frameworks Regulatory framework

MiFID II & IDD

 \Rightarrow sustainable preferences

CSRD

- Environmental factors: (1) climate change mitigation; (2) climate change adaptation; (3) water and marine resources; (4) resource use and circular economy; (5) pollution; (6) biodiversity and ecosystems.
- Social factors: (1) equal opportunities for all; (2) working conditions; (3) respect for human rights.
- Governance factors: (1) role and composition of administrative, management and supervisory bodies; (2) business ethics and corporate culture, including anti-corruption and anti-bribery; (3) political engagements of the undertaking, including its lobbying activities; (4) management and quality of relationships with business partners.

single materiality \neq double materiality

ESG strategies The market share of ESG investing

ESG strategies

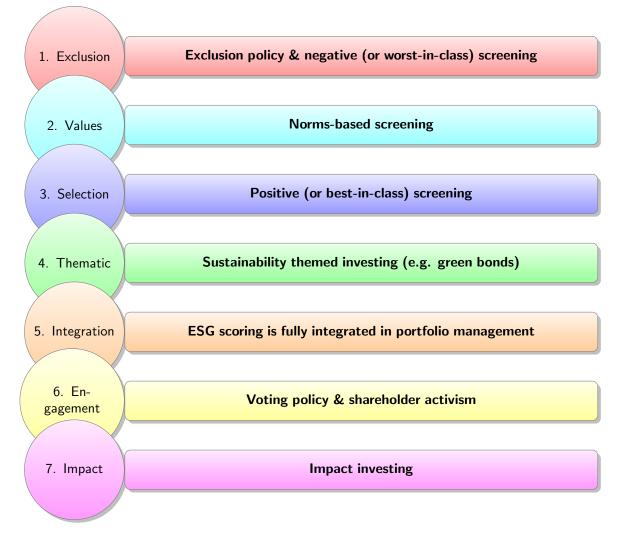


Figure 15: Categorisation of ESG strategies (Eurosif, 2019)

ESG strategies

Exclusion/Negative Screening

The exclusion from a fund or portfolio of certain sectors, companies or practices based on specific ESG criteria (worst-in-class)

Source: Global Sustainable Investment Alliance (2019)

- Systematic exclusion of issuers rated **CCC**
- Exclusion of issuers rated **BB**, **B** and **CCC**
- Sector exclusion (e.g., Energy)
- Sub-industry exclusion (e.g. Coal & Consumable Fuels)
- Exclusion list of individual issuers

ESG strategies

Values/Norms-based Screening (and Red Flags)

Screening of investments against minimum standards of business practice based on international norms, such as those issued by the OECD, ILO, UN (Global Compact) and UNICEF^a

^aIn Europe, the top exclusion criteria are (1) controversial weapons (Ottawa and Oslo treaties), (2), tobacco, (3) all weapons, (4) gambling, (5) pornography, (6) nuclear energy, (7) alcohol, (8) GMO and (9) animal testing (Eurosif, 2019)

Source: Global Sustainable Investment Alliance (2019)

- Controversial sectors: controversial weapons, conventional weapons, civilian firearms, nuclear weapons, nuclear power, thermal coal, tobacco, alcohol, gambling, adult entertainment, genetically modified, fossil fuels production & reserves
- Many ETF funds

ESG strategies The market share of ESG investing

ESG strategies

Selection/Positive Screening

Investment in sectors, companies or projects selected for positive ESG performance relative to industry peers (best-in-class)

Source: Global Sustainable Investment Alliance (2019)

- Selection of issuers rated **AAA**, **AA** and **A**
- Selection of issuers that have improved their rating (Momentum ESG strategy)

ESG strategies

Thematic/Sustainability Themed Investing

Investment in themes or assets specifically related to sustainability (for example clean energy, green technology or sustainable agriculture)

Source: Global Sustainable Investment Alliance (2019)

- Funds invested in Green Bonds
- Funds invested in Social Bonds
- Funds invested in Sustainable Infrastructure
- Funds invested in Natural Ressources

ESG strategies The market share of ESG investing

ESG strategies

ESG Integration

The systematic and explicit inclusion by investment managers of environmental, social and governance factors into financial analysis

Source: Global Sustainable Investment Alliance (2019)

- The stock picking score is a mix (50/50) of a fundamental score and an ESG score
- The fund must have an ESG score greater than the score of its benchmark

ESG strategies

Corporate Engagement/Shareholder Action

The use of shareholder power to influence corporate behavior, including through direct corporate engagement (i.e., communicating with senior management and/or boards of companies), filing or co-filing shareholder proposals, and proxy voting that is guided by comprehensive ESG guidelines.

Source: Global Sustainable Investment Alliance (2019)

- Voting policy
- Public divestment
- Biodiversity and deforestation financing
- Engagement with target companies on a specific subject (e.g., pay ratio or living wage)
- Escalated engagement: concerns public, proposing shareholder resolutions & litigation

ESG strategies

Impact Investing

Targeted investments aimed at solving social or environmental problems, and including community investing, where capital is specifically directed to traditionally underserved individuals or communities, as well as financing that is provided to businesses with a clear social or environmental purpose

Source: Global Sustainable Investment Alliance (2019)

- Funds with a Social Impact objective
- Funds invested in Green Bonds
- PAB and CTB ETFs

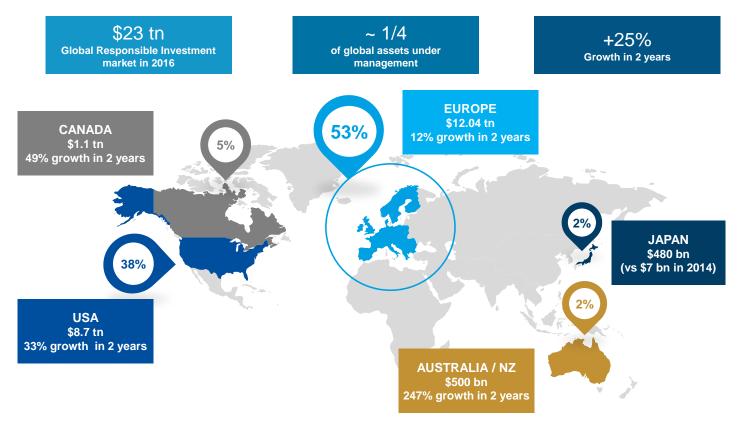
ESG strategies

Impact Investing/Community Investing

Impact Investing

Investing to achieve positive, social and environmental impacts – requires measuring and reporting against these impacts, demonstrating the intentionality of investor and underlying asset/investee, and demonstrating the investor contribution

Community Investing

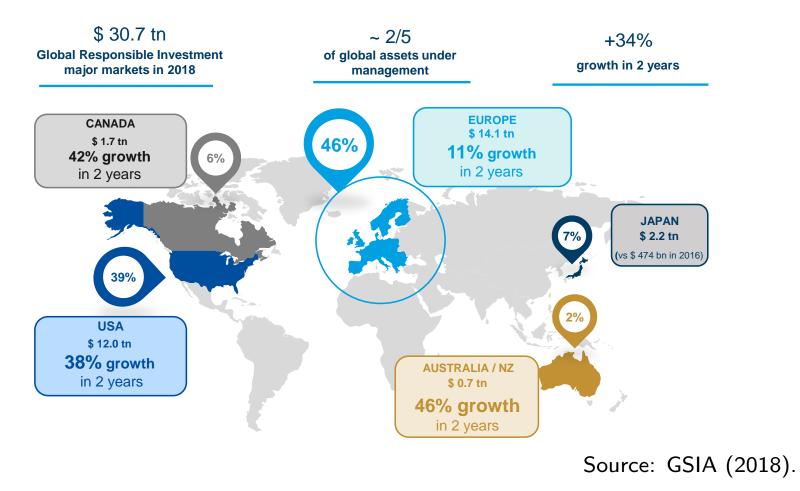

Where capital is specifically directed to traditionally underserved individuals or communities, as well as financing that is provided to businesses with a clear social or environmental purpose. Some community investing is impact investing, but community investing is broader and considers other forms of investing and targeted lending activities.

Source: Global Sustainable Investment Alliance (2021)

ESG strategies The market share of ESG investing

The market of ESG investing

Figure 16: Sustainable investment assets at the start of 2016



Source: GSIA (2016).

ESG strategies The market share of ESG investing

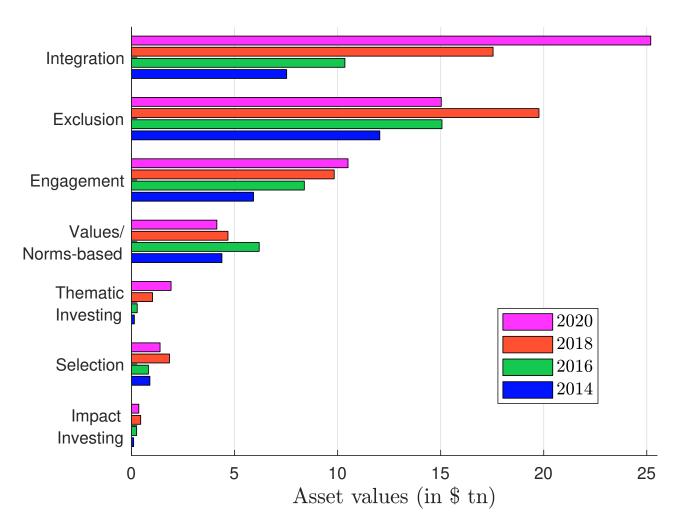
The market of ESG investing


Figure 17: Sustainable investment assets at the start of 2018

ESG strategies The market share of ESG investing

The market of ESG investing

Figure 18: Sustainable investment assets at the start of 2020



Source: GSIA (2020).

ESG strategies The market share of ESG investing

The market of ESG investing

Figure 19: Asset values of ESG strategies between 2014 and 2018

Source: GSIA (2012, 2014, 2016, 2018, 2020) & Author's calculations.

ESG strategies The market share of ESG investing

The market of ESG investing

Table 7: ESG asset growth

#	ESG strategy		2020 AUM		
		2014-2016	2016-2018	2018-2020	(in \$ bn)
1	Exclusion	11.7%	14.6%	-24.0%	15 030
2	Values/Norms-based	19.0%	-13.1%	-11.5%	4 1 4 0
3	Selection	7.6%	50.1%	-24.9%	1 384
4	Thematic Investing	55.1%	92.0%	91.4%	1948
5	Integration	17.4%	30.2%	43.6%	25 195
6	Engagement	18.9%	8.3%	6.8%	10 504
7	Impact Investing	56.8%	33.7%	-20.8%	352

Source: GSIA (2012, 2014, 2016, 2018, 2020) & Author's calculations.

Course 2022-2023 in Sustainable Finance Lecture 2. ESG Scoring

Thierry Roncalli*

*Amundi Asset Management⁵

*University of Paris-Saclay

March 2023

⁵The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

ESG data

Several issues:

- E: climate change mitigation, climate change adaptation, preservation of biodiversity, pollution prevention, circular economy
- S: inequality, inclusiveness, labor relations, investment in human capital and communities, human rights
- **G**: management structure, employee relations, executive remuneration
- \Rightarrow requires a lot of alternative data

Sovereign ESG data Corporate ESG data

Sovereign ESG data

Sovereign ESG framework

- World Bank
- Data may be download at the following webpage: https://datatopics.worldbank.org/esg/framework.html
- E: 27 variables
- S: 22 variables
- G: 18 variables

Sovereign ESG data Corporate ESG data

Sovereign ESG data

Table 8: The World Bank database of sovereign ESG indicators

Environmental

- Emissions & pollution (5)
- Natural capital endowment and management (6)
- Energy use & security (7)
- Environment/ climate risk & resilience (6)
- Food security (3)

Social

- Education & skills
 (3)
- Employment (3)
- Demography (3)
- Poverty & inequality (4)
- Health & nutrition
 (5)
- Access to services
 (4)

Governance

- Human rights (2)
- Government effectiveness (2)
- Stability & rule of law (4)
- Economic environment (3)
- Gender (4)
- Innovation (3)

Sovereign ESG data

Table 9: Indicators of the environmental pillar (World Bank database)

- Emissions & pollution (1) CO2 emissions (metric tons per capita); (2) GHG net emissions/removals by LUCF (Mt of CO2 equivalent); (3) Methane emissions (metric tons of CO2 equivalent per capita); (4) Nitrous oxide emissions (metric tons of CO2 equivalent per capita); (5) PM2.5 air pollution, mean annual exposure (micrograms per cubic meter);
- Natural capital endowment & management: (1) Adjusted savings: natural resources depletion (% of GNI); (2) Adjusted savings: net forest depletion (% of GNI); (3) Annual freshwater withdrawals, total (% of internal resources); (4) Forest area (% of land area); (5) Mammal species, threatened; (6) Terrestrial and marine protected areas (% of total territorial area);
- Energy use & security: (1) Electricity production from coal sources (% of total); (2) Energy imports, net (% of energy use); (3) Energy intensity level of primary energy (MJ/\$2011 PPP GDP); (4) Energy use (kg of oil equivalent per capita); (5) Fossil fuel energy consumption (% of total); (6) Renewable electricity output (% of total electricity output); (7) Renewable energy consumption (% of total final energy consumption);
- Environment/climate risk & resilience: (1) Cooling degree days (projected change in number of degree Celsius); (2) Droughts, floods, extreme temperatures (% of population, average 1990-2009); (3) Heat Index 35 (projected change in days); (4) Maximum 5-day rainfall, 25-year return level (projected change in mm); (5) Mean drought index (projected change, unitless); (6) Population density (people per sq. km of land area)
- Food security: (1) Agricultural land (% of land area); (2) Agriculture, forestry, and fishing, value added (% of GDP); (3) Food production index (2004-2006 = 100);

Source: https://datatopics.worldbank.org/esg/framework.html.

Sovereign ESG data

Table 10: Indicators of the social pillar (World Bank database)

- Education & skills: (1) Government expenditure on education, total (% of government expenditure);
 (2) Literacy rate, adult total (% of people ages 15 and above); (3) School enrollment, primary (% gross);
- **Employment**: (1) Children in employment, total (% of children ages 7-14); (2) Labor force participation rate, total (% of total population ages 15-64) (modeled ILO estimate); (3) Unemployment, total (% of total labor force) (modeled ILO estimate);
- Demography: (1) Fertility rate, total (births per woman); (2) Life expectancy at birth, total (years);
 (3) Population ages 65 and above (% of total population);
- **Poverty & inequality**: (1) Annualized average growth rate in per capita real survey mean consumption or income, total population (%); (2) Gini index (World Bank estimate); (3) Income share held by lowest 20%; (4) Poverty headcount ratio at national poverty lines (% of population);
- Health & nutrition: (1) Cause of death, by communicable diseases and maternal, prenatal and nutrition conditions (% of total); (2) Hospital beds (per 1,000 people); (3) Mortality rate, under-5 (per 1,000 live births); (4) Prevalence of overweight (% of adults); (5) Prevalence of undernourishment (% of population);
- Access to services: (1) Access to clean fuels and technologies for cooking (% of population); (2) Access to electricity (% of population); (3) People using safely managed drinking water services (% of population); (4) People using safely managed sanitation services (% of population);

Source: https://datatopics.worldbank.org/esg/framework.html.

Sovereign ESG data

Table 11: Indicators of the governance pillar (World Bank database)

- Human rights: (1) Strength of legal rights index (0 = weak to 12 = strong); (2) Voice and accountability (estimate);
- **Government effectiveness**: (1) Government effectiveness (estimate); (2) Regulatory quality (estimate);
- **Stability & rule of law**: (1) Control of corruption (estimate); (2) Net migration; (3) Political stability and absence of violence/terrorism (estimate); (4) Rule of law (estimate)
- **Economic environment**: (1) Ease of doing business index (1 = most business-friendly regulations); (2) GDP growth (annual %); (3) Individuals using the internet (% of population);
- **Gender**: (1) Proportion of seats held by women in national parliaments (%); (2) Ratio of female to male labor force participation rate (%) (modeled ILO estimate); (3) School enrollment, primary and secondary (gross), gender parity index (GPI); (4) Unmet need for contraception (% of married women ages 15-49);
- Innovation: (1) Patent applications, residents; (2) Research and development expenditure (% of GDP);
 (3) Scientific and technical journal articles;

Source: https://datatopics.worldbank.org/esg/framework.html.

Where to find the data?

- National accounts statistics collected by OECD, United Nations Statistics Division (UNSD), etc.
- Internal departments and specialized databases of the World Bank: World Bank Open Data, Business Enabling Environment (BEE), Climate Change Knowledge Portal (CCKP), Global Electrification Database (GEP), etc.
- International organizations: Emission Database for Global Atmospheric Research (EDGAR), Food and Agriculture Organization FAO, International Energy Agency (IEA), International Labour Organization (ILO), World Health Organization (WHO), etc.
- NGOs: Climate Watch, etc.;
- Academic resources: International disasters database (EM-DAT) of the Centre for Research on the Epidemiology of Disasters (Université Catholique de Louvain), etc.

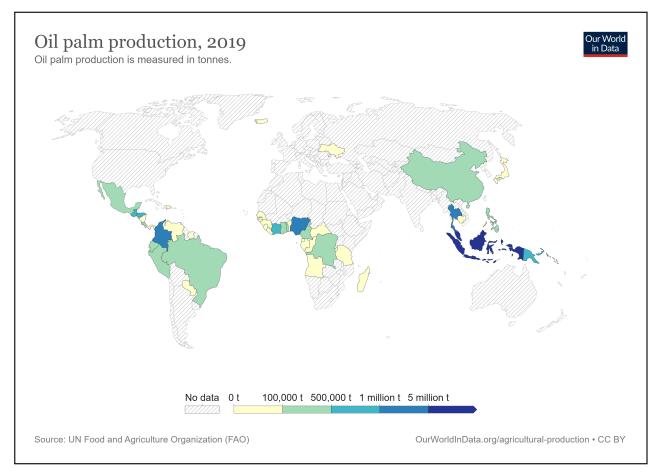
Sovereign ESG data Corporate ESG data

Other frameworks

The most known are FTSE (Beyond Ratings), Moody's (Vigeo-Eiris), MSCI, Sustainalytics, RepRisk and Verisk Mapplecroft.

 \Rightarrow The average cross-correlation between data providers is equal to 85% for the ESG score, 42% for the environmental score, 85% for the social score and 71% for the governance score

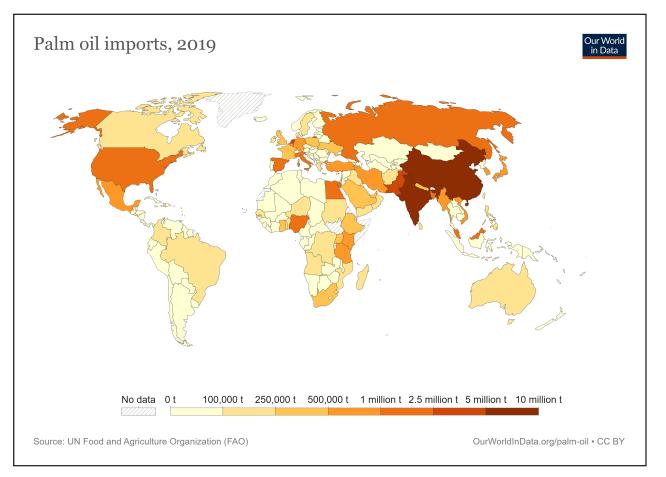
Bias towards richest countries


Table 12: Correlation of ESG scores with countrys national income (GNI per capita)

Factor	ESG	E	S	G
ISS	68%	7%	86%	77%
FTSE (Beyond Ratings)	91%	74%	88%	84%
MSCI	84%	10%	90%	77%
RepRisk	78%	79%	75%	37%
RobecoSAM	89%	82%	85%	85%
Sustainalytics	95%	83%	94%	93%
V.E	60%	23%	79%	39%
Total	81%	51%	85%	70%

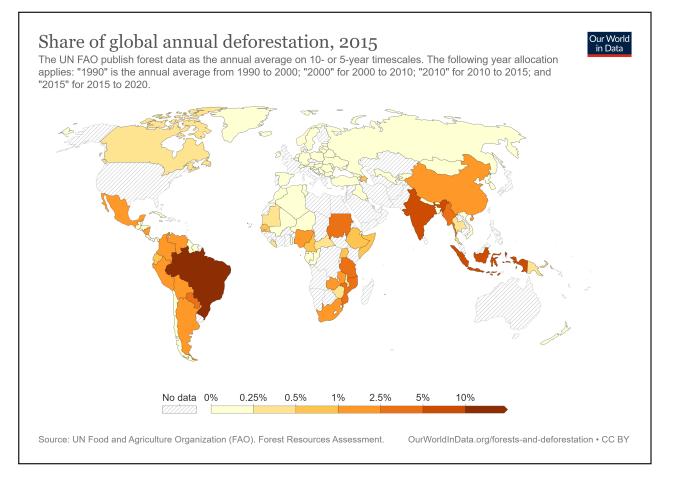
Source: Gratcheva et al. (2020).

The mushrooming growth of data


Figure 20: Palm oil production (2019)

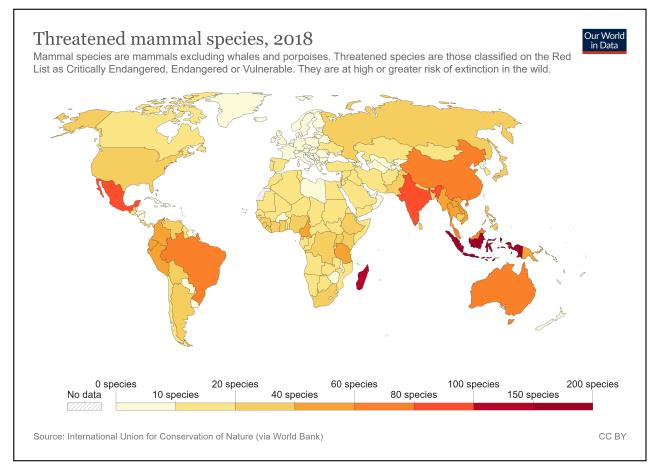
Source: Our World in Data, https://ourworldindata.org/palm-oil.

The mushrooming growth of data


Figure 21: Palm oil imports (2019)

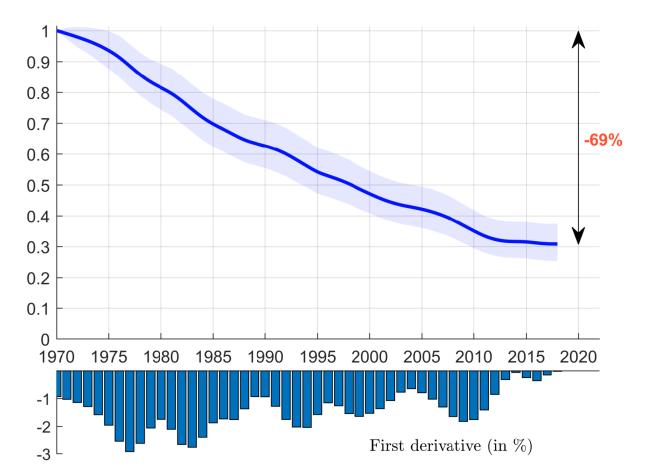
Source: Our World in Data, https://ourworldindata.org/palm-oil.

The mushrooming growth of data


Figure 22: Share of global annual deforestation (2015)

Source: Our World in Data, https://ourworldindata.org/deforestation.

The mushrooming growth of data


Figure 23: Threatened mammal species (2018)

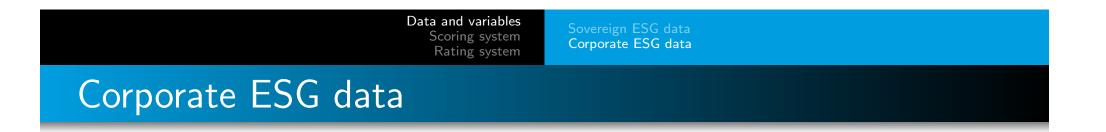
Source: Our World in Data, https://ourworldindata.org/biodiversity.

An example with the biodiversity risk

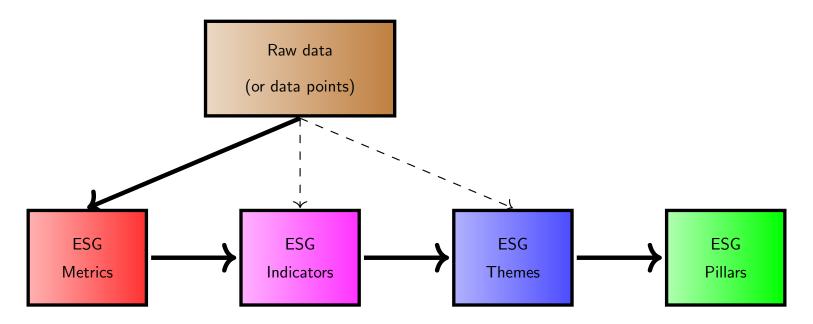
Figure 24: Global living planet index

Source: https://livingplanetindex.org/latest_results & Author's calculation.

An example with the biodiversity risk


Some databases:

- the Red List Index (RLI)
- World Database on Protected Areas (WDPA)
- Integrated Biodiversity Assessment Tool (IBAT)
- Exploring Natural Capital Opportunities, Risks and Exposure (ENCORE)
- Etc.


Corporate ESG data

Data sources:

- Corporate publications (self-reporting)
 - Annual reports
 - Orporate sustainability reports
- Financial and regulatory filings (standardized reporting)
 - Mandatory reports (SFDR, CSRD, EUTR, etc.)
 - Non-mandatory frameworks (PRI, TCFD, CDP, etc.)
- News and other media
- In NGO reports and websites
- Company assessment and due diligence questionnaire (DDQ)
- Internal models

Figure 25: From raw data to ESG pillars

Sovereign ESG data Corporate ESG data

Corporate ESG data

Table 13: An example of ESG criteria (corporate issuers)

Environmental

- Carbon emissions
- Energy use
- Pollution
- Waste disposal
- Water use
- Renewable energy
- Green cars*
- Green financing*

Social

- Employment conditions
- Community involvement
- Gender equality
- Diversity
- Stakeholder opposition
- Access to medicine

Governance

- Board independence
- Corporate behaviour
- Audit and control
- Executive compensation
- Shareholder' rights
- CSR strategy

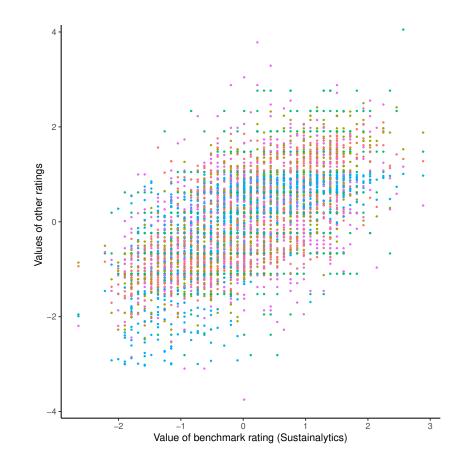
 $^{(\star)}$ means a specific criterion related to one or several sectors (Green cars \Rightarrow Automobiles, Green financing \Rightarrow Financials)

Corporate ESG data

Some examples:

- Bloomberg rates 11800 public companies. They use more than 120 ESG indicators and 2000+ data points.
- ISS ESG rates about 10 000 issuers. They use more than 800 indicators and applies approximately 100 indicators per company.
- FTSE Russell rates about 7 200 securities. They use more than 300 indicators and 14 themes.
- MSCI rates 10 000 companies (14 000 issuers including subsidiaries) and 680 000 securities globally. They use 10 themes, 1000+ data points, 80 exposure metrics and 250+ management metrics.
- Refinitiv rates 12000 public and private companies. They consider 10 themes. These themes are built using 186 metrics and 630+ data points.
- S&P Dow Jones Indices uses between 16 to 27 criteria scores, a questionnaire and 1000 data points.
- Sustainalytics rates more than 16 300 companies. They consider 20 material ESG issues, based on 350+ indicators.

Sovereign ESG data Corporate ESG data


The race for alternative data

- Controversies \Rightarrow NLP (RepRisk, daily basis: 500 000+ documents, 100 000+ sources, 23 languages)
- Geospatial data \Rightarrow Physical risk

Sovereign ESG data Corporate ESG data

The divergence of corporate ESG ratings

Figure 26: ESG rating disagreement

Source: Berg et al. (2022).

The divergence of corporate ESG ratings

Berg et al. (2022) identify three sources of divergence:

- "Measurement divergence refers to situation where rating agencies measure the same indicator using different ESG metrics (56%)
- **Scope** divergence refers to situation where ratings are based on different set of ESG indicators (38%)
- **Weight** divergence emerges when rating agencies take different views on the relative importance of ESG indicators" (6%)

Sovereign ESG data Corporate ESG data

The divergence of corporate ESG ratings

Table 14: Rank correlation among ESG ratings

MSCI	Refinitiv	S&P Global	
100%			
43%	100%		
45%	69%	100%	
53%	64%	69%	100%
	100% 43% 45%	100% 43% 100% 45% 69%	100% 43% 100% 45% 69% 100%

Source: Billio et al. (2021).

Tree-based scoring method Other statistical methods Performance evaluation criteria

One-level tree structure

- X_1, \ldots, X_m are *m* features
- The score is linear:

$$\boldsymbol{\mathcal{S}} = \sum_{j=1}^m \omega_j X_j$$

• ω_j is the weight of the j^{th} metric

Tree-based scoring method Other statistical methods Performance evaluation criteria

One-level tree structure

- X_1, \ldots, X_m are m features
- The score is linear:

$$\boldsymbol{\mathcal{S}} = \sum_{j=1}^m \omega_j X_j$$

• ω_j is the weight of the j^{th} metric

Tree-based scoring method Other statistical methods Performance evaluation criteria

One-level tree structure

The Altman Z score is equal to:

$$Z = 1.2 \cdot X_1 + 1.4 \cdot X_2 + 3.3 \cdot X_3 + 0.6 \cdot X_4 + 1.0 \cdot X_5$$

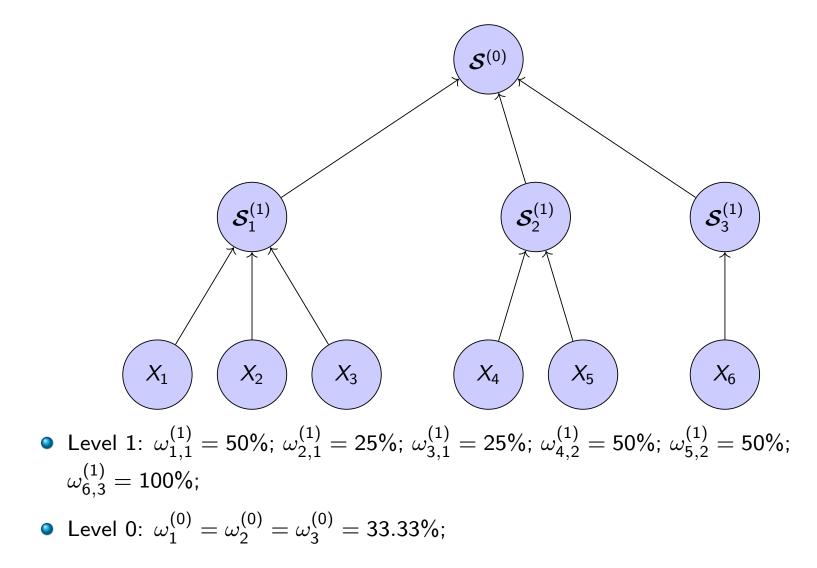
where the variables X_j represent the following financial ratios:

X_j	Ratio
X_1	Working capital / Total assets
X_2	Retained earnings / Total assets
X_3	Earnings before interest and tax / Total assets
X_4	Market value of equity / Total liabilities
X_5	Sales / Total assets

$$Z_i \Rightarrow Z_i^{\star} = (Z_i - m_z) / \sigma_z \Rightarrow$$
 Decision rule

Data and variablesTree-based scoring methodScoring systemOther statistical methodsRating systemPerformance evaluation criteria

Two-level tree structure


The intermediary scores are equal to:

$$oldsymbol{\mathcal{S}}_k^{(1)} = \sum_{j=1}^m \omega_{j,k}^{(1)} X_j$$

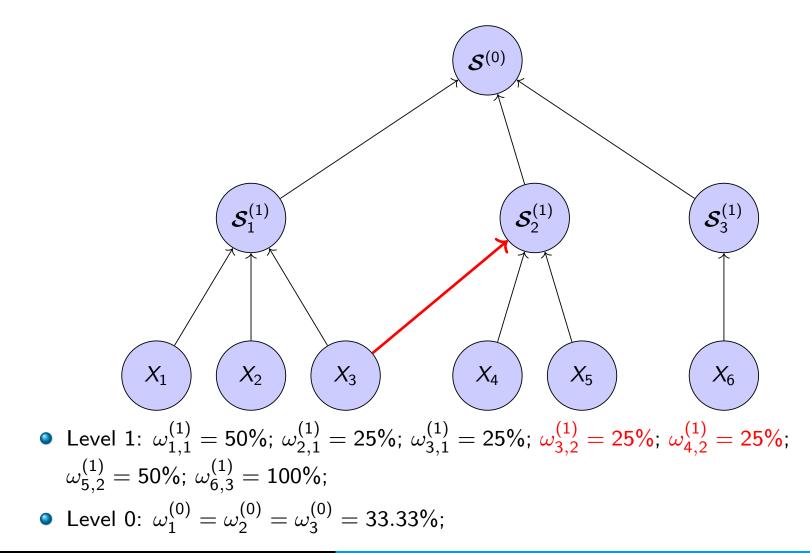
whereas the expression of the final score is:

$$oldsymbol{\mathcal{S}}:=oldsymbol{\mathcal{S}}_1^{(0)}=\sum_{k=1}^{m_{(1)}}\omega_k^{(0)}oldsymbol{\mathcal{S}}_k^{(1)}$$

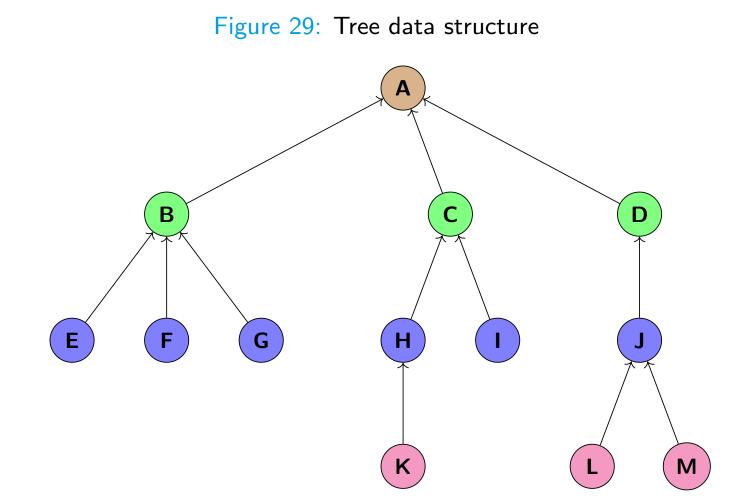
Figure 27: A two-level non-overlapping tree

Tree-based scoring method Other statistical methods Performance evaluation criteria

Two-level tree structure


$$\begin{cases} \boldsymbol{\mathcal{S}}_{1}^{(1)} = 0.5 \cdot X_{1} + 0.25 \cdot X_{2} + 0.25 \cdot X_{3} \\ \boldsymbol{\mathcal{S}}_{2}^{(1)} = 0.5 \cdot X_{4} + 0.5 \cdot X_{5} \\ \boldsymbol{\mathcal{S}}_{3}^{(1)} = X_{6} \end{cases}$$

$$\boldsymbol{\mathcal{S}} = rac{\boldsymbol{\mathcal{S}}_1^{(1)} + \boldsymbol{\mathcal{S}}_2^{(1)} + \boldsymbol{\mathcal{S}}_3^{(1)}}{3}$$


Data and variablesTree-based scoring methodScoring systemOther statistical methodsRating systemPerformance evaluation criteria

Two-level tree structure

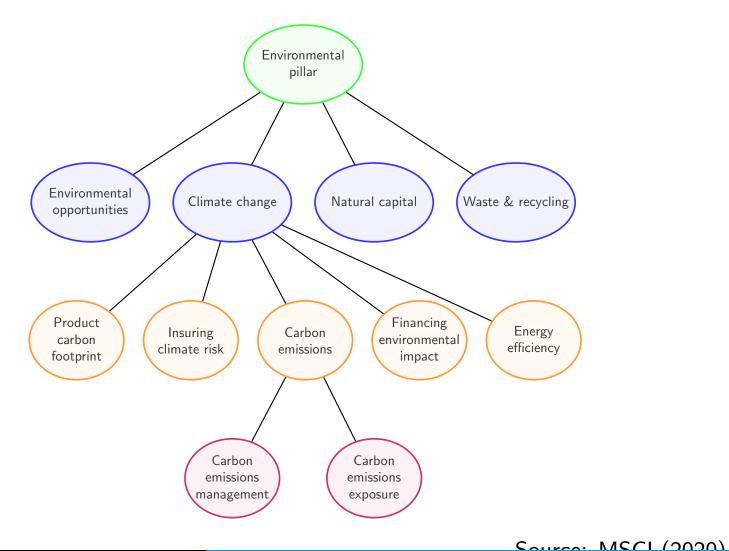
Figure 28: A two-level overlapping tree graph

Tree-based scoring method Other statistical methods Performance evaluation criteria

Tree and graph theory

• *L* is the number of levels

• We have
$$\mathcal{S}_{j}^{(L)} = X_{j}$$


• The value of the k^{th} node at level ℓ is given by:

$$oldsymbol{\mathcal{S}}_k^{(\ell)} = \sum_{j=1}^{m_{(\ell+1)}} \omega_{j,k}^{(\ell)} oldsymbol{\mathcal{S}}_j^{(\ell+1)}$$

Tree-based scoring method Other statistical methods Performance evaluation criteria

An example of ESG scoring tree

Figure 30: An example of ESG scoring tree (MSCI methodology)

111 / 1114

Score normalization

Let $\omega_{(\ell)}$ be the $m_{(\ell+1)} \times m_{(\ell)}$ matrix, whose elements are $\omega_{j,k}^{(\ell)}$ for $j = 1, \ldots, m_{(\ell+1)}$ and $k = 1, \ldots, m_{(\ell)}$

Data and variables

Scoring system Rating system

The final score is equal to:

$$\boldsymbol{\mathcal{S}} = \boldsymbol{\omega}^\top \boldsymbol{X}$$

Tree-based scoring method

where:

 $\omega = \omega_{(L-1)} \cdots \omega_{(1)} \omega_{(0)}$

Tree-based scoring method Other statistical methods Performance evaluation criteria

Score normalization

If $X \sim \mathbf{F}$, we obtain:

$$\begin{aligned} \mathbf{G}\left(s\right) &= & \Pr\left\{\mathbf{\mathcal{S}} \leq s\right\} \\ &= & \Pr\left\{\omega^{\top} X \leq s\right\} \\ &= & \int \cdots \int \mathbb{1}\left\{\omega^{\top} x \leq s\right\} \, \mathrm{d}\mathbf{F}\left(x\right) \\ &= & \int \cdots \int \mathbb{1}\left\{\sum_{j=1}^{m} \omega_{j} x_{j} \leq s\right\} \, \mathrm{d}\mathbf{F}\left(x_{1}, \dots, x_{m}\right) \\ &= & \int \cdots \int \mathbb{1}\left\{\sum_{j=1}^{m} \omega_{j} x_{j} \leq s\right\} \, \mathrm{d}\mathbf{C}\left(\mathbf{F}_{1}\left(x_{1}\right), \dots, \mathbf{F}_{m}\left(x_{m}\right)\right) \end{aligned}$$

Therefore, the distribution **G** depends on the copula function **C** and the marginals $(\mathbf{F}_1, \ldots, \mathbf{F}_m)$ of **F**

$$\mathbf{F}_1 \equiv \mathbf{F}_1 \equiv \ldots \equiv \mathbf{F}_m \Rightarrow \mathbf{G} \equiv \mathbf{F}_1?$$

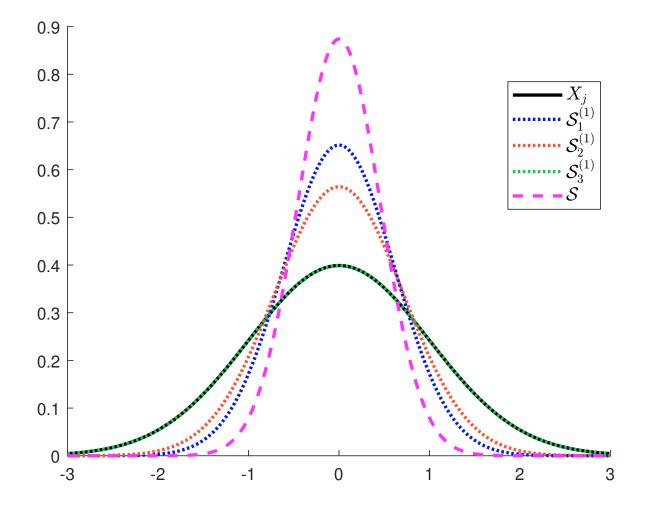
Tree-based scoring method Other statistical methods Performance evaluation criteria

Score normalization

In the independent case, we obtain a a convolution probability distribution:

$$\mathbf{G}(s) = \int \cdots \int \mathbb{1}\left\{\sum_{j=1}^{m} \omega_j x_j \leq s\right\} \prod_{j=1}^{m} \mathrm{d}\mathbf{F}_j(x_j)$$

If $X_j \sim \mathcal{N}(\mu_j, \sigma_j^2)$, we have $\omega_j X_j \sim \mathcal{N}(\omega_j \mu_j, \omega_j^2 \sigma_j^2)$. We deduce that:


$$\boldsymbol{\mathcal{S}} \sim \mathcal{N}\left(\sum_{j=1}^{m} \omega_{j} \mu_{j}, \sum_{j=1}^{m} \omega_{j}^{2} \sigma_{j}^{2}\right) \equiv \mathcal{N}\left(\boldsymbol{\omega}^{\top} \boldsymbol{\mu}, \boldsymbol{\omega}^{\top} \boldsymbol{\Sigma} \boldsymbol{\omega}\right)$$

where $\mu = (\mu_1, \ldots, \mu_m)$ and $\Sigma = \operatorname{diag} (\sigma_1^2, \ldots, \sigma_m^2)$.

Data and variablesTree-based scoring methodScoring systemOther statistical methodsRating systemPerformance evaluation criteria

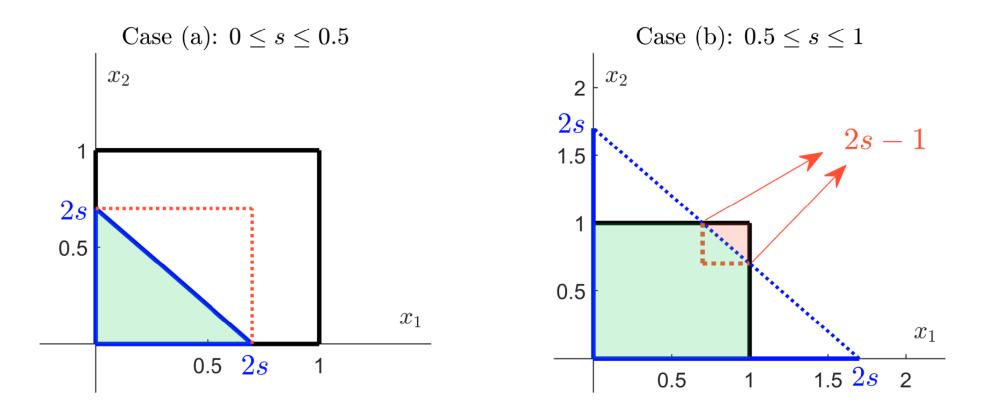
Score normalization

Figure 31: Probability distribution of the scores based on the previous tree

Tree-based scoring method Other statistical methods Performance evaluation criteria

Score normalization

Exercise


We assume that $X_1 \sim \mathcal{U}_{[0,1]}$ and $X_2 \sim \mathcal{U}_{[0,1]}$ are two independent random variables. We consider the score \mathcal{S} defined as:

$$\boldsymbol{\mathcal{S}}=\frac{X_1+X_2}{2}$$

Tree-based scoring method Other statistical methods Performance evaluation criteria

Score normalization

Figure 32: Geometric interpretation of the probability mass function

Data and variablesTree-based scoring methodScoring systemOther statistical methodsRating systemPerformance evaluation criteria

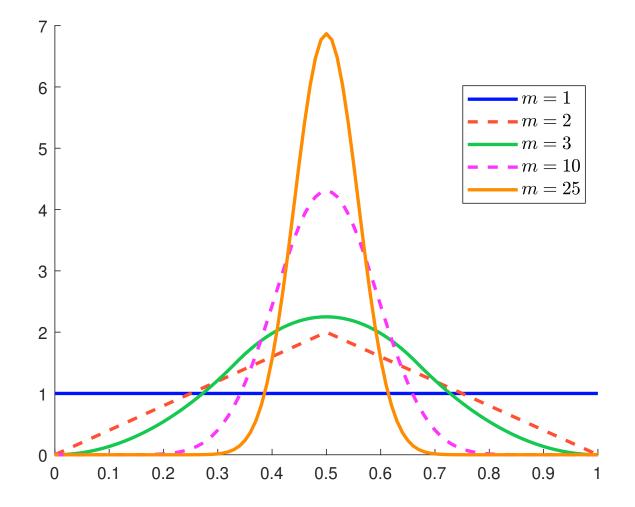
Score normalization

We deduce that:

$$\Pr\left\{\boldsymbol{\mathcal{S}} \le s\right\} = \begin{cases} \frac{1}{2} (2s)^2 = 2s^2 & \text{if } 0 \le s \le \frac{1}{2} \\ 1 - \frac{1}{2} (2 - 2s)^2 = -1 + 4s - 2s^2 & \text{if } \frac{1}{2} \le s \le 1 \end{cases}$$

The density function is then:

$$g\left(s
ight)=\left\{egin{array}{ccc}4s& ext{if}&0\leq s\leqrac{1}{2}\4-4s& ext{if}&rac{1}{2}\leq s\leq1\end{array}
ight.$$


In the general case, we have:

$$oldsymbol{\mathcal{S}} = rac{X_1 + X_2 + \dots + X_m}{m} \sim \mathfrak{B}$$
ates (m)

Data and variablesTree-based scoring methodScoring systemOther statistical methodsRating systemPerformance evaluation criteria

Score normalization

Thierry Roncalli

Tree-based scoring method Other statistical methods Performance evaluation criteria

Score normalization

Exercise

We assume that $X \sim \mathcal{N}(\mu, \Sigma)$ with $\mu_j = 0$, $\sigma_j = 1$ and $\rho_{j,k} = \rho$ for $j \neq k$. Show that:

$$\mathbb{E}\left[\boldsymbol{\mathcal{S}}
ight]=0$$

and

$$\operatorname{var}(\boldsymbol{\mathcal{S}}) = \rho \mathcal{S}^{2}(w) + (1 - \rho) \mathcal{H}(\omega)$$

where $S(w) = \sum_{j=1}^{m} \omega_j$ is the sum index and $\mathcal{H}(\omega) = \sum_{j=1}^{m} \omega_j^2$ is the Herfindahl index. Deduce that:

$$\sigma_{\boldsymbol{\mathcal{S}}} = \sqrt{\rho + (1 - \rho) \mathcal{H}(\omega)}$$

Tree-based scoring method Other statistical methods Performance evaluation criteria

Score normalization

How to normalize?

$$oldsymbol{\mathcal{S}}_k^{(\ell)} = arphi \left(\sum_{j=1}^{m_{(\ell+1)}} \omega_{j,k}^{(\ell)} oldsymbol{\mathcal{S}}_j^{(\ell+1)}
ight)$$

Tree-based scoring method Other statistical methods Performance evaluation criteria

Score normalization

m-score normalization:

$$m_i = \frac{x_i - x^-}{x^+ - x^-}$$

where $x^- = \min x_i$ and $x^+ = \max x_i$

q-score normalization:

$$q_i = \mathbf{H}(x_i)$$

where \mathbf{H} is the distribution function of X

z-score normalization:

$$z_i = \frac{x_i - \mu}{\sigma}$$

where μ and σ are the mathematical expectation and standard deviation of X

b-score normalization:

$$b_{i} = \mathfrak{B}^{-1} \left(\mathsf{H} \left(x_{i}
ight); lpha, eta
ight)$$

where $\mathcal{B}(\alpha,\beta)$ is the beta distribution

Tree-based scoring method Other statistical methods Performance evaluation criteria

Score normalization

Probability integral transform (PIT)

If $X \sim \mathbf{H}$ and is continuous, $Y = \mathbf{H}(X)$ is a uniform random variable.

We have $Y \in [0, 1]$ and:

$$Pr \{Y \le y\} = Pr \{H(X) \le y\}$$
$$= Pr \{X \le H^{-1}(y)\}$$
$$= H (H^{-1}(y))$$
$$= y$$

Tree-based scoring method Other statistical methods Performance evaluation criteria

Score normalization

Computing the empirical distribution $\hat{\mathbf{H}}$

- Let $\{x_1, x_2, \ldots, x_n\}$ be the sample
- We have:

$$q_i = \mathbf{\hat{H}}(x_i) = \Pr\{X \le x_i\} = \frac{\#\{x_j \le x_i\}}{n_q}$$

•
$$n_q = n$$
 or $n_q = n + 1$?

Tree-based scoring method Other statistical methods Performance evaluation criteria

Score normalization

Exercise

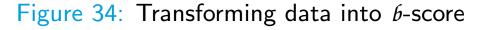
What is the normalization shape of this transformation?

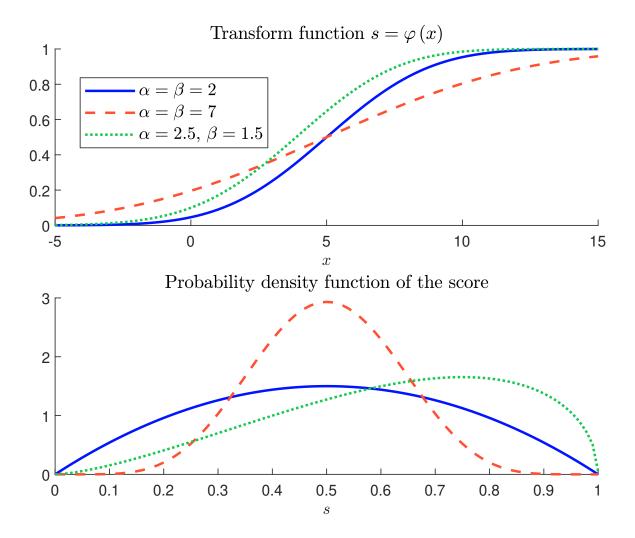
$${\cal S}=rac{2}{1+e^{-z}}-1$$

Hint: compute the density function.

Tree-based scoring method Other statistical methods Performance evaluation criteria

Score normalization


Example


The data are normally distributed with mean $\mu = 5$ and standard deviation $\sigma = 2$. To map these data into a 0/1 score, we consider the following transform:

$$\mathbf{s} := \varphi(\mathbf{x}) = \mathfrak{B}^{-1}\left(\Phi\left(\frac{\mathbf{x}-\mathbf{5}}{2}\right); \alpha, \beta\right)$$

Tree-based scoring method Other statistical methods Performance evaluation criteria

Score normalization

Tree-based scoring method Other statistical methods Performance evaluation criteria

Score normalization

Example

We consider the raw data of 9 companies that belong to the same industry. The first variable measures the carbon intensity of the scope 1+2 in 2020, while the second variable is the variation of carbon emissions between 2015 and 2020. We would like to create the score $S \equiv 70\% \cdot X_1 + 30\% \cdot X_2$.

	Carbon intensity	Carbon momentum
Firm	in $tCO_2e/\$$ mn)	(in %)
1	94.0	-3.0
2	38.6	-5.5
3	30.6	5.6
4	74.4	-1.3
5	97.1	-16.8
6	57.1	-3.5
7	132.4	8.5
8	92.5	-9.1
9	64.9	-4.6

Tree-based scoring method Other statistical methods Performance evaluation criteria

Score normalization

- *q*-score 0/100
- *z*-score

•
$$qz = 100 \cdot \Phi(z)$$

• $zq = \Phi^{-1}\left(\frac{q}{100}\right)$
• $bz = \mathfrak{B}^{-1}\left(\Phi(z); \alpha, \beta\right)$ where $\alpha = \beta = 2$
• $bz^{\star} = \mathfrak{B}^{-1}\left(\Phi(z); \alpha, \beta\right)$ where $\alpha = 2.5$ and $\beta = 1.5$.

Tree-based scoring method Other statistical methods Performance evaluation criteria

Score normalization

Table 15: Computation of the score $S \equiv 70\% \cdot X_1 + 30\% \cdot X_2$ (*q*-score 0/100 normalization)

#	<i>X</i> ₁	q_1	X ₂	¶2	S	S	\Re
1	94.00	70.00	-3.00	60.00	67.00	80.00	8
2	38.60	20.00	-5.50	30.00	23.00	10.00	1
3	30.60	10.00	5.60	80.00	31.00	20.00	2
4	74.40	50.00	-1.30	70.00	56.00	60.00	6
5	97.10	80.00	-16.80	10.00	59.00	70.00	7
6	57.10	30.00	-3.50	50.00	36.00	30.00	3
7	132.40	90.00	8.50	90.00	90.00	90.00	9
8	92.50	60.00	-9.10	20.00	48.00	50.00	5
9	64.90	40.00	-4.60	40.00	40.00	40.00	4
Mean	75.73	50.00	-3.30	50.00	50.00	50.00	
Std-dev.	31.95	27.39	7.46	27.39	20.60	27.39	

Tree-based scoring method Other statistical methods Performance evaluation criteria

Score normalization

Table 16: Computation of the score $S \equiv 70\% \cdot X_1 + 30\% \cdot X_2$ (*z*-score normalization)

#	X_1	z_1	X ₂	<i>z</i> 2	S	S	\Re
1	94.00	0.572	-3.00	0.040	0.412	0.543	8
2	38.60	-1.162	-5.50	-0.295	-0.902	-1.188	1
3	30.60	-1.413	5.60	1.193	-0.631	-0.831	2
4	74.40	-0.042	-1.30	0.268	0.051	0.067	6
5	97.10	0.669	-16.80	-1.810	-0.075	-0.099	5
6	57.10	-0.583	-3.50	-0.027	-0.416	-0.548	3
7	132.40	1.774	8.50	1.582	1.716	2.261	9
8	92.50	0.525	-9.10	-0.778	0.134	0.177	7
9	64.90	-0.339	-4.60	-0.174	-0.290	-0.382	4
Mean	75.73	0.000	-3.30	0.000	0.000	0.000	
Std-dev.	31.95	1.000	7.46	1.000	0.759	1.000	

Tree-based scoring method Other statistical methods Performance evaluation criteria

Score normalization

Table 17: Comparison of the different scoring methods

#	9		Z		qz		zq		bz		bz*	
11-	S	\mathfrak{R}	S	\mathfrak{R}	S	\Re	S	\mathfrak{R}	S	\Re	S	\mathfrak{R}
1	80.00	8	0.54	8	76.27	8	0.84	8	0.66	8	0.81	8
2	10.00	1	-1.19	1	9.19	1	-1.28	1	0.20	1	0.30	1
3	20.00	2	-0.83	2	21.37	2	-0.84	2	0.29	2	0.38	2
4	60.00	6	0.07	6	54.13	5	0.25	6	0.52	6	0.70	6
5	70.00	7	-0.10	5	56.65	6	0.52	7	0.51	5	0.64	5
6	30.00	3	-0.55	3	24.42	3	-0.52	3	0.34	3	0.50	3
7	90.00	9	2.26	9	98.04	9	1.28	9	0.93	9	0.96	9
8	50.00	5	0.18	7	60.39	7	0.00	5	0.56	7	0.72	7
9	40.00	4	-0.38	4	30.96	4	-0.25	4	0.39	4	0.56	4
Mean	50.00		0.00		47.94		0.00		0.49		0.62	
Std-dev.	27.39		1.00		28.79		0.82		0.22		0.21	

Tree-based scoring method Other statistical methods Performance evaluation criteria

An example with the CEO pay ratio

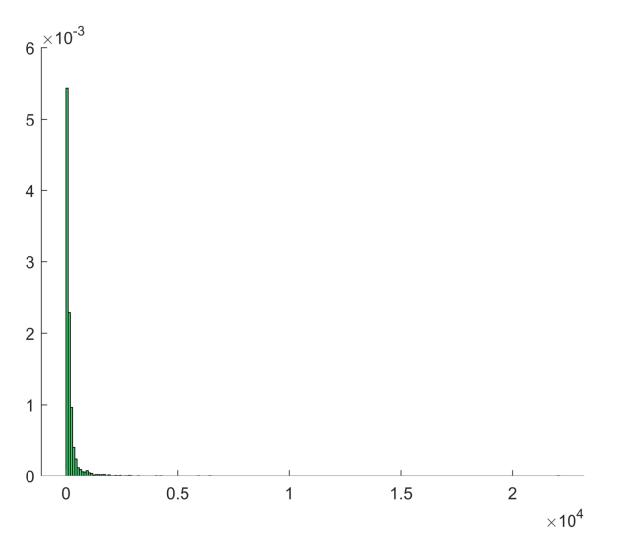
The CEO pay ratio is calculated by dividing the CEO's compensation by the pay of the median employee. It is one of the key metrics for the **G** pillar. It has been imposed by the Dodd-Frank Act, which requires that publicly traded companies disclose:

- the median total annual compensation of all employees other than the CEO;
- the ratio of the CEO's annual total compensation to that of the median employee;
- the wage ratio of the CEO to the median employee.
- \Rightarrow the average S&P 500 company's CEO-to-worker pay ratio was 324-to-1 in 2021 (AFL-CIO)

Tree-based scoring method Other statistical methods Performance evaluation criteria

An example with the CEO pay ratio

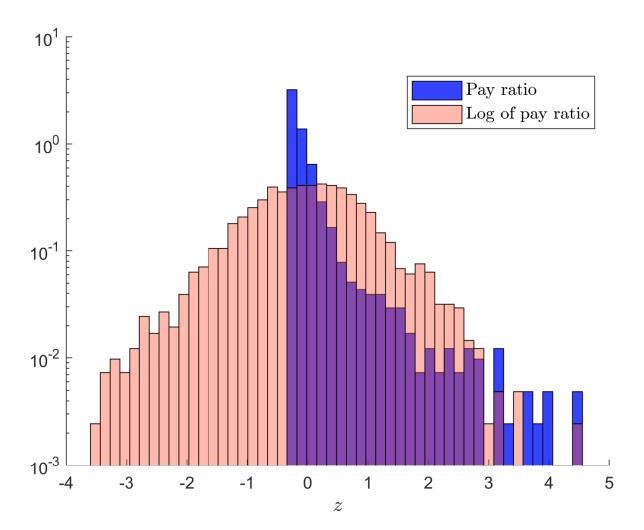
Table 18: Examples of CEO pay ratio (June 2021)


Company name	Р	R	Company name	Р	R
Abercrombie & Fitch	1 954	4,293	Netflix	202 931	190
McDonald's	9 2 9 1	1,939	BlackRock	133 644	182
Coca-Cola	11 285	1,657	Pfizer	98972	181
Gap	6177	1,558	Goldman Sachs	138 854	178
Alphabet	258 708	1,085	MSCI	55 857	165
Walmart	22 484	983	Verisk Analytics	77 055	117
Estee Lauder	30733	697	Facebook	247 883	94
Ralph Lauren	21 358	570	Invesco	125 282	92
NIKE	25 386	550	Boeing	158869	90
Citigroup	52 988	482	Citrix Systems	181 769	80
PepsiCo	45 896	368	Harley-Davidson	187 157	59
Microsoft	172512	249	Amazon.com	28 848	58
Apple	57 596	201	Berkshire Hathaway	65 740	6

Source: https://aflcio.org (June 2021)

Tree-based scoring method Other statistical methods Performance evaluation criteria

An example with the CEO pay ratio


Figure 35: Histogram of the CEO pay ratio

Tree-based scoring method Other statistical methods Performance evaluation criteria

An example with the CEO pay ratio

Figure 36: Histogram of *z*-score applied to the CEO pay ratio

Tree-based scoring method Other statistical methods Performance evaluation criteria

An example with the CEO pay ratio

What is the solution? Give the transform function $y = \varphi(x)$.

Hint: use the beta distribution.

Iree-based scoring method Other statistical methods Performance evaluation criteria

Other statistical methods

Unsupervised learning

- Clustering (K-means, hierarchical clustering)
- Dimension reduction (PCA, NMF)

I ree-based scoring method Other statistical methods Performance evaluation criteria

Other statistical methods

Supervised learning

- Discriminant analysis (LDA, QDA)
- Binary choice models (logistic regression, probit model)
- Regression models (OLS, lasso)

 \Rightarrow Advanced learning models (*k*-NN, neural networks and support vector machines) are not relevant in the case of ESG scoring

We need to define the response variable Y

I ree-based scoring method Other statistical methods Performance evaluation criteria

Other statistical methods

Example with credit scoring models

- Let $S_i(t)$ be the credit score of individual *i* at time *t*
- We have:

$$Y_{i}(t) = \mathbb{1}\left\{\tau_{i} \leq t + \delta\right\} = \mathbb{1}\left\{D_{i}(t + \delta) = 1\right\}$$

where τ_i and D_i are the default time and the default indicator function, and δ is the time horizon (e.g., one year)

• The calibration problem of the credit scoring model is:

$$\Pr\left\{Y_{i}\left(t\right)=0\right\}=f\left(\boldsymbol{\mathcal{S}}_{i}\left(t\right)\right)$$

where f is an increasing function

Application to ESG scoring models

- Let $S_i(t)$ be the ESG score of company *i* at time *t*
- Endogenous response variable:
 - (a) Best-in-class oriented scoring system:

$$Y_{i}\left(t
ight)=\mathbb{1}\left\{oldsymbol{\mathcal{S}}_{i}\left(t+h
ight)\geq s^{\star}
ight\}$$

where s^{\star} is the best-in-class threshold

- (b) Worst-in-class oriented scoring system: $Y_i(t) = \mathbb{1} \{ S_i(t+h) \leq s^* \}$ where s^* is the worst-in-class threshold
- Exogenous response variable
 - (c) Binary response:

$$Y_{i}\left(t\right)=\mathbf{1}\left\{\mathcal{C}_{i}\left(t+h\right)\geq0\right\}$$

where $C_i(t)$ is the controversy index

d Continuous response:

$$Y_{i}(t)=\mathcal{C}_{i}(t+h)$$

• The calibration problem of the ESG scoring model is $Pr \{Y_i(t) = 0\} = f(S_i(t)) \text{ or } Y_i(t) = f(S_i(t)) \text{ where the function}$ *f* is increasing for case (a) and decreasing for cases (b), (c) and (d)

Tree-based scoring method Other statistical methods Performance evaluation criteria

Performance evaluation criteria

- ESG scoring and rating
 - Shannon entropy
 - Confusion matrix
 - Binary classification ratios (TPR, FNR, TNR, FPR, PPV, ACC, F_1)
- ESG scoring
 - Performance, selection and discriminant curves
 - ROC curve
 - Gini coefficient

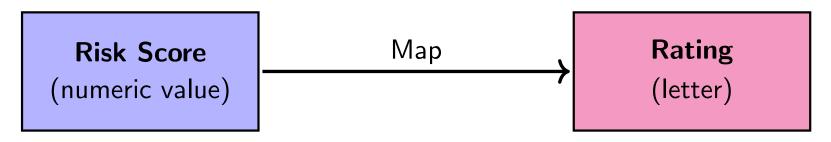
Definition ESG rating process Rating migration matrix

Definition

Table 19: Credit rating system of S&P, Moody's and Fitch

	Ma	Prime Aaximum Safety			High Grade High Quality			M	Upper Medium Grade				
S&P/Fitch		AA	A		AA+	A	A	AA-	– A-	\vdash	Α	A-	
Moody's		Aa	а		Aa1	1 Aa2 Aa3			3 A1	L	A2	A3	
		I	Lo Mediur	wer m Gr	rade						ment Grade: ulative		
S&P/F	itch	BBB+ BBB		BB	BBB-		BE	3+	BB		BB-		
Moody		Baa1 Baa		aa2	2 Baa3		Ba1 Ba2		E	Ba3			
	Highly Speculative		Su	Substantial Risk		In Poo Standir					emely ulative		
S&P/Fitch	B+	B B-			CCC+		C	CC	CCC-	-	(CC	
Moody's	B1	B2	B3		Caa1		Ca	a2	Caa3			Ca	

Definition ESG rating process Rating migration matrix


Definition

- Amundi: A (high), B,... to G (low) 7-grade scale
- FTSE Russell: 0 (low), 1,... to 5 (high) 6-grade scale
- ISS ESG: 1 (high), 2,... to 10 (low) 10-grade scale
- MSCI: AAA (high), AA,... to CCC (low) 7-grade scale
- Refinitiv: A+ (high), A, A-, B+,... to D- (low) 12-grade scale
- RepRisk: AAA (high), AA,... to D (low) 8-grade scale
- Sustainanalytics: 1 (low), 2,... to 5 (high) 5-grade scale

Data and variablesDefinitionScoring systemESG rating processRating systemRating migration matrix

ESG rating process

Figure 37: From ESG score to ESG rating

Two-step approach:

Specification of the map function:

$$egin{array}{cccc} \mathcal{M} a p : & \Omega_{\mathcal{S}} & \longrightarrow & \Omega_{\mathcal{R}} \ & \mathcal{S} & \longmapsto & \mathcal{R} = \mathcal{M} a p \left(\mathcal{S}
ight) \end{array}$$

where $\Omega_{\mathcal{S}}$ is the support of ESG scores, $\Omega_{\mathcal{R}}$ is the ordered state space of ESG ratings and \mathcal{R} is the ESG rating

2 Validation (and the possible *forcing*) of the rating by the analyst

ESG rating process Rating migration matrix

ESG rating process

Example with the MSCI ESG rating system

- $\Omega_{s} = [0, 10]$
- $\Omega_{\mathcal{R}} = \{CCC, B, BB, BBB, A, AA, AAA\}$
- The map function is defined as

$$\mathcal{M}ap(s) = \begin{cases} \mathsf{CCC} & \text{if } \mathcal{S} \in [0, 10/7] & (0 - 1.429) \\ \mathsf{B} & \text{if } \mathcal{S} \in [10/7, 20/7] & (1.429 - 2.857) \\ \mathsf{BB} & \text{if } \mathcal{S} \in [20/7, 30/7] & (2.857 - 4.286) \\ \mathsf{BBB} & \text{if } \mathcal{S} \in [30/7, 40/7] & (4.286 - 5.714) \\ \mathsf{A} & \text{if } \mathcal{S} \in [40/7, 50/7] & (5.714 - 7.143) \\ \mathsf{AA} & \text{if } \mathcal{S} \in [50/7, 60/7] & (7.143 - 8.571) \\ \mathsf{AAA} & \text{if } \mathcal{S} \in [60/7, 10] & (8.571 - 10) \end{cases}$$

ESG rating process Rating migration matrix

ESG rating process

- The map function is an increasing piecewise function
- $\boldsymbol{\mathcal{S}} \sim \boldsymbol{\mathsf{F}}$ and $\boldsymbol{\mathcal{S}} \in (s^-,s^+)$
- $\{s_0^{\star} = s^-, s_1^{\star}, \dots, s_{K-1}^{\star}, s_K^{\star} = s^+\}$ are the knots of the piecewise function
- $\Omega_{\mathcal{R}} = \{R_1, \dots, R_K\}$ is the set of grades

 \Rightarrow The frequency distribution of the ratings is given by:

$$p_{k} = \Pr \{ \mathcal{R} = R_{k} \}$$

= $\Pr \{ s_{k-1}^{\star} \leq S < s_{k}^{\star} \}$
= $\mathbf{F}(s_{k}^{\star}) - \mathbf{F}(s_{k-1}^{\star})$

Data and variablesDefinitionScoring systemESG rating processRating systemRating migration matrix

ESG rating process

If we would like to build a rating system with pre-defined frequencies (p_1, \ldots, p_K) , we have to solve the following equation:

$$\mathsf{F}\left(s_{k}^{\star}
ight)-\mathsf{F}\left(s_{k-1}^{\star}
ight)=p_{k}$$

We deduce that:

$$\begin{aligned} \mathbf{F}\left(s_{k}^{\star}\right) &= p_{k} + \mathbf{F}\left(s_{k-1}^{\star}\right) \\ &= p_{k} + p_{k-1} + \mathbf{F}\left(s_{k-2}^{\star}\right) \\ &= \left(\sum_{j=1}^{k} p_{j}\right) + \mathbf{F}\left(s_{0}^{\star}\right) \end{aligned}$$

and:

$$s_k^\star = \mathbf{F}^{-1} \left(\sum_{j=1}^k p_j
ight)$$

ESG rating process Rating migration matrix

ESG rating process

Exercise

- We assume that $oldsymbol{\mathcal{S}}\sim\mathcal{U}_{[a,b]}$
- Show that $p_k = K^{-1}$ If the rating system consists in K equally-sized intervals
- Show that the knots of the map function are equal to:

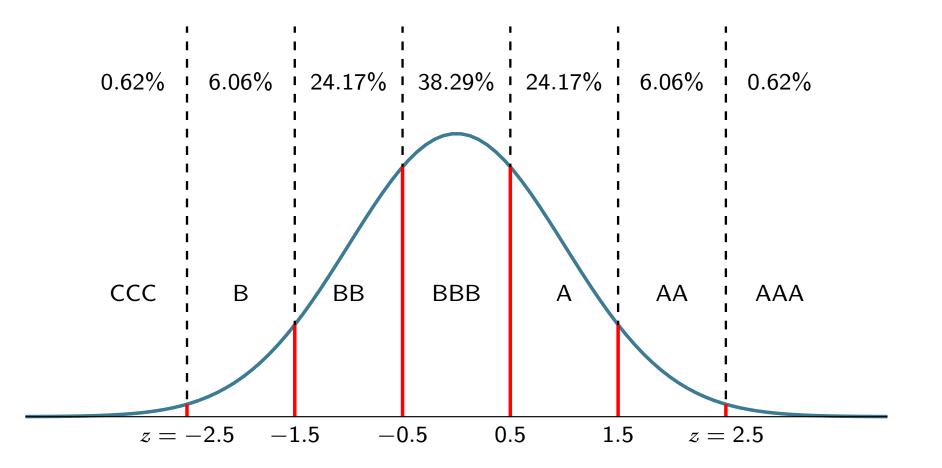
$$s_k^\star = a + (b-a) \left(\sum_{j=1}^k p_j
ight)$$

when we impose pre-defined frequencies (p_1, \ldots, p_K)

• If we consider a 0/100 uniform score and $\Omega_R \times \mathbb{P} = (CCC, 5\%), (B, 10\%), (BB, 20\%), (BBB, 30\%), (A, 20\%), (AA, 10\%), (AAA, 5\%), show that <math>s^{\star}_{CCC} = 5$, $s^{\star}_{B} = 15$, $s^{\star}_{BB} = 35$, $s^{\star}_{BBB} = 65$, $s^{\star}_{A} = 85$ and $s^{\star}_{AA} = 95$

Data and variablesDefinitionScoring systemESG rating processRating systemRating migration matrix

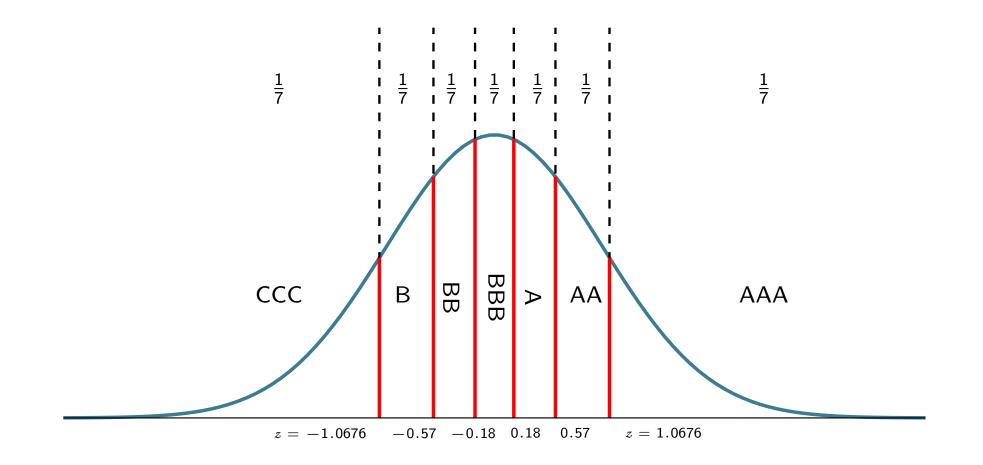
ESG rating process


For a *z*-score system ($\boldsymbol{\mathcal{S}} \sim \mathcal{N}\left(0,1
ight)$), we obtain:

$$p_{k}=\Phi\left(s_{k}^{\star}
ight)-\Phi\left(s_{k-1}^{\star}
ight)$$

ESG rating process Rating migration matrix

ESG rating process


Figure 38: Map function of a *z*-score (equal-space ratings)

 Data and variables
Scoring system
Rating system
 Definition
ESG rating process
Rating migration matrix

 ESG rating process
 Definition
ESG rating process
Rating migration matrix

Figure 39: Map function of a *z*-score (equal-frequency ratings)

Definition ESG rating process Rating migration matrix

Table 20: ESG migration matrix

	AAA	AA	А	BBB	BB	В	ССС
AAA	14.3%	14.3%	14.3%	14.3%	14.3%	14.3%	14.3%
AA	14.3%	14.3%	14.3%	14.3%	14.3%	14.3%	14.3%
А	14.3%	14.3%	14.3%	14.3%	14.3%	14.3%	14.3%
BBB	14.3%	14.3%	14.3%	14.3%	14.3%	14.3%	14.3%
BB	14.3%	14.3%	14.3%	14.3%	14.3%	14.3%	14.3%
В	14.3%	14.3%	14.3%	14.3%	14.3%	14.3%	14.3%
CCC	14.3%	14.3%	14.3%	14.3%	14.3%	14.3%	14.3%

 $\Rightarrow \mathcal{I}\left(\mathcal{R}\left(t\right) \mid \mathcal{R}\left(s\right)\right) = \ln 7$

ESG rating process Rating migration matrix

Table 21: ESG migration matrix

	AAA	AA	А	BBB	BB	В	CCC
AAA	100%	0%	0%	0%	0%	0%	0%
AA	0%	100%	0%	0%	0%	0%	0%
А	0%	0%	100%	0%	0%	0%	0%
BBB	0%	0%	0%	100%	0%	0%	0%
BB	0%	0%	0%	0%	100%	0%	0%
В	0%	0%	0%	0%	0%	100%	0%
CCC	0%	0%	0%	0%	0%	0%	100%

 $\Rightarrow \mathcal{I}\left(\mathcal{R}\left(t\right) \mid \mathcal{R}\left(s\right)\right) = 0$

ESG rating process Rating migration matrix

Table 22: ESG migration matrix

	AAA	AA	А	BBB	BB	В	CCC
AAA	96%	4%	0%	0%	0%	0%	0%
AA	2%	96%	2%	0%	0%	0%	0%
А	0%	2%	96%	2%	0%	0%	0%
BBB	0%	0%	2%	96%	2%	0%	0%
BB	0%	0%	0%	2%	96%	2%	0%
В	0%	0%	0%	0%	2%	96%	2%
CCC	0%	0%	0%	0%	0%	4%	96%

 $\Rightarrow 0 < \mathcal{I}(\mathcal{R}(t) \mid \mathcal{R}(s)) \ll \ln 7$

ESG rating process Rating migration matrix

Rating migration matrix

A good reference on Markov chains is:

NORRIS, J. R. (1997). *Markov Chains*. Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press.

ESG rating process Rating migration matrix

Rating migration matrix Discrete time modeling

Definition

- \mathcal{R} is a time-homogeneous Markov chain
- $\Omega_{\mathcal{R}} = \{R_1, \dots, R_K\}$ is the state space of the chain
- $\mathbb{K} = \{1, \dots, K\}$ is the corresponding index set
- The transition matrix is defined as $P = (p_{i,j})$
- $p_{i,j}$ is the probability that the entity migrates from rating R_i to rating R_j
- The matrix *P* satisfies the following properties:

•
$$\forall i,j \in \mathbb{K}, \ p_{i,j} \geq 0$$

•
$$\forall i \in \mathbb{K}, \ \sum_{j=1}^{\kappa} p_{i,j} = 1$$

ESG rating process Rating migration matrix

Rating migration matrix Discrete time modeling

Table 23: ESG migration matrix #1 (one-year transition probability in %)

	AAA	AA	Α	BBB	BB	В	CCC
AAA	92.76	5.66	0.90	0.45	0.23	0.00	0.00
AA	4.15	82.73	11.86	0.89	0.30	0.07	0.00
А	0.18	15.47	72.98	10.46	0.82	0.09	0.00
BBB	0.07	1.32	19.60	69.49	9.03	0.42	0.07
BB	0.04	0.19	1.55	19.36	70.88	7.75	0.23
В	0.00	0.05	0.24	1.43	21.54	74.36	2.38
CCC	0.00	0.00	0.22	0.44	2.21	13.24	83.89

ESG rating process Rating migration matrix

Rating migration matrix Discrete time modeling

The probability that the entity reaches the state R_j at time t given that it has reached the state R_i at time s is equal to:

$$p(s, i; t, j) = \Pr \{ \mathcal{R}(t) = R_j \mid \mathcal{R}(s) = R_i \} = p_{i,j}^{(t-s)}$$

We note $p_{i,j}^{(n)}$ the *n*-step transition probability:

$$p_{i,j}^{(n)} = \Pr \left\{ \mathcal{R}\left(t+n\right) = R_j \mid \mathcal{R}\left(t\right) = R_i \right\}$$

and the associated *n*-step transition matrix $P^{(n)} = \left(p_{i,j}^{(n)}\right)$

ESG rating process Rating migration matrix

Rating migration matrix Discrete time modeling

For n = 2, we obtain:

$$p_{i,j}^{(2)} = \Pr \{ \mathcal{R} (t+2) = R_j \mid \mathcal{R} (t) = R_i \}$$

= $\sum_{k=1}^{K} \Pr \{ \mathcal{R} (t+2) = R_j, \mathfrak{R} (t+1) = R_k \mid \mathcal{R} (t) = R_i \}$
= $\sum_{k=1}^{K} \Pr \{ \mathcal{R} (t+2) = R_j \mid \mathcal{R} (t+1) = R_k \} \cdot \Pr \{ \mathcal{R} (t+1) = R_k \mid \mathcal{R} (t) = R_i \}$
= $\sum_{k=1}^{K} p_{i,k} \cdot p_{k,j}$

ESG rating process Rating migration matrix

Rating migration matrix Discrete time modeling

• The forward Chapman-Kolmogorov equation is :

$$p_{i,j}^{(n+m)} = \sum_{k=1}^{K} p_{i,k}^{(n)} \cdot p_{k,j}^{(m)} \qquad \forall n, m > 0$$

or $P^{(n+m)} = P^{(n)} \cdot P^{(m)}$ with $P^{(0)} = I$

• We have:

$$P^{(n)} = P^{(n-1)} \cdot P^{(1)}$$

$$= P^{(n-2)} \cdot P^{(1)} \cdot P^{(1)}$$

$$= \prod_{t=1}^{n} P^{(1)}$$

$$= P^{n}$$

• We deduce that:

$$p(t,i;t+n,j) = p_{i,j}^{(n)} = \mathbf{e}_i^\top P^n \mathbf{e}_j$$

ESG rating process Rating migration matrix

Rating migration matrix Discrete time modeling

Table 24: T	wo-year t	ransition	probability	in %	(migration	matrix #1)
-------------	-----------	-----------	-------------	------	------------	------------

	AAA	AA	А	BBB	BB	В	CCC
AAA	86.28	10.08	2.25	0.92	0.44	0.02	0.00
AA	7.30	70.52	18.68	2.67	0.66	0.15	0.00
А	0.95	24.24	57.16	15.20	2.19	0.25	0.01
BBB	0.21	5.06	28.22	52.11	12.93	1.33	0.14
BB	0.09	0.79	6.07	27.45	53.68	11.37	0.55
В	0.01	0.18	0.98	6.26	31.47	57.28	3.82
CCC	0.00	0.05	0.50	1.32	6.31	21.13	70.70

ESG rating process Rating migration matrix

Rating migration matrix Discrete time modeling

We have:

$$p_{AAA,AAA}^{(2)} = p_{AAA,AAA} \times p_{AAA,AAA} + p_{AAA,AA} \times p_{AA,AAA} + p_{AAA,AA} + p_{AAA,AA} + p_{AAA,BBB} \times p_{BBB,AAA} + p_{AAA,BB} \times p_{BB,AAA} + p_{AAA,B} \times p_{AAA,B} + p_{AAA,B} \times p_{AAA,B} \times p_{AAA,B} + p_{AAA,B} \times p_{AA,B} \times p_{AA,B} + p_{AAA,B} \times p_{AA,B} + p_{AAA,B} \times p_{AA,B} + p_{AAA,B} \times p_{AA,B} + p_{AA,B} \times p_{A,B} + p_{A$$

= 86.28%

ESG rating process Rating migration matrix

Rating migration matrix Discrete time modeling

Table 25: Five-year transition	probability in %	(migration matrix $\#1$)
--------------------------------	------------------	---------------------------

	AAA	AA	А	BBB	BB	В	CCC
AAA	70.45	18.69	6.97	2.61	1.08	0.18	0.01
AA	13.13	50.21	26.03	7.90	2.22	0.48	0.03
А	4.35	33.20	37.78	17.99	5.52	1.08	0.09
BBB	1.50	16.49	32.49	30.90	14.61	3.63	0.38
BB	0.50	5.98	17.83	30.10	31.35	12.85	1.39
В	0.15	1.90	7.40	18.95	35.11	31.26	5.23
CCC	0.05	0.64	2.55	6.93	17.96	38.54	43.33

ESG rating process Rating migration matrix

Rating migration matrix Discrete time modeling

Stationary distribution

• $\pi_k^{(n)} = \Pr \{ \mathcal{R}(n) = R_k \}$ is the probability of the state R_k at time n:

•
$$\pi^{(n)} = \left(\pi_1^{(n)}, \dots, \pi_K^{(n)}\right)$$
 satisfies $\pi^{(n+1)} = P^{\top} \pi^{(n)}$

- The Markov chain \mathcal{R} has a stationary distribution π^* if $\pi^* = P^{\top}\pi^*$
- $\mathcal{T}_{k} = \inf \{ n : \mathcal{R}(n) = R_{k} \mid \mathcal{R}(0) = R_{k} \}$ is the return period of state R_{k}
- The average return period is then equal to:

$$oldsymbol{ au}_k := \mathbb{E}\left[\mathcal{T}_k
ight] = rac{1}{\pi_k^\star}$$

ESG rating process Rating migration matrix

Rating migration matrix Discrete time modeling

• We obtain:

 $\pi^{\star} = (17.78\%, 29.59\%, 25.12\%, 15.20\%, 8.35\%, 3.29\%, 0.67\%)$

- The average return periods are then equal to 5.6, 3.4, 4.0, 6.6, 12.0, 30.4 and 149.0 years
- \Rightarrow Best-in-class (or winning-) oriented system

ESG rating process Rating migration matrix

Table 26: ESG migration matrix #2 (one-month transition probability in %)

	AAA	AA	А	BBB	BB	В	CCC
AAA	93.50	5.00	0.50	0.50	0.50	0.00	0.00
AA	2.00	93.00	4.00	0.50	0.50	0.00	0.00
А	0.00	3.00	93.00	3.90	0.10	0.00	0.00
BBB	0.00	0.10	2.80	94.00	3.00	0.10	0.00
BB	0.00	0.00	0.10	3.50	94.50	1.80	0.10
В	0.00	0.00	0.00	0.10	3.70	96.00	0.20
CCC	0.00	0.00	0.00	0.40	0.50	0.60	98.50

 \Rightarrow The stationary distribution is

 $\pi^{\star} = (3.11\%, 10.10\%, 17.46\%, 27.76\%, 25.50\%, 12.68\%, 3.39\%)$ and the average return periods are equal to 32.2, 9.9, 5.7, 3.6, 3.9, 7.9 and 29.5 years

 \Rightarrow balanced rating system

ESG rating process Rating migration matrix

Rating migration matrix Discrete time modeling

Table 27: One-year probability transition in % (migration	1 matrix #2)
---	-------------	---

	AAA	AA	А	BBB	BB	В	CCC
AAA	48.06	29.71	10.34	6.42	4.95	0.49	0.03
AA	11.65	49.25	24.10	9.60	4.87	0.49	0.03
А	2.02	17.51	49.67	24.72	5.52	0.54	0.03
BBB	0.27	3.53	17.46	55.50	20.21	2.88	0.16
BB	0.03	0.60	4.21	23.43	57.45	13.27	1.01
В	0.00	0.08	0.74	5.94	27.10	64.18	1.96
CCC	0.00	0.07	0.57	4.22	5.77	5.85	83.51

ESG rating process Rating migration matrix

Rating migration matrix Discrete time modeling

Table 28: One-month probability transition in % (migration matrix #1)

	AAA	AA	А	BBB	BB	В	CCC
AAA	99.36	0.53	0.05	0.04	0.02	0.00	0.00
AA	0.39	98.31	1.26	0.01	0.03	0.01	0.00
А	-0.02	1.65	97.14	1.21	0.02	0.01	0.00
BBB	0.01	-0.07	2.28	96.72	1.06	-0.01	0.01
BB	0.00	0.02	-0.12	2.29	96.92	0.88	0.01
В	0.00	0.00	0.04	-0.15	2.45	97.42	0.25
CCC	0.00	0.00	0.02	0.04	0.05	1.37	98.53

 \Rightarrow Negative probabilities

The ESG rating system is not Markovian!

ESG rating process Rating migration matrix

Rating migration matrix Discrete time modeling

Mean hitting time

• Let $\mathcal{A} \subset \mathbb{K}$ be a given subset. The first hitting time of \mathcal{A} is given by:

$$\mathcal{T}\left(\mathcal{A}
ight)=\inf\left\{ n:\mathcal{R}\left(n
ight)\in\mathcal{A}
ight\}$$

• The mean first hitting time to target A from state k is defined as:

$${m au}_{k}\left(\mathcal{A}
ight)=\mathbb{E}\left[\mathcal{T}\left(\mathcal{A}
ight)\mid\mathcal{R}\left(0
ight)=R_{k}
ight]$$

- We can show that $oldsymbol{ au}_k\left(\mathcal{A}
 ight) = 1 + \sum_{j=1}^{K} p_{k,j} oldsymbol{ au}_j\left(\mathcal{A}
 ight)$
- The solution is given by the LP problem:

$$oldsymbol{ au}\left(\mathcal{A}
ight) = rgmin \sum_{k=1}^{\mathcal{K}} x_k \quad ext{s.t.} \quad \left\{ egin{array}{cc} x_k = 0 & ext{if } k \in \mathcal{A} \ x_k = 1 + \sum_{j=1}^{\mathcal{K}} p_{k,j} x_j & ext{if } k \notin \mathcal{A} \ x_k \geq 0 \end{array}
ight.$$

ESG rating process Rating migration matrix

Rating migration matrix Discrete time modeling

Rating		W-ta	arget		$\mathcal B$ -target			
system	AAA	AA	А	BBB	BBB	BB	В	CCC
#1	79.21	70.04	62.34	46.54	7.50	13.28	17.58	22.68
#2	10.24	9.92	9.13	6.68	8.68	11.99	14.26	17.54

ESG rating process Rating migration matrix

Rating migration matrix Estimation of the transition matrix

Theoretical approach:

• Bayes theorem:

$$p_{i,j} = \Pr \left\{ \mathcal{R} \left(t + 1 \right) = R_j \mid \mathcal{R} \left(t \right) = R_i \right\}$$
$$= \frac{\Pr \left\{ \mathcal{R} \left(t + 1 \right) = R_j, \mathcal{R} \left(t \right) = R_i \right\}}{\Pr \left\{ \mathcal{R} \left(t \right) = R_i \right\}}$$

• We have seen that:

$$\Pr\left\{\mathcal{R}\left(t\right)=R_{k}\right\}=\mathsf{F}\left(s_{k}^{\star}\right)-\mathsf{F}\left(s_{k-1}^{\star}\right)=p_{k}$$

• We deduce that:

$$p_{i,j} = \frac{\mathsf{C}\left(\mathsf{F}\left(s_{i}^{\star}\right), \mathsf{F}\left(s_{j}^{\star}\right)\right) - \mathsf{C}\left(\mathsf{F}\left(s_{i-1}^{\star}\right), \mathsf{F}\left(s_{j}^{\star}\right)\right) - \mathsf{C}\left(\mathsf{F}\left(s_{i}^{\star}\right), \mathsf{F}\left(s_{j-1}^{\star}\right)\right) + \mathsf{C}\left(\mathsf{F}\left(s_{i-1}^{\star}\right), \mathsf{F}\left(s_{j-1}^{\star}\right)\right)}{\mathsf{F}\left(s_{i}^{\star}\right) - \mathsf{F}\left(s_{i-1}^{\star}\right)}$$

where **C** is the copula function of the random vector $(\boldsymbol{\mathcal{S}}(t), \boldsymbol{\mathcal{S}}(t+1))$

ESG rating process Rating migration matrix

Rating migration matrix Estimation of the transition matrix

Non-parametric approach:

$$\hat{p}_{i,j}(t) = \frac{\# \{ \mathcal{R}(t+1) = R_j, \mathcal{R}(t) = R_i \}}{\# \{ \mathcal{R}(t) = R_i \}} = \frac{n_{i,j}(t)}{n_{i,\cdot}(t)}$$

 \Rightarrow cohort method vs. pooling method

ESG rating process Rating migration matrix

Rating migration matrix Estimation of the transition matrix

Table 29: Number of observations $n_{i,j}$ (migration matrix #1)

n _{i,j}	AAA	AA	А	BBB	BB	В	CCC	$n_{i,.}(t)$	$\hat{p}_{i,\cdot}(t)$
AAA	2 050	125	20	10	5	0	0	2 2 1 0	3.683%
AA	280	5 580	800	60	20	5	0	6745	11.242%
A	20	1 700	8 0 2 0	1150	90	10	0	10 990	18.317%
BBB	10	190	2820	10 000	1 300	60	10	14 390	23.983%
BB	5	25	200	2 500	9 1 5 0	1000	30	12910	21.517%
B	0	5	25	150	2 260	7 800	250	10 490	17.483%
CCC	0	0	5	10	50	300	1 900	2 265	3.775%
$n_{\cdot,j}(t)$	2 365	7 625	11 890	13 850	12875	9175	2 1 9 0	60 000	
$\hat{p}_{j}(t)$	3.942%	12.708%	19.817%	23.133%	21.458%	15.292%	3.650%		100.00%

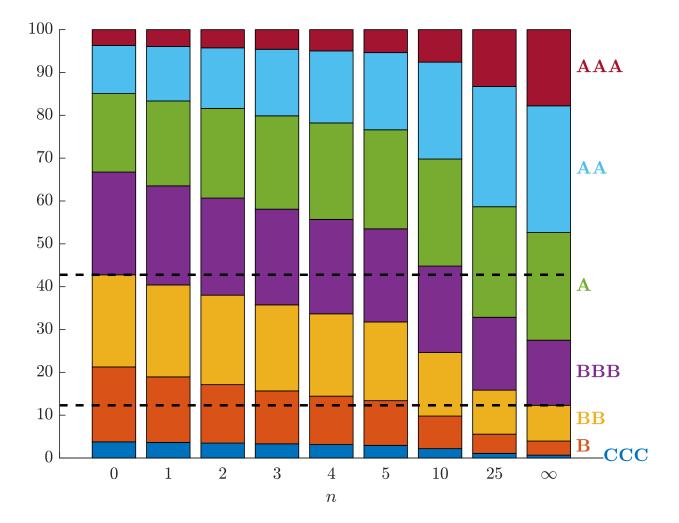
ESG rating process Rating migration matrix

Rating migration matrix Estimation of the transition matrix

• For the migration matrix #1, we have:

 $\pi^{\star} = (17.78\%, 29.59\%, 25.12\%, 15.20\%, 8.35\%, 3.29\%, 0.67\%)$

• The initial empirical distribution of ratings is:


 $\hat{\pi}^{(0)} = (3.683\%, 11.242\%, 18.317\%, 23.983\%, 21.517\%, 17.483\%, 3.775\%)$

• We have:

 $\hat{\pi}^{(1)} = \hat{P}^{\top} \hat{\pi}^{(0)}$ = (3.942%, 12.708%, 19.817%, 23.133%, 21.458%, 15.290%, 3.650%) Data and variablesDefinitionScoring systemESG rating processRating systemRating migration matrix

Rating migration matrix Estimation of the transition matrix

Figure 40: Dynamics of the probability distribution $\pi^{(n)}$ (migration matrix #1)

Thierry Roncalli

ESG rating process Rating migration matrix

Rating migration matrix Continuous-time modeling

Markov generator

- $t \in \mathbb{R}_+$
- The transition matrix is defined as follows:

$$P_{i,j}(s;t) = p(s,i;t,j) = \Pr \{ \mathcal{R}(t) = R_j \mid \mathcal{R}(s) = R_i \}$$

• If \mathcal{R} is a time-homogenous Markov, we have:

$$P(t) = P(0; t) = \exp(t\Lambda)$$

Λ = (λ_{i,j}) is the Markov generator matrix Λ = (λ_{i,j}) where λ_{i,j} ≥ 0 for all i ≠ j and λ_{i,i} = -∑^K_{j≠i} λ_{i,j}

ESG rating process Rating migration matrix

Rating migration matrix Continuous-time modeling

An example

- Rating system with three states: A (good rating), B (average rating) and C (bad rating)
- The Markov generator is equal to:

$$\Lambda = \left(\begin{array}{ccc} -0.30 & 0.20 & 0.10 \\ 0.15 & -0.40 & 0.25 \\ 0.10 & 0.15 & -0.25 \end{array}\right)$$

ESG rating process Rating migration matrix

Rating migration matrix Continuous-time modeling

• The one-year transition probability matrix is equal to:

$$P\left(1
ight)=e^{\Lambda}=\left(egin{array}{ccccc} 75.63\% & 14.84\% & 9.53\%\ 11.63\% & 69.50\% & 18.87\%\ 8.52\% & 11.73\% & 79.75\% \end{array}
ight)$$

• For the two-year maturity, we get:

$$P(2) = e^{2\Lambda} = \begin{pmatrix} 59.74\% & 22.65\% & 17.61\% \\ 18.49\% & 52.24\% & 29.27\% \\ 14.60\% & 18.76\% & 66.63\% \end{pmatrix}$$

• We verify that $P(2) = P(1) \cdot P(1)$ because:

$$P(t) = e^{t\Lambda} = (e^{\Lambda})^{t} = P(1)^{t}$$

• We have:

$$P\left(\frac{1}{12}\right) = e^{\frac{1}{12}\Lambda} = \begin{pmatrix} 97.54\% & 1.62\% & 0.83 \\ 1.22\% & 96.74\% & 2.03 \\ 0.82\% & 1.22\% & 97.95 \end{pmatrix}$$

ESG rating process Rating migration matrix

Rating migration matrix Matrix function

Matrix function

We consider the matrix function in the space ${\mathbb M}$ of square matrices:

$$egin{array}{ccc} f : & \mathbb{M} \longrightarrow \mathbb{M} \ & A \longmapsto B = f\left(A
ight) \end{array}$$

For instance, if $f(x) = \sqrt{x}$ and A is positive, we can define the matrix B such that:

$$BB^* = B^*B = A$$

B is called the square root of A and we note $B = A^{1/2}$

ESG rating process Rating migration matrix

Rating migration matrix Matrix function

• We consider the following Taylor expansion:

$$f(x) = f(x_0) + (x - x_0) f'(x_0) + \frac{(x - x_0)^2}{2!} f''(x_0) + \dots$$

• We can show that if the series converge for $|x - x_0| < \alpha$, then the matrix f(A) defined by the following expression:

$$f(A) = f(x_0) + (A - x_0 I) f'(x_0) + \frac{(A - x_0 I)^2}{2!} f''(x_0) + \dots$$

converges to the matrix B if $|A - x_0I| < \alpha$ and we note B = f(A)

ESG rating process Rating migration matrix

Rating migration matrix Matrix function

• In the case of the exponential function, we have:

$$f(x) = e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$

• We deduce that the exponential of the matrix A is equal to:

$$B = e^A = \sum_{k=0}^{\infty} \frac{A^k}{k''!}$$

• The logarithm of A is the matrix B such that $e^B = A$ and we note $B = \ln A$

ESG rating process Rating migration matrix

Rating migration matrix Matrix function

• Let A and B be two $n \times n$ square matrices. We have the properties:

$$f(A^{\top}) = f(A)^{\top}$$
$$Af(A) = f(A)A$$
$$f(B^{-1}AB) = B^{-1}f(A)B$$

• It follows that:

$$\begin{pmatrix}
e^{A^{\top}} = (e^{A})^{\top} \\
e^{B^{-1}AB} = B^{-1}e^{A}B \\
Ae^{B} = e^{B}A & \text{if } AB = BA \\
e^{A+B} = e^{A}e^{B} = e^{B}e^{A} & \text{if } AB = BA
\end{pmatrix}$$

ESG rating process Rating migration matrix

Rating migration matrix Matrix function

Definition

The Schur decomposition of the $n \times n$ matrix A is equal to:

 $A = QTQ^*$

where Q is a unitary matrix and T is an upper triangular matrix

For transcendental functions, we have:

 $f(A) = Qf(T)Q^*$

where $A = QTQ^*$ is the Schur decomposition of A

ESG rating process Rating migration matrix

Rating migration matrix Continuous-time modeling

Estimation of the Markov generator

We have:

$$\hat{\Lambda} = rac{1}{t} \ln \left(\hat{P}(t)
ight)$$

 $\Rightarrow \hat{\Lambda} \text{ may not verify the Markov conditions: } \hat{\lambda}_{i,j} \ge 0 \text{ for all } i \neq j \text{ and} \\ \sum_{j=1}^{K} \lambda_{i,j} = 0$

ESG rating process Rating migration matrix

Rating migration matrix Continuous-time modeling

Table 30: Non-Markov generator $\Lambda' = \ln(P)$ of the migration matrix #1 (in %)

	AAA	AA	А	BBB	BB	В	CCC
AAA	-7.663	6.427	0.542	0.466	0.245	-0.016	-0.000
AA	4.770	-20.604	15.451	-0.001	0.318	0.066	-0.001
А	-0.267	20.259	-35.172	14.953	0.152	0.083	-0.008
BBB	0.102	-1.051	28.263	-40.366	13.100	-0.128	0.080
BB	0.032	0.307	-1.762	28.351	-37.889	10.832	0.129
В	-0.005	-0.008	0.503	-2.240	30.227	-31.482	3.006
CCC	0.000	-0.024	0.194	0.469	0.365	16.806	-17.810

ESG rating process Rating migration matrix

Rating migration matrix Continuous-time modeling

Israel-Rosenthal-Wei estimators

The first approach consists in adding the negative values back into the diagonal values:

$$\begin{cases} \bar{\lambda}_{i,j} = \max\left(\hat{\lambda}_{i,j}, 0\right) & i \neq j \\ \bar{\lambda}_{i,i} = \hat{\lambda}_{i,i} + \sum_{j \neq i} \min\left(\hat{\lambda}_{i,j}, 0\right) \end{cases}$$

The second estimator carries forward the negative values on the matrix entries which have the correct sign:

$$\begin{cases} G_{i} = \left| \hat{\lambda}_{i,i} \right| + \sum_{j \neq i} \max\left(\hat{\lambda}_{i,j}, 0 \right), B_{i} = \sum_{j \neq i} \max\left(-\hat{\lambda}_{i,j}, 0 \right) \\ & \text{if } i \neq j \text{ and } \hat{\lambda}_{i,j} < 0 \\ & \hat{\lambda}_{i,j} = \begin{cases} 0 & \text{if } i \neq j \text{ and } \hat{\lambda}_{i,j} < 0 \\ & \hat{\lambda}_{i,j} - B_{i} \left| \hat{\lambda}_{i,j} \right| / G_{i} & \text{if } G_{i} > 0 \\ & \hat{\lambda}_{i,j} & \text{if } G_{i} = 0 \end{cases}$$

ESG rating process Rating migration matrix

Rating migration matrix Continuous-time modeling

Table 31: Markov generator of the migration matrix #1 (in %)

	AAA	AA	А	BBB	BB	В	ССС
AAA	-7.679	6.427	0.542	0.466	0.245	0.000	0.000
AA	4.770	-20.606	15.451	0.000	0.318	0.066	0.000
А	0.000	20.259	-35.447	14.953	0.152	0.083	0.000
BBB	0.102	0.000	28.263	-41.545	13.100	0.000	0.080
BB	0.032	0.307	0.000	38.351	-39.651	10.832	0.129
В	0.000	0.000	0.503	0.000	30.227	-33.735	3.006
CCC	0.000	0.000	0.194	0.469	0.365	16.806	-17.834

ESG rating process Rating migration matrix

Rating migration matrix Continuous-time modeling

Table 32: ESG migration Markov matrix #1 (one-year transition probability in %)

	AAA	AA	А	BBB	BB	В	CCC
AAA	92.75	5.66	0.90	0.45	0.23	0.01	0.00
AA	4.17	82.73	11.85	0.89	0.30	0.07	0.00
А	0.40	15.51	72.79	10.39	0.81	0.10	0.01
BBB	0.12	2.11	19.60	68.69	8.91	0.50	0.07
BB	0.04	0.43	2.79	19.25	69.65	7.61	0.23
В	0.01	0.09	0.65	2.98	21.21	72.71	2.35
CCC	0.00	0.02	0.25	0.58	2.19	13.09	83.87

ESG rating process Rating migration matrix

Rating migration matrix Continuous-time modeling

AAA	AA	А	BBB	BB	В	CCC
92.76	5.66	0.90	0.45	0.23	0.00	0.00
4.15	82.73	11.86	0.89	0.30	0.07	0.00
0.18	15.47	72.98	10.46	0.82	0.09	0.00
0.07	1.32	19.60	69.49	9.03	0.42	0.07
0.04	0.19	1.55	19.36	70.88	7.75	0.23
0.00	0.05	0.24	1.43	21.54	74.36	2.38
0.00	0.00	0.22	0.44	2.21	13.24	83.89
	92.76 4.15 0.18 0.07 0.04 0.00	92.76 5.66 4.15 82.73 0.18 15.47 0.07 1.32 0.04 0.19 0.00 0.05	92.76 5.66 0.90 4.15 82.73 11.86 0.18 15.47 72.98 0.07 1.32 19.60 0.04 0.19 1.55 0.00 0.05 0.24	92.76 5.66 0.90 0.45 4.15 82.73 11.86 0.89 0.18 15.47 72.98 10.46 0.07 1.32 19.60 69.49 0.04 0.19 1.55 19.36 0.00 0.05 0.24 1.43	92.76 5.66 0.90 0.45 0.23 4.15 82.73 11.86 0.89 0.30 0.18 15.47 72.98 10.46 0.82 0.07 1.32 19.60 69.49 9.03 0.04 0.19 1.55 19.36 70.88 0.00 0.05 0.24 1.43 21.54	92.76 5.66 0.90 0.45 0.23 0.00 4.15 82.73 11.86 0.89 0.30 0.07 0.18 15.47 72.98 10.46 0.82 0.09 0.07 1.32 19.60 69.49 9.03 0.42 0.04 0.19 1.55 19.36 70.88 7.75 0.00 0.05 0.24 1.43 21.54 74.36

Table 33: Original migration matrix

Table 34: New migration matrix

	AAA	AA	А	BBB	BB	В	CCC
AAA	92.75	5.66	0.90	0.45	0.23	0.01	0.00
AA	4.17	82.73	11.85	0.89	0.30	0.07	0.00
А	0.40	15.51	72.79	10.39	0.81	0.10	0.01
BBB	0.12	2.11	19.60	68.69	8.91	0.50	0.07
BB	0.04	0.43	2.79	19.25	69.65	7.61	0.23
В	0.01	0.09	0.65	2.98	21.21	72.71	2.35
CCC	0.00	0.02	0.25	0.58	2.19	13.09	83.87

ESG rating process Rating migration matrix

Rating migration matrix Continuous-time modeling

Why it is important that ESG ratings satisfy the Markov property

• Lack of memory:

t-2		t-1		t		t+1
AAA	\longrightarrow	BBB	\longrightarrow	BBB	\longrightarrow	?
BBB	\longrightarrow	BBB	\longrightarrow	BBB	\longrightarrow	?
BB	\longrightarrow	BB	\longrightarrow	BBB	\longrightarrow	?

• Non-Markov property:

 $\Pr\left\{\mathcal{R}_{c_{1}}\left(t+1\right)=R_{j}\mid\mathcal{R}_{c_{1}}\left(t\right)=R_{i}\right\}\neq\Pr\left\{\mathcal{R}_{c_{2}}\left(t+1\right)=R_{j}\mid\mathcal{R}_{c_{2}}\left(t\right)=R_{i}\right\}$

for two different companies c_1 and c_2

ESG rating process Rating migration matrix

Rating migration matrix Continuous-time modeling

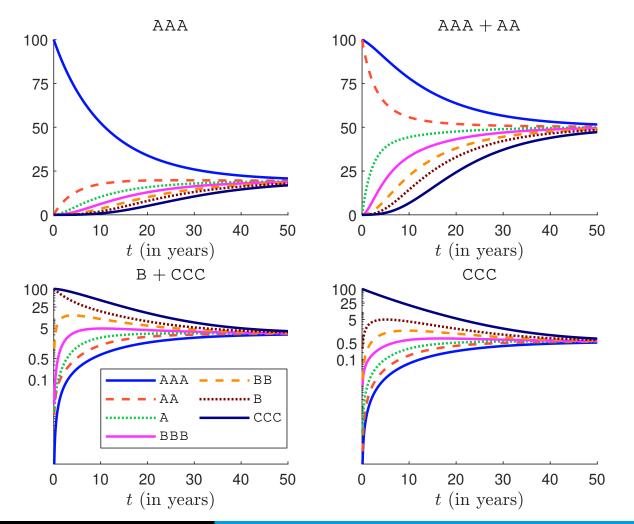
How to perform a dynamic analysis?

• We deduce that:

$$\pi_{k}\left(t,\mathcal{A}\right) = \Pr\left\{\mathcal{R}\left(t\right) \in \mathcal{A} \mid \mathcal{R}\left(0\right) = k\right\} = \sum_{j \in \mathcal{A}} \mathbf{e}_{k}^{\top} e^{t\Lambda} \mathbf{e}_{j}$$

• Some properties

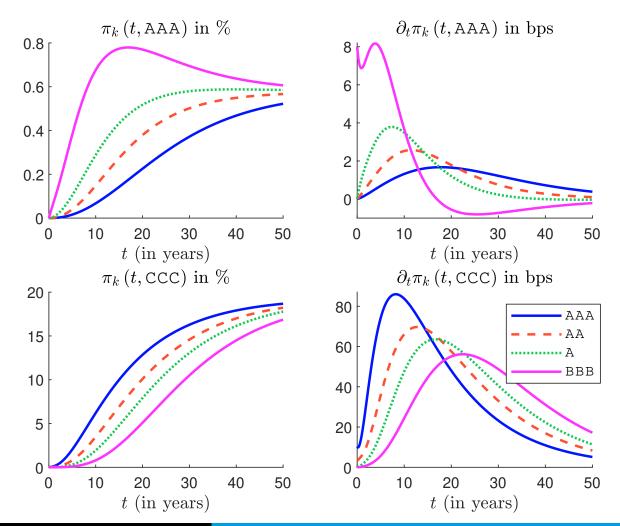
•
$$\partial_t \exp(\Lambda t) = \Lambda \exp(\Lambda t)$$


•
$$\partial_t^m \exp(\Lambda t) = \Lambda^m \exp(\Lambda t)$$

• $\int_0^t e^{\Lambda s} \mathrm{d}s = (e^{\Lambda t} - I_K) \Lambda^{-1}$

• For example, the *"time density function"* is given by:

$$\pi_k^{(m)}(t,\mathcal{A}) := \frac{\partial \pi_k(t,\mathcal{A})}{\partial t^m} = \sum_{j \in \mathcal{A}} \mathbf{e}_k^\top \Lambda^m e^{t\Lambda} \mathbf{e}_j$$


Figure 41: Probability $\pi_k(t, A)$ to reach A at time t (migration matrix #1)

ESG rating process Rating migration matrix

Rating migration matrix Continuous-time modeling

Figure 42: Dynamic analysis (migration matrix #1)

ESG rating process Rating migration matrix

Rating migration matrix Comparison with credit ratings

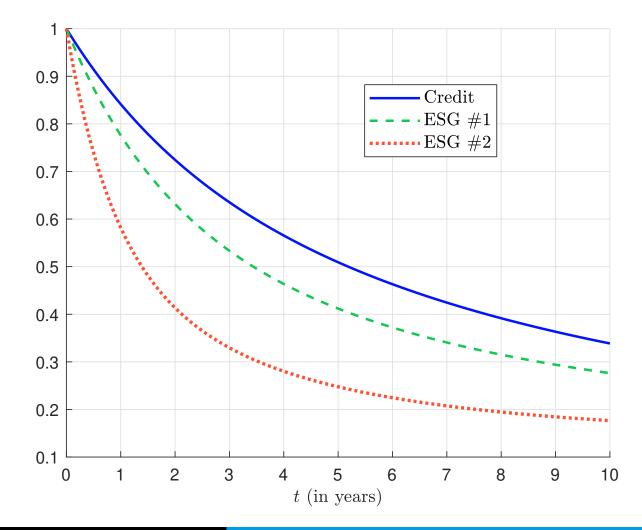
Table 35: Example of credit migration matrix (one-year probability transition in %)

	AAA	AA	А	BBB	BB	В	CCC	D
AAA	92.82	6.50	0.56	0.06	0.06	0.00	0.00	0.00
AA	0.63	91.87	6.64	0.65	0.06	0.11	0.04	0.00
А	0.08	2.26	91.66	5.11	0.61	0.23	0.01	0.04
BBB	0.05	0.27	5.84	87.74	4.74	0.98	0.16	0.22
BB	0.04	0.11	0.64	7.85	81.14	8.27	0.89	1.06
В	0.00	0.11	0.30	0.42	6.75	83.07	3.86	5.49
CCC	0.19	0.00	0.38	0.75	2.44	12.03	60.71	23.50
D	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00

Source: Kavvathas (2001).

ESG rating process Rating migration matrix

Rating migration matrix Comparison with credit ratings


The trace statistics is equal to:

$$\lambda(t) = rac{\operatorname{trace}(e^{t\Lambda})}{K}$$

ESG rating process Rating migration matrix

Rating migration matrix Comparison with credit ratings

Figure 43: Trace statistics of credit and ESG migration matrices

Course 2022-2023 in Sustainable Finance Lecture 3. Impact of ESG Investing on Asset Prices and Portfolio Returns

Thierry Roncalli*

*Amundi Asset Management⁶

*University of Paris-Saclay

March 2023

⁶The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

Modern portfolio theory ESG risk premium ESG efficient frontier

Mean-variance optimization problem Model settings

- An investment universe of *n* assets
- $w = (w_1, \ldots, w_n)$ is the vector of weights in the portfolio
- The portfolio is fully invested meaning that $\sum_{i=1}^{n} w_i = \mathbf{1}^{\top} w = 1$
- $R = (R_1, \ldots, R_n)$ is the vector of asset returns
- We denote by $\mu = \mathbb{E}[R]$ and $\Sigma = \mathbb{E}\left[(R \mu)(R \mu)^{\top}\right]$ the vector of expected returns and the covariance matrix of asset returns

Modern portfolio theory ESG risk premium ESG efficient frontier

Mean-variance optimization problem

We have:

$$R(w) = \sum_{i=1}^{n} w_i R_i = w^{\top} R$$

The expected return $\mu(w) := \mathbb{E}[R(w)]$ of the portfolio is equal to:

$$\mu\left(\mathbf{w}
ight) = \mathbb{E}\left[\mathbf{w}^{ op}\mathbf{R}
ight] = \mathbf{w}^{ op}\mathbb{E}\left[\mathbf{R}
ight] = \mathbf{w}^{ op}\mu$$

whereas its variance $\sigma^2(w) := \operatorname{var}(R(w))$ is given by:

$$\sigma^{2}(w) = \mathbb{E}\left[\left(R(w) - \mu(w)\right)\left(R(w) - \mu(w)\right)^{\top}\right]$$
$$= \mathbb{E}\left[w^{\top}(R - \mu)\left(R - \mu\right)^{\top}w\right]$$
$$= w^{\top}\Sigma w$$

Modern portfolio theory ESG risk premium ESG efficient frontier

Mean-variance optimization problem μ - and σ -problems

We can then formulate the investor's financial problem as follows:

• Maximizing the expected return of the portfolio under a volatility constraint (σ -problem):

$$\max \mu(w)$$
 s.t. $\sigma(w) \leq \sigma^{\star}$

Or minimizing the volatility of the portfolio under a return constraint $(\mu$ -problem):

$$\min \sigma(w)$$
 s.t. $\mu(w) \ge \mu^{\star}$

 \Rightarrow The key idea of Markowitz was to transform the original non-linear optimization problems into a quadratic optimization problem

Modern portfolio theory ESG risk premium ESG efficient frontier

Mean-variance optimization problem Introducing the quadratic utility function

• The mean-variance (or quadratic) utility function is:

$$\mathcal{U}(w) := \mathbb{E}\left[R\left(w\right)\right] - \frac{\bar{\gamma}}{2} \operatorname{var}\left(R\left(w\right)\right) = w^{\top} \mu - \frac{\bar{\gamma}}{2} w^{\top} \Sigma w$$

where $\bar{\gamma}$ is the absolute risk-aversion parameter

• We obtain the following problem:

$$egin{aligned} & w^{\star}\left(ar{\gamma}
ight) &= & rg\max\left\{\mathcal{U}\left(w
ight) = w^{ op}\mu - rac{ar{\gamma}}{2}w^{ op}\Sigma w
ight\}\ & ext{ s.t. } & \mathbf{1}^{ op}w = 1 \end{aligned}$$

- $ar{\gamma} = 0 \Rightarrow$ maximum mean portfolio
- $\bar{\gamma} = \infty \Rightarrow$ minimum variance portfolio:

$$w^{\star}(\infty) = rgmin \frac{1}{2} w^{\top} \Sigma w$$
 s.t. $\mathbf{1}^{\top} w = 1$

Modern portfolio theory ESG risk premium ESG efficient frontier

Mean-variance optimization problem

In practice, professionals formulate the optimization problem as follows:

where $\gamma=\bar{\gamma}^{-1}$ is called the risk-tolerance

This is a standard QP problem

Modern portfolio theory ESG risk premium ESG efficient frontier

Quadratic programming problem

Definition

The formulation of a standard QP problem is:

$$w^{\star} = rgminrac{1}{2}w^{ op}Qw - w^{ op}R$$

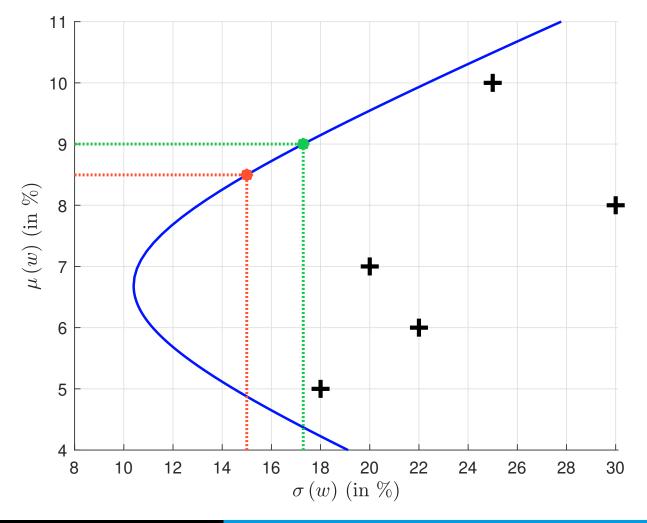
u.c. $\left\{egin{array}{c} Aw = B \ Cw \leq D \ w^{ op} \leq w \leq w^+ \end{array}
ight.$

$$\Rightarrow$$
 We have ${\it Q}=\Sigma$, ${\it R}=\gamma\mu$, ${\it A}={f 1}^ op$ and ${\it B}=1$

Modern portfolio theory ESG risk premium ESG efficient frontier

Mean-variance optimization problem

Example #1


We consider an investment universe of five assets. Their expected returns are equal to 5%, 7%, 6%, 10% and 8% while their volatilities are equal to 18%, 20%, 22%, 25% and 30%. The correlation matrix of asset returns is given by the following matrix:

$$\mathbb{C}=\left(egin{array}{cccccc} 100\% & & & \ 70\% & 100\% & & \ 20\% & 30\% & 100\% & \ -30\% & 20\% & 10\% & 100\% & \ -30\% & 20\% & 10\% & 100\% & \ 0\% & 0\% & 0\% & 0\% & 100\% \end{array}
ight)$$

Modern portfolio theory ESG risk premium ESG efficient frontier

Mean-variance optimization problem

Figure 44: Efficient frontier (Example #1)

Modern portfolio theory ESG risk premium ESG efficient frontier

Mean-variance optimization problem

- ${\ensuremath{\,\circ\,}}$ The GMV portfolio is obtained with $\gamma={\ensuremath{0}}$
- The solution is:

$$w_{\rm gmv} = (66.35\%, -28.52\%, 15.31\%, 34.85\%, 12.02\%)$$

• We have:

$$\sigma(w) \geq \sigma(w_{\rm gmv}) = 10.40\% \quad \forall w$$

Modern portfolio theory ESG risk premium ESG efficient frontier

Mean-variance optimization problem

Table 36: Solution of the Markowitz optimization problem (in %)

γ	0.00	0.10	0.20	0.50	1.00	5.00
$\overline{\mathbf{w}_{1}^{\star}\left(\gamma ight)}$	66.35	58.25	50.14	25.84	-14.67	-338.72
$\textit{w}_{2}^{\star}\left(\gamma ight)$	-28.52	-22.67	-16.82	0.74	30.00	264.12
$\textit{w}_{3}^{\star}\left(\gamma ight)$	15.31	13.30	11.30	5.28	-4.74	-84.93
$w_{4}^{\star}\left(\gamma ight)$	34.85	37.65	40.44	48.82	62.78	174.50
$w_{5}^{\star}\left(\gamma ight)$	12.02	13.48	14.94	19.32	26.62	85.03
$\mu\left(w^{\star}\left(\gamma\right)\right)$	6.69	6.97	7.25	8.09	9.49	20.71
$\sigma\left(\mathbf{w}^{\star}\left(\gamma\right)\right)$	10.40	10.53	10.93	13.35	19.71	84.38

Modern portfolio theory ESG risk premium ESG efficient frontier

Mean-variance optimization problem How to solve the μ -problem and the σ -problem?

- We have to find the optimal value of γ such that μ(w^{*}(γ)) = μ^{*} or σ(w^{*}(γ)) = σ^{*}
- We use the bisection algorithm
- If we target a portfolio with $\sigma^* = 15\%$, we know that $\gamma \in [0.5, 1]$. The optimal solution w^* is (14.06%, 9.25%, 2.37%, 52.88%, 21.44%)and the bisection algorithm returns $\gamma = 0.6455$. In this case, we obtain $\mu (w^* (\gamma)) = 8.50\%$
- If we consider a μ -problem with $\mu^* = 9\%$, we find $\gamma = 0.8252$, $w^* = (-0.50\%, 19.77\%, -1.23\%, 57.90\%, 24.07)$ and $\sigma (w^* (\gamma)) = 17.30\%$

Modern portfolio theory ESG risk premium ESG efficient frontier

Mean-variance optimization problem

• The Lagrange function of the optimization problem is equal to:

$$\mathcal{L}(\boldsymbol{w};\lambda_0) = \frac{1}{2}\boldsymbol{w}^{\top}\boldsymbol{\Sigma}\boldsymbol{w} - \gamma\boldsymbol{w}^{\top}\boldsymbol{\mu} + \lambda_0\left(\boldsymbol{1}^{\top}\boldsymbol{w} - 1\right)$$

where λ_0 is the Lagrange coefficients associated with the constraint $\mathbf{1}^{ op}w = 1$

• The solution w^* verifies the following first-order conditions:

$$\begin{cases} \partial_{w} \mathcal{L}(w; \lambda_{0}) = \boldsymbol{\Sigma} \boldsymbol{w} - \gamma \boldsymbol{\mu} + \lambda_{0} \mathbf{1} = \mathbf{0} \\ \partial_{\lambda_{0}} \mathcal{L}(w; \lambda_{0}) = \mathbf{1}^{\top} \boldsymbol{w} - 1 = \mathbf{0} \end{cases}$$

• We obtain $w = \Sigma^{-1} (\gamma \mu - \lambda_0 \mathbf{1})$. Because $\mathbf{1}^\top w - 1 = 0$, we have $\gamma \mathbf{1}^\top \Sigma^{-1} \mu - \lambda_0 \mathbf{1}^\top \Sigma^{-1} \mathbf{1} = 1$. It follows that:

$$\lambda_0 = \frac{\gamma \mathbf{1}^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} - 1}{\mathbf{1}^\top \boldsymbol{\Sigma}^{-1} \mathbf{1}}$$

Modern portfolio theory ESG risk premium ESG efficient frontier

Mean-variance optimization problem

• The solution is then:

$$\begin{split} w^{\star}\left(\gamma\right) &= \frac{\Sigma^{-1}\mathbf{1}}{\mathbf{1}^{\top}\Sigma^{-1}\mathbf{1}} + \gamma \frac{\left(\mathbf{1}^{\top}\Sigma^{-1}\mathbf{1}\right)\Sigma^{-1}\mu - \left(\mathbf{1}^{\top}\Sigma^{-1}\mu\right)\Sigma^{-1}\mathbf{1}}{\mathbf{1}^{\top}\Sigma^{-1}\mathbf{1}} \\ &= w_{\mathrm{gmv}} + \gamma w_{\mathrm{lsp}} \end{split}$$

where:

- $w_{\text{gmv}} = (\Sigma^{-1}\mathbf{1}) / (\mathbf{1}^{\top}\Sigma^{-1}\mathbf{1})$ is the global minimum variance portfolio
- w_{lsp} is a long/short cash-neutral portfolio such that $\mathbf{1}^{\top}w_{lsp} = 0$

Modern portfolio theory ESG risk premium ESG efficient frontier

Mean-variance optimization problem

- We could think that a QP solver is not required
- The analytical calculus gives:

$$w_{\rm gmv} = (66.35\%, -28.52\%, 15.31\%, 34.85\%, 12.02\%)$$

and:

$$w_{lsp} = (-81.01\%, 58.53\%, -20.05\%, 27.93\%, 14.60\%)$$

• In practice, professionals consider other constraints:

where $w \in \Omega$ corresponds to the set of restrictions

 No short-selling restriction (w_i ≥ 0 and Ω = [0, 1]ⁿ) and asset bounds (w_i ≤ w⁺) ⇒ No analytical solution (because of the KKT conditions) ⇒ QP solver

Modern portfolio theory ESG risk premium ESG efficient frontier

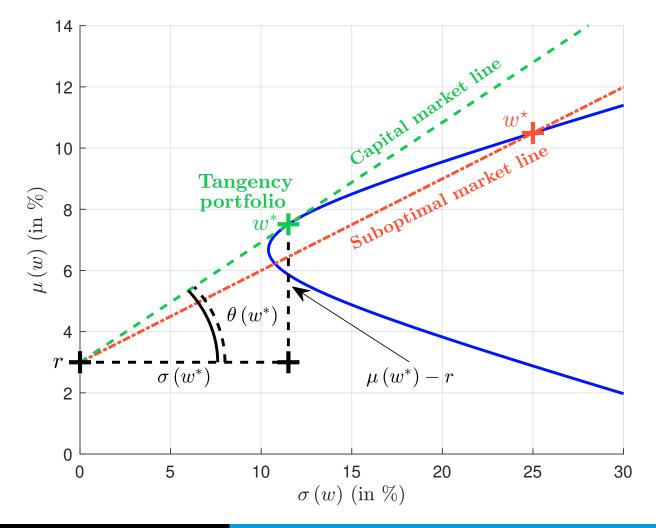
The tangency portfolio Two-fund separation theorem

We consider a combination of the risk-free asset and a portfolio w:

$$R(\tilde{w}) = (1 - \alpha) r + \alpha R(w)$$

where:

- *r* is the return of the risk-free asset
- $\tilde{w} = (\alpha w, 1 \alpha)$ is a vector of dimension (n + 1)
- $\alpha \geq$ 0 is the proportion of the wealth invested in the risky portfolio


 $\Rightarrow \text{ It follows that } \mu(\tilde{w}) = (1 - \alpha) r + \alpha \mu(w) = r + \alpha (\mu(w) - r), \\ \sigma^{2}(\tilde{w}) = \alpha^{2} \sigma^{2}(w) \text{ and:}$

$$\mu\left(\tilde{w}\right) = r + \frac{\left(\mu\left(w\right) - r\right)}{\sigma\left(w\right)} \sigma\left(\tilde{w}\right)$$

Modern portfolio theory ESG risk premium ESG efficient frontier

The tangency portfolio Two-fund separation theorem

Figure 45: Capital market line (Example #1)

Modern portfolio theory ESG risk premium ESG efficient frontier

The tangency portfolio Two-fund separation theorem

• Let SR(w | r) be the Sharpe ratio of portfolio w:

$$\operatorname{SR}(w \mid r) = \frac{\mu(w) - r}{\sigma(w)}$$

• We have:

$$\frac{\mu\left(\tilde{w}\right)-r}{\sigma\left(\tilde{w}\right)} = \frac{\mu\left(w\right)-r}{\sigma\left(w\right)} \Leftrightarrow \mathrm{SR}\left(\tilde{w} \mid r\right) = \mathrm{SR}\left(w \mid r\right)$$

• The tangency portfolio w^* satisfies:

$$w^{*} = \arg \max \tan \theta (w)$$

Modern portfolio theory ESG risk premium ESG efficient frontier

The tangency portfolio Two-fund separation theorem

If we consider our example with r = 3%, the composition of the tangency portfolio is:

 $w^* = (42.57\%, -11.35\%, 9.43\%, 43.05\%, 16.30\%)$

and we have:

$$\begin{pmatrix} \mu(w^*) = 7.51\% \\ \sigma(w^*) = 11.50\% \\ SR(w^* \mid r) = 0.39 \\ \theta(w^*) = 21.40 \text{ degrees} \end{pmatrix}$$

Modern portfolio theory ESG risk premium ESG efficient frontier

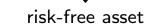
The tangency portfolio Augmented optimization problem

• When the risk-free asset belongs to the investment universe, the optimization problem becomes:

$$egin{array}{rcl} ilde{w}^{\star}\left(\gamma
ight) &=& rg\minrac{1}{2} ilde{w}^{ op} ilde{\Sigma} ilde{w} - \gamma ilde{w}^{ op} ilde{\mu} \ {
m s.t.} & \left\{ egin{array}{rcl} {f 1}^{ op} ilde{w} &=& 1 \ ilde{w} \in \Omega \end{array}
ight. \end{array}$$

where $\tilde{w} = (w, w_r)$ is the augmented allocation vector of dimension n+1

• It follows that:


$$ilde{\Sigma} = \left(egin{array}{cc} \Sigma & \mathbf{0} \\ \mathbf{0} & 0 \end{array}
ight) \quad ext{and} \quad ilde{\mu} = \left(egin{array}{c} \mu \\ r \end{array}
ight)$$

Modern portfolio theory

The tangency portfolio Augmented optimization problem

> • In the case where $\Omega = \mathbb{R}^{n+1}$, we can show that the optimal solution is equal to:

$$\tilde{w}^{\star}(\gamma) = \underbrace{\alpha \cdot \begin{pmatrix} w^{*} \\ 0 \end{pmatrix}}_{\text{risky assets}} + \underbrace{(1-\alpha) \cdot \begin{pmatrix} \mathbf{0} \\ 1 \end{pmatrix}}_{\text{risk-free asset}}$$

where w^* is the tangency portfolio:

$$w^* = rac{\Sigma^{-1} \left(\mu - r \mathbf{1}
ight)}{\mathbf{1}^{ op} \Sigma^{-1} \left(\mu - r \mathbf{1}
ight)}$$

• The proportion of risky assets is equal to

$$\alpha = \gamma \mathbf{1}^{\top} \mathbf{\Sigma}^{-1} \left(\mu - r \mathbf{1} \right)$$

• The risk-tolerance coefficient associated to the tangency portfolio is given by:

$$\gamma(w^*) = \frac{1}{\mathbf{1}^\top \mathbf{\Sigma}^{-1} (\mu - r\mathbf{1})}$$

Thierry Roncalli

Modern portfolio theory ESG risk premium ESG efficient frontier

Market equilibrium and CAPM Risk premium and beta

At the equilibrium, Sharpe (1964) showed that:

$$\pi_i := \mu_i - r = \beta_i \left(\mu \left(w^* \right) - r \right)$$

where π_i is the risk premium of the asset *i* and:

$$\beta_i = \frac{\operatorname{cov}(R_i, R(w^*))}{\operatorname{var}(R(w^*))}$$

We have:

$$\beta(x \mid w) = \frac{\sigma(x, w)}{\sigma^2(w)} = \frac{x^{\top} \Sigma w}{w^{\top} \Sigma w}$$

and:

$$\beta_i = \beta \left(\mathbf{e}_i \mid w \right) = \frac{\mathbf{e}_i^\top \Sigma w}{w^\top \Sigma w} = \frac{\left(\Sigma w \right)_i}{w^\top \Sigma w}$$

Modern portfolio theory ESG risk premium ESG efficient frontier

Market equilibrium and CAPM Risk premium and beta

In the case of Example #1, we have:

- $w^* = (42.57\%, -11.35\%, 9.43\%, 43.05\%, 16.30\%)$
- $(\mu(w^*) = 7.51\%, r = 3\%) \Rightarrow \mu(w^*) = 4.51\%$

Table 37: Computation of the beta and risk premia (Example #1)

Portfolio	μ (w)	$\mu(w) - r$	$\beta(w \mid w^*)$	$\pi(w \mid w^*)$
\mathbf{e}_1	5.00%	2.00%	0.444	2.00%
e ₂	7.00%	4.00%	0.887	4.00%
e ₃	6.00%	3.00%	0.665	3.00%
\mathbf{e}_4	10.00%	7.00%	1.553	7.00%
\mathbf{e}_5	8.00%	5.00%	1.109	5.00%
	7.20%	<u>4</u> . <u>2</u> 0 <u>%</u>	0.932	4.20%
$W_{ m gmv}$	6.69%	3.69%	0.817	3.69%

Modern portfolio theory ESG risk premium ESG efficient frontier

Market equilibrium and CAPM Risk premium and alpha return

• Jensen (1968) defined the alpha return as:

$$R_{j,t} - r = \alpha_j + \beta_j \left(R_t \left(w_m \right) - r \right) + \varepsilon_{j,t}$$

where $R_{j,t}$ is the return of the mutual fund j at time t, $R_t(w_m)$ is the return of the market portfolio and $\varepsilon_{j,t}$ is an idiosyncratic risk

More generally, the alpha is defined by the difference between the risk premium π(w) of portfolio w and the beta β(w) of the portfolio times the market risk premium π_m:

$$\alpha = (\mu(w) - r) - \beta(w \mid w_m)(\mu(w_m) - r)$$

= $\pi(w) - \beta(w) \pi_m$

Modern portfolio theory ESG risk premium ESG efficient frontier

Market equilibrium and CAPM

Risk premium and alpha return

In the case of Example #1 & no short-selling constraint, we have:

- $w^* = (33.62\%, 0\%, 8.79\%, 40.65\%, 16.95\%)$
- $(\mu(w^*) = 7.63\%, r = 3\%) \Rightarrow \mu(w^*) = 4.63\%$

Table 38: Computation of the alpha return (Example #1)

Portfolio	μ (w)	$\mu(w) - r$	$\beta(w \mid w^*)$	$\pi(w \mid w^*)$	$\alpha (w \mid w^*)$
\mathbf{e}_1	5.00%	2.00%	0.432	2.00%	0.00%
e ₂	7.00%	4.00%	0.970	4.49%	-0.49%
e ₃	6.00%	3.00%	0.648	3.00%	0.00%
\mathbf{e}_4	10.00%	7.00%	1.512	7.00%	0.00%
\mathbf{e}_5	8.00%	5.00%	1.080	5.00%	0.00%
	7.20%	4.20%	0.929	4.30%	-0.10%
W _{gmv}	6.69%	3.69%	0.766	3.55%	0.14%

Modern portfolio theory ESG risk premium ESG efficient frontier

Portfolio optimization in the presence of a benchmark Utility function revisited

- *b* is the benchmark
- The tracking error is:

$$\epsilon = R(w) - R(b) = \sum_{i=1}^{n} w_i R_i - \sum_{i=1}^{n} b_i R_i = w^{\top} R - b^{\top} R = (w - b)^{\top} R$$

• The expected excess return is equal to:

$$\mu (w \mid b) := \mathbb{E} [\epsilon] = (w - b)^{\perp} \mu$$

• The volatility of the tracking error is defined as:

$$\sigma\left(w\mid b
ight):=\sigma\left(e
ight)=\sqrt{\left(w-b
ight)^{ op}\Sigma\left(w-b
ight)}$$

Modern portfolio theory ESG risk premium ESG efficient frontier

Portfolio optimization in the presence of a benchmark Utility function revisited

• The objective of the investor is then to maximize the expected tracking error with a constraint on the tracking error volatility:

$$w^{\star} = rg \max \mu (w \mid b)$$
 s.t. $\begin{cases} \mathbf{1}^{\top} x = 1 \\ \sigma (w \mid b) \leq \sigma^{\star} \end{cases}$

• We have:

$$f(w \mid b) = \frac{1}{2}\sigma^{2}(w \mid b) - \gamma\mu(w \mid b)$$

$$= \frac{1}{2}(w - b)^{\top}\Sigma(w - b) - \gamma(w - b)^{\top}\mu$$

$$= \frac{1}{2}w^{\top}\Sigma w - w^{\top}(\gamma\mu + \Sigma b) + \frac{1}{2}b^{\top}\Sigma b + \gamma b^{\top}\mu$$

constant

Modern portfolio theory ESG risk premium ESG efficient frontier

Portfolio optimization in the presence of a benchmark QP formulation

We have:

$$egin{aligned} Q &= \Sigma \ R &= \gamma \mu + \Sigma b \ A &= \mathbf{1}^{ op} \ B &= 1 \ C &= \ D &= \ w^- &= \mathbf{0}_n \ (ext{if no short-selling}) \ w^+ &= \mathbf{1}_n \ (ext{if no short-selling}) \end{aligned}$$

Modern portfolio theory ESG risk premium ESG efficient frontier

Portfolio optimization in the presence of a benchmark

Example #2

We consider an investment universe of four assets. Their expected returns are equal to 5%, 6.5%, 8% and 6.5% while their volatilities are equal to 15%, 20%, 25% and 30%. The correlation matrix of asset returns is given by the following matrix:

$$\mathbb{C} = \left(\begin{array}{cccc} 100\% & & & \\ 10\% & 100\% & & \\ 40\% & 70\% & 100\% & \\ 50\% & 40\% & 80\% & 100\% \end{array}\right)$$

The benchmark is b = (60%, 40%, 20%, -20%).

Modern portfolio theory ESG risk premium ESG efficient frontier

Portfolio optimization in the presence of a benchmark

Figure 46: Efficient frontier with a benchmark (Example #2)

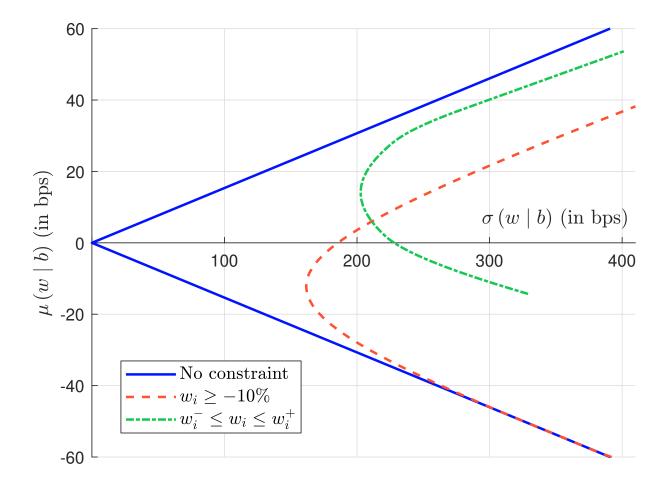
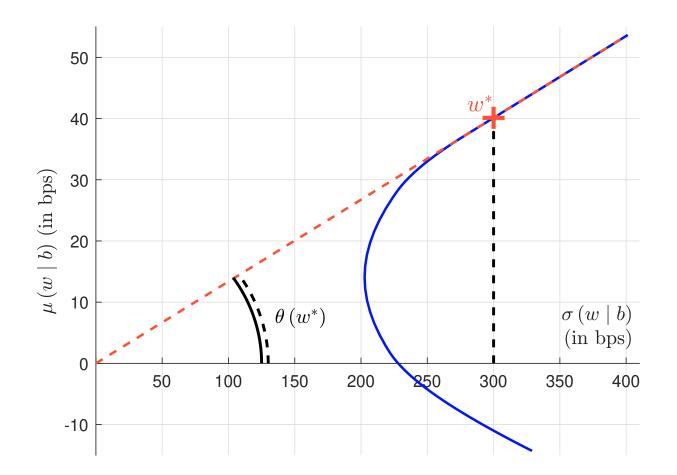



Figure 47: Tangency portfolio with respect to a benchmark (Example #2)

 \Rightarrow the tangency portfolio is equal to (46.56%, 33.49%, 39.95%, -20.00%)

Modern portfolio theory ESG risk premium ESG efficient frontier

Portfolio optimization in the presence of a benchmark

• We have:

$$\operatorname{IR}(w \mid b) = \frac{\mu(w \mid b)}{\sigma(w \mid b)} = \frac{(w - b)^{\top} \mu}{\sqrt{(w - b)^{\top} \Sigma(w - b)}}$$

• If we consider a combination of the benchmark *b* and the active portfolio *w*, the composition of the portfolio is:

$$x = (1 - \alpha) b + \alpha w$$

where $\alpha \ge 0$ is the proportion of wealth invested in the portfolio w• It follows that:

$$\mu(\mathbf{x} \mid \mathbf{b}) = (\mathbf{x} - \mathbf{b})^{\top} \mu = \alpha \mu(\mathbf{w} \mid \mathbf{b})$$

and:

$$\sigma^{2}(x \mid b) = (x - b)^{\top} \Sigma (x - b) = \alpha^{2} \sigma^{2} (w \mid b)$$

• We deduce that:

$$\mu(x \mid b) = \operatorname{IR}(w \mid b) \cdot \sigma(x \mid b)$$

Modern portfolio theory ESG risk premium ESG efficient frontier

ESG risk premium

• Expected (or required) returns \neq historical (or realised) returns:

$\pi_i \neq R_i$

• Difference between the unconstrained risk premium and the implied risk premium:

$$\pi_i \neq \tilde{\pi}_i$$

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pastor-Stambaugh-Taylor model Model Settings

- The asset excess returns $\tilde{R} = R r = \left(\tilde{R}_1, \dots, \tilde{R}_n\right)$ are normally distributed: $\tilde{R} \sim \mathcal{N}(\pi, \Sigma)$
- Each firm has an ESG characteristic G_i, which is positive for esg-friendly (or green) firms and negative for esg-unfriendly (or brown) firms
- $G_i > 0$ induces positive social impact, while $G_i < 0$ induces negative externalities on the society
- Economy with a continuum of agents $(j = 1, 2, ..., \infty)$
- $w_{i,j}$ is the fraction of the wealth invested by agent j in stock i
- $w_j = (w_{1,j}, \ldots, w_{n,j})$ is the allocation vector of agent j

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pastor-Stambaugh-Taylor model Model settings

• The relationship between the initial and terminal wealth W_j and \tilde{W}_j is given by:

$$ilde{W}_{j} = \left(1 + r + w_{j}^{\top} ilde{R}\right) W_{j}$$

• Exponential CARA utility function:

$$\mathcal{U}\left(\tilde{W}_{j}, w_{j}\right) = -\exp\left(-\bar{\gamma}_{j}\tilde{W}_{j} - w_{j}^{\top}b_{j}W_{j}\right)$$

where:

- $\bar{\gamma}_j$ is the absolute risk-aversion
- $b_j = \varphi_j \boldsymbol{\mathcal{G}}$ is the vector of nonpecuniary benefits $(\varphi_j \ge 0)$

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pastor-Stambaugh-Taylor model Optimal portfolio

• The expected utility is equal to:

$$\begin{split} \mathbb{E}\left[\mathcal{U}\left(\tilde{W}_{j}, w_{j}\right)\right] &= \mathbb{E}\left[-\exp\left(-\bar{\gamma}_{j}\tilde{W}_{j} - w_{j}^{\top}b_{j}W_{j}\right)\right] \\ &= \mathbb{E}\left[-\exp\left(-\bar{\gamma}_{j}\left(1 + r + w_{j}^{\top}\tilde{R}\right)W_{j} - w_{j}^{\top}b_{j}W_{j}\right)\right] \\ &= -e^{-\bar{\gamma}_{j}(1 + r)W_{j}}\mathbb{E}\left[\exp\left(-\bar{\gamma}_{j}w_{j}^{\top}W_{j}\left(\tilde{R} + \bar{\gamma}_{j}^{-1}b_{j}\right)\right)\right] \\ &= e^{-\bar{\Gamma}_{j}(1 + r)}\mathbb{E}\left[\exp\left(-\bar{\Gamma}_{j}w_{j}^{\top}\left(\tilde{R} + \bar{\gamma}_{j}^{-1}b_{j}\right)\right)\right] \end{split}$$

where $\overline{\Gamma}_j = \overline{\gamma}_j W_j$ is the nominal risk aversion

• We notice that $\tilde{R} + \bar{\gamma}_j^{-1} b_j \sim \mathcal{N}\left(\pi + \bar{\gamma}_j^{-1} b_j, \Sigma\right)$ and:

$$-\bar{\boldsymbol{\Gamma}}_{j}\boldsymbol{w}_{j}^{\top}\left(\tilde{\boldsymbol{R}}+\bar{\boldsymbol{\Gamma}}_{j}^{-1}\boldsymbol{b}_{j}\right)\sim\mathcal{N}\left(-\bar{\boldsymbol{\Gamma}}_{j}\boldsymbol{w}_{j}^{\top}\left(\boldsymbol{\pi}+\bar{\gamma}_{j}^{-1}\boldsymbol{b}_{j}\right),\bar{\boldsymbol{\Gamma}}_{j}^{2}\boldsymbol{w}_{j}^{\top}\boldsymbol{\Sigma}\boldsymbol{w}_{j}\right)$$

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pastor-Stambaugh-Taylor model Optimal portfolio

• We deduce that:

$$\mathbb{E}\left[\mathcal{U}\left(\tilde{W}_{j}, w_{j}\right)\right] = e^{-\bar{\Gamma}_{j}(1+r)} \exp\left(-\bar{\Gamma}_{j} w_{j}^{\top} \left(\pi + \bar{\gamma}_{j}^{-1} b_{j}\right) + \frac{1}{2}\bar{\Gamma}_{j}^{2} w_{j}^{\top} \Sigma w_{j}\right)$$

• The first-order condition is equal to:

$$-\bar{\mathsf{\Gamma}}_{j}\left(\pi+\bar{\gamma}_{j}^{-1}b_{j}\right)+\bar{\mathsf{\Gamma}}_{j}^{2}\Sigma w_{j}=0$$

Finally, Pastor et al. (2021) concluded that the optimal portfolio is:

$$w_j^{\star} = \mathsf{\Gamma}_j \Sigma^{-1} \left(\pi + \gamma_j b_j \right)$$

where $\Gamma_j = \overline{\Gamma}_j^{-1}$ and $\gamma_j = \overline{\gamma}_j^{-1}$ are the relative nominal and unitary risk-tolerance

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pastor-Stambaugh-Taylor model Optimal portfolio

Maximizing the expected utility is equivalent to solve the classical Markowitz QP problem:

$$egin{aligned} & w_j^\star\left(\gamma_j
ight) &= & rg\minrac{1}{2}w_j^ op\Sigma w_j - \gamma_j w_j^ op\mu' \ & ext{ s.t. } & \mathbf{1}^ op w_j = 1 \end{aligned}$$

where

Modern portfolio theor ESG risk premium ESG efficient frontier

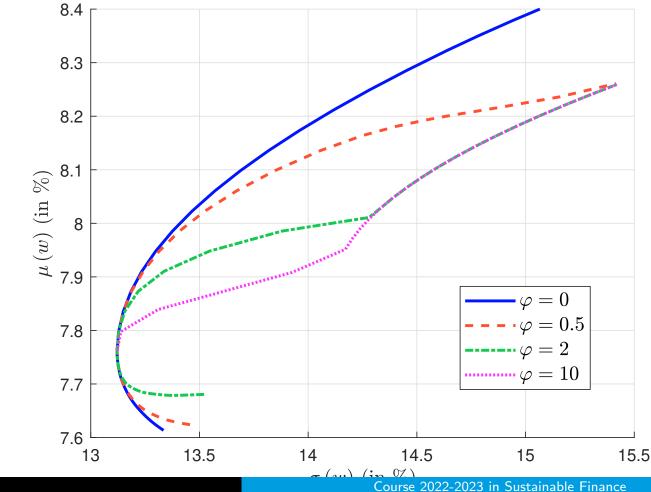
The Pastor-Stambaugh-Taylor model Optimal portfolio

Example #3

We consider a universe of *n* risky assets, where *n* is an even number. The risk-free rate *r* is set to 3%. We assume that the Sharpe ratio of these assets is the same and is equal to 20%. The volatility of asset *i* is equal to $\sigma_i = 0.10 + 0.20 \cdot e^{-n^{-1}\lfloor 0.5i \rfloor}$. The correlation between asset returns is constant: $\mathbb{C} = \mathbb{C}_n(\rho)$. The social impact of the firms is given by the vector \mathcal{G} . When \mathcal{G} is not specified, it is equal to the cyclic vector $(+1\%, -1\%, +1\%, \dots, +1\%, -1\%)$. This implies that half of the firms (green firms) have a positive social impact while the others (brown firms) have a negative impact.

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pastor-Stambaugh-Taylor model Optimal portfolio


Table 39: Mean-variance optimized portfolios with ESG preferences (Example #3, n = 6, $\rho = 25\%$)

	$\mathcal{G}=(1\%$	$\sqrt{6, -1\%, 1\%}$	$\sqrt{6, -1\%, 1\%}$	∕₀, −1%)	${oldsymbol{\mathcal{G}}}=(10\%,5\%,2\%,3\%,25\%,30\%)$				
arphi	0.00%	1.00%	5.00%	50.00%	0.00%	0.50%	1.00%	2.00%	
w_1^{\star}	44.97%	48.87%	58.65%	67.48%	44.97%	46.83%	28.69%	0.00%	
W_2^{\star}	44.97%	41.06%	19.60%	0.00%	44.97%	37.06%	9.17%	0.00%	
W3*	5.03%	9.82%	21.75%	32.52%	5.03%	0.00%	0.00%	0.00%	
w_4^{\star}	5.03%	0.25%	0.00%	0.00%	5.03%	0.00%	0.00%	0.00%	
w_5^{\star}	0.00%	0.00%	0.00%	0.00%	0.00%	0.83%	16.62%	21.09%	
w_6^{\star}	0.00%	0.00%	0.00%	0.00%	0.00%	15.28%	45.53%	78.91%	
$\mu(w^{\star})$	8.33%	8.33%	8.27%	8.22%	8.33%	8.23%	7.79%	7.43%	
$\sigma(w^{\star})$	20.00%	20.09%	20.07%	21.56%	20.00%	19.33%	16.70%	19.17%	
$\operatorname{SR}(w^{\star} \mid r)$	0.27	0.27	0.26	0.24	0.27	0.27	0.29	0.23	

ESG risk premium

The Pastor-Stambaugh-Taylor model **Optimal** portfolio

Figure 48: Efficient frontier with ESG preferences (Example #3, n = 20, $\rho = 25\%$)

Thierry Roncalli

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pastor-Stambaugh-Taylor model Risk premium

- $W = \int W_j \, \mathrm{d}j$
- $\omega_j = W_j/W$ is the market share of the economic agent j
- $W_{i,j} = w_{i,j}^{\star} W_j = w_{i,j}^{\star} \omega_j W$
- We have:

$$W_i = \int_j W_{i,j} \, \mathrm{d}j = \int_j w_{i,j}^* \omega_j W \, \mathrm{d}j$$

• Let $w_m = (w_{1,m}, \ldots, w_{n,m})$ be the market portfolio. We have:

$$w_{i,m} = \frac{W_i}{W} = \int_j w_{i,j}^* \omega_j \,\mathrm{d}j$$

and $\int_j \omega_j \, \mathrm{d} j = 1$

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pastor-Stambaugh-Taylor model Risk premium

• The market clearing condition satisfies:

$$\begin{split} w_m &= \int_j \omega_j w_j^* \, \mathrm{d}j \\ &= \int_j \omega_j \Gamma_j \Sigma^{-1} \left(\pi + \gamma_j b_j \right) \, \mathrm{d}j \\ &= \int_j \omega_j \Gamma_j \Sigma^{-1} \left(\pi + \gamma_j \varphi_j \mathcal{G} \right) \, \mathrm{d}j \\ &= \left(\int_j \Gamma_j \omega_j \, \mathrm{d}j \right) \Sigma^{-1} \pi + \left(\int_j \omega_j \Gamma_j \psi_j \, \mathrm{d}j \right) \Sigma^{-1} \mathcal{G} \end{split}$$

where $\psi_j = \gamma_j \varphi_j$ • It follows that:

$$w_m = \Gamma_m \Sigma^{-1} \pi + \Gamma_m \psi_m \Sigma^{-1} \mathcal{G}$$

where $\Gamma_m = \int_j \Gamma_j \omega_j \, dj$ and $\psi_m = \Gamma_m^{-1} \left(\int_j \omega_j \Gamma_j \psi_j \, dj \right)$ are the average risk tolerance and the weighted average of ESG preferences

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pastor-Stambaugh-Taylor model Risk premium

• The asset risk premia are equal to:

$$\pi = \frac{1}{\Gamma_m} \Sigma w_m - \psi_m \mathcal{G}$$

while the market risk premium is defined as:

$$\pi_{m} = w_{m}^{\top} \pi$$

$$= \frac{1}{\Gamma_{m}} w_{m}^{\top} \Sigma w_{m} - \psi_{m} w_{m}^{\top} \mathcal{G}$$

$$= \frac{1}{\Gamma_{m}} \sigma_{m}^{2} - \psi_{m} \mathcal{G}_{m}$$

where $\sigma_m = \sqrt{w_m^\top \Sigma w_m}$ and $\mathcal{G}_m = w_m^\top \mathcal{G}$ are the volatility and the green intensity (or greenness) of the market portfolio

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pastor-Stambaugh-Taylor model Risk premium

• The risk premium including the ESG sentiment is lower than the CAPM risk premium if the market ESG intensity is positive:

$$\mathcal{G}_m > 0 \Longrightarrow \pi_m \le \pi_m^{\mathrm{capm}}$$

• It is greater than the CAPM risk premium if the market ESG intensity is negative:

$$\mathcal{G}_m < 0 \Longrightarrow \pi_m \ge \pi_m^{\mathrm{capm}}$$

• The gap $\Delta \pi_m^{\text{esg}} := |\pi_m - \pi_m^{\text{capm}}|$ is an increasing function of the market ESG sentiment ψ_m :

$$\psi_m \nearrow \Longrightarrow \Delta \pi_m^{\mathrm{esg}} \nearrow$$

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pastor-Stambaugh-Taylor model Risk premium

If we assume that $\mathcal{G}_m \approx 0$, we have $\Gamma_m = \sigma_m^2 / \pi_m$,

$$\pi = \beta \pi_m - \psi_m \mathcal{G}$$

and:

$$\alpha_i = \pi_i - \beta_i \pi_m = -\psi_m \mathcal{G}_i$$

If $\psi_m > 0$, "green stocks have negative alphas, and brown stocks have positive alphas. Moreover, greener stocks have lower alphas" (Pastor et al., 2021).

Modern portfolio theor ESG risk premium ESG efficient frontier

The Pastor-Stambaugh-Taylor model Risk premium

Example #4

We consider Example #3. The market is made up of two long-only investors (j = 1, 2): a non-ESG investor $(\varphi_1 = 0)$ and an ESG investor $(\varphi_2 > 0)$. We assume that they have the same risk tolerance γ . We note W_1 and W_2 their financial wealth, which is entirely invested in the risky assets. We assume that $W_1 = W_2 = 1$.

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pastor-Stambaugh-Taylor model Risk premium

• The tangency portfolio is equal to:

$$w^* = \frac{\Sigma^{-1} (\mu - r\mathbf{1})}{\mathbf{1}^{\top} \Sigma^{-1} (\mu - r\mathbf{1})}$$

= (15.04%, 15.04%, 16.65%, 16.65%, 18.31%, 18.31%)

•
$$w_1^{\star} = w^{\star}$$
 and $\gamma_1 = 1/(\mathbf{1}^{\top} \Sigma^{-1} (\mu - r\mathbf{1})) = 0.4558$
• $\gamma_2 = \gamma_1$ and:

$$egin{aligned} & w_2^\star &=& rg\minrac{1}{2}w^\top \Sigma w - \gamma_2 w^\top \left(\mu + \gamma_2 arphi_2 \mathcal{G}
ight) \ & ext{s.t.} & \left\{ egin{aligned} & \mathbf{1}^\top w = 1 \ & w \geq \mathbf{0} \end{aligned}
ight. \end{aligned}$$

• We obtain

$$w_2^{\star} = (18.86\%, 11.22\%, 21.33\%, 11.97\%, 23.96\%, 12.65\%)$$

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pastor-Stambaugh-Taylor model Risk premium

• The market portfolio is then equal to:

$$egin{array}{rcl} w_m &=& \displaystylerac{W_1}{W}w_1^\star + \displaystylerac{W_2}{W}w_2^\star \ &=& \displaystyle(1-\omega^{
m esg})\cdot w_1^\star + \omega^{
m esg}\cdot w_2^\star \end{array}$$

• When $W_1 = W_2 = 1$, we obtain

 $w_m = (16.95\%, 13.13\%, 18.99\%, 14.31\%, 21.13\%, 15.48\%)$ $\mu_m = 7.86\%$ $\sigma_m = 14.93\%$

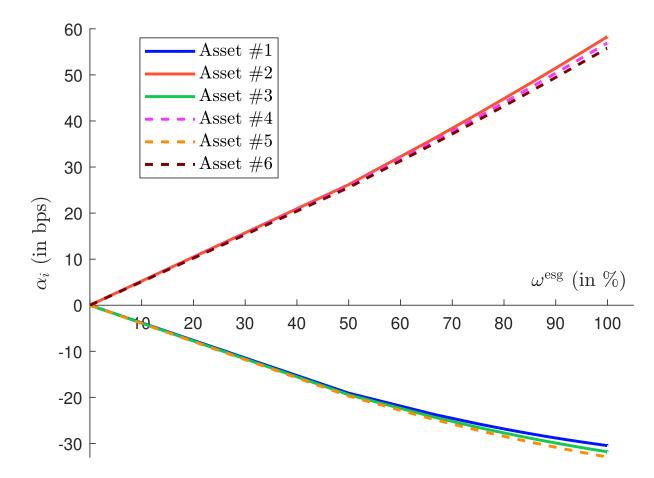
• We deduce that:

$$eta = (1.15, 1.05, 1.04, 0.95, 0.95, 0.86)$$

 $\pi = (5.58\%, 5.12\%, 5.06\%, 4.61\%, 4.62\%, 4.17\%)$
 $lpha = (-19.09, 26.19, -19.43, 25.84, -19.72, 25.55)$ (in bps)

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pastor-Stambaugh-Taylor model Risk premium


Table 40: Computation of alpha returns (Example #4, n = 6, $\rho = 25\%$)

	Portfolio w_1^{\star}			Portfolio w_2^{\star}				Portfolio w _m			
i	Wi	eta_{i}	π_i	Wi	eta_{i}	π_i	$lpha_i$	Wi	eta_{i}	π_i	$lpha_i$
	(in %)		(in %)	(in %)		(in %)	(in bps)	(in %)		(in %)	(in bps)
1	15.04	1.11	5.39	18.86	1.17	5.69	-30	16.95	1.15	5.58	-19
2	15.04	1.11	5.39	11.22	0.99	4.80	58	13.13	1.05	5.12	26
3	16.65	1.00	4.87	21.33	1.07	5.18	-32	18.99	1.04	5.06	-19
4	16.65	1.00	4.87	11.97	0.88	4.30	57	14.31	0.95	4.61	26
5	18.31	0.91	4.43	23.96	0.98	4.76	-33	21.13	0.95	4.62	-20
6	18.31	0.91	4.43	12.65	0.80	3.87	56	15.48	0.86	4.17	26

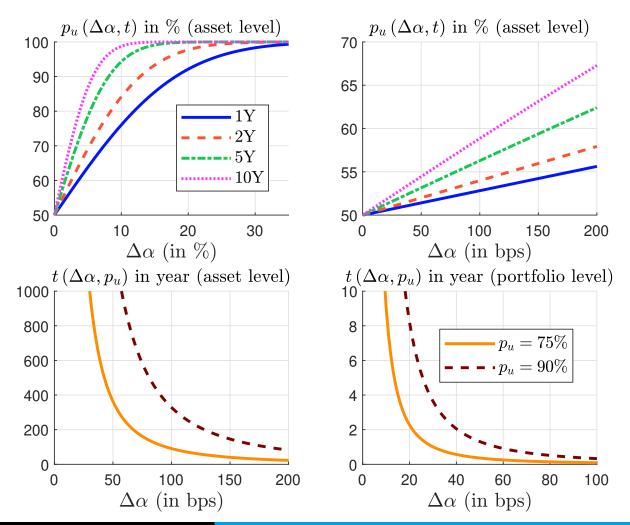
Modern portfolio theory ESG risk premium ESG efficient frontier

The Pastor-Stambaugh-Taylor model Risk premium

Figure 49: Evolution of the alpha return with respect to the market share of ESG investors (Example #4, n = 6, $\rho = 25\%$)

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pastor-Stambaugh-Taylor model Risk premium


"In equilibrium, green assets have low expected returns because investors enjoy holding them and because green assets hedge climate risk. Green assets nevertheless outperform when positive shocks hit the ESG factor, which captures shifts in customers' tastes for green products and investors' tastes for green holdings." (Pastor et al., 2021).

- ESG risk premium?
- Green risk premium?

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pastor-Stambaugh-Taylor model What does equilibrium mean?

Figure 50: Impact of alpha returns on the underperformance probability

Modern portfolio theory ESG risk premium ESG efficient frontier

Extension of the PST model

The Avromov-Cheng-Lioui-Tarelli model

• We have:

$$\left(\begin{array}{c}\tilde{R}\\\boldsymbol{\mathcal{S}}\end{array}\right)\sim\mathcal{N}\left(\left(\begin{array}{c}\pi\\\mu_{s}\end{array}\right),\left(\begin{array}{cc}\boldsymbol{\Sigma}&\boldsymbol{\Sigma}_{\pi,s}\\\boldsymbol{\Sigma}_{s,\pi}&\boldsymbol{\Sigma}_{s}\end{array}\right)\right)$$

• The optimal solution is:

$$w_{j}^{\star} = \underbrace{\Gamma_{j} \Sigma^{-1} \left(\pi + \psi_{j} \mu_{s}\right)}_{\text{PST solution}} + \underbrace{\Gamma_{j}^{-1} \Omega_{j} \left(\pi + \psi_{j} \mu_{s}\right)}_{\text{ESG uncertainty}}$$

Modern portfolio theory ESG risk premium ESG efficient frontier

Extension of the PST model The Avromov-Cheng-Lioui-Tarelli model

• If there is no ESG uncertainty ($S = \mu_s$ and $\Sigma_s = 0$), the vector of risk premia is given by:

$$\begin{aligned} \pi^{\mathrm{esg}} &= \beta \pi_{m} - \psi_{m} \left(\mu_{s} - \beta \bar{\boldsymbol{\mathcal{S}}}_{m} \right) \\ &= \pi^{\mathrm{capm}} - \psi_{m} \left(\mu_{s} - \beta \bar{\boldsymbol{\mathcal{S}}}_{m} \right) \end{aligned}$$

• If there is an uncertainty on ESG scores ($S \neq \mu_s$ and $\Sigma_s \neq 0$), the vector of risk premia becomes:

$$\begin{aligned} \breve{\pi}^{\text{esg}} &= \breve{\beta} \breve{\pi}_m - \psi_m \left(\breve{\mu}_s - \breve{\beta} \breve{\mathcal{S}}_m \right) \\ &= \beta \pi_m + \left(\breve{\beta} - \beta \right) \pi_m - \psi_m \left(\breve{\mu}_s - \breve{\beta} \breve{\mathcal{S}}_m \right) \end{aligned}$$

Modern portfolio theory ESG risk premium ESG efficient frontier

Extension of the PST model The Avromov-Cheng-Lioui-Tarelli model

"In equilibrium, the market premium increases and demand for stocks declines under ESG uncertainty. In addition, the CAPM alpha and effective beta both rise with ESG uncertainty and the negative ESG-alpha relation weakens." (Avramov et al., 2022).

Modern portfolio theor ESG risk premium ESG efficient frontier

Extension of the PST model Risk factor model

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pedersen-Fitzgibbons-Pomorski model Model settings

- $\tilde{R} = R r \sim \mathcal{N}(\pi, \Sigma)$
- $\boldsymbol{\mathcal{S}} = (\boldsymbol{\mathcal{S}}_1, \dots, \boldsymbol{\mathcal{S}}_n)$
- The terminal wealth is $\tilde{W} = \left(1 + r + w^{\top}\tilde{R}\right)W$
- The model uses the mean-variance utility:

$$\mathcal{U}\left(\tilde{W},w\right) = \mathbb{E}\left[\tilde{W}\right] - \frac{\bar{\gamma}}{2}\operatorname{var}\left(\tilde{W}\right) + \zeta\left(\mathcal{S}\left(w\right)\right)W$$
$$= \left(1 + r + w^{\top}\pi - \frac{\bar{\gamma}}{2}w^{\top}\Sigma w + \zeta\left(w^{\top}\mathcal{S}\right)\right)W$$

where $\boldsymbol{\zeta}$ is a function that depends on the investor

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pedersen-Fitzgibbons-Pomorski model Model settings

• Optimizing the utility function is equivalent to find the mean-variance-esg optimized portfolio:

$$egin{array}{rl} w^{\star} &=& rg\max w^{ op}\pi - rac{ar{\gamma}}{2}w^{ op}\Sigma w + \zeta \left(w^{ op}oldsymbol{\mathcal{S}}
ight) \ ext{ s.t. } \mathbf{1}^{ op}w = 1 \end{array}$$

•
$$\sigma(w) = \sqrt{w^{\top} \Sigma w}$$

• $\mathcal{S}(w) = w^{\top} \mathcal{S}$

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pedersen-Fitzgibbons-Pomorski model Model settings

• The optimization problem can be decomposed as follows:

$$w^{\star} = \arg \left\{ \max_{\bar{\boldsymbol{\mathcal{S}}}} \left\{ \max_{\sigma} \left\{ \max_{w} \left\{ f\left(w; \pi, \boldsymbol{\Sigma}, \boldsymbol{\mathcal{S}}\right) \text{ s.t. } w \in \Omega\left(\bar{\sigma}, \bar{\boldsymbol{\mathcal{S}}}\right) \right\} \right\} \right\} \right\}$$

where:

$$f(\boldsymbol{w}; \boldsymbol{\pi}, \boldsymbol{\Sigma}, \boldsymbol{\mathcal{S}}) = \boldsymbol{w}^{\top} \boldsymbol{\pi} - \frac{\bar{\gamma}}{2} \sigma^{2}(\boldsymbol{w}) + \zeta(\boldsymbol{\mathcal{S}}(\boldsymbol{w}))$$

and:

$$\Omega = \left\{ w \in \mathbb{R}^{n} : \mathbf{1}^{\top} w = 1, \sigma(w) = \bar{\sigma}, \mathcal{S}(w) = \bar{\mathcal{S}} \right\}$$

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pedersen-Fitzgibbons-Pomorski model Optimal portfolio

• We consider the $\sigma - \boldsymbol{\mathcal{S}}$ problem:

• The Lagrange function is:

$$\mathcal{L}(\boldsymbol{w};\lambda_{1},\lambda_{2}) = \boldsymbol{w}^{\top}\boldsymbol{\pi} + \lambda_{1}\left(\boldsymbol{w}^{\top}\boldsymbol{\Sigma}\boldsymbol{w} - \bar{\sigma}^{2}\right) + \lambda_{2}\left(\boldsymbol{w}^{\top}\left(\boldsymbol{\mathcal{S}} - \bar{\boldsymbol{\mathcal{S}}}\boldsymbol{1}\right)\right)$$

• The first-order condition is:

$$\frac{\partial \mathcal{L}(\boldsymbol{w};\lambda_1,\lambda_2)}{\partial \boldsymbol{w}} = \pi + 2\lambda_1 \boldsymbol{\Sigma} \boldsymbol{w} + \lambda_2 \left(\boldsymbol{\mathcal{S}} - \boldsymbol{\bar{\mathcal{S}}} \boldsymbol{1}\right) = \boldsymbol{0}$$

• We deduce that the optimal portfolio is given by:

$$w = -rac{1}{2\lambda_1} \Sigma^{-1} \left(\pi + \lambda_2 \left(\boldsymbol{\mathcal{S}} - \boldsymbol{\bar{\mathcal{S}}} \mathbf{1}
ight)
ight)$$

Thierry Roncalli

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pedersen-Fitzgibbons-Pomorski model Optimal portfolio

• The second constraint $w^{\top} \left(\boldsymbol{\mathcal{S}} - \bar{\boldsymbol{\mathcal{S}}} \mathbf{1} \right) = 0$ implies that:

$$\begin{aligned} (*) &\Leftrightarrow \quad \left(\boldsymbol{\mathcal{S}} - \bar{\boldsymbol{\mathcal{S}}} \mathbf{1}\right)^{\top} \frac{1}{2\lambda_{1}} \boldsymbol{\Sigma}^{-1} \left(\boldsymbol{\pi} + \lambda_{2} \left(\boldsymbol{\mathcal{S}} - \bar{\boldsymbol{\mathcal{S}}} \mathbf{1}\right)\right) = \boldsymbol{0} \\ &\Leftrightarrow \quad \lambda_{2} = -\frac{\left(\boldsymbol{\mathcal{S}} - \bar{\boldsymbol{\mathcal{S}}} \mathbf{1}\right)^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\pi}}{\left(\boldsymbol{\mathcal{S}} - \bar{\boldsymbol{\mathcal{S}}} \mathbf{1}\right)^{\top} \boldsymbol{\Sigma}^{-1} \left(\boldsymbol{\mathcal{S}} - \bar{\boldsymbol{\mathcal{S}}} \mathbf{1}\right)} \\ &\Leftrightarrow \quad \lambda_{2} = \frac{\bar{\boldsymbol{\mathcal{S}}} \left(\mathbf{1}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\pi}\right) - \boldsymbol{\mathcal{S}}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\pi}}{\boldsymbol{\mathcal{S}}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mathcal{S}} - 2 \bar{\boldsymbol{\mathcal{S}}} \left(\mathbf{1}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mathcal{S}}\right) + \bar{\boldsymbol{\mathcal{S}}}^{2} \left(\mathbf{1}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{1}\right)} \\ &\Leftrightarrow \quad \lambda_{2} = \frac{C_{1,\pi} \bar{\boldsymbol{\mathcal{S}}} - C_{s,\pi}}{C_{s,s} - 2C_{1,s} \bar{\boldsymbol{\mathcal{S}}} + C_{1,1} \bar{\boldsymbol{\mathcal{S}}}^{2}} \end{aligned}$$

where $C_{x,y}$ is the compact notation for $x^{\top}\Sigma^{-1}y - C_{1,\pi} = \mathbf{1}^{\top}\Sigma^{-1}\pi$, $C_{s,\pi} = \mathbf{S}^{\top}\Sigma^{-1}\pi$, $C_{s,s} = \mathbf{S}^{\top}\Sigma^{-1}\mathbf{S}$, $C_{1,s} = \mathbf{1}^{\top}\Sigma^{-1}\mathbf{S}$ and $C_{1,1} = \mathbf{1}^{\top}\Sigma^{-1}\mathbf{1}$

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pedersen-Fitzgibbons-Pomorski model Optimal portfolio

• Using the first constraint $w^{\top}\Sigma w - \bar{\sigma}^2 = 0$, we deduce that:

$$\begin{split} \bar{\sigma}^2 &= -\frac{1}{2\lambda_1} w^\top \Sigma \Sigma^{-1} \left(\pi + \lambda_2 \left(\boldsymbol{\mathcal{S}} - \bar{\boldsymbol{\mathcal{S}}} \boldsymbol{1} \right) \right) \\ &= -\frac{1}{2\lambda_1} \left(w^\top \pi + \lambda_2 w^\top \left(\boldsymbol{\mathcal{S}} - \bar{\boldsymbol{\mathcal{S}}} \boldsymbol{1} \right) \right) \\ &= -\frac{1}{2\lambda_1} w^\top \pi \\ &= \frac{1}{4\lambda_1^2} \pi^\top \Sigma^{-1} \left(\pi + \lambda_2 \left(\boldsymbol{\mathcal{S}} - \bar{\boldsymbol{\mathcal{S}}} \boldsymbol{1} \right) \right) \end{split}$$

• The first Lagrange coefficient is then equal to $(C_{\pi,\pi} = \pi^{\top} \Sigma^{-1} \pi)$:

$$\begin{split} \lambda_1 &= -\frac{1}{2\bar{\sigma}}\sqrt{\pi^\top \Sigma^{-1} \pi + \lambda_2 \left(\pi^\top \Sigma^{-1} \boldsymbol{\mathcal{S}} - \bar{\boldsymbol{\mathcal{S}}} \left(\pi^\top \Sigma^{-1} \boldsymbol{1}\right)\right)} \\ &= -\frac{1}{2\bar{\sigma}}\sqrt{C_{\pi,\pi} - \frac{\left(C_{1,\pi} \bar{\boldsymbol{\mathcal{S}}} - C_{s,\pi}\right)^2}{C_{s,s} - 2C_{1,s} \bar{\boldsymbol{\mathcal{S}}} + C_{1,1} \bar{\boldsymbol{\mathcal{S}}}^2}} \end{split}$$

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pedersen-Fitzgibbons-Pomorski model Optimal portfolio

• The optimal portfolio is the product of the volatility $\bar{\sigma}$ and the vector $\varrho(\bar{S})$:

$$w^{\star} \left(\bar{\sigma}, \bar{\boldsymbol{\mathcal{S}}} \right) = -\frac{1}{2\lambda_1} \Sigma^{-1} \left(\pi + \lambda_2 \left(\boldsymbol{\mathcal{S}} - \bar{\boldsymbol{\mathcal{S}}} \mathbf{1} \right) \right) \\ = \bar{\sigma} \cdot \varrho \left(\bar{\boldsymbol{\mathcal{S}}} \right)$$

where:

$$arrho\left(oldsymbol{ar{\mathcal{S}}}
ight) = rac{1}{\lambda_1'} \Sigma^{-1} \left(\pi + \lambda_2 \left(oldsymbol{\mathcal{S}} - oldsymbol{ar{\mathcal{S}}} \mathbf{1}
ight)
ight)$$

and:

$$\lambda_1' = \sqrt{C_{\pi,\pi} - \frac{\left(C_{1,\pi}\bar{\boldsymbol{\mathcal{S}}} - C_{s,\pi}\right)^2}{C_{s,s} - 2C_{1,s}\bar{\boldsymbol{\mathcal{S}}} + C_{1,1}\bar{\boldsymbol{\mathcal{S}}}^2}}$$

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pedersen-Fitzgibbons-Pomorski model Optimal portfolio

Example #5

We consider an investment universe of four assets. Their expected returns are equal to 6%, 7%, 8% and 10% while their volatilities are equal to 15%, 20%, 25% and 30%. The correlation matrix of asset returns is given by the following matrix:

$$\mathbb{C}=\left(egin{array}{cccccc} 100\%\ 20\%\ 100\%\ 30\%\ 50\%\ 100\%\ 40\%\ 60\%\ 70\%\ 100\%\end{array}
ight)$$

The risk-free rate is set to 2%. The ESG score vector is $\mathcal{S} = (3\%, 2\%, -2\%, -3\%).$

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pedersen-Fitzgibbons-Pomorski model Optimal portfolio

- We obtain $C_{1,\pi} = 2.4864$, $C_{s,\pi} = 0.0425$, $C_{s,s} = 0.1274$, $C_{1,s} = 1.9801$, $C_{1,1} = 64.1106$ and $C_{\pi,\pi} = 0.1193$
- If we target $\bar{\sigma} = 20\%$ and $\bar{S} = 1\%$, we deduce that $\lambda_1 = -0.8514$ and $\lambda_2 = -0.1870$
- The optimal portfolio is then:

$$w^{\star}\left(ar{\sigma},ar{oldsymbol{\mathcal{S}}}
ight) = \left(egin{array}{c} 59.31\%\ 29.52\%\ 21.76\%\ 21.76\%\ 20.72\%\end{array}
ight)$$

• It follows that the portfolio is leveraged since we have $w_r = 1 - \mathbf{1}^\top w = -31.31\%$

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pedersen-Fitzgibbons-Pomorski model Optimal portfolio

• We verify that
$$\sqrt{w^{\star}(\bar{\sigma}, \bar{S})^{\top} \Sigma w^{\star}(\bar{\sigma}, \bar{S})} = 20\%$$
 and $\left(w^{\star}(\bar{\sigma}, \bar{S})^{\top} S\right) / (1^{\top} w^{\star}(\bar{\sigma}, \bar{S})) = 1\%$

• We also notice that:

$$arrho\left(oldsymbol{ar{\mathcal{S}}}
ight) = \left(egin{arrhy}{c} 2.9657 \ 1.4759 \ 1.0881 \ 1.0358 \end{array}
ight)$$

and verify that $w^{\star}\left(ar{\sigma},ar{\mathcal{S}}
ight)=ar{\sigma}\cdotarrho\left(ar{\mathcal{S}}
ight)$

• The portfolio is then leveraged when $\bar{\sigma} \geq 1/\left(\mathbf{1}^{\top} \varrho\left(\mathbf{\bar{S}}\right)\right) = 17.75\%$.

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pedersen-Fitzgibbons-Pomorski model The Sharpe ratio of the optimal portfolio

• We rewrite the first-order condition as:

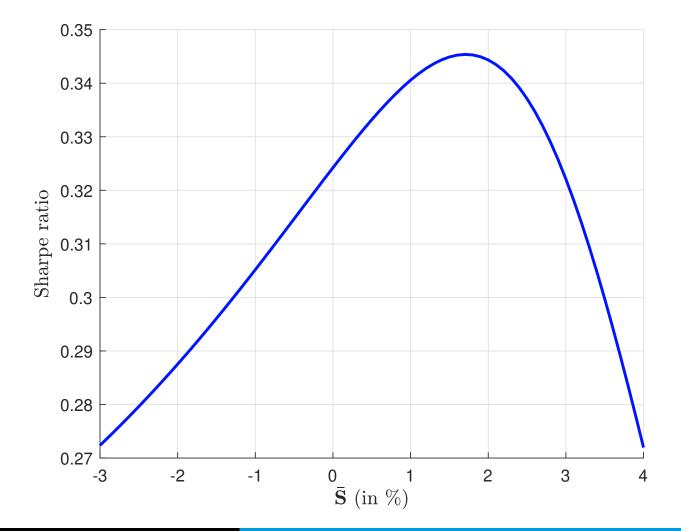
$$(*) \quad \Leftrightarrow \quad \pi + 2\lambda_{1}\Sigma w + \lambda_{2} \left(\boldsymbol{S} - \bar{\boldsymbol{S}} \boldsymbol{1} \right) = \boldsymbol{0}$$

$$\Leftrightarrow \quad w^{\top}\pi + 2\lambda_{1}w^{\top}\Sigma w + \lambda_{2}w^{\top} \left(\boldsymbol{S} - \bar{\boldsymbol{S}} \boldsymbol{1} \right) = \boldsymbol{0}$$

$$\Leftrightarrow \quad w^{\top}\pi + 2\lambda_{1}\bar{\sigma}^{2} = \boldsymbol{0}$$

$$\Leftrightarrow \quad \lambda_{1} = -\frac{1}{2}\frac{w^{\top}\pi}{\bar{\sigma}^{2}} = -\frac{1}{2}\frac{\mathrm{SR}\left(w \mid r\right)}{\bar{\sigma}}$$

• We deduce that the Sharpe ratio of the optimal portfolio is:


$$\operatorname{SR}\left(w^{\star}\left(\bar{\sigma},\bar{\boldsymbol{\mathcal{S}}}\right)\mid r\right)=\sqrt{C_{\pi,\pi}-\frac{\left(C_{1,\pi}\bar{\boldsymbol{\mathcal{S}}}-C_{s,\pi}\right)^{2}}{C_{s,s}-2C_{1,s}\bar{\boldsymbol{\mathcal{S}}}+C_{1,1}\bar{\boldsymbol{\mathcal{S}}}^{2}}}=\operatorname{SR}\left(\bar{\boldsymbol{\mathcal{S}}}\mid\pi,\Sigma,\boldsymbol{\mathcal{S}}\right)$$

• It depends on the asset parameters π , Σ , \mathcal{S} , the ESG objective $\overline{\mathcal{S}}$ of the investor, but not the volatility target $\overline{\sigma}$

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pedersen-Fitzgibbons-Pomorski model The Sharpe ratio of the optimal portfolio

Figure 51: Relationship between $\bar{\boldsymbol{\mathcal{S}}}$ and $\operatorname{SR}(\bar{\boldsymbol{\mathcal{S}}} \mid \pi, \Sigma)$ (Example #5)

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pedersen-Fitzgibbons-Pomorski model The Sharpe ratio of the optimal portfolio

Using Example #5

- The Sharpe ratio of the optimal portfolio $w^*(20\%, 1\%)$ is equal to 0.3406
- We have SR $(w^*(\bar{\sigma}, -3\%) | r) = 0.2724$, SR $(w^*(\bar{\sigma}, -2\%) | r) = 0.2875$, SR $(w^*(\bar{\sigma}, -1\%) | r) = 0.3052$, SR $(w^*(\bar{\sigma}, 0\%) | r) = 0.3242$, SR $(w^*(\bar{\sigma}, 1\%) | r) = 0.3406$, SR $(w^*(\bar{\sigma}, 2\%) | r) = 0.3443$, and SR $(w^*(\bar{\sigma}, 3\%) | r) = 0.3221$

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pedersen-Fitzgibbons-Pomorski model

• The objective function is equal to:

$$f\left(w^{\star}\left(\bar{\sigma},\bar{\mathcal{S}}\right);\pi,\Sigma,\mathcal{S}\right) = \left(\frac{w^{\star}\left(\bar{\sigma},\bar{\mathcal{S}}\right)^{\top}\pi}{\bar{\sigma}}\right)\bar{\sigma} - \frac{\bar{\gamma}}{2}\bar{\sigma}^{2} + \zeta\left(\bar{\mathcal{S}}\right)$$
$$= \operatorname{SR}\left(\bar{\mathcal{S}} \mid \pi,\Sigma,\mathcal{S}\right)\bar{\sigma} - \frac{\bar{\gamma}}{2}\bar{\sigma}^{2} + \zeta\left(\bar{\mathcal{S}}\right)$$

• The σ -problem becomes:

$$(*) = \max_{\bar{\sigma}} \left\{ \max_{w} \left\{ f(w; \pi, \Sigma, S) \text{ s.t. } w \in \Omega\left(\bar{\sigma}, \bar{S}\right) \right\} \right\}$$
$$= \max_{\bar{\sigma}} \left\{ \operatorname{SR}\left(\bar{S} \mid \pi, \Sigma, S\right) \bar{\sigma} - \frac{\bar{\gamma}}{2} \bar{\sigma}^{2} + \zeta\left(\bar{S}\right) \right\}$$

• The first-order condition is $SR\left(\bar{\boldsymbol{\mathcal{S}}} \mid \pi, \Sigma, \boldsymbol{\mathcal{S}}\right) - \bar{\gamma}\bar{\sigma} = 0$ or $\bar{\sigma} = \bar{\gamma}^{-1}SR\left(\bar{\boldsymbol{\mathcal{S}}} \mid \pi, \Sigma, \boldsymbol{\mathcal{S}}\right)$

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pedersen-Fitzgibbons-Pomorski model

• We have:

$$\begin{split} f\left(w^{\star}\left(\bar{\sigma},\bar{\boldsymbol{\mathcal{S}}}\right);\pi,\boldsymbol{\Sigma},\boldsymbol{\mathcal{S}}\right) &= \bar{\gamma}^{-1}\operatorname{SR}^{2}\left(\bar{\boldsymbol{\mathcal{S}}}\mid\pi,\boldsymbol{\Sigma},\boldsymbol{\mathcal{S}}\right) - \\ &\quad \frac{1}{2}\bar{\gamma}^{-1}\operatorname{SR}^{2}\left(\bar{\boldsymbol{\mathcal{S}}}\mid\pi,\boldsymbol{\Sigma},\boldsymbol{\mathcal{S}}\right) + \zeta\left(\bar{\boldsymbol{\mathcal{S}}}\right) \\ &= \frac{1}{2}\bar{\gamma}^{-1}\left(\operatorname{SR}^{2}\left(\bar{\boldsymbol{\mathcal{S}}}\mid\pi,\boldsymbol{\Sigma},\boldsymbol{\mathcal{S}}\right) + 2\bar{\gamma}\zeta\left(\bar{\boldsymbol{\mathcal{S}}}\right)\right) \end{split}$$

• We conclude that the \mathcal{S} -problem becomes:

$$oldsymbol{\mathcal{S}}^{\star} = rg\max_{oldsymbol{ar{\mathcal{S}}}} \left\{ \mathrm{SR}^2 \left(oldsymbol{ar{\mathcal{S}}} \mid \pi, \Sigma, oldsymbol{\mathcal{S}}
ight) + 2ar{\gamma}\zeta \left(oldsymbol{ar{\mathcal{S}}}
ight)
ight\}$$

• The optimal portfolio is $w^* = w^* (\sigma^*, S^*)$ where S^* is the solution of the S-problem and $\sigma^* = \overline{\gamma}^{-1} \operatorname{SR} (S^* \mid \pi, \Sigma, S)$

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pedersen-Fitzgibbons-Pomorski model

Pedersen et al. (2021) distinguished three groups of investors:

- Type-U or ESG-unware investors have no ESG preference and do not use the information of ESG scores
- Type-A or ESG-aware investors have no ESG preference, but they use the ESG scores to update their views on the risk premia
- Type-M or ESG-motivated investors have ESG preferences, implying that they would like to have a high ESG score

Modern portfolio theory ESG risk premium ESG efficient frontier

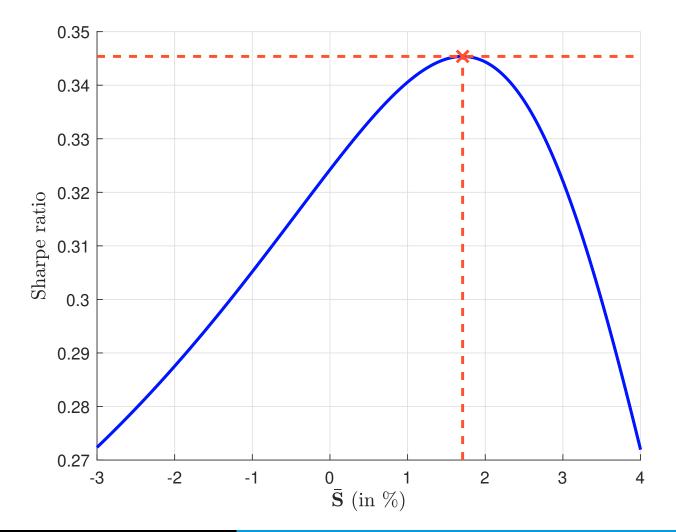
The Pedersen-Fitzgibbons-Pomorski model

• Type-U investors hold the same portfolio:

$$w_U^\star = rac{\Sigma^{-1}\pi}{\mathbf{1}^\top \Sigma^{-1}\pi}$$

- Type-A investors choose the optimal portfolio with the highest Sharpe ratio $(\zeta(s) = 0) \Rightarrow S_A^*$ is the optimal ESG score
- Type-M investors choose an optimal portfolio on the ESG-SR efficient frontier, with:

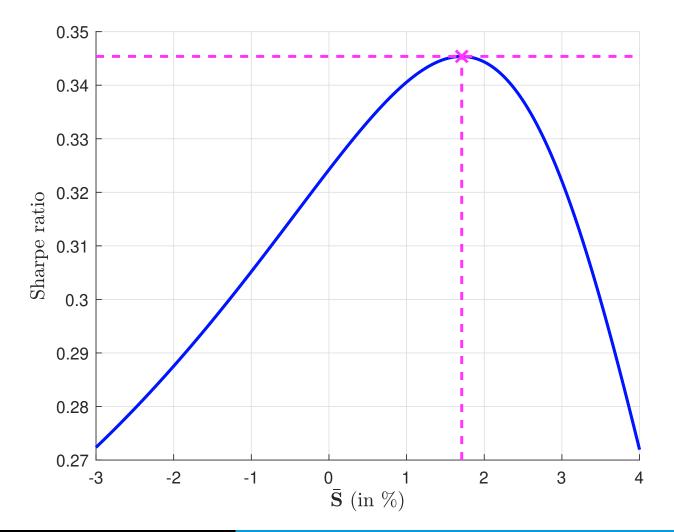
$$\mathcal{S}_M^\star \geq \mathcal{S}_A^\star$$


and:

$$\mathrm{SR}\left(\boldsymbol{\mathcal{S}}_{M}^{\star} \mid \pi, \Sigma, \boldsymbol{\mathcal{S}}\right) \leq \mathrm{SR}\left(\boldsymbol{\mathcal{S}}_{A}^{\star} \mid \pi, \Sigma, \boldsymbol{\mathcal{S}}\right)$$

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pedersen-Fitzgibbons-Pomorski model


Figure 52: Optimal portfolio for type-U investors (Example #5)

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pedersen-Fitzgibbons-Pomorski model

Figure 53: Optimal portfolio for type-A investors (Example #5)

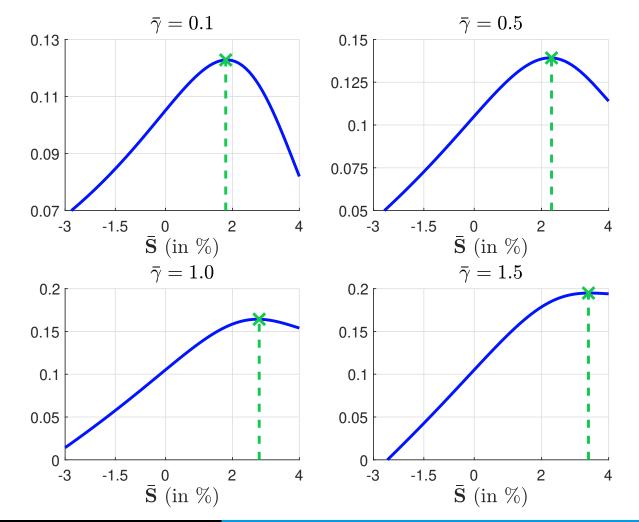
Modern portfolio theory ESG risk premium ESG efficient frontier

The Pedersen-Fitzgibbons-Pomorski model

• For type-M investors, we first compute the function $\xi(\bar{S})$:

$$\xi\left(\bar{\boldsymbol{\mathcal{S}}}\right) = \mathrm{SR}^{2}\left(\bar{\boldsymbol{\mathcal{S}}} \mid \pi, \Sigma, \boldsymbol{\mathcal{S}}\right) + 2\bar{\gamma}\zeta\left(\bar{\boldsymbol{\mathcal{S}}}\right)$$

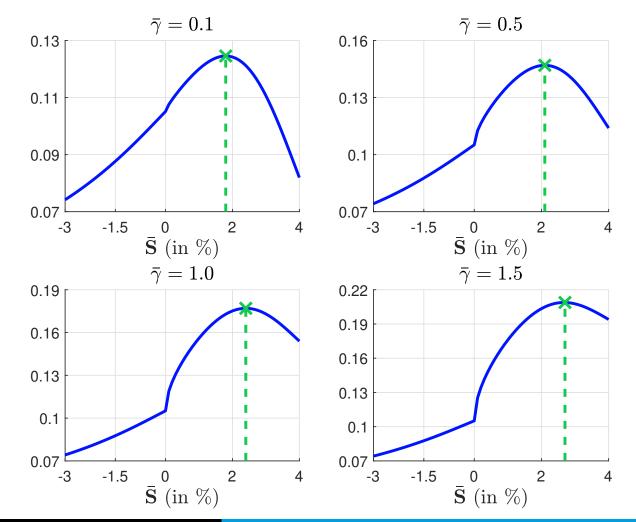
• The optimal portfolio corresponds to the optimal ESG score that maximizes $\xi\left(\bar{\pmb{\mathcal{S}}}\right)$


 Empirical results Cost of capital
 ESG risk premium ESG efficient frontier

 The Pedersen-Fitzgibbons-Pomorski model

Theoretical models

The ESG-SR frontier


Figure 54: Optimal portfolio for type-M investors when $\zeta(s) = s$ (Example #5)

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pedersen-Fitzgibbons-Pomorski model

Figure 55: Optimal portfolio for type-M investors when $\zeta(s) = 0.2\sqrt{\max(s,0)}$

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pedersen-Fitzgibbons-Pomorski model

Table 41: Optimal portfolios (Example #5)

Statistics	Type-U	Type-A	Type-M					
				$\zeta(s) = s$		$\zeta(s) =$	$= 0.2\sqrt{max}$	$\overline{x(s,0)}$
$ar{\gamma}$			0.500	1.000	1.500	0.500	1.000	1.500
$\mathcal{S}(w^{\star})$	0.017	0.017	0.023	0.028	0.034	0.021	0.024	0.027
$\sigma(w^{\star})$	0.139	0.100	0.682	0.329	0.203	0.687	0.339	0.221
$\mathrm{SR}(w^{\star} \mid r)$	0.345	0.345	0.341	0.329	0.305	0.343	0.339	0.332
w_1^{\star}	0.524	0.378	3.028	1.623	1.090	2.900	1.542	1.072
w_2^{\star}	0.289	0.208	1.786	1.009	0.718	1.673	0.919	0.660
<i>w</i> ₃ *	0.120	0.086	0.383	0.073	-0.056	0.464	0.169	0.065
w_4^{\star}	0.067	0.048	-0.012	-0.144	-0.178	0.106	-0.035	-0.079
w_r^*	0.000	0.280	-4.184	-1.562	-0.574		-1.596	-0.718

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pedersen-Fitzgibbons-Pomorski model

• If $\omega^U = 1$ and $\omega^A = \omega^M = 0$, then unconditional expected returns are given by the CAPM:

$$\mathbb{E}[R_i] - r = \beta_i \left(\mathbb{E}[R_m] - r \right)$$

but conditional expected returns depend on the ESG scores:

$$\mathbb{E}\left[R_i \mid \boldsymbol{\mathcal{S}}\right] - r = \beta_i \left(\mathbb{E}\left[R_m\right] - r\right) + \theta \frac{\boldsymbol{\mathcal{S}}_i - \boldsymbol{\mathcal{S}}_m}{P_i}$$

where P_i is the asset price of asset *i*

• If $\omega^A = 1$ and $\omega^U = \omega^M = 0$, then the informational value of ESG scores is fully incorporated into asset prices, and we have:

$$\mathbb{E}\left[R_{i} \mid \boldsymbol{\mathcal{S}}\right] - r = \tilde{\beta}_{i}\left(\mathbb{E}\left[R_{m} \mid \boldsymbol{\mathcal{S}}\right] - r\right)$$

where $\tilde{\beta}_i$ is the ESG-adjusted beta coefficient

• If $\omega^M = 1$ and $\omega^U = \omega^A = 0$, then the conditional expected return is given by:

$$\mathbb{E}\left[R_{i} \mid \boldsymbol{\mathcal{S}}\right] - r = \tilde{\beta}_{i}\left(\mathbb{E}\left[R_{m} \mid \boldsymbol{\mathcal{S}}\right] - r\right) + \lambda_{2}\left(\boldsymbol{\mathcal{S}}_{i} - \boldsymbol{\mathcal{S}}_{m}\right)$$

Modern portfolio theory ESG risk premium ESG efficient frontier

The Pedersen-Fitzgibbons-Pomorski model

"If all types of investors exist, then several things can happen." If a security has a higher ESG score, then, everything else equal, its expected return can be higher or lower. A higher ESG score increases the demand for the stock from type-M investors, leading to a higher price and, therefore, a lower required return [...] Companies with poor ESG scores that are down-weighted by type-M investors will have lower prices and higher cost of capital. [...] Furthermore, the force that can increase the expected return is that the higher ESG could be a favorable signal of firm fundamentals, and if many type-U investors ignore this, the fundamental signal perhaps would not be fully reflected in the price [...] A future increase in ESG investing would lead to higher prices for high-ESG stocks [...]. If these flows are unexpected (or not fully captured in the price for other reasons), then high-ESG stocks would experience a return boost during the period of this repricing of ESG. If these flows are expected, then expected returns should not be affected."

(Podorcon at al 2021)

Equity markets ESG and factor investing Fixed-income markets

What is the performance of ESG investing?

According to Coqueret (2022), we can classify the academic studies into four categories:

- ESG improves performance
- **2** ESG does not impact performance
- SG is financially detrimental
- The relationship between ESG and performance depends on many factors

Equity markets ESG and factor investing Fixed-income markets

What is the performance of ESG investing?

According to Friede *et al.* (2015), the first category dominates the other categories:

"[...] The results show that the business case for ESG investing is empirically very well founded. Roughly 90% of studies find a nonnegative ESG – CFP relation. More importantly, the large majority of studies reports positive findings. We highlight that the positive ESG impact on CFP appears stable over time. Promising results are obtained when differentiating for portfolio and non-portfolio studies, regions, and young asset classes for ESG investing such as emerging markets, corporate bonds, and green real estate."

 \Rightarrow Many dimensions of CFP (cost of capital, **G** pillar, proxy variables, etc.)

Equity markets ESG and factor investing Fixed-income markets

Relationship between ESG and performance in equity markets

We can also find many studies, whose conclusion is more neutral or negative: Barnett and Salomon (2006), Fabozzi *et al.* (2008), Hong and Kacperczyk (2009), Johnson *et al.* (2009), Capelle-Blancard and Monjon (2014), Matos (2020), etc.

 $\Rightarrow \mathsf{Sin} \ \mathsf{stocks}$

Mixed results

Equity markets ESG and factor investing Fixed-income markets

What is the performance of ESG investing?

- Generally, academic studies that analyze the relationship between ESG and performance are based on long-term historical data, typically the last 20 years or the last 30 years.
- Two issues:
 - ESG investing was marginal 15+ years ago
 - ESG data are not robust or relevant before 2010
- The relationship between ESG and performance is dynamic
- Sometimes, ESG may create performance, but sometimes not

Equity markets ESG and factor investing Fixed-income markets

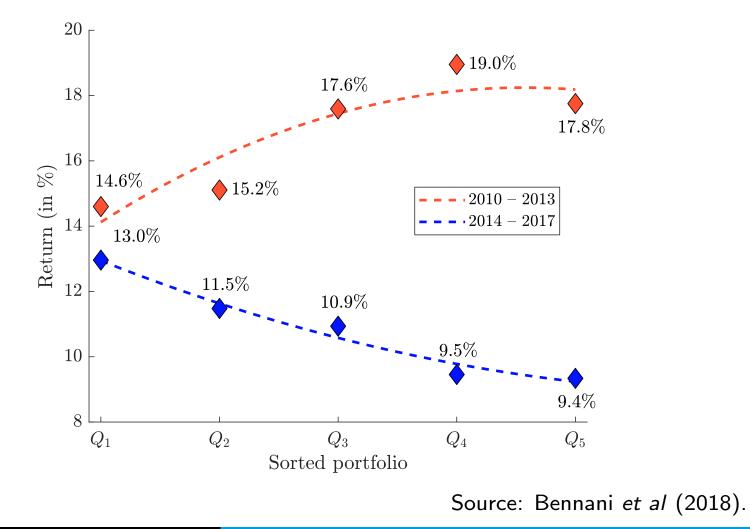
Simulated results Sorted portfolios

Sorted-portfolio approach

- Sorted-based approach of Fama-French (1992)
- At each rebalancing date *t*, we rank the stocks according to their Amundi **ESG** *z*-score *s*_{*i*,*t*}
- We form the five quintile portfolios Q_i for i = 1, ..., 5
- The portfolio Q_i is invested during the period]t, t+1]:
 - Q_1 corresponds to the best-in-class portfolio (best scores)
 - Q_5 corresponds to the worst-in-class portfolio (worst scores)
- Quarterly rebalancing
- Universe: MSCI World Index
- Equally-weighted and sector-neutral portfolio (and region-neutral for the world universe)

Equity markets ESG and factor investing Fixed-income markets

Simulated results

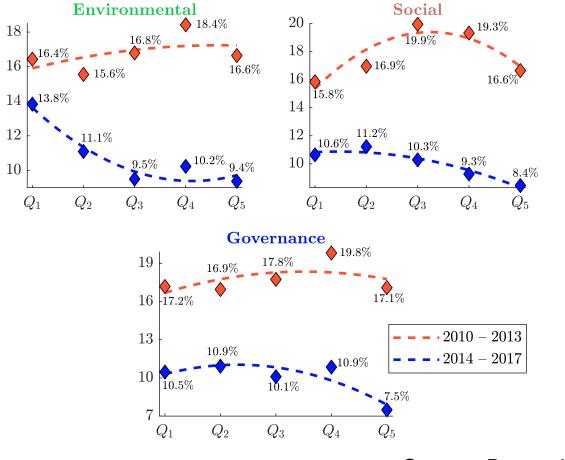

Table 42: An illustrative example

Asset	\mathcal{S}_i	Rank	Q_i	Weight
#1	-0.3	6	Q_3	+50%
#2	0.2	5	Q_3	+50%
#3	-1.0	7	Q_4	+50%
#4	1.5	3	Q_2	+50%
#5	-2.9	10	Q_5	+50%
#6	0.8	4	Q_2	+50%
#7	-1.4	8	Q_4	+50%
#8	2.3	2	Q_1	+50%
#9	2.8	1	Q_1	+50%
#10	-2.2	9	Q_5	+50%

Equity markets ESG and factor investing Fixed-income markets

Simulated results Sorted portfolios

Figure 56: Annualized return of ESG-sorted portfolios (MSCI North America)

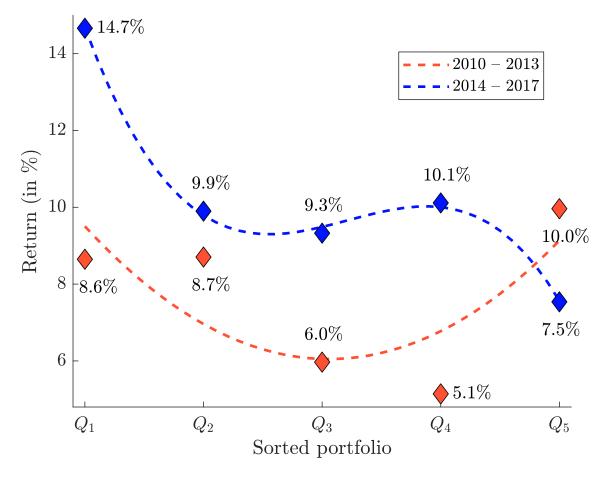


Thierry Roncalli

Equity markets ESG and factor investing Fixed-income markets

Simulated results Sorted portfolios

Figure 57: Annualized return of ESG-sorted portfolios (MSCI North America)

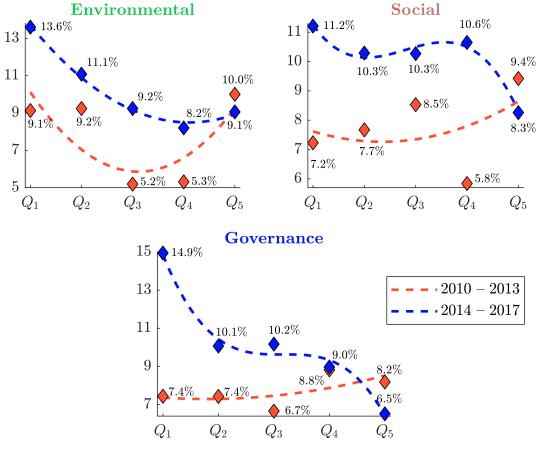


Source: Bennani et al (2018).

Equity markets ESG and factor investing Fixed-income markets

Simulated results

Figure 58: Annualized return of ESG-sorted portfolios (MSCI EMU)



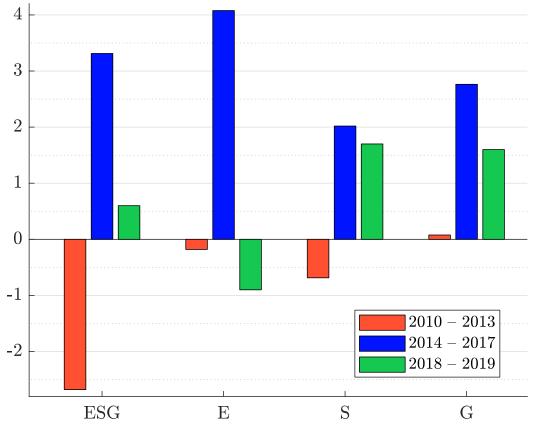
Source: Bennani et al (2018).

Equity markets ESG and factor investing Fixed-income markets

Simulated results Sorted portfolios

Figure 59: Annualized return of ESG-sorted portfolios (MSCI EMU)

Equity markets ESG and factor investing Fixed-income markets

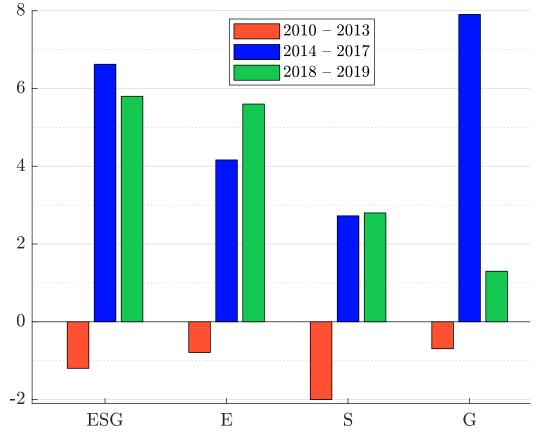

Table 43: Impact of ESG screening on sorted portfolio returns (2010 – 2017)

Period	Pillar	North America	EMU	Europe- ex-EMU	Japan	World
2010 – 2013	ESG		_	0	+	0
	E	_	0	+	_	0
	S	_	_	0	_	_
	G	_	0	+	0	+
2014 – 2017	ESG	++	++	0	_	+
	E	++	++	_	+	++
	S	+	+	0	0	+
	G	+	++	0	+	++

Equity markets ESG and factor investing Fixed-income markets

Simulated results

Figure 60: Annualized return of long/short $Q_1 - Q_5$ sorted portfolios (MSCI North America)



Source: Drei et al (2019).

Equity markets ESG and factor investing Fixed-income markets

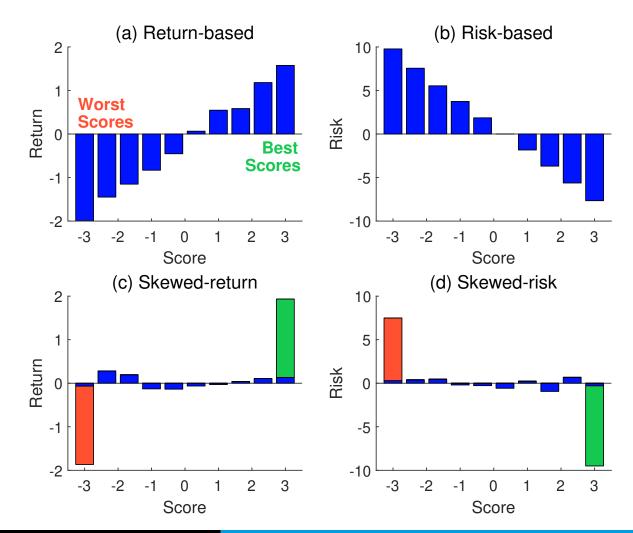
Simulated results Sorted portfolios

Figure 61: Annualized return of long/short $Q_1 - Q_5$ sorted portfolios (MSCI EMU)

Source: Drei et al (2019).

Equity markets ESG and factor investing Fixed-income markets

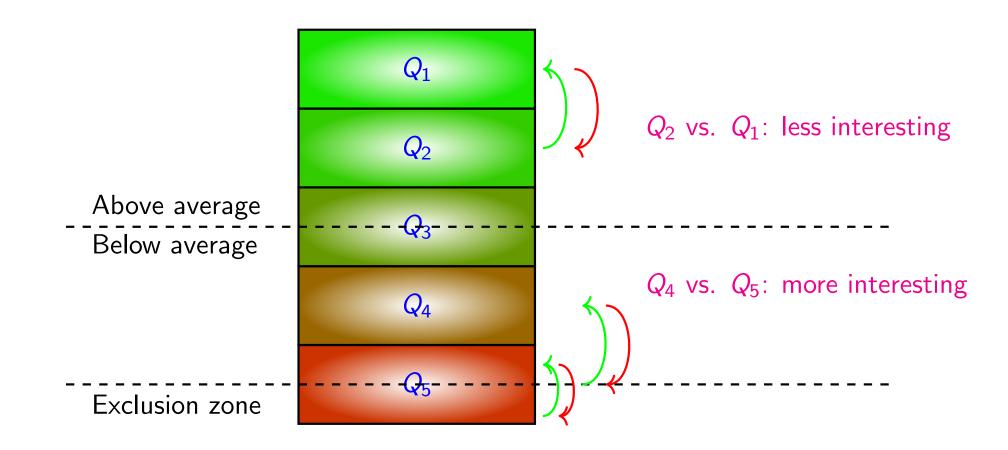
Simulated results Sorted portfolios


The impact of investment flows

- The 2014 break
 - November 2013: Responsible Investment and the Norwegian Government Pension Fund Global (2013 Strategy Council)
 - Strong mobilization of the largest institutional European investors: NBIM, APG, PGGM, ERAFP, FRR, etc.
 - They are massively invested in European stocks and America stocks: NBIM ≻ CalPERS + CalSTRS + NYSCRF for U.S. stocks
- The 2018-2019 period
 - Implication of U.S. investors continues to be weak
 - Strong mobilization of medium (or tier two) institutional European investors, that have a low exposure on American stocks
 - Mobilization of European investors is not sufficient

Equity markets ESG and factor investing Fixed-income markets

Simulated results


Figure 62: The monotonous assumption of the ESG-performance relationship

Equity markets ESG and factor investing Fixed-income markets

Simulated results Sorted portfolios

Equity markets ESG and factor investing Fixed-income markets

Simulated results Optimized portfolios

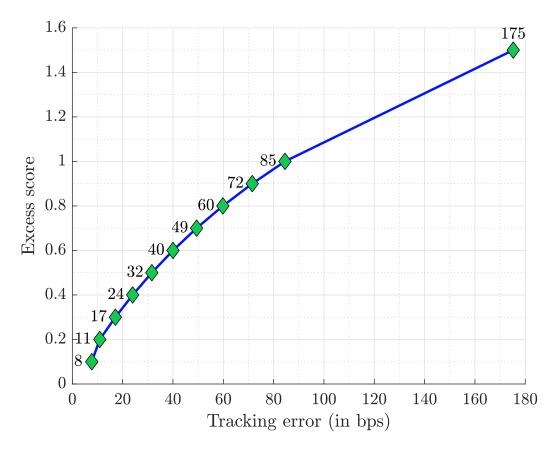
- We note b the benchmark, ${\cal S}$ the vector of ESG scores and Σ the covariance matrix
- We consider the following optimization problem:

$$w^{\star}(\gamma) = \arg\min \frac{1}{2}\sigma^{2}(w \mid b) - \gamma \boldsymbol{\mathcal{S}}(w \mid b)$$

where $\sigma^2(w \mid b) = (w - b)^\top \Sigma(w - b)$ and $\mathcal{S}(w \mid b)$ are the ex-ante tracking error variance and the ESG excess score of portfolio w with respect to the benchmark b

• Since we have:

$$\boldsymbol{\mathcal{S}}(w \mid b) = (w - b)^{\top} \boldsymbol{\mathcal{S}} = \boldsymbol{\mathcal{S}}(w) - \boldsymbol{\mathcal{S}}(b)$$


we obtain the following optimization function:

$$w^{\star}(\gamma) = rg\minrac{1}{2}w^{ op}\Sigma w - w^{ op}(\gamma \mathcal{S} + \Sigma b)$$

• The QP form is given by $Q = \Sigma$ and $R = \gamma S + \Sigma b$

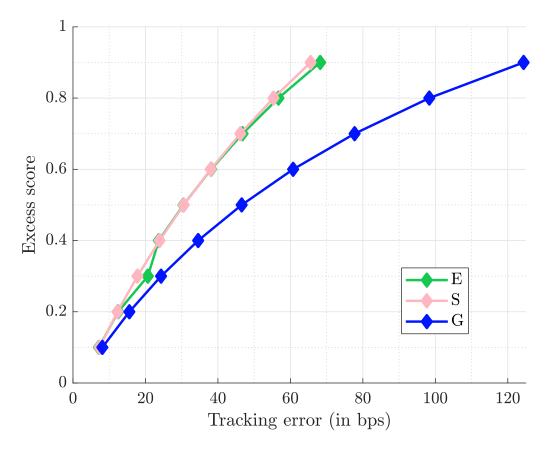

Equity markets ESG and factor investing Fixed-income markets

Figure 64: Efficient frontier of ESG-optimized portfolios (MSCI World, 2010-2017, global score)

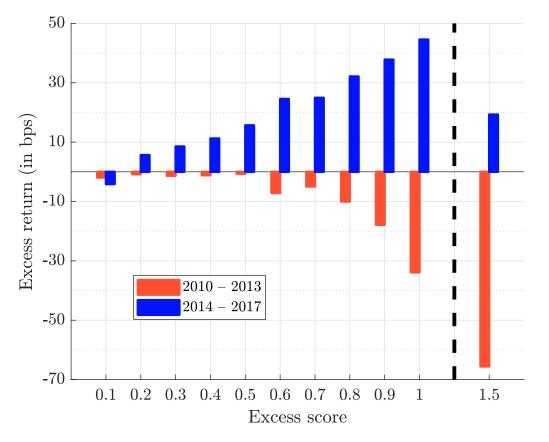

Equity markets ESG and factor investing Fixed-income markets

Figure 65: Efficient frontier of ESG-optimized portfolios (MSCI World, 2010-2017, individual pillars)

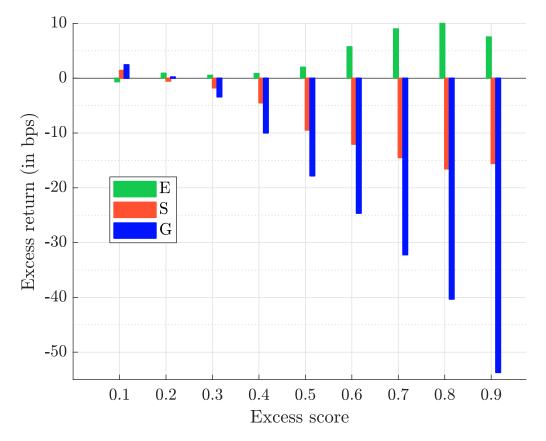

Equity markets ESG and factor investing Fixed-income markets

Figure 66: Annualized excess return of ESG-optimized portfolios (MSCI World, 2010-2017, global score)

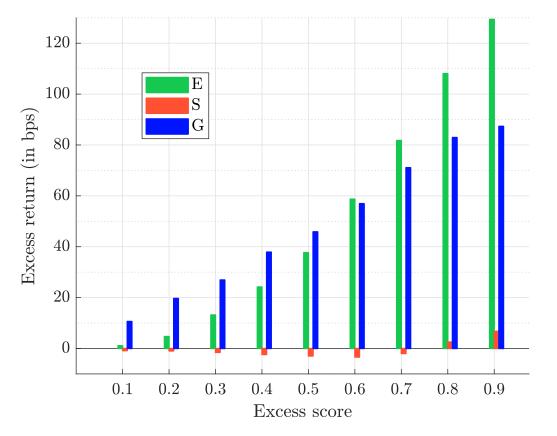

Equity markets ESG and factor investing Fixed-income markets

Figure 67: Annualized excess return of ESG-optimized portfolios (MSCI World, 2010-2013, individual pillars)

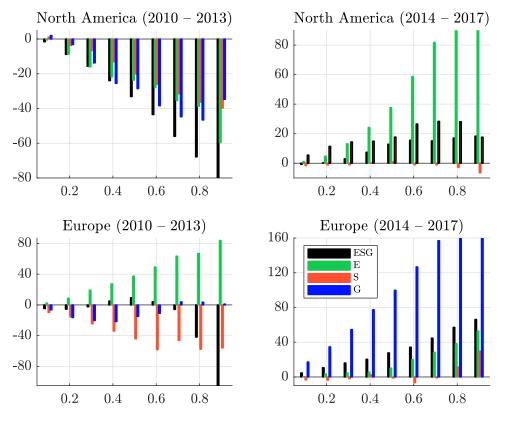

Equity markets ESG and factor investing Fixed-income markets

Figure 68: Annualized excess return of ESG-optimized portfolios (MSCI World, 2014-2017, individual pillars)

Equity markets ESG and factor investing Fixed-income markets

Figure 69: Annualized excess return in bps of ESG-optimized portfolios (MSCI North America and EMU, 2010-2017

Equity markets ESG and factor investing Fixed-income markets

Single-factor model

Regression model

The single-factor model is:

$$R_{i,t} = \alpha_{i,j} + \beta_{i,j} \mathcal{F}_{j,t} + \varepsilon_{i,t}$$

where:

- $R_{i,t}$ is the return of stock *i* at time *t*
- $\mathcal{F}_{j,t}$ is the value of the j^{th} common risk factor at time t (market, size, value, momentum, low-volatility, quality or ESG)
- $\varepsilon_{i,t}$ is the idiosyncratic risk

The average proportion of the return variance explained by the common factor is given by:

$$\bar{\mathfrak{R}}_{j}^{2} = \frac{1}{n} \sum_{i=1}^{n} \mathfrak{R}_{i,j}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(1 - \frac{\operatorname{var}\left(\varepsilon_{i,t}\right)}{\operatorname{var}\left(R_{i,t}\right)} \right)$$

Equity markets ESG and factor investing Fixed-income markets

Single-factor model

Table 44: Results of cross-section regression with long-only risk factors (single-factor linear regression model, average \Re^2)

Factor	North A	America	Eurozone		
Factor	2010 - 2013	2014 - 2019	2010 - 2013	2014 - 2019	
Market	40.8%	28.6%	42.8%	36.3%	
Size	39.3%		37.1%	23.3%	
Value	38.9%	26.7%	41.6%	33.6%	
Momentum	39.6%	26.3%	40.8%	34.1%	
Low-volatility	35.8%	25.1%	38.7%	33.4%	
Quality	39.1%	26.6%	42.4%	34.6%	
ESG	40.1%	27.4%	42.6%	35.3%	

Source: Roncalli (2020).

- Specific risk has increased during the period 2014 2019
- Since 2014, we find that:
 - ESG ≻ Value ≻ Quality ≻ Momentum ≻ ... (North America)
 - ESG \succ Quality \succ Momentum \succ Value $\succ \dots$ (Eurozone)

Equity markets ESG and factor investing Fixed-income markets

Multi-factor model

Regression model

We have:

$$R_{i,t} = \alpha_i + \sum_{j=1}^m \beta_{i,j} \mathcal{F}_{j,t} + \varepsilon_{i,t}$$

where m is the number of risk factors

•
$$1F = market$$

- 5F = size + value + momentum + low-volatility + quality
- 6F = 5F + ESG

Equity markets ESG and factor investing Fixed-income markets

Multi-factor model

Table 45: Results of cross-section regression with long-only risk factors (multi-factor linear regression model, average \Re^2)

Model	North A	America	Eurozone		
	2010 - 2013	2014 - 2019	2010 - 2013	2014 - 2019	
CAPM	40.8%	28.6%	42.8%	36.3%	
5F model	46.1%	38.4%	49.5%	45.0%	
6F model (5F + ESG)	46.7%	39.7%	50.1%	45.8%	
Source: Benealli (2020)					

Source: Roncalli (2020).

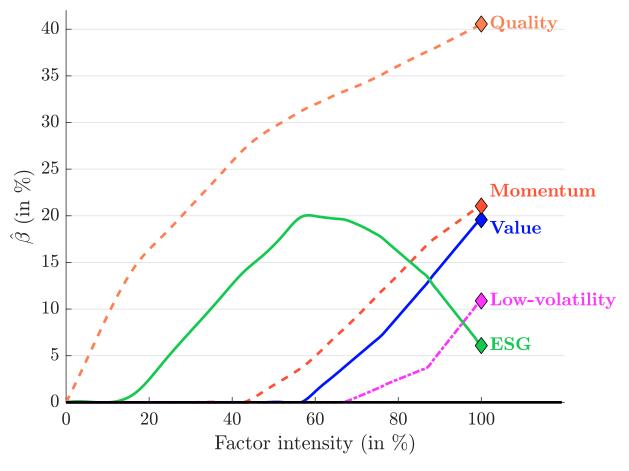
*** p-value statistic for the MSCI Index (time-series, 2014 – 2019):

- 6F = Size, Value, Momentum, Low-volatility, Quality, ESG (North America)
- 6F = Size, Value, Momentum, Low-volatility, Quality, ESG (Eurozone)

Equity markets ESG and factor investing Fixed-income markets

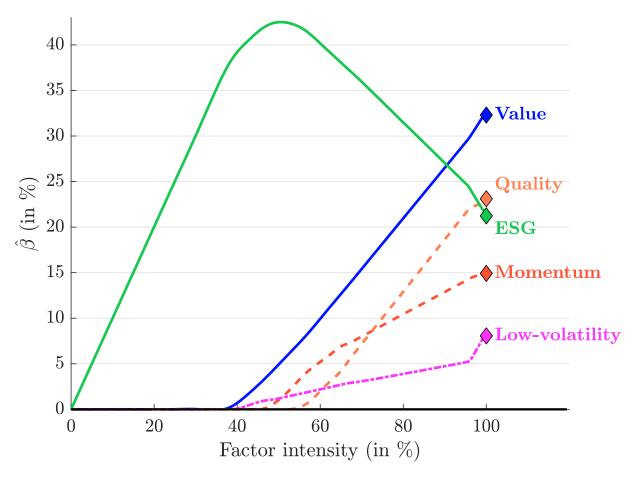
Factor selection

• We use a lasso penalized regression is used in place of the traditional least squares regression:


$$\left\{\hat{\alpha}_{i},\hat{\beta}_{i,1},\ldots,\hat{\beta}_{i,m}\right\} = \arg\min\left\{\frac{1}{2}\operatorname{var}\left(\varepsilon_{i,t}\right) + \lambda\left\|\beta_{i}\right\|_{1}\right\}$$

- Low-factor intensity $(\lambda \approx \infty) \Rightarrow$ we determine which risk factor is the most important
- When the factor intensity reaches 100% ($\lambda = 0$), we obtain the same results calculated previously with the linear regression

Factor selection


Figure 70: Factor picking (MSCI North America, 2014-2019, global score)

Source: Roncalli (2020).

Factor selection

Source: Roncalli (2020).

Equity markets ESG and factor investing Fixed-income markets

What is the difference between alpha and beta?

α or β ?

"[...] When an alpha strategy is massively invested, it has an enough impact on the structure of asset prices to become a risk factor.

[...] Indeed, an alpha strategy becomes a common market risk factor once it represents a significant part of investment portfolios and explains the cross-section dispersion of asset returns" (Roncalli, 2020)

- ESG remains an alpha strategy in North America
- ESG becomes a beta strategy (or a risk factor) in Europe
- Forward looking, ESG will be a beta strategy in North America

Equity markets ESG and factor investing Fixed-income markets

Equity indices

Table 46: Performance of ESG indexes (MSCI World, 2010 – 2022)


Year	Re	Return (in %)			Alpha (in bps)	
rear	CW	ESG	SRI	ESG	SRI	
2010	11.8	10.7	10.6	-109	-114	
2011	-5.5	-5.4	-5.5	12	2	
2012	15.8	14.5	13.2	135	-258	
2013	26.7	27.6	27.4	89	71	
2014	4.9	4.9	3.9	6	-102	
2015	-0.9	-1.1	-1.6	-23	-71	
2016	7.5	7.3	7.7	26	18	
2017	22.4	21.0	23.6	-142	124	
2018	-8.7	-7.8	-6.7	94	199	
2019	27.7	28.2	29.8	48	209	
2020	15.9	15.3	19.9	-61	396	
2021	21.8	24.7	27.0	288	523	
2022	-18.1	-19.6	-22.5	-143	-436	
3Y	4.9	5.0	5.7	2	73	
5Y	6.1	6.4	7.4	31	125	
7Y	8.5	8.5	9.6	1	110	
10Y	8.9	8.9	9.5	5	64	

Source: MSCI, Factset & Author's calculation.

Equity markets ESG and factor investing Fixed-income markets

Equity indices

Source: MSCI, Factset & Author's calculation.

Equity markets ESG and factor investing Fixed-income markets

Bond markets \neq stock markets

Stocks

- ESG scoring is incorporated in portfolio management
- ESG = long-term business risk
 ⇒ strongly impacts the equity
- Portfolio integration
- Managing the business risk

Bonds

- ESG integration is generally limited to exclusions
- ESG lowly impacts the debt
- Portfolio completion
- Fixed income = impact investing
- Development of pure play ESG securities (green and social bonds)

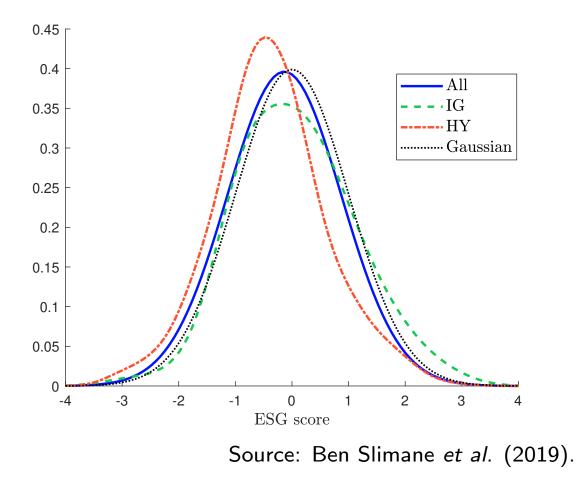
 \Rightarrow Stock holders are more ESG sensitive than bond holders because of the capital structure

Equity markets ESG and factor investing Fixed-income markets

Bond markets \neq stock markets

ESG investment flows affect asset pricing differently

- Impact on carry (coupon effect)?
- Impact on price dynamics (credit spread/mark-to-market effect)?
- Buy-and-hold portfolios ≠ managed portfolios


The distinction between IG and HY bonds

- ESG and credit ratings are correlated
- There are more worst-in-class issuers in the HY universe, and best-in-class issuers in the IG universe
- Non-neutrality of the bond universe (bonds ≠ stocks)

Equity markets ESG and factor investing Fixed-income markets

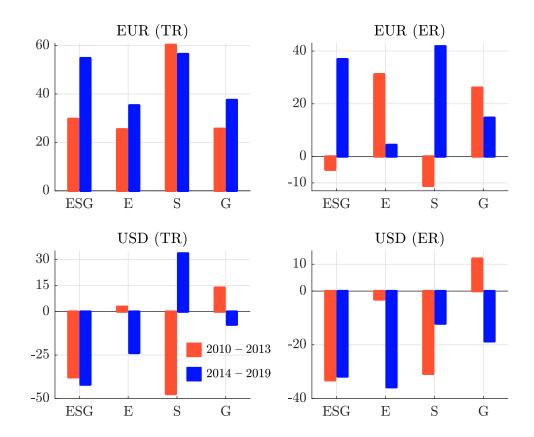
Bond markets \neq stock markets

Figure 73: Probability density function of ESG scores

- The average *z*-score for IG bonds is positive
- The average *z*-score for HY bonds is negative

Equity markets ESG and factor investing Fixed-income markets

Simulated results Sorted portfolios


Sorted-portfolio approach

- Sorted-based approach of Fama-French (1992)
- At each rebalancing date *t*, we rank the bonds according to their Amundi **ESG** *z*-score
- We form the five quintile portfolios Q_i for i = 1, ..., 5
- The portfolio Q_i is invested during the period]t, t+1]:
 - Q_1 corresponds to the best-in-class portfolio (best scores)
 - Q_5 corresponds to the worst-in-class portfolio (worst scores)
- Monthly rebalancing
- Universe: ICE (BofAML) Large Cap IG EUR Corporate Bond
- Sector-weighted and sector-neutral portfolio
- Within a sector, bonds are equally-weighted

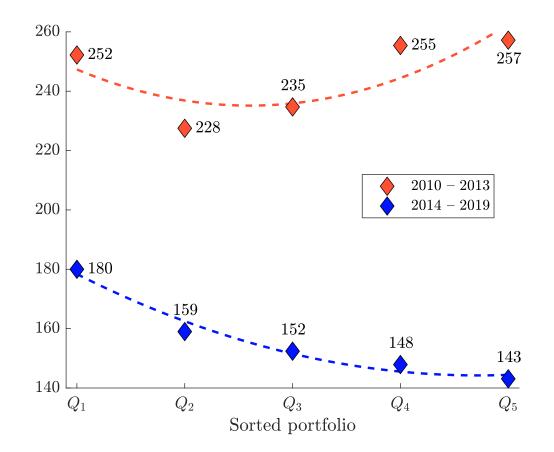
Equity markets ESG and factor investing Fixed-income markets

Simulated results

Figure 74: Annualized return in bps of the long short $Q_1 - Q_5$ strategy (IG, 2010 - 2019)

Equity markets ESG and factor investing Fixed-income markets

Simulated results


Table 47: Carry statistics (in bps)

Period	Q_1	Q_5	$Q_1 - Q_5$
2010 - 2013	175	192	-17
2014 - 2019	113	128	-15

Equity markets ESG and factor investing Fixed-income markets

Simulated results Sorted portfolios

Figure 75: Annualized credit return in bps of ESG sorted portfolios (EUR IG, 2010 – 2019)

Equity markets ESG and factor investing Fixed-income markets

Simulated results Optimized portfolios

- Portfolio $w = (w_1, \ldots, w_n)$ and benchmark $b = (b_1, \ldots, b_n)$
- ESG score of the portfolio:

$$\mathcal{S}(w) = \sum_{i=1}^{n} w_i \mathcal{S}_i$$

• ESG excess score of portfolio *w* with respect to benchmark *b*:

$$egin{aligned} oldsymbol{\mathcal{S}}\left(w\mid b
ight) &=& \sum_{i=1}^{n}\left(w_{i}-b_{i}
ight)oldsymbol{\mathcal{S}}_{i} \ &=& oldsymbol{\mathcal{S}}\left(w
ight)-oldsymbol{\mathcal{S}}\left(b
ight) \end{aligned}$$

- *z*-scores $\Rightarrow \mathcal{S}(w \mid b) > 0$
- Active or tracking risk $\mathcal{R}(w \mid b)$
- The optimization problem becomes:

$$w^{\star}(\gamma) = rg \min \mathcal{R}(w \mid b) - \gamma \mathcal{S}(w \mid b)$$

Equity markets ESG and factor investing Fixed-income markets

Simulated results Optimized portfolios

• The modified duration risk of portfolio *w* with respect to benchmark *b* is:

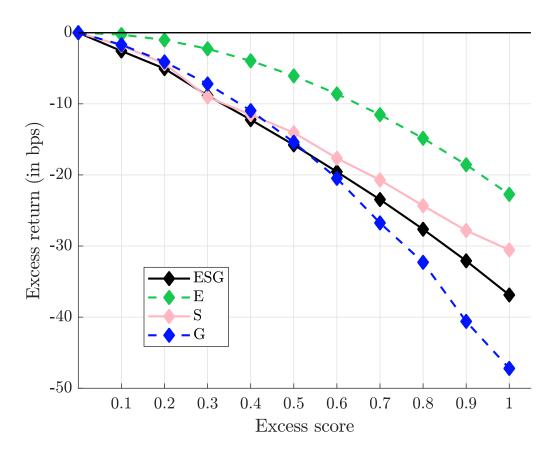
$$\mathcal{R}_{\mathrm{MD}}\left(x \mid b\right) = \sum_{j=1}^{n_{\mathcal{S}}} \left(\left(\sum_{i \in \mathcal{S}ector(j)} w_{i} \operatorname{MD}_{i}\right) - \left(\sum_{i \in \mathcal{S}ector(j)} b_{i} \operatorname{MD}_{i}\right) \right)^{2}$$

where n_S is the number of sectors and MD_i is the modified duration of bond i

• An alternative is to use the DTS risk measure:

$$\mathcal{R}_{\mathrm{DTS}}\left(x \mid b\right) = \sum_{j=1}^{n_{\mathcal{S}}} \left(\left(\sum_{i \in \mathcal{S}ector(j)} w_i \, \mathrm{DTS}_i \right) - \left(\sum_{i \in \mathcal{S}ector(j)} b_i \, \mathrm{DTS}_i \right) \right)^2$$

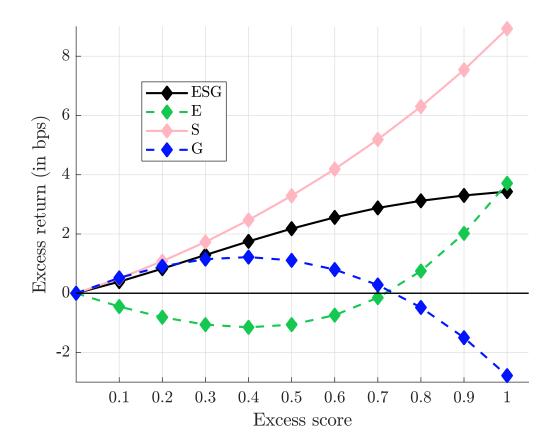
where DTS_i is the DTS of bond *i*


• Hybrid approach:

$$\mathcal{R}\left(w \mid b
ight) = rac{1}{2} \mathcal{R}_{\mathrm{MD}}\left(w \mid b
ight) + rac{1}{2} \mathcal{R}_{\mathrm{DTS}}\left(w \mid b
ight)$$

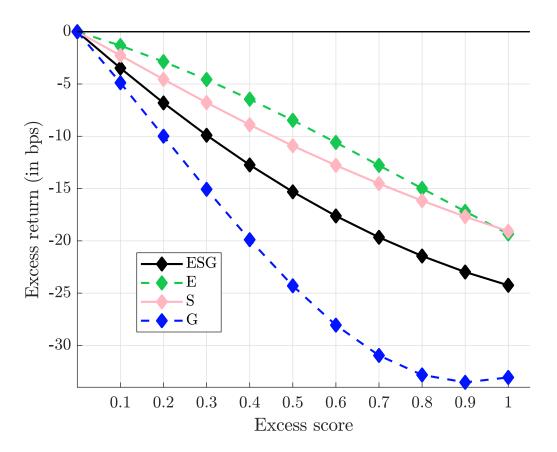
Equity markets ESG and factor investing Fixed-income markets

Simulated results Optimized portfolios


Figure 76: Annualized excess return in bps of ESG optimized portfolios (EUR IG, 2010 – 2013)

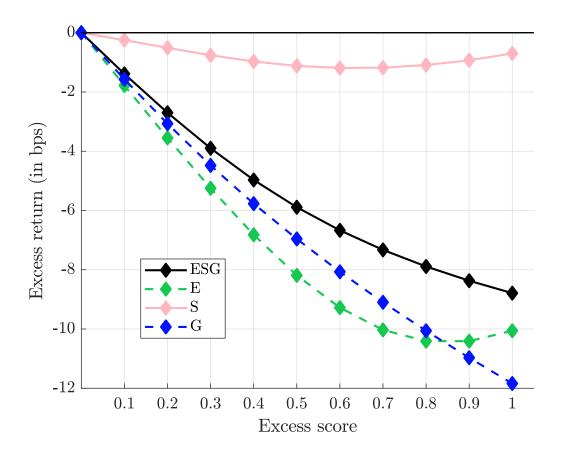
Equity markets ESG and factor investing Fixed-income markets

Simulated results Optimized portfolios


Figure 77: Annualized excess return in bps of ESG optimized portfolios (EUR IG, 2014 – 2016)

Equity markets ESG and factor investing Fixed-income markets

Simulated results Optimized portfolios


Figure 78: Annualized excess return in bps of ESG optimized portfolios (USD IG, 2010 – 2013)

Equity markets ESG and factor investing Fixed-income markets

Simulated results Optimized portfolios

Figure 79: Annualized excess return in bps of ESG optimized portfolios (USD IG, 2014 – 2016)

Source: Ben Slimane et al. (2019).

Equity markets ESG and factor investing Fixed-income markets

Bond indices

Table 48: Performance of ESG bond indexes (sovereign)

	F	FSE WGB	l	FTSE EGBI			
Year	Ret	urn	Alpha	Ret	urn	Alpha	
	BM	ESG	ESG	BM	ESG	ESG	
2010	4.61	4.31	-30	0.61	4.14	353	
2011	6.35	7.05	69	3.41	7.31	391	
2012	1.65	3.06	141	10.65	7.39	-326	
2013	-4.00	-2.95	105	2.21	-1.40	-362	
2014	-0.48	-0.22	26	13.19	11.44	175	
2015	-3.57	-4.85	-128	1.65	0.39	-126	
2016	1.60	1.02	59	3.20	4.00	81	
2017	7.49	8.16	67	0.15	-0.47	-62	
2018	-0.84	-1.41	57	0.88	1.65	78	
2019	5.90	5.56	-34	6.72	4.45	-227	
2020	10.11	10.90	79	5.03	4.11	-92	
2021	-6.97	-7.15	-17	-3.54	-3.76	-21	
2022	-18.26	-20.00	-173	-18.52	-19.06	54	
3Y	-5.75	-6.26	-51	-6.19	-6.74	-55	
5Y	-2.54	-3.03	-49	-2.33	-2.95	-61	
7Y	-0.58	-0.93	-35	-1.21	-1.63	-42	
10Y	-1.22	-1.46	-24	0.77	-0.17	94	

Equity markets ESG and factor investing Fixed-income markets

Bond indices

Table 49: Performance of ESG bond indexes (corporates)

		Bloom	berg Euro	Aggregate	e Corpo	orate	
Year		Ret	urn		1	Alpha	
	BM	SRI	S-SRI	ESG-S	SRI	S-SRI	ESG-S
2010	3.07	2.93	2.96		-13	-10	
2011	1.49	1.17	1.43		-32	-5	
2012	13.59	13.99	12.96		40	-63	
2013	2.37	2.49	2.36		12	-1	
2014	8.40	8.31	8.49		-8	10	
2015	-0.56	-0.59	-0.50	-0.59	-3	6	-3
2016	4.73	4.60	4.44	4.60	-13	-29	-13
2017	2.41	2.47	2.48	2.47	6	6	6
2018	-1.25	-1.12	-1.11	-1.12	13	14	13
2019	6.24	6.01	5.92	6.01	-24	-32	-24
2020	2.77	2.69	2.70	2.52	-8	-7	-25
2021	-0.97	-0.96	-0.99	-0.99	, 1	-2	-2
2022	-13.65	-13.62	-13.48	-13.48	3	16	17
3Y	-4.21	-4.22	-4.18	-4.23	-1	3	-2
5Y	-1.61	-1.63	-1.62	-1.64		-1	-3
7Y	-0.16	-0.19	-0.20	-0.19	-3	-4	-3
10Y	0.88	0.86	0.86			-1	

Equity markets ESG and factor investing Fixed-income markets

Bond indices

Table 50: Performance of ESG bond indexes (corporates)

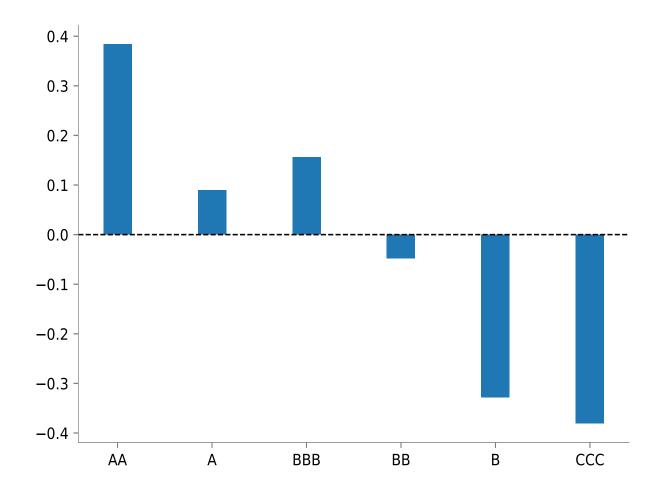
		Bloomberg US Corporate					Blo	omberg	Global Hi	gh Yiel	d	
Year		Reti	urn			Alpha			Return		l Alp	bha
	BM	SRI	S-SRI	ESG-S	SRI	S-SRI	ESG-S	BM	SRI	SUS	SRI	SUS
2019								1.00	0.96		-4	
2020				I	l			2.47	2.80	2.87	32	40
2021	-1.04	-1.55	9.56	2.34	-51	1060	338	1.10	0.40	0.21	-70	-89
2022	-15.76	-15.12	-1.10	-13.86	64	1 467	190	-5.00	-5.95	-5.73	-95	-72

Equities Corporate bonds Sovereign bonds

Definition

Equities Corporate bonds Sovereign bonds

Equities



 Empirical results Cost of capital
 Corporate bonds Sovereign bonds

 Correlation between Credit ratings and ESG ratings

Theoretical models

Figure 80: Average **ESG** *z*-score with respect to the credit rating (2010 - 2019)

Corporate bonds Sovereign bonds

An integrated Credit-ESG model

We consider the following regression model:

$$\ln \text{OAS}_{i,t} = \alpha_t + \beta_{esg} \cdot S_{i,t} + \beta_{md} \cdot \text{MD}_{i,t} + \sum_{j=1}^{N_{Sector}} \beta_{Sector}(j) \cdot Sector_{i,t}(j) + \beta_{md} \cdot \text{MD}_{i,t} + \sum_{j=1}^{N_{Sector}} \beta_{Sector}(j) \cdot Sector_{i,t}(j) + \beta_{md} \cdot \text{MD}_{i,t} + \beta_{md} \cdot \text{MD}_{i,t} + \beta_{md} \cdot \text{MD}_{i,t} + \beta_{md} \cdot \beta_{Sector}(j) \cdot Sector_{i,t}(j) + \beta_{md} \cdot \beta_{md$$

$$\beta_{sub} \cdot \text{SUB}_{i,t} + \sum_{k=1}^{N_{\mathcal{R}ating}} \beta_{\mathcal{R}ating}(k) \cdot \mathcal{R}ating_{i,t}(k) + \varepsilon_{i,t}$$

where:

- $S_{i,t}$ is the **ESG** *z*-score of Bond *i* at time *t*
- $SUB_{i,t}$ is a dummy variable accounting for subordination of the bond
- $MD_{i,t}$ is the modified duration
- $Sector_{i,t}(j)$ is a dummy variable for the j^{th} sector
- $\mathcal{R}ating_{i,t}(k)$ is a dummy variable for the k^{th} rating

An integrated Credit-ESG model

Table 51: Results of the panel data regression model (EUR IG, 2010 – 2019)

		2010-	-2013			2014–2019				
	ESG	E	S	G	ESG	E	S	G		
R^2	60.0%	59.4%	59.5%	60.3%	66.3%	65.0%	65.2%	64.6%		
Excess R^2 of ESG	0.6%	0.0%	0.2%	1.0%	4.0%	2.6%	2.9%	2.3%		
$\hat{\beta}_{esg}$	-0.05	-0.01	-0.02	-0.07	-0.09	-0.08	-0.08	-0.08		
<i>t</i> -statistic	-32	-7	-16	-39	-124	-98	-104	-92		

Source: Ben Slimane et al. (2020)

The assumption \mathcal{H}_0 : $\beta_{esg} < 0$ is not rejected

ESG cost of capital with min/max score bounds

We calculate the difference between:

- (1) the funding cost of the worst-in-class issuer and
- (2) the funding cost of **the best-in-class issuer**

by assuming that:

- the two issuers have the same credit rating;
- the two issuers belong to the same sector;
- the two issuers have the same capital structure;
- the two issuers have the same debt maturity.
- \Rightarrow Two approaches:
 - Theoretical approach: ESG scores are set to -3 and +3 (not realistic)
 - Empirical approach: ESG scores are set to observed min/max score bounds (e.g. min/max = -2.0/+1.9 for Consumer Cyclical A-rated EUR, -2.1/+3.2 for Banking A-rated EUR, etc.)

ESG cost of capital with min/max score bounds

Table 52: **ESG** cost of capital (IG, 2014 – 2019)

	EUR				USD			
	AA	А	BBB	Average	 AA	А	BBB	Average
Banking	23	45	67	45	11	19	33	21
Basic	9	25	44	26	5	15	34	18
Capital Goods	8	32	42	27	6	15	26	16
Communication		26	48	37	5	11	23	13
Consumer Cyclical	3	26	43	28	2	8	17	10
Consumer Non-Cyclical	15	29	31	25	6	12	19	12
Utility & Energy	12	32	56	33	9	14	31	18
Average	12	31	48	31	7	13	26	15

Source: Ben Slimane et al. (2020)

ESG and sovereign risk

Motivation

- Financial analysis **versus/and** extra-financial analysis
- Sovereign risk \neq Corporate risk
- Which ESG metrics are priced and not priced in by the market?
- What is the nexus between ESG analysis and credit analysis?

The economics of sovereign risk

A Tale of Two Countries

- Henry, P.B., and Miller, C. (2009), Institutions versus Policies: A Tale of Two Islands, *American Economic Review*, 99(2), pp. 261-267.
- The example of Barbados and Jamaica
- Why the economic growth of two countries with the same economic development at time *t* is different 10, 20 or 30 years later?

Equities Corporate bonds Sovereign bonds

Sovereign ESG themes

Environmental

- Biodiversity
- Climate change
- Commitment to environmental standards
- Energy mix
- Natural hazard
- Natural hazard outcome
- Non-renewable energy resources
- Temperature
- Water management

Social

- Civil unrest
- Demographics
- Education
- Gender
- Health
- Human rights
- Income
- Labour market standards
- Migration
- Water and electricity access

Governance

- Business environment and R&D
- Governance effectiveness
- Infrastructure and mobility
- International relations
- Justice
- National security
- Political stability

The economics of sovereign risk

Assessment of a country's creditworthiness

- Confidence in the country? Only financial reasons?
- Mellios, C., and Paget-Blanc, E. (2006), Which Factors Determine Sovereign Credit Ratings?, *European Journal of Finance*, 12(4), pp. 361-377 ⇒ credit ratings are correlated to the corruption perception index
- Country default risk cannot be summarized by only financial figures!
- Why some rich countries have to pay a credit risk premium?
- How to explain the large differences in Asia?

Equities Corporate bonds Sovereign bonds

Single-factor analysis

Endogenous variable

10Y sovereign bond yield

Explanatory variables

- 269 ESG variables grouped into 26 ESG thematics
- 183 indicators come from Verisk Maplecrof database, the 86 remaining metrics were retrieved from the World Bank, ILO, WHO, FAO, UN...
- 6 control variables: GDP Growth, Net Debt, Reserves, Account Balance, Inflation and Credit Rating

Panel dimensions

- 67 countries
- 2015–2020

Equities Corporate bonds Sovereign bonds

Single-factor analysis Regression model

Let $s_{i,t}$ be the bond yield spread of the country *i* at time *t*. We consider the following regression model estimated by OLS:

$$s_{i,t} = \alpha + \underbrace{\beta_{x_{i,t}}}_{\text{ESG metric}} + \underbrace{\sum_{k=1}^{6} \gamma_k z_{i,t}^{(k)}}_{\text{Control variables}/} + \varepsilon_{i,t}$$

and:

$$\sum_{k=1}^{6} \gamma_k z_{i,t}^{(k)} = \gamma_1 g_{i,t} + \gamma_2 \pi_{i,t} + \gamma_3 d_{i,t} + \gamma_4 c a_{i,t} + \gamma_5 r_{i,t} + \gamma_6 \mathcal{R}_{i,t}$$

where $g_{i,t}$ is the economic growth, $\pi_{i,t}$ is the inflation, $d_{i,t}$ is the debt ratio, $ca_{i,t}$ is the current account balance, $r_{i,t}$ is the reserve adequacy and $\mathcal{R}_{i,t}$ is the credit rating

Equities Corporate bonds Sovereign bonds

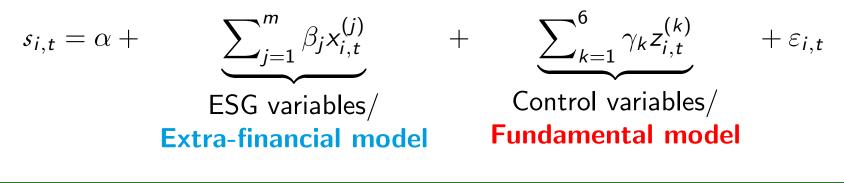
Single-factor analysis Results

Table 53: 7 most relevant indicators of the single-factor analysis per pillar

Pillar	Thematic	Indicator	$\Delta \mathfrak{R}^2_c$	F-test	Rank
	Climate change	Climate change vulnerability (acute)	5.51%	57.19	1
	Climate change	Climate change exposure (extreme)	4.80%	48.60	2
	Water management	Agricultural water withdrawal	4.02%	47.10	3
Е	Climate change	Climate change sensitivity (acute)	3.95%	38.79	4
	Biodiversity	Biodiversity threatening score	3.53%	35.32	5
	Climate change	Climate change exposure (acute)	3.39%	32.95	6
	Climate change	Climate change vulnerability (average)	3.11%	31.16	7
	Human rights	Freedom of assembly	8.74%	89.58	1
	Human rights	Extent of arbitrary unrest	8.04%	80.10	2
	Human rights	Extent of torture and ill treatment	7.63%	75.48	3
S	Labour market standards	Severity of working time violations	7.21%	70.46	4
	Labour market standards	Forced labour violations (extent)	6.10%	54.40	5
	Labour market standards	Child labour (extent)	5.83%	54.68	6
	Migration	Vulnerability of migrant workers	5.83%	53.76	7
	National security	Severity of kidnappings	6.80%	64.49	1
	Business environment and R&D	Ease of access to loans	6.77%	73.57	2
	Infrastructure and mobility	Roads km	6.45%	63.66	3
G	Business environment and R&D	Capacity for innovation	5.65%	58.58	4
	Business environment and R&D	Ethical behaviour of firms	5.37%	55.14	5
	National security	Frequency of kidnappings	5.27%	48.49	6
	Infrastructure and mobility	Physical connectivity	4.94%	50.76	7

Equities Corporate bonds Sovereign bonds

Single-factor analysis Results


Table 54: Summary of the results

	E	S	G
	Temperature	Labour market standards	Infrastructure and mobility
Relevant	Climate change	Human rights	National security
	Natural hazard outcome	Migration	Justice
	Water management	Income	
Less relevant	Energy mix	Education	Political stability
		Water and electricity access	

Equities Corporate bonds Sovereign bonds

Multi-factor analysis Regression model

We consider the following multi-factor regression model:

A 4-step process

- We consider the significant variables of the single-factor analysis at the 1% level
- We filter the variables selected at Step 1 in order to eliminate redundant variables in each ESG theme
- We perform a lasso regression to retain the seven most relevant variables within each ESG pillar

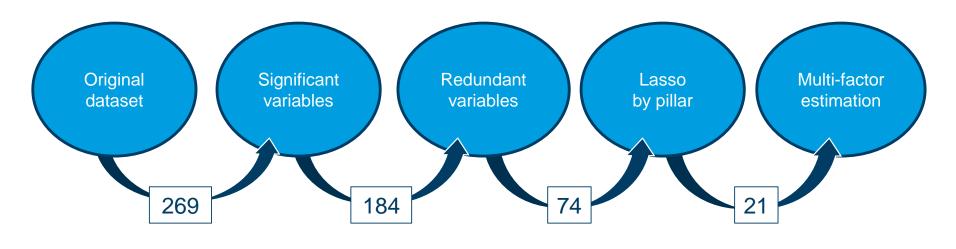
• We perform a multi-factor analysis $(m = 21 \Rightarrow m = 7)$

Equities Corporate bonds Sovereign bonds

Table 55: Example of variables exhibiting high correlations

Variable	$\Delta \mathfrak{R}^2_c$			Correl	ation _{i,j}		
Climate change exposure (average)	2.12%	1.00	0.74	0.80	0.48	0.92	0.77
Climate change exposure (acute)	3.89%	0.74	1.00	0.65	0.51	0.73	0.89
Climate change exposure (extreme)	4.80%	0.80	0.65	1.00	0.54	0.79	0.71
Climate change sensitivty (average)	3.95%	0.48	0.51	0.54	1.00	0.76	0.81
Climate change vulnerability (average)	3.11%	0.92	0.73	0.79	0.76	1.00	0.89
Climate change vulnerability (acute)	5.51%	0.77	0.89	0.71	0.81	0.89	1.00

Source: Semet et al. (2021)


Selecting the variables

- I For each variable, we identify the highest pairwise correlation
- 2 Among each couple, we retain the variable showing the highest $\Delta\mathfrak{R}^2_c$
- 3 Among these variables, we select the variable with the lowest correlation

Equities Corporate bonds Sovereign bonds

Multi-factor analysis

Figure 81: Filtering process

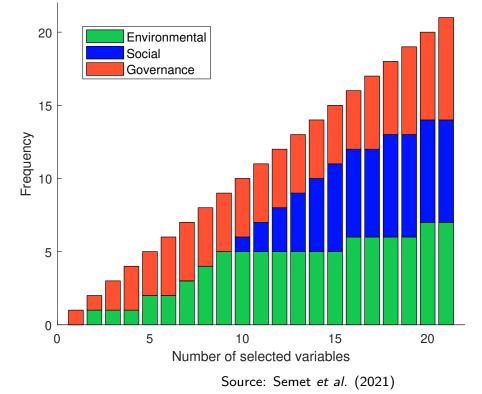
Source: Semet et al. (2021)

Equities Corporate bonds Sovereign bonds

Multi-factor analysis Results

Table 56: Results after Step 3 : Lasso regression pillar by pillar

Rank	Pillar	Thematic	Variable	Sign
1		Non-renewable energy resources	Total GHG emissions	_
2		Biodiversity	Biodiversity threatening score	_
3		Natural hazard	Severe storm hazard (absolute high extreme)	—
4	E	Temperature	Temperature change	+
5	Ŭ	Non-renewable energy resources	Fossil fuel intensity of the economy	—
6		Natural hazard	Drought hazard (absolute high extreme)	—
7		Commitment to environmental standards	Paris Agreement	_
1		Migration	Vulnerability of migrant workers	
2		Demographics	Projected population change (5 years)	+
3		Civil unrest	Frequency of civil unrest incidents	_
4	S	Labor market standards	Index of labor standards	_
5	Ŭ	Labor market standards	Right to join trade unions (protection)	_
6		Human rights	Food import security	—
7		Income	Average monthly wage	_
1		International relationships	Exporting across borders (cost)	+
2		Business environment and R&D	Ethical behaviour of firms	—
3		National security	Severity of kidnappings	_
4	G	Business environment and R&D	Capacity for innovation	_
5		Infrastructure and mobility	Physical connectivity	_
6		Infrastructure and mobility	Air transport departures	_
7		Infrastructure and mobility	Rail lines km	_


Equities Corporate bonds Sovereign bonds

Multi-factor analysis

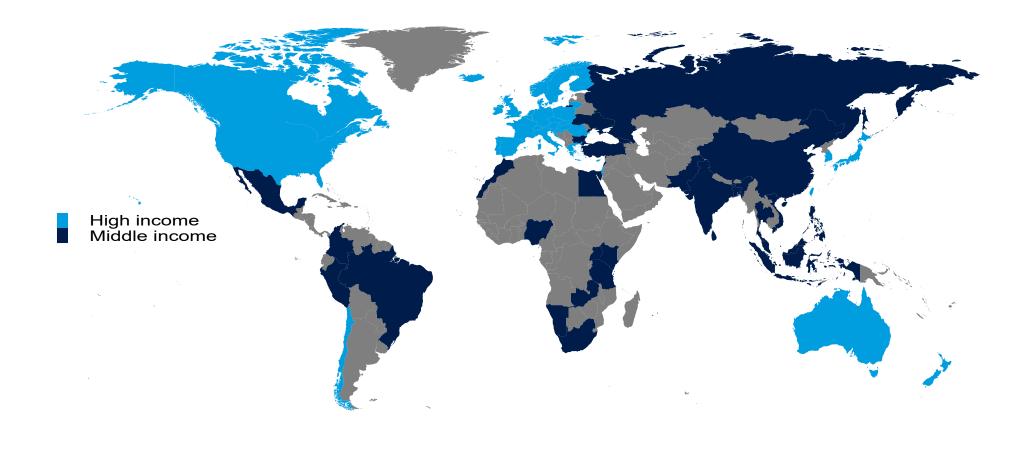
Global analysis - Lasso regression on the three pillars

Pillar	Indicator	Rank
G	Exporting across borders (cost)	1
E	Severe storm hazard	2
G	Capacity for innovation	3
G	Ethical behaviour of firms	4
E	Temperature change	5
G	Severity of kidnappings	6
E	Drought hazard	7
E	Fossil fuel intensity of the economy	8
E	Biodiversity threatening score	9
S	Index of labor standards	10

ESG pillar importance

Equities Corporate bonds Sovereign bonds

Multi-factor analysis Global analysis

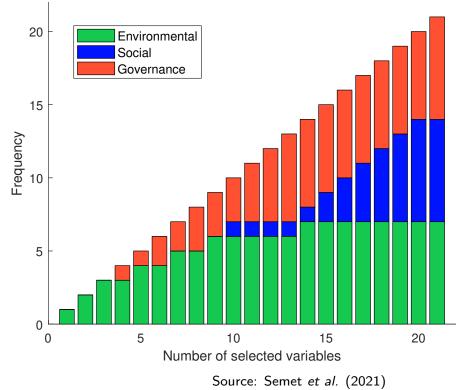

Table 57: Final multi-factor model

	Variable	\hat{eta}	$\hat{\sigma}\left(\hat{\beta} ight)$	<i>t</i> -student	<i>p</i> -value
	Intercept α	2.834	0.180	15.72***	0.00
	GDP growth <i>g</i> _{<i>i</i>,<i>t</i>}	0.017	0.012	1.37	0.17
	Inflation $\pi_{i,t}$	0.048	0.007	6.64***	0.00
Financial	Debt ratio $d_{i,t}$	-0.001	0.001	-1.71^{*}	0.08
	Current account balance <i>ca_{i,t}</i>	-0.012	0.005	-2.45**	0.01
	Reserve adequacy $r_{i,t}$	0.005	0.007	0.74	0.45
	Rating score $\mathcal{R}_{i,t}$	-0.013	0.001	-9.08***	0.00
	Exporting across borders (cost)	$4.05e^{-04}$	$\overline{9.83e^{-05}}$	4.11***	0.00
	Severe storm hazard (absolute high extreme)	-0.015	0.009	-1.66^{*}	0.09
	Capacity for innovation	-0.004	0.001	-4.99***	0.00
Extra-financial	Ethical behavior of firms	-0.061	0.021	-2.79***	0.00
	Temperature change	-0.149	0.042	-3.50^{***}	0.00
	Severity of kidnappings	-0.032	0.007	-4.25***	0.00
	Drought hazard (absolute high extreme)	3.33 <i>e</i> ⁻⁰⁸	1.27 <i>e</i> ⁻⁰⁸	2.60***	0.00

 $\Delta \Re_c^2 = 13.51\%$, *F*-test = 29.28***

Corporate bonds Sovereign bonds

Multi-factor analysis High income vs middle income countries



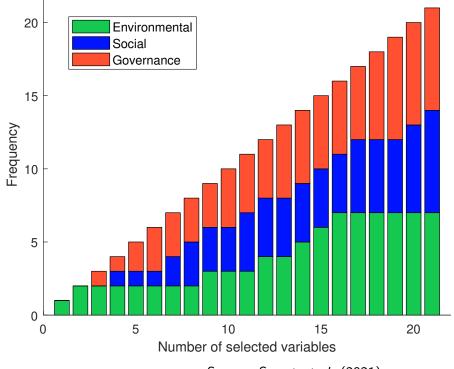
Equities Corporate bonds Sovereign bonds

Multi-factor analysis

Pillar	Indicator	Rank
E	Fossil fuel intensity of the economy	1
E	Temperature change	2
E	Cooling degree days annual average	3
G	Capacity for innovation	4
E	Heat stress (future)	5
G	Severity of kidnappings	6
E	Biodiversity threatening score	7
G	Efficacy of corporate boards	8
Ē	Total GHG emissions	9
S	Significant marginalized group	10

ESG pillar importance

- Transition risk
- **S** is lagging


Equities Corporate bonds Sovereign bonds

Multi-factor analysis

Middle income countries

Pillar	Indicator	Rank
E	Tsunami hazard	1
E	Transport infrastructure exposed to	2
	natural hazards	
G	Severity of kidnappings	3
S	Discrimination based on LGBT status	4
G	Air transport departures	5
G	Exporting across borders (cost)	6
S	Index of labour standards	7
S	Vulnerability of migrant workers	8
E	Paris Agreement	9
G	Military expenditure (% of GDP)	10

ESG pillar importance

- Physical risk
- **S**ocial issues are priced

Corporate bonds Sovereign bonds

Explaining credit ratings with ESG metrics Statistical framework

We consider the logit model:

$$\Pr\left\{\mathcal{G}_{i,t}=1\right\} = \mathbf{F}\left(\beta_0 + \underbrace{\sum_{j=1}^m \beta_j x_{i,t}^{(j)}}_{\mathsf{ESG variables}}\right)$$

where:

- $G_{i,t} = 1$ indicates if the country *i* is rated upper grade at time *t*
 - If the rating $\succeq A$ then $\mathcal{G}_{i,t} = 1$
 - if the rating \leq BBB then $\mathcal{G}_{i,t} = 0$
- F(z) is the logistic cumulative density function
- $x_{i,t}^{(j)}$ is the j^{th} selected indicator

We note $\theta_j = e^{\beta_j}$ is the odds-ratio coefficient

Lasso-penalized logit regression

Again, we perform a lasso regression to retain the seven most relevant variables for each ESG pillar and then we perform a multi-factor analysis

Equities Corporate bonds Sovereign bonds

Explaining credit ratings with ESG metrics

Table 58: List of selected ESG variables for the logistic regression

Theme	Variable	Rank
Commitment to environmental standards	Domestic regulatory framework	1
Climate change	Climate change vulnerability (average)	2
Water management	Water import security (average)	3
Energy mix	Energy self sufficiency	4
Water management	Wastewater treatment index	5
Water management	Water intensity of the economy	6
Biodiversity	Biodiversity threatening score	7
Health	Health expenditure per capita	1
Water and electricity access	Public dissatisfaction with water quality	2
Education	Mean years of schooling of adults	3
Income	Base pay / value added per worker	4
Demographics	Urban population change (5 years)	5
Human rights	Basic food stuffs net imports per person	6
Human rights	Food import security	7
Government effectiveness	Government effectiveness index	1
Business environment and R&D	Venture capital availability	2
Business environment and R&D	R&D expenditure (% of GDP)	3
Infrastructure and mobility	Customs efficiency	4
Business environment and R&D	Enforcing a contract (time)	5
Business environment and R&D	Paying tax (process)	6
Business environment and R&D	Getting electricity (time)	7

Corporate bonds Sovereign bonds

Explaining credit ratings with ESG metrics

Table 59: Logit model with environmental variables

$\hat{ heta}_j$	$\hat{\sigma}\left(\hat{ heta}_{j} ight)$	<i>t</i> -student	<i>p</i> -value
1.415	0.156	3.16***	0.00
2.929	0.572	5.51***	0.00
1.385	0.147	3.07***	0.00
0.960	0.033	-1.16	0.24
1.011	0.008	1.36	0.17
1.000	0.000	-1.02	0.30
0.887	0.026	-4.02***	0.00
	1.415 2.929 1.385 0.960 1.011 1.000	1.4150.1562.9290.5721.3850.1470.9600.0331.0110.0081.0000.000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $\ell\left(\hat{\beta}\right) = -107.60, \text{ AIC} = 231.19, \ \mathfrak{R}^2 = 49.1\%, \ \mathrm{ACC} = 83.6\%$

Corporate bonds Sovereign bonds

Explaining credit ratings with ESG metrics

Table 60: Logit model with social variables

Variable	$\hat{ heta}_j$	$\hat{\sigma}\left(\hat{\theta}_{j} ight)$	<i>t</i> -student	<i>p</i> -value
Health expenditure per capita	1.001	0.000	3.47***	0.00
Public dissatisfaction with water quality	0.889	0.024	-4.27***	0.00
Mean years of schooling of adults	2.710	0.583	4.64***	0.00
Base pay / value added per worker	0.000	0.000	-5.13^{***}	0.00
Urban population change (5 years)	1.653	0.131	6.36***	0.00
Basic food stuffs net imports per person	0.996	0.001	-3.58***	0.00
Food import security	0.973	0.006	-4.33***	0.00

 $\ell\left(\hat{\beta}\right) = -72.41$, AIC = 160.83, $\Re^2 = 65.6\%$, ACC = 87.9%

Corporate bonds Sovereign bonds

Explaining credit ratings with ESG metrics

Table 61: Logit model with governance variables

Variable	$\hat{ heta}_j$	$\hat{\sigma}\left(\hat{\theta}_{j} ight)$	<i>t</i> -student	<i>p</i> -value
Government effectiveness index	1.096	0.035	2.81***	0.00
Venture capital availability	1.020	0.005	4.16***	0.00
R&D expenditure (% of GDP)	2.259	1.006	1.83*	0.06
Customs efficiency	2.193	1.657	1.04	0.29
Enforcing a contract (time)	0.997	0.001	-3.69***	0.00
Paying tax (process)	0.914	0.031	-2.63***	0.00
Getting electricity (time)	0.989	0.004	-2.73***	0.00

 $\ell\left(\hat{\beta}\right) = -67.78$, AIC = 151.57, $\Re^2 = 67.9\%$, ACC = 90.1%

Equities Corporate bonds Sovereign bonds

Explaining credit ratings with ESG metrics

Table 62: Logit model with the ESG selected variables

Pillar	Variable	$\hat{ heta}_j$	$\hat{\sigma}\left(\hat{\theta}_{j}\right)$	<i>t</i> -student	<i>p</i> -value
	Domestic regulatory framework	2.881	2.108	1.44	0.14
	Climate change vulnerability (average)	0.275	0.302	-1.17	0.24
E	Water import security (average)	0.717	0.467	-0.50	0.61
	Biodiversity threatening score	1.029	0.199	0.14	0.88
	Health expenditure per capita	0.998	0.002	-1.10^{-1}	0.26
	Public dissatisfaction with water quality	1.332	0.269	1.41	0.15
	Mean years of schooling of adults	68.298	85.559	3.37***	0.00
S	Base pay $/$ value added per worker	0.000	0.000	-1.07	0.28
-	Urban population change (5 years)	3.976	1.857	2.95***	0.00
	Basic food stuffs net imports per person	0.990	0.004	-2.07^{**}	0.03
	Food import security	0.803	0.067	-2.59^{***}	0.00
	Government effectiveness index	1.751	0.412	2.37**	0.01
	Venture capital availability	1.099	0.035	2.93***	0.00
G	Enforcing a contract (time)	0.999	0.004	-0.31	0.75
•	Paying tax (process)	0.846	0.096	-1.47	0.14
	Getting electricity (time)	0.882	0.037	-2.95^{***}	0.00

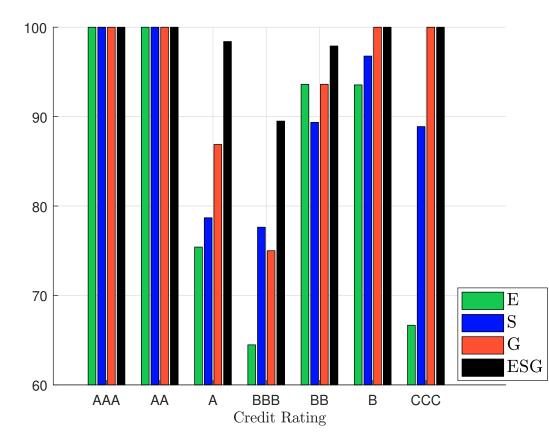
 $\ell\left(\hat{\beta}\right) = -18.91$, AIC = 71.83, $\Re^2 = 91.1\%$, ACC = 96.7%

Corporate bonds Sovereign bonds

Explaining credit ratings with ESG metrics Prediction accuracy of credit ratings

Table 63: Summary of the results

	***	\mathfrak{R}^2	Accuracy	Sensitivity	Specificity	AIC
E *	4	48.02%	84.97%	86.90%	83.23%	230.04
S *	7	65.60%	87.90%	88.80%	86.90%	160.83
G *	4	67.70%	89.54%	91.72%	87.58%	150.65
ESG*	7	79.02%	92.50%	93.80%	91.30%	104.80


Source: Semet et al. (2021)

 \Rightarrow Final model: Education, Demographics, Human rights, Government effectiveness, Business environment and R&D

Corporate bonds Sovereign bonds

Explaining credit ratings with ESG metrics Prediction accuracy of credit ratings

Figure 82: Prediction accuracy (in %) of credit ratings

	Rating	Probabilty range
	AAA	83%-100%
Upper-grade	AA	67%-82%
	А	50%-66%
	BBB	39% – 49%
Lower-grade	BB	29%-38%
	В	11%-28%
	С	0%-10%

Theoretical models Empirical results Cost of capital

Equities Corporate bonds Sovereign bonds

ESG and sovereign risk Summary of the results

What is directly priced What is indirectly priced by the bond market? by credit rating agencies? $E \succ G \succ S$ $(\mathbf{G}) \succ (\mathbf{S}) \succ (\mathbf{E})$ Significant market-based ESG indicators Relevant CRA-based ESG indicators \neq **E** metrics are second-order variables: • High-income countries Environmental stantards Transition risk \succ Physical risk • Water management Middle-income countries • Biodiversity Physical risk \succ Transition risk Climate change (S) matters for middle-income countries, Education, Demographic and Human rights are prominent indicators for the (S) especially for Gender inequality, Working conditions and Migration pillar Government effectiveness, Business envi-National security, Infrastructure and moronment and R&D dominate the **G** pillar bility and International relationships are the relevant **(G)** metrics Fundamental analysis: $\Re_c^2 \approx 70\%$ Accuracy > 95%Extra-financial analysis: $\Delta \Re_c^2 \approx 13.5\%$ AAA, AA, B, CCC \succ A \succ BB \succ BBB

Course 2022-2023 in Sustainable Finance Lecture 4. Exercise Equity Portfolio Optimization with ESG Scores

Thierry Roncalli*

*Amundi Asset Management⁷

*University of Paris-Saclay

March 2023

⁷The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

We consider the CAPM model:

$$R_i - r = \beta_i (R_m - r) + \varepsilon_i$$

where R_i is the return of asset *i*, R_m is the return of the market portfolio w_m , *r* is the risk free asset, β_i is the beta of asset *i* with respect to the market portfolio and ε_i is the idiosyncratic risk of asset *i*. We have $R_m \perp \varepsilon_i$ and $\varepsilon_i \perp \varepsilon_j$. We note σ_m the volatility of the market portfolio. Let $\tilde{\sigma}_i$, μ_i and S_i be the idiosyncratic volatility, the expected return and the ESG score of asset *i*. We use a universe of 6 assets with the following parameter values:

Asset i	1	2	3	4	5	6
β_i	0.10	0.30	0.50	0.90	1.30	2.00
$ ilde{\sigma}_i$ (in %)	17.00	17.00	16.00	10.00	11.00	12.00
μ_i (in %)	1.50	2.50	3.50	5.50	7.50	11.00
${\cal S}_i$	1.10	1.50	2.50	-1.82	-2.35	-2.91

and $\sigma_m = 20\%$. The risk-free return *r* is set to 1% and the expected return of the market portfolio w_m is equal to $\mu_m = 6\%$.

CAPM and implied expected returns Mean-variance optimization with ESG scores Benchmark with ESG scores

Question 1

We assume that the CAPM is valid.

Question (a)

Calculate the vector $\boldsymbol{\mu}$ of expected returns.

• Using the CAPM, we have:

$$\mu_i = r + \beta_i \left(\mu_m - r \right)$$

• For instance, we have:

$$\mu_1 = 1\% + 0.10 \times (6\% - 1\%) = 1.5\%$$

and:

$$\mu_2 = 1\% + 0.30 \times 5\% = 2.5\%$$

• Finally, we obtain $\mu = (1.5\%, 2.5\%, 3.5\%, 5.5\%, 7.5\%, 11\%)$

Question (b)

Compute the covariance matrix Σ . Deduce the volatility σ_i of the asset *i* and find the correlation matrix $\mathbb{C} = (\rho_{i,j})$ between asset returns.

$$\boldsymbol{\Sigma} = \boldsymbol{\sigma}_{\boldsymbol{m}}^2 \boldsymbol{\beta} \boldsymbol{\beta}^\top + \boldsymbol{D}$$

where:

$$D = \operatorname{diag}\left(\tilde{\sigma}_1^2, \ldots, \tilde{\sigma}_6^2\right)$$

• The numerical value of Σ is:

$$\Sigma = \begin{pmatrix} 293 & & & \\ 12 & 325 & & \\ 20 & 60 & 356 & & \\ 36 & 108 & 180 & 424 & & \\ 52 & 156 & 260 & 468 & 797 & \\ 80 & 240 & 400 & 720 & 1040 & 1744 \end{pmatrix} \times 10^{-4}$$

$$\sigma_i = \sqrt{\Sigma_{i,i}}$$

• We obtain:

 $\sigma = (17.12\%, 18.03\%, 18.87\%, 20.59\%, 28.23\%, 41.76\%)$

• We have:

$$\rho_{i,j} = \frac{\Sigma_{i,j}}{\sigma_i \sigma_j}$$

• We obtain the following correlation matrix expressed in %:

	/ 100.00					
	3.89	100.00				
$\mathbb{C} =$	6.19	17.64	100.00			
	10.21	29.09	46.33	100.00		
	10.76	30.65	48.81	80.51	100.00	
	\ 11.19	31.88	50.76	83.73	88.21	100.00

Question (c)

Compute the tangency portfolio w^* . Calculate $\mu(w^*)$ and $\sigma(w^*)$. Deduce the Sharpe ratio and the ESG score of the tangency portfolio.

$$w^* = \frac{\Sigma^{-1} \left(\mu - r\mathbf{1}\right)}{\mathbf{1}^\top \Sigma^{-1} \left(\mu - r\mathbf{1}\right)} = \begin{pmatrix} 0.94\% \\ 2.81\% \\ 5.28\% \\ 24.34\% \\ 29.06\% \\ 37.57\% \end{pmatrix}$$

• We deduce:

$$\mu(w^*) = w^{*\top}\mu = 7.9201\%$$

$$\sigma(w^*) = \sqrt{w^{*\top}\Sigma w^*} = 28.3487\%$$

$$SR(w^* \mid r) = \frac{7.9201\% - 1\%}{28.3487\%} = 0.2441$$

$$\mathcal{S}(w^*) = \sum_{i=1}^{6} w_i^* \mathcal{S}_i = -2.0347$$

Question (d)

Compute the beta coefficient $\beta_i(w^*)$ of the six assets with respect to the tangency portfolio w^* , and the implied expected return $\tilde{\mu}_i$:

$$\widetilde{\mu}_{i} = r + eta_{i} \left(w^{*}
ight) \left(\mu \left(w^{*}
ight) - r
ight)$$

$$\beta_i(w^*) = \frac{\mathbf{e}_i^\top \Sigma w^*}{\sigma^2(w^*)}$$

• We obtain:

	(0.0723	
	0.2168	
Q(*)	0.3613	
$\beta(w^*) =$	0.6503	
	0.9393	
	\ 1.4451	/

• The computation of $\tilde{\mu}_i = r + \beta_i (w^*) (\mu (w^*) - r)$ gives:

$$\tilde{\mu} = \begin{pmatrix} 1.50\% \\ 2.50\% \\ 3.50\% \\ 5.50\% \\ 7.50\% \\ 11.00\% \end{pmatrix}$$

Mean-variance optimization with ESG scores Benchmark with ESG scores

Question (e)

Deduce the market portfolio w_m . Comment on these results.

- $\beta_i(w^*) \neq \beta_i(w_m)$ but risk premia are exact
- Let us assume that the allocation of w_m is equal to α of the tangency portfolio w^* and 1α of the risk-free asset. We deduce that:

$$\beta(w_m) = \frac{\Sigma w_m}{\sigma^2(w_m)} = \frac{\alpha \Sigma w^*}{\alpha^2 \sigma^2(w^*)} = \frac{1}{\alpha} \beta(w^*)$$

$$\alpha = \frac{\beta_i(w^*)}{\beta_i(w_m)} = 72.25\%$$

• The market portfolio w_m is equal to 72.25% of the tangency portfolio w^* and 27.75% of the risk-free asset

$$\mu(w_m) = r + \alpha(\mu(w^*) - r) = 1\% + 72.25\% \times (7.9201\% - 1\%) = 6\%$$
and:

$$\sigma(w_m) = \alpha \sigma(w^*) = 72.25\% \times 28.3487\% = 20.48\%$$

• We deduce that:

SR
$$(w_m \mid r) = \frac{6\% - 1\%}{20.48\%} = 0.2441$$

• We do not obtain the true value of the Sharpe ratio:

SR
$$(w_m \mid r) = \frac{6\% - 1\%}{20\%} = 0.25$$

• The tangency portfolio has an idiosyncratic risk:

$$\sqrt{w_m^{\top} \left(\sigma_m^2 \beta \beta^{\top}\right) w^{\top}} = 20\% < \sigma\left(w_m\right) = 20.48\%$$

Question 2

We consider long-only portfolios and we also impose a minimum threshold \mathcal{S}^* for the portfolio ESG score:

$$\boldsymbol{\mathcal{S}}\left(\boldsymbol{w}
ight)=\boldsymbol{w}^{ op}\boldsymbol{\mathcal{S}}\geq\boldsymbol{\mathcal{S}}^{\star}$$

Question (a)

Let γ be the risk tolerance. Write the mean-variance optimization problem.

$$w^{\star} = \arg \min \frac{1}{2} w^{\top} \Sigma w - \gamma w^{\top} \mu$$

s.t.
$$\begin{cases} \mathbf{1}_{6}^{\top} w = 1 \\ w^{\top} S \ge S^{\star} \\ \mathbf{0}_{6} \le w \le \mathbf{1}_{6} \end{cases}$$

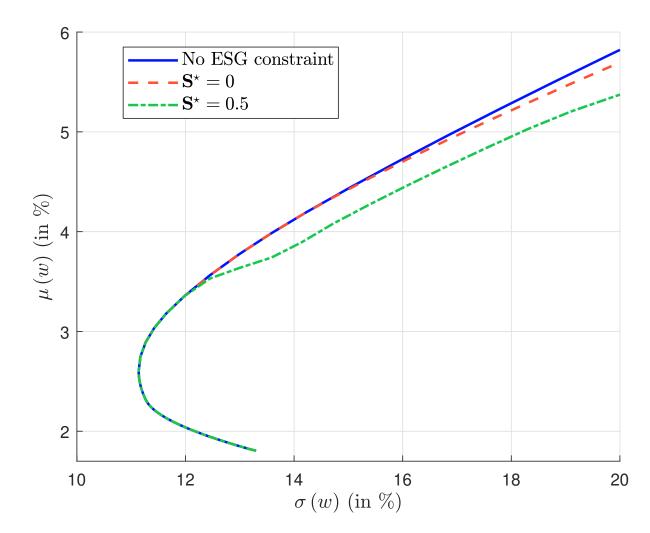
Question (b)

Find the QP form of the MVO problem.

• The matrix form of the QP problem is:

$$w^{\star} = rgmin rac{1}{2}w^{ op}Qw - w^{ op}R$$

s.t. $\begin{cases} Aw = B \\ Cw \le D \\ w^{-} \le w \le w^{+} \end{cases}$


• We deduce that $Q = \Sigma$, $R = \gamma \mu$, $A = \mathbf{1}_6^{\top}$, B = 1, $C = -\mathbf{S}^{\top}$, $D = -\mathbf{S}^{\star}$, $w^- = \mathbf{0}_6$ and $w^+ = \mathbf{1}_6$

Question (c)

Compare the efficient frontier when (1) there is no ESG constraint $(S^* = -\infty)$, (2) we impose a positive ESG score $(S^* = 0)$ and (3) the minimum threshold is set to 0.5 $(S^* = 0.5)$. Comment on these results.

- To compute the efficient frontier, we consider several value of $\gamma \in [-1,2]$
- For each value of γ , we compute the optimal portfolio w^* and deduce its expected return $\mu(w^*)$ and its volatility $\sigma(w^*)$

Figure 83: Impact of the minimum ESG score on the efficient frontier

Question (d)

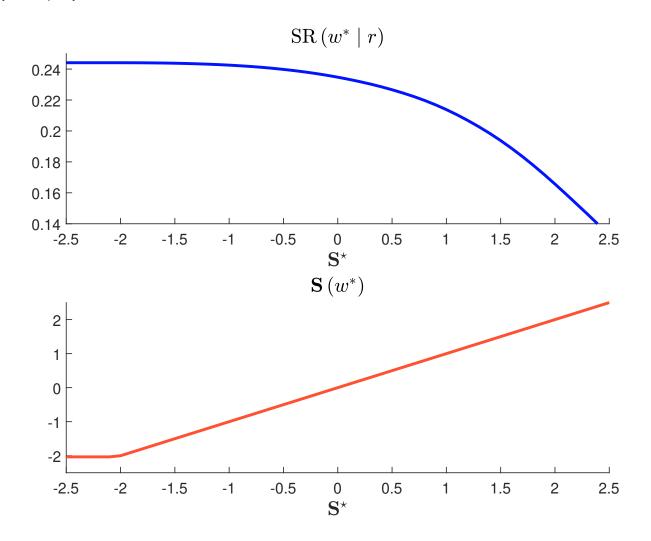
For each previous cases, find the tangency portfolio w^* and the corresponding risk tolerance γ^* . Compute then $\mu(w^*)$, $\sigma(w^*)$, $SR(w^* \mid r)$ and $\mathcal{S}(w^*)$. Comment on these results.

- Let $w^{\star}(\gamma)$ be the MVO portfolio when the risk tolerance is equal to γ
- By using a fine grid of γ values, we can find the optimal value γ* by solving numerically the following optimization problem with the brute force algorithm:

$$\gamma^* = rg \max rac{\mu \left(w^* \left(\gamma
ight)
ight) - r}{\sigma \left(w^* \left(\gamma
ight)
ight)} \qquad ext{for } \gamma \in [0, 2]$$

• We deduce the tangency portfolio $w^* = w^*(\gamma^*)$

Table 64: Impact of the minimum ESG score on the efficient frontier


\mathcal{S}^{\star}	$-\infty$	0	0.5
γ^*	1.1613	0.8500	0.8500
	0.9360	9.7432	9.1481
	2.8079	16.3317	19.0206
u^* (in $0/$)	5.2830	31.0176	40.3500
w* (in %)	24.3441	5.1414	0.0000
	29.0609	11.6028	3.8248
	37.5681	26.1633	27.6565
$\overline{\mu}(w^*)(\overline{n})$	7.9201	5.6710	5.3541
$\sigma\left(\textit{w}^{*} ight)(\textit{in}\%)$	28.3487	19.8979	19.2112
$\overline{SR}(w^* r)^-$	0.2441	0.2347	0.2266
$\mathcal{S}(w^*)$	-2.0347	0.0000	0.5000

Question (e)

Draw the relationship between the minimum ESG score S^* and the Sharpe ratio $SR(w^* \mid r)$ of the tangency portfolio.

- We perform the same analysis as previously for several values $\mathcal{S}^{\star} \in [-2.5, 2.5]$
- \circ We verify that the Sharpe ratio is a decreasing function of \mathcal{S}^{\star}

Figure 84: Relationship between the minimum ESG score S^* and the Sharpe ratio $SR(w^* | r)$ of the tangency portfolio

Question (f)

We assume that the market portfolio w_m corresponds to the tangency portfolio when $S^* = 0.5$.

• The market portfolio w_m is then equal to:

$$w_m = \left(egin{array}{ccc} 9.15\% \ 19.02\% \ 40.35\% \ 0.00\% \ 3.82\% \ 27.66\% \end{array}
ight)$$

• We deduce that:

$$\mu(w_m) = 5.3541\%$$

$$\sigma(w_m) = 19.2112\%$$

$$SR(w_m | r) = 0.2266$$

$$\mathcal{S}(w_m) = 0.5$$

Question (f).i

Compute the beta coefficient $\beta_i(w_m)$ and the implied expected return $\tilde{\mu}_i(w_m)$ for each asset. Deduce then the alpha return α_i of asset *i*. Comment on these results.

$$\beta_i(w_m) = \frac{\mathbf{e}_i^\top \Sigma w_m}{\sigma^2(w_m)}$$

and:

$$\tilde{\mu}_{i}(w_{m}) = r + \beta_{i}(w_{m})(\mu(w_{m}) - r)$$

• We deduce that the alpha return is equal to:

$$\alpha_{i} = \mu_{i} - \tilde{\mu}_{i} (w_{m})$$

= $(\mu_{i} - r) - \beta_{i} (w_{m}) (\mu (w_{m}) - r)$

• We notice that $\alpha_i < 0$ for the first three assets and $\alpha_i > 0$ for the last three assets, implying that:

$$\begin{cases} \boldsymbol{\mathcal{S}}_i > \boldsymbol{0} \Rightarrow \alpha_i < \boldsymbol{0} \\ \boldsymbol{\mathcal{S}}_i < \boldsymbol{0} \Rightarrow \alpha_i > \boldsymbol{0} \end{cases}$$

Table 65: Computation of the alpha return due to the ESG constraint

Asset	$\beta_i(w_m)$	$\widetilde{\mu}_{i}(w_{m}) = \widetilde{\mu}_{i}(w_{m}) - r$		α_i
		(in %)	(in %)	(in bps)
1	0.1660	1.7228	0.7228	-22.28
2	0.4321	2.8813	1.8813	-38.13
3	0.7518	4.2733	3.2733	-77.33
4	0.8494	4.6984	3.6984	80.16
5	1.2395	6.3967	5.3967	110.33
6	1.9955	9.6885	8.6885	131.15

Question (f).ii

We consider the equally-weighted portfolio w_{ew} . Compute its beta coefficient $\beta(w_{ew} | w_m)$, its implied expected return $\tilde{\mu}(w_{ew})$ and its alpha return $\alpha(w_{ew})$. Comment on these results.

• We have:

$$\beta\left(w_{\mathrm{ew}} \mid w_{m}\right) = \frac{w_{\mathrm{ew}}^{\top} \Sigma w_{m}}{\sigma^{2}\left(w_{m}\right)} = 0.9057$$

and:

$$ilde{\mu}(w_{
m ew}) = 1\% + 0.9057 imes (5.3541\% - 1\%) = 4.9435\%$$

• We deduce that:

$$lpha\left(\textit{w}_{
m ew}
ight)=\mu\left(\textit{w}_{
m ew}
ight)- ilde{\mu}\left(\textit{w}_{
m ew}
ight)=5.25\%-4.9435\%=30.65$$
 bps

• We verify that:

$$\alpha(w_{\rm ew}) = \sum_{i=1}^{6} w_{{\rm ew},i} \alpha_i = \frac{\sum_{i=1}^{6} \alpha_i}{6} = 30.65 \text{ bps}$$

• The equally-weighted portfolio has a positive alpha because:

$$\boldsymbol{\mathcal{S}}\left(w_{\mathrm{ew}}
ight)=-0.33\ll\boldsymbol{\mathcal{S}}\left(w_{m}
ight)=0.50$$

Question 3

The objective of the investor is twice. He would like to manage the tracking error risk of his portfolio with respect to the benchmark b = (15%, 20%, 19%, 14%, 15%, 17%) and have a better ESG score than the benchmark. Nevertheless, this investor faces a long-only constraint because he cannot leverage his portfolio and he cannot also be short on the assets.

Question (a)

What is the ESG score of the benchmark?

• We have:

$$oldsymbol{\mathcal{S}}\left(b
ight)=\sum_{i=1}^{6}b_{i}oldsymbol{\mathcal{S}}_{i}=-0.1620$$

Question (b)

We assume that the investor's portfolio is w = (10%, 10%, 30%, 20%, 20%, 10%). Compute the excess score $S(w \mid b)$, the expected excess return $\mu(w \mid b)$, the tracking error volatility $\sigma(w \mid b)$ and the information ratio IR $(w \mid b)$. Comment on these results.

• We have:

$$\begin{cases} \boldsymbol{\mathcal{S}}(w \mid b) = (w - b)^{\top} \boldsymbol{\mathcal{S}} = 0.0470\\ \mu(w \mid b) = (w - b)^{\top} \mu = -0.5 \text{ bps}\\ \sigma(w \mid b) = \sqrt{(w - b)^{\top} \boldsymbol{\Sigma}(w - b)} = 2.8423\%\\ \text{IR}(w \mid b) = \frac{\mu(w \mid b)}{\sigma(w \mid b)} = -0.0018 \end{cases}$$

• The portfolio w is not optimal since it improves the ESG score of the benchmark, but its information ratio is negative. Nevertheless, the expected excess return is close to zero (less than -1 bps).

Question (c)

Same question with the portfolio w = (10%, 15%, 30%, 10%, 15%, 20%).

• We have: We have:

$$\begin{cases} \boldsymbol{\mathcal{S}}(w \mid b) = (w - b)^{\top} \boldsymbol{\mathcal{S}} = 0.1305 \\ \mu(w \mid b) = (w - b)^{\top} \mu = 29.5 \text{ bps} \\ \sigma(w \mid b) = \sqrt{(w - b)^{\top} \boldsymbol{\Sigma}(w - b)} = 2.4949\% \\ \text{IR}(w \mid b) = \frac{\mu(w \mid b)}{\sigma(w \mid b)} = 0.1182 \end{cases}$$

Question (d)

In the sequel, we assume that the investor has no return target. In fact, the objective of the investor is to improve the ESG score of the benchmark and control the tracking error volatility. We note γ the risk tolerance. Give the corresponding esg-variance optimization problem.

• The optimization problem is:

$$w^{\star} = \arg \min \frac{1}{2}\sigma^{2} (w \mid b) - \gamma \mathcal{S} (w \mid b)$$

s.t.
$$\begin{cases} \mathbf{1}_{6}^{\top} w = 1\\ \mathbf{0}_{6} \leq w \leq \mathbf{1}_{6} \end{cases}$$

Question (e)

Find the matrix form of the corresponding QP problem.

• The objective function is equal to:

$$(*) = \frac{1}{2}\sigma^{2}(w \mid b) - \gamma \mathcal{S}(w \mid b)$$

$$= \frac{1}{2}(w - b)^{\top} \Sigma(w - b) - \gamma (w - b)^{\top} \mathcal{S}$$

$$= \frac{1}{2}w^{\top} \Sigma w - w^{\top} (\Sigma b + \gamma \mathcal{S}) + \underbrace{\left(\gamma b^{\top} \mathcal{S} + \frac{1}{2} b^{\top} \Sigma b\right)}_{\text{does not depend on } w}$$


• We deduce that $Q = \Sigma$, $R = \Sigma b + \gamma S$, $A = \mathbf{1}_6^{\top}$, B = 1, $w^- = \mathbf{0}_6$ and $w^+ = \mathbf{1}_6$

Question (f)

Draw the esg-variance efficient frontier $(\sigma(w^* | b), \mathcal{S}(w^* | b))$ where w^* is an optimal portfolio.

• We solve the QP problem for several values of $\gamma \in [0,5\%]$ and obtain Figure 85

Figure 85: Efficient frontier of tracking a benchmark with an ESG score objective

Question (g)

Find the optimal portfolio w^* when we target a given tracking error volatility σ^* . The values of σ^* are 0%, 1%, 2%, 3% and 4%.

- Using the QP numerical algorithm, we compte the optimal value $\sigma(w \mid b)$ for $\gamma = 0$ and $\gamma = 5\%$
- Then, we apply the bisection algorithm to find the optimal value γ^{\star} such that:

$$\sigma\left(w\mid b\right)=\sigma^{\star}$$

Table 66: Solution of the σ -problem

Target σ^{\star}	0	1%	2%	3%	4%
γ^{\star} (in bps)	0.000	4.338	8.677	13.015	18.524
w* (in %)	15.000	15.175	15.350	15.525	14.921
	20.000	21.446	22.892	24.338	25.385
	19.000	23.084	27.167	31.251	35.589
	14.000	9.588	5.176	0.763	0.000
	15.000	12.656	10.311	7.967	3.555
	17.000	18.052	19.104	20.156	20.550
$\overline{\mathcal{S}}(w^{\star} b)$	$\overline{0.000}$	0.230	0.461	0.691	0.915

Question (h)

Find the optimal portfolio w^* when we target a given excess score S^* . The values of S^* are 0, 0.1, 0.2, 0.3 and 0.4. • Same method as previously with the following equation:

$$oldsymbol{\mathcal{S}}\left(w\mid b
ight) =oldsymbol{\mathcal{S}}^{\star}$$

• An alternative approach consists in solving the following optimization problem:

$$\begin{split} w^{\star} &= \arg \min \frac{1}{2}\sigma^{2}\left(w \mid b\right) \\ &\text{s.t.} \quad \begin{cases} \mathbf{1}_{6}^{\top}w = 1 \\ \mathcal{S}\left(w \mid b\right) = \mathcal{S}^{\star} \\ \mathbf{0}_{6} \leq w \leq \mathbf{1}_{6} \end{cases} \\ \end{split}$$

• We have: $Q = \Sigma, \ R = \Sigma b, \ A = \left(\begin{array}{c} \mathbf{1}_{6}^{\top} \\ \mathcal{S}^{\top} \end{array}\right), \ B = \left(\begin{array}{c} 1 \\ \mathcal{S}^{\star} + \mathcal{S}^{\top} b \end{array}\right), \\ w^{-} = \mathbf{0}_{6} \text{ and } w^{+} = \mathbf{1}_{6} \end{split}$

Table 67: Solution of the \mathcal{S} -problem

Target \mathcal{S}^{\star}	0	0.1	0.2	0.3	0.4
γ^{\star} (in bps)	0.000	1.882	3.764	5.646	7.528
	15.000	15.076	15.152	15.228	15.304
	20.000	20.627	21.255	21.882	22.509
(1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	19.000	20.772	22.544	24.315	26.087
w* (in %)	14.000	12.086	10.171	8.257	6.343
	15.000	13.983	12.966	11.949	10.932
	17.000	17.456	17.913	18.369	18.825
$\overline{\sigma} (w^* \overline{b}) (\overline{in} \%)$	$-\bar{0}.\bar{0}0\bar{0}$		0.868	1.301	1.735

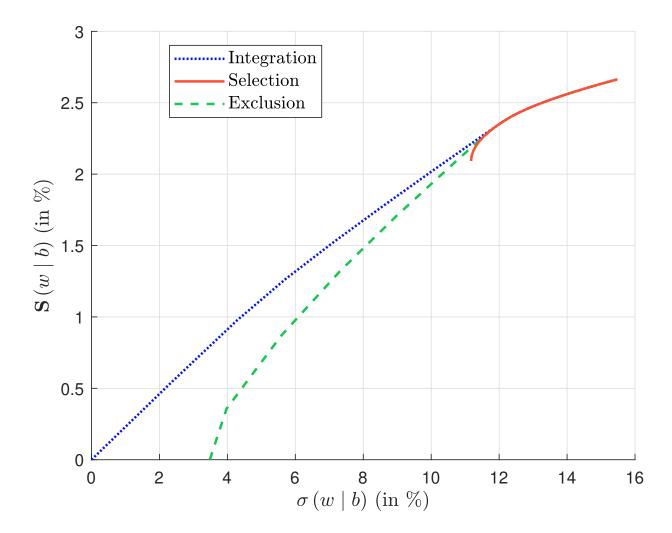
Question (i)

We would like to compare the efficient frontier obtained in Question 3(f) with the efficient frontier when we implement a best-in-class selection or a worst-in-class exclusion. The selection strategy consists in investing only in the best three ESG assets, while the exclusion strategy implies no exposure on the worst ESG asset. Draw the three efficient frontiers. Comment on these results.

• For the best-in-class strategy, the optimization problem becomes:

$$egin{array}{rcl} w^{\star} &=& rg\minrac{1}{2}\sigma^2\left(w\mid b
ight)-\gamma \mathcal{S}\left(w\mid b
ight) \ \mathrm{s.t.} & \left\{ egin{array}{c} \mathbf{1}_6^ op w=1\ w_4=w_5=w_6=0\ \mathbf{0}_6\leq w\leq \mathbf{1}_6 \end{array}
ight. \end{array}$$

• The QP form is defined by $Q = \Sigma$, $R = \Sigma b + \gamma S$, $A = \mathbf{1}_6^{\top}$, B = 1, $w^- = \mathbf{0}_6$ and $w^+ = \begin{pmatrix} \mathbf{1}_3 \\ \mathbf{0}_3 \end{pmatrix}$


• For the worst-in-class strategy, the optimization problem becomes:

$$egin{array}{rcl} w^{\star} &=& rg\minrac{1}{2}\sigma^2\left(w\mid b
ight)-\gamma \mathcal{S}\left(w\mid b
ight)\ && \ ext{s.t.} & \left\{egin{array}{c} \mathbf{1}_6^ op w=1\ w_6=0\ \mathbf{0}_6\leq w\leq \mathbf{1}_6 \end{array}
ight. \end{array}$$

• The QP form is defined by $Q = \Sigma$, $R = \Sigma b + \gamma S$, $A = \mathbf{1}_6^{\top}$, B = 1, $w^- = \mathbf{0}_6$ and $w^+ = \begin{pmatrix} \mathbf{1}_5 \\ 0 \end{pmatrix}$

- The efficient frontiers are reported in Figure 86
- The exclusion strategy has less impact than the selection strategy
- The selection strategy implies a high tracking error risk

Figure 86: Comparison of the efficient frontiers (ESG integration, best-in-class selection and worst-in-class exclusion)

Question (j)

Which minimum tracking error volatility must the investor accept to implement the best-in-class selection strategy? Give the corresponding optimal portfolio.

- We solve the first problem of Question 3(i) with $\gamma = 0$
- We obtain:

$$\sigma\left(w\mid b\right) \geq 11.17\%$$

• The lower bound $\sigma(w^* \mid b) = 11.17\%$ corresponds to the following optimal portfolio:

$$w^{\star} = \begin{pmatrix} 16.31\% \\ 34.17\% \\ 49.52\% \\ 0\% \\ 0\% \\ 0\% \end{pmatrix}$$

Remark

The impact of ESG scores on optimized portfolios depends on their relationship with expected returns, volatilities, correlations, beta coefficients, etc. In the previous exercise, the results are explained because the best-in-class assets are those with the lowest expected returns and beta coefficients while the worst-in-class assets are those with the highest expected returns and beta coefficients. For instance, we obtain a high tracking error risk for the best-in-class selection strategy, because the best-in-class assets have low volatilities and correlations with respect to worst-in-class assets, implying that it is difficult to replicate these last assets with the other assets. Course 2022-2023 in Sustainable Finance Lecture 5. Sustainable Financial Products, Impact Investing & Engagement

Thierry Roncalli*

*Amundi Asset Management⁸

*University of Paris-Saclay

March 2023

⁸The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

SRI Investment funds Green and social bonds Sustainable real assets

Greenwashing

The big issue for an investor is:

How to avoid Greenwashing (& ESG washing)?

Greenwash (also greenwashing)

- Activities by a company or an organization that are intended to make people think that it is concerned about the environment, even if its real business actually harms the environment
- A common form of greenwash is to publicly claim a commitment to the environment while quietly lobbying to avoid regulation

Source: Oxford English Dictionary (2020), https://www.oed.com

In finance, greenwashing is understood as making misleading claims about environmental practices, performance or products

SRI Investment funds Green and social bonds Sustainable real assets

Greenwashing

We must distinguish two types of risk:

• Explicit & deliberate greenwashing

Deliberate greenwashing = mis-selling risk

• Unintentional greenwashing

Unintentional greenwashing = misinterpretation risk

SRI Investment funds Green and social bonds Sustainable real assets

SRI Investment funds

- Investment vehicles
 - Mutual funds
 - ETFs
 - Mandates & dedicated funds
- Investment strategies
 - Thematic strategies (e.g. water, social, wind energy, climate, plastic, etc.)
 - ESG-tilted strategies (e.g. exclusion, negative screening, best-in-class, enhanced ESG score, controlled tracking error, etc.)
 - Climate strategies (e.g. low carbon, $2^{\circ}C$ alignment, activity exclusions⁹, etc.)
 - Sustainability-linked securities (e.g. green bonds, social bonds, etc.)

Both lpha and eta management

⁹e.g. coal exploration, oil exploration, electricity generation with a high GHG intensity

SRI Investment funds Green and social bond Sustainable real assets

SRI Investment funds

Mutual funds

- Amundi Climate Transition
- Amundi ARI European Credit SRI
- AXA World Funds Euro Bonds SRI
- CPR Invest Social Impact
- Fidelity U.S. Sustainability Index
- Fidelity Sustainable Water & Waste
- Natixis ESG Dynamic Fund
- Vanguard FTSE Social Index
- Etc.

ETFs

- Amundi Index MSCI Europe SRI UCITS ETF
- Amundi MSCI Emerging ESG Leaders UCITS ETF
- Amundi EURO ISTOXX Climate Paris Aligned PAB UCITS ETF
- Lyxor New Energy UCITS ETF
- Lyxor World Water UCITS ETF
- SPDR S&P 500 ESG
- First Trust Global Wind Energy ETF
- Invesco S&P 500 ESG UCITS ETF

• Etc.

SRI Investment funds Green and social bonds Sustainable real assets

SRI Investment funds

- ESG represents **58% of the net new assets** (NNA) in the European ETF market
- ESG fund assets reach \$1652 bn
 - Europe: \$1343 bn (or 81.3%)
 - US: \$236.4 bn (or 14.3%)
 - Asia: \$43.1 bn (or 2.6%)
- Net flows into sustainable mutual funds and ETFs in Q4 2020: \$370 bn (or +29% of assets)
- Net flows into sustainable mutual funds and ETFs in 2020
 - Europe: \$273 bn, almost double the total for 2019, almost 5 times more than in 2017
 - US: \$51.2 bn, more than double the total for 2019, almost 10 times more than in 2018

Source: Morningstar, Global Sustainable Fund Flows: Q4 2020 in Review (January 2021)

SRI Investment funds Green and social bonds Sustainable real assets

SRI Investment funds

European sustainable finance labels

- Novethic label (pioneer label in 2009, suspended in 2016)
- French SRI label https://www.lelabelisr.fr
- FNG label (Germany) https://fng-siegel.org
- Towards Sustainability label (Belgium) https://www.towardssustainability.be
- LuxFLAG label (Luxembourg) https://www.luxflag.org
- Nordic Swan Ecolabel (Nordic countries) https://www.nordic-ecolabel.org
- Umweltzeichen Ecolabel (Austria) https://www.umweltzeichen.at/en
- French Greenfin label https://www.ecologie.gouv.fr/label-greenfin

SRI Investment funds Green and social bonds Sustainable real assets

SRI Investment funds

Remark

According to Novethic (2020), 806 funds had a label at the end of December 2019. Nine months later, this number has increased by 392 and the AUM has be multiplied by 3.2!

SRI Investment funds Green and social bond Sustainable real assets

SRI Investment funds Regulation

"Today it is difficult for consumers, companies and other market actors to make sense of the many environmental labels and initiatives on the environmental performance of products and companies. There are more than 200 environmental labels active in the EU, and more than 450 active worldwide; there are more than 80 widely used reporting initiatives and methods for carbon emissions only. Some of these methods and initiatives are reliable, some not; they are variable in the issues they cover" (European Commission, 2020).

Source: https://ec.europa.eu/environment/eussd/index.htm

SRI Investment funds Green and social bonds Sustainable real assets

SRI Investment funds Regulation

- EU taxonomy regulation
- Sustainable Finance disclosure regulation (SFDR)
- Olimate benchmarks
- Sustainability preferences (MiFID II & IDD)

SRI Investment funds Green and social bonds Sustainable real assets

SRI Investment funds Regulation

SFDR

- Article 6: Non-ESG funds (standard funds)
- Article 8: ESG funds (funds that promote **E** or **S** characteristics)
- Article 9: Sustainable funds (funds that have a sustainable investment objective: impact investing or reduction of carbon emissions)

SRI Investment funds Green and social bonds Sustainable real assets

SRI Investment funds Regulation

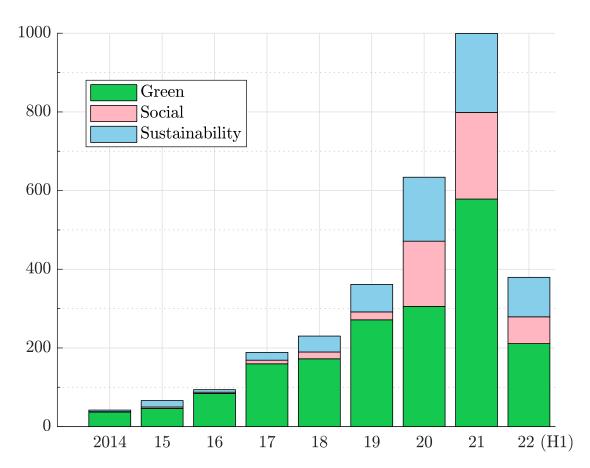
New benchmark rules

- Climate transition benchmarks (CTB): high level of decarbonization (-30%), no controversial weapons and tobacco, high positive impact on climate change, etc.
- Paris-aligned benchmarks (PAB): high level of decarbonization (-50%), no controversial weapons and tobacco, no activities in coal, oil and natural gas, global warming below 2°, etc.
- MSCI Climate Paris Aligned Indexes www.msci.com/esg/climate-paris-aligned-indexes
- FTSE TPI Climate Transition Index Series www.ftserussell. com/products/indices/tpi-climate-transition
- STOXX Climate Transition Benchmark (CTB) and STOXX Paris-Aligned Benchmark (PAB) Indices qontigo.com/solutions/climate-indices

SRI Investment funds Green and social bonds Sustainable real assets

Sustainable fixed-income products

Table 68: Sustainable fixed-income market


Theme		Label	Format
GSS+	GSS	Green	Use of proceeds
		Social	Use of proceeds
		Sustainability	Use of proceeds
	Transition	Sustainability-Linked	Entity KPI-linked
		Transition	Use of proceeds

Source: CBI (2022).

SRI Investment funds Green and social bonds Sustainable real assets

Sustainable fixed-income products

Figure 87: Issuance of GSS securities (in \$ bn)

SRI Investment funds Green and social bonds Sustainable real assets

Green bonds

Definition

Green bonds are any type of bond instrument where the proceeds or an equivalent amount will be exclusively applied to finance or re-finance, in part or in full, new and/or existing eligible **green projects** and which are aligned with the four core components of the Green Bond Principles (GBP).

Source: ICMA (2021).

 \Rightarrow Green bonds are "*regular*" bonds¹⁰ aiming at funding projects with positive environmental and/or climate benefits

¹⁰A regular bond pays regular interest to bondholders

SRI Investment funds Green and social bonds Sustainable real assets

Green Bonds Principles

Green Bonds Principles (GBP)

The 4 core components of the GBP are:

- Use of proceeds
- Process for project evaluation and selection
- Management of proceeds
- Reporting

https://www.icmagroup.org/sustainable-finance/ the-principles-guidelines-and-handbooks

SRI Investment funds Green and social bonds Sustainable real assets

Green bonds Green Bonds Principles

The use of proceeds includes:

- Renewable energy
- Energy efficiency
- Pollution prevention (e.g. GHG control, soil remediation, waste recycling)
- Sustainable management of living natural resources (e.g. sustainable agriculture, sustainable forestry, restoration of natural landscapes)
- Terrestrial and aquatic biodiversity conservation (e.g. protection of coastal, marine and watershed environments)
- Clean transportation
- Sustainable water management
- Climate change adaptation
- Eco-efficient products
- Green buildings

SRI Investment funds Green and social bonds Sustainable real assets

With respect to the **process for project evaluation and selection** (component 2), the issuer of a green bond should clearly communicate:

- the environmental sustainability objectives
- the eligible projects
- the related eligibility criteria

The management of proceeds (component 3) includes:

- The tracking of the "balance sheet" and the allocation of funds¹¹
- An external review (not mandatory but highly recommended)

¹¹The proceeds should be credited to a sub-account

SRI Investment funds Green and social bonds Sustainable real assets

The **reporting** (component 4) must be based on the following pillars:

- Transparency
- Description of the projects, allocated amounts and expected impacts
- Qualitative performance indicators
- Quantitative performance measures (e.g. energy capacity, electricity generation, GHG emissions reduced/avoided, number of people provided with access to clean power, decrease in water use, reduction in the number of cars required)

SRI Investment funds Green and social bonds Sustainable real assets

Standardization is strongly required by investors and regulators

- Green Bond Principles¹² (ICMA, 2021)
- Climate Bonds Standard¹³ (CBI, 2019)
- EU Green Bond Standard (2021)
- China Green Bond Principles (PBOC, CBIRC, July 2022)
- Asean Green Bond Standards (ACMF, 2018)

¹²The first version is published in January 2014 ¹³The first version is published in November 2011

SRI Investment funds Green and social bonds Sustainable real assets

Asset-linked bond structures

- Regular bond
- Revenue bond
- Project bond
- Green loans

Asset-backed bond structures

- Securitized bond
- Project bond
- ABS/MBS/CLO/CDO
- Covered bond

SRI Investment funds Green and social bonds Sustainable real assets

Green bonds Certification

- Second party opinion provided by ESG rating agencies (ISS, Sustainalytics, Vigeo-Eiris);
- Certification by specialized green bond entities (CBI, CICERO, DNV);
- Green bond assessment by statistical rating organizations (Moody's, S&P).

SRI Investment funds Green and social bonds Sustainable real assets

Green bonds Examples

- Solar bond by the City of San Francisco in 2001
- Equity-linked climate awareness bond by the European Investment Bank (EIB) in 2007
- First green bond issued by the World Bank (in collaboration with Skandinaviska Enskilda Banken) in November 2008
- First corporate green bonds: French utility company EDF (\$1.8 bn) and Swedish real estate company Vasakronan (\$120 bn)
- Toyota introduced the auto industry's first-ever asset-backed green bond in 2014 (\$1.75 bn)
- The Commonwealth of Massachusetts issued the first municipal green bond in 2013 (\$100 mn)
- The first sovereign green are: Poland in December 2016 (\$1 bn) and France¹⁴ in January 2017 (\$10 bn)

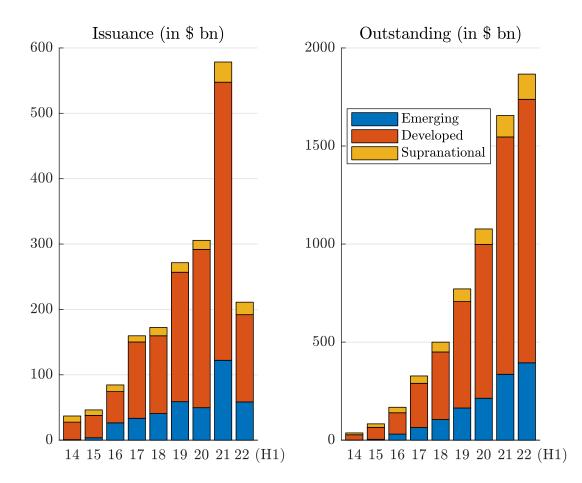
¹⁴Green OAT 1.75% 25 June 2039.

SRI Investment funds Green and social bonds Sustainable real assets

Green bonds The green bond market

Green bond issuers

- Sovereigns (agencies, municipals, governments)
- Multilateral development banks (MDB)
- Energy and utility companies
- Banks
- Other corporates


Green bond investors

- Pension funds
- Sovereign wealth funds
- Insurance companies
- Asset managers
- Retail investors (e.g. employee savings plans)

Strong imbalance between supply and demand

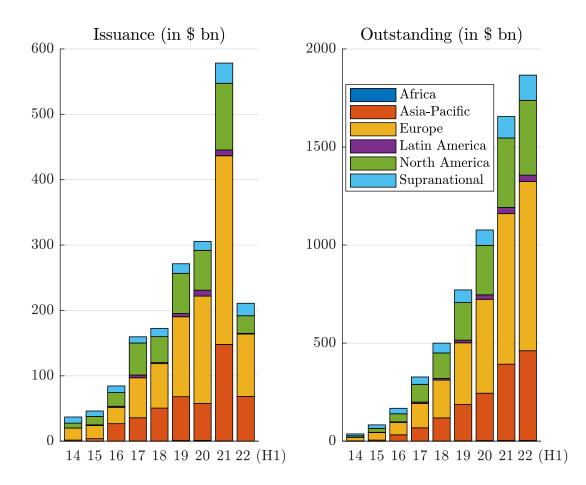

SRI Investment funds Green and social bonds Sustainable real assets

Figure 88: Issuance and notional outstanding of green debt by market type

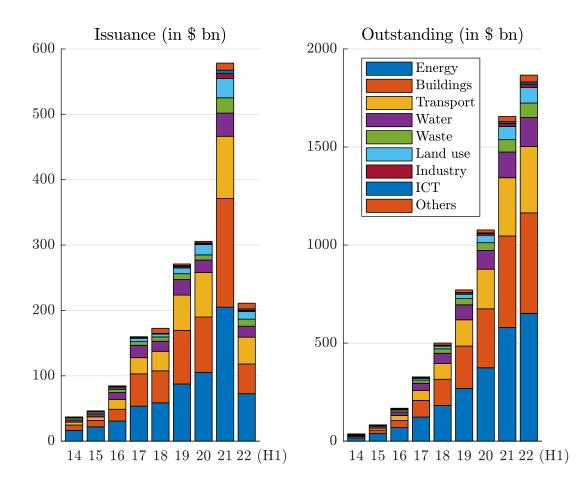

SRI Investment funds Green and social bonds Sustainable real assets

Figure 89: Issuance and notional outstanding of green debt by region

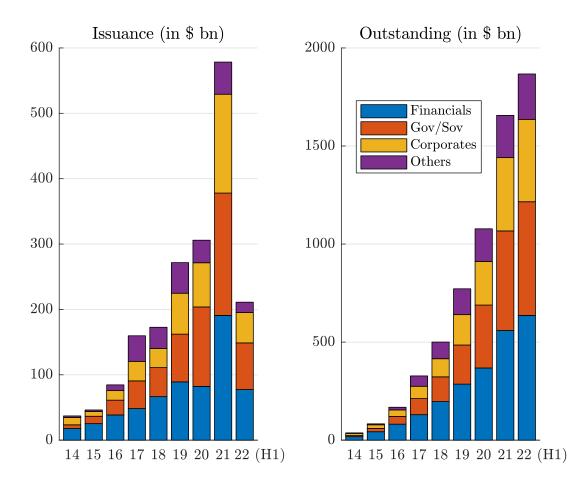

SRI Investment funds Green and social bonds Sustainable real assets

Figure 90: Issuance and notional outstanding of green debt by use of proceeds

SRI Investment funds Green and social bonds Sustainable real assets

Figure 91: Issuance and notional outstanding of green debt by issuer type

SRI Investment funds Green and social bonds Sustainable real assets

Green bonds How to investing in green bonds

Example of green bond funds:

- Allianz IG green bond fund
- Amundi RI impact green bonds
- AXA WF ACT green bonds
- BNP Paribas green bond
- Calvert green bond fund
- Mirova global green bond fund
- TIAA-CREF green bond fund
- Etc.

SRI Investment funds Green and social bonds Sustainable real assets

List of green bond indices:

- Bloomberg Barclays MSCI Global Green Bond Index
- S&P Green Bond Index
- Solactive Green Bond Index
- ChinaBond China Climate-Aligned Bond Index:
- ICE BofA Green Index
- \Rightarrow ETF and index funds

SRI Investment funds Green and social bonds Sustainable real assets

[...] "I show that investors respond positively to the issuance announcement, a response that is stronger for first-time issuers and bonds certified by third parties. The issuers improve their environmental performance post-issuance (i.e., higher environmental ratings and lower CO₂ emissions) and experience an increase in ownership by long-term and green investors. Overall, the findings are consistent with a signaling argument – by issuing green bonds, companies credibly signal their commitment toward the environment." (Flammer, 2021, page 499).

SRI Investment funds Green and social bonds Sustainable real assets

Green bonds The economics of green bonds

Green bonds = second-best instrument

SRI Investment funds Green and social bonds Sustainable real assets

Definition

- The green bond premium (or greenium) is the difference in pricing between green bonds and regular bonds
- The greenium is defined as:

$$\boldsymbol{g} = y(\mathrm{GB}) - y(\mathrm{CB})$$

where y(GB) is the yield (or return) of the green bond and y(CB) is the yield (or return) of the conventional twin bond

SRI Investment funds Green and social bonds Sustainable real assets

- From the issuer's point of view, a green bond issuance is more expensive than a conventional issuance due to the need for external review, regular reporting and impact assessments
- From the investor's point of view, there is no fundamental difference between a green bond and a conventional bond, meaning that one should consider a negative green bond premium as a market anomaly

SRI Investment funds Green and social bonds Sustainable real assets

Green twin bonds

- Introduced in 2020 by Germany
- Issuance of a green and conventional bond at the same time with the same characteristics
- Investors may swap the green bond with the conventional bond any time, but not vice-versa
- Liquidity of the green bond market \nearrow

SRI Investment funds Green and social bonds Sustainable real assets

Examples of twin bonds:

- On 3 September 2020, the 10-year German green bond with a coupon of 0.00% was priced 1 basis point below the 10-year conventional German bond
- On 19 January 2022, Denmark issued a 10-year green bond with the same maturity, interest payment dates and coupon rate as the conventional 2031 Danish bond. The effective yield of the green bond was 5 basis points below the twin regular bond

SRI Investment funds Green and social bonds Sustainable real assets

Example #1

We consider a 10-year green bond GB_1 whose current price is equal to 91.35. The corresponding conventional twin bond is a 20-year regular bond, whose remaining maturity is exactly equal to ten years and its price is equal to 90.07%. We assume that the two bonds have the same coupon level, which is equal to 4%.

SRI Investment funds Green and social bonds Sustainable real assets

Computation of the greenium with the current yield:

• We have:

$$y(GB) = \frac{4}{91.35} = 4.379\%$$

and:

$$y(CB) = \frac{4}{90.07} = 4.441\%$$

• We deduce that the greenium is equal to:

$$m{g}=4.441\%-4.379\%=-6.2$$
 bps

SRI Investment funds Green and social bonds Sustainable real assets

Green bonds The green bond premium

Computation of the greenium with the yield to maturity:

• We solve the equation:

$$\sum_{t=1}^{10} 4e^{-ty} + 100e^{-10y} = 91.35$$

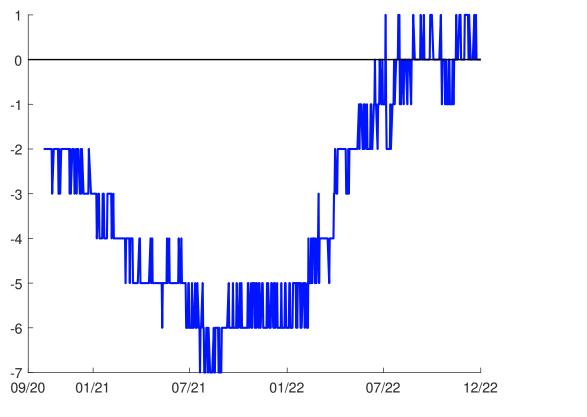
and find:

$$y(GB) = 5\%$$

• We solve the equation:

$$\sum_{t=1}^{10} 4e^{-ty} + 100e^{-10y} = 90.07$$

and find:


$$y(\mathrm{CB}) = 5.169\%$$

• We deduce that the greenium is equal to:

$${m g}=5\%-5.169\%=-16.9$$
 bps

Green and social bonds Sustainable real assets

Figure 92: Greenium in bps of the German green (twin) bond (DBR 0% 15/08/2030)

Source: ICE (2022).

SRI Investment funds Green and social bonds Sustainable real assets

What about the greenium when the green bond is not a twin bond?

 \Rightarrow We must distinguish primary and secondary markets

SRI Investment funds Green and social bonds Sustainable real assets

- In the primary market, the greenium is negative ($\approx 5-10$ bps on average)
- How to measure the persistence of the greenium in the secondary market?

SRI Investment funds Green and social bonds Sustainable real assets

There are two approaches:

- Bottom-up approach
 - Compares the green bond of an issuer with a synthetic conventional bond of the same issuer
 - Same characteristics in terms of currency, seniority and duration
- Op-down approach
 - Compare a green bond index portfolio to a conventional bond index portfolio
 - Same characteristics in terms of currency, sector, credit quality and maturity

SRI Investment funds Green and social bonds Sustainable real assets

Bottom-up approach

- We filter all the conventional bonds, which has the same issuer, the same currency, and the same seniority of the green bond GB
- 2 We select the two conventional bonds CB_1 and CB_2 which are the nearest in terms of modified duration:

$$\left|\mathrm{MD}\,(\mathrm{GB})-\mathrm{MD}\,(\mathrm{CB}_{j})\right|_{j\neq 1,2} \ge \sup_{j=1,2}\left|\mathrm{MD}\,(\mathrm{GB})-\mathrm{MD}\,(\mathrm{CB}_{j})\right|$$

3 We perform the linear interpolation/extrapolation of the two yields $y(CB_1)$ and $y(CB_2)$:

$$y(CB) = y(CB_1) + \frac{MD(GB) - MD(CB_1)}{MD(CB_2) - MD(CB_1)} (y(CB_2) - y(CB_1))$$

SRI Investment funds Green and social bonds Sustainable real assets

Example #2

- We consider a green bond, whose modified duration is 8 years. Its yield return is equal to 132 bps
- We can surround the green bond by two conventional bonds with modified duration 7 and 9.5 years. The yield is respectively equal to 125 and 148 bps
- The interpolated yield is equal to:

$$y(CB) = 125 + \frac{8-7}{9.5-7}(148 - 125)$$

= 134.2 bps

• It follows that the greenium is equal to -2.2 bps:

$$g = 132 - 134.2 = -2.2$$
 bps

SRI Investment funds Green and social bonds Sustainable real assets

Green bonds The green bond premium

Top-down approach

- We consider a portfolio $w = (w_1, \ldots, w_n)$ of green bonds.
- We perform a clustering analysis by considering the 4-uplets (Currency × Sector × Credit quality × Maturity)
- Solution Let (C_h, S_j, R_k, M_l) be an observation for the 4-uplet (e.g. EUR, Financials, AAA, 1Y-3Y). We compute its weight:

$$\omega_{h,j,k,l} = \sum_{i \in (C_h, S_j, R_k, M_l)} w_i$$

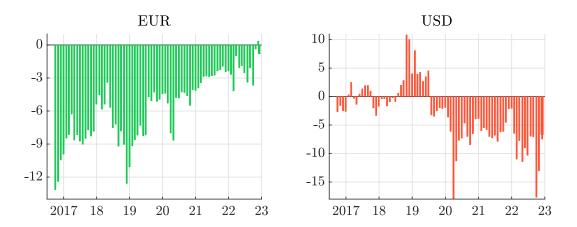
• The greenium is then defined as the weighted excess yield:

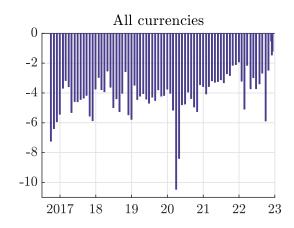
$$\boldsymbol{g} = \sum_{\boldsymbol{h}, j, k, l} \omega_{\boldsymbol{h}, j, k, l} \left(y_{\boldsymbol{h}, j, k, l} \left(\text{GB} \right) - y_{\boldsymbol{h}, j, k, l} \left(\text{CB} \right) \right)$$

SRI Investment funds Green and social bonds Sustainable real assets

Main result (Ben Slimane et al., 2020)

The greenium is negative between -5 and -2 bps on average


Other results:


- Differences between sectors, currencies, maturities, regions and ratings
- Transatlantic divided between US and Europe
- The volatility of green bond portfolios are lower than the volatility of conventional bond portfolios ⇒ identical Sharpe ratio since the last four years
- Time-varying property of the greenium

SRI Investment funds Green and social bonds Sustainable real assets

Green bonds The green bond premium

Figure 93: Evolution of the greenium (in bps)

Source: Ben Slimane et al. (2020)

SRI Investment funds Green and social bonds Sustainable real assets

Green financing \Leftrightarrow **green investing**

- Bond issuers have a competitive advantage to finance their environmental projects using green bonds instead of conventional bonds
- Another premium? the "green bond issuer premium"

SRI Investment funds Green and social bonds Sustainable real assets

Social bonds

Definition

Social Bonds are any type of bond instrument where the proceeds, or an equivalent amount, will be exclusively applied to finance or re-finance in part or in full new and/or existing eligible **social projects** and which are aligned with the four core components of the Social Bond Principles (SBP).

Source: ICMA (2021), https://www.icmagroup.org/sustainable-finance

SRI Investment funds Green and social bonds Sustainable real assets

Social bonds Social Bonds Principles

Social Bonds Principles (SBP)

The 4 core components of the SBP are:

- Use of proceeds
 - Eligible social project categories
 - **2** Target populations
- Process for project evaluation and selection
- Management of proceeds
- Reporting

https://www.icmagroup.org/sustainable-finance/ the-principles-guidelines-and-handbooks

SRI Investment funds Green and social bonds Sustainable real assets

The eligible social projects categories (component 1) are:

- Affordable basic infrastructure (e.g. clean drinking water, sanitation, clean energy)
- Access to essential services (e.g. health, education)
- Affordable housing (e.g. sustainable cities)
- Employment generation (e.g. pandemic crisis)
- Food security and sustainable food systems (e.g. nutritious and sufficient food, resilient agriculture)
- Socioeconomic advancement and empowerment (e.g. income inequality, gender inequality)
- Etc.

SRI Investment funds Green and social bonds Sustainable real assets

Social bonds Social Bonds Principles

The **target populations** (component 1) are:

- Living below the poverty line
- Excluded and/or marginalised populations/communities
- People with disabilities
- Migrants and /or displaced persons
- Undereducated
- Unemployed
- Women and/or sexual and gender minorities
- Aging populations and vulnerable youth
- Etc.

SRI Investment funds Green and social bonds Sustainable real assets

With respect to the **process for project evaluation and selection** (component 2), the issuer of a social bond should clearly communicate:

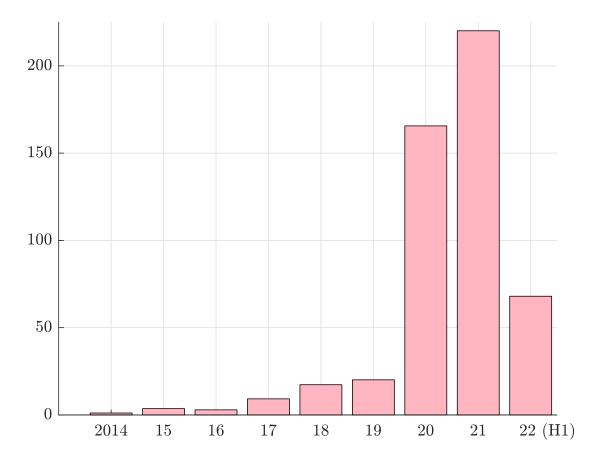
- the social objectives
- the eligible projects
- the related eligibility criteria

The management of proceeds (component 3) includes:

- The tracking of the "balance sheet" and the allocation of funds¹⁵
- An external review (not mandatory but highly recommended)

¹⁵The proceeds should be credited to a sub-account

SRI Investment funds Green and social bonds Sustainable real assets


The **reporting** (component 4) must be based on the following pillars:

- Transparency
- Description of the projects, allocated amounts and expected impacts
- Qualitative performance indicators
- Quantitative performance measures (e.g. number of beneficiaries)

SRI Investment funds Green and social bonds Sustainable real assets

Social bonds Market

Figure 94: Issuance of social bonds

Source: https://www.climatebonds.net/market/data.

SRI Investment funds Green and social bonds Sustainable real assets

 Instituto de Crédito Oficial (Spanish state-owned bank, March 2020) "The Social Bond proceeds under ICO's Second – Floor facilities will be allocated to loans to finance small, medium and micro enterprises with an emphasis on employment creation or employment retention in: (1) specific economically underperforming regions of Spain; (2) specific municipalities of Spain facing depopulation; (3) regions affected by a natural disaster. [...] The target populations are SMEs in line with European Union's standards."

SRI Investment funds Green and social bonds Sustainable real assets

Pepper Money (non-bank lender in Australia and New Zealand, April 2022)

"The positive social impact of a Pepper Money eligible social project derives from its direct contribution to improving access to financial services and socio-economic empowerment, by using proprietary systems to make flexible loan solutions available to applicants who are not served by traditional banks. [...] Pepper Money is seeking to achieve positive social outcomes for a target population of Australians that lack access to essential financial services and experience inequitable access to and lack of control over assets. Pepper Money directly aims to address the positive social outcome of home ownership for borrowers who may have complexity in their income streams, gaps in their loan documentation or have adverse credit history. Traditionally, this cohort has been underserved by banks that rely on inflexible algorithmic loan application processing."

SRI Investment funds Green and social bonds Sustainable real assets

Danone (French multinational food-products corporation, March 2018)

"The eligible project categories are: (1) research & innovation for advanced medical nutrition (target populations: infants, pregnant women, patients and elderly people with specific nutritional needs), (2) social inclusiveness (target poputions: farmers, excluded and/or marginalised populations and/or communities, people living under the poverty line, rural communities in developing countries), (3) responsible farming and agriculture (target populations: milk producers, farmers), etc."

SRI Investment funds Green and social bonds Sustainable real assets

Social bonds Examples

• Korian (European care group, October 2021)

"The proceeds of any instrument issued under the framework will be used [...] to provide services, solutions, and technologies that will enable Korian to meet at least one of its social objectives: (1) to increase and improve long-term care nursing home capacity for dependent older adults; (2) to increase and improve medical capacity for people in need of medical support; (3) to increase and improve access to alternative, nonmedical services, technologies, and housing solutions that facilitate the retention of older adults' autonomy; and (4) to improve the daily provision of care to and foster a safer living environment for its patients. [...] Furthermore, Korian's target populations are older adults, which Korian defines as being over 65 years of age, and those who are dependent on others for some degree of care, which is defined by the health authorities or insurance system of the respective country."

SRI Investment funds Green and social bonds Sustainable real assets

 JASSO (Japan Student Services Organization, July 2022) "The social project categories concern the financing of the 'Category 2 Scholarship Loans' (interest-bearing scholarship loans that have to be repaid) while the target population is made up of students with financial difficulties."

SRI Investment funds Green and social bonds Sustainable real assets

Other sustainability-related instruments Sustainability bonds

Sustainability bond = GBP + SBP

Remark

According to CBI, the cumulative issuance of sustainability bonds reaches \$620 bn at the end of June 2022

SRI Investment funds Green and social bonds Sustainable real assets

Other sustainability-related instruments Sustainability-linked bonds (SLB)

Sustainability-linked bond (SLB)

- Two principles:
 - = a sustainability bond (green/social)
 - + a step up coupon if the KPI is not satisfied

 \Rightarrow forward-looking performance-based instrument

- The financial characteristics of the bond depends on whether the issuer achieves predefined ESG objectives
- Those objectives are:
 - measured through predefined Key Performance Indicators (KPI)
 - assessed against predefined Sustainability Performance Targets (SPT)

SRI Investment funds Green and social bonds Sustainable real assets

Other sustainability-related instruments Sustainability-linked bonds (SLB)

ENEL General Purpose SDG Linked Bond

- SDG: 7 (affordable and clean energy), 13 (climate action), 9 (industry, innovation and infrastructure) and 11 (sustainable cities and communities)
- SDG 7 target: renewables installed capacity as of December 31, $2021 \ge 55\%$ (confirmed by external verifier)
- One time step up coupon of 25 bps if SDG 7 is not achieved
- On April 2022, the independent report produced by KPMG certifies that "the renewables installed capacity percentage as of December 31, 2021 is equal to 57.5%".

SRI Investment funds Green and social bonds Sustainable real assets

Other sustainability-related instruments Sustainability-linked bonds (SLB)

H&M sustainability-linked bond

- 18 February 2021
- €500 mn
- Maturity of 8.5 years
- The annual coupon rate is 25 bps
- The objectives to achieve by 2025 are:
 - KPI_1 Increase the share of recycled materials used to 30% (SPT_1)
 - $\frac{\text{KPI}_2}{20\% (\text{SPT}_2)}$ Reduce emissions from the Group's own operations (scopes 1+2) by
 - KPI₃ Reduce scope 3 emissions from fabric production, garment manufacturing, raw materials and upstream transport by 10% (SPT₃)
- The global KPI is equal to $40\% \times {\rm KPI}_1 + 20\% \times {\rm KPI}_2 + 40\% \times {\rm KPI}_3$
- The step-up of the coupons can consequently be 0%, 20%, 40%, 60%, 80% or 100% of the total step-up rate

SRI Investment funds Green and social bonds Sustainable real assets

Other sustainability-related instruments Sustainability-linked bonds (SLB)

According to Berrada et al. (2022), "the SLB market has grown strongly since its inception. [...] Bloomberg identifies a total of 434 outstanding bonds flagged as 'sustainability-linked' as of February 2022. In contrast, in 2018, there was only a single SLB. The amount raised through the single 2018 SLB issue was \$0.22 bn, whereas the total amount raised through all SLBs issued in 2021 was approximately \$160 bn".

- The large majority of SLB issues address exclusively **E** issues (65%) or a combination of **E**, **S** and **G** issues (17%) or **E** and **G** issues (3%)
- The most frequent KPI concerns GHG emissions (40 %), followed by the issuer's global ESG score (14 %)

SRI Investment funds Green and social bonds Sustainable real assets

Other sustainability-related instruments Transition bonds

- Financial instruments to support the transition of an issuer, which has significant current carbon emissions
- Fund projects such as renewable energy developments, energy efficiency upgrades, etc.
- The final objective of the bond issuer is always to reduce their carbon emissions
- For example, transition bonds can be used to switch diesel powered ships to natural gas or to implement carbon capture and storage.

SRI Investment funds Green and social bonds Sustainable real assets

Sustainable real assets

Definition Sustainable development goals (SDG) The challenge of reporting

Definition

Principle

- Financial risks \Rightarrow financial performance (return, volatility, Sharpe ratio, etc.)
- Extra-financial risks \Rightarrow financial performance (return, volatility, Sharpe ratio, etc.)
- Extra-financial risks \Rightarrow extra-financial performance (ESG KPIs)

What is the final motivation of the ESG investor?

Financial performance or/and extra-financial performance?

Definition Sustainable development goals (SDG) The challenge of reporting

Definition

Definition

The key elements of impact investing are:

Intentionality

The intention of an investor to generate a positive and measurable social and environmental impact

Additionality

Fulfilling a positive impact beyond the provision of private capital

Measurement

Being able to account for in a transparent way on the financial, social and environmental performance of investments

Source: Eurosif (2019)

The investor must be able to measure its impact from a quantitative point of view

Definition Sustainable development goals (SDG) The challenge of reporting

GIIN

Figure 95: Global Impact Investing Network (GIIN)

GLOBAL IMPACT INVESTING NETWORK

https://thegiin.org

Definition Sustainable development goals (SDG) The challenge of reporting

The example of social impact bonds

Social impact bond (SIB) = pay-for-success bond (\approx call option)

The Peterborough SIB

- On 18 March 2010, the UK Secretary of State for Justice announced a six-year SIB pilot scheme that will see around 3000 short term prisoners from Peterborough prison, serving less than 12 months, receiving intensive interventions both in prison and in the community
- Funding from investors will be initially used to pay for the services
- If reoffending is not reduced by at least 7.5%, the investors will receive no recompense

Definition Sustainable development goals (SDG) The challenge of reporting

The example of sustainability-linked bonds

Sustainability-linked¹⁶ (SLB) = pay-for-failure bond (\approx cap option)

SIB: investor viewpoint \neq **SLB:** issuer viewpoint

¹⁶See the examples of ENEL and H&M previouly

Definition Sustainable development goals (SDG) The challenge of reporting

Measurement tools

Impact assessment and metrics

- Avoided CO2 emissions in tons per \$M invested
- Amount of clean water produced by the project
- Number of children who are less obese
- Land management
- Affordable housing
- Job creation
- Construction of student housing

Sustainable development goals (SDG) The challenge of reporting

Sustainable development goals (SDG)

The sustainable development goals are a collection of 17 interlinked global goals designed to be a "*blueprint to achieve a better and more sustainable future for all*"

https://sdgs.un.org

Sustainable development goals (SDG) The challenge of reporting

Sustainable development goals (SDG)

Figure 96: The map of sustainable development goals

Sustainable development goals (SDG) The challenge of reporting

Sustainable development goals (SDG)

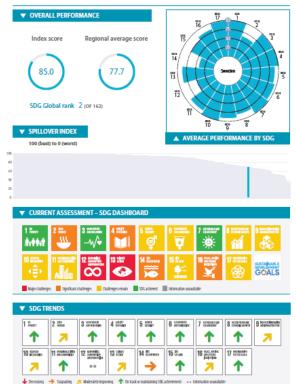
Figure 97: Mapping the SDGs across **E**, **S** and **G**

Sustainable development goals (SDG) The challenge of reporting


Sustainable development goals (SDG)

Figure 98: Examples of sovereign SDG reports

UNITED STATES



Note: The full tile of Goal 7 Term Hunger's Ted hunger, advice lood accurity and imposed matrices and prometer statistically agriculture". The full tile of each 20CA available here: https://satistuble/net/prometa.org/noise/satistuble/net/prometa.org/

Source: Sustainable Development Report 2019, https://dashboards.sdgindex.org

SWEDEN OECD Countries

Nets: The fail the diffeet Year Tony and the second end of the second seco

Definition Sustainable development goals (SDG) The challenge of reporting

The challenge of reporting

- Impact reporting and investment standards (IRIS) proposed by GIIN
- EU taxonomy on sustainable finance
- Non-financial reporting directive 2014/95/EU (NFRD)
- Carbon accounting

Sustainable development goals (SDG) The challenge of reporting

The challenge of reporting

Table 69: Impact reporting of the CPR Invest — Social Impact fund

	Social in	dicator	Coverage ratio		
	Global Index	CPR Fund	Global Index	CPR Fund	
CEO pay ratio	333	114	82%	84%	
% of women in the board direction	18%	19%	79%	75%	
Hours of training	33 hours	39 hours	33%	45%	
Trade union rate		45%	25%	36%	

Source: CPR Asset Management (2021)

Definition Sustainable development goals (SDG) The challenge of reporting

The challenge of reporting

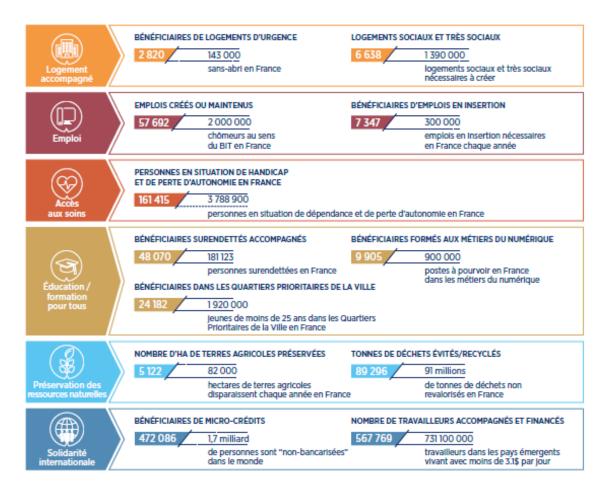
- Amundi ARI Impact Green Bonds (Annual impact record 2020)
 - GHG avoided emissions per $\in 1$ mn invested per year : 586.5 tCO₂e
 - GHG avoided emissions rebased per ${\in}1$ mn invested per year 882.7 ${\rm tCO_2e}$
- CPR Invest Climate Action
 - $\bullet~-69\%$ of ${\rm tCO_2e}$ wrt MSCI ACWI
- CPR Invest Food For Generations
 - Water consumption: 6765 m3/meur for the fund vs 13258 for the benchmark and 18869 for the universe
 - Waste recycling ratio: 71.14% for the fund vs 66.45% for the benchmark and 67.22% for the universe

Source: Amundi (2021) and CPR Asset Management (2021)

Sustainable development goals (SDG) The challenge of reporting

The challenge of reporting

Table 70: Impact investing reporting of the Amundi Finance & Solidarité fund


	2020	Since inception (2012)
People housed	2 364	10 336
Job created/preserved	9439	43 655
Care recipients	83 240	250 314
Trained people	18702	59 686
Preserved agricultural farmland (hectare)	438	987
Waste recycling (ton)	82 590	219 287
Microcredit beneficiaries	60 171	276 514

Source: Amundi (2021)

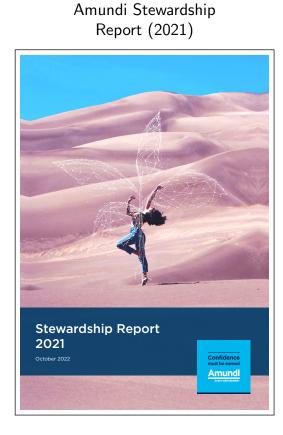
Sustainable development goals (SDG) The challenge of reporting

The challenge of reporting

Figure 99: Companies' portfolio contribution of the Finance & Solidarité fund

Source: Amundi (2021)

Stewardship Active ownersh ESG voting


Stewardship vs. engagement

$\mathsf{Voting} \subset \mathsf{Engagement} \subset \mathsf{Stewardship}$

Stewardship Active ownershi ESG voting

Stewardship vs. engagement

Figure 100: Difference between stewardship and engagement reports

Amundi Engagement Report (2021)

Source: Amundi corporate website,

https://about.amundi.com/esg-documentation.

Stewardship Active ownership ESG voting

Stewardship

"It guides investors on how to implement the PRI's Principle 2, which sets out signatories' commitment to stewardship, stating: we will be active owners and incorporate ESG issues into our ownership policies and practices. [...] The PRI defines stewardship as the use of influence by institutional investors to maximise overall long-term value including the value of common economic, social and environmental assets, on which returns and clients' and beneficiaries' interests depend." (PRI, 2021).

Stewardship Active ownership ESG voting

Definition

Active ownership \approx Engagement \approx Shareholder activism

"investors who, dissatisfied with some aspect of a company's management or operations, try to bring about change within the company without a change in control" Gillan and Starks (2000).

Definition

- Conflicting interests between shareholders and management (separation between ownership and control)
- Stakeholder theory (Freeman, 2004)

Milton Friedman (1970)

"the social responsibility of business is to increase its profits"

Peter Drucker (1954)

"leaders in every single institution and in every single sector ... have two responsibilities. They are responsible and accountable for the performance of their institutions, and that requires them and their institutions to be concentrated, focused, limited. They are responsible also, however, for the community as a whole"

Stewardship Active ownership ESG voting

Shareholder activism

Shareholder activism can take various forms

- Ingage behind the scene with management and the board
- Propose resolutions (shareholder proposals)
- Vote (form coalition/express dissent/call back lent shares)
- Voice displeasure publicly (in the media)
- Initiate a takeover (acquire a sizable equity share)
- Exit (sell shares, take an offsetting bet)

Source: Bekjarovski and Brière (2018)

Stewardship Active ownership ESG voting

Shareholder activism Engage behind the scenes

"Behind the curtain engagement involves private communication between activist shareholders and the firm's board or management, that tends to precede public measures such as vote, shareholder proposals and voice. In a sense, the existence of other forms of public activism can be taken as a signal that behind the scene engagements were unsuccessful. When it comes to environmental and social issues, writing to the board or management is a common method though which shareholders can express concern and attempt to influence corporate policy behind the curtain; alternatively, face to face meetings with management or non-executive directors are a more common behind the scene engagement method when it comes to governance." Bekjarovski and Brière (2018).

Stewardship Active ownership ESG voting

Shareholder activism Engage behind the scenes

Three families of engagement:

- on-going engagement, where the goal for investors is to explain their ESG policy and collect information from the company. For instance, they can encourage companies to adopt best ESG practices, alert companies on ESG risks or better understand sectorial ESG challenges;
- engagement for influence (or protest), where the goal is to express dissatisfaction with respect to some ESG issues, make recommendations to the firm and measure/control ESG progress of companies;
- pre-AGM engagement, where the goal is to discuss with companies any resolution items that the investor may vote against.

Stewardship Active ownership ESG voting

Shareholder activism Engage behind the scenes

The three steps of identification are:

- List of engagement issues
- Screening of companies
- List of targeted companies

The different stages of engagement tracking are:

- Issues are raised to the company;
- Issues are acknowledged by the company;
- The company develops a strategy to address the issues;
- The company implements changes and the issues are resolved;
- The company did not solve the issues and the engagement failed.

Stewardship Active ownership ESG voting

According to the SEC (Securities Exchange Act Rule 14a-8, §240):

"a shareholder proposal or resolution is a recommendation or requirement that the company and/or its board of directors take action, which the shareholder intend to present at a meeting of the company's shareholders. The proposal should state as clearly as possible the course of action that the shareholder believes the company should follow. If the proposal is placed on the company's proxy card, the company must also provide in the form of proxy means for shareholders to specify by boxes a choice between approval or disapproval, or abstention."

Stewardship Active ownership ESG voting

Shareholder activism Propose resolutions

Threshold criteria:

- US: 2000 + No-action letter
- France, Germany and UK: 5% of the capital
- Italy: 2.5% of the capital
- Netherlands: 0.33%
- Spain: 3% of the capital
- \Rightarrow Collective shareholder proposals

Shareholder resolution = Escalation

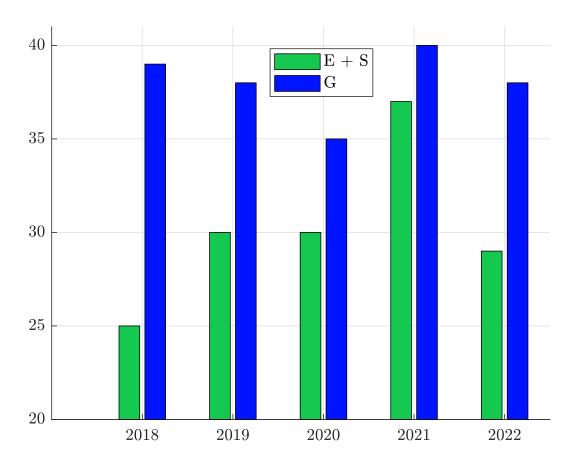
Stewardship Active ownership ESG voting

Shareholder activism Propose resolutions

Some figures (Russell 300 & 2022 proxy season)

- 98% of proposals are filed by the management, while less than 2% corresponds to shareholder resolutions;
- Only 60% of shareholder resolutions are voted; The other 40% are omitted, not presented, withdrawn or pending;
- The average number of proposals per company is around two;
- The proponents of shareholder resolutions are concentrated on a small number of investors or organisations (15 proponents were responsible of 75% of shareholder proposals);
- The repartition of shareholder proposals voted in 2022 was the following: 11% related to E issues, 41% related to S issues and 48% related to G issues

Stewardship Active ownership ESG voting


Shareholder activism

- Historical perspectives
- Importance of voting associations and NGOs
- US \succ Europe
- The concept of proxy voting
 - Institutional Shareholder Services (ISS)
 - Glass Lewis
- Say on Pay (2002)
 - Support rate for Russell 3000 companies: 87% in 2022 (from 15.4% to 99%)
 - Results for Germany, France and Spain
- Say on Climate (2020)

Stewardship Active ownership ESG voting

Shareholder activism

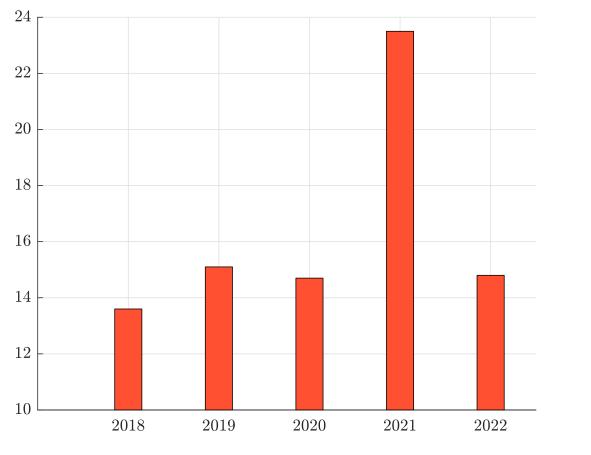
Figure 101: Average support rate of shareholder proposals (Russell 3000 companies)

Source: PwC's Governance Insights Center (2022).

Stewardship Active ownership ESG voting

Shareholder activism

Some figures with Russell 3000 companies


- 555 shareholder resolutions have been voted
- Only 82 have received majority support
- This means that one shareholder resolution was adopted for 37 companies!

What is the efficiency of vote? \neq What is the impact of vote?

Stewardship Active ownership ESG voting

Shareholder activism

Figure 102: Pass rate of shareholder proposals (Russell 3000 companies)

Source: Tonello (2022).

Stewardship Active ownership ESG voting

Shareholder activism

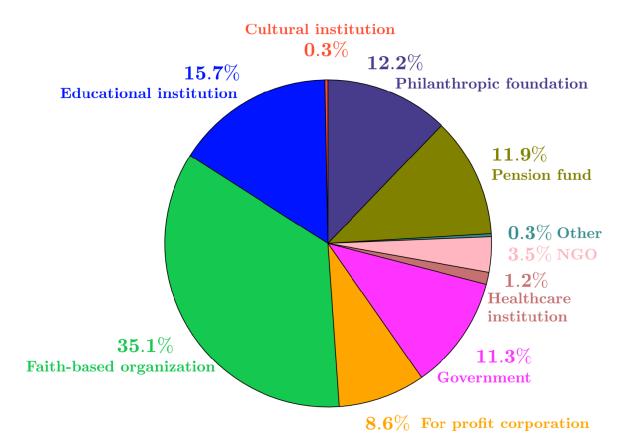
- 1970: Publication of the book *Exit, Voice, and Loyalty: Responses to Decline in Firms, Organizations, and States* by the economist Albert Hirschman
- Exist-voice model: exist versus voice or exit and voice
- Voice as a form of escalation
- Impact of collaborative engagement (e.g., Climate Action 100+)
- Increasing involvement of NGOs in the debate on engagement and greenwashing

Stewardship Active ownership ESG voting

Shareholder activism

 \Rightarrow Hedge funds

Stewardship Active ownership ESG voting


Shareholder activism

- Exit refers to the process of selling off investments in a particular company or industry
- **Divestment** is a more general term that implies a significant exposure reduction
- Divestment: Final step in an escalation strategy?

Stewardship Active ownership ESG voting

Shareholder activism

Figure 103: What kinds of institutions are divesting from fossil fuel?

Source: https://divestmentdatabase.org.

Stewardship Active ownership ESG voting

Shareholder activism

Case study: the Cambridge University endowment fund

"A dilemma faced by an increasing number of investors is whether to divest from environmentally damaging businesses or whether to enter into a dialogue with them. This predicament now has its epicentre in Cambridge, England, where the ancient University of Cambridge faces great pressure from students and staff to respond to the threat of climate breakdown. Having already received two reports on its approach to responsible investment, the university has appointed a new chief investment officer (CIO) who, alongside University Council and the wider university community, needs to consider the question of whether to divest from or to engage with fossil-fuel firms." Chambers et al. (2020).

Stewardship Active ownership ESG voting

Shareholder activism

Case study: Church of England Pensions Board

In 2020, they engaged with 21 companies. At the end of the process, 12 companies were supposed to make sufficient progress, while 9 companies were added to the list of restricted investments. These divestments totalled \pounds 32.23 mn (wrt \pounds 3.7 bn of assets under management).

Stewardship Active ownership ESG voting

Shareholder activism

Case study: The Universities Superannuation Scheme (USS)

- $\bullet~\text{USS}$ manage about $\pm90~\text{bn}$
- In 2020, they excluded certain sectors: tobacco manufacturing; thermal coal mining (coal to be burned for electricity generation), specifically where they made up more than 25% of revenues, and certain controversial weapons
- The first exclusion was announced in May 2020
- Two years after, divestment from these sectors is completed
- Ethics for USS \Rightarrow USS should extend its divestment policy

Stewardship Active ownership ESG voting

Individual vs. collaborative engagement

Active ownership ESG voting

The role of institutional investors

Stewardship Active ownership ESG voting

Impact of active ownership

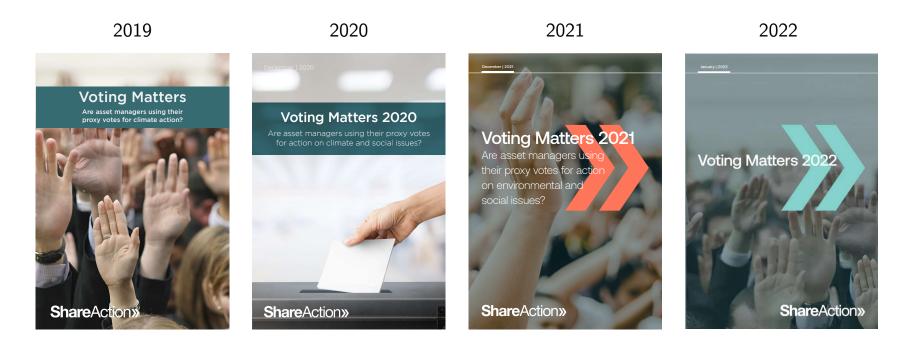
Voting process

- "The company sets the agenda for the annual shareholder meeting;
- The custodian confirms the identity of the shareholders and the number of shares eligible for voting – often for a specific date ahead of the meeting (record date);
- Shareholders receive the meeting materials from the company (may be before or after the record date);
- Shareholders procuring proxy advisory services receive voting recommendations;
- Shareholders instruct the custodian on how to vote, often through a proxy voting service provider, within a deadline ahead of the shareholder meeting (cut-off date);
- Voting takes place at the shareholder meeting;
- Shareholders receive confirmation from the service provider that their voting instructions have been carried out."

Stewardship Active ownership ESG voting

Proxy voting

Stewardship Active ownership ESG voting


Voting policy

Stewardship Active ownershi ESG voting

Statistics about ESG voting

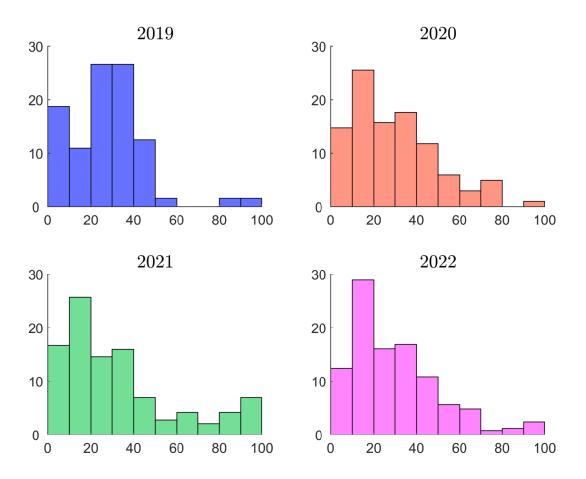
Figure 104: Voting Matters series of ShareAction

Source: https://shareaction.org.

Stewardship Active ownership ESG voting

Statistics about ESG voting Asset managers

Table 71: Statistics of success rate shareholder resolutions


Year		2019	2020	2021	2022
		2019			
Number of resolutions		64	102	144	249
Resolutions with majority support		3	15	29	37
Success rate (in %)		4.7	14.7	20.1	14.9
Āverage support rate (in %)		28.2	29.9	32.9	29.9
	-10%	6.5	9.2	7.2	9.4
Percentile of	25%	17.0	13.1	12.0	13.5
support rate (in %)	75%	37.7	42.6	42.8	40.3
	90%	41.8	55.2	81.2	57.6
		28.2	35.8	41.8	31.6
Average support rate (in %)	S		24.5	28.8	27.4

Source: ShareAction (2019, 2020, 2021, 2023) & Author's calculations.

Stewardship Active ownershi ESG voting

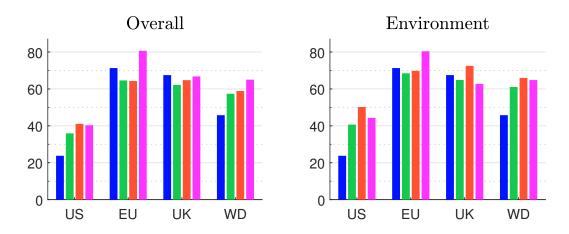
Statistics about ESG voting Asset managers

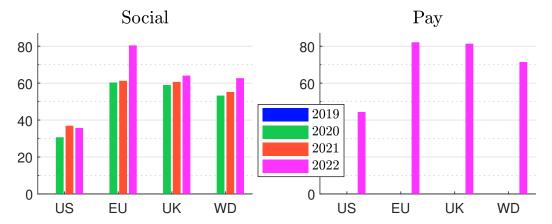
Figure 105: Histogram (in %) of support rates

Source: ShareAction (2019, 2020, 2021, 2023) & Author's calculations.

Stewardship Active ownershi ESG voting

Statistics about ESG voting Asset managers

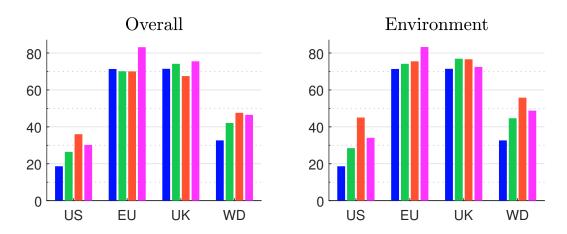

Table 72: Average support rate in % for ESG resolutions

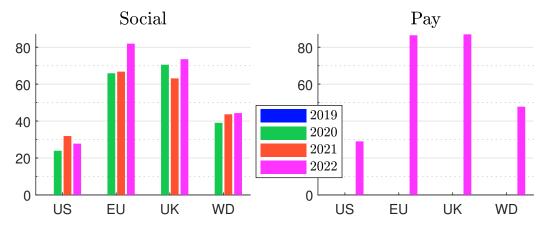

Topic	Method	2019	2020	2021	2022
Overall	Arithmetic	45.8	57.4	58.9	65.0
Overall	Weighted	Weighted 32.7		47.6	46.5
	Arithmetic	45.8	61.0	66.0	64.8
Environment	Weighted	32.7	44.7	55.8	48.8
Social	Arithmetic		53.3	55.2	62.7
Social	Weighted		39.0	43.7	44.3
	Arithmetic				71.5
Pay & politics	Weighted				47.8

Stewardship Active ownershi ESG voting

Statistics about ESG voting

Figure 106: Arithmetic average support rate in % per country and year





Stewardship Active ownership ESG voting

Statistics about ESG voting

Figure 107: Weighted average support rate in % per country and year

Stewardship Active ownershi ESG voting

Statistics about ESG voting

Table 73: Best performers (2022, overall)

Rank	Name	Country	AUM	Overall	E	S	Pay
1	Achmea IM	Netherlands	251	100	100	100	100
1	Impax AM	UK	56	100	100	100	100
3	BNP PAM	France	761	99	97	100	100
3	MN	Netherlands	193	99	97	100	100
5	Candriam	Luxembourg	180	98	97	99	100
6	PGGM	Netherlands	331	97	93	$1\overline{0}0$	97
7	Man	UK	149	96	98	94	98
8	Robeco	Netherlands	228	95	94	94	100
9	Aviva Investors	UK	363	93	88	96	100
10	Amundi AM	France	2 348	93	93	92	98
11	Nordea AM	Finland	333	91	93	89	90
12	Aegon AM	Netherlands	466	90	85	94	90
13	Federated Hermes	UK	672	89	88	87	90
14	Pictet AM	Switzerland	284	88	85	90	91
15	Legal & General	Switzerland	1 923	86	84	84	98

Source: ShareAction (2023) & Author's calculations.

Stewardship Active ownershi ESG voting

Statistics about ESG voting Asset managers

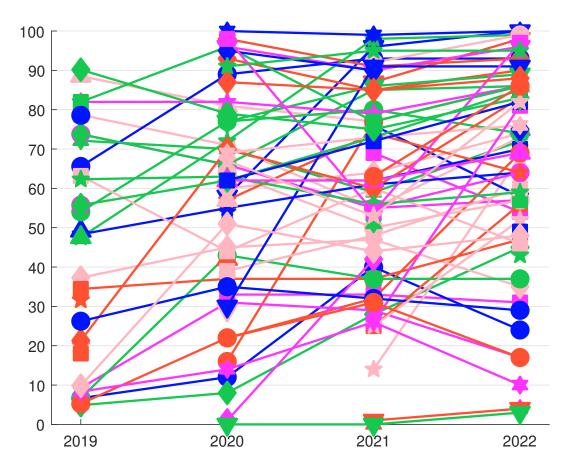
Table 74: Worst performers (2022, overall)

Rank	Name	Country	AUM	Overall	E	S	Pay
59	Goldman Sachs AM	US	2 2 1 8	35	56	24	24
60	Baillie Gifford	UK	455	31	29	29	45
61	SSGA	US	4 1 4 0	29	30	31	22
62	BlackRock	US	10014	24	28	24	15
63	T. Rowe Price	US	1642	17	26	11	18
64	Fidelity Investments	ŪS	4 5 2 0	17	23	$19^{-19^{-1}}$	2
65	Vanguard	US	8274	10	12	9	9
66	Dimensional Fund Advisors	US	679	4	6	5	0
67	Santander AM	Spain	220	4	0	5	6
68	Walter Scott & Partners	UK	95	3	0	6	0

Source: ShareAction (2023) & Author's calculations.

Stewardship Active ownershi ESG voting

Statistics about ESG voting


Table 75: Ranking of the 25 largest asset managers (2022, overall)

	N	C 1	A L I N A	Overall			
Rank	Name	Country	AUM	2019	2020	2021	2022
22	BlackRock	US	10014	7	12	40	24
25	Vanguard	US	8 274	8	14	26	10
23	Fidelity Investments	US	4 520	9	31	29	17
21	SSGA	US	4 140	26	35	32	29
18	J.P. Morgan AM	US	2742	7	43	37	37
16	Capital Group	US	2716	5	8	28	45
2	Amundi AM	France	2 348	66	89	93	93
20	Goldman Sachs AM	US	2 2 1 8	37	45	47	35
3	Legal & General	UK	1 923	82	96	77	86
24	T. Rowe Price	US	1642	5	22	31	17
15	Invesco	- <u>U</u> S	1611	34	37	37	47
12	Morgan Stanley IM	US	1 566			55	64
14	Wellington Management	US	1 426	10	51	44	48
7	Northern Trust AM	US	1 348	21	70	60	83
13	Nuveen AM	US	1 271	62	63	56	59
8	UBS AM	Switzerland	1216	90	79	75	83
4	DWS	Germany	1055	74	66	85	86
10	AXA IM	France	1 009	79	71	55	73
6	Schroders	UK	991	56	62	73	85
17	AllianceBernstein	US	779				43
5	Allianz GI	Germany	766	89	81	77	86
1	BNP PAM	France	761	48	72	98	99
19	Columbia Threadneedle	US	754				37
9	Manulife IM	Canada	723				75
11	APG AM	Netherlands	721	72	70	59	72

Stewardship Active ownership ESG voting

Statistics about ESG voting

Figure 108: Evolution of the support rate in % per asset manager

Stewardship Active ownershi ESG voting

Statistics about ESG voting

Main findings

- "49 additional resolutions would have received majority support if the largest asset managers had voted in favour of them.
- Voting performance has been stagnant in the US and the UK compared to 2021, while European asset managers have shown a large improvement.
- Asset managers across the board are hesitant to back action-oriented resolutions, which would have the most transformative impact on environmental and social issues."

Active ownershi ESG voting

Statistics about ESG voting

Figure 109: Ranking of the 36 say on climate resolutions with respect to the support rate in %

Source: ShareAction (2023) & Author's calculations.

Stewardship Active ownershi ESG voting

Statistics about ESG voting

3 case studies of Say on Climate resolutions

- Electricité de France or EDF (French energy company): 99.9%
- Barclays (British bank): 80.8%
- Woodside Energy Group Ltd. (Australian energy company): 51.03%

Stewardship Active ownershi ESG voting

Statistics about ESG voting

Course 2022-2023 in Sustainable Finance Lecture 6. Global Warning & Climate Change

Thierry Roncalli*

*Amundi Asset Management¹⁷

*University of Paris-Saclay

March 2023

¹⁷The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

Climate financial risk

Climate risks transmission channels to financial stability

- The physical risks that arise from the increased frequency and severity of climate and weather related events that damage property and disrupt trade
- The liability risks stemming from parties who have suffered loss from the effects of climate change seeking compensation from those they hold responsible
- The transition risks that can arise through a sudden and disorderly adjustment to a low carbon economy

Speech by Mark Carney at the International Climate Risk Conference for Supervisors, Amsterdam, April 6, 2018

Climate financial risk

Risks are transversal to financial risks

- Carbon risk (reputational and regulation risks) ⇒ economic, market and credit risks
- Climate risk (extreme weather events, natural disasters) ⇒ economic, operational, credit and market risks

Carbon/climate risks are part of risk management

Climate financial risk

Climate risk(s)

Climate risks include transition risk and physical risks:

- Transition risk is defined as the financial risk associated with the transition to a low-carbon economy. It includes policy changes, reputational impacts, and shifts in market preferences, norms and technology
- Physical risk is defined as the financial losses due to extreme weather events and climate disasters like flooding, sea level rise, wildfires, droughts and storms

Global warming

Global warming (\approx climate change)

Global warming is the long-term heating of Earth's climate system observed since the pre-industrial period (between 1850 and 1900) due to human activities, primarily fossil fuel burning

NASA Global Climate Change — https://climate.nasa.gov

Global warming

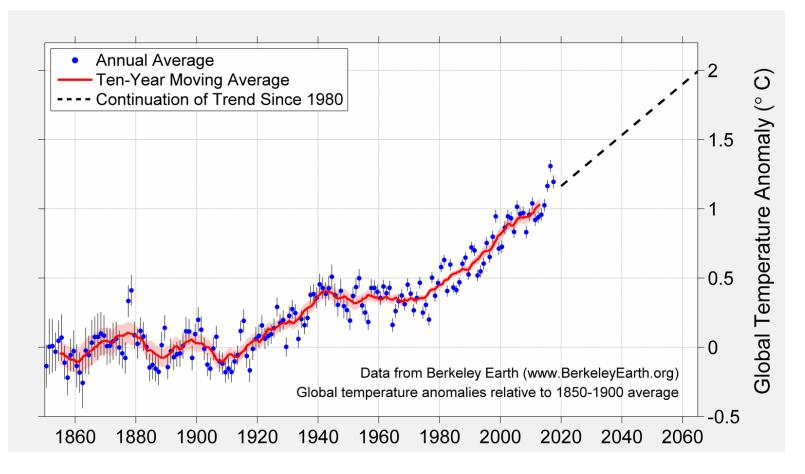


Figure 110: Global temperature anomaly

Source: Berkeley Earth (2018), http://berkeleyearth.org

Global warming

Carbon risk

Carbon risks correspond to the potential financial losses due to greenhouse gas (or GHG) emissions, mainly CO_2 emissions (in a strengthening regulatory context)

Global warming

GHG

Greenhouse gases absorb and emit radiation energy, causing the greenhouse effect^a:

- Water vapour (H₂O)
- Carbon dioxide (CO₂)
- Methane (CH₄)
- Nitrous oxide (N₂O)
- Ozone (O₃)

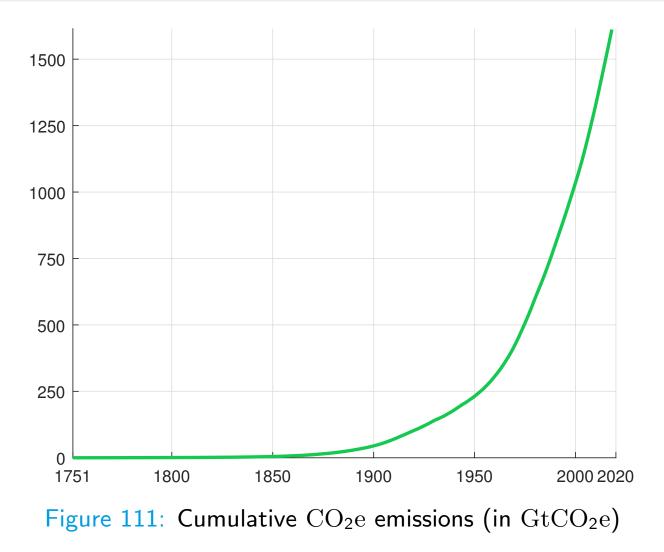
^aWithout greenhouse effect, the average temperature of Earth's surface would be about -18° C. With greenhouse effect, the current temperature of Earth's surface is about $+15^{\circ}$ C.

Global warming

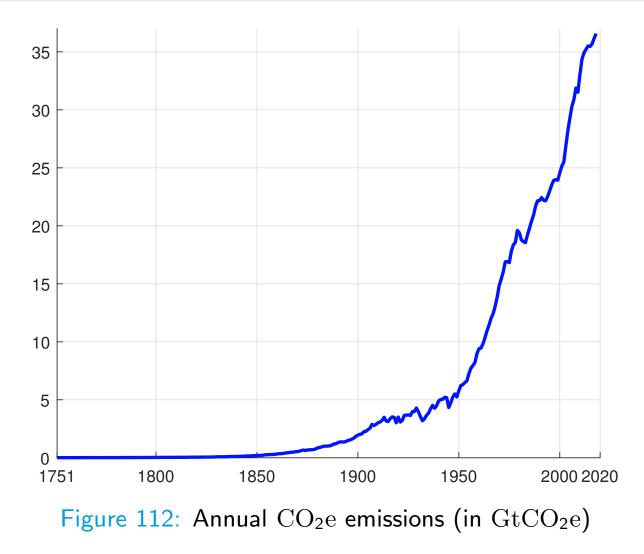
Table 76: Pros and cons of greenhouse gases

GHG	Pros	Cons	Global warming
Water vapour	Life		
Carbon dioxide	Photosynthesis	Pollution	\checkmark
Methane	Energy	Explosive ¹⁸	\checkmark
Nitrous oxide	Dentist 🙂		\checkmark
Ozone	UV rays		

¹⁸And dangerous for human life


Global warming

Carbon equivalent


Carbon dioxide equivalent (or $\rm CO_2e$) is a term for describing different GHG in a common unit

- A quantity of GHG can be expressed as $\rm CO_2e$ by multiplying the amount of the GHG by its global warming potential (GWP)
- 1 kg of carbone dioxide corresponds to 1 kg of CO₂
- 1 kg of methane corresponds to 28 kg of CO_2
- 1 kg of nitrous oxide corresponds to 273 kg of CO₂

CO₂ emissions

CO_2 emissions

CO₂ emissions

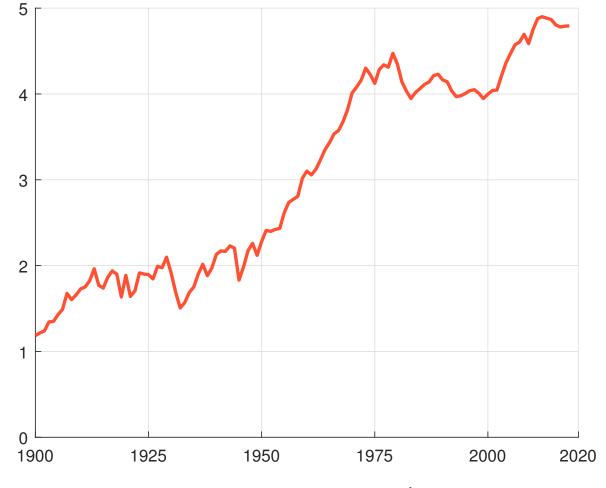


Figure 113: CO₂e emissions per capita (in tonnes per capita)

CO_2 emissions

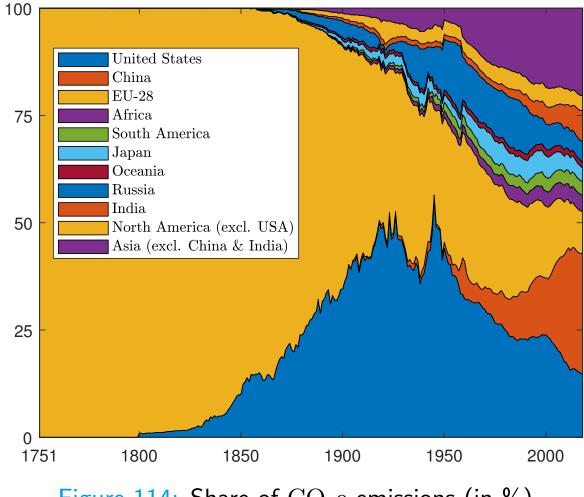
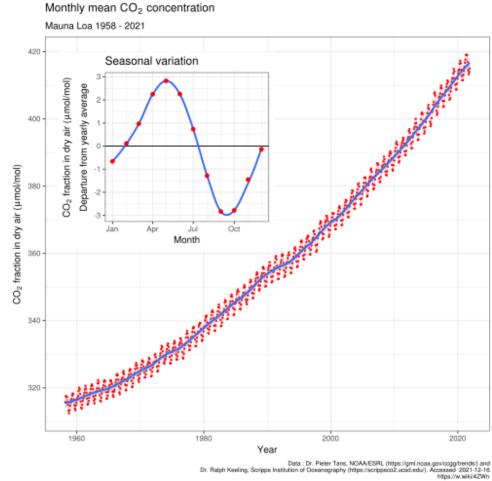


Figure 114: Share of CO₂e emissions (in %)

CO₂ emissions

Top options for reducing your carbon footprint

Average reduction per person per year in tonnes of CO2 equivalent


Source: Centre for Research into Energy Demand Solutions

BBC

Scientific evidence of global warming: a rocky road

- 1824: Joseph Fourier published the scientific article "Remarques générales sur les températures du globe terrestre et des espaces planétaires" ⇒ the greenhouse effect
- 1863: John Tyndall published the books "Heat Considered as a Mode of Motion" in 1863 and "Contributions to Molecular Physics in the Domain of Radiant Heat" in 1872
- 1896: Svante Arrhenius published the scientific article "On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground" ⇒ if the quantity of carbonic acid increases in geometric progression, the augmentation of the temperature will increase nearly in arithmetic progression
- 1958: Charles David Keeling started collecting carbon dioxide samples at the Mauna Loa Observatory (Hawai) ⇒ Keeling curve
- 2021: Klaus Hasselmann and Syukuro Manabe won the Nobel Prize in Physics for the physical modelling of Earth's climate, quantifying variability and reliably predicting global warming

Scientific evidence of global warming: a rocky road

Figure 115: Keeling curve

Source: https://en.wikipedia.org/wiki/Keeling_Curve.

Scientific evidence of global warming

From the Holocene to the Anthropocene

The physics of climate change

IPCC

- The Intergovernmental Panel on Climate Change (IPCC) is the United Nations body for assessing the science related to climate change
- The IPCC was created to provide policymakers with regular scientific assessments on climate change, its implications and potential future risks, as well as to put forward adaptation and mitigation options
- Website: https://www.ipcc.ch

Remark

IPCC is known as "Groupe d'experts intergouvernemental sur l'évolution du climat" (GIEC) in French

 \Rightarrow Other international bodies: International Energy Agency (IEA), etc.

IPCC and climate scenarios Regulation of climate risk

IPCC

Past

- Global sea level rose by 19 cm over the period 1901-2010
- Global glacier volume loss is equivalent to 400 bn tons per year since 30 years

Future

- Global sea level could increase by 82 cm by 2100
- Global glacier volume could decrease by 85% by 2100

IPCC, Climate Change Synthesis Report (2014)

IPCC and climate scenarios Regulation of climate risk

IPCC

IPCC working groups

- The IPCC Working Group I (WGI) examines the physical science underpinning past, present, and future climate change
- The IPCC Working Group II (WGII) assesses the impacts, adaptation and vulnerabilities related to climate change
- The IPCC Working Group III (WGIII) focuses on climate change mitigation, assessing methods for reducing greenhouse gas emissions, and removing greenhouse gases from the atmosphere

IPCC and climate scenarios Regulation of climate risk

IPCC

Some famous reports

- IPCC Fifth Assessment Report (AR5): Climate Change 2014 www.ipcc.ch/report/ar5
- Global Warming of $1.5^{\circ}C www.ipcc.ch/sr15$
- IPCC Sixth Assessment Report (AR6): Climate Change 2022 www.ipcc.ch/report/sixth-assessment-report-cycle

IPCC and climate scenarios Regulation of climate risk

IPCC scenarios

- Website: https://www.ipcc.ch/data
- AR5
- SR15
- AR6

IPCC and climate scenarios Regulation of climate risk

Carbon neutrality

Carbon neutrality (or net zero) means that any CO_2 released into the atmosphere from human activity is balanced by an equivalent amount being removed

Apple Commits to Become Carbon Neutral to by 2030 (https://www.bbc.com/news/technology-53485560)

Carbon dioxide removal

Carbon dioxide removal (CDR)

- Nature-based solutions
 - Afforestation (creating new forests)
 - Reforestation (multiplying trees in old forests)
 - Restoration of peat bogs
 - Restoration of coastal and marine habitats
- Inhanced natural processes
 - Land management and no-till agriculture, which avoids carbon release through soil disturbance
 - Better wildfire management
 - Ocean fertilisation to increase its capacity to absorb CO₂ (enhanced weathering)
- Technology solutions
 - Bioenergy with carbon capture and storage (BECCS)
 - Direct air capture (DAC)
 - Carbon mineralization

Carbon dioxide removal

The example of peatlands

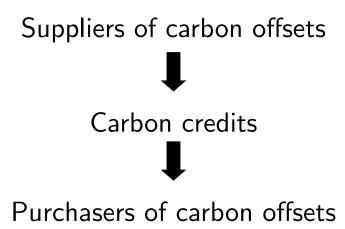
- Peatlands are the largest natural terrestrial carbon store
- The term "peatland" refers to peat soil and wetland habitats
- They cover only 3% of the Earth's surface
- They store 600 $\mathrm{GtCO}_2\mathrm{e}$
 - \approx 45% of all soil carbon
 - pprox 67% of all atmosphere carbon
- A depth of one meter corresponds to 1000 years of carbon storage
- $\bullet~Natural~peatlands$ store 0.37 ${\rm GtCO}_2{\rm e}$ per year

Two issues:

- Stopping the destruction
- Restoring and rebuilding

IPCC and climate scenarios Regulation of climate risk

Carbon offsetting


Carbon offsetting \neq carbon emissions reduction

Definition

"Carbon offsetting consists for an entity in compensating its own carbon emissions by providing for emissions reductions outside its business boundaries [...] It allows an entity to claim carbon reductions from projects financed either directly or indirectly through carbon credits" (Créhalet, 2021).

Carbon offsetting

Carbon offsetting mechanisms:

 \Rightarrow Many issues: carbon credit issuance, double counting, leakage, certification, etc.

Examples with **REDD**+ projects:

- Reducing Emissions from Deforestation and Forest Degradation
- What will happen if the forest has burned down?
- Issues of land management (afforestation in one area can lead to a deforestation in another area)

Climate risk and missing factors

The example of permafrost

- The permafrost contains 1 700 billion tons of carbon, almost double the amount of carbon that is currently in the atmosphere.
- Arctic permafrost holds roughly 15 million gallons of mercury at least twice the amount contained in the oceans, atmosphere and all other land combined.
- A global temperature rise of 1.5°C above current levels would be enough to start the thawing of permafrost in Siberia.
- The global warming will become out-of-control after this tipping point.
- The thawing of the permafrost also threatens to unlock disease-causing viruses long trapped in the ice.

 \Rightarrow The survival of Humanity becomes uncertain if the tipping point is reached

Regulation of climate risk

- UN, international bodies & coalitions
- Countries
- Cities
- Industry self-regulation
- Non-governmental organizations (NGO)
- Financial regulators

Hard regulation \neq soft regulation

IPCC and climate scenarios Regulation of climate risk

Regulation of climate risk

United Nations Climate Change Conference

- Conference of the Parties (COP)
- Dealing with climate change
- COP 1: Berlin (1995)
- COP 3: Kyoto (1997) ⇒ Kyoto Protocol (CMP)
- COP 21: Paris (2015) \Rightarrow Paris Agreement (CMA)
- COP 26: Glasgow (November 2021)

IPCC and climate scenarios Regulation of climate risk

Regulation of climate risk

The **Kyoto Protocol** is an international treaty that commits state parties to reduce GHG emissions, based on the scientific consensus that:

- **Global warming is occurring**
- **(2)** It is likely that human-made CO₂ emissions have caused it

IPCC and climate scenarios Regulation of climate risk

Regulation of climate risk

The **Paris Agreement** is an international treaty with the following goals:

- Keep a global temperature rise this century well below 2°C above the pre-industrial levels
- 2 Pursue efforts to limit the temperature increase to $1.5^{\circ}C$
- Increase the ability of countries to deal with the impacts of climate change
- Make finance flows consistent with low GHG emissions and climate-resilient pathways

 \Rightarrow Nationally determined contributions (NDC)

IPCC and climate scenarios Regulation of climate risk

Regulation of climate risk

Rank	Country	CO_2 emissions Share		CO_2 emissions	
		Total (in GT)	Share	Per capita (in MT)	
1	China	10.06	28%	7.2	
2	USA	5.41	15%	15.5	
3	India	2.65	7%	1.8	
4	Russia	1.71	5%	12.0	
5	Japan	1.16	3%	8.9	
6	Germany	0.75	2%	8.8	
7	Iran	0.72	2%	8.3	
8	South Korea	0.72	2%	12.1	
9	Saudi Arabia	0.72	2%	17.4	
10	Indonesia	0.72	2%	2.2	
11	Canada	0.56	2%	15.1	
15	Turkey	0.42	1%	4.7	
17	United Kingdom	0.37	1%	5.8	
19	France	0.33	1%	4.6	
20	Italy	0.33	1%	5.3	

Table 77: CO₂ emissions by country

Source: Earth System Science Data, https://earth-system-science-data.net

World Bank Open Data, https://data.worldbank.org/topic/climate-change

IPCC and climate scenarios Regulation of climate risk

Regulation of climate risk

Paris Agreement: where we are?

- 194 states have signed the Agreement
- They represent about 80% of GHG emissions
- USA, Iran and Turkey have not signed the Agreement

IPCC and climate scenarios Regulation of climate risk

Regulation of climate risk

Figure 116: Paris Agreement assessments of aviation and shipping

Source: Climate Action Tracker (CAT), https://climateactiontracker.org

IPCC and climate scenarios Regulation of climate risk

Regulation of climate risk

• The Coalition of Finance Ministers for Climate Action

www.financeministersforclimate.org

- Commitment to implement fully the Paris Agreement
- Santiago Action Plan
- Helsinki principles (1. align, 2. share, 3. promote, 4. mainstream, 5. mobilize, 6. engage)

Regulation of climate risk

• One Planet Summit

www.oneplanetsummit.fr

• One Planet Sovereign Wealth Funds (OPSWF)

- Funding members: Abu Dhabi Investment Authority (ADIA), Kuwait Investment Authority (KIA), NZ Superannuation Fund (NZSF), Public Invesment Fund (PIF), Qatar Investment Authority (QIA), NBIM
- New members: Bpifrance, CDP Equity, COFIDES, FONSIS, ISIF, KIC, Mubadala IC, NIIF, NIC NBK

• One Planet Asset Managers

- Funding members: Amundi AM, BlackRock, BNP PAM, GSAM, HSBC Global AM, Natixis IM, Northern Trust AM, SSGA
- New members: AXA IM, Invesco, Legal & General IM, Morgan Stanley IM, PIMCO UBS AM
- One Planet Private Equity Funds
 - Members: Ardian, Carlyle Group, Global Infrastructure Partners, Macquarie Infrastructure and Real Assets (MIRA), SoftBank IA

IPCC and climate scenarios Regulation of climate risk

Regulation of climate risk

The example of France

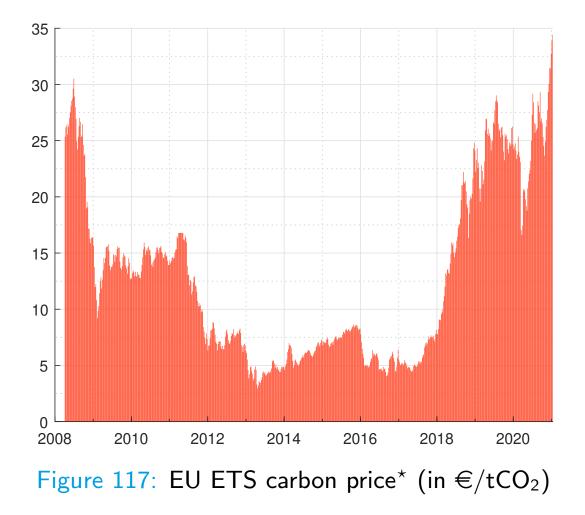
- August 2015: French Energy Transition for Green Growth Law (or Energy Transition Law)
- Roadmap to mitigate climate change and diversify the energy mix

Other examples: Germany (2021 Renewable Energy Act), UK (2013 Energy Act), The Netherlands (2019 Climate Change Mitigation Act), etc.

IPCC and climate scenarios Regulation of climate risk

Regulation of climate risk

Article 173 of the French Energy Transition Law


- The annual report of listed companies must include:
 - Financial risks related to the effects of climate change
 - The measures adopted by the company to reduce them
 - The consequences of climate change on the company's activities
- New requirements for investors:
 - Disclosure of climate (and ESG) criteria into investment decision making process
 - Disclosure of the contribution to the energy transition and the global warming limitation international objective
 - Reporting on climate change-related risks (including both physical risks and transition risks), and GHG emissions of assets
- Banks and credit providers shall conduct climate stress testing

Regulation of climate risk

- Polluter pays principle
 - A carbon price is a cost applied to carbon pollution to encourage polluters to reduce the amount of GHG they emit into the atmosphere
 - Negative externality
- Two instruments of carbon pricing
 - Carbon tax
 - Cap-and-trade (CAT) or emissions trading scheme (ETS)
- Some examples
 - EU emissions trading system (2005) https://ec.europa.eu/clima/policies/ets_en
 - 2 New Zealand ETS (2008)
 - Ohinese national carbon trading scheme (2017)

IPCC and climate scenarios Regulation of climate risk

Regulation of climate risk Carbon pricing

(*)The carbon price reaches 34.43 euros a tonne on Monday 11, 2021

IPCC and climate scenarios Regulation of climate risk

Regulation of climate risk Carbon pricing

Table 78: Carbon tax (in $f(CO_2)$

Country	2018	2019	2020	Country	2018	2019	2020
Sweden	139.11	126.78	133.26	Latvia	5.58	5.06	10.49
Liechtenstein	100.90	96.46	105.69	South Africa			7.38
Switzerland	100.90	96.46	104.65	France	55.30	50.11	6.98
Finland	76.87	69.66	72.24	Argentina		6.24	5.94
Norway	64.29	59.22	57.14	Chile	5.00	5.00	5.00
Ireland	24.80	22.47	30.30	Colombia	5.67	5.17	4.45
Iceland	35.71	31.34	30.01	Singapore		3.69	3.66
Denmark	28.82	26.39	27.70	Mexico	3.01	2.99	2.79
Portugal	8.49	14.31	27.52	Japan	2.74	2.60	2.76
United Kingdom	25.46	23.59	23.23	Estonia	2.48	2.25	2.33
Slovenia	21.45	19.44	20.16	Ukraine	0.02	0.37	0.35
Spain	24.80	16.85	17.48	Poland	0.09	0.08	0.08

Source: World Bank Carbon Pricing Dashboard, https://carbonpricingdashboard.worldbank.org

IPCC and climate scenarios Regulation of climate risk

Regulation of climate risk Stranded assets

- Stranded Assets are assets that have suffered from unanticipated or premature write-downs, devaluations or conversion to liabilities
- For example, a 2°C alignment implies to keep a large proportion of existing fossil fuel reserves in the ground (30% of oil reserves, 50% of gas reserves and 80% of coal)
- Risk factors: Regulations, carbon prices, change in demand, social pressure, etc.
- Example of the covid-19 crisis \Rightarrow air travel

IPCC and climate scenarios Regulation of climate risk

Regulation of climate risk

- Financial Stability Board (FSB)
- European Central Bank (ECB)
- The French Prudential Supervision and Resolution Authority (ACPR)
- The Prudential Regulation Authority (PRA)
- Network for Greening the Financial System (NGFS)
- Etc.

IPCC and climate scenarios Regulation of climate risk

Regulation of climate risk

Bolton, P., Despres, M., Pereira Da Silva, L.A., Samama, F. and Svartzman, R. (2020), *The Green Swan* — *Central Banking and Financial Stability in the Age of Climate Change*, BIS Publication, https://www.bis.org/publ/othp31.htm

IPCC and climate scenarios Regulation of climate risk

Regulation of climate risk Financial regulation

Task Force on Climate-related Financial Disclosures (TCFD)

- Established by the FSB in 2015 to develop a set of voluntary, consistent disclosure recommendations for use by companies in providing information to investors, lenders and insurance underwriters about their climate-related financial risks
- Website: www.fsb-tcfd.org
- Chairman: Michael R. Bloomberg (founder of Bloomberg L.P.)
- 31 members
- June 2017: Publication of the "*Recommendations of the Task Force* on Climate-related Financial Disclosures"
- October 2020: Publication of the 2020 "Status Report: Task Force on Climate-related Financial Disclosures"

IPCC and climate scenarios Regulation of climate risk

Regulation of climate risk

Recommendation	ID	Recommended Disclosure
Governance	1	Board oversight
Governance	2	Management's role
	3	Risks and opportunities
Strategy	4	Impact on organization
	5	Resilience of strategy
	6	Risk ID and assessment processes
Risk management	7	Risk management processes
	8	Integration into overall risk management
	9	Climate-related metrics
Metrics and targets	10	Scope 1, 2, 3 GHG emissions
	11	Climate-related targets

Table 79: The 11 recommended disclosures (TCFD, 2017)

IPCC and climate scenarios Regulation of climate risk

Regulation of climate risk

Some key findings of the 2020 Status Report (TCFD, 2020):

- Disclosure of climate-related financial information has increased since 2017, but continuing progress is needed
- Average level of disclosure across the Task Force's 11 recommended disclosures was 40% for energy companies and 30% for materials and buildings companies
- Asset manager and asset owner reporting to their clients and beneficiaries, respectively, is likely insufficient

IPCC and climate scenarios Regulation of climate risk

Climate stress testing

- ACPR (2020): Climate Risk Analysis and Supervision¹⁹
- Bank of England (2021): Climate Biennial Exploratory Scenario (June 2021)

Top-down approach \neq bottom-up approach

Stress of risk-weighted asset: Bouchet and Le Guenedal (2020).

scenarios-and-main-assumptions-acpr-pilot-climate-exercise

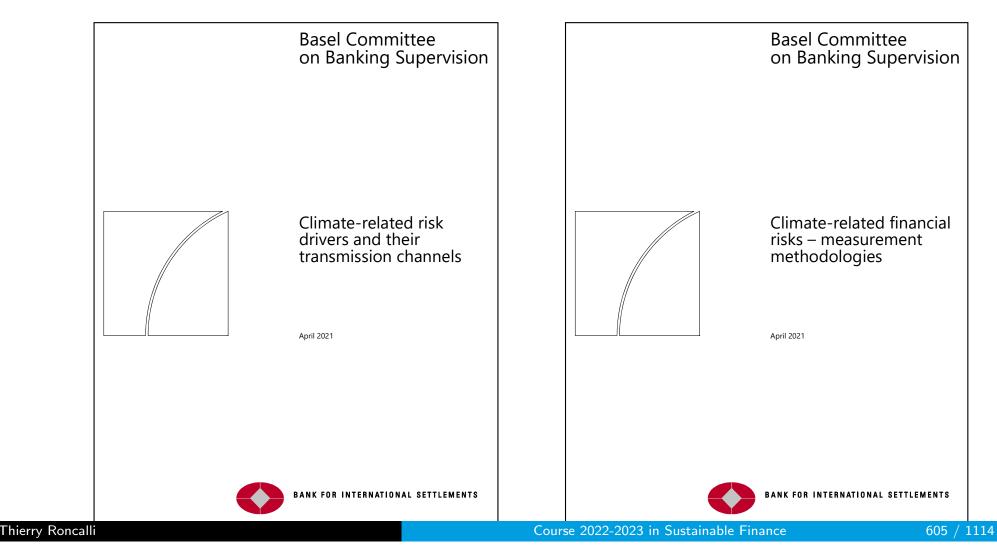
hierry Roncalli

¹⁹https://acpr.banque-france.fr/en/

IPCC and climate scenarios Regulation of climate risk

Climate capital requirements

Green supporting factor


- Risk weights may depend on the green/brown nature of the credit
- Green loans
- Green supporting factor \neq Brown penalising factor

Similar idea: Green Quantitative Easing (GQE)

IPCC and climate scenarios Regulation of climate risk

Climate capital requirements

Figure 118: In April 2021, Basel Committee publishes two reports on climate risk

IPCC and climate scenarios Regulation of climate risk

Climate capital requirements

In June 2022, Basel Committee publishes guidelines:

Principles for the effective management and supervision of climate-related financial risks

Course 2022-2023 in Sustainable Finance Lecture 7. Economic Modeling of Climate Change

Thierry Roncalli*

*Amundi Asset Management²⁰

*University of Paris-Saclay

March 2023

²⁰The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

Economic growth Natural capital and negative externalities

Sustainable growth and climate change

"There is no Plan B, because there is no Planet B"

Ban Ki-moon, UN Secretary-General, September 2014

Is it a question of climate-related issues? In fact, it is more an economic growth issue

"The Golden Rule of Accumulation: A Fable for Growthmen"

Edmund Phelps, *American Economic Review*, 1961 Nobel Prize in Economics, 2006

Economic growth Natural capital and negative externalities

Sustainable growth and climate change

Adam Smith (1776) An Inquiry into the Nature and Causes of The Wealth of Nations

Economic growth Natural capital and negative externalities

The Solow growth model

The model

• Production function:

$$Y(t) = F(K(t), A(t) L(t))$$

where K(t) is the capital, L(t) is the labor and A(t) is the knowledge factor

• Law of motion for the capital per unit of effective labor k(t) = K(t) / (A(t)L(t)):

$$\frac{\mathrm{d}k\left(t\right)}{\mathrm{d}t} = s f(k\left(t\right)) - \left(g_{L} + g_{A} + \delta_{K}\right) k\left(t\right)$$

where s is the saving rate, δ_K is the depreciation rate of capital and g_A and g_L are the productivity and labor growth rates

Economic growth Natural capital and negative externalities

The golden rule

Golden rule with the Cobb-Douglas production and Hicks neutrality

The equilibrium to respect the 'fairness' between generations is:

$$k^{\star} = \left(\frac{s}{g_L + g_A + \delta_K}\right) \frac{1}{1 - \alpha}$$

"Each generation in a boundless golden age of natural growth will prefer the same investment ratio, which is to say the same natural growth path" (Phelps, 1961, page 640).

"By a golden age I shall mean a dynamic equilibrium in which output and capital grow exponentially at the same rate so that the capital-output ratio is stationary over time" (Phelps, 1961, page 639).

Economic growth Natural capital and negative externalities

Golden rule and climate risk

What is economic growth and what is the balanced growth path?

- There is a saving rate that maximizes consumption over time and between generations ("the fair rate to preserve future generations")
- Economic growth corresponds to the exponential growth of capital and output to answer the needs of the growing population
- Introducing human and natural capitals add constraints and therefore reduce growth!

Economic growth \Rightarrow	<pre>{ productivity ≯ and labor ≯ { maximization of consumption-based utility function</pre>
-------------------------------	--

Economic growth Natural capital and negative externalities

Extension to natural capital

What are the effects of environmental constraints on growth?

Introducing a decreasing natural capital (Romer, 2006)

The balanced growth path g_Y^* is equal to:

$$g_Y^{\star} = g_L + g_A - \frac{g_L + g_A + \delta_{N_c}}{1 - \alpha} \vartheta$$

where δ_{N_c} is the depreciation rate of natural capital and ϑ is the elasticity of output with respect to (normalized) natural capital $N_c(t)$

"The static-equilibrium type of economic theory which is now so well developed is plainly inadequate for an industry in which the indefinite maintenance of a steady rate of production is a physical impossibility, and which is therefore bound to decline" (Hotteling, 1931, page 138-139)

Accounting for environment... changes the definition of economic growth

Economic growth Natural capital and negative externalities

Inter-temporal utility functions

Preferences modeling (Ramsey model)

- ρ is the discount rate (time preference)
- c(t) is the consumption per capita and u is the CRRA utility function:

$$u(c(t)) = \begin{cases} \frac{1}{1-\theta} c(t)^{1-\theta} & \text{if } \theta > 0, \quad \theta \neq 1\\ \ln c(t) & \text{if } \theta = 1 \end{cases}$$

where θ is the risk aversion parameter

• Maximization of the welfare function:

$$\int_{t}^{\infty} e^{-\rho t} u(c(t)) \, \mathrm{d}t$$

Economic growth Natural capital and negative externalities

The discounting issue

Does the golden rule of saving rates hold in a Keynesian approach with discounted maximization of consumption?

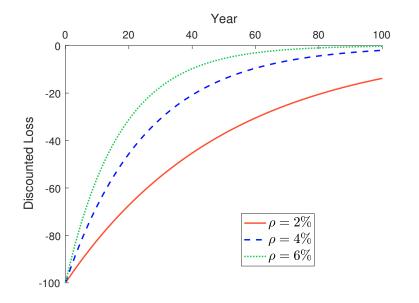


Figure 119: Discounted value of \$100 loss

- "There is still time to avoid the worst impacts of climate change, if we take strong action now" (Stern, 2007)
- "I got it wrong on climate change – it's far, far worse" (Stern, 2013)

The value of a loss in 100 years almost disappears... while it is only the next generation!

Economic growth Natural capital and negative externalities

Does consumption maximization make sense?

How many planets do we need?

To achieve the current levels of consumption for the world population, we need:

- US: 5 planets
- France: 3 planets
- India: 0.6 planet

Source: Global Footprint Network, http://www.footprintcalculator.org

Economic growth Natural capital and negative externalities

Fairness between generations

Keynes

"In the long run, we are all dead"

John Maynard Keynes^a, A Tract on Monetary Reform, 1923.

^a "Men will not always die quietly", The Economic Consequences of the Peace, 1919.

Carney

"The Tragedy of the Horizon"

Mark Carney, Chairman of the Financial Stability Board, 2015

 \Rightarrow Back to the Golden Rule and the Fable for Growthmen...

The DICE model Social cost of carbo Other IAMs

Integrated assessment models (IAMs)

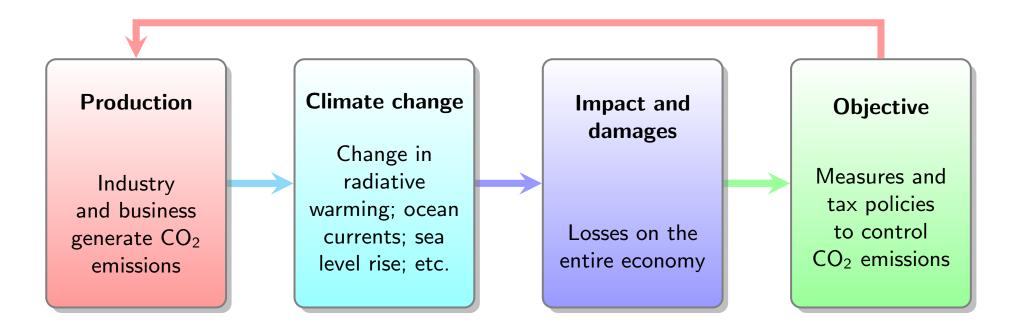
Main categories

• Optimization models

The inputs of these models are parameters and assumptions about the structure of the relationships between variables. The outputs provided by optimization process are scenarios depending on a set of constraints

• Evaluation models

Based on exogenous scenarios, the outputs provide results from partial equilibriums between variables


Three main components of IAMs

- Economic growth relationships
- 2 Dynamics of climate emissions
- Objective function

The DICE model Social cost of carbo Other IAMs

Modeling framework

Figure 120: Economic models of climate risk

The DICE model Social cost of carboı Other IAMs

Modeling framework

Economic module

- Production function \implies GDP
- Impact of the climate risk on GDP (damage losses, mitigation and adaptation costs)
- The climate loss function depends on the temperature
- Olimate module
 - Optimize of GHG emissions
 - O Modeling of Atmospheric and lower ocean temperatures
- Optimal control problem
 - Maximization of the utility function
 - We can test many variants

The DICE model Social cost of carbo Other IAMs

Modeling framework

The most famous IAM is the **Dynamic Integrated model of Climate and the Economy** (or DICE) developed by William Nordhaus²¹

The DICE model Social cost of carbor Other IAMs

Economic module Production and consumption functions

• The gross production Y(t) is given by a Cobb-Douglas function:

$$Y(t) = A(t) K(t)^{\gamma} L(t)^{1-\gamma}$$

where:

- A(t) is the total productivity factor
- K(t) is the capital input
- L(t) is the labor input
- $\gamma \in]0,1[$ measures the elasticity of the capital factor:
- Climate change impacts the **net output**:

$$Q\left(t
ight)=\Omega_{ ext{climate}}\left(t
ight)Y\left(t
ight)\leq Y\left(t
ight)$$

• Classical identities Q(t) = C(t) + I(t) and I(t) = s(t)Q(t)

The DICE model Social cost of carbo Other IAMs

Economic module Production and consumption functions

• The dynamics of the state variables are:

$$\begin{cases} A(t) = (1 + g_A(t)) A(t - 1) \\ K(t) = (1 - \delta_K) K(t - 1) + I(t) \\ L(t) = (1 + g_L(t)) L(t - 1) \end{cases}$$

• We have:

$$\left(egin{array}{l} g_{A}\left(t
ight)=rac{1}{1+\delta_{A}}g_{A}\left(t-1
ight) \ g_{L}\left(t
ight)=rac{1}{1+\delta_{L}}g_{L}\left(t-1
ight) \end{array}
ight.$$

The DICE model Social cost of carbo Other IAMs

Economic module

Example #1

The world population was equal to 7.725 billion in 2019 and 7.805 billion in 2020. At the beginning of the 1970s, we estimate that the annual growth rate was equal to 2.045%. According to the United Nations, the global population could surpass 10 billion by 2100.

The DICE model Social cost of carbon Other IAMs

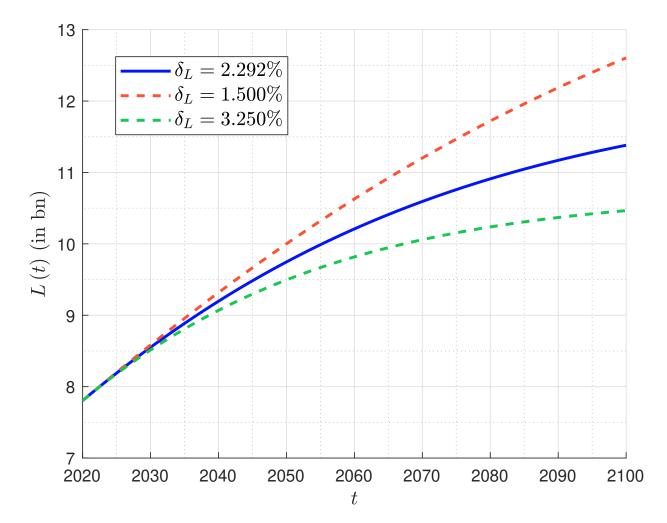
Economic module

• In 2020, the annual growth rate was equal to:

$$g_L(2020) = \frac{L(2020)}{L(2019)} - 1 = \frac{7.805}{7.725} - 1 = 1.036\%$$

• Since we have $g_L(t) = \left(\frac{1}{1+\delta_L}\right)^{t-t_0} g_L(t_0)$, we deduce that:

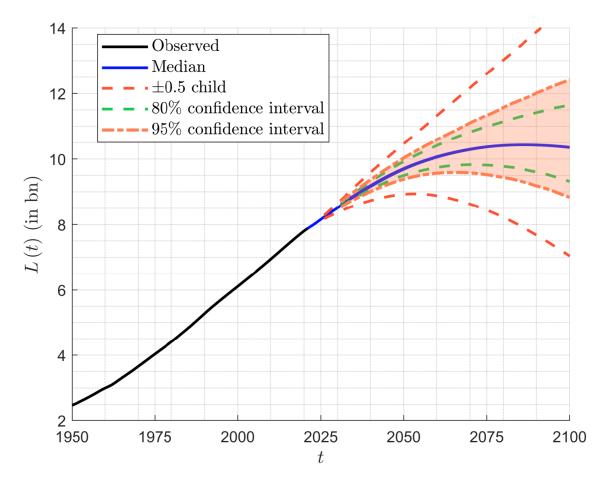
$$\delta_L = \left(\frac{g_L(t_0)}{g_L(t)}\right)^{1/(t-t_0)} - 1$$


• An estimate of δ_L is then:

$$\delta_L = \left(\frac{g_L(1970)}{g_L(2020)}\right)^{1/30} - 1 = 2.292\%$$

The DICE model Social cost of carbo Other IAMs

Economic module


Figure 121: Evolution of the labor input L(t)

The DICE model Social cost of carbo Other IAMs

Economic module

Figure 122: Projection of the world population

Source: United Nations (2022), https://population.un.org/wpp.

The DICE model Social cost of carbo Other IAMs

Economic module

• AR(1) model:

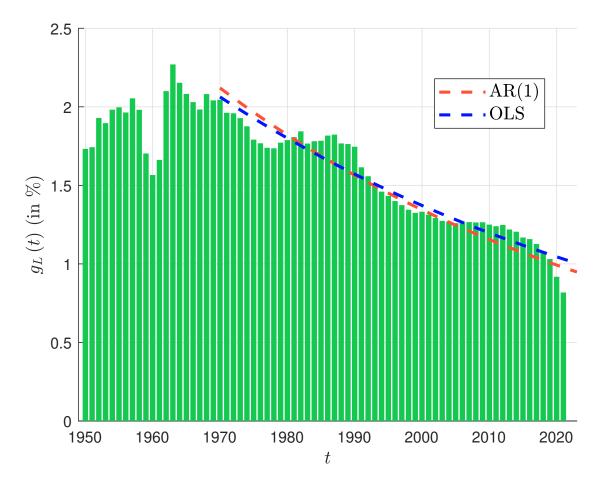
$$g_{L}(t) = \phi g_{L}(t-1) + \varepsilon(t)$$

We have

$$\hat{\delta}_L = rac{\left(1 - \hat{\phi}
ight)}{\hat{\phi}}$$

• Log-linear model:

$$\ln g_{L}(t) = \beta_{0} + \beta_{1}(t - t_{0}) + \varepsilon(t)$$


We have:

$$\hat{\delta}_L = e^{-\hat{eta}_1} - 1$$

The DICE model Social cost of carbo Other IAMs

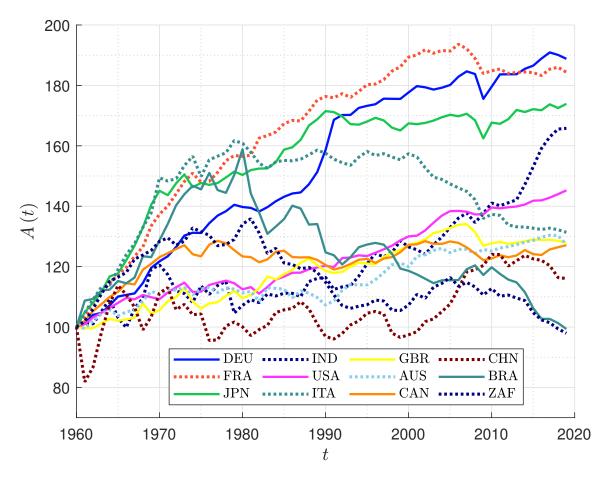
Economic module

Figure 123: Population growth rate

Source: United Nations (2022), https://population.un.org/wpp & Author's

The DICE model Social cost of carbo Other IAMs

Table 80: Average productivity growth rate (in %)

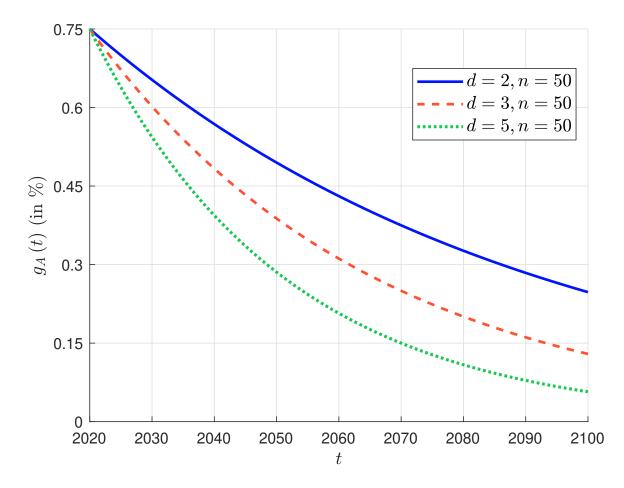

Country	1960-1970	1970-1980	1980-1990	1990-2000	2000-2010	2010-2020
AUS	1.02	0.07	-0.23	1.02	0.36	0.13
BRA	2.39	2.05	-1.04	-1.12	-0.17	-1.63
CAN	2.18	0.38	-0.25	0.21	-0.21	0.40
CHN	-0.03	-0.06	-0.04	-0.41	2.24	-0.35
FRA	3.59	1.63	1.12	0.61	-0.11	0.02
DEU	2.33	1.63	0.75	1.52	0.01	0.74
IND	2.37	-1.22	1.06	1.04	0.70	1.89
ITA	3.71	1.66	-0.19	-0.20	-1.32	-0.34
JPN	4.05	0.77	1.09	-0.22	-0.15	0.69
ZAF	2.37	0.30	-0.84	-1.11	0.50	-1.20
GBR	0.50	0.72	0.75	0.42	0.12	0.08
USA	1.00	0.42	0.46	0.73	0.65	0.56

Source: Penn World Table 10.01 (Feenstra et al., 2015) & Author's calculations.

The DICE model Social cost of carbon Other IAMs

Economic module Total factor productivity

Figure 124: Total factor productivity index (base 100 = 1960)



Source: Penn World Table 10.01 (Feenstra et al., 2015) & Author's calculations.

The DICE model Social cost of carbon Other IAMs

Economic module Total factor productivity

Figure 125: Dynamics of the TFP growth rate*

*We use the following calibration rule: $\delta_A = \sqrt[n]{d} - 1$

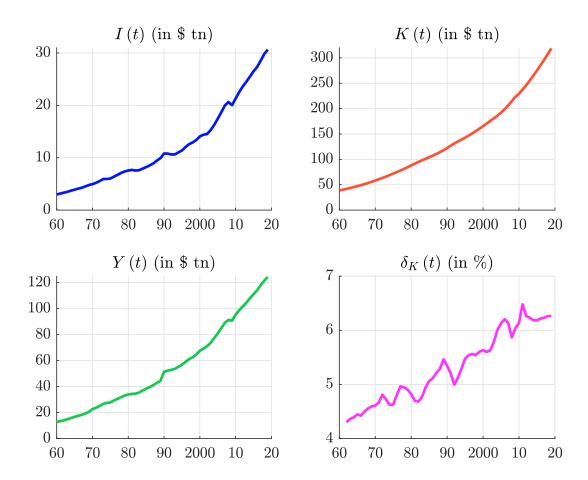
The DICE model Social cost of carbor Other IAMs

Economic module Investment, capital stock and gross output

- Penn World Table/IMF's ICSD
- In 2019, we obtain I (2019) = \$30.625 tn, K (2019) = \$318.773 tn and Y (2019) = \$124.418 tn
- We also have:

$$\delta_{K}(t) = \frac{K(t-1) - K(t) + I(t)}{K(t-1)}$$

and we obtain δ_{κ} (2019) = 6.25%

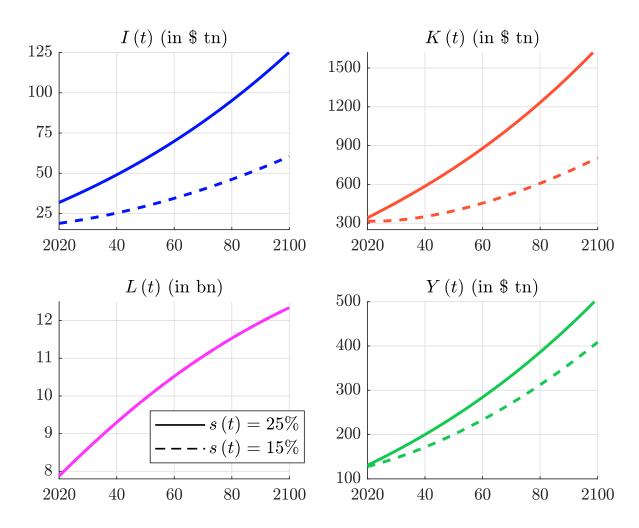

• To calibrate the initial value of A(t), we inverse the Coob-Douglas function:

$$A(2019) = \frac{Y(t)}{K(t)^{\gamma} L(t)^{1-\gamma}} = \frac{124.418}{318.773^{0.30} \times 7.725^{0.70}} = 5.276$$

• The saving rate s(t) is exogenous

Economic module Investment, capital stock and gross output

Figure 126: Historical estimates of I(t), K(t), Y(t) and $\delta_{K}(t)$



Source: IMF Investment and Capital Stock Dataset (2021) & Author's calculations.

Limits of economic modelsThe DICE modelIntegrated assessment modelsSocial cost of carbonScenariosOther IAMs

Economic module

Figure 127: Simulation of the DICE macroeconomic module

The DICE model Social cost of carbon Other IAMs

Economic module Cost function of climate change

• The survival function is given by:

$$\Omega_{ ext{climate}}\left(t
ight)=\Omega_{D}\left(t
ight)\Omega_{\Lambda}\left(t
ight)=rac{1}{1+D\left(t
ight)}\left(1-\Lambda\left(t
ight)
ight)$$

where:

- $D(t) \ge 0$ is the climate damage function (physical risk)
- $\Lambda(t) \ge 0$ is the mitigation or abatement cost (transition risk)

The DICE model Social cost of carbor Other IAMs

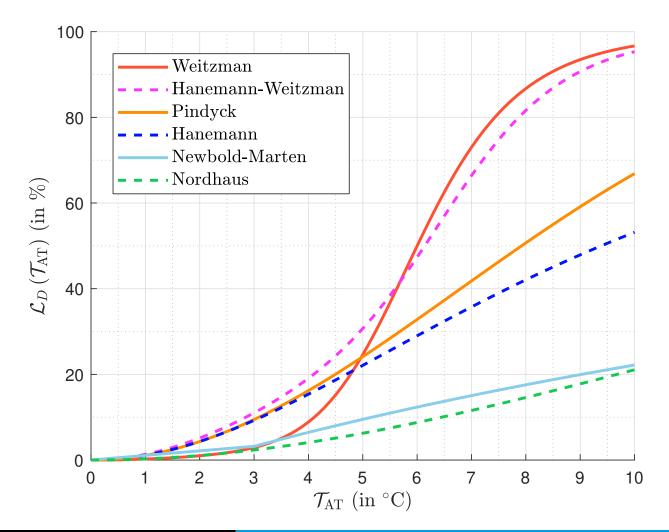
Economic module Cost function of climate change

• The cost D(t) resulting from natural disasters depends on the atmospheric temperature $\mathcal{T}_{\mathrm{AT}}(t)$:

$$D\left(t
ight)=\psi_{1}\mathcal{T}_{\mathrm{AT}}\left(t
ight)+\psi_{2}\mathcal{T}_{\mathrm{AT}}\left(t
ight)^{2}$$

• The abatement cost function depends on the control variable $\mu(t)$:

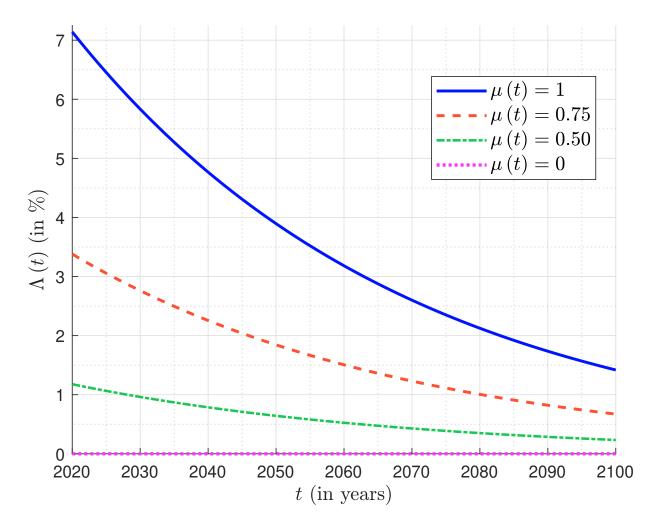
$$\Lambda(t) = \theta_1(t) \mu(t)^{\theta_2}$$


• The global impact of climate change is equal to:

$$\Omega_{ ext{climate}}\left(t
ight)=rac{1- heta_{1}\left(t
ight)\mu\left(t
ight)^{ heta_{2}}}{1+\psi_{1}\mathcal{T}_{ ext{AT}}\left(t
ight)+\psi_{2}\mathcal{T}_{ ext{AT}}\left(t
ight)^{2}}$$

The DICE model Social cost of carbo Other IAMs

Economic module Cost function of climate change


Figure 128: Loss function due to climate damage costs

The DICE model Social cost of carbo Other IAMs

Economic module Cost function of climate change

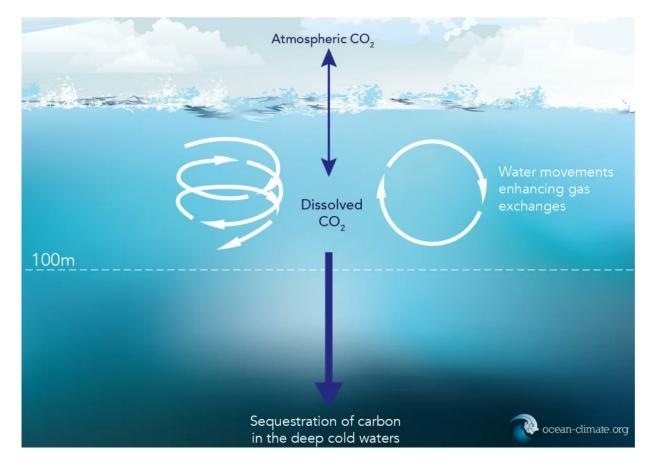
The DICE model Social cost of carbor Other IAMs

• The total GHG emissions depends on the production Y(t) and the land use emissions $\mathcal{CE}_{\text{Land}}(t)$:

$$egin{aligned} \mathcal{CE}\left(t
ight) &= & \mathcal{CE}_{\mathrm{Industry}}\left(t
ight) + \mathcal{CE}_{\mathrm{Land}}\left(t
ight) \ &= & (1-\mu\left(t
ight))\sigma\left(t
ight)Y\left(t
ight) + \mathcal{CE}_{\mathrm{Land}}\left(t
ight) \end{aligned}$$

• $\sigma(t)$ is the anthropogenic carbon intensity of the economy:

$$\sigma\left(t
ight)=\left(1+g_{\sigma}\left(t
ight)
ight)\sigma\left(t-1
ight)$$


where:

$$g_{\sigma}\left(t
ight)=rac{1}{1+\delta_{\sigma}}g_{\sigma}\left(t-1
ight)$$

The DICE model Social cost of carbo Other IAMs

Climate module Temperature modeling

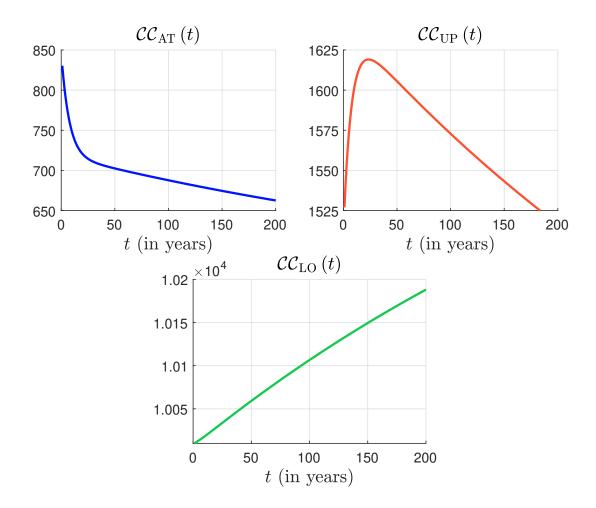
Figure 130: Physical carbon pump

Source: ocean-climate.org.

The DICE model Social cost of carbon Other IAMs

• We have:

$$\begin{cases} \mathcal{CC}_{\mathrm{AT}}\left(t\right) = \phi_{1,1}\mathcal{CC}_{\mathrm{AT}}\left(t-1\right) + \phi_{1,2}\mathcal{CC}_{\mathrm{UP}}\left(t-1\right) + \phi_{1}\mathcal{CE}\left(t\right) \\ \mathcal{CC}_{\mathrm{UP}}\left(t\right) = \phi_{2,1}\mathcal{CC}_{\mathrm{AT}}\left(t-1\right) + \phi_{2,2}\mathcal{CC}_{\mathrm{UP}}\left(t-1\right) + \phi_{2,3}\mathcal{CC}_{\mathrm{LO}}\left(t-1\right) \\ \mathcal{CC}_{\mathrm{LO}}\left(t\right) = \phi_{3,2}\mathcal{CC}_{\mathrm{UP}}\left(t-1\right) + \phi_{3,3}\mathcal{CC}_{\mathrm{LO}}\left(t-1\right) \end{cases}$$


• The dynamics of $CC = (CC_{AT}, CC_{UP}, CC_{LO})$ is a VAR(1) process:

$$\mathcal{CC}(t) = \Phi_{\mathcal{CC}}\mathcal{CC}(t-1) + B_{\mathcal{CC}}\mathcal{CE}(t)$$

Carbon cycle diffusion matrixWe have: $\Phi_{CC} = \begin{pmatrix} 91.20\% & 3.83\% & 0\\ 8.80\% & 95.92\% & 0.03\%\\ 0 & 0.25\% & 99.97\% \end{pmatrix}$

The DICE model Social cost of carbo Other IAMs

Figure 131: Impulse response analysis ($\Delta C \mathcal{E} = -1 \text{ GtCO}_2 e$)

The DICE model Social cost of carbo Other IAMs

Climate module Radiative forcing

We have:

$$\mathcal{F}_{\mathrm{RAD}}\left(t
ight) = rac{\eta}{\ln 2} \ln\left(rac{\mathcal{C}\mathcal{C}_{\mathrm{AT}}\left(t
ight)}{\mathcal{C}\mathcal{C}_{\mathrm{AT}}\left(1750
ight)}
ight) + \mathcal{F}_{\mathrm{EX}}\left(t
ight)$$

where:

- $\mathcal{F}_{RAD}(t)$ is the change in total radiative forcing of GHG emissions since 1750 (expressed in W/m^2)
- η is the temperature forcing parameter
- $\mathcal{F}_{\mathrm{EX}}(t)$ is the exogenous forcing (other GHG emissions)

The DICE model Social cost of carbon Other IAMs

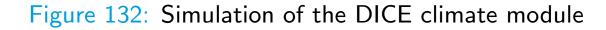
• The climate system for temperatures is characterized by a two-layer system:

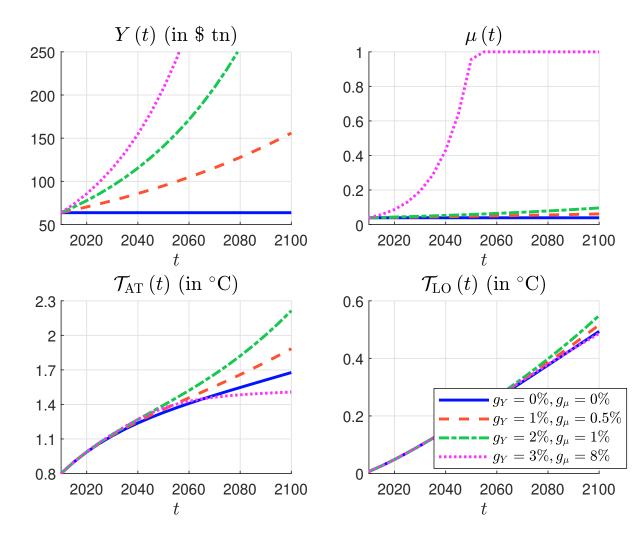
$$\left\{ egin{array}{ll} \mathcal{T}_{\mathrm{AT}}\left(t
ight) &=& \mathcal{T}_{\mathrm{AT}}\left(t-1
ight)+\xi_{1}\left(\mathcal{F}_{\mathrm{RAD}}\left(t
ight)-\xi_{2}\mathcal{T}_{\mathrm{AT}}\left(t-1
ight)-\xi_{3}\left(\mathcal{T}_{\mathrm{AT}}\left(t-1
ight)-\mathcal{T}_{\mathrm{LO}}\left(t-1
ight)
ight)
ight) \ &\quad \mathcal{T}_{\mathrm{LO}}\left(t
ight) &=& \mathcal{T}_{\mathrm{LO}}\left(t-1
ight)+\xi_{4}\left(\mathcal{T}_{\mathrm{AT}}\left(t-1
ight)-\mathcal{T}_{\mathrm{LO}}\left(t-1
ight)
ight)
ight) \end{array}$$

• Let $\mathcal{T} = (\mathcal{T}_{AT}, \mathcal{T}_{LO})$ be the temperature vector. We have:

$$\mathcal{T}(t) = \Xi_{\mathcal{T}} \mathcal{T}(t-1) + B_{\mathcal{T}} \mathcal{F}_{\mathrm{RAD}}(t)$$

The DICE model Social cost of carbo Other IAMs

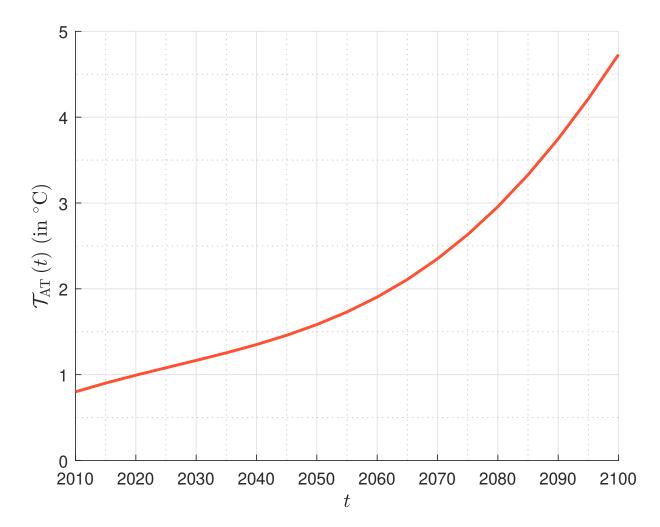

Climate module


Table 81: Output of the DICE climate module $(Y(t) = Y(t_0), \mu(t) = \mu(t_0))$

_							
	t	$\mathcal{CE}(t)$	$\sigma(t)$	$\mathcal{CC}_{\mathrm{AT}}\left(t ight)$	$\mathcal{F}_{ ext{RAD}}\left(t ight)$	$\mathcal{T}_{\mathrm{AT}}\left(t ight)$	$\mathcal{T}_{\mathrm{LO}}\left(t ight)$
_	2010	36.91	0.55	830.4	2.14	0.800	0.007
	2015	36.25	0.55	825.7	2.14	0.900	0.027
	2020	36.06	0.56	821.9	2.14	0.986	0.048
	2025	35.97	0.57	818.9	2.14	1.061	0.072
	2030	35.98	0.57	816.6	2.15	1.127	0.097
	2035	36.05	0.58	814.9	2.16	1.186	0.122
	2040	36.18	0.58	813.9	2.18	1.238	0.149
	2045	36.36	0.59	813.3	2.20	1.286	0.176
	2050	36.58	0.59	813.3	2.23	1.329	0.204
	2055	36.82	0.60	813.6	2.26	1.370	0.232
	2060	37.09	0.61	814.4	2.29	1.408	0.261
	2065	37.39	0.61	815.4	2.32	1.445	0.289
	2070	37.70	0.62	816.8	2.35	1.480	0.318
	2075	38.02	0.62	818.4	2.39	1.514	0.347
	2080	38.36	0.63	820.3	2.43	1.547	0.376
	2085	38.71	0.64	822.4	2.46	1.580	0.406
	2090	39.06	0.64	824.7	2.50	1.612	0.435
	2095	39.43	0.65	827.1	2.55	1.645	0.464
	2100	39.80	0.66	829.7	2.59	1.677	0.494

Limits of economic models Integrated assessment models Scenarios The DICE model Social cost of carbon Other IAMs

Climate module



Climate module

Figure 133: The nightmare climate-economic scenario ($g_Y = 0\%$, $\mu(t) = 0$)

The DICE model Social cost of carbo Other IAMs

The optimal control problem

Optimization problem

• The social welfare function W is equal to:

$$W\left({{s}\left(t
ight),\mu \left(t
ight)}
ight) = \sum\limits_{t = {t_0} + 1}^T {rac{{L\left(t
ight){\mathcal U}\left({c\left(t
ight)}
ight)} }{{{\left({1 +
ho }
ight)^{t - {t_0}}}}}}$$

where ρ is the (generational) discount rate and c(t) = C(t)/L(t) is the consumption per capita

- $\mathcal{U}(c) = (c^{1-\alpha} 1) / (1 \alpha)$ is the CRRA utility function
- The optimal control problem is then given by:

$$\begin{array}{ll} \left(s^{\star}\left(t\right),\mu^{\star}\left(t\right)\right) & = & \arg\max W\left(s\left(t\right),\mu\left(t\right)\right) \\ \text{s.t.} & \left\{\begin{array}{l} \mathsf{DICE \ Equations} \\ \mu\left(t\right)\in\left[0,1\right] \\ s\left(t\right)\in\left[0,1\right] \end{array}\right. \end{array} \right. \end{array}$$

The DICE model Social cost of carbo Other IAMs

The optimal control problem

The important variables are:

- $\mathcal{T}_{\mathrm{AT}}\left(t
 ight)$ Atmospheric temperature
- $\mu(t)$ Control rate (mitigation policies)
- $\mathcal{CE}(t)$ Total emissions of GHG
- SCC(t) Social cost of carbon

The DICE model Social cost of carbon Other IAMs

Social cost of carbon (SCC)

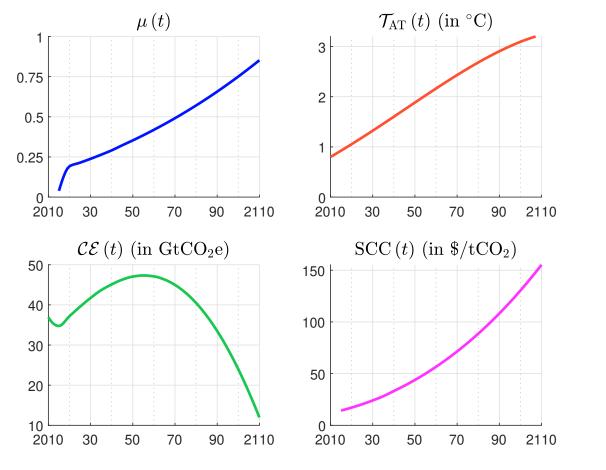
"The most important single economic concept in the economics of climate change is the social cost of carbon (SCC). This term designates the economic cost caused by an additional tonne of carbon dioxide emissions or its equivalent. In a more precise definition, it is the change in the discounted value of economic welfare from an additional unit of COtwo-equivalent emissions. The SCC has become a central tool used in climate change policy, particularly in the determination of regulatory policies that involve greenhouse gas emissions." (Nordhaus, 2017).

The DICE model Social cost of carbon Other IAMs

Social cost of carbon (SCC)

Mathematical definition

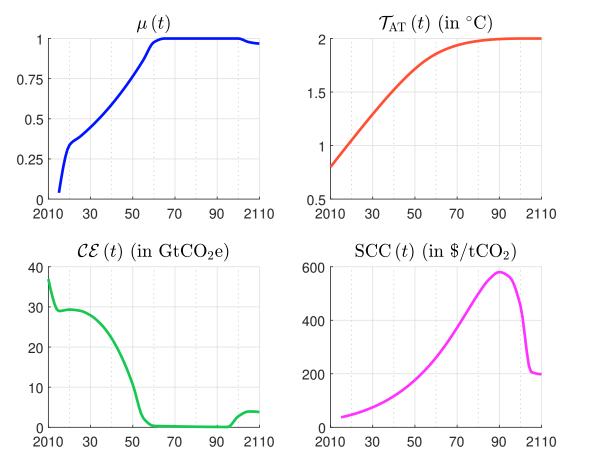
• The social cost of carbon is then defined as:


$$SCC(t) = \frac{\frac{\partial W(t)}{\partial C\mathcal{E}(t)}}{\frac{\partial W(t)}{\partial C(t)}} = \frac{\partial C(t)}{\partial C\mathcal{E}(t)}$$

 \bullet It is expressed in $\rm CO_2$

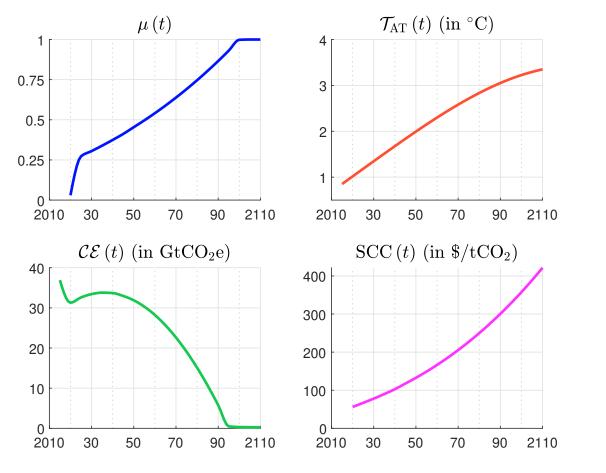
The DICE model Social cost of carbon Other IAMs

Social cost of carbon (SCC)


Figure 134: Optimal welfare scenario (DICE 2013R)

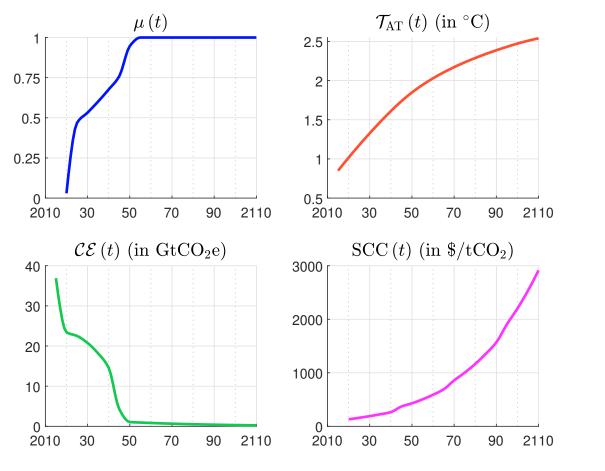
The DICE model Social cost of carbon Other IAMs

Social cost of carbon (SCC)


Figure 135: 2°C scenario (DICE 2013R)

The DICE model Social cost of carbon Other IAMs

Social cost of carbon (SCC)


Figure 136: Optimal welfare scenario (DICE 2016R)

The DICE model Social cost of carbon Other IAMs

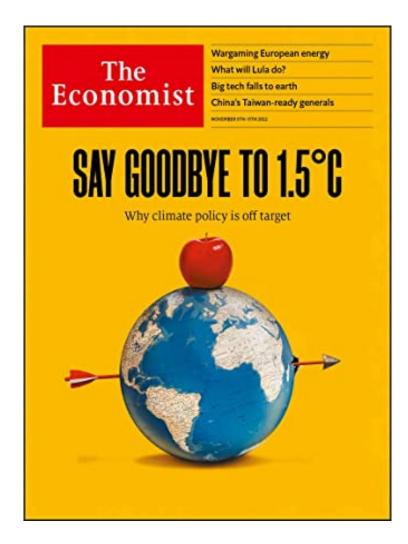

Social cost of carbon (SCC)

Figure 137: 2°C scenario (DICE 2016R)

The DICE model Social cost of carbon Other IAMs

The tragedy of the horizon

The DICE model Social cost of carbon Other IAMs

The tragedy of the horizon

Achieving the $2^{\circ}C$ scenario

- In 2013, the DICE model suggested to reduce drastically CO₂ emissions...
- Since 2016, the 2°C trajectory is no longer feasible! (minimum $\approx 2.6^{\circ}$ C)
- For many models, we now have:

 $\mathbb{P}\left(\Delta T > 2^{\circ}C\right) > 95\%$

The DICE model Social cost of carbon Other IAMs

Social cost of carbon (SCC)

Table 82: Global SCC under different scenario assumptions (in $/tCO_2$)

Scenario	2015	2020	2025	2030	2050	CAGR
Baseline	31.2	37.3	44.0	51.6	102.5	3.46%
Optimal	30.7	36.7	43.5	51.2	103.6	3.54%
$2.5^{\circ}\mathrm{C}$ -max	184.4	229.1	284.1	351.0	1006.2	4.97%
$2.5^{\circ}\mathrm{C}$ -mean	106.7	133.1	165.1	203.7	543.3	4.76%

Source: Nordhaus (2017).

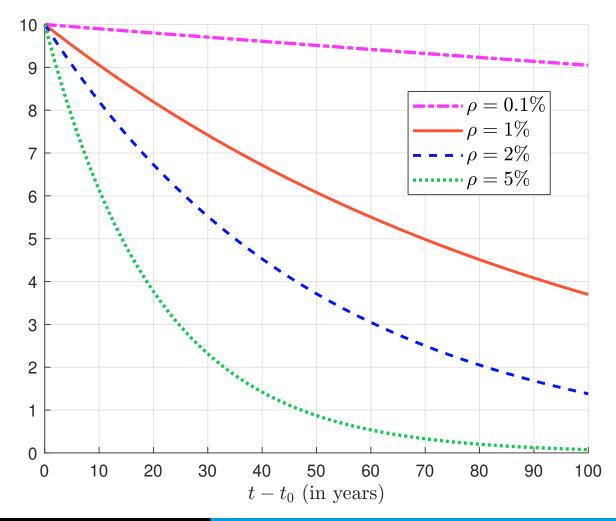
The DICE model Social cost of carbon Other IAMs

Social cost of carbon (SCC)

The Stern-Nordhaus controversy

- In 2007, Nicholas Stern published a report called The Economics of Climate Change: The Stern Review
- The Stern Review called for sharp and immediate action to stabilize greenhouse gases because:

"the benefits of strong, early action on climate change outweighs the costs"


• The Stern Review proposes to use $\rho = 0.10\%$

The DICE model Social cost of carbon Other IAMs

Social cost of carbon (SCC)

The Stern-Nordhaus controversy

Figure 138: Discounted value of \$10

The DICE model Social cost of carbon Other IAMs

Social cost of carbon (SCC)

The Stern-Nordhaus controversy

- The time (or generational) discount rate ρ is also called the pure rate of time preference
- It is related to the Ramsey rule:

$$r = \rho + \alpha g$$

where:

- *r* is the real interest rate
- $g = \partial c(t) / c(t)$ is the growth rate of per capita consumption
- α is the consumption elasticity of the utility function

The DICE model Social cost of carbon Other IAMs

Social cost of carbon (SCC)

The Stern-Nordhaus controversy

We report the computations done by Dasgupta (2008):

Model	ρ	lpha	<i>g</i> _c	r
Cline (1992)	0.0%	1.5	1.3%	2.05%
Nordhaus (2007)	3.0%	1.0	1.3%	4.30%
Stern (2007)	0.1%	1.0	1.3%	1.40%

The DICE model Social cost of carbon Other IAMs

Social cost of carbon (SCC)

The Stern-Nordhaus controversy

Table 83: Global SCC under different discount rate assumptions

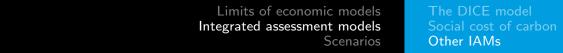
Discount rate	2015	2020	2025	2030	2050	CAGR
Stern	197.4	266.5	324.6	376.2	629.2	3.37%
Nordhaus	30.7	36.7	43.5	51.2	103.6	3.54%
2.5%	128.5	$\bar{1}40.0$	152.0	164.6	235.7	1.75%
3%	79.1	87.3	95.9	104.9	156.6	1.97%
4%	36.3	40.9	45.8	51.1	81.7	2.34%
5%	19.7	22.6	25.7	29.1	49.2	2.65%

Source: Nordhaus (2017).

The DICE model Social cost of carbo Other IAMs

Some models

- AIM _____ RCP 6.0
- DICE/RICE
- FUND
- GCAM
- IMACLIM (CIRED)
- IMAGE _____ RCP 2.6
- MESSAGE ______ RCP 8.5
- MiniCAM _____ RCP 4.5
- PAGE
- REMIND
- RESPONSE (CIRED)
- WITCH

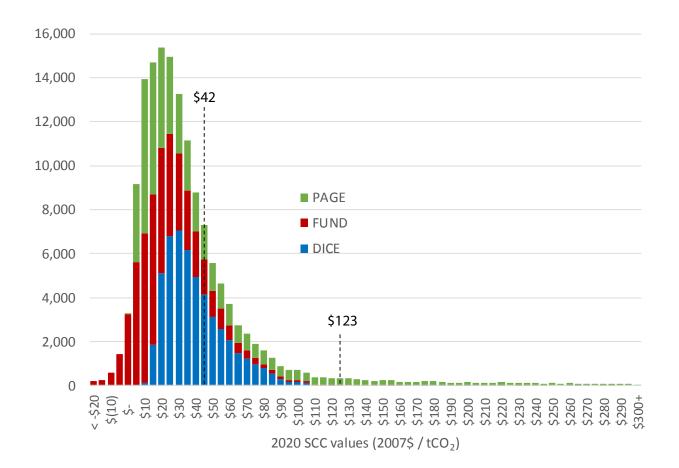

The DICE model Social cost of carbo Other IAMs

Some models

Table 84: Main integrated assessment models

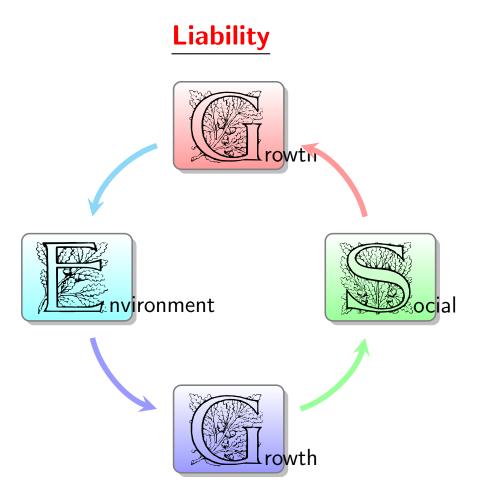
Model	Reference	Name		
Stylized simple n	nodels			
DICE	Nordhaus and Sztorc (2013)	Dynamic Integrated Climate-Economy		
FUND	Anthoff and Tol (2014)	Climate Framework for Uncertainty, Negotiation and Distribution		
PAGE	Hope (2011)	Policy Analysis of the Greenhouse Effect		
Complex models				
AIM/CGE	Fujimori <i>et al.</i> (2017)	Asia-Pacific Integrated Model/Computable General Equilibrium		
GCAM	Calvin <i>et al.</i> (2019)	Global Change Assessment Model		
GLOBIOM	Havlik <i>et al.</i> (2018)	Global Biosphere Management Model		
IMACLIM-R	Sassi <i>et al.</i> (2010)	Integrated Model to Assess Climate Change		
IMAGE	Stehfest <i>et al.</i> (2014)	Integrated Model to Assess the Greenhouse Effect		
MAGICC	Meinshausen <i>et al.</i> (2011)	Model for the Assessment of Greenhouse Gas Induced Climate Change		
MAgPIE	Dietrich <i>et al.</i> (2019)	Model of Agricultural Production and its Impact on the Environment		
MESSAGEix	Huppmann <i>et al.</i> (2019)	Model for Energy Supply Strategy Alternatives and their General En- vironmental Impact		
REMIND	Aboumahboub <i>et al.</i> (2020)	REgional Model of INvestments and Development		
WITCH	Bosetti <i>et al.</i> (2006)	World Induced Technical Change Hybrid		

Source: Grubb et al. (2021) & Author's research.


Stylized IAMs

The Leaders DICE FUND PAGE

 $\Rightarrow \mathsf{SCC}: \mathsf{PAGE} \succ \mathsf{DICE} \succ \mathsf{FUND}$


Figure 139: Histogram of the 150 000 US Government SCC estimates for 2020 with a 3% discount rate

Source: Rose *et al.* (2017).

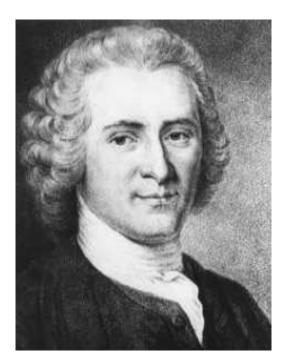
The DICE model Social cost of carbo Other IAMs

Stylized IAMs The liability/fairness question

Aristotle (384 BC – 322 BC) HΘIKΩN NIKOMAXEIΩN Karl Marx and Friedrich Engels (1848)

The Communist Manifesto

Thierry Roncalli


Course 2022-2023 in Sustainable Finance

669 / 1114

The DICE model Social cost of carbo Other IAMs

Stylized IAMs The liability/fairness question

Fairness

Du Contrat Social

The DICE model Social cost of carbor Other IAMs

Stylized IAMs Climate risk and inequalities

Three types of inequalities

- Spatial (or regional) inequalities
- Social (or intra-generation) inequalities
- Time (or inter-generation) inequalities
- \Rightarrow These issues are highly related to liability risks:

"[...] liability risks stemming from parties who have suffered loss from the effects of climate change seeking compensation from those they hold responsible" (Mark Carney, 2018)

- Regional inequalities \Rightarrow lack of cooperation between countries (e.g., Glasgow COP 26)
- Social inequalities \Rightarrow climate action postponing (e.g., carbon tax in France)

The DICE model Social cost of carbon Other IAMs

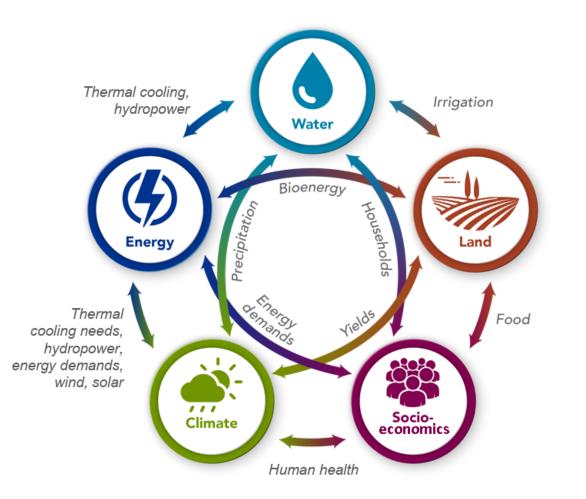
The **R**egional Integrated model of **C**limate and the **E**conomy (RICE) model is a sub-regional neoclassical climate economy model (Nordhaus and Yang, 1996)

- \Rightarrow Sub-regional problem of welfare:
 - Each region of the world has a different utility functions
 - The big issue is how the most developed regions can finance the transition to a low-carbon economy of the less developed regions

Both spacial and time (inter-generation) inequalities

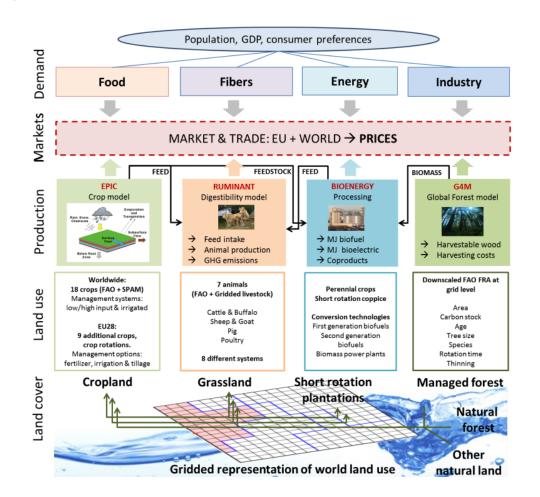
The DICE model Social cost of carbon Other IAMs

The **N**ested Inequalities **C**limate-**E**conomy (NICE) model integrates distributional differences of income (Dennig *et al.*, 2015)


"[...] If the distribution of damage is less skewed to high income than the distribution of consumption, then weak or no climate policy will result in sufficiently large damages on the lower economic strata to eventually stop their welfare levels from improving, and instead cause them to decline" (Dennig et al., 2015)

Both social (intra-generation) and time (inter-generation) inequalities

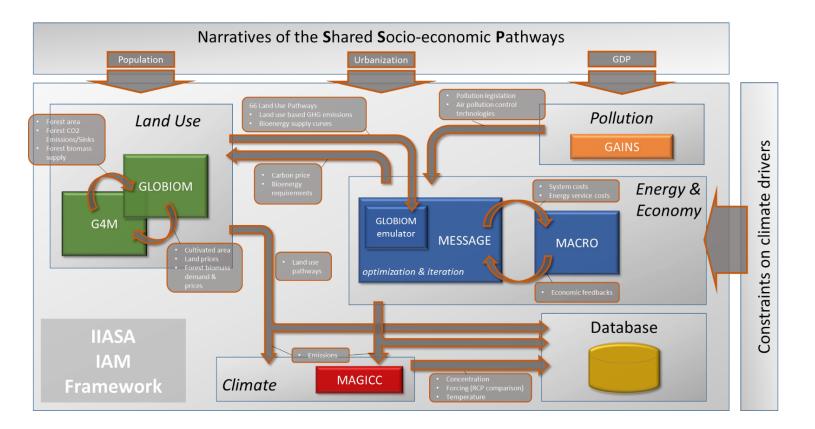
Complex IAMs


Figure 140: Linkages between the major systems in GCAM

Source: Calvin et al. (2019).

Limits of economic models Integrated assessment models Scenarios The DICE model Social cost of carbon Other IAMs

Figure 141: The main land use sectors of GLOBIOM

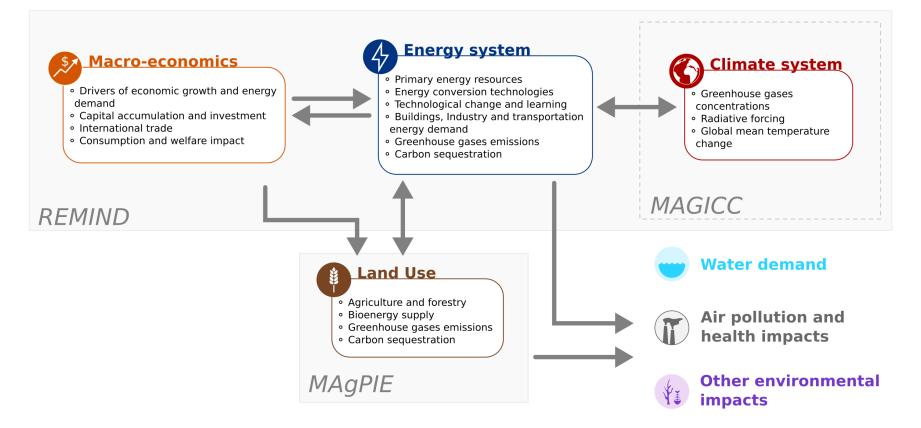


Source: https://iiasa.github.io/GLOBIOM.

The DICE model Social cost of carbo Other IAMs

Complex IAMs

Figure 142: Overview of the IIASA IAM framework


Source: https:

//docs.messageix.org/projects/global/en/latest/overview/index.html.

The DICE model Social cost of carbon Other IAMs

Complex IAMs

Figure 143: The Remind-MAgPIE framework

Source: www.pik-potsdam.de/en/institute/departments/

transformation-pathways/models/remind.

The DICE model Social cost of carbo Other IAMs

Criticisms of integrated assessment models

"IAM-based analyses of climate policy create a perception of knowledge and precision that is illusory and can fool policymakers into thinking that the forecasts the models generate have some kind of scientific legitimacy" (Pindyck, 2017)

- Certain inputs, such as the discount rate, are arbitrary
- There is a lot of uncertainty about climate sensitivity and the temperature trajectory
- Modeling damage functions is arbitrary
- IAMs are unable to consider tail risk

Climate scenarios Shared socioeconomic pathways NGFS scenarios

Scenarios

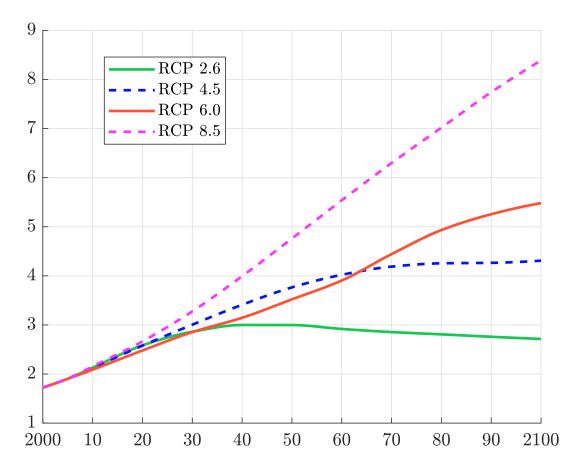
Figure 144: Scenario evaluation

Climate scenarios Shared socioeconomic pathways NGFS scenarios

Climate scenarios

- The representative concentration pathways (RCPs) IPCC AR5
- The IEA scenarios
- The $1.5^{\circ}C$ scenarios SR15
- The scenarios for the future published IPCC AR6

Climate scenarios Shared socioeconomic pathways NGFS scenarios

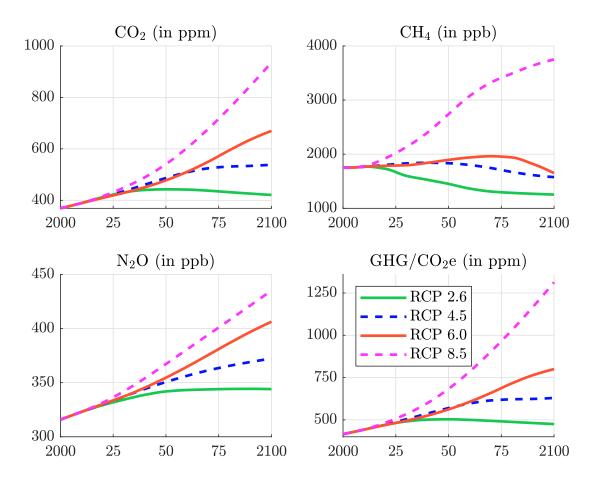

Climate scenarios

- RCP 2.6: GHG emissions start declining by 2020 and go to zero by 2100 (IMAGE)
- RCP 4.5: GHG emissions peak around 2040, and then decline (MiniCAM)
- **③** RCP 6.0: GHG emissions peak around 2080, and then decline (AIM)
- RCP 8.5: GHG emissions continue to rise throughout the 21st century (MESSAGE)

Climate scenarios Shared socioeconomic pathways NGFS scenarios

Climate scenarios

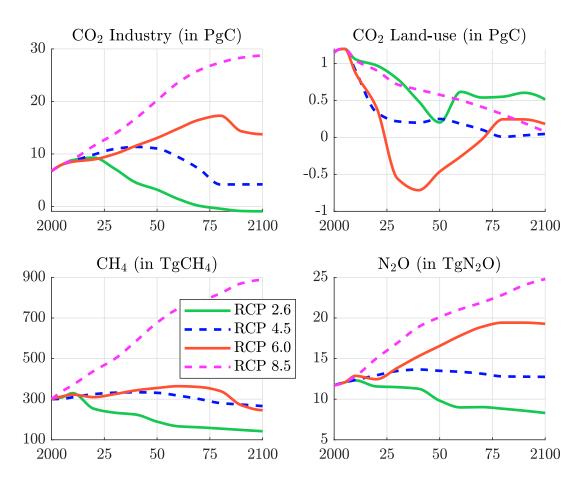
Figure 145: Total radiative forcing (in W/m^2)



Source: https://tntcat.iiasa.ac.at/RcpDb.

Climate scenarios Shared socioeconomic pathways NGFS scenarios

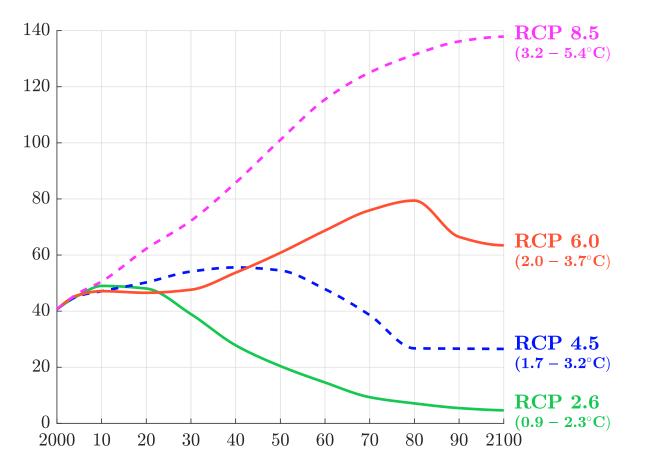
Climate scenarios The RCP scenarios



Source: https://tntcat.iiasa.ac.at/RcpDb.

Climate scenarios Shared socioeconomic pathways NGFS scenarios

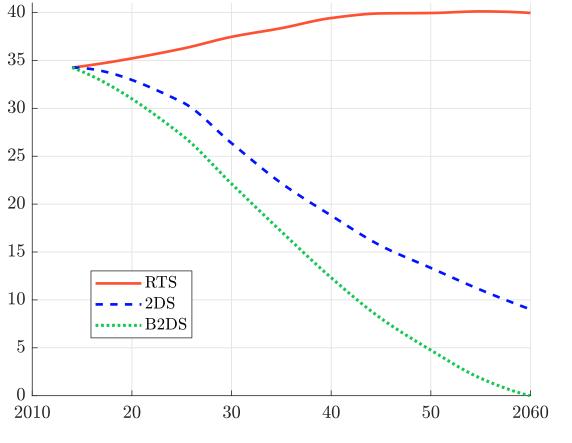
Climate scenarios The RCP scenarios


Figure 147: Greenhouse gas emissions trajectory

Source: https://tntcat.iiasa.ac.at/RcpDb.

Climate scenarios Shared socioeconomic pathways NGFS scenarios

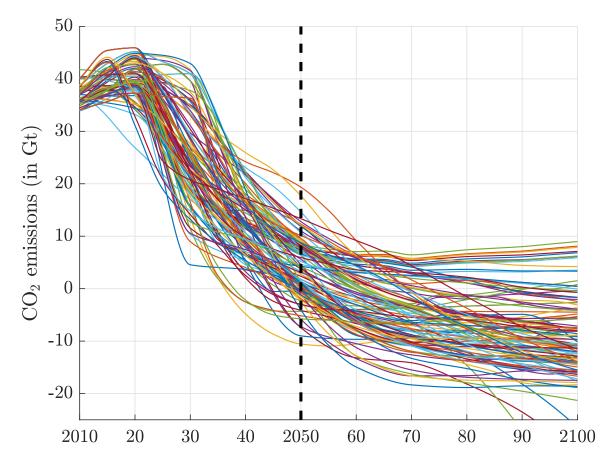
Climate scenarios


Figure 148: Total GHG emissions trajectory (in GtCO₂e)

Climate scenarios Shared socioeconomic pathways NGFS scenarios

Climate scenarios The IEA scenarios

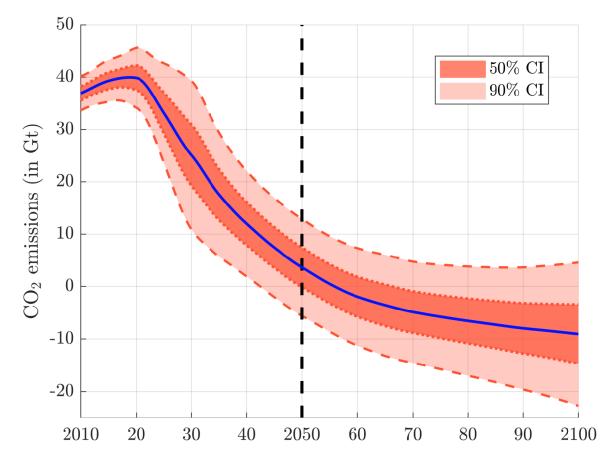
Figure 149: Direct CO₂ emissions (in Gt)



Source: IEA (2017).

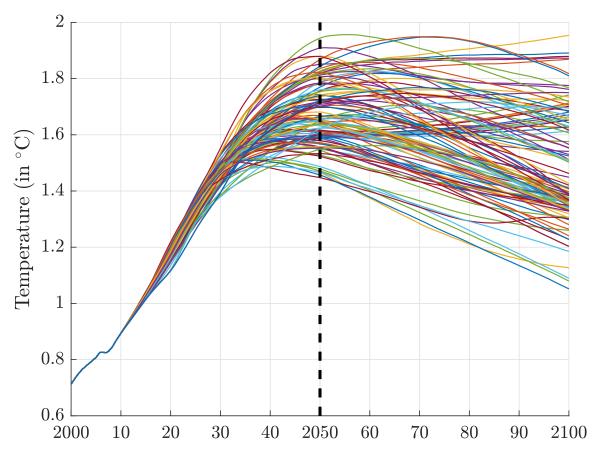
Climate scenarios Shared socioeconomic pathways NGFS scenarios

Climate scenarios The 1.5°C scenarios


Figure 150: IPCC $1.5^{\circ}C$ scenarios of CO₂ emissions

Climate scenarios Shared socioeconomic pathways NGFS scenarios

Climate scenarios The $1.5^{\circ}C$ scenarios


Figure 151: Confidence interval of the average IPCC $1.5^{\circ}C$ scenario

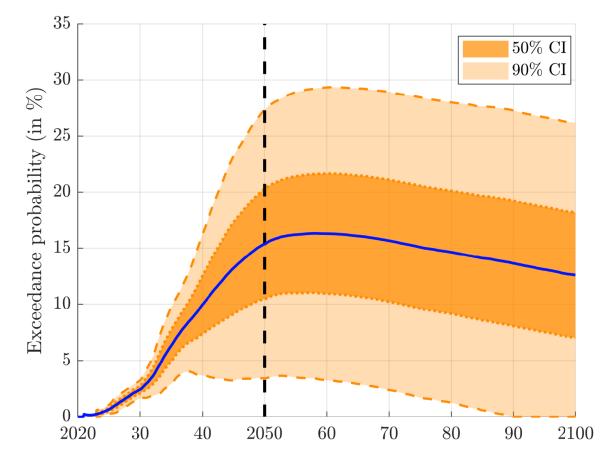
Climate scenarios Shared socioeconomic pathways NGFS scenarios

Climate scenarios The $1.5^{\circ}C$ scenarios


Figure 152: IPCC $1.5^{\circ}C$ scenarios of the global mean temperature

Climate scenarios Shared socioeconomic pathways NGFS scenarios

Climate scenarios


Figure 153: Confidence interval of the exceedance probability $Pr \{T > 1.5^{\circ}C\}$

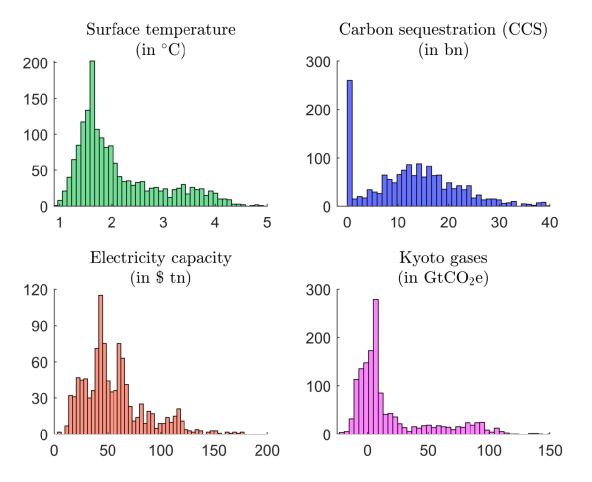
Climate scenarios Shared socioeconomic pathways NGFS scenarios

Climate scenarios The $1.5^{\circ}C$ scenarios

Figure 154: Confidence interval of the exceedance probability $Pr \{T > 2^{\circ}C\}$

Climate scenarios Shared socioeconomic pathways NGFS scenarios

Climate scenarios

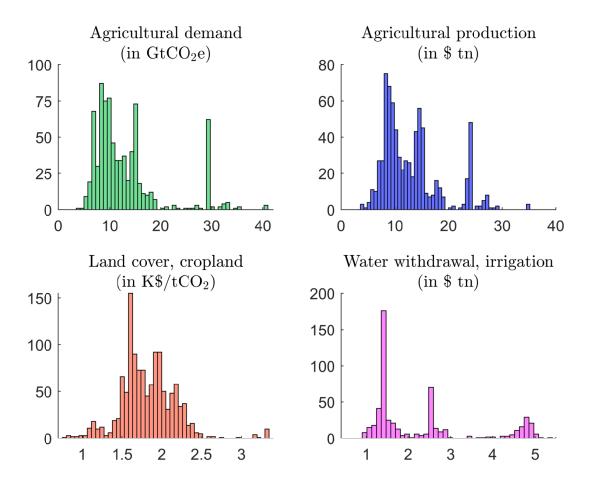

The new dataset contains 188 models, 1 389 scenarios, 244 countries and regions, and 1 791 variables, which can be split into six main categories:

- Agriculture: agricultural demand, crop, food, livestock, production, etc.
- Capital cost: coal, electricity, gas, hydro, hydrogen, nuclear, etc.
- Energy: capacity, efficiency, final energy, lifetime, OM cost, primary/secondary energy, etc.
- GHG impact: carbon sequestration, concentration, emissions, forcing, temperature, etc.
- Natural resources: biodiversity, land cover, water consumption, etc.
- Socio-economic variables: capital formation, capital stock, consumption, discount rate, employment, expenditure, export, food demand, GDP, Gini coefficient, import, inequality, interest rate, investment, labour supply, policy cost, population, prices, production, public debt, government revenue, taxes, trade, unemployment, value added, welfare, etc.

Climate scenarios Shared socioeconomic pathways NGFS scenarios

Climate scenarios The AR6 scenarios

Figure 155: Histogram of some AR6 output variables by 2100



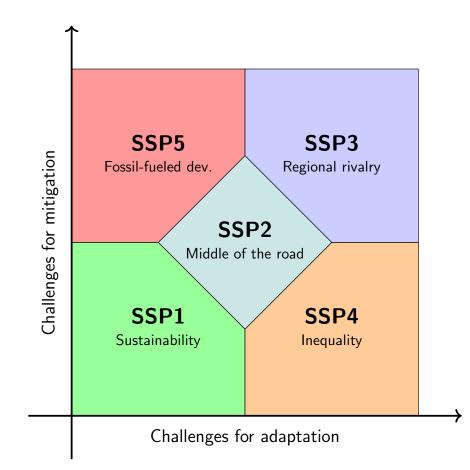
Source: https://data.ene.iiasa.ac.at/ar6.

Climate scenarios Shared socioeconomic pathways NGFS scenarios

Climate scenarios The AR6 scenarios

Figure 156: Histogram of some AR6 output variables by 2100

Source: https://data.ene.iiasa.ac.at/ar6.

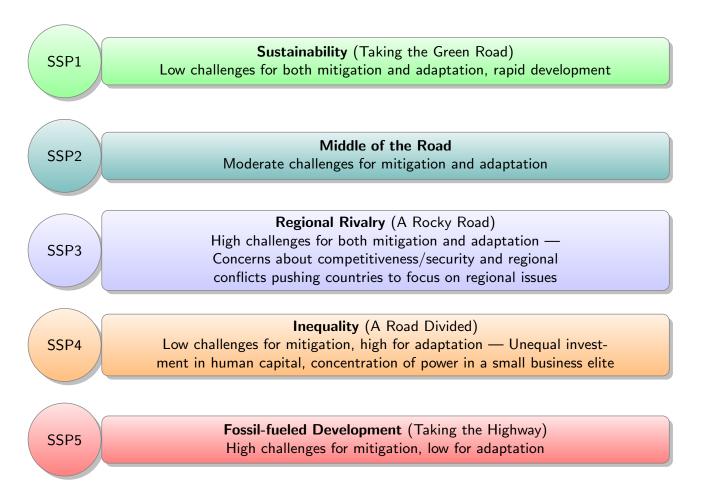

Climate scenarios Shared socioeconomic pathways NGFS scenarios

Shared socioeconomic pathways

"The SSP narratives [are] a set of five qualitative descriptions of future changes in demographics, human development, economy and lifestyle, policies and institutions, technology, and environment and natural resources. [...] Development of the narratives drew on expert opinion to (1) identify key determinants of the challenges [to mitigation and adaptation] that were essential to incorporate in the narratives and (2) combine these elements in the narratives in a manner consistent with scholarship on their inter-relationships. The narratives are intended as a description of plausible future conditions at the level of large world regions that can serve as a basis for integrated scenarios of emissions and land use, as well as climate impact, adaptation and vulnerability analyses." (O'Neill et al., 2017)

Shared socioeconomic pathways

Figure 157: The shared socioeconomic pathways


Source: O'Neill et al. (2017).

Limits of economic models Integrated assessment models Scenarios Climate s Shared so NGFS sce

Climate scenarios Shared socioeconomic pathways NGFS scenarios

Shared socioeconomic pathways

Figure 158: The shared socioeconomic pathways

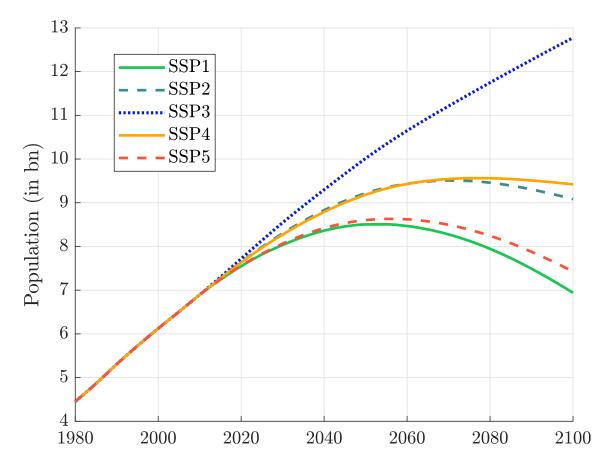
Source: O'Neill et al. (2017).

Shared socioeconomic pathways Relationship with the ESG dimensions

E The mitigation/adaptation trade-off is obviously an environmental issue, but the SSPs encompass other environmental narratives, e.g. land use, energy efficiency and green economy

S The social dimension is the central theme of SSPs, and concerns demography, wealth, inequality & poverty, health, education, employment, and more generally the evolution of society. This explains that SSPs and SDGs are highly interconnected

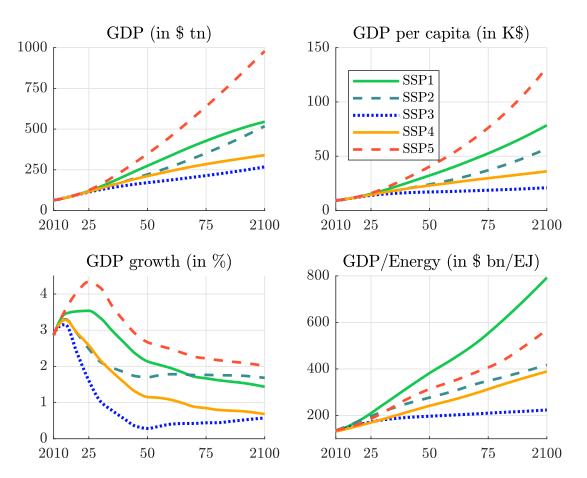
G Finally, the governance dimension is present though two major themes: international fragmentation or cooperation, and the political/economic system, including corruption, stability, rule of law, etc.


Climate scenarios Shared socioeconomic pathways NGFS scenarios

Shared socioeconomic pathways

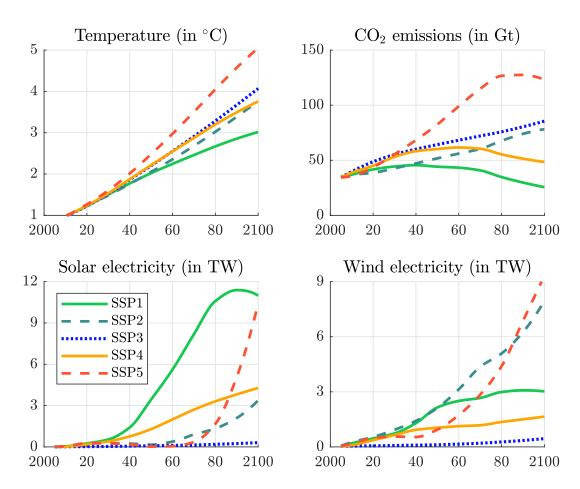
- SSP1: IMAGE (PBL)
- SSP2: MESSAGE-GLOBIOM (IIASA)
- SSP3: AIM/CGE (NIES)
- SSP4: GCAM (PNNL)
- SSP5: REMIND-MAGPIE (PIK) and WITCH-GLOBIOM (FEEM)

Shared socioeconomic pathways


Figure 159: SSP demography projections

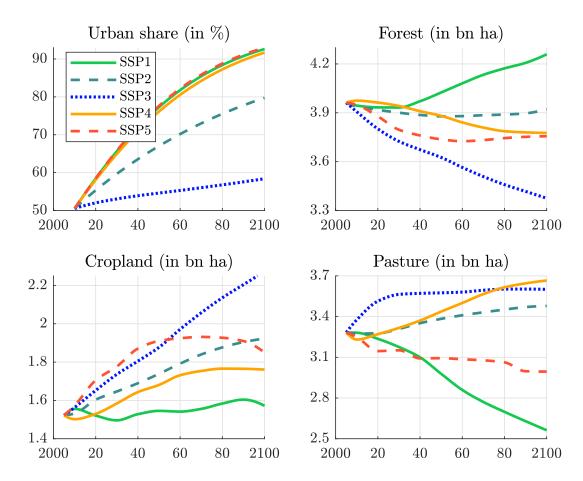
Climate scenarios Shared socioeconomic pathways NGFS scenarios

Shared socioeconomic pathways


Figure 160: SSP economic projections

Climate scenarios Shared socioeconomic pathways NGFS scenarios

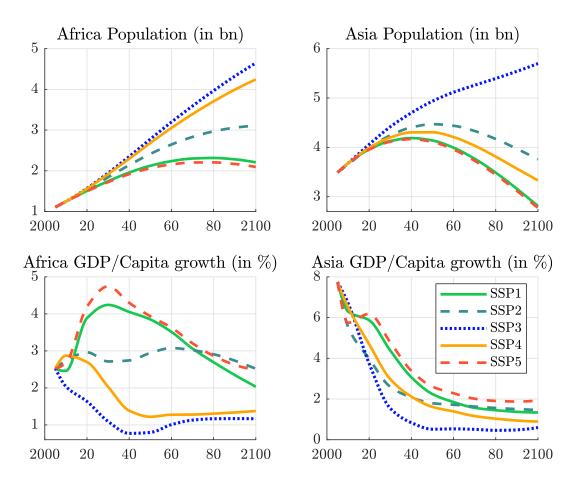
Shared socioeconomic pathways


Figure 161: SSP environmental projections

Shared socioeconomic pathways NGFS scenarios

Shared socioeconomic pathways

Figure 162: SSP land use projections



Limits of economic models Climate scenarios Integrated assessment models Scenarios NGFS scenarios

Shared socioeconomic pathways

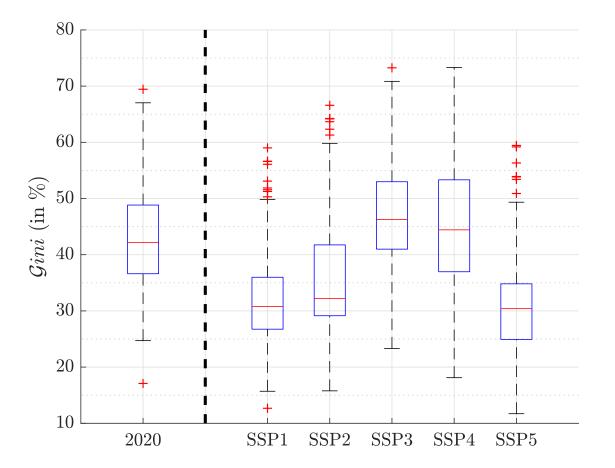

Shared socioeconomic pathways

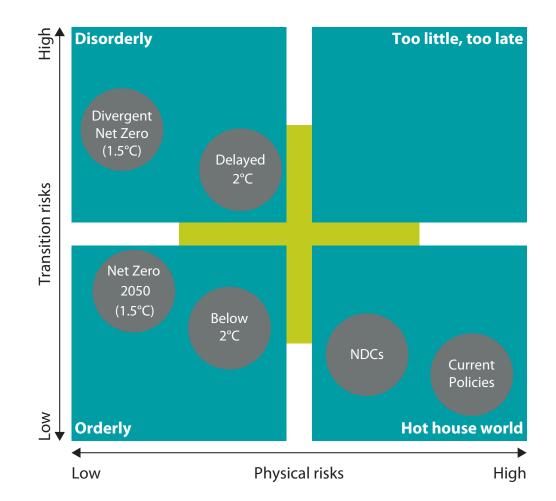
Figure 163: Example of SSP regional differences

Shared socioeconomic pathways

Figure 164: Gini coefficient projections by 2100

Climate scenarios Shared socioeconomic pathways NGFS scenarios

NGFS scenarios


Figure 165: Network of Central Banks and Supervisors for Greening the Financial System (NGFS)

Climate scenarios Shared socioeconomic pathways NGFS scenarios

NGFS scenarios

Figure 166: NGFS scenarios framework

Climate scenarios Shared socioeconomic pathways NGFS scenarios

NGFS scenarios

- Orderly scenarios #1 Net zero 2050 (NZ) #2 Below 2°C (B2D)
- Disorderly scenarios
 - #3 Divergent net zero (DNZ)
 - #4 Delayed transition (DT)
- Hot house world scenarios
 - #5 Nationally determined contributions (NDC)
 - **#6** Current policies (CP)

Climate scenarios Shared socioeconomic pathways NGFS scenarios

NGFS scenarios

Figure 167: Physical and transition risk level of NGFS scenarios

		Physical risk	Transition risk					
Category	Scenario	Policy ambition	Policy reaction	Technology change	Carbon dioxide removal ⁻	Regional policy variation *		
Orderly	Net Zero 2050	1.4°C	Immediate and smooth	Fast change	Medium-high use	Medium variation		
	Below 2°C	1.6°C	Immediate and smooth	Moderate change	Medium-high use	Low variation		
Disorderly	Divergent Net Zero	1.4°C	Immediate but divergent across sectors	Fast change	Low-medium use	Medium variation		
	Delayed Transition	1.6 °C	Delayed	Slow / Fast change	Low-medium use	High variation		
Hot house world	Nationally Determined Contributions (NDCs)	2.6°C	NDCs	Slow change	Low-medium use	Medium variation		
	Current Policies	3°C +	Non-currente policies	Slow change	Low use	Low variation		

Climate scenarios Shared socioeconomic pathways NGFS scenarios

NGFS scenarios

Variables (economic)

- Central bank intervention rate
- Domestic demand
- Effective exchange rate
- Exchange rate
- Exports (goods and services)
- Gross Domestic Product (GDP)
- Gross domestic income
- Imports (goods and services)
- Inflation rate
- Long term & real interest rates
- Trend output for capacity utilisation
- Unemployment

Variables (energy)

- Coal price
- Gas price
- Oil price
- Quarterly consumption of coal
- Quarterly consumption of gas
- Quarterly consumption of oil
- Quarterly consumption of renewables
- Total energy consumption

Models (IPCC)

- Meta-model: NiGEM 1.21
- Sub-models:
 - GCAM 5.3MESSAGE-GLOBIOM
 - 1.1
 - REMIND-MAgPIE 2.1-4.2

6 scenarios

- Net Zero 2050 (NZ)
- **2** Below 2°C (B2D)
- Oivergent Net Zero (DNZ)
- Oblaged Transition (DT)
- Notionally Determined Contribution (NDC)
- Current Policies (CP)

Climate scenarios Shared socioeconomic pathways NGFS scenarios

NGFS scenarios

Table 85: Impact of climate change on the GDP loss by 2050 (GCAM)

Risk	B2D	CP	DNZ	DT	NDC	NZ
Chronic physical risk	-3.09	-5.64	-2.35	-3.28	-5.15	-2.56
Transition risk	-0.75		-3.66	-1.78	-0.89	-0.88
Combined risk	-3.84	-5.64	-6.00	-5.05	-6.03	-3.44
Combined + business confidence			-6.03	-5.09		

Limits of economic models Integrated assessment models Scenarios Climate scenarios Shared soci NGFS scenarios

Climate scenarios Shared socioeconomic pathways NGFS scenarios

NGFS scenarios

Table 86: Impact of climate change on the GDP loss by 2050 (MESSAGEix-GLOBIOM)

Risk	B2D	CP	DNZ	DT	NDC	NZ
Chronic physical risk	-2.05	-5.26	-1.55	-2.64	-4.78	-1.59
Transition risk	-1.46		-10.00	-10.77	-1.39	-3.26
Combined risk	-3.51	-5.26	-11.53	-13.37	-6.16	-4.84
Combined + business confidence			-11.57	-13.40		

Climate scenarios Shared socioeconomic pathways NGFS scenarios

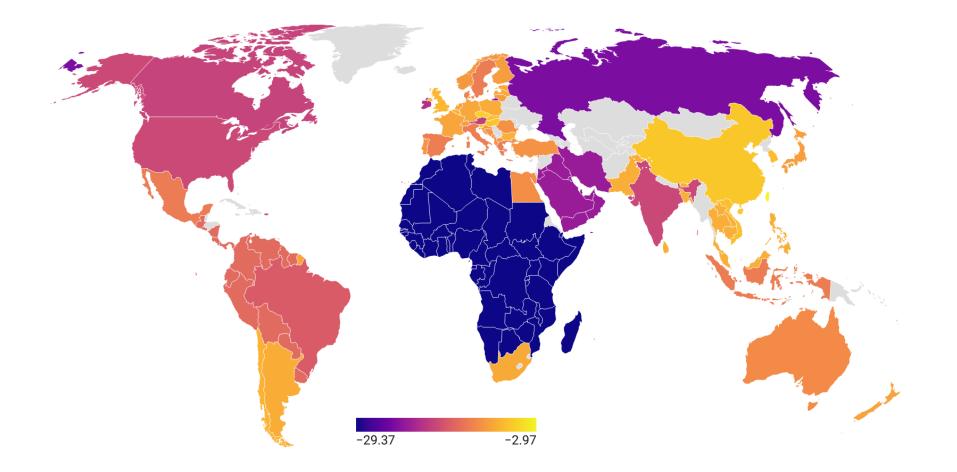
NGFS scenarios

Table 87: Impact of climate change on the GDP loss by 2050 (REMIND-MAgPIE)

Risk	B2D	CP	DNZ	DT	NDC	NZ
Chronic physical risk	-2.24	-6.05	-1.67	-2.65	-5.41	-1.76
Transition risk	-0.78		-3.01	-1.95	-0.33	-1.46
Combined risk	-3.02	-6.05	-4.68	-4.59	-5.73	-3.21
Combined + business confidence			-4.70	-4.63		

Climate scenarios Shared socioeconomic pathways NGFS scenarios

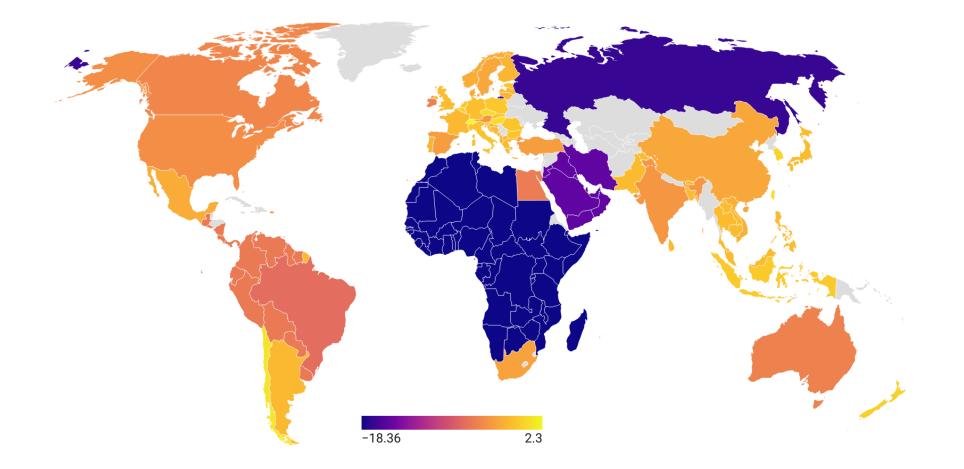
NGFS scenarios


Table 88: Impact of climate change on the GDP loss by 2050(MESSAGEix-GLOBIOM)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Asia -1.50 -7.29 -5.44 -8.76 -6.78 -1.38 Australia -4.11 -3.90 -11.03 -11.74 -5.77 -5.19 Brazil -4.43 -5.92 -13.15 -15.90 -6.67 -6.65 Canada -1.02 -2.37 -15.07 -18.12 -4.33 -4.87 China -2.33 -4.97 -5.13 -6.73 -4.67 -2.76 Developing Europe -0.28 -3.11 -0.56 -7.38 -2.73 0.39 Europe -1.02 -2.84 -9.64 -11.02 -4.01 -1.62 France -1.15 -2.80 -8.35 -9.48 -3.68 -1.56 Germany -0.77 -2.38 -8.58 -9.38 -3.63 -1.21 India -3.45 -8.61 -16.43 -17.74 -8.71 -3.86 Italy -0.15 -3.69 -9.23 -12.88 -4.85 -0.89 Japan -1.26 -4.14 -7.16 -10.05 -4.61 -1.40 Latam -4.35 -6.10 -12.70 -14.58 -6.97 -5.74 Middle East -9.97 -7.98 -22.03 -21.96 -10.28 -15.24 Russia -12.18 -2.26 -23.46 -23.80 -7.54 -17.11 South Africa -2.02 -5.06 -7.24 -9.16 -5.38 -3.04 South Korea 0.11 -3.49 -3.23 -7							
Australia -4.11 -3.90 -11.03 -11.74 -5.77 -5.19 Brazil -4.43 -5.92 -13.15 -15.90 -6.67 -6.65 Canada -1.02 -2.37 -15.07 -18.12 -4.33 -4.87 China -2.33 -4.97 -5.13 -6.73 -4.67 -2.76 Developing Europe -0.28 -3.11 -0.56 -7.38 -2.73 0.39 Europe -1.02 -2.84 -9.64 -11.02 -4.01 -1.62 France -1.15 -2.80 -8.35 -9.48 -3.68 -1.56 Germany -0.77 -2.38 -8.58 -9.38 -3.63 -1.21 India -3.45 -8.61 -16.43 -17.74 -8.71 -3.86 Italy -0.15 -3.69 -9.23 -12.88 -4.85 -0.89 Japan -1.26 -4.14 -7.16 -10.05 -4.61 -1.40 Latam -4.35 -6.10 -12.70 -14.58 -6.97 -5.74 Middle East -9.97 -7.98 -22.03 -21.96 -10.28 -15.24 Russia -12.18 -2.26 -23.46 -23.80 -7.54 -17.11 South Africa -2.02 -5.06 -7.24 -9.16 -5.38 -3.04 South Korea 0.11 -3.49 -3.23 -7.57 -3.33 0.12 Spain -2.41 -3.81 -12.49 $-$	Africa	-13.58	-7.50	-27.35	-29.37	-11.78	-18.36
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Asia	-1.50	-7.29	-5.44	-8.76	-6.78	-1.38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Australia	-4.11	-3.90	-11.03	-11.74	-5.77	-5.19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Brazil	-4.43	-5.92	-13.15	-15.90	-6.67	-6.65
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Canada	-1.02	-2.37	-15.07	-18.12	-4.33	-4.87
$\begin{array}{llllllllllllllllllllllllllllllllllll$	China	-2.33	-4.97	-5.13	-6.73	-4.67	-2.76
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Developing Europe	-0.28	-3.11	-0.56	-7.38	-2.73	0.39
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Europe	-1.02	-2.84	-9.64	-11.02	-4.01	-1.62
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	France	-1.15	-2.80	-8.35	-9.48	-3.68	-1.56
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Germany	-0.77	-2.38	-8.58	-9.38	-3.63	-1.21
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	India	-3.45	-8.61	-16.43	-17.74	-8.71	-3.86
Latam -4.35 -6.10 -12.70 -14.58 -6.97 -5.74 Middle East -9.97 -7.98 -22.03 -21.96 -10.28 -15.24 Russia -12.18 -2.26 -23.46 -23.80 -7.54 -17.11 South Africa -2.02 -5.06 -7.24 -9.16 -5.38 -3.04 South Korea 0.11 -3.49 -3.23 -7.57 -3.33 0.12 Spain -2.41 -3.81 -12.49 -12.89 -5.41 -3.30 Switzerland 2.32 -2.25 -9.47 -10.35 -2.18 2.30 United Kingdom -0.86 -1.90 -6.50 -8.05 -2.56 -1.33 United States -2.67 -4.38 -15.37 -17.66 -6.31 -4.36	Italy	-0.15	-3.69	-9.23	-12.88	-4.85	-0.89
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Japan	-1.26	-4.14	-7.16	-10.05	-4.61	-1.40
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Latam	-4.35	-6.10	-12.70	-14.58	-6.97	-5.74
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Middle East	-9.97	-7.98	-22.03	-21.96	-10.28	-15.24
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Russia	-12.18	-2.26	-23.46	-23.80	-7.54	-17.11
$\begin{array}{llllllllllllllllllllllllllllllllllll$	South Africa	-2.02	-5.06	-7.24	-9.16	-5.38	-3.04
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	South Korea	0.11	-3.49	-3.23	-7.57	-3.33	0.12
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Spain	-2.41	-3.81	-12.49	-12.89	-5.41	-3.30
United States -2.67 -4.38 -15.37 -17.66 -6.31 -4.36	Switzerland	2.32	-2.25	-9.47	-10.35	-2.18	2.30
United States -2.67 -4.38 -15.37 -17.66 -6.31 -4.36	United Kingdom	-0.86	-1.90	-6.50	-8.05	-2.56	-1.33
World -3.51 -5.26 -11.53 -13.37 -6.16 -4.84	United States	-2.67	-4.38	-15.37	-17.66	-6.31	-4.36
	World	-3.51	-5.26	-11.53	-13.37	-6.16	-4.84

Climate scenarios Shared socioeconomic pathways NGFS scenarios

NGFS scenarios


Figure 168: GDP impact by 2050 (% change from baseline) — Delayed transition scenario

Climate scenarios Shared socioeconomic pathways NGFS scenarios

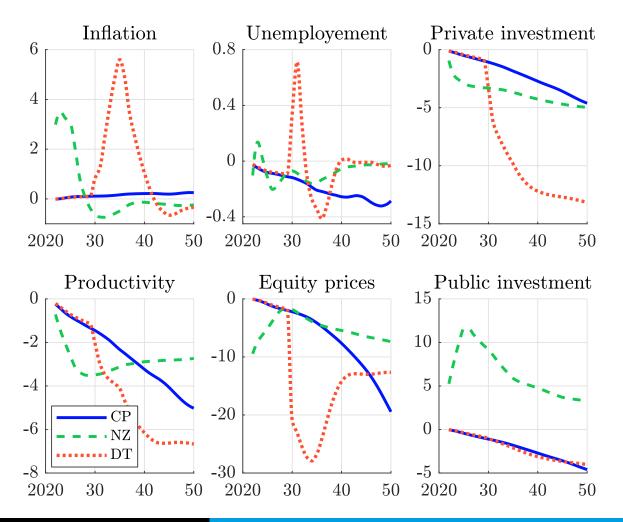

NGFS scenarios

Figure 169: GDP impact by 2050 (% change from baseline) — Net zero 2050 scenario

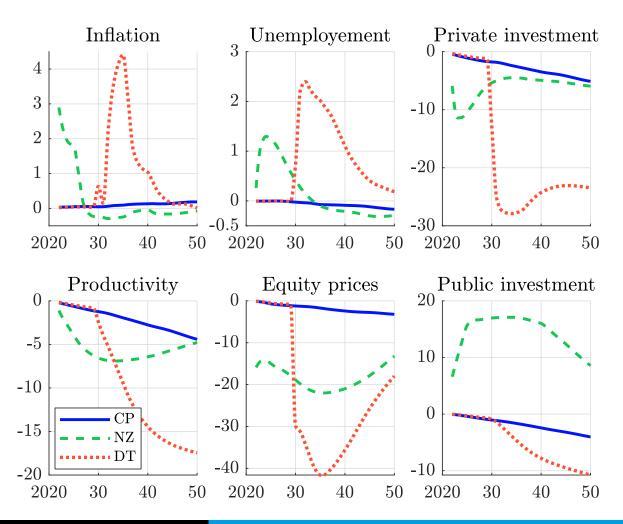
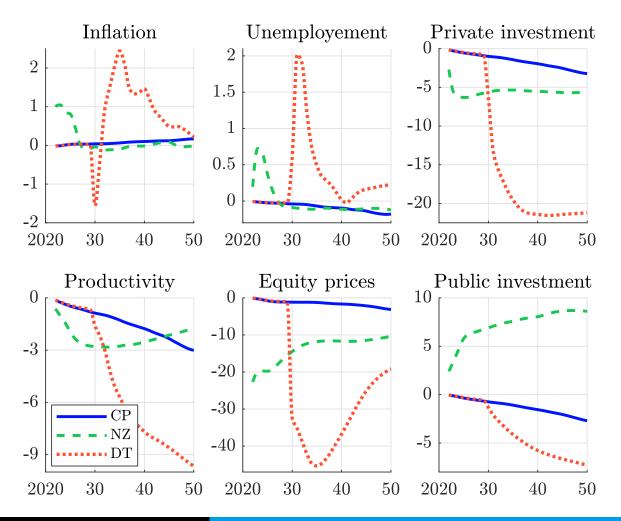

NGFS scenarios

Figure 170: Impact of climate scenarios on economics (% change from baseline) — China

NGFS scenarios


Figure 171: Impact of climate scenarios on economics (% change from baseline) — United States

Thierry Roncalli

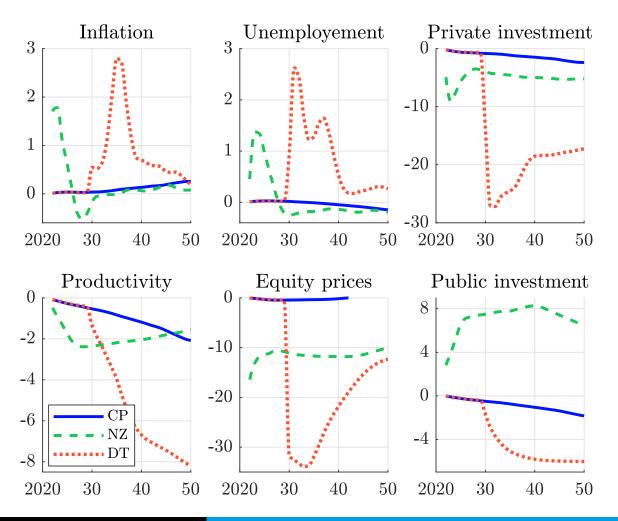

NGFS scenarios

Figure 172: Impact of climate scenarios on economics (% change from baseline) — France

NGFS scenarios

Figure 173: Impact of climate scenarios on economics (% change from baseline) — United Kingdom

Course 2022-2023 in Sustainable Finance Lecture 8. Climate Risk Measures

Thierry Roncalli*

*Amundi Asset Management²²

*University of Paris-Saclay

March 2023

²²The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

Global warming potential Carbon emissions Carbon intensity

How to define the carbon footprint?

Wackernagel and Rees (1996) published the seminal book on the ecological footprint:

"the carbon footprint stands for a certain amount of gaseous emissions that are relevant to climate change and associated with human production or consumption activities"

Wiedmann and Minx (2008) proposed this definition:

"The carbon footprint is a measure of the exclusive total amount of carbon dioxide emissions that is directly and indirectly caused by an activity or is accumulated over the life stages of a product"

Carbon footprint

- The carbon footprint is measured in carbon dioxide equivalent $(CO_2e) \Rightarrow$ a common unit
- We have:

equivalent mass of $\mathrm{CO}_2 = \mathrm{mass}$ of the gas $\times \, \mathrm{gwp}$ of the gas

- Examples (IPCC, AR5, 2013):
 - 1 kg of methane corresponds to 28 kg of CO_2
 - $\bullet~1~\text{kg}$ of nitrous oxide corresponds to 265 kg of CO_2
- The carbon footprint is equal to:

$$m=\sum_{i=1}^n m_i\cdot \operatorname{gwp}_i$$

• The units are: $kgCO_2e$, tCO_2e , $ktCO_2e$, $MtCO_2e$ and $GtCO_2e$

Global warming potential Carbon emissions Carbon intensity

Carbon footprint

Example #1

We consider a company A that emits 3017 tonnes of CO_2 , 10 tonnes of CH_4 and 1.8 tonnes of N_2O . For the company B, the GHG emissions are respectively equal to 2302 tonnes of CO_2 , 32 tonnes of CH_4 and 3.0 tonnes of N_2O .

The mass of CO_2 equivalent for companies A and B is equal to:

$$m_A = 3017 \times 1 + 10 \times 28 + 1.8 \times 265 = 3774 \text{ tCO}_2 \text{e}$$

and:

$$m_B = 2302 \times 1 + 32 \times 28 + 3.0 \times 265 = 3993 \text{ tCO}_2\text{e}$$

Global warming potential Carbon emissions Carbon intensity

Estimation of the global warming potential

- According to IPCC (2007), GWP is defined as "the cumulative radiative forcing, both direct and indirect effects, over a specified time horizon resulting from the emission of a unit mass of gas related to some reference gas".
- Each gas differs in their capacity to absorb the energy (radiative efficiency) and how long it stays in the atmosphere (lifetime)
- The impact of a gas on global warming depends on the combination of radiative efficiency and lifetime

Global warming potential Carbon emissions Carbon intensity

Estimation of the global warming potential

The mathematics of GWP

• The mathematical definition of the global warming potential is:

$$\operatorname{gwp}_{i}(t) = \frac{\operatorname{Agwp}_{i}(t)}{\operatorname{Agwp}_{0}(t)} = \frac{\int_{0}^{t} RF_{i}(s) \, \mathrm{d}s}{\int_{0}^{t} RF_{0}(s) \, \mathrm{d}s} = \frac{\int_{0}^{t} A_{i}(s) \, \mathbf{S}_{i}(s) \, \mathrm{d}s}{\int_{0}^{t} A_{0}(s) \, \mathbf{S}_{0}(s) \, \mathrm{d}s}$$

where $A_i(t)$ is the radiative efficiency value of gas i, $\mathbf{S}_i(t)$ is the decay function and i = 0 is the reference gas (e.g, CO₂)

• We assume that:

$$\mathbf{S}_{i}(t) = \sum_{j=1}^{m} a_{i,j} e^{-\lambda_{i,j}t}$$

where
$$\sum_{j=1}^{m} a_{i,j} = 1$$

We obtain:

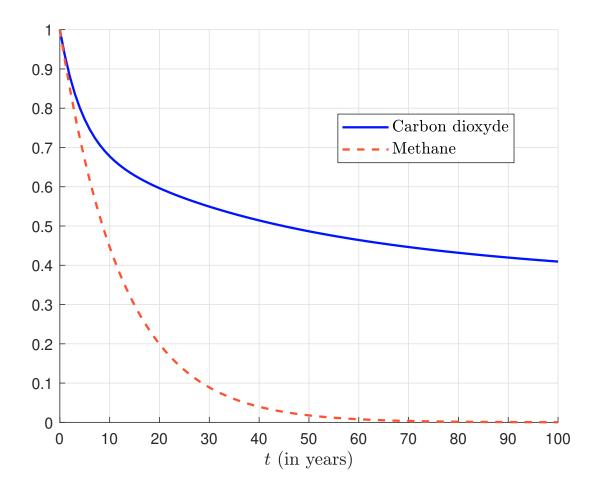
$$gwp_{i}(t) = \frac{A_{i} \sum_{j=1}^{m} a_{i,j} \lambda_{i,j}^{-1} \left(1 - e^{-\lambda_{i,j}t}\right)}{A_{0} \sum_{j=1}^{m} a_{0,j} \lambda_{0,j}^{-1} \left(1 - e^{-\lambda_{0,j}t}\right)}$$

Global warming potential Carbon emissions Carbon intensity

Estimation of the global warming potential

- Carbon dioxide
 - $A_{\rm CO_2} = 1.76 \times 10^{-18}$
 - The impulse response function is:

$$S_{CO_{2}}(t) = 0.2173 + 0.2240 \cdot \exp\left(-\frac{t}{394.4}\right) + 0.2824 \cdot \exp\left(-\frac{t}{36.54}\right) + 0.2763 \cdot \exp\left(-\frac{t}{4.304}\right)$$


- Methane
 - $A_{\rm CH_4} = 2.11 \times 10^{-16}$
 - The impulse response function is:

$$\mathbf{S}_{\mathrm{CH}_{4}}\left(t
ight)=\exp\left(-rac{t}{12.4}
ight)$$

Global warming potential Carbon emissions Carbon intensity

Estimation of the global warming potential

Figure 174: Fraction of gas remaining in the atmosphere

Source: Kleinberg(2020) & Author's calculations.

Global warming potential Carbon emissions Carbon intensity

Estimation of the global warming potential

Remark

- The decay function is a survival function
- The density function is equal to $f_i(t) = -\partial_t \mathbf{S}_i(t)$
- Let τ_i be random time that the gas remains in the atmosphere
- In the case of the exponential distribution $\mathcal{E}(\lambda)$, we have

$$\begin{aligned} \mathbf{S}_{i}\left(t\right) &= e^{-\lambda t} \\ f_{i}\left(t\right) &= \lambda e^{-\lambda} \\ \mathbb{E}\left[\tau_{i}\right] &= \frac{1}{\lambda} \end{aligned}$$

 \Rightarrow The survival function of the CH_4 gas is exponential with a mean time equal to 12.4 years ($\lambda=1/12.4$)

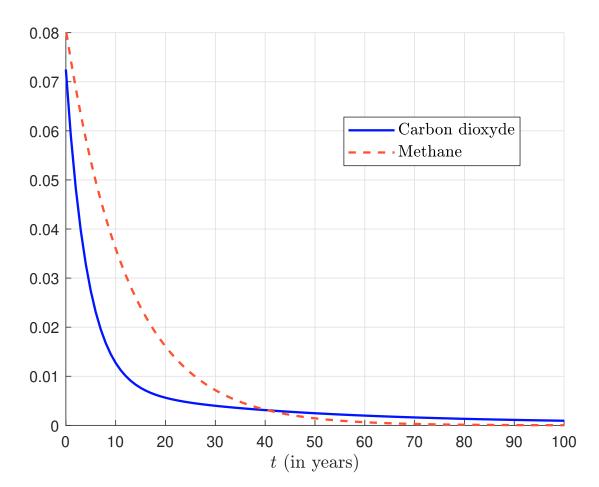
Global warming potential Carbon emissions Carbon intensity

Estimation of the global warming potential

• In the general case, the probability density function is equal to:

$$f_{i}(t) = -\partial_{t}\mathbf{S}_{i}(t) = \sum_{j=1}^{m} a_{i,j}\lambda_{i,j}e^{-\lambda_{i,j}t}$$

• The mean time \mathcal{T}_i is given by:


$$\mathcal{T}_{i} := \mathbb{E} [\tau_{i}] = \int_{0}^{\infty} sf_{i}(s) ds$$
$$= \sum_{j=1}^{m} a_{i,j} \int_{0}^{\infty} \lambda_{i,j} se^{-\lambda_{i,j}s} ds$$
$$= \sum_{j=1}^{m} \frac{a_{i,j}}{\lambda_{i,j}}$$

Remark We have
$$\mathcal{T}_{\rm CH_4}=$$
 12.4 years, but $\mathcal{T}_{\rm CO_2}=\infty$

Global warming potential Carbon emissions Carbon intensity

Estimation of the global warming potential

Figure 175: Probability density function of the random time

Source: Kleinberg (2020) & Author's calculations.

Global warming potential Carbon emissions Carbon intensity

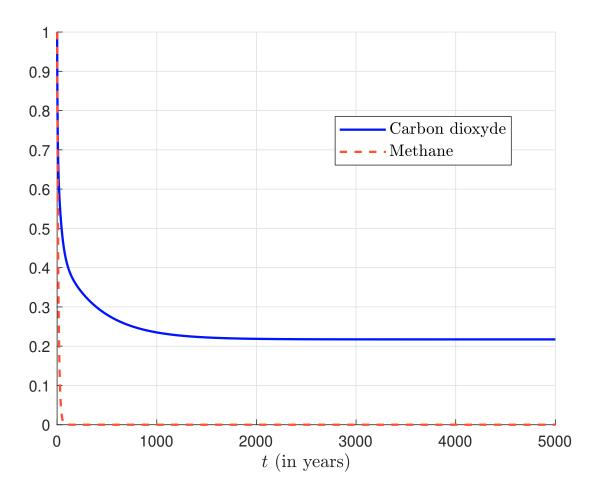
Estimation of the global warming potential

Remark

- $f_i(t)$ is an exponential mixture distribution where *m* is the number of mixture components
- $\mathcal{E}(\lambda_{i,j})$ is the probability distribution associated with the j^{th} component
- $a_{i,j}$ is the mixture weight of the j^{th} component

We have:

$$\mathcal{T}_{i} = \mathbb{E}\left[\tau_{i}\right] = \sum_{j=1}^{m} a_{i,j} \mathbb{E}\left[\tau_{i,j}\right] = \sum_{j=1}^{m} a_{i,j} \mathcal{T}_{i,j}$$

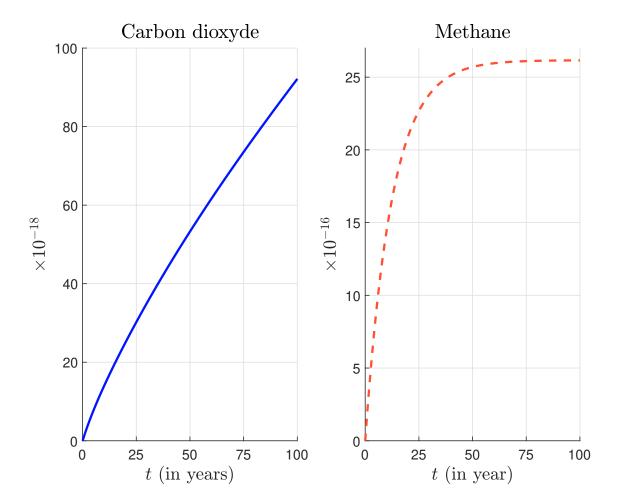

For the CO_2 gas, the exponential mixture distribution is defined by the following parameters:

j	1	2	3	4
a _{i,j}	0.2173	0.2240	0.2824	0.2763
$\lambda_{i,j}$ (×10 ³)	0.00	2.535	27.367	232.342
$\mathcal{T}_{i,j}$ (in years)	∞	394.4	36.54	4.304

Global warming potential Carbon emissions Carbon intensity

Estimation of the global warming potential

Figure 176: Survival function

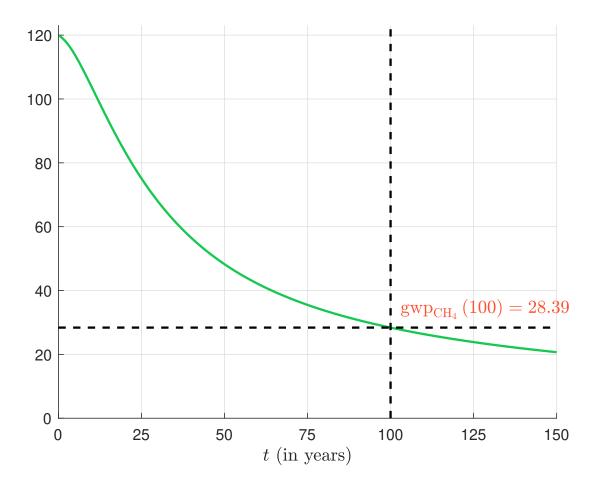


We have $S_{CO_2}(\infty) = 21.73\%!$

Global warming potential Carbon emissions Carbon intensity

Estimation of the global warming potential

Figure 177: Absolute global warming potential



Source: Kleinberg (2020) & Author's calculations.

Global warming potential Carbon emissions Carbon intensity

Estimation of the global warming potential

Figure 178: Global warming potential for methane

Source: Kleinberg (2020) & Author's calculations.

Global warming potential Carbon emissions Carbon intensity

Estimation of the global warming potential

We have:

- Agwp_{CO₂} (∞) = ∞
- $\operatorname{Agwp}_{\operatorname{CH}_4}(\infty) = A_{\operatorname{CH}_4} \times \mathcal{T}_{\operatorname{CH}_4} \propto 2.11 \times 12.4 = 26.164$
- The instantaneous global warming potential of the methane is equal to:

$$\operatorname{gwp}_{\operatorname{CH}_4}(0) = \frac{A_{\operatorname{CH}_4}}{A_{\operatorname{CO}_2}} = \frac{2.11 \times 10^{-16}}{1.76 \times 10^{-18}} \approx 119.9$$

• After 100 years, we obtain:

$$m gwp_{CH_4}$$
 (100) = 28.3853

This is the IPCC value!

- Because of the persistant regime of the carbon dioxyde, we have $\mathrm{gwp}_{\mathrm{CH}_4}\left(\infty\right)=0$
- We have:

$$\mathrm{gwp}_{\mathrm{CH}_{4}}\left(t
ight)\leq1\Leftrightarrow t\geq$$
 6 382 years

Global warming potential Carbon emissions Carbon intensity

Estimation of the global warming potential

Table 89: GWP values for 100-year time horizon

Name	Formula	AR2	AR4	AR5
Carbon dioxide	CO ₂	1	1	1
Methane	CH_4	21	25	28
Nitrous oxide	N_2O	310	298	265
Sulphur hexafluoride	SF_6	23 900	22 800	23 500
	$\overline{CHF_3}$	$\bar{1}1700$	$\overline{14800}$	12400
Hydrofluorocarbons	CH_2F_2	650	675	677
(HFC)	Etc.			
	CF ₄	6 5 0 0	7 3 9 0	6630
Perfluorocarbons	C_2F_6	9 200	12 200	11100
	Etc.			

Global warming potent Carbon emissions Carbon intensity

Consolidation accounting at the company level

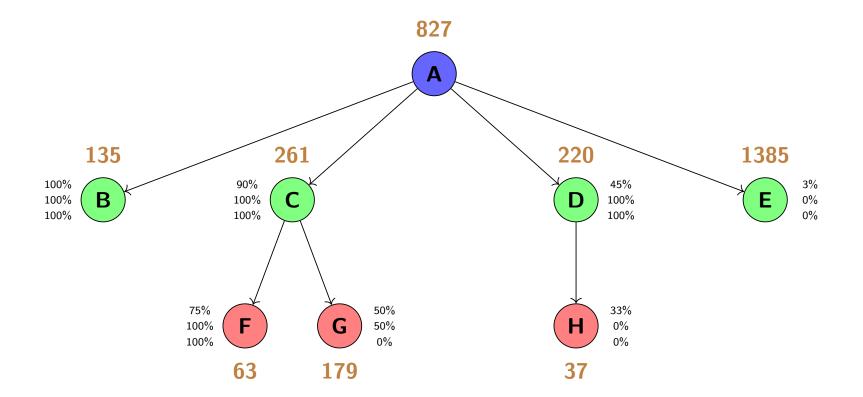
Two approaches:

- Equity share approach
- Ontrol approach
 - Financial control
 - Operational control

Consolidation accounting at the company level

Table 90: Percent of reported GHG emissions under each consolidation method

Accounting categories	GHG accouting based on						
	equity share	financial control	operational control				
Wholly owned asset	100%	100%	100%				
Group companies/subsidiaries	OWNR	100%	100%				
Associated/affiliated compa-	OWNR	0%	0%/100%				
nies							
Joint ventures/partnerships	OWNR	OWNR	0%/100%				
Fixed asset investments	0%	0%	0%				
Franchises	$\bar{0}\sqrt[6]{6}$						
Franchises	OWNR	100%	100%				


Source: GHG Protocol (2004, Table 1, page 19).

OWNR = Ownership ratio

Global warming potential Carbon emissions Carbon intensity

Consolidation accounting at the company level

Figure 179: Defining the organizational boundary of company A

For each company, the brown number corresponds to the carbon emissions in tCO_2e . The three figures at the right or left of the node corresponds respectively to the equity share, the financial control and the operational control

Consolidation accounting at the company level

- Equity share approach:
 - $\begin{aligned} \mathcal{CE}_{A} &= 827 + 100\% \times 135 + 90\% \times 261 + 45\% \times 220 + 0\% \times 1385 + \\ &90\% \times 75\% \times 63 + 90\% \times 50\% \times 179 + 45\% \times 33\% \times 37 \end{aligned}$
 - $= 1424.4 \mathrm{tCO_2e}$
- Financial control approach:
 - $\begin{aligned} \mathcal{CE}_{\mathcal{A}} &= 827 + 100\% \times 135 + 100\% \times 261 + 100\% \times 220 + 0\% \times 1385 + \\ 100\% \times 100\% \times 63 + 100\% \times 50\% \times 179 + 100\% \times 0\% \times 37 \end{aligned}$
 - $= 1595.50 \mathrm{tCO_2e}$
- Operational control approach:
 - $\begin{aligned} \mathcal{CE}_{A} &= 827 + 100\% \times 135 + 100\% \times 261 + 100\% \times 220 + 0\% \times 1385 + \\ & 100\% \times 100\% \times 63 + 100\% \times 0\% \times 179 + 100\% \times 0\% \times 37 \end{aligned}$
 - $= 1506.00 \mathrm{tCO_2e}$

Global warming potential Carbon emissions Carbon intensity

Scope 1, 2 and 3 of carbon emissions

GHG Protocol (www.ghgprotocol.org/corporate-standard)

- Scope 1 denotes direct GHG emissions occurring from sources that are owned and controlled by the issuer.
- Scope 2 corresponds to the indirect GHG emissions from the consumption of purchased electricity, heat or steam.
- Scope 3 are other indirect emissions (not included in scope 2) of the entire value chain. They can be divided into two main categories^a:
 - Upstream scope 3 emissions are defined as indirect carbon emissions related to purchased goods and services.
 - Downstream scope 3 emissions are defined as indirect carbon emissions related to sold goods and services.

^aThe upstream value chain includes all activities related to the suppliers whereas the downstream value chain refers to post-manufacturing activities.

Global warming potent Carbon emissions Carbon intensity

Scope 1, 2 and 3 of carbon emissions

Table 91: Examples of CDP reporting (CE in tCO₂e, year 2020)

Scope	Category	Sub-category	Amazon	Danone	ENEL	Pfizer	Netflix	Walmart
1			9 623 138	668 354	45 255 000	654 460	30 883	7 236 499
2 Location-ba		d (2a)	9 019 786	864710	4 990 685	551 577	28 585	11 031 800
Ζ	Market-based	(2b)	5 265 089	479 210	7 855 954	542 521	141	9 190 337
		Purchased goods and services	16 683 423	19 920 918	I	2 526 537	765 208	130 200 000
		Capital goods	13 202 065	1	1	191 894	116 366	645 328
		Fuel and energy related activities	1 248 847	283 764	1 061 268	203 093	12 287	3 327 874
	Unstroom	Upstream transportation and distribution	8 563 695	321 558	112 358	723 558	64 693	342 577
	Upstream	Waste generated in operations	16 628	152 789	3 161	14 940	1	869 927
		Business travel	313 043	1	l	35 128	41 439	37 439
		Employee commuting	306 033	 	I	48 414	19116	3 500 000
3		Upstream leased assets	1 223 903	1	l.	30 522	131	1
		Downstream transportation and distribution	2785676	$1\bar{6}2\bar{7}\bar{0}9\bar{0}$	+	7 295	+	5099
		Processing of sold products		1	l	l	1	l
	Downstream	Use of sold products	1 426 543	1885548	46 524 860	I I	952	32 211 000
		End-of-life treatment of sold products	0	782 649	l	1	1	130
		Downstream leased assets			I	 	349	130 000
		Franchises		l	I	l	1	1
		Investments		l I	l I	36 839	1	
	Scope 1 + 2a		18 642 924	1 533 064	50 245 685	1 206 037	59 468	18 268 299
	Scope 1 + 2b		14 888 227	1147564	53 110 954	1 196 981	31 024	16 426 836
	Scope 3 upstream		41 557 637	20 679 029	1176787	3774086	1019240	138 923 145
Total	Scope 3 downstream		4 212 219	4 295 287	46 524 860	44 134	1 301	32 346 229
	Scope 3		45 769 856	24 974 316	47 701 647	3818220	1 020 541	171 269 374
	Scope 1 + 2a	+ 3	64 412 780	26 507 380	97 947 332	5 024 257	1 080 009	189 537 673
	Scope 1 + 2b		60 658 083	26 121 880	100 812 601	5 015 201	1 051 565	187 696 210

Source: CDP database as of 01/07/2022 & Author's computation.

Global warming potential Carbon emissions Carbon intensity

Scope 1, 2 and 3 of carbon emissions

CDP questionnaire for corporates

- www.cdp.net/en/guidance/guidance-for-companies
- HTML, Word and PDF formats
- 129 pages and 16 sections: SC₁ (§C6.1), SC₂ (§C6.3) and SC₃ emissions (§C6.5) emissions intensities (§C6.10)

Computation of scope 1 emissions

- We allocate the activities to the three scopes
- Then, we apply an emission factor to each activity and each gas:

$$E_{g,h} = A_h \cdot \mathcal{EF}_{g,h}$$

where A_h is the h^{th} activity rate (also called activity data) and

- $\mathcal{EF}_{g,h}$ is the emission factor for the h^{th} activity and the g^{th} gas
 - *A_h* can be measured in volume, weight, distance, duration, surface, etc.
 - $E_{g,h}$ is expressed in tonne
 - $\mathcal{EF}_{g,h}$ is measured in tonne per activity unit
- For each gas, we calculate the total emissions:

$$E_g = \sum_{h=1}^{n_A} E_{g,h} = \sum_{h=1}^{n_A} A_h \cdot \mathcal{EF}_{g,h}$$

• Finally, we estimate the carbon emissions by applying the right GWP:

$$\mathcal{CE} = \sum_{g=1}^{n_G} \operatorname{gwp}_g \cdot E_g$$

Global warming potential Carbon emissions Carbon intensity

Tier methods

The choice of data inputs is codified by IPCC (2019):

- Tier 1 methods use global default emission factors;
- Tier 2 methods use country-level or region-specific emission factors;
- Tier 3 methods use directly monitored or site-specific emission factors.

 \Rightarrow IPCC Emission Factor Database, National Inventory Reports (NIRs), country emission factor databases, etc.

France

- The database of emission factors is managed by **ADEME** (Agence de l'Environnement et de la Maîtrise de l'Energie)
- It contains about 5 300 validated emission factors
- https://bilans-ges.ademe.fr

Global warming potent Carbon emissions Carbon intensity

Reporting of scope 1 emissions

GHG inventory document of Enel (2021)

• Scope 1 emissions expressed in $ktCO_2e$:

	CO ₂	CH ₄	N_2O	NF ₃	SF ₆	HFCs	Total
Electricity power	50 643.54	385.25	98.14	0.014	31.15	10.22	51 168.32
generation Electricity distri-	208.33	0.24	0.45		111.62		320.64
bution							
Real estate	79.87	0.22	1.24				81.30
Total	50 931.72	385.71	99.83	0.014	142.77	10.22	51750.26

• The scope 1 emissions of Enel is equal to $51.75 \text{ MtCO}_2\text{e}$

Global warming potenti Carbon emissions Carbon intensity

Scope 1 emissions

Table 92: Examples of emission factors (EFDB, IPCC)

Category	Description	Gas	Region	Value	Unit
	Integrated facility	CO ₂	Canada	1.6	t/tonne
Iron and steel production	Electrode consumption from steel produced in electric arc furnaces	CO_2	Global	5.0	kg/tonne
	Steel processing (rolling mills)	N_2O	Global	40	g/tonne
—————————————————— Manufacture of solid fuels	Metallurgical calconversion	$\overline{CO_2}$	Global	0.56	t/tonne
Manufacture of solid fuels	Metallurgical coke production		Global	0.1	g/tonne
	Crude oil	$\bar{C}\bar{O_2}$	Global	20	tCarbon/TeraJoule
Fuel combustion activities	Natural gas	CO_2	Global	15.3	tCarbon/TeraJoule
	Ethane	CO_2	Global	16.8	tCarbon/TeraJoule
Integrated circuit or semicon- ductor	Semiconductor manufacturing (silicon)	CF ₄	Global	0.9	kg/m^2
Cement production	Cement production	$\overline{CO_2}$	Global	0.4985	t/tonne
	Enteric fermentation	\overline{CH}_{4}	Global	18	kg/head/year
Horses	Manure management (annual average temperature is less than 15oC)	CH ₄	Developed countries	1.4	kg/head/year
	Manure management (annual average temperature is between 15oC and 25oc)	CH_4	Developed countries	2.1	kg/head/year
Buffalo	Enteric fermentation	$\overline{CH_4}$	Global		_kg/head/year
	Manure management (annual average temperature is less than 15oC)	$\overline{CH_4}$	Developed countries	0.078	kg/head/year
Poultry	Manure management (annual average temperature is between 15oC and 25oc)	CH_4	Developed countries	0.117	kg/head/year
	Manure management (annual average temperature is greater than 25oC)	CH_4	Developed countries	0.157	kg/head/year
	Manure management (annual average temperature is greater than 25oC)	CH_4	Developing countries	0.023	kg/head/year

Source: EFDB, www.ipcc-nggip.iges.or.jp/EFDB.

Global warming potential Carbon emissions Carbon intensity

Scope 2 emissions

Definition

Scope 2 is "an indirect emission category that includes GHG emissions from the purchased or acquired electricity, steam, heat, or cooling consumed" (GHG Protocol, 2015):

Electricity

People use electricity for operating machines, lighting, heating, cooling, electric vehicle charging, computers, electronics, public transportation systems, etc.

Steam

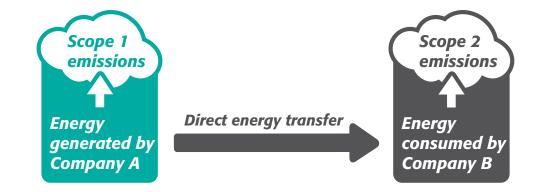
Industries use steam for mechanical work, heating, propulsion, driven turbines in electric power plants, etc.

Heat

Buildings use heat to control inside temperature and heat water, while the industrial sector uses heat for washing, cooking, sterilizing, drying, etc. Heat may be produced from electricity, solar heat processes or thermal combustion.

Cooling

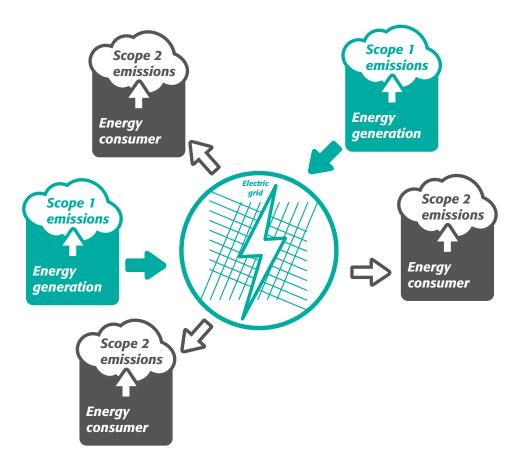
It is produced from electricity or though the processes of forced air, conduction, convection, etc.


Global warming potent Carbon emissions Carbon intensity

Scope 2 emissions

Figure 180: Energy production and consumption from owned/operated generation

Figure 181: Direct line energy transfer

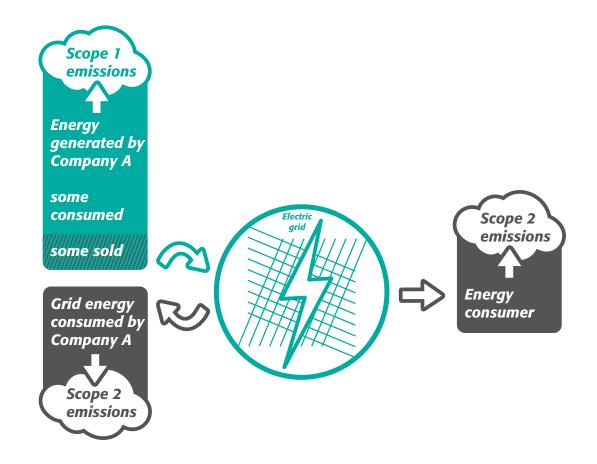


Source: GHG Protocol (2015, Figures 5.1 and 5.2, pages 35-36).

Global warming potenti Carbon emissions Carbon intensity

Scope 2 emissions

Figure 182: Electricity production on a grid



Source: GHG Protocol (2015, Figure 5.4, page 38).

Global warming potentia Carbon emissions Carbon intensity

Scope 2 emissions

Figure 183: Facility consuming both energy generated on-site and purchased from the grid

Source: GHG Protocol (2015, Figure 5.3, page 37).

Global warming potential Carbon emissions Carbon intensity

Computation of scope 2 emissions

Scope 2 emissions are calculated using activity data and emission factors expressed in MWh and $\rm tCO_2e/MWh$:

$$\mathcal{CE} = \sum_{s} A_{s} \cdot \mathcal{EF}_{s}$$

where:

- A_s is the amount of purchased electricity for the energy generation source s
- \mathcal{EF}_s is the emission factor of the source s

Global warming potential Carbon emissions Carbon intensity

Computation of scope 2 emissions

Example #2

We consider a company, whose electricity consumption is equal to 2000 MWh per year. The electricity comes from two sources: 60% from a direct line with an electricity supplier (source S_1) and 40% from the country grid (source S_2). The emission factors are respectively equal to 200 and 350 gCO₂e/kWh.

Global warming potential Carbon emissions Carbon intensity

Computation of scope 2 emissions

- The electricity consumption from source S_1 is equal to $60\% \times 2000 = 1200$ MWh or 1200000 kWh
- We deduce that the carbon emissions from this source is:

 $\mathcal{CE}(S_1) = (1.2 \times 10^6) \times 200 = 240 \times 10^6 \text{ gCO}_2 \text{e} = 240 \text{ tCO}_2 \text{e}$

• For the second source, we obtain:

 $\mathcal{CE}(S_2) = (0.8 \times 10^6) \times 350 = 280 \times 10^6 \text{ gCO}_2 \text{e} = 280 \text{ tCO}_2 \text{e}$

• We deduce that the Scope 2 carbon emissions of this company is equal to 520 ${\rm tCO_2e}$

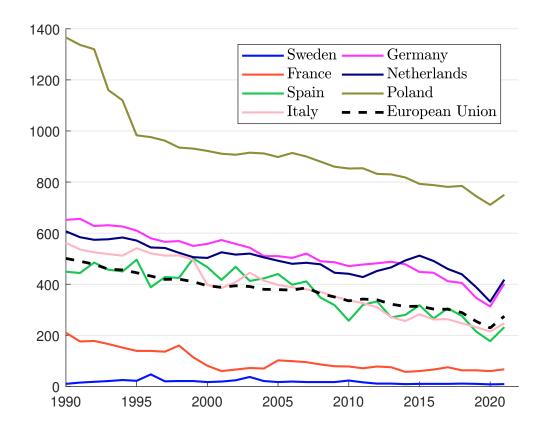
Global warming potential Carbon emissions Carbon intensity

Scope 2 emissions accounting

Two main methods:

• Location-based method

In this approach, the company uses the average emission factor of the region or the country. For instance, if the electricity consumption is located in France, the company can use the emission intensity of the French energy mix;


Market-based method

This approach reflects the GHG emissions from the electricity that the company has chosen in the market. This means that the scope 2 carbon emissions will depend on the scope 1 carbon intensity of the electricity supplier

Global warming potenti Carbon emissions Carbon intensity

Scope 2 emission factors

Figure 184: Emission factor in gCO_2e/kWh of electricity generation (European Union, 1990 – 1992)

Source: European Environment Agency (2022), www.eea.europa.eu/data-and-maps & Author's calculations.

Global warming potent Carbon emissions Carbon intensity

Scope 2 emission factors

Table 93: Emission factor in gCO_2e/kWh of electricity generation in the world

Region	\mathcal{EF} Cou	untry \mathcal{EF}	Country	\mathcal{EF}	Country	\mathcal{EF}
Africa	484 Aus	stralia 531	Germany	354	Portugal	183
Asia	539 ¦ Car	nada 128	lndia	637	Russia	360
Europe	280 i Chi	na 544	i Iran	492 i	Spain	169
North America	352 Cos	ta Rica 33	Italy	226	Switzerland	47
South America	204 ¦ Cul	ba 575	¦ Japan	479	United Kingdom	270
World	442 Fra	nce 58	Norway	26	United States	380

Source: https://ourworldindata.org/grapher/carbon-intensity-electricity

Global warming potent Carbon emissions Carbon intensity

Computation of scope 2 emissions

Example #3

We consider a French bank, whose activities are mainly located in France and the Western Europe. Below, we report the energy consumption (in MWh) by country:

Belgium	125 807	France	1 132 261
Germany	71890	Ireland	125 807
Italy	197 696	Luxembourg	33 069
Netherlands	18 152	Portugal	12 581
Spain	61 106	Switzerland	73 148
UK	124 010	World	37 742

Computation of scope 2 emissions

- If we consider a Tier 1 approach, we can estimate the scope 2 emissions of the bank by computing the total activity data and multiplying by the global emission factor
- Since we have twelve sources, we obtain:

$$A = \sum_{s=1}^{12} A_s = 125\,807 + 1\,132\,261 + \ldots + 37\,742 = 2\,013\,269$$
 MWh

and:

$$\mathcal{CE} = A \cdot \mathcal{EF}_{World}$$

= $(2013, 269 \times 10^3) \times 442$
= 889 864 898 000 gCO₂e

= 889.86 ktCO₂e

Global warming potent Carbon emissions Carbon intensity

Computation of scope 2 emissions

• Another Tier 1 approach is to consider the emission factor of the European Union, because the rest of the world represents less than 2% of the electricity consumption. Using $\mathcal{EF}_{EU} = 275$, we obtain $\mathcal{CE} = 553.65 \, \mathrm{ktCO_2e}$

Computation of scope 2 emissions

- The third approach uses a Tier 2 method by considering the emission factor of each country
- We use the previous figures and the following emission factors: Belgium (143); Ireland (402); Luxembourg (68) and Netherlands (331)
- We deduce that:

$$\begin{aligned} \mathcal{CE} &= \sum_{s=1}^{12} A_s \cdot \mathcal{EF}_s \\ &= (125\,807 \times 143 + 1\,132\,261 \times 58 + \dots \\ &+ 124\,010 \times 270 + 37\,742 \times 442) \times \frac{10^3}{10^9} \\ &= 278.85 \,\mathrm{ktCO_2e} \end{aligned}$$

 \Rightarrow The estimated scope 2 emissions of this bank are sensitive to the approach

Global warming potential Carbon emissions Carbon intensity

Computation of scope 2 emissions

Example #4

We consider a Norwegian company, whose current electricity consumption is equal to 1351 Mwh. 60% of the electricity comes from the Norwegian hydroelectricity and the GO system guarantees that this green electricity emits $1 \text{ gCO}_2 \text{e}/\text{kWh}$.

If we assume that the remaining 40% of the electricity consumption comes from the Norwegian grid²³, the market based scope 2 emissions of this company are equal to:

$$\begin{array}{rcl} {\cal CE} & = & \frac{10^6 \times 60\% \times 1 + 10^6 \times 40\% \times 26}{10^6} \\ & = & 11 \ {\rm ktCO_2e} \end{array}$$

 23 The emission factor for Norway is 26 gCO_2e/kWh .

Global warming potenti Carbon emissions Carbon intensity

Computation of scope 2 emissions

Table 94: Emission factor in gCO_2e/KWh from electricity supply technologies (IPCC, 2014; UNECE, 2022)

Tachnalasy	Characteristic	 	PCC	U	NECE
Technology	Characteristic	Mean	Min–Max	Mean	Min–Max
Wind	Onshore	11	7–56	12	8–16
vvina	Offshore	12	8–35	13	13–23
Nuclear		1 - 12	3-110	<u>-</u> 6	
Hydro power		24	1-2200	1^{11}	6-147
	CSP	27		32	14-122
Solar power	Rooftop (PV)	41	26–60	22	9–83
	Utility/Ground (PV)	48	18–180	20	8–82
Geothermal		38	6–79		
Biomass	Dedicated	230	130-420	+ — — — — I	
Gas	CCS	169	90-370	130	92-221
Gas	Combined cycle	490	410–650	430	403–513
Fuel oil			510-1170		
Coal	CCS	1 161	70–290	350	190–470
COAI	PC	820	740–650	1 0 0 0	912–1095

CSP: concentrated solar power; PV: photovoltaic power; CCS: carbon capture and storage; PC: pulverized coal.

Global warming poten Carbon emissions Carbon intensity

Reporting of scope 2 emissions

GHG inventory document of Enel (2021)

• The scope 2 emissions expressed in $ktCO_2e$ are:

	Electricity purchased	Losses on the	Total
	from the grid	distribution grid	Totai
Location-based	1 336.67	2966.52	4 303.18
Market-based	2351.00	4763.15	7 114.15

Global warming potent Carbon emissions Carbon intensity

Location-based versus market-based scope 2 emissions

Table 95: Statistics of CDP scope 2 emissions (2020)

	${\cal CE}_{ m loc}=0$	$\mathcal{CE}_{\mathrm{loc}} = \mathcal{CE}_{\mathrm{mkt}} = 0$	${\cal CE}_{ m mkt}=0$
Frequency	0.89%	0.39%	8.78%
	$\mathcal{CE}_{\mathrm{loc}} > \mathcal{CE}_{\mathrm{mkt}}$	$\mathcal{CE}_{\mathrm{loc}} = \mathcal{CE}_{mkt}$	$\mathcal{CE}_{\mathrm{loc}} < \mathcal{CE}_{\mathrm{mkt}}$
Frequency	70.43%	9.48%	20.09%
Mean variation ratio	+43.89%	0.00%	-22.04%

Source: CDP database as of 01/07/2022 & Author's computation.

Global warming potential Carbon emissions Carbon intensity

Scope 3 categories

Upstream

- Purchased goods and services
- ② Capital goods
- Fuel and energy related activities
- Upstream transportation and distribution
- Waste generated in operations
- O Business travel
- Employee commuting
- Upstream leased assets
- Other upstream

Downstream

- Downstream transportation and distribution
- Processing of sold products
- Use of sold products
- End-of-life treatment of sold products
- Ownstream leased assets
- Franchises
- Investments
- Other downstream

Global warming potential Carbon emissions Carbon intensity

Scope 3 emissions

Scope 3 emissions are all the indirect emissions in the company's value chain, apart from indirect emissions which are reported in scope 2:

Purchased goods and services (not included in categories 2-8) Extraction, production, and transportation of goods and services purchased or acquired by the company

2 Capital goods

Extraction, production, and transportation of capital goods purchased or acquired by the company

Fuel- and energy-related activities (not included in scopes 1 or 2) Extraction, production, and transportation of fuels and energy purchased or acquired by the company

O Upstream transportation and distribution

Transportation and distribution of products purchased by the company between the company's tier 1 suppliers and its own operations; Transportation and distribution services purchased by the company, including inbound logistics, outbound logistics (e.g., sold products), and transportation and distribution between the company's own facilities

Global warming potential Carbon emissions Carbon intensity

Scope 3 emissions

• Waste generated in operations

Disposal and treatment of waste generated in the company's operations

O Business travel

Transportation of employees for business-related activities

Employee commuting

Transportation of employees between their homes and their work sites

Opstream leased assets

Operation of assets leased by the company (lessee)

Global warming potential Carbon emissions Carbon intensity

Scope 3 emissions

Ownstream transportation and distribution

Transportation and distribution of products sold by the company between the company's operations and the end consumer (if not paid for by the company)

Processing of sold products

Processing of intermediate products sold by downstream companies (e.g., manufacturers)

Use of sold products

End use of goods and services sold by the company

End-of-life treatment of sold products

Waste disposal and treatment of products sold by the company at the end of their life

Carbon emissions

Scope 3 emissions

Downstream leased assets

Operation of assets owned by the company (lessor) and leased to other entities

Image: Franchises

Operation of franchises reported by franchisor

1 Investments

Operation of investments (including equity and debt investments and project finance)

Global warming potenti Carbon emissions Carbon intensity

Scope 3 emissions

Table 96: Scope 3 emission factors for business travel and employee commuting (United States)

Vahiele ture	CO ₂	CH ₄	N_2O	Unit
Vehicle type	(kg/unit)	(g/unit)	(g/unit)	Unit
Passenger car	0.332	0.0070	0.0070	vehicle-mile
Light-duty truck	0.454	0.0120	0.0090	vehicle-mile
Motorcycle	0.183	0.0700	0.0070	vehicle-mile
Intercity rail (northeast corridor)	0.058	0.0055	0.0007	passenger-mile
Intercity rail (other routes)	0.150	0.0117	0.0038	passenger-mile
Intercity rail (national average)	0.113	0.0092	0.0026	passenger-mile
Commuter rail	0.139	0.0112	0.0028	passenger-mile
Transit rail (subway, tram)	0.099	0.0084	0.0012	passenger-mile
Bus	0.056	0.0210	0.0009	passenger-mile
Air travel (short haul, < 300 miles)	0.207	0.0064	0.0066	passenger-mile
Air travel (medium haul, 300-2300 miles)	0.129	0.0006	0.0041	passenger-mile
Air travel (long haul, > 2300 miles)	0.163	0.0006	0.0052	passenger-mile

Source: US EPA (2020), Table 10, www.epa.gov, ghg-emission-factors-hub.xlsx.

These factors are intended for use in the distance-based method defined in the Scope 3 Calculation Guidance. If fuel data are available, then the fuel-based method should be used.

Global warming potent Carbon emissions Carbon intensity

Scope 3 emissions

Table 97: Examples of monetary scope 3 emission factors

Category	S3E	ADEME	Category	S3E	ADEME
Agriculture	2 500	2 300	Air transport	1970	1 1 9 0
Construction	810	360	Education	310	120
Financial intermediation	140	110	Health and Social Work	300	500
Hotels and restaurants	560	320	Rubber and plastics	1 270	800
Telecommunications	300	170	Textiles	1100	600

Source: Scope 3 Evaluator (S3E), https://quantis-suite.com/Scope-3-Evaluator

& ADEME, https://bilans-ges.ademe.fr.

Global warming potent Carbon emissions Carbon intensity

Carbon emissions of investment portfolios

Two methods for measuring the carbon footprint of an investment portfolio:

- Financed emissions approach
- Ownership approach

Carbon emissions of investment portfolios

Financed emissions approach

- The investor calculates the carbon emissions that are financed across both equity and debt
- EVIC is used to estimate the value of the enterprise. It is "the sum of the market capitalization of ordinary and preferred shares at fiscal year end and the book values of total debt and minorities interests" (TEG, 2019)
- Let W be the wealth invested in the company, the financed emissions are equal to:

$$\mathcal{CE}(W) = \frac{W}{\mathrm{EVIC}} \cdot \mathcal{CE}$$

• In the case of a portfolio (W_1, \ldots, W_n) where W_i is the wealth invested in company *i*, we have:

$$\mathcal{CE}(W) = \sum_{i=1}^{n} \mathcal{CE}_{i}(W_{i}) = \sum_{i=1}^{n} \frac{W_{i}}{\mathrm{EVIC}_{i}} \cdot \mathcal{CE}_{i}$$

• $\mathcal{CE}(W)$ is expressed in tCO_2e

Global warming potenti Carbon emissions Carbon intensity

Carbon emissions of investment portfolios Ownership approach

- We break down the carbon emissions between the stockholders of the company
- We have:

$$\mathcal{CE}(W) = \sum_{i=1}^{n} \frac{W_i}{\mathrm{MV}_i} \cdot \mathcal{CE}_i = \sum_{i=1}^{n} \varpi_i \cdot \mathcal{CE}_i$$

where:

- MV_i is the market value of company i
- ϖ_i is the ownership ratio of the investor

Global warming potential Carbon emissions Carbon intensity

Carbon emissions of investment portfolios Ownership approach

- Let $W = \sum_{i=1}^{n} W_i$ be the portfolio value
- The portfolio weight of asset *i* is given by:

$$w_i = \frac{W_i}{W}$$

• We deduce that:

$$\varpi_i = \frac{W_i}{\mathrm{MV}_i} = \frac{w_i \cdot W}{\mathrm{MV}_i}$$

• It follows that:

$$\mathcal{CE}(W) = \sum_{i=1}^{n} \frac{w_i \cdot W}{\mathrm{MV}_i} CE_i = W\left(\sum_{i=1}^{n} w_i \cdot \frac{\mathcal{CE}_i}{\mathrm{MV}_i}\right) = W\left(\sum_{i=1}^{n} w_i \cdot \mathcal{CI}_i^{\mathrm{MV}}\right)$$

where $\mathcal{CI}_{i}^{\text{MV}}$ is the market value-based carbon intensity:

$$\mathcal{CI}_{i}^{\mathrm{MV}} = rac{\mathcal{CE}_{i}}{\mathrm{MV}_{i}}$$

• CE(W) is generally computed with W = \$1 mn and is expressed in tCO_2e (per \$ mn invested)

Global warming potential Carbon emissions Carbon intensity

Carbon emissions of investment portfolios Ownership approach

Remark

The ownership approach is valid only for equity portfolios. To compute the market value (or the total market capitalization), we use the following approximation:

$$\mathrm{MV} = \frac{\mathrm{MC}}{\mathcal{FP}}$$

where MC and \mathcal{FP} are the free float market capitalisation and percentage of the company.

Global warming potential Carbon emissions Carbon intensity

Carbon emissions of investment portfolios

В

Example #5

We consider a \$100 mn investment portfolio with the following composition: \$63.1 mn in company *A*, \$16.9 mn in company *B* and \$20.0 mn in company *C*. The data are the following:

	Market o	capitalizatior	n (in \$ bn)
lssuer	31/12/2021	31/12/2022	· /
A	12.886	10.356	10.625
В	7.005	6.735	6.823
С	3.271	3.287	3.474
lssu	Debt	\mathcal{FP}	${\cal SC}_{1-2}$
1550	(in \$ bn)	(in %) (in ktCO ₂ e)
A	1.112	99.8	756.144

0.000

0.458

39.3

96.7

23.112

454.460

Global warming potenti Carbon emissions Carbon intensity

Carbon emissions of investment portfolios

• As of 31 January 2023, the EVIC value for company A is equal to:

$$EVIC_A = \frac{10\,356}{0.998} + 1\,112 = \$11489 \text{ mn}$$

• We deduce that the financed emissions are equal to:

$$\mathcal{CE}_{A}$$
 (\$63.1 mn) = $\frac{63.1}{11\,489} \times 756.144 = 4.153 \text{ ktCO}_{2}e$

Global warming potential Carbon emissions Carbon intensity

Carbon emissions of investment portfolios

• If we assume that the investor has no bond in the portfolio, we can use the ownership approach:

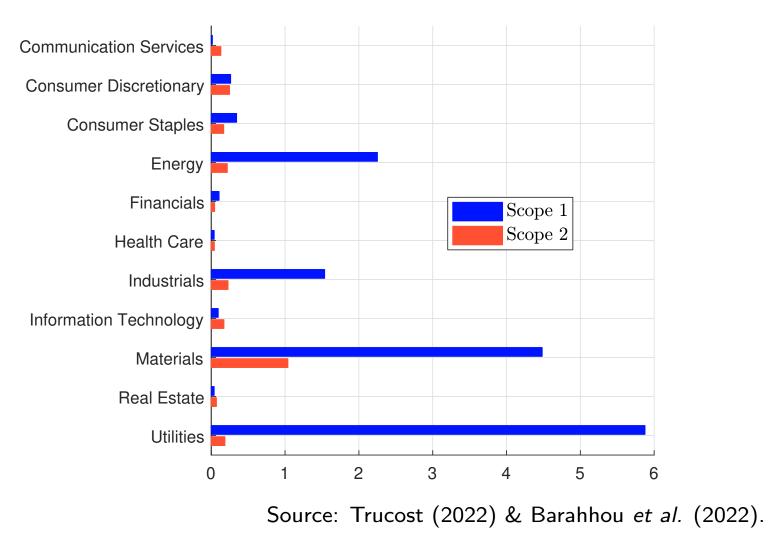
$$arpi_A = rac{63.1}{(10\,625/0.998)} = 59.2695 \; {
m bps}$$

• The carbon emissions of the investment in company A is then equal to:

 \mathcal{CE}_A (\$63.1 mn) = 59.2695 × 10⁻⁴ × 756.144 = 4.482 ktCO₂e

Global warming potent Carbon emissions Carbon intensity

Carbon emissions of investment portfolios


Finally, we obtain the following results:

	Financed emissions	Carbon emissions
Company A	4.153	4.482
Company B	0.023	0.022
Company C	2.356	2.530
Portfolio	6.532	7.034

Global warming potenti Carbon emissions Carbon intensity

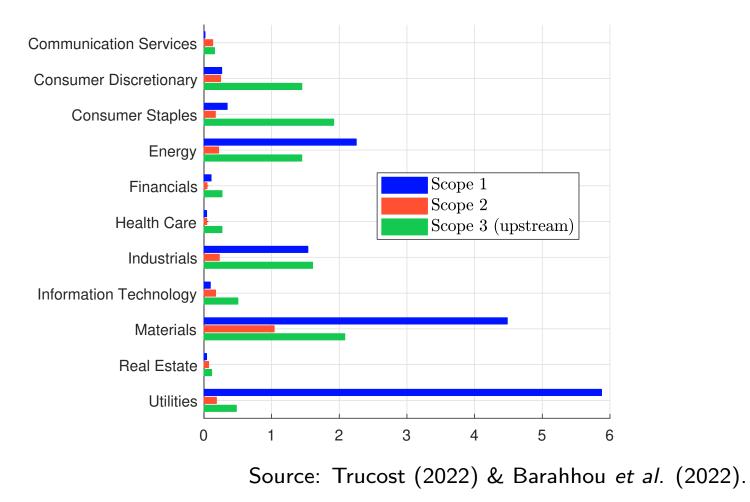
Statistics

Figure 185: 2019 carbon emissions per GICS sector in $GtCO_2e$ (scopes 1 & 2)

Global warming potentia Carbon emissions Carbon intensity

Statistics

Table 98: Breakdown (in %) of carbon emissions in 2019

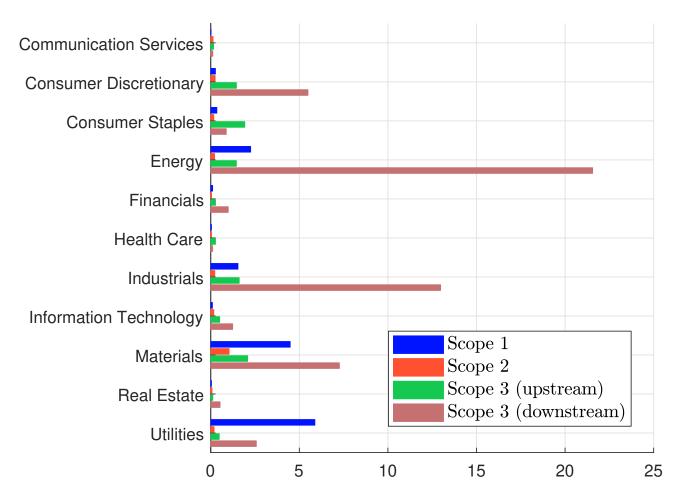

Sector	\mathcal{SC}_1	\mathcal{SC}_2	\mathcal{SC}_{1-2}	$\mathcal{SC}_3^{\mathrm{up}}$	$\mathcal{SC}_3^{ m down}$	\mathcal{SC}_3	\mathcal{SC}_{1-3}
Communication Services	0.1	5.1	0.8	1.5	0.2	0.4	0.5
Consumer Discretionary	1.7	9.7	2.9	14.1	10.2	10.8	9.1
Consumer Staples	2.3	6.7	2.9	18.6	1.6	4.4	4.1
Energy	15.0	8.5	14.0	14.1	40.1	36.0	31.2
Financials	0.7	1.8	0.9	2.6	1.8	2.0	1.7
Health Care	0.3	1.7	0.5	2.6	0.2	0.6	0.6
Industrials	10.2	8.9	10.0	15.6	24.2	22.8	20.0
Information Technology	0.6	6.8	1.5	4.9	2.3	2.7	2.5
Materials	29.8	40.7	31.4	20.2	13.5	14.6	18.2
Real Estate	0.3	2.8	0.6	1.1	1.0	1.0	0.9
Utilities	39.0	7.3	34.4	4.7	4.8	4.8	11.2
Total (in $GtCO_2e$)	15.1	2.6	17.6	10.3	53.7	64.0	81.6

Source: Trucost (2022) & Barahhou et al. (2022).

Global warming potentia Carbon emissions Carbon intensity

Statistics

Figure 186: 2019 carbon emissions per GICS sector in $GtCO_2e$ (scopes 1, 2 & 3 upstream)

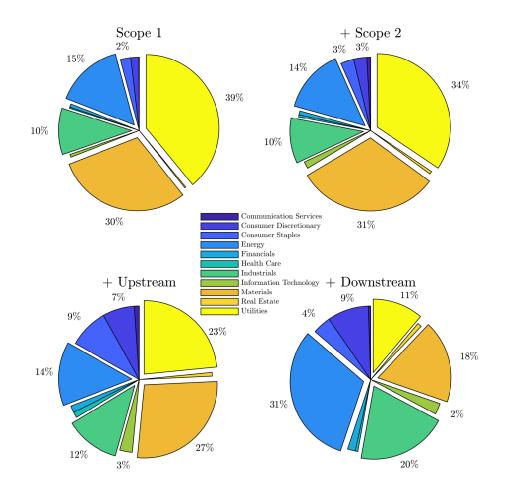


Thierry Roncalli

Global warming potentia Carbon emissions Carbon intensity

Statistics

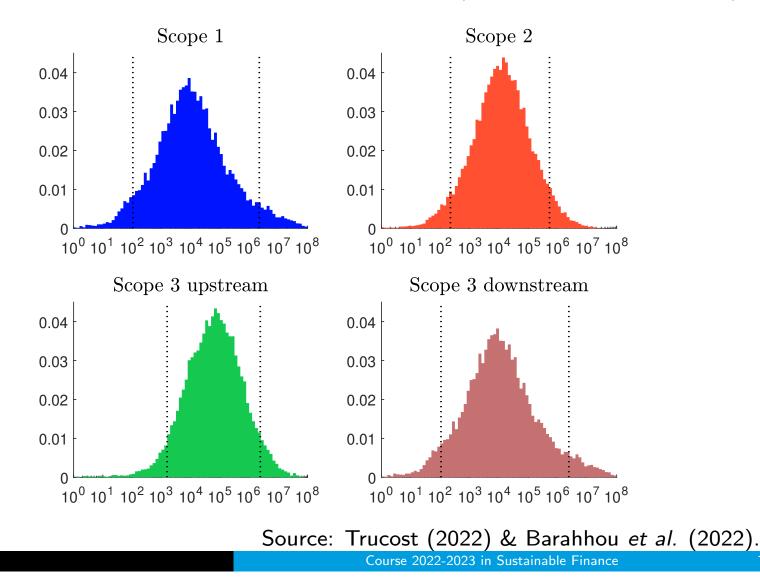
Figure 187: 2019 carbon emissions per GICS sector in $GtCO_2e$ (scopes 1, 2 & 3)



786 / 1114

Global warming potenti Carbon emissions Carbon intensity

Statistics



Source: Trucost (2022) & Barahhou et al. (2022).

Figure 189: Histogram of 2019 carbon emissions (logarithmic scale, tCO_2e)

Thierry Roncalli

Global warming poten Carbon emissions Carbon intensity

Negative and avoided emissions

Global warming potenti Carbon emissions Carbon intensity

Carbon intensity

- Carbon emissions = absolute carbon footprint in an absolute value
- Carbon intensity = relative carbon footprint

 \Rightarrow we normalize the carbon emissions by a size or activity unit

Global warming potential Carbon emissions Carbon intensity

Carbon intensity

We can measure the carbon footprint of:

- \bullet countries by ${\rm tCO}_2 e$ per capita
- \bullet watching television by CO_2e emissions per viewer-hour
- washing machines by $kgCO_2e$ per wash
- cars by $kgCO_2e$ per kilometer driven
- companies by $ktCO_2e$ per \$1 mn revenue
- etc.

Global warming potential Carbon emissions Carbon intensity

Physical intensity ratios

Product carbon footprint (PCF)

- The product carbon footprint measures the relative carbon emissions of a product throughout its life cycle
- Life cycle assessment (LCA), distinguishes two methods:
 - Cradle-to-gate refers to the carbon footprint of a product from the moment it is produced (including the extraction of raw materials) to the moment it enters the store
 - Cradle-to-grave covers the entire life cycle of a product, including the use-phase and recycling

Global warming potenti Carbon emissions Carbon intensity

Physical intensity ratios

Table 99: Examples of product carbon footprint (in $kgCO_2e$ per unit)

Product	Category	Cradle-to-gate	Cradle-to-grave
Screen	21.5 inches	222	236
	23.8 inches	248	265
Computer	Laptop	156	169
	Desktop	169	189
	High performance	295	394
Smartphone	Classical	16	16
	5 inches	33	32
Öven	Built-in electric	187	
	Professional (combi steamer)	734	12676
Washing machine	Capacity 5kg	248	468
	Capacity 7kg	275	539
Shirt	Coton		13
	Viscose	9	12
Balloon	Football	3.4	5.1
	Basket-ball	3.6	5.9

Source: Lhotellier et al (2018, Annex 4, pages 212-215)

Global warming potential Carbon emissions Carbon intensity

Physical intensity ratios

Corporate carbon footprint (CCF)

- Extension of the PCF to companies
- The CCF of a cement manufacturer is measured by the amount of GHG emissions per tonne of cement
- The CCF of airlines is measured by the amount of GHG emissions per RPK (revenue passenger kilometers, which is calculated by multiplying the number of paying passengers by the distance traveled)

Sector	Unit	Description
Transport sector (aviation)	$\rm CO_2 e/RPK$	Revenue passenger kilometers)
Transport sector (shipping)	$\rm CO_2 e/RTK$	Revenue tonne kilometers
Industry (cement)	$\rm CO_2 e/t$ cement	Tonne of cement
Industry (steel)	$ m CO_2e/t$ steel	Tonne of steel
Electricity	$\rm CO_2e/MWh$	Megawatt hour
Buildings	$\rm CO_2e/SQM$	Square meter

Global warming potential Carbon emissions Carbon intensity

Monetary intensity ratios

Problem

- How to aggregate carbon footprint?
- Portfolio managers use monetary intensity ratios, which are defined as:

$$\mathcal{CI} = rac{\mathcal{CE}}{\gamma}$$

where CE is the company's carbon emissions and Y is a monetary variable measuring its activity

Global warming potentia Carbon emissions Carbon intensity

Monetary intensity ratios

For instance, we can use revenues, sales, etc. to normalize carbon emissions:

$$\begin{array}{c|c} \text{Revenue} \\ \mathcal{C}\mathcal{I}^{\text{Revenue}} = \frac{\mathcal{C}\mathcal{E}}{\text{Revenue}} \end{array} & \begin{array}{c} \text{Sales} \\ \mathcal{C}\mathcal{I}^{\text{Sales}} = \frac{\mathcal{C}\mathcal{E}}{\text{Sales}} \end{array} & \begin{array}{c} \text{EVIC} \\ \mathcal{C}\mathcal{I}^{\text{EVIC}} = \frac{\mathcal{C}\mathcal{E}}{\text{EVIC}} \end{array} & \begin{array}{c} \text{MV} \\ \mathcal{C}\mathcal{I}^{\text{MV}} = \frac{\mathcal{C}\mathcal{E}}{\text{MV}} \end{array} \end{array}$$

Remark

The previous carbon emission metrics based on EVIC and market value can be viewed as carbon intensity metrics

Global warming potentia Carbon emissions Carbon intensity

Additivity property of \mathcal{CI}

• If we consider the EVIC-based approach, the carbon intensity of the portfolio is given by:

$$\begin{aligned} \mathcal{CI}^{\text{EVIC}}(w) &= \frac{\mathcal{CE}^{\text{EVIC}}(W)}{W} \\ &= \frac{1}{W} \sum_{i=1}^{n} \frac{W_{i}}{\text{EVIC}_{i}} \cdot \mathcal{CE}_{i} \\ &= \sum_{i=1}^{n} \frac{W_{i}}{W} \cdot \frac{\mathcal{CE}_{i}}{\text{EVIC}_{i}} \\ &= \sum_{i=1}^{n} w_{i} \cdot \mathcal{CI}_{i}^{\text{EVIC}} \end{aligned}$$

where $w = (w_1, \ldots, w_n)$ is the vector of portfolio weights • In a similar way, we obtain:

$$\mathcal{CI}^{\mathrm{MV}}\left(w
ight)=\sum_{i=1}^{n}w_{i}\cdot\mathcal{CI}_{i}^{\mathrm{MV}}$$

Non-additivity property of \mathcal{CI}

- We consider the revenue-based carbon intensity (also called the economic carbon intensity)
- The carbon intensity of the portfolio is:

$$\mathcal{CI}^{ ext{Revenue}}\left(w
ight)=rac{\mathcal{CE}\left(w
ight)}{Y\left(w
ight)}$$

where:

• $\mathcal{CE}(w)$ measures the carbon emissions of the portfolio:

$$\mathcal{CE}(w) = \sum_{i=1}^{n} W_{i} \cdot \frac{\mathcal{CE}_{i}}{\mathrm{MV}_{i}} = W \sum_{i=1}^{n} \frac{w_{i}}{\mathrm{MV}_{i}} \cdot \mathcal{CE}_{i}$$

• Y(w) is the total revenue of the portfolio:

$$Y(w) = \sum_{i=1}^{n} W_{i} \cdot \frac{Y_{i}}{\mathrm{MV}_{i}} = W \sum_{i=1}^{n} \frac{w_{i}}{\mathrm{MV}_{i}} \cdot Y_{i}$$

Global warming potentia Carbon emissions Carbon intensity

Non-additivity property of \mathcal{CI}

• We deduce that:

$$\mathcal{CI}^{\text{Revenue}}(w) = \frac{\sum_{i=1}^{n} \frac{w_i}{\text{MV}_i} \cdot \mathcal{CE}_i}{\sum_{i=1}^{n} \frac{w_i}{\text{MV}_i} \cdot Y_i} = \sum_{i=1}^{n} w_i \cdot \omega_i \cdot \mathcal{CI}_i^{\text{Revenue}}$$

where ω_i is the ratio between the revenue per market value of company *i* and the weighted average revenue per market value of the portfolio:

$$\omega_i = \frac{\frac{Y_i}{\mathrm{MV}_i}}{\sum_{k=1}^n w_k \cdot \frac{Y_k}{\mathrm{MV}_k}}$$

• We conclude that:

$$\mathcal{CI}^{ ext{Revenue}}\left(w
ight)
eq\sum_{i=1}^{n}w_{i}\cdot\mathcal{CI}_{i}^{ ext{Revenue}}$$

Global warming potenti. Carbon emissions Carbon intensity

WACI

In order to avoid the previous problem, we generally use the weighted average carbon intensity (WACI) of the portfolio:

$$\mathcal{CI}^{ ext{Revenue}}\left(w
ight)=\sum_{i=1}^{n}w_{i}\cdot\mathcal{CI}_{i}^{ ext{Revenue}}$$

This method is the standard approach in portfolio management

Global warming potent Carbon emissions Carbon intensity

Additivity property of \mathcal{CI}

Carbon intensity is always additive when we consider a given issuer:

$$egin{aligned} \mathcal{CI}_{i}\left(\mathcal{SC}_{1-3}
ight) &=& rac{\mathcal{CE}_{i}\left(\mathcal{SC}_{1}
ight) + \mathcal{CE}_{i}\left(\mathcal{SC}_{2}
ight) + \mathcal{CE}_{i}\left(\mathcal{SC}_{3}
ight)}{Y_{i}} \ &=& \mathcal{CI}_{i}\left(\mathcal{SC}_{1}
ight) + \mathcal{CI}_{i}\left(\mathcal{SC}_{2}
ight) + \mathcal{CI}_{i}\left(\mathcal{SC}_{3}
ight) \end{aligned}$$

Global warming potenti Carbon emissions Carbon intensity

Illustration

Example #6

We assume that $CE_1 = 5 \times 10^6 \text{ CO}_2\text{e}$, $Y_1 = \$0.2 \times 10^6$, $MV_1 = \$10 \times 10^6$, $CE_2 = 50 \times 10^6 \text{ CO}_2\text{e}$, $Y_2 = \$4 \times 10^6$ and $MV_2 = \$10 \times 10^6$. We invest W = \$10 mn.

Global warming potentia Carbon emissions Carbon intensity

Illustration

• We deduce that:

$$\mathcal{CI}_1 = rac{5 imes 10^6}{0.2 imes 10^6} = 25.0 \text{ tCO}_2 \text{e}/\$ \text{ mn}$$

and

$$\mathcal{CI}_2 = 12.5 \text{ tCO}_2 \text{e}/\$ \text{ mn}$$

• We have:

$$\begin{cases} \mathcal{C}\mathcal{E}(w) = W\left(w_1\frac{\mathcal{C}\mathcal{E}_1}{\mathrm{MV}_1} + w_2\frac{\mathcal{C}\mathcal{E}_2}{\mathrm{MV}_2}\right) \\ Y(w) = W\left(w_1\frac{Y_1}{\mathrm{MV}_1} + w_2\frac{Y_2}{\mathrm{MV}_2}\right) \\ \mathcal{C}\mathcal{I}(w) = w_1\mathcal{C}\mathcal{I}_1 + w_2\mathcal{C}\mathcal{I}_2 \end{cases}$$

Global warming potenti Carbon emissions Carbon intensity

Illustration

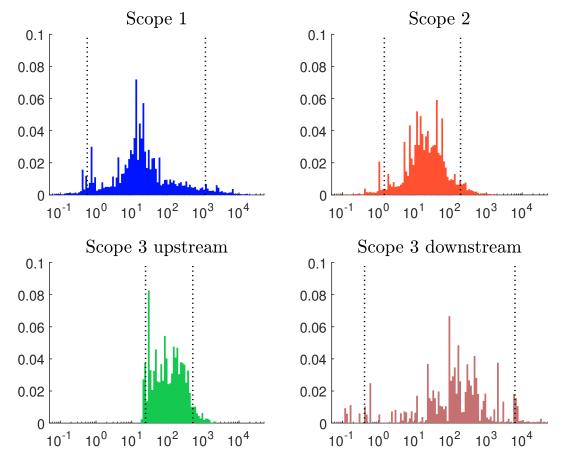
• We obtain the following results:

W ₁	W2	$\frac{\mathcal{C}\mathcal{E}(w)}{(\times 10^6 \text{ CO}_2\text{e})}$	$\frac{Y(w)}{(\times\$10^6)}$	$\frac{\mathcal{CE}(w)}{Y(w)}$	$\mathcal{CI}(w)$
0%	100%	50.00	4.00	12.50	12.50
10%	90%	45.50	3.62	12.57	13.75
20%	80%	41.00	3.24	12.65	15.00
30%	70%	36.50	2.86	12.76	16.25
50%	50%	27.50	2.10	13.10	18.75
70%	30%	18.50	1.34	13.81	21.25
80%	20%	14.00	0.96	14.58	22.50
90%	10%	9.50	0.58	16.38	23.75
100%	0%	5.00	0.20	25.00	25.00

• We notice that the weighted average carbon intensity can be very different than the economic carbon intensity

Global warming potent Carbon emissions Carbon intensity

The case of sovereign issuers


Remark

For sovereign issuers, the economic carbon intensity is measured in mega-tonnes of CO_2e per million dollars of GDP while the physical carbon intensity unit is tCO_2e per capita

Global warming potentia Carbon emissions Carbon intensity

Statistics

Figure 190: Histogram of 2019 carbon intensities (logarithmic scale, $\rm tCO_2e/\$~mn)$

Global warming potentia Carbon emissions Carbon intensity

Statistics

Table 100: Examples of 2019 carbon emissions and intensities

Company	(Carbon emissi	ons (in tCO_2e		Revenue	Inte	ensity (i	n tCO ₂ e/	
Company	\mathcal{SC}_1	\mathcal{SC}_2	$\mathcal{SC}_3^{\mathrm{up}}$	$\mathcal{SC}_3^{ m down}$	(in \$ mn)	\mathcal{SC}_1	\mathcal{SC}_2	$\mathcal{SC}_3^{\mathrm{up}}$	$\mathcal{SC}_3^{ m down}$
Airbus	576 705	386 674	12 284 183	23 661 432	78 899	7.3	4.9	155.7	299.9
Allianz	46 745	224 315	3 449 234	3 904 000	135 279	0.3	1.7	25.5	28.9
Alphabet	111 283	5 118 152	7 142 566		161 857	0.7	31.6	44.1	
Amazon	5 760 000	5 500 000	20 054 722	10438551	280 522	20.5	19.6	71.5	37.2
Apple	50 549	862 127	27 624 282	5 470 771	260 174	0.2	3.3	106.2	21.0
BNP Paribas	64 829	280 789	1 923 307	1884	78 244	0.8	3.6	24.6	0.0
Boeing	611 001	871 000	9878431	22 959 719	76 559	8.0	11.4	129.0	299.9
BP	49 199 999	5 200 000	103 840 194	582 639 687	276 850	177.7	18.8	375.1	2 104.5
Caterpillar	905 000	926 000	15 197 607	401 993 744	53 800	16.8	17.2	282.5	7 472.0
Danone	722 122	944 877	28 969 780	4 464 773	28 308	25.5	33.4	1023.4	157.7
Enel	69 981 891	5 365 386	8726973	53774821	86 610	808.0	61.9	100.8	620.9
Exxon	111 000 000	9 000 000	107 282 831	594 131 943	255 583	434.3	35.2	419.8	2 324.6
JPMorgan Chase	81 655	692 299	3 101 582	15 448 469	115 627	0.7	6.0	26.8	133.6
Juventus	6 665	15739	35 842	77 114	709	9.4	22.2	50.6	108.8
LVMH	67 613	262 609	11853749	942 520	60 083	1.1	4.4	197.3	15.7
Microsoft	113 414	3 556 553	5 977 488	4 003 770	125 843	0.9	28.3	47.5	31.8
Nestle	3 291 303	3 206 495	61 262 078	33 900 606	93 153	35.3	34.4	657.6	363.9
Netflix	38 481	145 443	1 900 283	2 192 255	20 156	1.9	7.2	94.3	108.8
NVIDIA	2767	65 048	2 756 353	1184981	11716	0.2	5.6	235.3	101.1
PepsiCo	3 552 415	1556523	32 598 029	14 229 956	67 161	52.9	23.2	485.4	211.9
Pfizer	734 638	762 840	4 667 225	133 468	51750	14.2	14.7	90.2	2.6
Roche	288 157	329 541	5812735	347 437	64 154	4.5	5.1	90.6	5.4
Samsung Electronics	5 067 000	10998000	33 554 245	60 978 947	197 733	25.6	55.6	169.7	308.4
TotalEnergies	40 909 135	3 596 127	49 817 293	456 993 576	200 316	204.2	18.0	248.7	2 280.0
Toyota	2 522 987	5 227 844	66 148 020	330 714 268	272 608	9.3	19.2	242.6	1 213.2
Volkswagen	4 494 066	5 973 894	65 335 372	354 913 446	282 817	15.9	21.1	231.0	1 254.9
Walmart	6 101 641	13057352	40 651 079	32 346 229	514 405	11.9	25.4	79.0	62.9

Global warming potentia Carbon emissions Carbon intensity

Statistics

	Intensity (in tCO ₂ e/\$ mn)							
Company	\mathcal{SC}_1	\mathcal{SC}_2	$\mathcal{SC}_3^{\mathrm{up}}$	$\mathcal{SC}_3^{\mathrm{down}}$				
Amazon	20.5	19.6	71.5	37.2				
Apple	0.2	3.3	106.2	21.0				
BNP Paribas	0.8	3.6	24.6	0.0				
BP	177.7	18.8	375.1	2104.5				
Caterpillar	16.8	17.2	282.5	7 472.0				
Danone	25.5	33.4	1023.4	157.7				
Exxon	434.3	35.2	419.8	2324.6				
JPMorgan Chase	0.7	6.0	26.8	133.6				
LVMH	1.1	4.4	197.3	15.7				
Microsoft	0.9	28.3	47.5	31.8				
Nestle	35.3	34.4	657.6	363.9				
Pfizer	14.2	14.7	90.2	2.6				
Samsung Electronics	25.6	55.6	169.7	308.4				
Volkswagen	15.9	21.1	231.0	1254.9				
Walmart	11.9	25.4	79.0	62.9				

Table 101: Examples of 2019 carbon intensities

Global warming potentia Carbon emissions Carbon intensity

Statistics

Table 102: Carbon intensity in $tCO_2e/\$$ mn per GICS sector and sector contribution in % (MSCI World, June 2022)

Sector	bi		Carbon	intensity			Risk cor	ntribution	
Sector	(in %)	\mathcal{SC}_1	\mathcal{SC}_{1-2}	$\mathcal{SC}_{\mathrm{1-3}}^{\mathrm{up}}$	\mathcal{SC}_{1-3}	\mathcal{SC}_1	\mathcal{SC}_{1-2}	$\mathcal{SC}_{\mathrm{1-3}}^{\mathrm{up}}$	\mathcal{SC}_{1-3}
Communication Services	7.58	2	28	134	172	0.14	1.31	3.30	1.31
Consumer Discretionary	10.56	23	65	206	590	1.87	4.17	6.92	6.21
Consumer Staples	7.80	28	55	401	929	1.68	2.66	10.16	7.38
Energy	4.99	632	698	1006	6823	24.49	21.53	16.33	34.37
Financials	13.56	13	19	52	244	1.33	1.58	2.28	3.34
Health Care	14.15	10	22	120	146	1.12	1.92	5.54	2.12
Industrials	9.90	111	130	298	1662	8.38	7.83	9.43	16.38
Information Technology	21.08	7	23	112	239	1.13	3.03	7.57	5.06
Materials	4.28	478	702	1113	2957	15.89	18.57	15.48	12.93
Real Estate	2.90	22	101	167	571	0.48	1.81	1.57	1.65
Utilities	3.21	1744	1 794	2053	2840	43.47	35.59	21.41	9.24
MSCI World		130	163	310	992				
MSCI World EW		168	211	391	1155				

Global warming potentia Carbon emissions Carbon intensity

Statistics

- Let $b = (b_1, \ldots, b_n)$ be the weights of the assets that belong to a benchmark
- Its weighted average carbon intensity is given by:

$$\mathcal{CI}(b) = \sum_{i=1}^{n} b_i \cdot \mathcal{CI}_i$$

where CI_i is the carbon intensity of asset *i*

• If we focus on the carbon intensity for a given sector, we use the following formula:

$$\mathcal{CI}(\mathcal{S}ector_j) = rac{\sum_{i \in \mathcal{S}ector_j} b_i \cdot \mathcal{CI}_i}{\sum_{i \in \mathcal{S}ector_j} b_i}$$

Carbon budget Carbon trend The \mathcal{PAC} framework

Carbon budget

Definition

- The carbon budget defines the amount of GHG emissions that a country, a company or an organization produces over the time period [t₀, t]
- From a mathematical point of view, it corresponds to the signed area of the region bounded by the function $C\mathcal{E}(t)$:

$$\mathcal{CB}(t_0,t) = \int_{t_0}^t \mathcal{CE}(s) \, \mathrm{d}s$$

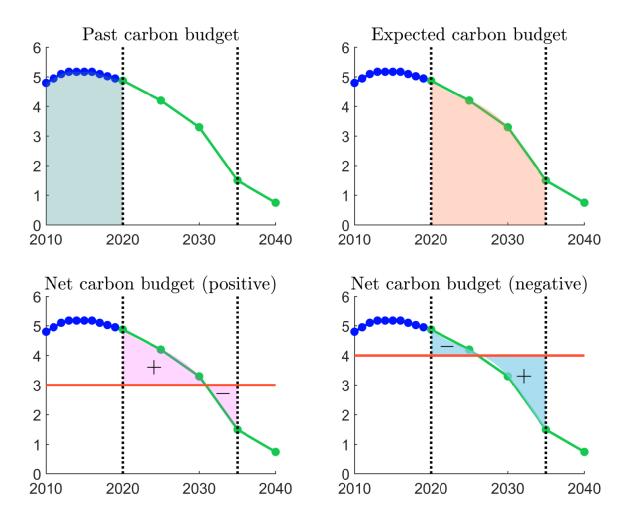
Carbon budget Carbon trend The \mathcal{PAC} framework

Carbon budget

Example #7

Below, we report the historical data of carbon emissions from 2010 to 2020. Moreover, the company has announced his carbon targets for the years until 2050

Table 103: Carbon emissions in $MtCO_2e$


t	2010	2011	2012	2013	2014	2015	2016	2017
							5.175	
t	2018	2019	2020	2025*	2030*	2035*	2040*	2050*
$\mathcal{CE}\left(t ight)$	5.025	4.950	4.875	4.200	3.300	1.500	0.750	0.150

The asterisk * indicates that the company has announced a carbon target for this year

Carbon budget Carbon trend The \mathcal{PAC} framework

Carbon budget

Carbon budget Carbon trend The \mathcal{PAC} framework

Computation of the carbon budget

- We consider the equally-spaced partition $\{[t_0, t_0 + \Delta t], \dots, [t \Delta t, t]\}$ of $[t_0, t]$
- Let $m = \frac{t t_0}{\Delta t}$ be the number of intervals
- We set $\mathcal{CE}_{k} = \mathcal{CE}(t_{0} + k\Delta t)$
- The right Riemann approximation is:

$$\mathcal{CB}(t_0,t) = \int_{t_0}^t \mathcal{CE}(s) \, \mathrm{d}s \approx \sum_{k=1}^m \mathcal{CE}(t_0 + k\Delta t) \Delta t = \Delta t \sum_{k=1}^m \mathcal{CE}_k$$

• The left Riemann sum is:

$$\mathcal{CB}(t_0,t)pprox\Delta t\sum_{k=0}^{m-1}\mathcal{CE}_k$$

• The midpoint rule is:

$$\mathcal{CB}(t_0,t) pprox \Delta t \sum_{k=1}^m \mathcal{CE}\left(t_0 + rac{k}{2}\Delta t
ight)$$

Thierry Roncalli

Carbon budget Carbon trend The \mathcal{PAC} framework

Computation of the carbon budget Analytical solution: the case of a constant reduction rate

• If we use a constant linear reduction rate $\mathcal{R}(t_0, t) = \mathcal{R}(t - t_0)$, we obtain the following analytical expression:

$$\mathcal{CB}(t_0,t) = \int_{t_0}^t \left(\mathcal{CE}(t_0) - \mathcal{R}(s-t_0)\right) \, \mathrm{d}s = (t-t_0) \, \mathcal{CE}(t_0) - \frac{(t-t_0)^2}{2} \mathcal{R}$$

• In the case of a constant compound reduction rate:

$$\mathcal{CE}\left(t
ight)=\left(1-\mathcal{R}
ight)^{\left(t-t_{0}
ight)}\mathcal{CE}\left(t_{0}
ight)$$

we obtain:

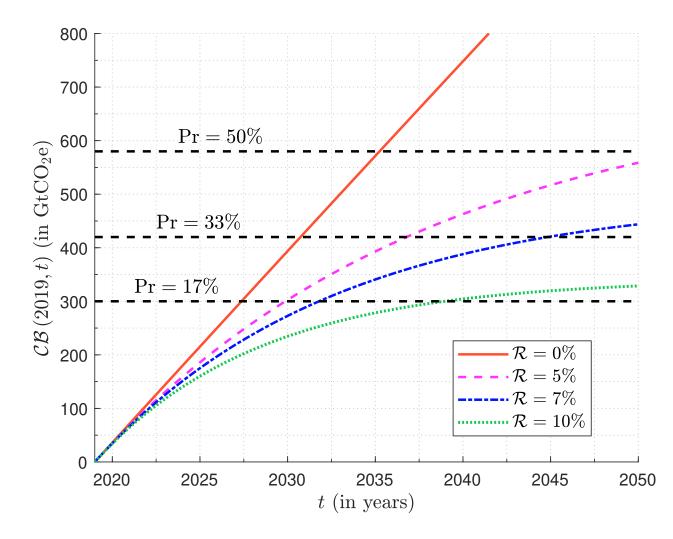
$$\mathcal{CB}(t_0,t) = \mathcal{CE}(t_0) \int_{t_0}^t (1-\mathcal{R})^{(s-t_0)} ds = rac{(1-\mathcal{R})^{(t-t_0)}-1}{\ln(1-\mathcal{R})} \mathcal{CE}(t_0)$$

Carbon budget Carbon trend The \mathcal{PAC} frameworl

Computation of the carbon budget Analytical solution: the case of a constant reduction rate

• If we assume that $\mathcal{CE}(t) = e^{-\mathcal{R}(t-t_0)}\mathcal{CE}(t_0)$, we have:

$$\mathcal{CB}\left(t_{0},t
ight)=\mathcal{CE}\left(t_{0}
ight)\left[-rac{e^{-\mathcal{R}\left(s-t_{0}
ight)}}{\mathcal{R}}
ight]_{t_{0}}^{t}=\mathcal{CE}\left(t_{0}
ight)rac{\left(1-e^{-\mathcal{R}\left(t-t_{0}
ight)}
ight)}{\mathcal{R}}$$


Remark

If the carbon emissions increase at a positive growth rate g, we set $\mathcal{R} = -g$.

Carbon budget Carbon trend The \mathcal{PAC} framewor

Carbon budget and global warming

Figure 192: Probability to reach $1.5^{\circ}C$

IPCC (2018)

The remaining carbon budget CB(2019, t) is:

- 580 GtCO₂e for a 50% probability of limiting warming to 1.5°C
- 420 GtCO₂e for a 66% probability
- 300 GtCO₂e for a 83% probability

Carbon budget Carbon trend The \mathcal{PAC} framework

Computation of the carbon budget Analytical solution: the case of a Linear function

• If we assume that $\mathcal{CE}(t) = \beta_0 + \beta_1 t$, we deduce that:

$$\begin{aligned} \mathcal{CB}(t_0, t) &= \int_{t_0}^t (\beta_0 + \beta_1 s) \, \mathrm{d}s \\ &= \left[\beta_0 s + \frac{1}{2} \beta_1 s^2 \right]_{t_0}^t \\ &= \beta_0 \left(t - t_0 \right) + \frac{1}{2} \beta_1 \left(t^2 - t_0^2 \right) \end{aligned}$$

• We can extend this formula to a piecewise linear function:

$$\mathcal{CB}(t_0,t)=\ldots$$

Carbon budget Carbon trend The \mathcal{PAC} framewor

Net zero emissions scenario (IEA)

33.9

Net emissions

30.2

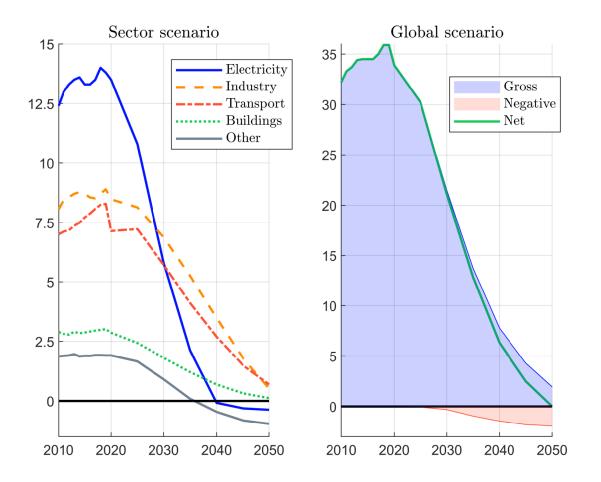
Sector	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Electricity	12.4	13	13.3	13.5	13.6	13.3	13.3	13.5	14	13.8
Buildings	2.89	2.81	2.78	2.9	2.84	2.87	2.91	2.95	2.98	3.01
Transport	7.01	7.13	7.18	7.37	7.5	7.72	7.88	8.08	8.25	8.29
Industry	8.06	8.47	8.57	8.71	8.78	8.71	8.56	8.52	8.72	8.9
Other	1.87	1.89	1.91	1.96	1.87	1.89	1.89	1.92	1.92	1.91
Gross emissions	32.2	33.3	33.7	34.4	34.5	34.5	34.5	35	35.9	35.9
BECCS/DACCS	0	0	0	0	0	0	0	0	0	0
Net emissions	32.2	33.3	33.7	34.4	34.5	34.5	34.5	35	35.9	35.9
Sector		2020	2025	2030	20	35 2	2040	2045	2050	-
Electricity		13.5	10.8	5.82	2. 2.	12 –	0.08	-0.31	-0.37	
Buildings		2.86	2.43	1.81	1.	21	0.69	0.32	0.12	
Transport		7.15	7.23	5.72	2. 4.	11 2	2.69	1.5	0.69	
Industry		8.48	8.14	6.89	5.	25	3.48	1.8	0.52	
Other		1.91	1.66	0.91	. 0.	09 —	0.46	-0.82	-0.96	
Gross emi	ssions	33.9	30.3	21.5	5 13	3.7	7.77	4.3	1.94	-
BECCS/D	ACCS	0	-0.06	-0.32	2 -0.	96 —	1.46	-1.8	-1.94	

21.1

12.8

Table 104: IEA NZE scenario (in $GtCO_2e$)

Source: IEA (2021, Figure 2.3, page 55)


2.5

0.00

6.32

Figure 193: CO₂ emissions by sector in the IEA NZE scenario (in $GtCO_2e$)

Source: IEA (2021) & Author's calculations

Carbon budget Carbon trend The \mathcal{PAC} framework

Net zero emissions scenario (IEA)

Table 105: Carbon budget in the IEA NZE scenario (in GtCO₂e)

t	Electricity	Buildings	Transport	Industry	Other	Gross emissions
2025	74.4	50.2	43.7	16.2	10.8	195.4
2030	115.9	87.8	76.0	26.8	17.3	324.9
2040	140.9	140.0	117.6	39.1	18.8	466.6
2045	139.9	153.2	128.1	41.6	15.6	496.8
2050	138.2	159.0	133.6	42.7	11.2	512.4

Source: IEA (2021) & Author's calculations

Carbon budget Carbon trend The \mathcal{PAC} framework

Linear trend model

• The linear trend model is defined by:

$$\mathcal{CE}(t) = \beta_0 + \beta_1 t + u(t)$$

where $u(t) \sim \mathcal{N}(0, \sigma_u^2)$

- OLS estimation
- The projected carbon trajectory is given by:

$$\mathcal{CE}^{\mathcal{T}rend}\left(t
ight)=\widehat{\mathcal{CE}}\left(t
ight)=\hat{eta}_{0}+\hat{eta}_{1}t$$

Carbon budget Carbon trend The \mathcal{PAC} framework

• We have:

$$\widehat{\mathcal{CE}}(0) = \hat{\beta}_0$$

- Base year: *t*₀
- The linear trend model becomes:

$$\mathcal{CE}(t) = \beta_0' + \beta_1'(t - t_0) + u(t)$$

• We have the following relationships:

$$\begin{cases} \beta_0' = \beta_0 + \beta_1 t_0 \\ \beta_1' = \beta_1 \end{cases}$$

Carbon budget Carbon trend The \mathcal{PAC} framework

Example #8

Below, we report the evolution of scope 1 + 2 carbon emissions for company A:

Table 106: Carbon emissions in MtCO₂e (company *A*)

Year	2007	2008	2009	2010	2011	2012	2013
$\mathcal{CE}\left(t ight)$	57.8	58.4	57.9	55.1	51.6	48.3	47.1
Year	2014	2015	2016	2017	2018	2019	2020
$\mathcal{CE}(t)$	46.1	44.4	42.7	41.4	40.2	41.9	45.0

Carbon budget Carbon trend The \mathcal{PAC} framework

We obtain the following estimates:

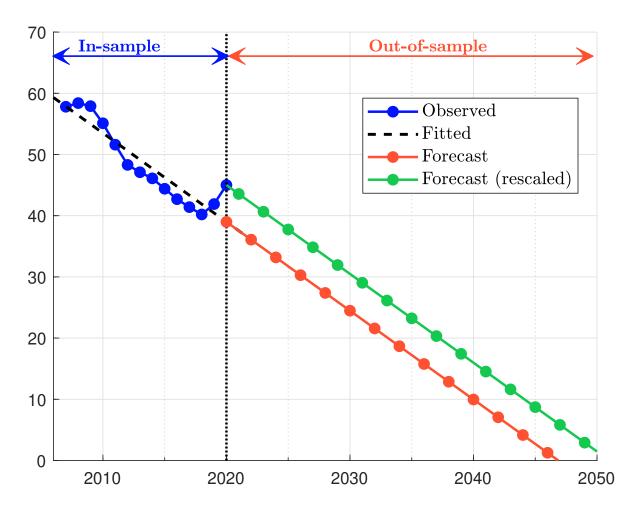
•
$$\hat{\beta}_0 = 2\,970.43$$
, $\hat{\beta}_1 = -1.4512$ and $\hat{\sigma}_u = 2.5844$

•
$$t_0 = 2007$$
, $\hat{\beta}'_0 = 57.85$, $\hat{\beta}'_1 = -1.4512$ and $\hat{\sigma}_u = 2.5844$

- $t_0 = 2020$, $\hat{eta}_0' = 38.99$, $\hat{eta}_1' = -1.4512$ and $\hat{\sigma}_u = 2.5844$
- The two estimated models are coherent:

$$\mathcal{CE}^{\mathcal{T}rend}(t) = 38.99 - 1.4512 \times (t - 2020) \\ = 2970.43 - 1.4512 \times t$$

• We have:


$$\mathcal{CE}^{\mathcal{T}rend}$$
 (2025) = 38.99 - 1.4512 × 5 = 31.73 MtCO₂e

- We have $\mathcal{CE}(2020) = 45.0 \gg \widehat{\mathcal{CE}}(2020) = 38.99$
- The rescaled model has the following expression:

$$\mathcal{CE}^{\mathcal{T}^{rend}}\left(t
ight)=45-1.4512 imes\left(t-2020
ight)$$

Carbon budget Carbon trend The \mathcal{PAC} framework

Figure 194: Linear carbon trend (Example #8)

Carbon budget Carbon trend The \mathcal{PAC} framework

Log-linear trend model

• The log-linear trend model is:

$$\ln \mathcal{CE}(t) = \gamma_0 + \gamma_1 \left(t - t_0 \right) + v(t)$$

- Let $Y(t) = \ln CE(t)$ be the logarithmic transform of the carbon emissions
- OLS estimation using Y(t)

Carbon budget Carbon trend The \mathcal{PAC} framework

Carbon trend Log-linear trend model

0

• We have:

$$\widehat{C\mathcal{E}}(t) = \exp\left(\widehat{Y}(t)\right) = \exp\left(\widehat{\gamma}_0 + \widehat{\gamma}_1(t - t_0)\right) = \widehat{C\mathcal{E}}(t_0) \exp\left(\widehat{\gamma}_1(t - t_0)\right)$$

where $\widehat{C\mathcal{E}}(t_0) = \exp\left(\widehat{\gamma}_0\right)$
The mathematical expectation of $\mathcal{C\mathcal{E}}(t)$ is equal to:

$$\mathbb{E} \left[\mathcal{C} \mathcal{E} \left(t \right) \right] = \mathbb{E} \left[e^{Y(t)} \right]$$
$$= \mathbb{E} \left[\mathcal{L} \mathcal{N} \left(\gamma_0 + \gamma_1 \left(t - t_0 \right), \sigma_v^2 \right) \right]$$
$$= \exp \left(\gamma_0 + \gamma_1 \left(t - t_0 \right) + \frac{1}{2} \sigma_v^2 \right)$$
$$= \widehat{\mathcal{C} \mathcal{E}} \left(t_0 \right) \exp \left(\hat{\gamma}_1 \left(t - t_0 \right) \right)$$

where $\widehat{CE}(t_0) = \exp(\hat{\gamma}_0 + \frac{1}{2}\hat{\sigma}_v^2)$ • The rescaled log-linear trend model is:

$$\mathcal{CE}^{\mathcal{T}rend}\left(t
ight)=\mathcal{CE}\left(t_{0}
ight)\exp\left(\hat{\gamma}_{1}\left(t-t_{0}
ight)
ight)$$

Carbon budget Carbon trend The \mathcal{PAC} framework

Interpretation of the slope

• β_1 is the absolute variation of carbon emissions:

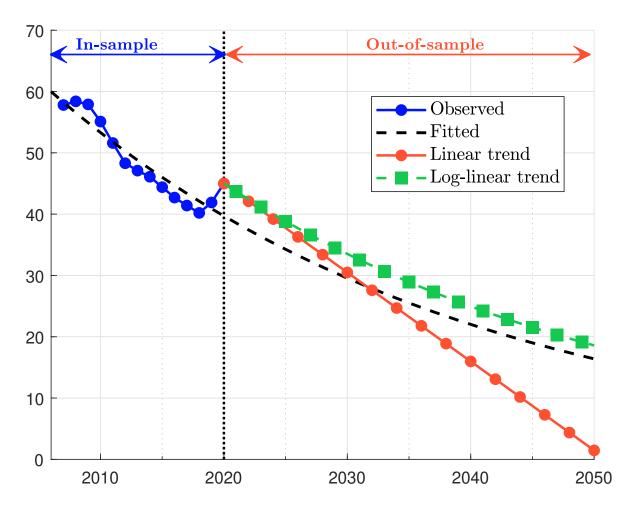
$$\frac{\partial \mathcal{CE}(t)}{\partial t} = \beta_1$$

implying that the relative variation of carbon emissions is:

$$\frac{\frac{\partial \mathcal{CE}(t)}{\partial t}}{\mathcal{CE}(t)} = \frac{\beta_{1}}{\mathcal{CE}(t)}$$

• γ_1 is the relative variation of carbon emissions:


$$\frac{\partial \mathcal{C}\mathcal{E}(t)}{\partial t} = \frac{\partial \ln \mathcal{C}\mathcal{E}(t)}{\partial t} = \gamma_1$$


Carbon budget Carbon trend The PAC framework

Example #8:

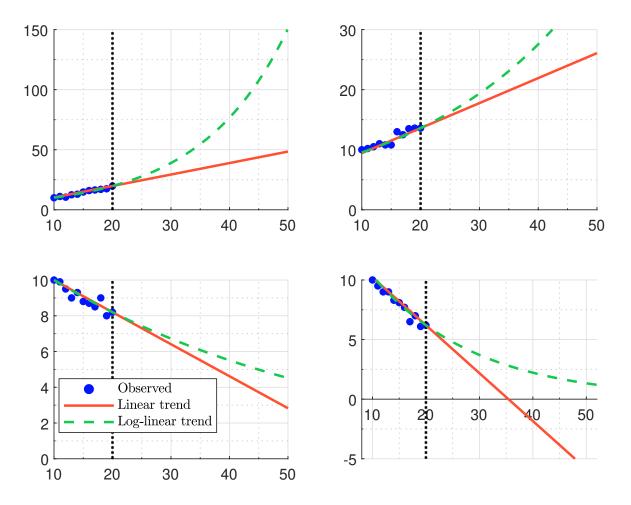
- We obtain the following results: $\hat{\gamma}_0=3.6800,~\hat{\gamma}_1=-2.95\%$ and $\hat{\sigma}_v=0.0520$
- $\widehat{\mathcal{CE}}(2020) = 39.65 \text{ MtCO}_2 e$ without the correction of the variance bias
- $\widehat{\mathcal{CE}}(2020) = 39.70 \text{ MtCO}_2 \text{e}$ with the correction of the variance bias

Carbon budget Carbon trend The \mathcal{PAC} framework

Carbon budget Carbon trend The \mathcal{PAC} frameworl

Linear vs. log-linear trend model

Example #9


We consider several historical trajectories of scope 1 carbon emissions:

Year	#1	#2	#3	#4
2010	10.0	10.0	10.0	10.0
2011	11.1	10.2	9.9	9.5
2012	10.5	10.5	9.5	9.0
2013	12.5	11.0	9.0	9.0
2014	13.0	10.8	9.3	8.3
2015	14.8	10.8	8.8	8.1
2016	16.0	13.0	8.7	7.7
2017	16.5	12.5	8.5	6.5
2018	17.0	13.5	9.0	7.0
2019	17.5	13.6	8.0	6.1
2020	19.8	13.6	8.2	6.2

Carbon budget Carbon trend The \mathcal{PAC} framework

Linear vs. log-linear trend model

Figure 196: Log-linear vs. linear carbon trend (Example #9)

Carbon budget Carbon trend The \mathcal{PAC} framework

Carbon trend Stochastic trend model

Stochastic trend model

• The linear trend model can be written as:

$$\left(egin{array}{l} y\left(t
ight)=\mu\left(t
ight)+u\left(t
ight)\ \mu\left(t
ight)=\mu\left(t-1
ight)+eta_{1} \end{array}
ight.$$

where $u(t) \sim \mathcal{N}\left(0, \sigma_{u}^{2}\right)$

- We have $y(t) = \beta_0 + \beta_1 t + u(t)$ where $\beta_0 = \mu(t_0) \beta_1 t_0$
- The local linear trend model is defined as:

$$\begin{cases} y(t) = \mu(t) + u(t) \\ \mu(t) = \mu(t-1) + \beta_1(t-1) + \eta(t) \\ \beta_1(t) = \beta_1(t-1) + \zeta(t) \end{cases}$$

where $\eta(t) \sim \mathcal{N}(0, \sigma_{\eta}^2)$ and $\zeta(t) \sim \mathcal{N}(0, \sigma_{\zeta}^2)$

• The stochastic trend $\mu(t)$ and slope $\beta_1(t)$ are estimated with KF

Carbon budget Carbon trend The \mathcal{PAC} framework

Example #8

- We estimate the parameters (σ_u, σ_η, σ_ζ) by maximizing the Whittle log-likelihood function
- We obtain $\hat{\sigma}_u = 0.7022$, $\hat{\sigma}_\eta = 0.7019$ and $\hat{\sigma}_\zeta = 0.8350$
- The standard deviation of the stochastic slope variation $\beta_1(t) \beta_1(t-1)$ is then equal to 0.8350 MtCO₂e

Carbon budget Carbon trend The PAC framework

Table 107: Kalman filter estimation of the stochastic trend (Example #8)

t	$\mathcal{CE}(t)$	$\hat{eta}_1(t)$ (RLS)	$eta_1(t)$ (KF)	$\mu(t)$ KF)
2007	57.80		0.0000	57.80
2008	58.40		0.2168	58.25
2009	57.90	0.0500	-0.0441	58.00
2010	55.10	-0.8600	-1.3941	55.56
2011	51.60	-1.5700	-2.6080	52.01
2012	48.30	-2.0200	-3.1288	48.47
2013	47.10	-2.0929	-2.2977	46.82
2014	46.10	-2.0321	-1.5508	45.85
2015	44.40	-1.9817	-1.5029	44.38
2016	42.70	-1.9406	-1.5887	42.73
2017	41.40	-1.8891	-1.4655	41.36
2018	40.20	-1.8329	-1.3202	40.15
2019	41.90	-1.6824	0.1339	41.41
2020	45.00	-1.4512	1.7701	44.45

Carbon budget Carbon trend The \mathcal{PAC} framework

Carbon momentum

$$\mathcal{CM}^{\mathcal{L}ong}\left(t
ight)=rac{\hat{eta}_{1}\left(t
ight)}{\mathcal{CE}\left(t
ight)}$$

or:

$$\mathcal{CM}^{\mathcal{L}ong}\left(t
ight)=\hat{\gamma}_{1}\left(t
ight)$$

Carbon budget Carbon trend The \mathcal{PAC} framework

Statistics

Table 108: Statistics (in %) of carbon momentum $CM^{Long}(t)$ (MSCI World index, 1995 – 2021, linear trend)

Statistics	Carbon emissions			Carbon intensity			
	\mathcal{SC}_1	\mathcal{SC}_{1-2}	$\mathcal{SC}_{\mathrm{1-3}}^{\mathrm{up}}$	\mathcal{SC}_1	\mathcal{SC}_{1-2}	$\mathcal{SC}_{\mathrm{1-3}}^{\mathrm{up}}$	
Median	0.0	1.6	2.3	-4.8	-2.4	-1.3	
Negative	49.9	41.1	29.4	76.0	69.6	75.6	
Positive	50.1	58.9	70.6	24.0	30.4	24.4	
-10%	23.4	15.8	5.8	36.0	25.0	5.7	
<-5%	32.1	22.2	10.6	48.6	36.7	13.4	
>+5%	22.9	27.5	23.6	6.2	7.3	2.7	
>+10%	9.2	9.5	8.0	2.3	2.6	1.0	

Source: Trucost database (2022) & Authors' calculations.

Carbon budget Carbon trend The \mathcal{PAC} framework

Statistics

Table 109: Statistics (in %) of carbon momentum $CM^{Long}(t)$ (MSCI World index, 1995 – 2021, log-linear trend)

Statistics	Carbon emissions			Carbon intensity			
	\mathcal{SC}_1	\mathcal{SC}_{1-2}	$\mathcal{SC}_{\mathrm{1-3}}^{\mathrm{up}}$	\mathcal{SC}_1	\mathcal{SC}_{1-2}	$\mathcal{SC}_{\mathrm{1-3}}^{\mathrm{up}}$	
Median	-0.1	1.7	2.8	-3.6	-1.9	-1.2	
Negative	50.6	40.3	29.0	76.3	69.0	75.8	
Positive	49.4	59.7	71.0	23.7	31.0	24.2	
$\bar{<}-10\%$	13.6	8.0	2.8	20.8	12.3	2.1	
<-5%	26.6	16.9	7.5	42.3	29.0	8.4	
>+5%	29.8	35.9	37.1	9.0	10.1	4.0	
>+10%	16.9	19.4	19.2	4.0	4.1	1.6	

Source: Trucost database (2022) & Authors' calculations.

Carbon budget Carbon trend The \mathcal{PAC} framework

The \mathcal{PAC} framework

Carbon target and decarbonization scenario

The \mathcal{PAC} framework requires three time series:

- The historical pathway of carbon emission
- The reduction targets announced by the company

$$\mathbb{CT} = \left\{ \mathcal{R}^{\mathcal{T}arget}\left(t_{0}, t_{k}\right), k = 1, \dots, n_{T}
ight\}$$

• The market-based sector scenario associated to the company that defines the decarbonization pathway

$$\mathbb{CS} = \left\{ \mathcal{R}^{\mathcal{S}cenario}\left(t_{0}, t_{k}\right), k = 1, \dots, n_{S} \right\}$$

Carbon trend The \mathcal{PAC} framework

Table 110: Reduction rates of the IEA NZE scenario (base year = 2020)

Year	Electricity	Industry	Transport	Buildings	Other	Global
2025	20.0	4.0	-1.1	15.0	13.1	10.6
2030	56.9	18.8	20.0	36.7	52.4	36.6
2035	84.3	38.1	42.5	57.7	95.3	59.6
2040	100.0	59.0	62.4	75.9	100.0	77.1
2045	100.0	78.8	79.0	88.8	100.0	87.3
2050	100.0	93.9	90.3	95.8	100.0	94.3

Source: IEA (2021) & Author's calculations.

Carbon budget Carbon trend The \mathcal{PAC} framework

The \mathcal{PAC} framework

The 3 questions of the \mathcal{PAC} framework

- Is the trend of the issuer in line with the scenario?
- Is the commitment of the issuer to fight climate change ambitious?
- Is the target setting of the company relevant and robust, or is it a form of greenwashing?

Carbon budget Carbon trend The \mathcal{PAC} framework

The \mathcal{PAC} framework

Example #10

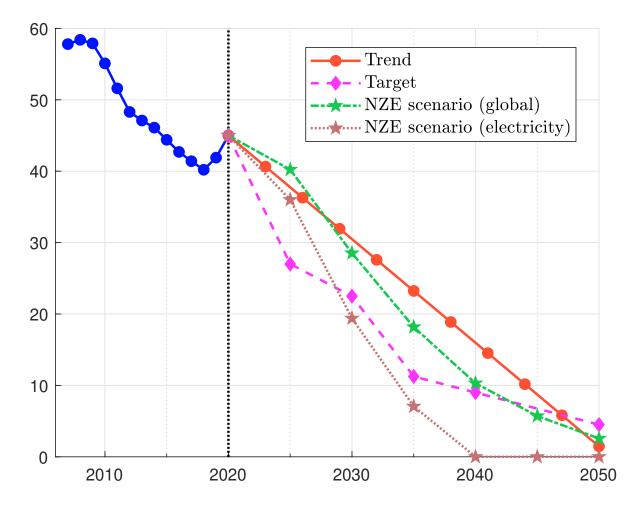
- We consider Example #8
- Company A has announced the following targets:

 \mathcal{R}^{Target} (2020, 2025) = 40% \mathcal{R}^{Target} (2020, 2030) = 50% \mathcal{R}^{Target} (2020, 2035) = 75% \mathcal{R}^{Target} (2020, 2040) = 80% \mathcal{R}^{Target} (2020, 2050) = 90%

 Company A is an utility corporation ⇒ we use the IEA NZE scenario for the sector Electricity

Carbon budget Carbon trend The \mathcal{PAC} framework

The \mathcal{PAC} framework

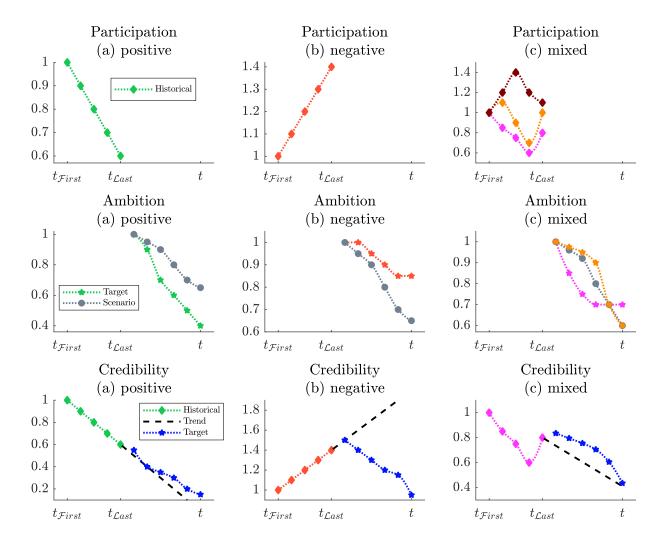

Table 111: Comparison of carbon budgets (Example #10, base year = 2020)

Year	Trend (linear)	Trend (log-linear)	Target	Scenario (global)	Scenario (electricity)
2025	207	209	180	213	203
2030	377	390	304	385	341
2035	512	546	388	502	407
2040	610	680	439	573	425
2045	671	796	478	613	425
2050	697	896	506	634	425

Carbon footprint Dynamic risk measures Greenness measures Carbon budget Carbon trend The \mathcal{PAC} framework

The \mathcal{PAC} framework

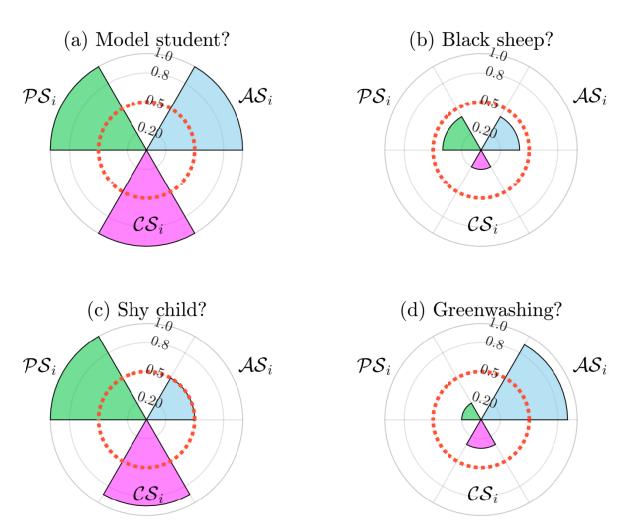
Figure 197: Carbon trend, targets and NZE scenario of company A



Source: IEA (2021) & Author's calculations.

Carbon budget Carbon trend The \mathcal{PAC} framework

Assessment of the \mathcal{PAC} pillars


Figure 198: Illustration of the participation, ambition and credibility pillars

Carbon budget Carbon trend The \mathcal{PAC} framework

Temperature scoring system

Figure 199: The \mathcal{PAC} scoring system

Illustration

Figure 200: Carbon emissions, trend, targets and NZE scenario (Company B)

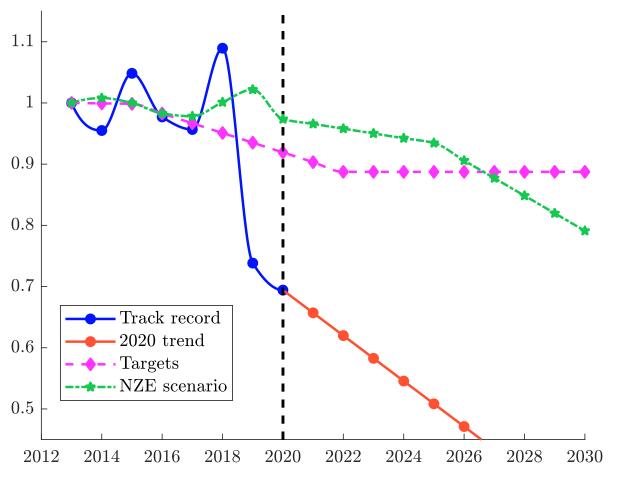


Figure 201: Carbon emissions, trend, targets and NZE scenario (Company C)

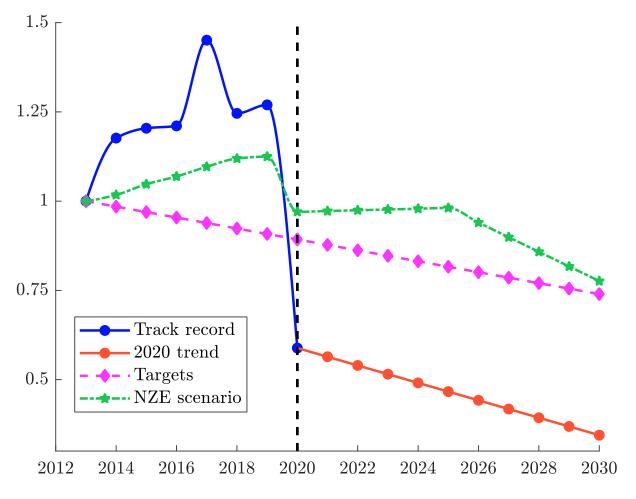
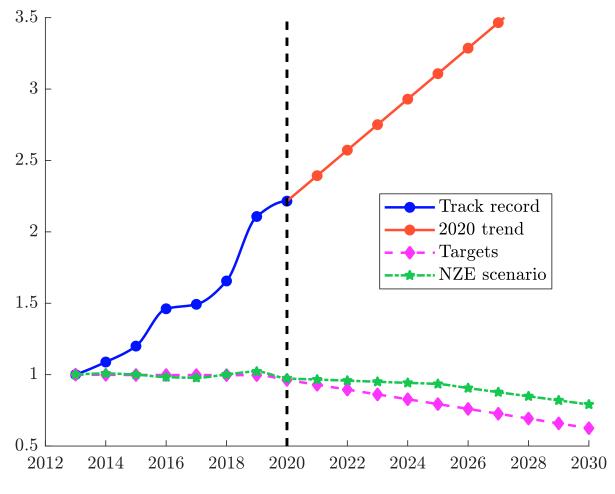



Figure 202: Carbon emissions, trend, targets and NZE scenario (Company D)

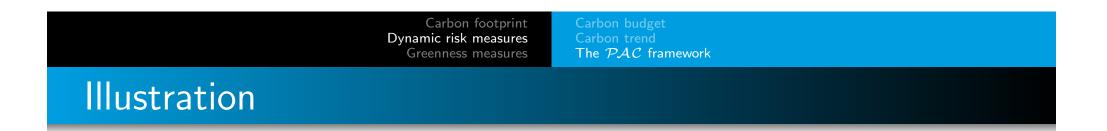


Figure 203: Carbon emissions, trend, targets and NZE scenario (median analysis, global universe)

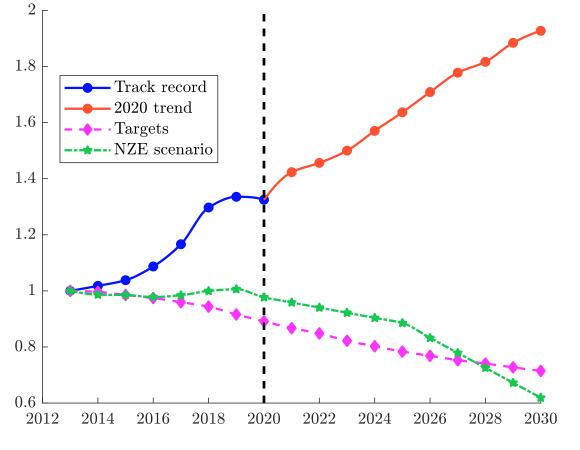
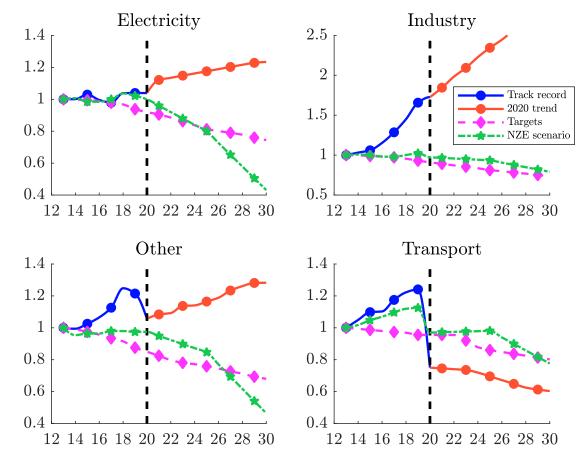



Figure 204: Carbon emissions, trend, targets and NZE scenario (median analysis, sector universe)

Green taxonomy Green revenue share Other greenness metrics

Greenness measures

- Brown intensity: \mathcal{BI}
- Green intensity: \mathcal{GI}
- We have $\mathcal{BI} \in [0,1]$, $\mathcal{GI} \in [0,1]$ and $0 \leq \mathcal{BI} + \mathcal{GI} \leq 1$
- Most of the time, we have


 $\mathcal{BI} + \mathcal{GI}
eq 1$

Green taxonomy Green revenue share Other greenness metrics

Greenness measures

Figure 205: Several taxonomies

Green taxonomy Green revenue share Other greenness metrics

Green taxonomy

Definition

The EU taxonomy for sustainable activities is "a classification system, establishing a list of environmentally sustainable economic activities."

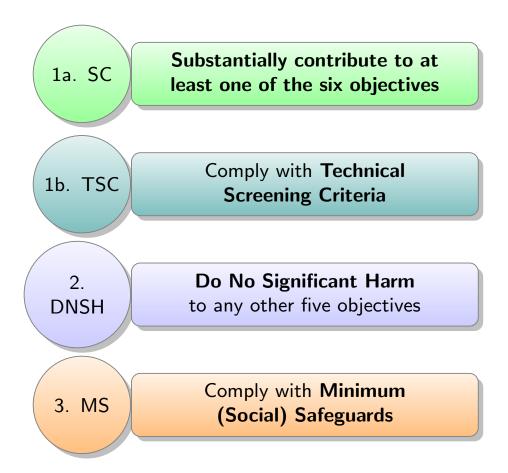
Green taxonomy Green revenue share Other greenness metrics

Green taxonomy

These economic activities must have a substantive contribution to at least one of the following six environmental objectives:

- climate change mitigation
- climate change adaptation
- sustainable use and protection of water and marine resources
- transition to a circular economy
- ollution prevention and control
- o protection and restoration of biodiversity and ecosystem

Green taxonomy Green revenue share Other greenness metrics


A business activity must also meet two other criteria to qualify as sustainable:

- The activity must do no significant harm to the other environmental objectives (**DNSH** constraint)
- It must comply with minimum social safeguards (MS constraint)

Green taxonomy Green revenue share Other greenness metrics

Green taxonomy

Figure 206: EU taxonomy for sustainable activities

Green taxonomy Green revenue share Other greenness metrics

Green revenue share

Relationship between the green intensity and the green revenue share

We have:

$$\mathcal{GI} = rac{\mathcal{GR}}{\mathcal{TR}} \cdot (1-\mathcal{P}) \cdot \mathbb{1}\left\{ \mathcal{S} \geq \mathcal{S}^{\star}
ight\}$$

where:

- \mathcal{GR} is the green revenue deduced from the six environmentally sustainable objectives
- \mathcal{TR} is the total revenue
- \mathcal{P} is the penalty coefficient reflecting the DNSH constraint
- ${\cal S}$ is the minimum safeguard score
- \mathcal{S}^{\star} is the threshold

Green taxonomy Green revenue share Other greenness metrics

Green revenue share

• The first term is a proxy of the turnover KPI and corresponds to the green revenue share:

$$\mathcal{GRS} = rac{\mathcal{GR}}{\mathcal{TR}}$$

- By construction, we have $0 \leq \mathcal{GRS} \leq 1$
- This measure is then impacted by the DNSH coefficient
 - The two extreme cases are:

$$\left\{ egin{array}{ll} \mathcal{P}=1\Rightarrow\mathcal{GI}=\mathcal{GRS}\ \mathcal{P}=0\Rightarrow\mathcal{GI}=0 \end{array}
ight.$$

- We have $0 \leq \mathcal{GI} = \mathcal{GRS} \cdot (1 \mathcal{P}) \leq \mathcal{GRS}$
- The indicator function $\mathbb{1}\{s \ge s^*\}$ is a binary all-or-nothing variable:

$$\mathcal{S} < \mathcal{S}^{\star} \Rightarrow \mathcal{GI} = 0$$

Green taxonomy Green revenue share Other greenness metrics

Green revenue share

Example #11

We consider a company in the hydropower sector which has five production sites. Below, we indicate the power density efficiency, the GHG emissions, the DNSH compliance with respect to the biodiversity and the corresponding revenue:

#1	#2	#3	#4	#5
3.2	3.5	3.3	5.6	4.2
35	103	45	12	36
\checkmark	\checkmark	\checkmark	\checkmark	
103	256	89	174	218
	3.2 35 √	$ \begin{array}{ccc} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Green taxonomy Green revenue share Other greenness metrics

Green revenue share

• The total revenue is equal to:

 $\mathcal{TR} = 103 + 256 + 89 + 174 + 218 = \840 mn

- The fourth site does not pass the technical screening, because the power density is above 5 Watt per m^2
- The second site does not also comply because it has a GHG emissions greater than 100 $\rm gCO_2e$ per kWh
- We deduce that the green revenue is equal to:

 ${\cal GR}=103+89+218=\$410~mn$

- We conclude that the green revenue share is equal to 48.8%
- According to the EU green taxonomy, the green intensity is lower because the last site is close to a biodiversity area and has a negative impact:

$${\cal GI}=rac{103+89}{840}=22.9\%$$

Green taxonomy Green revenue share Other greenness metrics

Table 112: Statistics in % of green revenue share (MSCI ACWI IMI, June 2022)

Catagory	F	requend	$r \mathbf{F}(x)$)		Quant	ile $\mathbf{Q}(\alpha)$		Me	ean
Category	0	25%	50%	75%	75%	90%	95%	Max	Avg	Wgt
(1)	9.82	1.47	0.96	0.75	0.00	0.00	2.85	100.00	1.36	0.77
(2)	14.10	1.45	0.65	0.31	0.00	1.25	6.12	100.00	1.39	3.50
(3)	4.84	1.68	1.02	0.31	0.00	0.00	0.00	100.00	1.16	0.51
(4)	4.79	0.30	0.10	0.06	0.00	0.00	0.00	99.69	0.32	0.22
(5)	1.00	0.39	0.20	0.09	0.00	0.00	0.00	98.47	0.26	0.10
(6)	4.75	0.28	0.11	0.05	0.00	0.00	0.00	99.98	0.29	0.14
Total	27.85	5.82	3.17	1.68	0.42	11.82	30.36	100.00	4.78	5.24

Source: MSCI (2022) & Barahhou (2022)

 $\mathbf{F}(x) = \Pr{\{\mathcal{GRS} > x\}}, \mathbf{Q}(\alpha) = \inf{\{x : \Pr{\{\mathcal{GRS} \le x\}} \ge \alpha\}}, \text{ arithmetic average}}$ $n^{-1}\sum_{i=1}^{n} \mathcal{GRS}_{i}$ and weighted mean $\mathcal{GRS}(b) = \sum_{i=1}^{n} b_{i} \mathcal{GRS}_{i}$ Carbon footprint Dynamic risk measures Greenness measures

Green taxonomy Green revenue share Other greenness metrics

Statistics

- The green revenue share of the MSCI World index is equal to 5.24%
- The green revenue share of the Bloomberg Global Investment Grade Corporate Bond index is equal to 3.49%
- Alessi and Battiston (2022) estimated "a greenness of about 2.8% for EU financial markets"

Carbon footprint Dynamic risk measures Greenness measures

Green taxonomy Green revenue share Other greenness metrics

Green capex

Carbon footprint Dynamic risk measures Greenness measures

Green taxonomy Green revenue share Other greenness metrics

Green-to-brown ratio

Course 2022-2023 in Sustainable Finance Lecture 9. Transition Risk Modeling

Thierry Roncalli*

*Amundi Asset Management²⁴

*University of Paris-Saclay

March 2023

²⁴The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

Climate transition risk

Definition

- Transition risks arise from the sudden shift towards a low-carbon economy
- Such transitions could mean that some sectors of the economy face big shifts in asset values or higher costs of doing business

"It's not that policies stemming from deals like the Paris Climate Agreement are bad for our economy — in fact, the risk of delaying action altogether would be far worse. Rather, it's about the speed of transition to a greener economy — and how this affects certain sectors and financial stability" (Bank of England, 2021)

Climate transition risk

The carbon footprint approach assumes that the <u>climate-related market risk</u> of a company is measured by its current carbon intensity

...But the **market perception** of the climate change may be different

Climate transition risk

Fundamental-based analysis

- Carbon footprint and pathway are measured by CO₂ emissions
- They are fundamental data

Market-based analysis

- Financial market's perception of the potentially reduced impact of climate policies' on securities issued by corporations
- These carbon risk metrics use market data
- How an increase in carbon prices and taxes influences the credit risk of the issuer?
- How sensitive the asset price is to a carbon market factor?

Carbon price

Two main pricing systems:

- Carbon tax
- Emissions trading system (ETS)

Underlying idea

- A high carbon tax impacts the creditworthiness of corporates
- This impact is different from one issuer to another one
- Identifying for each company the carbon price that would lead the default probability in the Merton model to exceed a certain threshold

Based on the assumptions that the enterprise value V is proportional to the earnings before interest, taxes, depreciation, and amortization (EBITDA) and that the debt D remains constant, we can define the carbon price margin as^{25} :

$$CPM_{i} = \left(1 - \exp\left(\sigma_{i}\sqrt{\tau}\Phi\left(-\theta\right) - \left(r + \frac{1}{2}\sigma_{i}^{2}\right)\tau\right)\frac{D_{i}}{V_{i}}\right)\frac{EBITDA_{i}}{\mathcal{CE}_{i,1}}$$

where σ_i is the volatility of the enterprise value, τ is the maturity and r is the risk-free rate

²⁵The parameter θ is the threshold of default probability

Carbon tax

Stranded assets

Energy mix

- How to measure the environmental performance of an utility company?
- How to measure the environmental performance of a country?
- How to assess a company located in a country with a bad energy mix?

mplied temperature rating Carbon beta

Bottom up energy mix^(*) (in %)

Brazil Canada China This figure presents the energy Biomass Coal generation breakdown for some Geothermal France Germany Norway Hydroelectric LNG countries. We can distinguish LPG Landfill Gas countries that rely on Natural Gas Nuclear hydroelectric power (Brazil, Other Petroleum Solar Norway), nuclear (France, Wave & Tidal Wind Switzerland) and mixed solutions Switzerland Spain USA (Canada, Germany, Spain, USA)

(*) Each grid circle represents 20% of energy generation. The scale of the radar chart is then 40% for Canada, Germany, Spain and USA,

60% for China, France and Switzerland, 80% for Brazil and 100% for Norway

Implied temperature rating Carbon beta

Implied temperature rating

- Introduced by Harris (2015) and Görgen *et al.* (2019)
- The underlying idea of the carbon beta is to estimate the sensitivity of the stock return with respect to a carbon/climate risk factor
- Climate risk is not only an idiosyncratic risk for the issuer, but also a systematic risk factor like the Fama-French-Carhart market factors

Implied temperature rating Carbon beta

Carbon beta

Cross-section factor

- Long/short portfolio
- Long on stocks highly exposed to carbon risk
- Short on stocks lowly exposed to carbon risk
- The value of the factor is the return of the L/S portfolio
- High carbon beta = highly exposed to carbon risk

Time-series factor

- Synthetic index that represents the financial perception of climate risk
- Textual analysis of climate change-related news published by newspapers and media
- High carbon beta = highly exposed to carbon risk

Risk measure = carbon beta

Implied temperature rating Carbon beta

Carbon beta

Let $R_i(t)$ be the return of stock *i* at time *t*. We assume that:

$$\begin{aligned} R_{i}(t) &= \alpha_{i}(t) + \beta_{i,\text{mkt}}(t) R_{\text{mkt}}(t) + \sum_{j=1}^{m} \beta_{i,\mathcal{F}_{j}}(t) R_{\mathcal{F}_{j}}(t) + \\ \beta_{i,\text{Carbon}}(t) R_{\text{Carbon}}(t) + \varepsilon_{i}(t) \end{aligned}$$

where $R_{mkt}(t)$ is the return of the market risk factor, $R_{\mathcal{F}_j}(t)$ is the return of the j^{th} alternative risk factor, $R_{Carbon}(t)$ is the return of the carbon risk factor and $\varepsilon_i(t)$ is a white noise process

Remark

The carbon risk factor corresponds to a long/short portfolio between "green" and "brown" stocks

Implied temperature rating Carbon beta

Climate beta

Engle *et al.* (2020) proposed a related approach where the carbon risk factor is replaced by a climate risk news index $\mathcal{I}_{\text{Climate}}$:

$$R_{i}(t) = \alpha_{i}(t) + \beta_{i,\text{mkt}}(t) R_{\text{mkt}}(t) + \sum_{j=1}^{m} \beta_{i,\mathcal{F}_{j}}(t) R_{\mathcal{F}_{j}}(t) + \beta_{i,\text{Climate}}(t) \mathcal{I}_{\text{Climate}}(t) + \varepsilon_{i}(t)$$

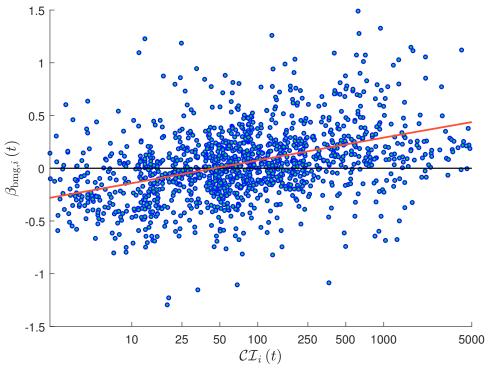
Remark

The climate index $\mathcal{I}_{\text{Climate}}$ corresponds to a time series that measures the sentiment about the climate change. It is built using text mining and natural langage processing (NLP)

Implied temperature rating Carbon beta

Goal

The main objective is to define a market measure of carbon risk


Three-step approach

- Defining a brown green score (BGS) for each stock (scoring model)
- Building a brown minus green factor (Fama-French approach)
- Estimating the carbon beta of a stock with respect to the BMG factor (Multi-factor regression analysis)

Carbon beta = market measure of carbon risk \neq Carbon intensity = fundamental measure of carbon risk

Implied temperature rating Carbon beta

Figure 207: Market-based vs fundamental-based measures of carbon risk

Source: Roncalli et al. (2021).

 \Rightarrow The market perception of a carbon risk measure depends on several dimensions: sector, country, etc.

Implied temperature rating Carbon beta

Systematic carbon risk

- Common risk
- Carbon beta

Market measure (\approx general carbon risk exposure, e.g. market repricing risk)

Idiosyncratic carbon risk

- Specific risk
- Carbon intensity

Fundamental measure (\approx specific carbon risk exposure, e.g. reputational risk)

Implied temperature rating Carbon beta

	Green	Neutral	Brown
Small	SG	SN	SB
Big	BG	BN	BB

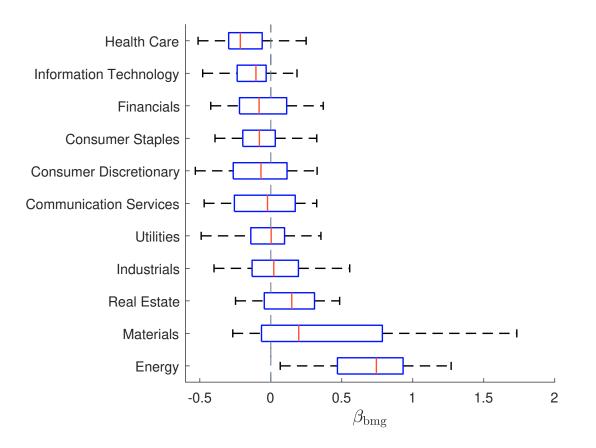
The BMG factor return $R_{\text{bmg}}(t)$ is derived from the Fama-French method:

$$R_{ ext{bmg}}\left(t
ight)=rac{1}{2}\left(R_{ ext{SB}}\left(t
ight)+R_{ ext{BB}}\left(t
ight)
ight)-rac{1}{2}\left(R_{ ext{SG}}\left(t
ight)+R_{ ext{BG}}\left(t
ight)
ight)$$

where the returns of each portfolio $R_j(t)$ (small green SG, big green BG, small brown SB, big brown BB) is value-weighted by the market capitalisation

 \Rightarrow The BMG factor is a Fama-French risk factor based on a scoring system (brown green score or BGS)

Implied temperature rating Carbon beta


Figure 208: Cumulative performance of the BMG factor

Source: Görgen et al. (2019).

Implied temperature rating Carbon beta

Figure 209: Box plots of the carbon sensitivities²⁶

Source: Roncalli et al. (2020).

 26 The box plots provide the median, the quartiles and the 5% and 95% quantiles

Implied temperature rating Carbon beta

Carbon beta

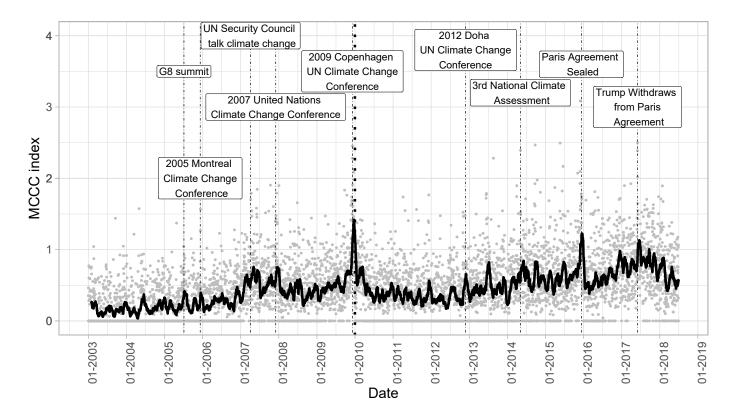
The carbon risk factor approach

Relative carbon risk

- The right measure is $\beta_{\rm bmg}$
- Sign matters
- Negative exposure is preferred

Absolute carbon risk

- The right measure is $|\beta_{\rm bmg}|$
- Sign doesn't matter
- Zero exposure is preferred


Two examples

- We consider three portfolios with a carbon beta of -0.30, -0.05 and +0.30 respectively
- **2** We consider two portfolios with the following characteristics:
 - The value of the carbon beta is +0.10 and the stock dispersion of carbon beta is 0.20
 - The value of the carbon beta is -0.30 and the stock dispersion of carbon beta is 1.50
- \Rightarrow Impact of portfolio management and theory

- Two main references: Engle *et al.* (2020) & Ardia *et al.* (2021)
- We recall that brown assets must exhibit a positive risk premium
- Nevertheless, "[...] If ESG concerns strengthen unexpectedly and sufficiently, green assets outperform brown ones despite having lower expected returns" (Pástor et al., 2021)
- Academics proxy concerns about climate change using climate indices based on news

Implied temperature rating Carbon beta

Figure 210: Media Climate Change Concerns (MCCC) index

- daily - daily (30 days MA)

Source: Ardia et al. (2021).

Course 2022-2023 in Sustainable Finance Lecture 10. Climate Portfolio Construction

Thierry Roncalli*

*Amundi Asset Management²⁷

*University of Paris-Saclay

March 2023

²⁷The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Quadratic programming

Definition

We have:

$$x^{\star} = \arg \min \frac{1}{2} x^{\top} Q x - x^{\top} F$$

s.t.
$$\begin{cases} A x = B \\ C x \le D \\ x^{-} \le x \le x^{+} \end{cases}$$

where x is a $n \times 1$ vector, Q is a $n \times n$ matrix, R is a $n \times 1$ vector, A is a $n_A \times n$ matrix, B is a $n_A \times 1$ vector, C is a $n_C \times n$ matrix, D is a $n_C \times 1$ vector, and x^- and x^+ are two $n \times 1$ vectors

Portfolio optimization in practice
Climate portfolio allocation
Climate risk hedgingQuadratic programming (QP) problem
Equity portfolios
Bond portfolios

Quadratic form

A quadratic form is a polynomial with terms all of degree two

$$\mathcal{QF}(x_1,\ldots,x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{i,j} x_i x_j = x^\top A x$$

Canonical form

$$\mathcal{QF}(x_1,\ldots,x_n) = \frac{1}{2} \left(x^\top A x + x^\top A^\top x \right) = \frac{1}{2} x^\top \left(A + A^\top \right) x = \frac{1}{2} x^\top Q x$$

Generalized quadratic form

$$\mathcal{QF}(x; Q, R, c) = \frac{1}{2}x^{\top}Qx - x^{\top}R + c$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Quadratic form Main properties

•
$$\varphi \cdot \mathcal{QF}(w; Q, R, c) = \mathcal{QF}(w; \varphi Q, \varphi R, \varphi c)$$

• $\mathcal{QF}(x; Q_1, R_1, c_1) + \mathcal{QF}(x; Q_2, R_2, c_2) =$
 $\mathcal{QF}(x; Q_1 + Q_2, R_1 + R_2, c_1 + c_2)$
• $\mathcal{QF}(x - y; Q, R, c) = \mathcal{QF}(x; Q, R + Qy, \frac{1}{2}y^{\top}Qy + y^{\top}R + c)$
• $\mathcal{QF}(x - y; Q, R, c) = \mathcal{QF}(y; Q, Qx - R, \frac{1}{2}x^{\top}Qx - x^{\top}R + c)$
• $\frac{1}{2}\sum_{i=1}^{n} q_i x_i^2 = \mathcal{QF}(x; \mathcal{D}(q), \mathbf{0}_n, 0)$ where $q = (q_1, \dots, q_n)$ is a $n \times 1$ vector and $\mathcal{D}(q) = \text{diag}(q)$
• $\frac{1}{2}\sum_{i=1}^{n} q_i (x_i - y_i)^2 = \mathcal{QF}(x; \mathcal{D}(q), \mathcal{D}(q)y, \frac{1}{2}y^{\top}\mathcal{D}(q)y)$
• $\frac{1}{2}(\sum_{i=1}^{n} q_i x_i)^2 = \mathcal{QF}(x; \mathcal{T}(q), \mathbf{0}_n, 0)$ where $\mathcal{T}(q) = qq^{\top}$
• $\frac{1}{2}(\sum_{i=1}^{n} q_i (x_i - y_i))^2 = \mathcal{QF}(x; \mathcal{T}(q), \mathcal{T}(q)y, \frac{1}{2}y^{\top}\mathcal{T}(q)y)$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Quadratic form Main properties

We note
$$\omega = (\omega_1, \dots, \omega_n)$$
 where $\omega_i = \mathbb{1} \{i \in \Omega\}$
a) $\frac{1}{2} \sum_{i \in \Omega} q_i x_i^2 = \mathcal{QF}(x; \mathcal{D}(\omega \circ q), \mathbf{0}_n, \mathbf{0})$
b) $\frac{1}{2} \sum_{i \in \Omega} q_i (x_i - y_i)^2 = \mathcal{QF}\left(x; \mathcal{D}(\omega \circ q), \mathcal{D}(\omega \circ q), y, \frac{1}{2}y^{\top}\mathcal{D}(\omega \circ q), y\right)$
c) $\frac{1}{2} \left(\sum_{i \in \Omega} q_i x_i\right)^2 = \mathcal{QF}(x; \mathcal{T}(\omega \circ q), \mathbf{0}_n, \mathbf{0})$
c) $\frac{1}{2} \left(\sum_{i \in \Omega} q_i (x_i - y_i)\right)^2 = \mathcal{QF}\left(x; \mathcal{T}(\omega \circ q), \mathcal{T}(\omega \circ q), y, \frac{1}{2}y^{\top}\mathcal{T}(\omega \circ q), y\right)$
c) $\mathcal{D}(\omega \circ q) = \operatorname{diag}(\omega \circ q) = \mathcal{D}(\omega)\mathcal{D}(q)$
c) $\mathcal{T}(\omega \circ q) = (\omega \circ q)(\omega \circ q)^{\top} = (\omega\omega^{\top}) \circ qq^{\top} = \mathcal{T}(\omega) \circ \mathcal{T}(q)$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolio Basic optimization problems

Mean-variance optimization

The long-only mean-variance optimization problem is given by:

$$w^{\star} = \arg \min \frac{1}{2} w^{\top} \Sigma w - \gamma w^{\top} \mu$$

s.t.
$$\begin{cases} \mathbf{1}_{n}^{\top} w = 1\\ \mathbf{0}_{n} \leq w \leq \mathbf{1}_{n} \end{cases}$$

where:

- γ is the risk-tolerance coefficient
- the equality constraint is the budget constraint $(\sum_{i=1}^{n} w_i = 1)$
- the bounds correspond to the no short-selling restriction ($w_i \ge 0$)

QP form

$$Q = \Sigma$$
, $R = \gamma \mu$, $A = \mathbf{1}_n^{ op}$, $B = 1$, $w^- = \mathbf{0}_n$ and $w^+ = \mathbf{1}$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolio Basic optimization problems

Tracking error optimization

The tracking error optimization problem is defined as:

$$w^{\star} = \arg \min \frac{1}{2} w^{\top} \Sigma w - w^{\top} (\gamma \mu + \Sigma b)$$

s.t.
$$\begin{cases} \mathbf{1}_{n}^{\top} w = 1\\ \mathbf{0}_{n} \leq w \leq \mathbf{1}_{n} \end{cases}$$

QP form

$$Q = \Sigma$$
, $R = \gamma \mu + \Sigma b$, $A = \mathbf{1}_n^{\top}$, $B = 1$, $w^- = \mathbf{0}_n$ and $w^+ = \mathbf{1}$

 \Rightarrow Portfolio replication: $R = \Sigma b$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Specification of the constraints Sector weight constraint

• We have

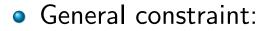
$$s_j^- \leq \sum_{i \in \boldsymbol{\mathcal{S}}ector_i} w_i \leq s_j^+$$

• \boldsymbol{s}_j is the $n \times 1$ sector-mapping vector: $\boldsymbol{s}_{i,j} = \mathbb{1} \{ i \in \mathcal{S}ector_j \}$

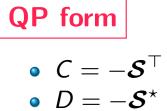
• We notice that:

$$\sum_{i \in \boldsymbol{\mathcal{S}}ector_j} w_i = \boldsymbol{s}_j^\top w$$

• We deduce that:


$$s_j^- \leq \sum_{i \in \mathcal{S}ector_j} w_i \leq s_j^+ \Leftrightarrow \left\{ \begin{array}{c} s_j^- \leq \mathbf{s}_j^\top w \\ \mathbf{s}_j^\top w \leq s_j^+ \end{array} \Leftrightarrow \left\{ \begin{array}{c} -\mathbf{s}_j^\top w \leq -s_j^- \\ \mathbf{s}_j^\top w \leq s_j^+ \end{array} \right. \right. \right.$$

QP form


$$\underbrace{\begin{pmatrix} -\mathbf{s}_{j}^{\top} \\ \mathbf{s}_{j}^{\top} \end{pmatrix}}_{C} w \leq \underbrace{\begin{pmatrix} -\mathbf{s}_{j}^{-} \\ \mathbf{s}_{j}^{+} \end{pmatrix}}_{D}$$

Equity portfolios

Specification of the constraints Score constraint

$$\sum_{i=1}^{n} w_i \mathcal{S}_i \geq \mathcal{S}^{\star} \Leftrightarrow -\mathcal{S}^{ op} w \leq -\mathcal{S}^{\star}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Specification of the constraints

• Sector-specific constraint:

i

$$egin{aligned} &\sum_{i \in \mathcal{S}ector_{j}}^{n} w_{i}\mathcal{S}_{i} \geq \mathcal{S}_{j}^{\star} &\Leftrightarrow &\sum_{i=1}^{n} \mathbb{1}\left\{i \in \mathcal{S}ector_{j}
ight\} \cdot w_{i}\mathcal{S}_{i} \geq \mathcal{S}_{j}^{\star} \ &\Leftrightarrow &\sum_{i=1}^{n} oldsymbol{s}_{i,j} w_{i}\mathcal{S}_{i} \geq \mathcal{S}_{j}^{\star} \ &\Leftrightarrow &\sum_{i=1}^{n} w_{i} \cdot (oldsymbol{s}_{i,j}\mathcal{S}_{i}) \geq \mathcal{S}_{j}^{\star} \ &\Leftrightarrow & (oldsymbol{s}_{j} \circ \mathcal{S})^{ op} w \geq \mathcal{S}_{j}^{\star} \end{aligned}$$

QP form
•
$$C = -(\mathbf{s}_j \circ \mathbf{S})^\top$$

• $D = -\mathbf{S}_j^*$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios

Example #1

- The capitalization-weighted equity index is composed of 8 stocks
- The weights are equal to 23%, 19%, 17%, 13%, 9%, 8%, 6% and 5%
- The ESG score, carbon intensity and sector of the eight stocks are the following:

Stock	#1	#2	#3	#4	#5	#6	#7	#8
S	-1.20	0.80	2.75	1.60	-2.75	-1.30	0.90	-1.70
\mathcal{CI}	125	75	254	822	109	17	341	741
${\cal S}$ ector	1	1	2	2	1	2	1	2

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios

Example #1 (Cont'd)

- The stock volatilities are equal to 22%, 20%, 25%, 18%, 35%, 23%, 13% and 29%
- The correlation matrix is given by:

	/ 100%							
	80%	100%						
	70%	75%	100%					
$\mathbb{C} =$	60%	65%	80%	100%				
\mathbb{C} —	70%	50%	70%	85%	100%			
	50%	60%	70%	80%	60%	100%		
	70%	50%	70%	75%	80%	50%	100%	
	\ 60%	65%	70%	75%	65%	70%	80%	100% /

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios

• We have:

$$w^{\star} = \arg \min \frac{1}{2} w^{\top} Q w - w^{\top} R$$

s.t.
$$\begin{cases} Aw = B \\ Cw \le D \\ w^{-} \le w \le w^{+} \end{cases}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios Objective function

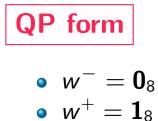
• Using $\Sigma_{i,j} = \mathbb{C}_{i,j}\sigma_i\sigma_j$, we obtain:

 $Q = \Sigma = 10^{-4} \times$

/	484.00	352.00	385.00	237.60	539.00	253.00	200.20	382.80
	352.00	400.00	375.00	234.00	350.00	276.00	130.00	377.00
	385.00	375.00	625.00	360.00	612.50	402.50	227.50	507.50
	237.60	234.00	360.00	324.00	535.50	331.20	175.50	391.50
	539.00	350.00	612.50	535.50	1225.00	483.00	364.00	659.75
	253.00	276.00	402.50	331.20	483.00	529.00	149.50	466.90
	200.20	130.00	227.50	175.50	364.00	149.50	169.00	301.60
	382.80	377.00	507.50	391.50	659.75	466.90	301.60	841.00

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios


• We have:

$$R = \Sigma b = \begin{pmatrix} 3.74 \\ 3.31 \\ 4.39 \\ 3.07 \\ 5.68 \\ 3.40 \\ 2.02 \\ 4.54 \end{pmatrix} \times 10^{-2}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios Constraint specification (bounds)

• The portfolio is long-only

Quadratic programming (QP) prob Equity portfolios Bond portfolios

Equity portfolios Constraint specification (equality)

- The budget constraint $\sum_{i=1}^{8} w_i = 1 \Rightarrow a$ first linear equation $A_0 w = B_0$ **QP form**
 - $A_0 = \mathbf{1}_8^{ op}$ • $B_0 = 1$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios Constraint specification (equality)

• We can impose the sector neutrality of the portfolio meaning that:

$$\sum_{i \in \boldsymbol{\mathcal{S}}ector_j} w_i = \sum_{i \in \boldsymbol{\mathcal{S}}ector_j} b_i$$

The sector neutrality constraint can be written as:

$$\left(\begin{array}{c}A_1\\A_2\end{array}\right)w=\left(\begin{array}{c}B_1\\B_2\end{array}\right)$$

QP form

•
$$A_1 = \mathbf{s}_1^\top = (\begin{array}{cccccc} 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \bullet & A_2 = \mathbf{s}_2^\top = (\begin{array}{cccccccc} 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \end{array})$$

• $B_1 = \mathbf{s}_1^\top b = \sum_{i \in \mathcal{S}ector_1} b_i$
• $B_2 = \mathbf{s}_2^\top b = \sum_{i \in \mathcal{S}ector_2} b_i$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios Constraint specification (inequality)

• We can impose a relative reduction of the benchmark carbon intensity:

$$\mathcal{CI}(w) \leq (1-\mathcal{R}) \, \mathcal{CI}(b) \Leftrightarrow C_1 w \leq D_1$$

QP form

•
$$C_1 = C \mathcal{I}^{ op}$$
 (because $C \mathcal{I}(w) = C \mathcal{I}^{ op} w$)
• $D_1 = (1 - \mathcal{R}) C \mathcal{I}(b)$

• We can impose an absolute increase of the benchmark ESG score:

$$oldsymbol{\mathcal{S}}\left(w
ight)\geqoldsymbol{\mathcal{S}}\left(b
ight)+\Deltaoldsymbol{\mathcal{S}}^{\star}$$

Since $\mathcal{S}(w) = \mathcal{S}^{\top}w$, we deduce that $C_2w \leq D_2$

QP form

•
$$C_2 = -\boldsymbol{\mathcal{S}}^{ op}$$

• $D_2 = -(\boldsymbol{\mathcal{S}}(b) + \Delta \boldsymbol{\mathcal{S}}^{\star})$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios Combination of constraints

Set of constraints	Carbon intensity	ESG score	Sector neutrality	A	В	С	D
#1	\checkmark			A_0	B_0	<i>C</i> ₁	D_1
#2		\checkmark		\mathcal{A}_0	B_0	C_2	D_2
#3	\checkmark	\checkmark		A_0	B_0	$\left[\begin{array}{c} C_1 \\ C_2 \end{array}\right]$	$\left[\begin{array}{c} D_1 \\ D_2 \end{array}\right]$
#4	\checkmark	\checkmark	\checkmark	$\left[\begin{array}{c}A_0\\A_1\\A_2\end{array}\right]$	$\left[\begin{array}{c}B_0\\B_1\\B_2\end{array}\right]$	$\left[\begin{array}{c} C_1 \\ C_2 \end{array}\right]$	$\left[\begin{array}{c} D_1\\ D_2\end{array}\right]$

 Portfolio optimization in practice Climate portfolio allocation Climate risk hedging
 Quadratic programming (QP) problem Equity portfolios Bond portfolios

 Equity portfolios Results
 Equity portfolios

Table 113: $\mathcal{R} = 30\%$ and $\Delta S^* = 0.50$ (Example #1)

	В	enchmark	Set #1	Set #2	Set #3	Set #4
	W_1^{\star}	23.00	18.17	25.03	8.64	12.04
	W_2^{\star}	19.00	24.25	14.25	29.27	23.76
	W3*	17.00	16.92	21.95	26.80	30.55
Weights (in %)	W_4^{\star}	13.00	2.70	27.30	1.48	2.25
vveignits (III /0)	W_5^{\star}	9.00	12.31	3.72	10.63	8.51
	W_6^{\star}	8.00	11.23	1.34	6.30	10.20
	W_7^{\star}	6.00	11.28	1.68	16.87	12.69
	W ₈ *	5.00	3.15	4.74	0.00	0.00
	$\sigma(w^* \mid b) \text{ (in \%)}$	0.00	0.50	1.18	1.90	2.12
	$\mathcal{CI}(w^{\star})$	261.72	183.20	367.25	183.20	183.20
	$\mathcal{R}\left(w^{\star}\mid b ight) $ (in %)		30.00	-40.32	30.00	30.00
Statistics	$\mathcal{S}\left(w^{\star} ight)$	0.17	0.05	0.67	0.67	0.67
	$oldsymbol{\mathcal{S}}\left(w^{\star} ight)-oldsymbol{\mathcal{S}}\left(b ight)$		-0.12	0.50	0.50	0.50
	w* (${\mathcal S}$ ector $_1$) (in %)	57.00	66.00	44.67	65.41	57.00
	$w^{\star}\left(oldsymbol{\mathcal{S}\textit{ector}}_{2} ight) ({\sf in}\%)$	43.00	34.00	55.33	34.59	43.00

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios Dealing with constraints on relative weights

• The carbon intensity of the j^{th} sector within the portfolio w is:

$$\mathcal{CI}(w; \mathcal{S}ector_j) = \sum_{i \in \mathcal{S}ector_j} \tilde{w}_i \mathcal{CI}_i$$

where \tilde{w}_i is the normalized weight in the sector bucket:

$$ilde{w}_i = rac{w_i}{\sum_{k \in oldsymbol{\mathcal{S}}ector_i} w_k}$$

• Another expression of $CI(w; Sector_j)$ is:

$$\mathcal{CI}(w; \mathcal{S}ector_j) = \frac{\sum_{i \in \mathcal{S}ector_j} w_i \mathcal{CI}_i}{\sum_{i \in \mathcal{S}ector_j} w_i} = \frac{(\mathbf{s}_j \circ \mathcal{CI})^\top w}{\mathbf{s}_j^\top w}$$

Portfolio optimization in practice
Climate portfolio allocation
Climate risk hedgingQuadratic programming (QP) proble
Equity portfolios

Equity portfolios Dealing with constraints on relative weights

• If we consider the constraint $\mathcal{CI}(w; \mathcal{S}ector_j) \leq \mathcal{CI}_j^*$, we obtain:

$$\begin{aligned} *) &\Leftrightarrow \quad \mathcal{CI}\left(w; \mathcal{S}ector_{j}\right) \leq \mathcal{CI}_{j}^{\star} \\ &\Leftrightarrow \quad \left(\boldsymbol{s}_{j} \circ \mathcal{CI}\right)^{\top} w \leq \mathcal{CI}_{j}^{\star}\left(\boldsymbol{s}_{j}^{\top} w\right) \\ &\Leftrightarrow \quad \left(\left(\boldsymbol{s}_{j} \circ \mathcal{CI}\right) - \mathcal{CI}_{j}^{\star} \boldsymbol{s}_{j}\right)^{\top} w \leq 0 \\ &\Leftrightarrow \quad \left(\boldsymbol{s}_{j} \circ \left(\mathcal{CI} - \mathcal{CI}_{j}^{\star}\right)\right)^{\top} w \leq 0 \end{aligned}$$

QP form

•
$$C = \left(\boldsymbol{s}_{j} \circ \left(\boldsymbol{\mathcal{C}} \boldsymbol{\mathcal{I}} - \boldsymbol{\mathcal{C}} \boldsymbol{\mathcal{I}}_{j}^{\star} \right) \right)^{\top}$$

• $D = 0$

(

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios Dealing with constraints on relative weights

Example #2

- Example #1
- We would like to reduce the carbon footprint of the benchmark by 30%
- We impose the sector neutrality

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Equity portfolios Dealing with constraints on relative weights

Quadratic programming (QP) problem Equity portfolios Bond portfolios

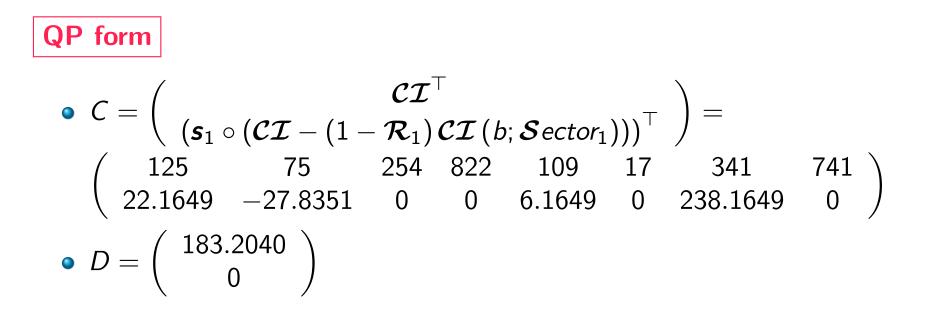
Equity portfolios Dealing with constraints on relative weights

• The optimal solution is:

 $w^{\star} = (21.54\%, 18.50\%, 21.15\%, 3.31\%, 10.02\%, 15.26\%, 6.94\%, 3.27\%)$

BUT

 $\begin{cases} \mathcal{CI}(w^*; \mathcal{S}ector_1) = 132.25 \\ \mathcal{CI}(w^*; \mathcal{S}ector_2) = 250.74 \end{cases} \text{ versus } \begin{cases} \mathcal{CI}(b; \mathcal{S}ector_1) = 128.54 \\ \mathcal{CI}(b; \mathcal{S}ector_2) = 438.26 \end{cases}$


The global reduction of 30% is explained by:

- an increase of 2.89% of the carbon footprint for the first sector
- a decrease of 42.79% of the carbon footprint for the second sector

Portfolio optimization in practice
Climate portfolio allocation
Climate risk hedgingQuadratic programming (QP) p
Equity portfolios
Bond portfolios

Equity portfolios Dealing with constraints on relative weights

• We impose $\mathcal{R}_1 = 20\%$

• Solving the new QP problem gives the following optimal portfolio:

 $w^{\star} = (22.70\%, 22.67\%, 19.23\%, 5.67\%, 11.39\%, 14.50\%, 0.24\%, 3.61\%)$

•
$$\sigma(w^* \mid b) = 144$$
 bps

- $CI(w^{\star}) = 183.20$
 - $\mathcal{CI}(w^*; \mathcal{S}ector_1) = 102.84$ (reduction of 20%)
 - $\mathcal{CI}(w^*; \mathcal{S}ector_2) = 289.74$ (reduction of 33.89%)

Risk measure of a bond portfolio

 We consider a zero-coupon bond, whose price and maturity date are B(t, T) and T:

$$B_t(t, T) = e^{-(r(t)+s(t))(T-t)+L(t)}$$

where r(t), s(t) and L(t) are the interest rate, the credit spread and the liquidity premium

• We deduce that:

$$d \ln B(t, T) = -(T - t) dr(t) - (T - t) ds(t) + dL(t)$$
$$= -D dr(t) - (D s(t)) \frac{ds(t)}{s(t)} + dL(t)$$
$$= -D dr(t) - DTS(t) \frac{ds(t)}{s(t)} + dL(t)$$

where:

- D = T t is the remaining maturity (or duration)
- DTS(t) is the duration-times-spread factor

Risk measure of a bond portfolio

• If we assume that r(t), s(t) and L(t) are independent, the risk of the defaultable bond is equal to:

$$\sigma^{2} \left(\mathrm{d} \ln B(t, T) \right) = D^{2} \sigma^{2} \left(\mathrm{d} r(t) \right) + \mathrm{DTS}(t)^{2} \sigma^{2} \left(\frac{\mathrm{d} s(t)}{s(t)} \right) + \sigma^{2} \left(\mathrm{d} L(t) \right)$$

• Three risk components

$$\sigma^{2} \left(\mathrm{d} \ln B \left(t, T \right) \right) = D^{2} \sigma_{r}^{2} + \mathrm{DTS} \left(t \right)^{2} \sigma_{s}^{2} + \sigma_{L}^{2}$$

 \Longrightarrow The historical volatility of a bond price is not a relevant risk measure

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization Without a benchmark

• Duration risk:

$$\mathrm{MD}(w) = \sum_{i=1}^{n} w_i \, \mathrm{MD}_i$$

• DTS risk:

$$DTS(w) = \sum_{i=1}^{n} w_i DTS_i$$

- Clustering approach = generalization of the sector approach, e.g. (EUR, Financials, AAA to A-, 1Y-3Y)
- We have:

$$\mathrm{MD}_{j}\left(w
ight) = \sum_{i \in \boldsymbol{\mathcal{S}} \textit{ector}_{j}} w_{i} \, \mathrm{MD}_{i}$$

and:

$$\mathrm{DTS}_{j}(w) = \sum_{i \in \mathcal{S}ector_{j}} w_{i} \mathrm{DTS}_{i}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization Without a benchmark

Objective function without a benchmark

We have:

$$\begin{aligned} \mathbf{w}^{\star} &= \arg \min \frac{\varphi_{\mathrm{MD}}}{2} \sum_{j=1}^{n_{\boldsymbol{\mathcal{S}ector}}} \left(\mathrm{MD}_{j} \left(\mathbf{w} \right) - \mathrm{MD}_{j}^{\star} \right)^{2} + \\ & \frac{\varphi_{\mathrm{DTS}}}{2} \sum_{j=1}^{n_{\boldsymbol{\mathcal{S}ector}}} \left(\mathrm{DTS}_{j} \left(\mathbf{w} \right) - \mathrm{DTS}_{j}^{\star} \right)^{2} - \gamma \sum_{i=1}^{n} w_{i} \mathcal{C} \end{aligned}$$

where:

- $\varphi_{\rm MD} \ge$ 0 and $\varphi_{\rm DTS} \ge$ 0 indicate the relative weight of each risk component
- C_i is the expected carry of bond *i* and γ is the risk-tolerance coefficient

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization Without a benchmark

QP form

$$egin{array}{rcl} w^{\star} &=& rg\min\mathcal{QF}\left(w;Q,R,c
ight)\ ext{s.t.} &\left\{egin{array}{c} \mathbf{1}_{n}^{ op}w=1\ \mathbf{0}_{n}\leq w\leq \mathbf{1}_{n}\end{array}
ight. \end{array}$$

where $Q\mathcal{F}(w; Q, R, c)$ is the quadratic form of the objective function

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization Without a benchmark

We have:

$$\begin{aligned} \frac{1}{2} \left(\mathrm{MD}_{j} \left(w \right) - \mathrm{MD}_{j}^{\star} \right)^{2} &= \frac{1}{2} \left(\sum_{i \in \mathcal{S}ector_{j}}^{} w_{i} \mathrm{MD}_{i} - \mathrm{MD}_{j}^{\star} \right)^{2} \\ &= \frac{1}{2} \left(\sum_{i=1}^{n} \boldsymbol{s}_{i,j} w_{i} \mathrm{MD}_{i} - \mathrm{MD}_{j}^{\star} \right)^{2} \\ &= \frac{1}{2} \left(\sum_{i=1}^{n} \boldsymbol{s}_{i,j} \mathrm{MD}_{i} w_{i} \right)^{2} - w^{\top} \left(\boldsymbol{s}_{j} \circ \mathrm{MD} \right) \mathrm{MD}_{j}^{\star} + \frac{1}{2} \mathrm{MD}_{j}^{\star^{2}} \\ &= \mathcal{QF} \left(w; \mathcal{T} \left(\boldsymbol{s}_{j} \circ \mathrm{MD} \right), \left(\boldsymbol{s}_{j} \circ \mathrm{MD} \right) \mathrm{MD}_{j}^{\star}, \frac{1}{2} \mathrm{MD}_{j}^{\star^{2}} \right) \end{aligned}$$

where $MD = (MD_1, \dots, MD_n)$ is the vector of modified durations and $\mathcal{T}(u) = uu^{\top}$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization Without a benchmark

We deduce that:

$$\frac{1}{2}\sum_{j=1}^{n_{\mathcal{S}ector}} \left(\mathrm{MD}_{j}\left(w \right) - \mathrm{MD}_{j}^{\star} \right)^{2} = \mathcal{QF}\left(w; \mathcal{Q}_{\mathrm{MD}}, \mathcal{R}_{\mathrm{MD}}, \mathcal{C}_{\mathrm{MD}} \right)$$

where:

$$egin{aligned} & \mathcal{Q}_{\mathrm{MD}} = \sum_{j=1}^{n_{m{\mathcal{S}}ector}} \mathcal{T}\left(m{s}_{j} \circ \mathrm{MD}
ight) \ & \mathcal{R}_{\mathrm{MD}} = \sum_{j=1}^{n_{m{\mathcal{S}}ector}} \left(m{s}_{j} \circ \mathrm{MD}
ight) \mathrm{MD}_{j}^{\star} \ & \mathcal{C}_{\mathrm{MD}} = rac{1}{2} \sum_{j=1}^{n_{m{\mathcal{S}}ector}} \mathrm{MD}_{j}^{\star^{2}} \end{aligned}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization Without a benchmark

In a similar way, we have:

$$\frac{1}{2}\sum_{j=1}^{n_{sector}} \left(\text{DTS}_{j}(w) - \text{DTS}_{j}^{\star} \right)^{2} = \mathcal{QF}(w; Q_{\text{DTS}}, R_{\text{DTS}}, c_{\text{DTS}})$$

where:

$$Q_{\text{DTS}} = \sum_{j=1}^{n_{\boldsymbol{\mathcal{S}}ector}} \mathcal{T} \left(\boldsymbol{s}_{j} \circ \text{DTS} \right)$$
$$R_{\text{MD}} = \sum_{j=1}^{n_{\boldsymbol{\mathcal{S}}ector}} \left(\boldsymbol{s}_{j} \circ \text{DTS} \right) \text{DTS}_{j}^{\star}$$
$$c_{\text{DTS}} = \frac{1}{2} \sum_{j=1}^{n_{\boldsymbol{\mathcal{S}}ector}} \text{DTS}_{j}^{\star^{2}}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization Without a benchmark

We have:

$$-\gamma \sum_{i=1}^{n} w_{i} C_{i} = \gamma Q \mathcal{F}(w; \mathbf{0}_{n,n}, C, 0) = Q \mathcal{F}(w; \mathbf{0}_{n,n}, \gamma C, 0)$$

where $C = (C_1, \ldots, C_n)$ is the vector of expected carry values

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization Without a benchmark

Quadratic form of the objective function

The function to optimize is:

$$\begin{aligned} \mathcal{QF}(w; Q, R, c) &= \varphi_{\mathrm{MD}} \mathcal{QF}(w; Q_{\mathrm{MD}}, R_{\mathrm{MD}}, c_{\mathrm{MD}}) + \\ \varphi_{\mathrm{DTS}} \mathcal{QF}(w; Q_{\mathrm{DTS}}, R_{\mathrm{DTS}}, c_{\mathrm{DTS}}) + \\ \mathcal{QF}(w; \mathbf{0}_{n,n}, \gamma \mathcal{C}, \mathbf{0}) \end{aligned}$$

where:

 $\begin{cases} Q = \varphi_{\rm MD} Q_{\rm MD} + \varphi_{\rm DTS} Q_{\rm DTS} \\ R = \gamma C + \varphi_{\rm MD} R_{\rm MD} + \varphi_{\rm DTS} R_{\rm DTS} \\ c = \varphi_{\rm MD} c_{\rm MD} + \varphi_{\rm DTS} c_{\rm DTS} \end{cases}$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization With a benchmark

• The MD- and DTS-based tracking error variances are equal to:

$$\mathcal{R}_{\mathrm{MD}}\left(w\mid b
ight) = \sigma_{\mathrm{MD}}^{2}\left(w\mid b
ight) = \sum_{j=1}^{n_{\boldsymbol{\mathcal{S}}ector}} \left(\sum_{i\in\boldsymbol{\mathcal{S}}ector_{j}}\left(w_{i}-b_{i}
ight)\mathrm{MD}_{i}
ight)^{2}$$

and:

$$\mathcal{R}_{\mathrm{DTS}}(w \mid b) = \sigma_{\mathrm{DTS}}^{2}(w \mid b) = \sum_{j=1}^{n_{\mathcal{S}ector}} \left(\sum_{i \in \mathcal{S}ector_{j}} (w_{i} - b_{i}) \mathrm{DTS}_{i} \right)^{2}$$

This means that $MD_j^* = \sum_{i \in \mathcal{S}ector_j} b_i MD_i$ and $DTS_j^* = \sum_{i \in \mathcal{S}ector_j} b_i DTS_i$. • The active share risk is defined as:

$$\mathcal{R}_{\mathrm{AS}}\left(w\mid b
ight)=\sigma_{\mathrm{AS}}^{2}\left(w\mid b
ight)=\sum_{i=1}^{n}\left(w_{i}-b_{i}
ight)^{2}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization With a benchmark

Objective function with a benchmark

The optimization problem becomes:

$$w^{\star} = \arg\min\frac{1}{2}\mathcal{R}(w \mid b) - \gamma \sum_{i=1}^{n} (w_i - b_i) \mathcal{C}_i$$

s.t.
$$\begin{cases} \mathbf{1}_n^\top w = 1\\ \mathbf{0}_n \le w \le \mathbf{1}_n \end{cases}$$

where the synthetic risk measure is equal to:

$$\mathcal{R}(w \mid b) = \varphi_{\mathrm{AS}} \mathcal{R}_{\mathrm{AS}}(w \mid b) + \varphi_{\mathrm{MD}} \mathcal{R}_{\mathrm{MD}}(w \mid b) + \varphi_{\mathrm{DTS}} \mathcal{R}_{\mathrm{DTS}}(w \mid b)$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization With a benchmark

We can show that

$$w^{\star} = \arg \min \mathcal{QF}(w; Q(b), R(b), c(b))$$

s.t.
$$\begin{cases} \mathbf{1}_{n}^{\top} w = 1 \\ \mathbf{0}_{n} \le w \le \mathbf{1}_{n} \end{cases}$$

where:

$$\begin{cases} Q(b) = \varphi_{AS}Q_{AS}(b) + \varphi_{MD}Q_{MD}(b) + \varphi_{DTS}Q_{DTS}(b) \\ R(b) = \gamma C + \varphi_{AS}R_{AS}(b) + \varphi_{MD}R_{MD}(b) + \varphi_{DTS}R_{DTS}(b) \\ c(b) = \gamma b^{\top}C + \varphi_{AS}c_{AS}(b) + \varphi_{MD}c_{MD}(b) + \varphi_{DTS}c_{DTS}(b) \end{cases}$$

$$egin{aligned} Q_{
m AS}\left(b
ight) &= I_n, \ R_{
m AS}\left(b
ight) = b, \ c_{
m AS}\left(b
ight) = rac{1}{2}b^{ op}b, \ Q_{
m MD}\left(b
ight) = Q_{
m MD}, \ R_{
m MD}\left(b
ight) &= Q_{
m MD}b = R_{
m MD}, \ c_{
m MD}\left(b
ight) = rac{1}{2}b^{ op}Q_{
m MD}b = c_{
m MD}, \ Q_{
m DTS}\left(b
ight) &= Q_{
m DTS}, \ R_{
m DTS}\left(b
ight) = Q_{
m DTS}b = R_{
m DTS}, \ {
m and} \ c_{
m DTS}\left(b
ight) = rac{1}{2}b^{ op}Q_{
m DTS}b = c_{
m DTS} \end{aligned}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization With a benchmark

Example #3

We consider an investment universe of 9 corporate bonds with the following characteristics^{*a*}:

Issuer	#1	#2	#3	#4	#5	#6	#7	#8	#9
bi	21	19	16	12	11	8	6	4	3
\mathcal{CI}_i	111	52	369	157	18	415	17	253	900
MD_i	3.16	6.48	3.54	9.23	6.40	2.30	8.12	7.96	5.48
DTS_i	107	255	75	996	289	45	620	285	125
${\cal S}$ ector	1	1	1	2	2	2	3	3	3

We impose that $0.25 \times b_i \leq w_i \leq 4 \times b_i$. We have $\varphi_{AS} = 100$, $\varphi_{MD} = 25$ and $\varphi_{DTS} = 0.001$.

^aThe units are: b_i in %, \mathcal{CI}_i in tCO₂e/\$ mn, MD_i in years and DTS_i in bps

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization With a benchmark

The optimization problem is defined as:

$$w^{\star}(\mathcal{R}) = \arg\min \frac{1}{2}w^{\top}Q(b)w - w^{\top}R(b)$$

s.t.
$$\begin{cases} \mathbf{1}_{9}^{\top}w = 1\\ \mathcal{C}\mathcal{I}^{\top}w \leq (1 - \mathcal{R})\mathcal{C}\mathcal{I}(b)\\ \frac{b}{4} \leq w \leq 4b \end{cases}$$

where ${\cal R}$ is the reduction rate

Portfolio optimization in practice Climate portfolio allocation Climate risk hedging Description optimization in practice Equity portfolios Bond portfolios

Bond portfolio optimization With a benchmark

Since the bonds are ordering by sectors, Q(b) is a block diagonal matrix:

$$Q\left(b\right) = \begin{pmatrix} Q_1 & \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} \\ \mathbf{0}_{3\times3} & Q_2 & \mathbf{0}_{3\times3} \\ \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} & Q_3 \end{pmatrix} \times 10^3$$

where:

$$Q_1 = \begin{pmatrix} 0.3611 & 0.5392 & 0.2877 \\ 0.5392 & 1.2148 & 0.5926 \\ 0.2877 & 0.5926 & 0.4189 \end{pmatrix}, \qquad Q_2 = \begin{pmatrix} 3.2218 & 1.7646 & 0.5755 \\ 1.7646 & 1.2075 & 0.3810 \\ 0.5755 & 0.3810 & 0.2343 \end{pmatrix}$$

and:

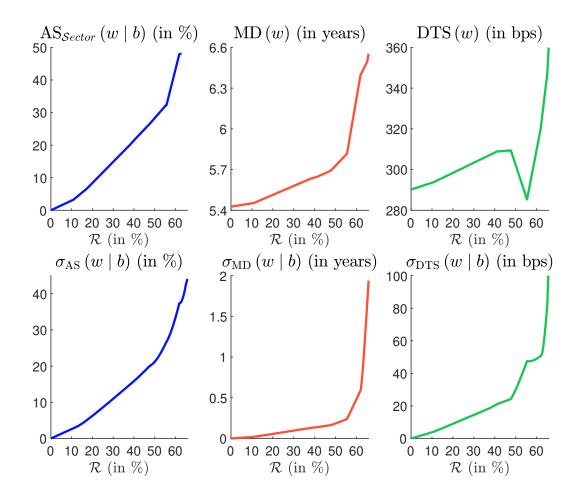
 $\begin{array}{l} R\left(b \right) = \left(2.243, 4.389, 2.400, 6.268, 3.751, 1.297, 2.354, 2.120, 1.424 \right) \\ \times 10^2 \end{array}$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization With a benchmark

Table 114: Weights in % of optimized bond portfolios (Example #3)

Portfolio	#1	#2	#3	#4	#5	#6	#7	#8	#9
b	21.00	19.00	16.00	12.00	11.00	8.00	6.00	4.00	3.00
w* (10%)	21.92	19.01	15.53	11.72	11.68	7.82	6.68	4.71	0.94
w* (30%)	26.29	20.24	10.90	10.24	16.13	3.74	9.21	2.50	0.75
w* (50%)	27.48	23.97	4.00	6.94	22.70	2.00	11.15	1.00	0.75


Table 115: Risk statistics of optimized bond portfolios (Example #3)

Portfolio	$\mathrm{AS}_{\boldsymbol{\mathcal{S}}ector}$	MD(w)	DTS(w)	$\sigma_{\mathrm{AS}}\left(w \mid b \right)$	$\sigma_{\mathrm{MD}} \left(\textit{w} \mid \textit{b} \right)$	$\sigma_{\mathrm{DTS}}\left(\textit{w} \mid \textit{b} ight)$	$\mathcal{CI}(w)$
	(in %)	(in years)	(in bps)	(in %)	(in years)	(in bps)	$gCO_2e/\$$
Ь	0.00	5.43	290.18	0.00	0.00	0.00	184.39
w $^{\star}(10\%)$	3.00	5.45	293.53	2.62	0.02	3.80	165.95
w* (30%)	14.87	5.58	303.36	10.98	0.10	14.49	129.07
w* (50%)	28.31	5.73	302.14	21.21	0.19	30.11	92.19

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Bond portfolio optimization With a benchmark

Figure 211: Relationship between the reduction rate and the tracking risk (Example #3)

Quadratic programming (QP) problem Equity portfolios Bond portfolios

- QP: $n \leq 5000$ (the dimension of Q is $n \times n$)
- LP: $n \gg 10^6$
- Some figures as of 31/01/2023
 - MSCI World Index (DM): n = 1508 stocks
 - MSCI World IMI (DM): n = 5942 stocks
 - MSCI World AC (DM + EM): n = 2882 stocks
 - MSCI World AC IMI (DM + EM): n = 7928 stocks
 - Bloomberg Global Aggregate Total Return Index: n = 28799 securities
 - ICE BOFA Global Broad Market Index: n = 33575 securities
- Trick: \mathcal{L}_2 -norm risk measures $\Rightarrow \mathcal{L}_1$ -norm risk measures

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

We replace the synthetic risk measure by:

$$\mathcal{D}(w \mid b) = \varphi'_{AS} \mathcal{D}_{AS}(w \mid b) + \varphi'_{MD} \mathcal{D}_{MD}(w \mid b) + \varphi'_{DTS} \mathcal{D}_{DTS}(w \mid b)$$

where:

$$\begin{aligned} \mathcal{D}_{\mathrm{AS}}\left(w \mid b\right) &= \frac{1}{2}\sum_{i=1}^{n} |w_i - b_i| \\ \mathcal{D}_{\mathrm{MD}}\left(w \mid b\right) &= \sum_{j=1}^{n_{\mathcal{S}ector}} \left|\sum_{i \in \mathcal{S}ector_j} \left(w_i - b_i\right) \mathrm{MD}_i\right| \\ \mathcal{D}_{\mathrm{DTS}}\left(w \mid b\right) &= \sum_{j=1}^{n_{\mathcal{S}ector}} \left|\sum_{i \in \mathcal{S}ector_j} \left(w_i - b_i\right) \mathrm{DTS}_i\right| \end{aligned}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

The optimization problem becomes:

$$w^{\star} = \arg \min \mathcal{D}(w \mid b) - \gamma \sum_{i=1}^{n} (w_i - b_i) \mathcal{C}_i$$

s.t.
$$\begin{cases} \mathbf{1}_n^\top w = 1\\ \mathbf{0}_n \le w \le \mathbf{1}_n \end{cases}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

Large bond universe

Absolute value trick

If $c_i \geq 0$, then:

$$\min \sum_{i=1}^{n} c_i |f_i(x)| + g(x) \Leftrightarrow \begin{cases} \min \sum_{i=1}^{n} c_i \tau_i + g(x) \\ \text{s.t.} \quad \begin{cases} |f_i(x)| \le \tau_i \\ \tau_i \ge 0 \end{cases} \end{cases}$$

The problem becomes linear:

$$\left|f_{i}\left(x
ight)\right| \leq au_{i} \Leftrightarrow - au_{i} \leq f_{i}\left(x
ight) \wedge f_{i}\left(x
ight) \leq au_{i}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

Linear programming

The standard formulation of a linear programming problem is:

where x is a $n \times 1$ vector, c is a $n \times 1$ vector, A is a $n_A \times n$ matrix, B is a $n_A \times 1$ vector, C is a $n_C \times n$ matrix, D is a $n_C \times 1$ vector, and x^- and x^+ are two $n \times 1$ vectors.

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

Large bond universe

We have:

$$w^{\star} = \arg\min\frac{1}{2}\varphi_{AS}'\sum_{i=1}^{n}\tau_{i,w} + \varphi_{MD}'\sum_{j=1}^{n\boldsymbol{\mathcal{S}ector}}\tau_{j,MD} + \varphi_{DTS}'\sum_{j=1}^{n\boldsymbol{\mathcal{S}ector}}\tau_{j,DTS} - \gamma\sum_{i=1}^{n}(w_{i}-b_{i})\mathcal{C}_{i}$$
$$\gamma\sum_{i=1}^{n}(w_{i}-b_{i})\mathcal{C}_{i}$$
$$\begin{cases} \mathbf{1}_{n}^{\top}w = 1\\ \mathbf{0}_{n} \leq w \leq \mathbf{1}_{n}\\ |w_{i}-b_{i}| \leq \tau_{i,w}\\ \left|\sum_{i \in \boldsymbol{\mathcal{S}ector_{j}}}(w_{i}-b_{i}) \operatorname{MD}_{i}\right| \leq \tau_{j,MD}\\ \left|\sum_{i \in \boldsymbol{\mathcal{S}ector_{j}}}(w_{i}-b_{i}) \operatorname{DTS}_{i}\right| \leq \tau_{j,DTS}\\ \tau_{i,w} \geq 0, \tau_{j,MD} \geq 0, \tau_{j,DTS} \geq 0 \end{cases}$$

Bond portfolios

$$|w_i - b_i| \leq \tau_{i,w} \Leftrightarrow \begin{cases} w_i - \tau_{i,w} \leq b_i \\ -w_i - \tau_{i,w} \leq -b_i \end{cases}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

*)
$$\Leftrightarrow \left| \sum_{i \in \mathcal{S}ector_{j}} (w_{i} - b_{i}) \operatorname{MD}_{i} \right| \leq \tau_{j,\mathrm{MD}}$$
$$\Leftrightarrow -\tau_{j,\mathrm{MD}} \leq \sum_{i \in \mathcal{S}ector_{j}} (w_{i} - b_{i}) \operatorname{MD}_{i} \leq \tau_{j,\mathrm{MD}}$$
$$\Leftrightarrow -\tau_{j,\mathrm{MD}} + \sum_{i \in \mathcal{S}ector_{j}} b_{i} \operatorname{MD}_{i} \leq \sum_{i \in \mathcal{S}ector_{j}} w_{i} \operatorname{MD}_{i} \leq \tau_{j,\mathrm{MD}} + \sum_{i \in \mathcal{S}ector_{j}} b_{i} \operatorname{MD}_{i}$$
$$\Leftrightarrow -\tau_{j,\mathrm{MD}} + \operatorname{MD}_{j}^{*} \leq (\mathbf{s}_{j} \circ \operatorname{MD})^{\top} w \leq \tau_{j,\mathrm{MD}} + \operatorname{MD}_{j}^{*}$$
$$\Leftrightarrow \left\{ \begin{array}{c} (\mathbf{s}_{j} \circ \operatorname{MD})^{\top} w - \tau_{j,\mathrm{MD}} \leq \operatorname{MD}_{j}^{*} \\ -(\mathbf{s}_{j} \circ \operatorname{MD})^{\top} w - \tau_{j,\mathrm{MD}} \leq -\operatorname{MD}_{j}^{*} \end{array} \right.$$

Bond portfolios

$$\left|\sum_{i\in\boldsymbol{\mathcal{S}ector}_{j}} \left(w_{i}-b_{i}\right) \mathrm{DTS}_{i}\right| \leq \tau_{j,\mathrm{DTS}} \Leftrightarrow \begin{cases} \left(\boldsymbol{s}_{j} \circ \mathrm{DTS}\right)^{\top} \boldsymbol{w} - \tau_{j,\mathrm{DTS}} \leq \mathrm{DTS}_{j}^{\star} \\ -\left(\boldsymbol{s}_{j} \circ \mathrm{DTS}\right)^{\top} \boldsymbol{w} - \tau_{j,\mathrm{DTS}} \leq -\mathrm{DTS}_{j}^{\star} \end{cases}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

• x is a vector of dimension
$$n_x = 2 \times (n + n_{sector})$$
:

$$x = \begin{pmatrix} w \\ \tau_w \\ \tau_{\rm MD} \\ \tau_{\rm DTS} \end{pmatrix}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

• The vector *c* is equal to:

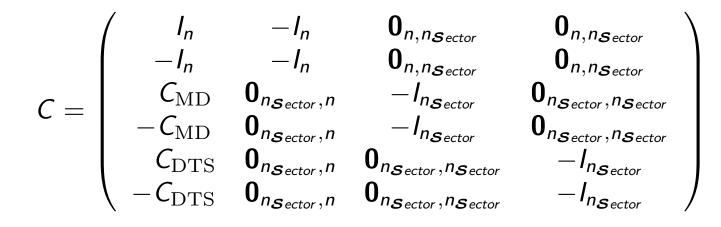
$$c = \begin{pmatrix} -\gamma C \\ \frac{1}{2} \varphi'_{AS} \mathbf{1}_{n} \\ \varphi'_{MD} \mathbf{1}_{n_{sector}} \\ \varphi'_{DTS} \mathbf{1}_{n_{sector}} \end{pmatrix}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

• The linear equality constraint Ax = B is defined by:

$$A = \begin{pmatrix} \mathbf{1}_n^\top & \mathbf{0}_n^\top & \mathbf{0}_{n_{\mathcal{S}ector}}^\top & \mathbf{0}_{n_{\mathcal{S}ector}}^\top \end{pmatrix}$$


and:

$$B = 1$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

• The linear inequality constraint $Cx \leq D$ is defined by:

end:

$$D = \begin{pmatrix} b \\ -b \\ MD^{\star} \\ -MD^{\star} \\ DTS^{\star} \\ -DTS^{\star} \end{pmatrix}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

• $C_{\rm MD}$ and $C_{\rm DTS}$ are two $n_{sector} \times n$ matrices, whose elements are:

$$(C_{\mathrm{MD}})_{j,i} = \boldsymbol{s}_{i,j} \operatorname{MD}_i$$

and:

$$(C_{\mathrm{DTS}})_{j,i} = \boldsymbol{s}_{i,j} \operatorname{DTS}_i$$

• We have:

$$\mathrm{MD}^{\star} = \left(\mathrm{MD}_{1}^{\star}, \ldots, \mathrm{MD}_{n_{\boldsymbol{\mathcal{S}}ector}}^{\star}\right)$$

and

$$\mathrm{DTS}^{\star} = \left(\mathrm{DTS}_{1}^{\star}, \dots, \mathrm{DTS}_{n_{\mathcal{S}ector}}^{\star}\right)$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

• The bounds are:

$$x^- = \mathbf{0}_{n_x}$$

and:

$$\mathbf{x}^+ = \infty \cdot \mathbf{1}_{n_x}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

• Additional constraints:

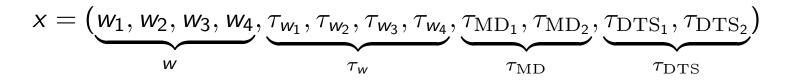
$$\begin{cases} A'w = B' \\ C'w \le D' \end{cases} \Leftrightarrow \begin{cases} (A' \quad \mathbf{0}_{n_A,n_x-n}) x = B' \\ (C' \quad \mathbf{0}_{n_A,n_x-n}) x \le D' \end{cases}$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

Toy example

We consider a toy example with four corporate bonds:


lssuer	#1	#2	#3	#4
<i>b</i> _i (in %)	35	15	20	30
\mathcal{CI}_i (in tCO ₂ e/\$ mn)	117	284	162.5	359
MD_i (in years)	3.0	5.0	2.0	6.0
DTS_i (in bps)	100	150	200	250
${\cal S}$ ector	1	1	2	2

We would like to reduce the carbon footprint by 20%, and we set $\varphi'_{\rm AS}=$ 100, $\varphi'_{\rm MD}=$ 25 and $\varphi'_{\rm DTS}=$ 1

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

We have
$$n = 4$$
, $n_{\mathcal{S}ector} = 2$ and:

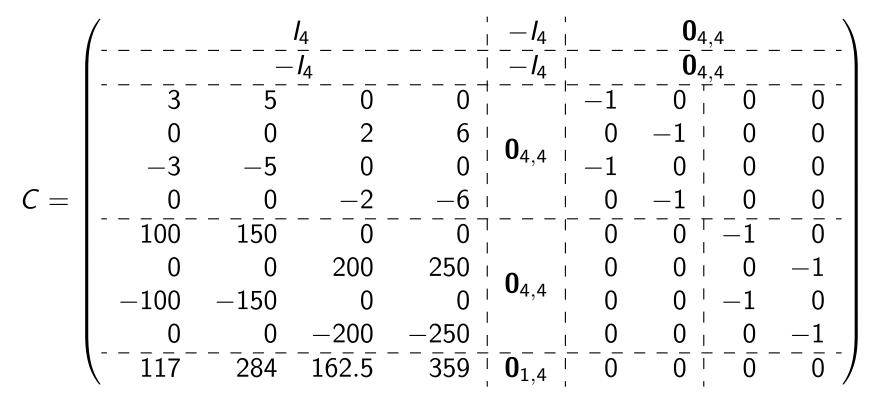
Since the vector C is equal to $\mathbf{0}_4$, we obtain:

c = (0, 0, 0, 0, 50, 50, 50, 50, 25, 25, 1, 1)

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

The equality system Ax = B is defined by:


and:

B = 1

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

The inequality system $Cx \leq D$ is given by:

and:

$$D = (0.35, 0.15, 0.2, 0.3, -0.35, -0.15, -0.2, -0.3, \dots \\ 1.8, 2.2, -1.8, -2.2, 57.5, 115, -57.5, -115, 179)$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

- The last row of $Cx \le D$ corresponds to the carbon footprint constraint
- We have:

$$\mathcal{CI}(b) = 223.75 \text{ tCO}_2 \text{e}/\$ \text{ mn}$$

and:

 $(1 - \mathcal{R}) C \mathcal{I}(b) = 0.80 \times 223.75 = 179.00 \text{ tCO}_2 \text{e}/\$ \text{ mn}$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

We solve the LP program, and we obtain the following solution:

$$w^{\star} = (47.34\%, 0\%, 33.3\%, 19.36\%)$$

$$\tau^{\star}_{w} = (12.34\%, 15\%, 13.3\%, 10.64\%)$$

$$\tau^{\star}_{\text{MD}} = (0.3798, 0.3725)$$

$$\tau^{\star}_{\text{DTS}} = (10.1604, 0)$$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

Large bond universe

• Interpretation of τ_{w}^{\star} : $w^{\star} \pm \tau_{w}^{\star} = \begin{pmatrix} 47.34\% \\ 0.00\% \\ 33.30\% \\ 19.36\% \end{pmatrix} \begin{pmatrix} - \\ + \\ - \\ + \end{pmatrix} \begin{pmatrix} 12.34\% \\ 15.00\% \\ 13.30\% \\ 10.64\% \end{pmatrix} = \begin{pmatrix} 35\% \\ 15\% \\ 20\% \\ 30\% \end{pmatrix} = b$ • Interpretation of τ_{MD}^{\star} : $\begin{pmatrix} \sum_{i \in \mathcal{S}ector_{1}} w_{i}^{\star} \text{MD}_{i} \\ \sum_{i \in \mathcal{S}ector_{2}} w_{i}^{\star} \text{MD}_{i} \end{pmatrix} \pm \tau_{\text{MD}}^{\star} = \begin{pmatrix} 1.42 \\ 1.83 \end{pmatrix} \begin{pmatrix} + \\ + \end{pmatrix} \begin{pmatrix} 0.38 \\ 0.37 \end{pmatrix} = \begin{pmatrix} 1.80 \\ 2.20 \end{pmatrix} = \begin{pmatrix} \text{MD}_{1}^{\star} \\ \text{MD}_{2}^{\star} \end{pmatrix}$ • Interpretation of $\tau_{\text{DTS}}^{\star}$: $\begin{pmatrix} \sum_{i \in \mathcal{S}ector_{1}} w_{i}^{\star} \text{DTS}_{i} \\ \sum_{i \in \mathcal{S}ector_{2}} w_{i}^{\star} \text{DTS}_{i} \end{pmatrix} \pm \tau_{\text{DTS}}^{\star} = \begin{pmatrix} 47.34 \\ 115.00 \end{pmatrix} \begin{pmatrix} + \\ + \end{pmatrix} \begin{pmatrix} 10.16 \\ 0.00 \end{pmatrix} = \begin{pmatrix} 57.50 \\ 115.00 \end{pmatrix} = \begin{pmatrix} \text{DTS}_{1}^{\star} \\ \text{DTS}_{2}^{\star} \end{pmatrix}$

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Advanced optimization problems

Example #4 (Example #3 again)

We consider an investment universe of 9 corporate bonds with the following characteristics^a:

lssuer	#1	#2	#3	#4	#5	#6	#7	#8	#9
bi	21	19	16	12	11	8	6	4	3
\mathcal{CI}_i	111	52	369	157	18	415	17	253	900
MD_i	3.16	6.48	3.54	9.23	6.40	2.30	8.12	7.96	5.48
DTS_i	107	255	75	996	289	45	620	285	125
${\cal S}$ ector	1	1	1	2	2	2	3	3	3

We impose that $0.25 \times b_i \leq w_i \leq 4 \times b_i$ and assume that $\varphi'_{AS} = \varphi_{AS} = 100$, $\varphi'_{MD} = \varphi_{MD} = 25$ and $\varphi'_{DTS} = \varphi'_{DTS} = 0.001$

^aThe units are: b_i in %, \mathcal{CI}_i in tCO₂e/\$ mn, MD_i in years and DTS_i in bps

Quadratic programming (QP) problem Equity portfolios Bond portfolios

Table 116:	Weights in	% of optimized	bond portfolios ((Example #4)
------------	------------	----------------	-------------------	--------------

Portfolio	#1	#2	#3	#4	#5	#6	#7	#8	#9
b	21.00	19.00	16.00	12.00	11.00	8.00	6.00	4.00	3.00
w* (10%)	21.70	19.00	16.00	12.00	11.00	8.00	7.46	4.00	0.84
w* (30%)	34.44	19.00	4.00	11.65	11.98	6.65	7.52	4.00	0.75
w* (50%)	33.69	19.37	4.00	3.91	24.82	2.00	10.46	1.00	0.75

Table 117: Risk statistics of optimized bond portfolios (Example #4)

Portfolio	$\mathrm{AS}_{\boldsymbol{\mathcal{S}}ector}$	MD(w)	DTS(w)	$\sigma_{\mathrm{AS}}(w \mid b)$	$\sigma_{\mathrm{MD}} \left(w \mid b \right)$	$\sigma_{\mathrm{DTS}}\left(w \mid b \right)$	$\mathcal{CI}(w)$
	(in %)	(in years)	(in bps)	(in %)	(in years)	(in bps)	$gCO_2e/\$$
Ь	0.00	5.43	290.18	0.00	0.00	0.00	184.39
w $^{\star}(10\%)$	2.16	5.45	297.28	2.16	0.02	7.10	165.95
w* (30%)	15.95	5.43	300.96	15.95	0.00	13.20	129.07
w* (50%)	31.34	5.43	268.66	31.34	0.00	65.12	92.19

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Equity portfolios

Threshold approach

The optimization problem is:

$$egin{aligned} & v^{\star} &=& rg\minrac{1}{2}\left(w-b
ight)^{ op}\Sigma\left(w-b
ight)\ & v^{\star} &=& 1\ & w\in\Omega\ & \mathbf{0}_{n}\leq w\leq \mathbf{1}_{n}\ & \mathcal{CI}\left(w
ight)\leq (1-\mathcal{R})\mathcal{CI}\left(b
ight) \end{aligned}$$

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Equity portfolios

Order-statistic approach

• $\mathcal{CI}_{i:n}$ is the order statistics of $(\mathcal{CI}_1, \ldots, \mathcal{CI}_n)$:

 $\min \mathcal{CI}_i = \mathcal{CI}_{1:n} \leq \mathcal{CI}_{2:n} \leq \cdots \leq \mathcal{CI}_{i:n} \leq \cdots \leq \mathcal{CI}_{n:n} = \max \mathcal{CI}_i$

• The carbon intensity bound $\mathcal{CI}^{(m,n)}$ is defined as:

$$\mathcal{CI}^{(m,n)} = \mathcal{CI}_{n-m+1:n}$$

where $\mathcal{CI}_{n-m+1:n}$ is the (n-m+1)-th order statistic of $(\mathcal{CI}_1, \ldots, \mathcal{CI}_n)$

• Exclusion process:

$$\mathcal{CI}_i \geq \mathcal{CI}^{(m,n)} \Rightarrow w_i = 0$$

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Equity portfolios

Order-statistic approach (Cont'd)

The optimization problem is:

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Equity portfolios

Naive approach

We re-weight the remaining assets:

$$w_i^{\star} = \frac{\mathbb{1}\left\{\mathcal{CI}_i < \mathcal{CI}^{(m,n)}\right\} \cdot b_i}{\sum_{k=1}^n \mathbb{1}\left\{\mathcal{CI}_k < \mathcal{CI}^{(m,n)}\right\} \cdot b_k}$$

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Equity portfolios

Example #5

We consider a capitalization-weighted equity index, which is composed of eight stocks. Their weights are equal to 20%, 19%, 17%, 13%, 12%, 8%, 6% and 5%. The carbon intensities (expressed in tCO₂e/\$ mn) are respectively equal to 100.5, 97.2, 250.4, 352.3, 27.1, 54.2, 78.6 and 426.7. To evaluate the risk of the portfolio, we use the market one-factor model: the beta β_i of each stock is equal to 0.30, 1.80, 0.85, 0.83, 1.47, 0.94, 1.67 and 1.08, the idiosyncratic volatilities $\tilde{\sigma}_i$ are respectively equal to 10%, 5%, 6%, 12%, 15%, 4%, 8% and 7%, and the estimated market volatility σ_m is 18%.

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Equity portfolios

The covariance matrix is:

$$\boldsymbol{\Sigma} = \boldsymbol{\beta} \boldsymbol{\beta}^\top \boldsymbol{\sigma}_m^2 + \boldsymbol{D}$$

where:

- **(**) β is the vector of beta coefficients
- 2 σ_m^2 is the variance of the market portfolio
- 3 $D = diag(\tilde{\sigma}_1^2, \dots, \tilde{\sigma}_n^2)$ is the diagonal matrix of idiosyncratic variances

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Equity portfolios

Table 118: Optimal decarbonization portfolios (Example #5, thresholdapproach)

\mathcal{R}	0	10	20	30	40	50	\mathcal{CI}_i
w_1^{\star}	20.00	20.54	21.14	21.86	22.58	22.96	100.5
W_2^{\star}	19.00	19.33	19.29	18.70	18.11	17.23	97.2
W3*	17.00	15.67	12.91	8.06	3.22	0.00	250.4
w_4^{\star}	13.00	12.28	10.95	8.74	6.53	3.36	352.3
w_5^{\star}	12.00	12.26	12.60	13.07	13.53	14.08	27.1
w_6^{\star}	8.00	11.71	16.42	22.57	28.73	34.77	54.2
W_7^{\star}	6.00	6.36	6.69	7.00	7.30	7.59	78.6
w_8^{\star}	5.00	1.86	0.00	0.00	0.00	0.00	426.7
$\overline{\sigma} (w^* \overline{b})$	0.00	30.01	61.90	104.10	149.65	196.87	
$\mathcal{CI}(w)$	160.57	144.52	128.46	112.40	96.34	80.29	
$\mathcal{R}(w \mid b)$	0.00	10.00	20.00	30.00	40.00	50.00	

The reduction rate and the weights are expressed in % whereas the tracking error volatility is measured in bps

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Equity portfolios

Table 119: Optimal decarbonization portfolios (Example #5, order-statistic approach)

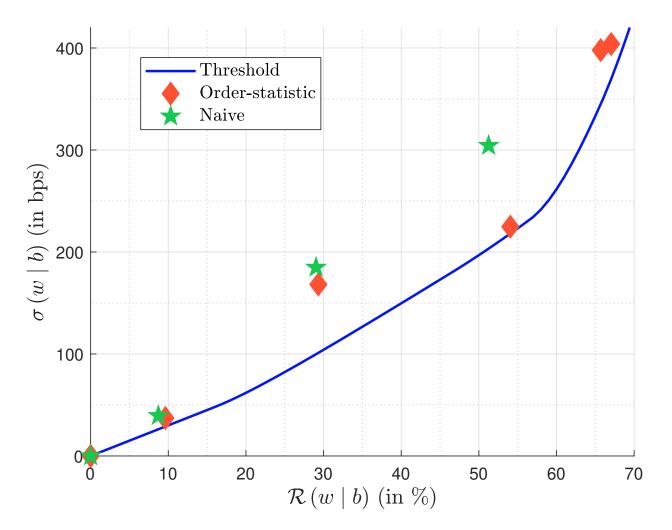
т	0	1	2	3	4	5	6	7	\mathcal{CI}_i
w_1^{\star}	20.00	20.40	22.35	26.46	0.00	0.00	0.00	0.00	100.5
W_2^{\star}	19.00	19.90	20.07	20.83	7.57	0.00	0.00	0.00	97.2
W_3^{\star}	17.00	17.94	21.41	0.00	0.00	0.00	0.00	0.00	250.4
w [*] ₄	13.00	13.24	0.00	0.00	0.00	0.00	0.00	0.00	352.3
W_5^{\star}	12.00	12.12	12.32	12.79	13.04	14.26	18.78	100.00	27.1
w_6^{\star}	8.00	10.04	17.14	32.38	74.66	75.12	81.22	0.00	54.2
W [*] 7	6.00	6.37	6.70	7.53	4.73	10.62	0.00	0.00	78.6
<i>w</i> [*] ₈	5.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	426.7
$\overline{\sigma} (w^* \overline{b})$	0.00		1.68	2.25	3.98	4.04	4.30	15.41	
$\mathcal{CI}(w)$	160.57	145.12	113.48	73.78	55.08	52.93	49.11	27.10	
$\mathcal{R}(w \mid b)$	0.00	9.62	29.33	54.05	65.70	67.04	69.42	83.12	

The reduction rate, the weights and the tracking error volatility are expressed in %

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Equity portfolios

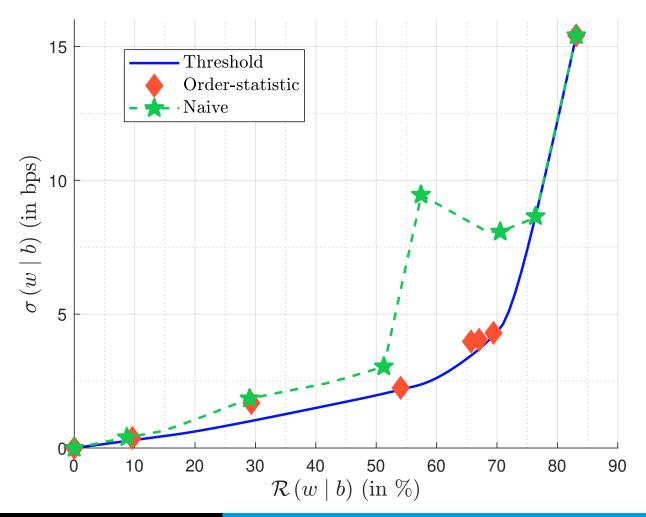
Table 120: Optimal decarbonization portfolios (Example #5, naive approach)


m	0	1	2	3	4	5	6	7	\mathcal{CI}_i
w_1^{\star}	20.00	21.05	24.39	30.77	0.00	0.00	0.00	0.00	100.5
W_2^{\star}	19.00	20.00	23.17	29.23	42.22	0.00	0.00	0.00	97.2
<i>w</i> ₃ *	17.00	17.89	20.73	0.00	0.00	0.00	0.00	0.00	250.4
w_4^{\star}	13.00	13.68	0.00	0.00	0.00	0.00	0.00	0.00	352.3
w_5^{\star}	12.00	12.63	14.63	18.46	26.67	46.15	60.00	100.00	27.1
w_6^{\star}	8.00	8.42	9.76	12.31	17.78	30.77	40.00	0.00	54.2
W7*	6.00	6.32	7.32	9.23	13.33	23.08	0.00	0.00	78.6
W ₈ *	5.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	426.7
$\overline{\sigma} (w^* \overline{b})$	0.00		1.85	3.04	9.46	8.08	8.65	15.41	
$\mathcal{CI}(w)$	160.57	146.57	113.95	78.26	68.38	47.32	37.94	27.10	
$\mathcal{R}(w \mid b)$	0.00	8.72	29.04	51.26	57.41	70.53	76.37	83.12	l

The reduction rate, the weights and the tracking error volatility are expressed in %.

Portfolio optimization in practice
Climate portfolio allocation
Climate risk hedgingPortfolio decarbonization
Net zero portfolio alignment
Core satellite approach

Equity portfolios


Figure 212: Efficient decarbonization frontier (Example #5)

Portfolio optimization in practice Climate portfolio allocation Climate risk hedging Core satellite approach

Equity portfolios

Figure 213: Efficient decarbonization frontier of the interpolated naive approach (Example #5)

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Bond portfolios

Example #6

We consider a debt-weighted bond index, which is composed of eight bonds. Their weights are equal to 20%, 19%, 17%, 13%, 12%, 8%, 6% and 5%. The carbon intensities (expressed in tCO₂e/\$ mn) are respectively equal to 100.5, 97.2, 250.4, 352.3, 27.1, 54.2, 78.6 and 426.7. To evaluate the risk of the portfolio, we use the modified duration which is respectively equal to 3.1, 6.6, 7.2, 5, 4.7, 2.1, 8.1 and 2.6 years, and the duration-times-spread factor, which is respectively equal to 100, 155, 575, 436, 159, 145, 804 and 365 bps. There are two sectors. Bonds #1, #3, #4 and #8 belong to *Sector*₁ while Bonds #2, #5, #6 and #7 belong to *Sector*₂

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Bond portfolios

Table 121:	Optimal	decarbonization	portfolios	(Example #	6, threshold
approach)					

\mathcal{R}	0	10	20	30	40	50	\mathcal{CI}_i
	20.00	21.62	23.93	26.72	30.08	33.44	100.5
w_1^{\star}							I
w_2^{\star}	19.00	18.18	16.98	14.18	7.88	1.58	97.2
W3*	17.00	18.92	21.94	22.65	16.82	11.00	250.4
w_4^{\star}	13.00	11.34	5.35	0.00	0.00	0.00	352.3
W_5^{\star}	12.00	13.72	16.14	21.63	33.89	46.14	27.1
W_6^{\star}	8.00	9.60	10.47	10.06	7.21	4.36	54.2
W7*	6.00	5.56	5.19	4.75	4.11	3.48	78.6
W ₈ *	5.00	1.05	0.00	0.00	0.00	0.00	426.7
$\overline{AS}_{\mathcal{S}ector}$	0.00	6.87	15.49	24.07	31.97	47.58	·
MD(w)	5.48	5.49	5.45	5.29	4.90	4.51	
DTS(w)	301.05	292.34	282.28	266.12	236.45	206.78	
$\sigma_{\mathrm{AS}}\left(\textit{w} \mid \textit{b} ight)$	0.00	5.57	12.31	19.82	30.04	43.58	
$\sigma_{ ext{MD}} \left(\textbf{\textit{w}} \mid \textbf{\textit{b}} ight)$	0.00	0.01	0.04	0.17	0.49	0.81	
$\sigma_{\mathrm{DTS}}\left(\textit{w} \mid \textit{b} ight)$	0.00	8.99	19.29	35.74	65.88	96.01	
$\mathcal{CI}(w)$	160.57	144.52	128.46	112.40	96.34	80.29	
$\mathcal{R}(w \mid b)$	0.00	10.00	20.00	30.00	40.00	50.00	

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Bond portfolios

Table 122:	Optimal	decarbonization	portfolios	(Example $\#$	6, order-statistic
approach)					

т	0	1	2	3	4	5	6	7	\mathcal{CI}_i
W_1^{\star}	20.00	20.83	24.62	64.64	0.00	0.00	0.00	0.00	100.5
W_2^{\star}	19.00	18.60	18.13	21.32	3.32	0.00	0.00	0.00	97.2
W3*	17.00	17.79	26.30	0.00	0.00	0.00	0.00	0.00	250.4
W_4^{\star}	13.00	14.53	0.00	0.00	0.00	0.00	0.00	0.00	352.3
W_5^{\star}	12.00	12.89	13.96	6.00	36.57	41.27	41.27	100.00	27.1
W_6^{\star}	8.00	9.74	11.85	0.00	60.11	58.73	58.73	0.00	54.2
W ₇ *	6.00	5.62	5.15	8.03	0.00	0.00	0.00	0.00	78.6
W ₈ *	5.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	426.7
$\overline{AS}_{\mathcal{S}ector}$	0.00	5.78	19.72	49.00	76.68	80.00	80.00	88.00	
MD(w)	5.48	5.52	5.54	4.77	3.27	3.17	3.17	4.70	
DTS(w)	301.05	295.08	284.71	171.82	150.45	150.78	150.78	159.00	
$\sigma_{\mathrm{AS}}\left(\textit{w} \mid \textit{b} ight)$	0.00	5.73	17.94	50.85	66.96	68.63	68.63	95.33	
$\sigma_{ ext{MD}} \left(\textit{w} \mid \textit{b} ight)$	0.00	0.03	0.04	0.63	2.66	2.64	2.64	3.21	
$\sigma_{ m DTS} \left(\textit{w} \mid \textit{b} ight)$	0.00	6.21	16.87	128.04	197.22	197.29	197.29	199.22	
$\mathcal{CI}(w)$	160.57	147.94	122.46	93.63	45.72	43.02	43.02	27.10	
$\mathcal{R}(w \mid b)$	0.00	7.87	23.74	41.69	71.53	73.21	73.21	83.12	l

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Sector-specific constraints

• Decarbonization scenario per sector:

$$\mathcal{CI}(w; \mathcal{S}ector_j) \leq (1 - \mathcal{R}_j) \mathcal{CI}(b; \mathcal{S}ector_j)$$

• We have:

$$ig(m{s}_j \circ ig(\mathcal{CI} - \mathcal{CI}_j^{\star} ig)ig)^{ op} w \leq 0$$

where $\mathcal{CI}_j^{\star} = (1 - \mathcal{R}_j) \mathcal{CI}(b; \mathcal{S}ector_j)$

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Sector-specific constraints

QP form

$$C = \begin{pmatrix} (\boldsymbol{s}_1 \circ (\mathcal{C}\mathcal{I} - \mathcal{C}\mathcal{I}_1^{\star}))^{\top} \\ \vdots \\ (\boldsymbol{s}_j \circ (\mathcal{C}\mathcal{I} - \mathcal{C}\mathcal{I}_j^{\star}))^{\top} \\ \vdots \\ (\boldsymbol{s}_{n_{\mathcal{S}ector}} \circ (\mathcal{C}\mathcal{I} - \mathcal{C}\mathcal{I}_{n_{\mathcal{S}ector}}^{\star}))^{\top} \end{pmatrix}$$

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Sector-specific constraints

Table 123: Carbon intensity and threshold in $tCO_2e/\$$ mn per GICS sector (MSCI World, 2030)

Sector		$\mathcal{CI}(b;$	\mathcal{S} ector _j)		\mathcal{R}_{j}		(\mathcal{II}_i^{\star}	
Sector	\mathcal{SC}_1	\mathcal{SC}_{1-2}	$\mathcal{SC}_{1-3}^{\mathrm{up}}$	\mathcal{SC}_{1-3}	(in %)	\mathcal{SC}_1	\mathcal{SC}_{1-2}	$\dot{\mathcal{SC}}_{\mathrm{1-3}}^{\mathrm{up}}$	\mathcal{SC}_{1-3}
Communication Services	2	28	134	172	52.4	1	13	64	82
Consumer Discretionary	23	65	206	590	52.4	11	31	98	281
Consumer Staples	28	55	401	929	52.4	13	26	191	442
Energy	632	698	1006	6823	56.9	272	301	434	2941
Financials	13	19	52	244	52.4	6	9	25	116
Health Care	10	22	120	146	52.4	5	10	57	70
Industrials	111	130	298	1662	18.8	90	106	242	1 350
Information Technology	7	23	112	239	52.4	3	11	53	114
Materials	478	702	1113	2957	36.7	303	445	704	1872
Real Estate	22	101	167	571	36.7	14	64	106	361
Utilities	1744	1794	2053	2840	56.9	752	773	885	1 224
MSCI World				992	36.6	82	103	196	629

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Sector-specific constraints Sector and weight deviation constraints (equity portfolio)

Asset weight deviation constraint:

$$\Omega := \mathcal{C}_1\left(m_w^-, m_w^+\right) = \left\{w : m_w^- b \le w \le m_w^+ b\right\}$$

Sector weight deviation constraint:

$$\Omega := \mathcal{C}_2\left(m_s^-, m_s^+\right) == \left\{ \forall j : m_s^- \sum_{i \in \mathcal{S}ector_j} b_i \leq \sum_{i \in \mathcal{S}ector_j} w_i \leq m_s^+ \sum_{i \in \mathcal{S}ector_j} b_i \right\}$$

3
$$C_2(m_s) = C_2(1/m_s, m_s)$$
4 $C_3(m_w^-, m_w^+, m_s) = C_1(m_w^-, m_w^+) \cap C_2(m_s)$

Portfolio decarbonization

1

Sector-specific constraints Sector and weight deviation constraints (bond portfolio)

> Modified duration constraint:

$$\Omega := \mathcal{C}'_1 = \{w : \mathrm{MD}(w) = \mathrm{MD}(b)\} = \left\{w : \sum_{i=1}^n (x_i - b_i) \mathrm{MD}_i = 0\right\}$$

DTS constraint

$$\Omega := \mathcal{C}_2' = \{ w : \mathrm{DTS}(w) = \mathrm{DTS}(b) \} = \left\{ w : \sum_{i=1}^n (x_i - b_i) \mathrm{DTS}_i = 0 \right\}$$

Maturity/rating buckets: 3

$$\Omega := \left\{ w : \sum_{i \in \mathcal{B}ucket_j} (x_i - b_i) = 0 \right\}$$

- **1** \mathcal{C}'_3 : **B**ucket_i is the j^{th} maturity bucket, e.g., 0–1, 1–3, 3–5, 5–7, 7-10 and 10+
- **2** C'_4 : **B**ucket_i is the jth rating category, e.g., AAA–AA (AAA, AA+, AA and AA-), A (A+, A and A-) and BBB (BBB+, BBB, BBB-)

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Sector-specific constraints

Two types of sectors:

• High climate impact sectors (HCIS):

"sectors that are key to the low-carbon transition" (TEG, 2019)

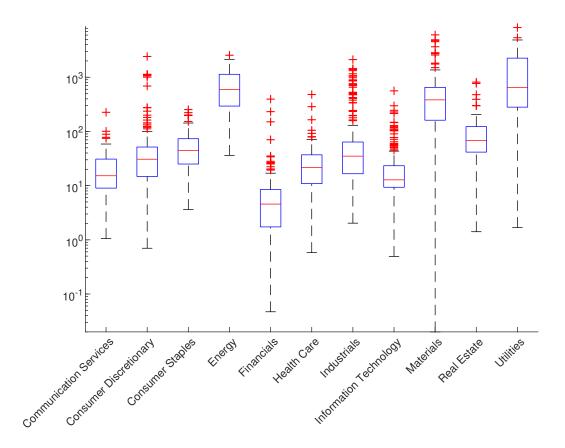
2 Low climate impact sectors (LCIS)

Let $\mathcal{HCIS}(w) = \sum_{i \in \text{HCIS}} w_i$ be the HCIS weight of portfolio w:

 $\mathcal{HCIS}(w) \geq \mathcal{HCIS}(b)$

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

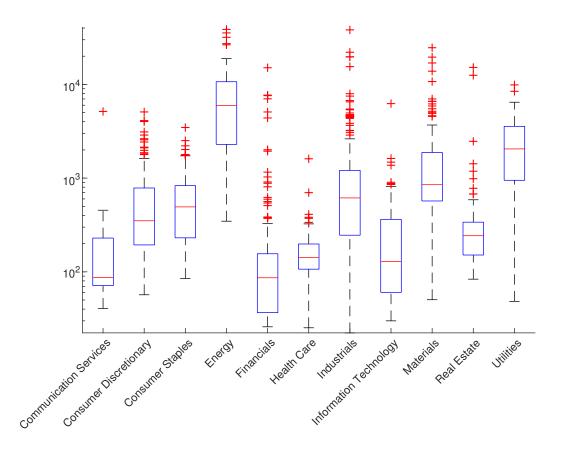
Sector-specific constraints


Table 124: Weight and carbon intensity when applying the HCIS filter (MSCI World, June 2022)

Sector	Index	HCIS	S	$\overline{{\cal C}_1}$	SC	1-2	SC	up 1–3	SC	1-3
Sector	b_j	b'_i	\mathcal{CI}	\mathcal{CI}'	\mathcal{CI}	\mathcal{CI}'	\mathcal{CI}	\mathcal{CI}'	\mathcal{CI}	\mathcal{CI}'
Communication Services	7.58	0.00	2		28		134		172	
Consumer Discretionary	10.56	8.01	23	14	65	31	206	189	590	462
Consumer Staples	7.80	7.80	28	28	55	55	401	401	929	929
Energy	4.99	4.99	632	632	698	698	1 0 0 6	1006	6 823	6823
Financials	13.56	0.00	13		19		52		244	
Health Care	14.15	9.98	10	13	22	26	120	141	146	177
Industrials	9.90	7.96	111	132	130	151	298	332	1662	1921
Information Technology	21.08	10.67	7	12	23	30	112	165	239	390
Materials	4.28	4.28	478	478	702	702	1113	1113	2 957	2957
Real Estate	2.90	2.90	22	22	101	101	167	167	571	571
Utilities	3.21	3.21	1744	1744	1 794	1794	2 0 5 3	2053	2 840	2840
MSCI World	100.00	59.79	130	210			310	458		1498

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Empirical results (equity portfolios)

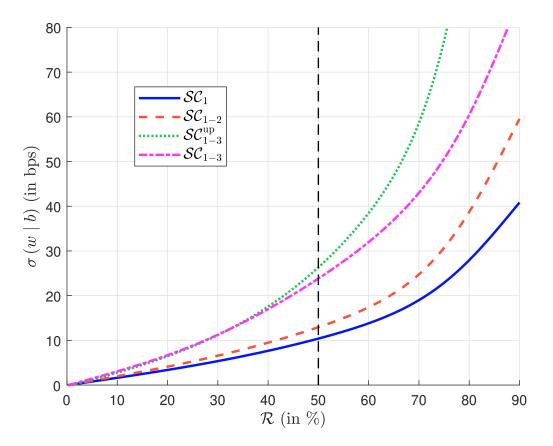

Figure 214: Boxplot of carbon intensity per sector (MSCI World, June 2022, scope \mathcal{SC}_{1-2})

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Empirical results (equity portfolios)

Figure 215: Boxplot of carbon intensity per sector (MSCI World, June 2022, scope \mathcal{SC}_{1-3})

Equity portfolios


Barahhou et al. (2022) consider the basic optimization problem:

What is the impact of constraints $\Omega_0 \cap \Omega$?

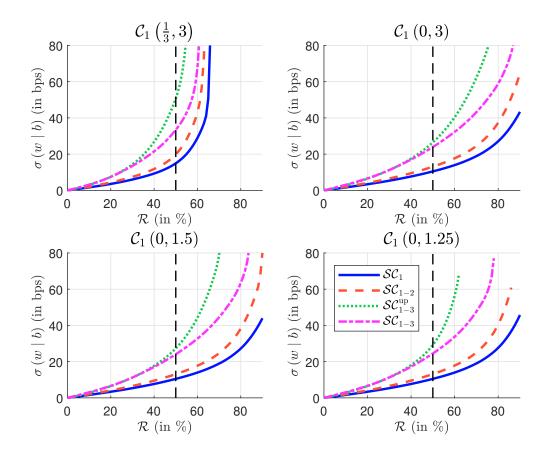
Equity portfolios

Figure 216: Impact of the carbon scope on the tracking error volatility (MSCI World, June 2022, C_0 constraint)

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Equity portfolios

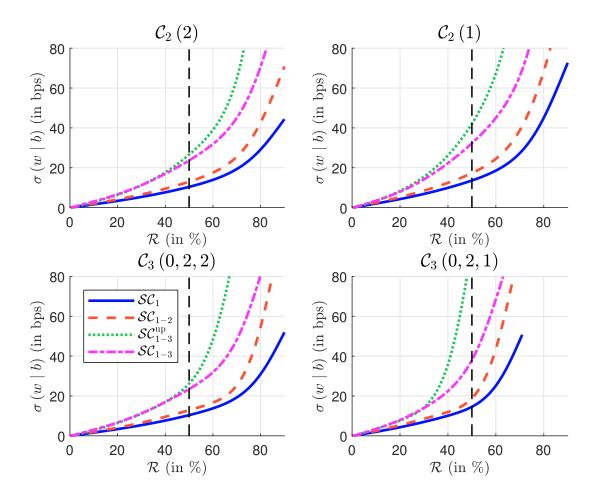
Table 125: Sector allocation in % (MSCI World, June 2022, scope \mathcal{SC}_{1-3})


Sector	Index			Red	uction ra	ate ${\cal R}$		
Sector	muex	30%	40%	50%	60%	70%	80%	90%
Communication Services	7.58	7.95	8.15	8.42	8.78	9.34	10.13	12.27
Consumer Discretionary	10.56	10.69	10.69	10.65	10.52	10.23	9.62	6.74
Consumer Staples	7.80	7.80	7.69	7.48	7.11	6.35	5.03	1.77
Energy	4.99	4.14	3.65	3.10	2.45	1.50	0.49	0.00
Financials	13.56	14.53	15.17	15.94	16.90	18.39	20.55	28.62
Health Care	14.15	14.74	15.09	15.50	16.00	16.78	17.77	17.69
Industrials	9.90	9.28	9.01	8.71	8.36	7.79	7.21	6.03
Information Technology	21.08	21.68	22.03	22.39	22.88	23.51	24.12	24.02
Materials	4.28	3.78	3.46	3.06	2.56	1.85	1.14	0.24
Real Estate	2.90	3.12	3.27	3.41	3.57	3.72	3.71	2.51
Utilities	3.21	2.28	1.79	1.36	0.90	0.54	0.24	0.12

Source: MSCI (2022), Trucost (2022) & Barahhou et al. (2022)

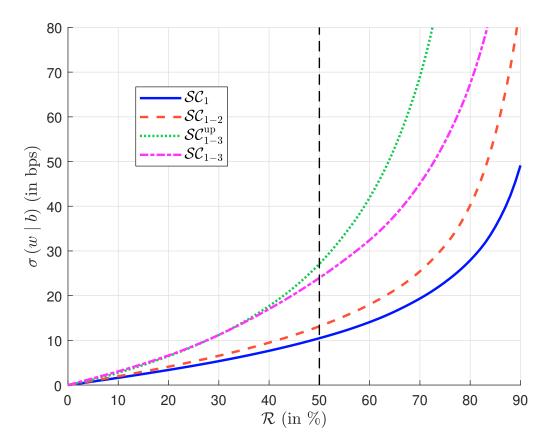
Portfolio decarbonization = strategy long on Financials and short on Energy, Materials and Utilities

Equity portfolios


Figure 217: Impact of C_1 constraint on the tracking error volatility (MSCI World, June 2022)

Portfolio optimization in practicePortfolio decarbonizationClimate portfolio allocationNet zero portfolio alignmentClimate risk hedgingCore satellite approach

Equity portfolios


Figure 218: Impact of C_2 and C_3 constraints (MSCI World, June 2022)

Portfolio optimization in practicePortfolio decarbonizationClimate portfolio allocationNet zero portfolio alignmentClimate risk hedgingCore satellite approach

Equity portfolios

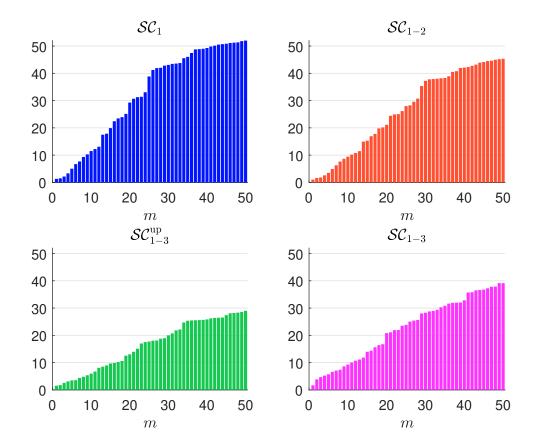
Figure 219: Tracking error volatility with $C_3(0, 10, 2)$ constraint (MSCI World, June 2022)

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Equity portfolios

First approach

• The carbon footprint contribution of the *m* worst performing assets is:


$$CFC^{(m,n)} = \frac{\sum_{i=1}^{n} \mathbb{1}\left\{C\mathcal{I}_{i} \geq C\mathcal{I}^{(m,n)}\right\} \cdot b_{i}C\mathcal{I}_{i}}{CI(b)}$$

where $\mathcal{CI}^{(m,n)} = \mathcal{CI}_{n-m+1:n}$ is the (n-m+1)-th order statistic

Portfolio optimization in practice Climate portfolio allocation Climate risk hedging Core satellite approach

Equity portfolios

Figure 220: Carbon footprint contribution $CFC^{(m,n)}$ in % (MSCI World, June 2022, first approach)

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

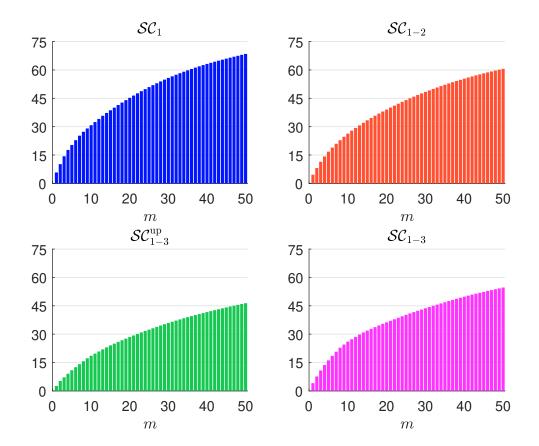
Equity portfolios

Second approach

• Another definition:

$$CFC^{(m,n)} = \frac{\sum_{i=1}^{n} \mathbb{1}\left\{CIC_{i} \geq CIC^{(m,n)}\right\} \cdot b_{i}CI_{i}}{CI(b)}$$

where $\mathcal{CIC}_i = b_i \mathcal{CI}_i$ and $\mathcal{CIC}^{(m,n)} = \mathcal{CIC}_{n-m+1:n}$


• Weight contribution:

$$\mathcal{WC}^{(m,n)} = \sum_{i=1}^{n} \mathbb{1}\left\{\mathcal{CIC}_{i} \geq \mathcal{CIC}^{(m,n)}\right\} \cdot b_{i}$$

Portfolio optimization in practice
Climate portfolio allocation
Climate risk hedgingPortfolio decarbonization
Net zero portfolio alignment
Core satellite approach

Equity portfolios

Figure 221: Carbon footprint contribution $CFC^{(m,n)}$ in % (MSCI World, June 2022, second approach)

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Equity portfolios

Table 126: Carbon footprint contribution $CFC^{(m,n)}$ in % (MSCI World, June 2022, second approach, SC_{1-3})

Sector					т			
Sector	1	5	10	25	50	75	100	200
Communication Services						0.44	0.44	0.73
Consumer Discretionary				0.78	1.37	2.44	2.93	4.28
Consumer Staples		2.46	2.46	2.46	3.75	4.44	4.92	5.62
Energy		9.61	17.35	23.78	29.56	31.78	33.02	33.89
Financials						0.72	1.53	1.88
Health Care							0.21	0.37
Industrials			2.16	5.59	7.13	8.70	9.48	13.05
Information Technology				0.98	1.58	1.94	2.15	3.30
Materials	4.08	4.08	4.08	5.81	7.31	8.81	9.59	10.75
Real Estate					0.77	0.77	0.77	0.85
Utilities				0.81	3.20	3.89	5.24	7.98
Total	4.08	16.15	26.06	40.21	54.66	63.94	70.29	82.70

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Equity portfolios

Table 127: Weight contribution $WC^{(m,n)}$ in % (MSCI World, June 2022, second approach, SC_{1-3})

Sector	bj					т			
Sector	(in %)	1	5	10	25	50	75	100	200
Communication Services	7.58						0.08	0.08	3.03
Consumer Discretionary	10.56				0.58	1.79	2.44	4.51	5.89
Consumer Staples	7.80		0.70	0.70	0.70	1.90	2.50	2.84	3.84
Energy	4.99		1.71	2.25	2.96	3.62	3.99	4.33	4.65
Financials	13.56						0.74	1.17	2.33
Health Care	14.15							0.95	1.34
Industrials	9.90			0.06	0.32	0.70	0.96	1.20	4.12
Information Technology	21.08				0.16	4.70	8.42	8.78	11.62
Materials	4.28	0.29	0.29	0.29	0.47	0.88	1.10	1.40	1.87
Real Estate	2.90					0.05	0.05	0.05	0.23
Utilities	3.21				0.31	0.86	1.04	1.31	2.33
Total		0.29	2.71	3.30	5.49	14.50	21.32	26.63	41.24

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Equity portfolios

• The order-statistic optimization problem is:

$$w^{\star} = \arg\min\frac{1}{2}(w-b)^{\top}\Sigma(w-b)$$

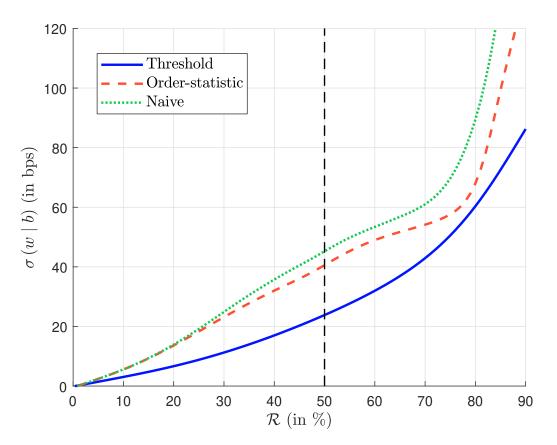
s.t.
$$\begin{cases} \mathbf{1}_{n}^{\top}w = 1\\ \mathbf{0}_{n} \le w \le w^{(m,n)} \end{cases}$$

where the upper bound $w^{(m,n)}$ is equal to $\mathbb{1}\left\{\mathcal{CI} < \mathcal{CI}^{(m,n)}\right\}$ for the first ordering approach and $\mathbb{1}\left\{\mathcal{CIC} < \mathcal{CIC}^{(m,n)}\right\}$ for the second ordering approach

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Equity portfolios

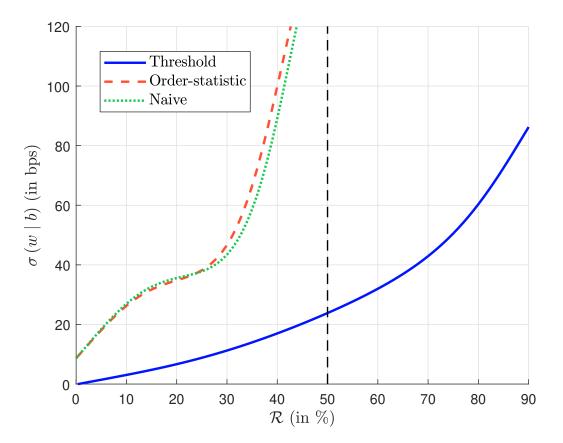
• The naive method is:


$$w_i^{\star} = \frac{e_i b_i}{\sum_{k=1}^n e_k b_k}$$

where e_i is defined as $\mathbb{1}\left\{\mathcal{CI}_i < \mathcal{CI}^{(m,n)}\right\}$ for the first ordering approach and $\mathbb{1}\left\{\mathcal{CIC}_i < \mathcal{CIC}^{(m,n)}\right\}$ for the second ordering approach

Portfolio optimization in practicePortfolio decarbonizationClimate portfolio allocationNet zero portfolio alignmentClimate risk hedgingCore satellite approach

Equity portfolios


Figure 222: Tracking error volatility (MSCI World, June 2022, SC_{1-3} , first ordering method)

Portfolio optimization in practicePortfolio decarbonizationClimate portfolio allocationNet zero portfolio alignmentClimate risk hedgingCore satellite approach

Equity portfolios

Figure 223: Tracking error volatility (MSCI World, June 2022, SC_{1-3} , second ordering method)

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Bond portfolios

The optimization problem is:

$$w^{\star} = \arg\min\frac{1}{2}\sum_{i=1}^{n}|w_{i}-b_{i}| + 50\sum_{j=1}^{n_{\mathcal{S}ector}}\left|\sum_{i\in\mathcal{S}ector_{j}}(w_{i}-b_{i})\mathrm{DTS}_{i}\right|$$

s.t.
$$\begin{cases} \mathcal{CI}(w) \leq (1-\mathcal{R})\mathcal{CI}(b)\\ w \in \mathcal{C}_{0} \cap \mathcal{C}_{1}^{\prime} \cap \mathcal{C}_{3}^{\prime} \cap \mathcal{C}_{4}^{\prime} \end{cases}$$

Bond portfolios

Figure 224: Impact of the carbon scope on the active share in % (ICE Global Corp., June 2022)

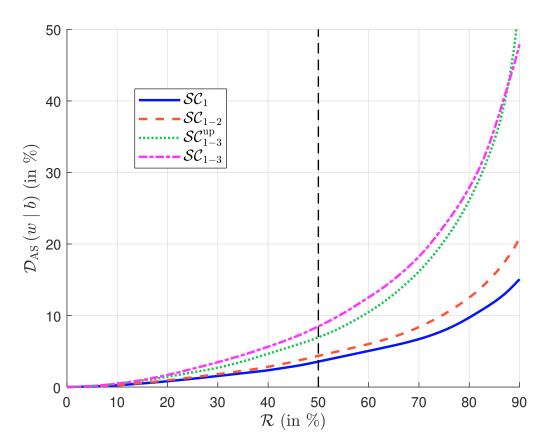
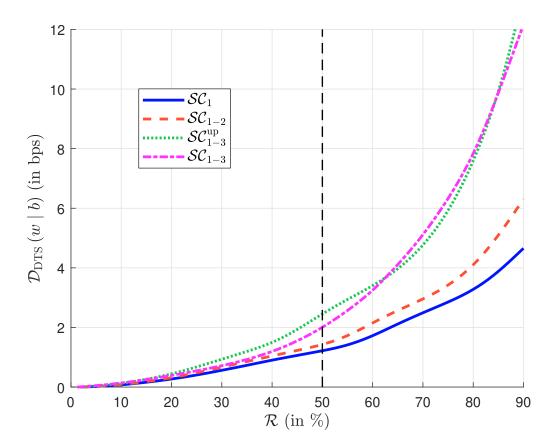



Figure 225: Impact of the carbon scope on the DTS risk in bps (ICE Global Corp., June 2022)

Portfolio decarbonization Net zero portfolio alignment Core satellite approach

Bond portfolios

Table 128: Sector allocation in % (ICE Global Corp., June 2022, scope \mathcal{SC}_{1-3})

				Redu	iction ra	te ${\cal R}$		
Sector	Index	30%	40%	50%	60%	70%	80%	90%
Communication Services	7.34	7.35	7.34	7.37	7.43	7.43	7.31	7.30
Consumer Discretionary	5.97	5.97	5.96	5.94	5.93	5.46	4.48	3.55
Consumer Staples	6.04	6.04	6.04	6.04	6.04	6.02	5.39	4.06
Energy	6.49	5.49	4.42	3.84	3.69	3.23	2.58	2.52
Financials	33.91	34.64	35.66	35.96	36.09	37.36	38.86	39.00
Health Care	7.50	7.50	7.50	7.50	7.50	7.50	7.52	7.48
Industrials	8.92	9.38	9.62	10.19	11.34	12.07	13.55	18.13
Information Technology	5.57	5.57	5.59	5.59	5.60	5.60	5.52	5.27
Materials	3.44	3.43	3.31	3.18	3.12	2.64	2.25	1.86
Real Estate	4.76	4.74	4.74	4.74	4.74	4.66	4.61	3.93
Utilities	10.06	9.89	9.82	9.64	8.52	8.04	7.92	6.88

Portfolio optimization in practice	Portfolio decarbonization
Climate portfolio allocation	Net zero portfolio alignment
Climate risk hedging	Core satellite approach

Thierry Roncalli

Course 2022-2023 in Sustainable Finance Lecture 11. Exercise — Equity and Bond Portfolio Optimization with Green Preferences

Thierry Roncalli*

*Amundi Asset Management²⁸

*University of Paris-Saclay

March 2023

²⁸The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

We consider an investment universe of 8 issuers. In the table below, we report the carbon emissions $C\mathcal{E}_{i,j}$ (in ktCO₂e) of these companies and their revenues Y_i (in \$ bn), and we indicate in the last row whether the company belongs to sector $\mathcal{S}ector_1$ or $\mathcal{S}ector_2$:

lssuer	#1	#2	#3	#4	#5	#6	#7	#8
$\mathcal{CE}_{i,1}$	75	5 000	720	50	2 500	25	30 000	5
$\mathcal{CE}_{i,2}$	75	5 000	1030	350	4 500	5	2000	64
$\mathcal{CE}_{i,3}$	24 000	15000	1 210	550	500	187	30 000	199
$\overline{Y_i}$	300	328	125	$\overline{100}$	200	102	107	25
\mathcal{S} ector	1	2	1	1	2	1	2	2

The benchmark *b* of this investment universe is defined as:

b = (22%, 19%, 17%, 13%, 11%, 8%, 6%, 4%)

In what follows, we consider long-only portfolios.

Question 1

We want to compute the carbon intensity of the benchmark.

Question (a)

Compute the carbon intensities $CI_{i,j}$ of each company *i* for the scopes 1, 2 and 3.

We have:

$$\mathcal{CI}_{i,j} = rac{\mathcal{CE}_{i,j}}{Y_i}$$

For instance, if we consider the 8^{th} issuer, we have²⁹:

$$\mathcal{CI}_{8,1} = \frac{\mathcal{CE}_{8,1}}{Y_8} = \frac{5}{25} = 0.20 \text{ tCO}_2\text{e}/\$ \text{ mn}$$

$$\mathcal{CI}_{8,2} = \frac{\mathcal{CE}_{8,2}}{Y_8} = \frac{64}{25} = 2.56 \text{ tCO}_2\text{e}/\$ \text{ mn}$$

$$\mathcal{CI}_{8,3} = \frac{\mathcal{CE}_{8,3}}{Y_8} = \frac{199}{25} = 7.96 \text{ tCO}_2\text{e}/\$ \text{ mn}$$

 $^{29}\text{Because 1 ktCO}_2\mathrm{e}/\$$ bn = 1 tCO $_2\mathrm{e}/\$$ mn.

Since we have:

lssuer	#1	#2	#3	#4	#5	#6	#7	#8
$\mathcal{CE}_{i,1}$	75	5 000	720	50	2 500	25	30 000	5
$\mathcal{CE}_{i,2}$	75	5 000	1030	350	4 500	5	2000	64
$\mathcal{CE}_{i,3}$	24 000	15000	1 210	550	500	187	30 000	199
Y_i		328	125	100	200	102	107	25

we obtain:

lssuer	#1	#2	#3	#4	#5	#6	#7	#8
$\mathcal{CI}_{i,1}$	0.25	15.24	5.76	0.50	12.50	0.25	280.37	0.20
$\mathcal{CI}_{i,2}$	0.25	15.24	8.24	3.50	22.50	0.05	18.69	2.56
$\mathcal{CI}_{i,3}$	80.00	45.73	9.68	5.50	2.50	1.83	280.37	7.96

Question (b)

Deduce the carbon intensities $CI_{i,j}$ of each company *i* for the scopes 1+2 and 1+2+3.

We have:

$$\mathcal{CI}_{i,1-2} = rac{\mathcal{CE}_{i,1} + \mathcal{CE}_{i,2}}{Y_i} = \mathcal{CI}_{i,1} + \mathcal{CI}_{i,2}$$

and:

$$\mathcal{CI}_{i,1-3} = \mathcal{CI}_{i,1} + \mathcal{CI}_{i,2} + \mathcal{CI}_{i,3}$$

We deduce that:

lssuer	#1	#2	#3	#4	#5	#6	#7	#8
$\mathcal{CI}_{i,1}$	0.25	15.24	5.76	0.50	12.50	0.25	280.37	0.20
$\mathcal{CI}_{i,1-2}$	0.50	30.49	14.00	4.00	35.00	0.29	299.07	2.76
$\mathcal{CI}_{i,1-3}$	80.50	76.22	23.68	9.50	37.50	2.12	579.44	10.72

Question (c)

Deduce the weighted average carbon intensity (WACI) of the benchmark if we consider the scope 1 + 2 + 3.

We have:

$$\begin{aligned} \mathcal{CI}(b) &= \sum_{i=1}^{8} b_i \mathcal{CI}_i \\ &= 0.22 \times 80.50 + 0.19 \times 76.2195 + 0.17 \times 23.68 + 0.13 \times 9.50 + \\ &\quad 0.11 \times 37.50 + 0.08 \times 2.1275 + 0.06 \times 579.4393 + 0.04 \times 10.72 \\ &= 76.9427 \text{ tCO}_2 \text{e}/\$ \text{ mn} \end{aligned}$$

Question (d)

We assume that the market capitalization of the benchmark portfolio is equal to \$10 tn and we invest \$1 bn.

Question (d).i

Deduce the market capitalization of each company (expressed in \$ bn).

We have:

$$b_i = \frac{MC_i}{\sum_{k=1}^8 \mathrm{MC}_k}$$

and $\sum_{k=1}^{8} MC_k =$ \$10 tn. We deduce that:

 $MC_i = 10 \times b_i$

We obtain the following values of market capitalization expressed in \$ bn:

lssuer	#1	#2	#3	#4	#5	#6	#7	#8
MCi	2 200	1 900	1 700	1 300	1 100	800	600	400

Question (d).ii

Compute the ownership ratio for each asset (expressed in bps).

Let W be the wealth invested in the benchmark portfolio b. The wealth invested in asset i is equal to $b_i W$. We deduce that the ownership ratio is equal to:

$$\varpi_i = \frac{b_i W}{\mathrm{MC}_i} = \frac{b_i W}{b_i \sum_{k=1}^n \mathrm{MC}_k} = \frac{W}{\sum_{k=1}^n \mathrm{MC}_k}$$

When we invest in a capitalization-weighted portfolio, the ownership ratio is the same for all the assets. In our case, we have:

$$arpi_i=rac{1}{10 imes1000}=0.01\%$$

The ownership ratio is equal to 1 basis point.

Question (d).iii

Compute the carbon emissions of the benchmark portfolio^{*a*} if we invest \$1 bn and we consider the scope 1 + 2 + 3.

^aWe assume that the float percentage is equal to 100% for all the 8 companies.

Using the financed emissions approach, the carbon emissions of our investment is equal to:

$$\begin{aligned} \mathcal{CE} (\$1 \text{ bn}) &= 0.01\% \times (75 + 75 + 24\,000) + \\ &\quad 0.01\% \times (5\,000 + 5\,000 + 15\,000) + \\ &\quad \dots + \\ &\quad 0.01\% \times (5 + 64 + 199) \\ &= 12.3045 \text{ ktCO}_2 e \end{aligned}$$

Question (d).iv

Compare the (exact) carbon intensity of the benchmark portfolio with the WACI value obtained in Question 1.(c).

We compute the revenues of our investment:

$$Y(\$1 \text{ bn}) = 0.01\% \sum_{i=1}^{8} Y_i = \$0.1287 \text{ bn}$$

We deduce that the exact carbon intensity is equal to:

$$\mathcal{CI}(\$1 \text{ bn}) = \frac{\mathcal{CE}(\$1 \text{ bn})}{Y(\$1 \text{ bn})} = \frac{12.3045}{0.1287} = 95.6061 \text{ tCO}_2 \text{e}/\$ \text{ mn}$$

We notice that the WACI of the benchmark underestimates the exact carbon intensity of our investment by 19.5%:

Question 2

We want to manage an equity portfolio with respect to the previous investment universe and reduce the weighted average carbon intensity of the benchmark by the rate \mathcal{R} . We assume that the volatility of the stocks is respectively equal to 22%, 20%, 25%, 18%, 40%, 23%, 13% and 29%. The correlation matrix between these stocks is given by:

	/ 100%							
	80%	100%						
	70%	75%	100%					
o —	60%	65%	80%	100%				
$\rho =$	70%	50%	70%	85%	100%			
	50%	60%	70%	80%	60%	100%		
	70%	50%	70%	75%	80%	50%	100%	
	60%	65%	70%	75%	65%	70%	60%	100% /

Question (a)

Compute the covariance matrix Σ .

The covariance matrix $\Sigma = (\Sigma_{i,j})$ is defined by:

 $\Sigma_{i,j} = \rho_{i,j}\sigma_i\sigma_j$

We obtain the following numerical values (expressed in bps):

	(484.0	352.0	385.0	237.6	616.0	253.0	200.2	382.8 \
	352.0	400.0	375.0	234.0	400.0	276.0	130.0	377.0
					700.0			
$\Sigma =$					612.0			
$\mathbf{Z} =$	616.0	400.0	700.0	612.0	1600.0	552.0	416.0	754.0
	253.0	276.0	402.5	331.2	552.0	529.0	149.5	466.9
	200.2	130.0	227.5	175.5	416.0	149.5	169.0	226.2
	382.8	377.0	507.5	391.5	754.0	466.9	226.2	841.0

Question (b)

Write the optimization problem if the objective function is to minimize the tracking error risk under the constraint of carbon intensity reduction.

The tracking error variance of portfolio w with respect to benchmark b is equal to:

$$\sigma^{2}(w \mid b) = (w - b)^{\top} \Sigma(w - b)$$

The carbon intensity constraint has the following expression:

$$\sum_{i=1}^{8} w_i \mathcal{CI}_i \leq (1-\mathcal{R}) \, \mathcal{CI}(b)$$

where \mathcal{R} is the reduction rate and $\mathcal{CI}(b)$ is the carbon intensity of the benchmark. Let $\mathcal{CI}^{\star} = (1 - \mathcal{R})\mathcal{CI}(b)$ be the target value of the carbon footprint. The optimization problem is then:

We add the second and third constraints in order to obtain a long-only portfolio.

Question (c)

Give the QP formulation of the optimization problem.

The objective function is equal to:

$$f(w) = \frac{1}{2}\sigma^{2}(w \mid b) = \frac{1}{2}(w - b)^{\top}\Sigma(w - b) = \frac{1}{2}w^{\top}\Sigma w - w^{\top}\Sigma b + \frac{1}{2}b^{\top}\Sigma b$$

while the matrix form of the carbon intensity constraint is:

$$\mathcal{C}\mathcal{I}^{ op} w \leq \mathcal{C}\mathcal{I}^{\star}$$

where $C\mathcal{I} = (C\mathcal{I}_1, \dots, C\mathcal{I}_8)$ is the column vector of carbon intensities. Since $b^{\top}\Sigma b$ is a constant and does not depend on w, we can cast the previous optimization problem into a QP problem:

$$w^{\star} = \arg \min \frac{1}{2} w^{\top} Q w - w^{\top} R$$

s.t.
$$\begin{cases} Aw = B \\ Cw \le D \\ w^{-} \le w \le w^{+} \end{cases}$$

We have $Q = \Sigma$, $R = \Sigma b$, $A = \mathbf{1}_8^{\top}$, B = 1, $C = \mathcal{CI}^{\top}$, $D = \mathcal{CI}^{\star}$, $w^- = \mathbf{0}_8$ and $w^+ = \mathbf{1}_8$.

Question (d)

 \mathcal{R} is equal to 20%. Find the optimal portfolio if we target scope 1 + 2. What is the value of the tracking error volatility?

We have:

$$\mathcal{CI}(b) = 0.22 \times 0.50 + 0.19 \times 30.4878 + ... + 0.04 \times 2.76$$

= 30.7305 tCO₂e/\$ mn

We deduce that:

$$\mathcal{CI}^{\star} = (1 - \mathcal{R}) \, \mathcal{CI}(b) = 0.80 \times 30.7305 = 24.5844 \, \mathrm{tCO_2e} / \$ \, \mathrm{mn}$$

Therefore, the inequality constraint of the QP problem is:

We obtain the following optimal solution:

$$w^{\star} = \begin{pmatrix} 23.4961\% \\ 17.8129\% \\ 17.1278\% \\ 15.4643\% \\ 10.4037\% \\ 7.5903\% \\ 4.0946\% \\ 4.0104\% \end{pmatrix}$$

The minimum tracking error volatility $\sigma(w^* \mid b)$ is equal to 15.37 bps.

Question (e)

Same question if \mathcal{R} is equal to 30%, 50%, and 70%.

Table 129: Solution of the equity optimization problem (scope \mathcal{SC}_{1-2})

\mathcal{R}	0%	20%	30%	50%	70%
<i>w</i> ₁	22.0000	23.4961	24.2441	25.7402	30.4117
W2	19.0000	17.8129	17.2194	16.0323	9.8310
W ₃	17.0000	17.1278	17.1917	17.3194	17.8348
W ₄	13.0000	15.4643	16.6964	19.1606	23.3934
W5	11.0000	10.4037	10.1055	9.5091	7.1088
W ₆	8.0000	7.5903	7.3854	6.9757	6.7329
W ₇	6.0000	4.0946	3.1418	1.2364	0.0000
W ₈	4.0000	4.0104	4.0157	4.0261	4.6874
$\overline{\mathcal{CI}}(w)$	30.7305	24.5844	21.5114	15.3653	9.2192
$\overline{\sigma} (w b)$	0.00	15.37	23.05	38.42	72.45

In Table 129, we report the optimal solution w^* (expressed in %) of the optimization problem for different values of \mathcal{R} . We also indicate the carbon intensity of the portfolio (in tCO₂e/\$ mn) and the tracking error volatility (in bps). For instance, if \mathcal{R} is set to 50%, the weights of assets #1, #3, #4 and #8 increase whereas the weights of assets #2, #5, #6 and #7 decrease. The carbon intensity of this portfolio is equal to 15.3653 tCO₂e/\$ mn. The tracking error volatility is below 40 bps, which is relatively low.

Question (f)

We target scope 1 + 2 + 3. Find the optimal portfolio if \mathcal{R} is equal to 20%, 30%, 50% and 70%. Give the value of the tracking error volatility for each optimized portfolio.

In this case, the inequality constraint $Cw \leq D$ is defined by:

$$C = \mathcal{C}\mathcal{I}_{1-3}^{\top} = \begin{pmatrix} 80.5000 \\ 76.2195 \\ 23.6800 \\ 9.5000 \\ 37.5000 \\ 2.1275 \\ 579.4393 \\ 10.7200 \end{pmatrix}^{\top}$$

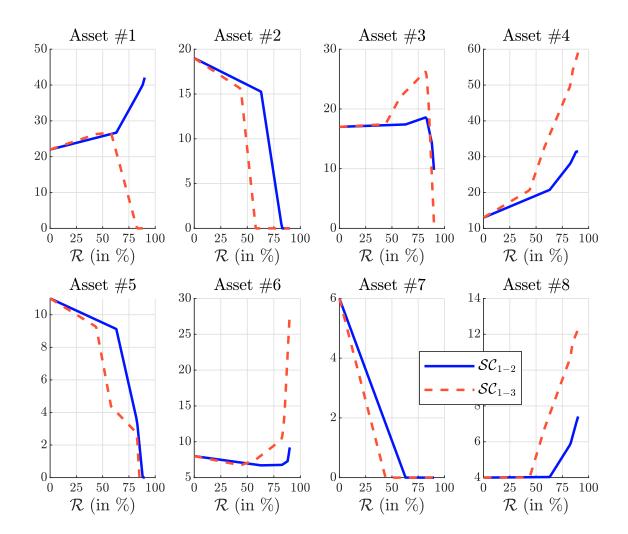
and:

$$D = (1 - \mathcal{R}) \times 76.9427$$

We obtain the results given in Table 130.

Table 130: Solution of the equity optimization problem (scope \mathcal{SC}_{1-3})

\mathcal{R}	0%	20%	30%	50%	70%
W ₁	22.0000	23.9666	24.9499	26.4870	13.6749
<i>W</i> ₂	19.0000	17.4410	16.6615	8.8001	0.0000
W ₃	17.0000	17.1988	17.2981	19.4253	24.1464
W4	13.0000	16.5034	18.2552	25.8926	41.0535
W5	11.0000	10.2049	9.8073	7.1330	3.5676
W ₆	8.0000	7.4169	7.1254	7.0659	8.8851
W7	6.0000	3.2641	1.8961	0.0000	0.0000
W8	4.0000	4.0043	4.0065	5.1961	8.6725
$\overline{\mathcal{CI}}(w)$	76.9427	61.5541	53.8599	38.4713	23.0828
$\overline{\sigma}(w b)$	0.00	21.99	32.99	104.81	414.48


Question (g)

Compare the optimal solutions obtained in Questions 2.(e) and 2.(f).

Figure 226: Impact of the scope on the tracking error volatility

Figure 227: Impact of the scope on the portfolio allocation (in %)

In Figure 226, we report the relationship between the reduction rate \mathcal{R} and the tracking error volatility $\sigma(w \mid b)$. The choice of the scope has little impact when $\mathcal{R} \leq 45\%$. Then, we notice a high increase when we consider the scope 1 + 2 + 3. The portfolio's weights are given in Figure 227. For assets #1 and #3, the behavior is divergent when we compare scopes 1 + 2 + 3.

Question 3

We want to manage a bond portfolio with respect to the previous investment universe and reduce the weighted average carbon intensity of the benchmark by the rate \mathcal{R} . We use the scope 1 + 2 + 3. In the table below, we report the modified duration MD_i and the duration-times-spread factor DTS_i of each corporate bond *i*:

Asset	#1	#2	#3	#4	#5	#6	#7	#8
MD_i (in years)	3.56	7.48	6.54	10.23	2.40	2.30	9.12	7.96
DTS_i (in bps)	103	155	75	796	89	45	320	245
Sector	1	2	1	1	2	1	2	2

Question 3 (Cont'd)

We remind that the active risk can be calculated using three functions. For the active share, we have:

$$\mathcal{R}_{\mathrm{AS}}\left(w\mid b
ight)=\sigma_{\mathrm{AS}}^{2}\left(w\mid b
ight)=\sum_{i=1}^{n}\left(w_{i}-b_{i}
ight)^{2}$$

We also consider the MD-based tracking error risk:

$$\mathcal{R}_{\mathrm{MD}}\left(w \mid b\right) = \sigma_{\mathrm{MD}}^{2}\left(w \mid b\right) = \sum_{j=1}^{n_{\mathcal{S}ector}} \left(\sum_{i \in \mathcal{S}ector_{j}} \left(w_{i} - b_{i}\right) \mathrm{MD}_{i}\right)^{2}$$

and the DTS-based tracking error risk:

$$\mathcal{R}_{\mathrm{DTS}}\left(w \mid b
ight) = \sigma_{\mathrm{DTS}}^{2}\left(w \mid b
ight) = \sum_{j=1}^{n_{\boldsymbol{\mathcal{S}}ector}} \left(\sum_{i \in \boldsymbol{\mathcal{S}}ector_{j}} \left(w_{i} - b_{i}
ight) \mathrm{DTS}_{i}
ight)^{2}$$

Question 3 (Cont'd)

Finally, we define the synthetic risk measure as a combination of AS, MD and DTS active risks:

$$\mathcal{R}(w \mid b) = \varphi_{\mathrm{AS}} \mathcal{R}_{\mathrm{AS}}(w \mid b) + \varphi_{\mathrm{MD}} \mathcal{R}_{\mathrm{MD}}(w \mid b) + \varphi_{\mathrm{DTS}} \mathcal{R}_{\mathrm{DTS}}(w \mid b)$$

where $\varphi_{\rm AS} \ge 0$, $\varphi_{\rm MD} \ge 0$ and $\varphi_{\rm DTS} \ge 0$ indicate the weight of each risk. In what follows, we use the following numerical values: $\varphi_{\rm AS} = 100$, $\varphi_{\rm MD} = 25$ and $\varphi_{\rm DTS} = 1$. The reduction rate \mathcal{R} of the weighted average carbon intensity is set to 50% for the scope 1 + 2 + 3.

Question (a)

Compute the modified duration MD(b) and the duration-times-spread factor DTS(b) of the benchmark.

We have:

$$MD(b) = \sum_{i=1}^{n} b_i MD_i$$

= 0.22 × 3.56 + 0.19 × 7.48 + ... + 0.04 × 7.96
= 5.96 years

and:

DTS(b) =
$$\sum_{i=1}^{n} b_i \text{DTS}_i$$

= 0.22 × 103 + 0.19 × 155 + ... + 0.04 × 155
= 210.73 bps

Question (b)

Let w_{ew} be the equally-weighted portfolio. Compute^a MD (w_{ew}), DTS (w_{ew}), σ_{AS} ($w_{ew} | b$), σ_{MD} ($w_{ew} | b$) and σ_{DTS} ($w_{ew} | b$).

^aPrecise the corresponding unit (years, bps or %) for each metric.

We have:

 $\begin{cases} MD(w_{ew}) = 6.20 \text{ years} \\ DTS(w_{ew}) = 228.50 \text{ bps} \\ \sigma_{AS}(w_{ew} \mid b) = 17.03\% \\ \sigma_{MD}(w_{ew} \mid b) = 1.00 \text{ years} \\ \sigma_{DTS}(w_{ew} \mid b) = 36.19 \text{ bps} \end{cases}$

Question (c)

We consider the following optimization problem:

$$w^{\star} = \arg \min \frac{1}{2} \mathcal{R}_{AS} (w \mid b)$$

s.t.
$$\begin{cases} \sum_{i=1}^{n} w_i = 1 \\ MD(w) = MD(b) \\ DTS(w) = DTS(b) \\ \mathcal{CI}(w) \leq (1 - \mathcal{R}) \mathcal{CI}(b) \\ 0 \leq w_i \leq 1 \end{cases}$$

Give the analytical value of the objective function. Find the optimal portfolio w^* . Compute $MD(w^*)$, $DTS(w^*)$, $\sigma_{AS}(w^* \mid b)$, $\sigma_{MD}(w^* \mid b)$ and $\sigma_{DTS}(w^* \mid b)$.

We have:

$$egin{aligned} \mathcal{R}_{ ext{AS}}\left(w\mid b
ight) &= & \left(w_1-0.22
ight)^2+\left(w_2-0.19
ight)^2+\left(w_3-0.17
ight)^2+\left(w_4-0.13
ight)^2+\left(w_5-0.11
ight)^2+\left(w_6-0.08
ight)^2+\left(w_7-0.06
ight)^2+\left(w_8-0.04
ight)^2 \end{aligned}$$

The objective function is then:

$$f\left(w
ight)=rac{1}{2}\mathcal{R}_{\mathrm{AS}}\left(w\mid b
ight)$$

The optimal solution is equal to:

 $w^{\star} = (17.30\%, 17.41\%, 20.95\%, 14.41\%, 10.02\%, 11.09\%, 0\%, 8.81\%)$

The risk metrics are:

$$\begin{array}{l} \mathrm{MD}\,(w^{\star}) = 5.96 \; \mathrm{years} \\ \mathrm{DTS}\,(w^{\star}) = 210.73 \; \mathrm{bps} \\ \sigma_{\mathrm{AS}}\,(w^{\star} \mid b) = 10.57\% \\ \sigma_{\mathrm{MD}}\,(w^{\star} \mid b) = 0.43 \; \mathrm{years} \\ \sigma_{\mathrm{DTS}}\,(w^{\star} \mid b) = 15.21 \; \mathrm{bps} \end{array}$$

Question (d)

We consider the following optimization problem:

$$w^{\star} = \arg \min \frac{\varphi_{AS}}{2} \mathcal{R}_{AS} (w \mid b) + \frac{\varphi_{MD}}{2} \mathcal{R}_{MD} (w \mid b)$$

s.t.
$$\begin{cases} \sum_{i=1}^{n} w_i = 1 \\ DTS(w) = DTS(b) \\ \mathcal{CI}(w) \leq (1 - \mathcal{R}) \mathcal{CI}(b) \\ 0 \leq w_i \leq 1 \end{cases}$$

Give the analytical value of the objective function. Find the optimal portfolio w^* . Compute $MD(w^*)$, $DTS(w^*)$, $\sigma_{AS}(w^* \mid b)$, $\sigma_{MD}(w^* \mid b)$ and $\sigma_{DTS}(w^* \mid b)$.

We have³⁰:

$$\mathcal{R}_{\mathrm{MD}}(w \mid b) = \left(\sum_{i=1,3,4,6} (w_i - b_i) \,\mathrm{MD}_i\right)^2 + \left(\sum_{i=2,5,7,8} (w_i - b_i) \,\mathrm{MD}_i\right)^2$$
$$= \left(\sum_{i=1,3,4,6} w_i \,\mathrm{MD}_i - \sum_{i=1,3,4,6} b_i \,\mathrm{MD}_i\right)^2 + \left(\sum_{i=2,5,7,8} w_i \,\mathrm{MD}_i - \sum_{i=2,5,7,8} b_i \,\mathrm{MD}_i\right)^2$$
$$= (3.56w_1 + 6.54w_3 + 10.23w_4 + 2.30w_6 - 3.4089)^2 + (7.48w_2 + 2.40w_5 + 9.12w_7 + 7.96w_8 - 2.5508)^2$$

The objective function is then:

$$f(w) = \frac{\varphi_{\mathrm{AS}}}{2} \mathcal{R}_{\mathrm{AS}}(w \mid b) + \frac{\varphi_{\mathrm{MD}}}{2} \mathcal{R}_{\mathrm{MD}}(w \mid b)$$

 30 We verify that 3.4089 + 2.5508 = 5.9597 years.

The optimal solution is equal to:

 $w^{\star} = (16.31\%, 18.44\%, 17.70\%, 13.82\%, 11.67\%, 11.18\%, 0\%, 10.88\%)$

The risk metrics are:

$$\begin{cases} MD(w^*) = 5.93 \text{ years} \\ DTS(w^*) = 210.73 \text{ bps} \\ \sigma_{AS}(w^* \mid b) = 11.30\% \\ \sigma_{MD}(w^* \mid b) = 0.03 \text{ years} \\ \sigma_{DTS}(w^* \mid b) = 3.70 \text{ bps} \end{cases}$$

Question (e)

We consider the following optimization problem:

Give the analytical value of the objective function. Find the optimal portfolio w^* . Compute $MD(w^*)$, $DTS(w^*)$, $\sigma_{AS}(w^* | b)$, $\sigma_{MD}(w^* | b)$ and $\sigma_{DTS}(w^* | b)$.

We have³¹:

$$\begin{aligned} \mathcal{R}_{\text{DTS}}\left(w \mid b\right) &= \left(\sum_{i=1,3,4,6} \left(w_i - b_i\right) \text{DTS}_i\right)^2 + \left(\sum_{i=2,5,7,8} \left(w_i - b_i\right) \text{DTS}_i\right)^2 \\ &= \left(103w_1 + 75w_3 + 796w_4 + 45w_6 - 142.49\right)^2 + \\ \left(155w_2 + 89w_5 + 320w_7 + 245w_8 - 68.24\right)^2 \end{aligned}$$

The objective function is then:

$$f(w) = \frac{\varphi_{\text{AS}}}{2} \mathcal{R}_{\text{AS}}(w \mid b) + \frac{\varphi_{\text{MD}}}{2} \mathcal{R}_{\text{MD}}(w \mid b) + \frac{\varphi_{\text{DTS}}}{2} \mathcal{R}_{\text{DTS}}(w \mid b)$$

 31 We verify that 142.49 + 68.24 = 210.73 bps.

The optimal solution is equal to:

 $w^{\star} = (16.98\%, 17.21\%, 18.26\%, 13.45\%, 12.10\%, 9.46\%, 0\%, 12.55\%)$

The risk metrics are:

$$\begin{cases} MD(w^{\star}) = 5.97 \text{ years} \\ DTS(w^{\star}) = 210.68 \text{ bps} \\ \sigma_{AS}(w^{\star} \mid b) = 11.94\% \\ \sigma_{MD}(w^{\star} \mid b) = 0.03 \text{ years} \\ \sigma_{DTS}(w^{\star} \mid b) = 0.06 \text{ bps} \end{cases}$$

Question (f)

Comment on the results obtained in Questions 3.(c), 3.(d) and 3.(e).

Carbon intensity of the benchmark Equity portfolios Bond portfolios

 \mathcal{L}_2 -norm risk measures \mathcal{L}_1 -norm risk measures

Table 131: Solution of the bond optimization problem (scope \mathcal{SC}_{1-3})

Problem	Benchmark	3.(c)	3.(d)	3.(e)
W1	22.0000	17.3049	16.3102	16.9797
<i>W</i> ₂	19.0000	17.4119	18.4420	17.2101
W ₃	17.0000	20.9523	17.6993	18.2582
W4	13.0000	14.4113	13.8195	13.4494
W ₅	11.0000	10.0239	11.6729	12.1008
W ₆	8.0000	11.0881	11.1792	9.4553
W7	6.0000	0.0000	0.0000	0.0000
W ₈	4.0000	8.8075	10.8769	12.5464
$\overline{MD}(w)$	5.9597	5.9597	5.9344	5.9683
DTS(w)	210.7300	210.7300	210.7300	210.6791
$\sigma_{\mathrm{AS}} \left(\textit{w} \mid \textit{b} ight)$	0.0000	10.5726	11.3004	11.9400
$\sigma_{\mathrm{MD}} \left(\mathbf{w} \mid \mathbf{b} \right)$	0.0000	0.4338	0.0254	0.0308
$\sigma_{ m DTS} \left(\textit{w} \mid \textit{b} ight)$	0.0000	15.2056	3.7018	0.0561
$\mathcal{CI}(w)$	76.9427	38.4713	38.4713	38.4713

Question (g)

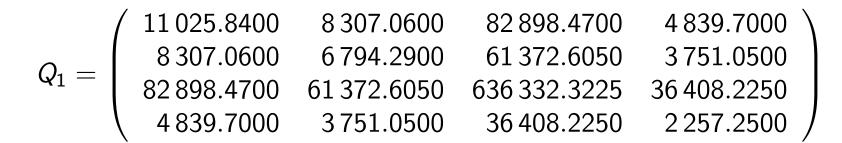
How to find the previous solution of Question 3.(e) using a QP solver?

The goal is to write the objective function into a quadratic function:

$$\begin{split} f(w) &= \frac{\varphi_{\mathrm{AS}}}{2} \mathcal{R}_{\mathrm{AS}} \left(w \mid b \right) + \frac{\varphi_{\mathrm{MD}}}{2} \mathcal{R}_{\mathrm{MD}} \left(w \mid b \right) + \frac{\varphi_{\mathrm{DTS}}}{2} \mathcal{R}_{\mathrm{DTS}} \left(w \mid b \right) \\ &= \frac{1}{2} w^{\top} Q\left(b \right) w - w^{\top} R\left(b \right) + c\left(b \right) \end{split}$$

where:

$$\begin{aligned} \mathcal{R}_{AS} \left(w \mid b \right) &= \left(w_1 - 0.22 \right)^2 + \left(w_2 - 0.19 \right)^2 + \left(w_3 - 0.17 \right)^2 + \left(w_4 - 0.13 \right)^2 + \\ \left(w_5 - 0.11 \right)^2 + \left(w_6 - 0.08 \right)^2 + \left(w_7 - 0.06 \right)^2 + \left(w_8 - 0.04 \right)^2 \\ \mathcal{R}_{MD} \left(w \mid b \right) &= \left(3.56w_1 + 6.54w_3 + 10.23w_4 + 2.30w_6 - 3.4089 \right)^2 + \\ \left(7.48w_2 + 2.40w_5 + 9.12w_7 + 7.96w_8 - 2.5508 \right)^2 \\ \mathcal{R}_{DTS} \left(w \mid b \right) &= \left(103w_1 + 75w_3 + 796w_4 + 45w_6 - 142.49 \right)^2 + \\ \left(155w_2 + 89w_5 + 320w_7 + 245w_8 - 68.24 \right)^2 \end{aligned}$$


We use the analytical approach which is described in Section 11.1.2 on pages 332-339. Moreover, we rearrange the universe such that the first fourth assets belong to the first sector and the last fourth assets belong to the second sector. In this case, we have:

$$w = \left(\underbrace{w_1, w_3, w_4, w_6}_{\mathcal{S}ector_1}, \underbrace{w_2, w_5, w_7, w_8}_{\mathcal{S}ector_2}\right)$$

The matrix Q(b) is block-diagonal:

$$Q\left(b\right) = \left(\begin{array}{cc} Q_1 & \mathbf{0}_{4,4} \\ \mathbf{0}_{4,4} & Q_2 \end{array}\right)$$

where the matrices Q_1 and Q_2 are equal to:

and:

$$Q_2 = \begin{pmatrix} 25523.7600 & 14243.8000 & 51305.4400 & 39463.5200 \\ 14243.8000 & 8165.0000 & 29027.2000 & 22282.6000 \\ 51305.4400 & 29027.2000 & 104579.3600 & 80214.8800 \\ 39463.5200 & 22282.6000 & 80214.8800 & 61709.0400 \end{pmatrix}$$

The vector R(b) is defined as follows:

$$R(b) = \begin{pmatrix} 15001.8621\\ 11261.1051\\ 114306.8662\\ 6616.0617\\ 11073.1996\\ 6237.4080\\ 22424.3824\\ 17230.4092 \end{pmatrix}$$

Finally, the value of c(b) is equal to:

c(b) = 12714.3386

Using a QP solver, we obtain the following numerical solution:

$$\begin{pmatrix} w_{1} \\ w_{3} \\ w_{4} \\ w_{6} \\ w_{2} \\ w_{5} \\ w_{7} \\ w_{8} \end{pmatrix} = \begin{pmatrix} 16.9796 \\ 18.2582 \\ 13.4494 \\ 9.4553 \\ 17.2102 \\ 12.1009 \\ 0.0000 \\ 12.5464 \end{pmatrix} \times 10^{-2}$$

We observe some small differences (after the fifth digit) because the QP solver is more efficient than a traditional nonlinear solver.

Question 4

We consider a variant of Question 3 and assume that the synthetic risk measure is:

$$\mathcal{D}(w \mid b) = \varphi_{\mathrm{AS}} \mathcal{D}_{\mathrm{AS}}(w \mid b) + \varphi_{\mathrm{MD}} \mathcal{D}_{\mathrm{MD}}(w \mid b) + \varphi_{\mathrm{DTS}} \mathcal{D}_{\mathrm{DTS}}(w \mid b)$$

where:

$$\begin{aligned} \mathcal{D}_{\mathrm{AS}}\left(w \mid b\right) &= \frac{1}{2}\sum_{i=1}^{n} |w_i - b_i| \\ \mathcal{D}_{\mathrm{MD}}\left(w \mid b\right) &= \sum_{j=1}^{n_{\mathcal{S}ector}} \left|\sum_{i \in \mathcal{S}ector_j} \left(w_i - b_i\right) \mathrm{MD}_i\right| \\ \mathcal{D}_{\mathrm{DTS}}\left(w \mid b\right) &= \sum_{j=1}^{n_{\mathcal{S}ector}} \left|\sum_{i \in \mathcal{S}ector_j} \left(w_i - b_i\right) \mathrm{DTS}_i\right| \end{aligned}$$

Question (a)

Define the corresponding optimization problem when the objective is to minimize the active risk and reduce the carbon intensity of the benchmark by \mathcal{R} .

The optimization problem is:

$$egin{aligned} & w^{\star} &= & rg\min\mathcal{D}\left(w\mid b
ight) \ & \mathbf{1}_8^{ op}w = 1 \ & \mathcal{CI}^{ op}w \leq (1-\mathcal{R})\,\mathcal{CI}\left(b
ight) \ & \mathbf{0}_8 \leq w \leq \mathbf{1}_8 \end{aligned}$$

Question (b)

Give the LP formulation of the optimization problem.

We use the absolute value trick and obtain the following optimization problem:

$$\begin{split} \mathbf{w}^{\star} &= \arg\min\frac{1}{2}\varphi_{\mathrm{AS}}\sum_{i=1}^{8}\tau_{i,w} + \varphi_{\mathrm{MD}}\sum_{j=1}^{2}\tau_{j,\mathrm{MD}} + \varphi_{\mathrm{DTS}}\sum_{j=1}^{2}\tau_{j,\mathrm{DTS}} \\ & \\ \mathbf{s.t.} & \begin{cases} \mathbf{1}_{8}^{\top}w = 1\\ \mathbf{0}_{8} \leq w \leq \mathbf{1}_{8}\\ \mathcal{C}\mathcal{I}^{\top}w \leq (1-\mathcal{R})\mathcal{C}\mathcal{I}(b)\\ |w_{i} - b_{i}| \leq \tau_{i,w}\\ \left|\sum_{i \in \mathcal{S}ector_{j}}(w_{i} - b_{i}) \mathrm{MD}_{i}\right| \leq \tau_{j,\mathrm{MD}}\\ \left|\sum_{i \in \mathcal{S}ector_{j}}(w_{i} - b_{i}) \mathrm{DTS}_{i}\right| \leq \tau_{j,\mathrm{DTS}}\\ \tau_{i,w} \geq 0, \tau_{j,\mathrm{MD}} \geq 0, \tau_{j,\mathrm{DTS}} \geq 0 \end{split}$$

We can now formulate this problem as a standard LP problem:

$$x^{\star} = \arg \min c^{\top} x$$

s.t.
$$\begin{cases} Ax = B \\ Cx \le D \\ x^{-} \le x \le x^{+} \end{cases}$$

where x is the 20×1 vector defined as follows:

$$x = \left(egin{array}{c} w & \ au_w & \ au_{
m MD} & \ au_{
m DTS} \end{array}
ight)$$

The 20×1 vector *c* is equal to:

$$c = \left(egin{array}{c} \mathbf{0}_8 \ rac{1}{2} arphi_{
m AS} \mathbf{1}_8 \ arphi_{
m MD} \mathbf{1}_2 \ arphi_{
m DTS} \mathbf{1}_2 \end{array}
ight)$$

The equality constraint is defined by $A = \begin{pmatrix} \mathbf{1}_8^\top & \mathbf{0}_8^\top & \mathbf{0}_2^\top & \mathbf{0}_2^\top \end{pmatrix}$ and B = 1. The bounds are $x^- = \mathbf{0}_{20}$ and $x^+ = \infty \cdot \mathbf{1}_{20}$.

For the inequality constraint, we have 32 :

$$Cx \leq D \Leftrightarrow \begin{pmatrix} l_8 & -l_8 & \mathbf{0}_{8,2} & \mathbf{0}_{8,2} \\ -l_8 & -l_8 & \mathbf{0}_{8,2} & \mathbf{0}_{8,2} \\ C_{\mathrm{MD}} & \mathbf{0}_{2,8} & -l_2 & \mathbf{0}_{2,2} \\ -C_{\mathrm{MD}} & \mathbf{0}_{2,8} & -l_2 & \mathbf{0}_{2,2} \\ C_{\mathrm{DTS}} & \mathbf{0}_{2,8} & \mathbf{0}_{2,2} & -l_2 \\ -C_{\mathrm{DTS}} & \mathbf{0}_{2,8} & \mathbf{0}_{2,2} & -l_2 \\ -C_{\mathrm{DTS}} & \mathbf{0}_{2,8} & \mathbf{0}_{2,2} & -l_2 \\ C\mathcal{I}^\top & \mathbf{0}_{1,8} & 0 & 0 \end{pmatrix} \times \leq \begin{pmatrix} b \\ -b \\ \mathrm{MD}^* \\ -\mathrm{MD}^* \\ \mathrm{DTS}^* \\ -\mathrm{DTS}^* \\ (1-\mathcal{R}) \, \mathcal{C}\mathcal{I} \, (b) \end{pmatrix}$$

where:

$$C_{\rm MD} = \left(\begin{array}{cccccccccc} 3.56 & 0.00 & 6.54 & 10.23 & 0.00 & 2.30 & 0.00 & 0.00 \\ 0.00 & 7.48 & 0.00 & 0.00 & 2.40 & 0.00 & 9.12 & 7.96 \end{array}\right)$$

and:

$$C_{\rm DTS} = \left(\begin{array}{cccccccc} 103 & 0 & 75 & 796 & 0 & 45 & 0 & 0 \\ 0 & 155 & 0 & 0 & 89 & 0 & 320 & 245 \end{array}\right)$$

The 2 × 1 vectors MD^* and DTS^* are respectively equal to (3.4089, 2.5508) and (142.49, 68.24). ³²C is a 25 × 8 matrix and D is a 25 × 1 vector.

Question (c)

Find the optimal portfolio when \mathcal{R} is set to 50%. Compare the solution with this obtained in Question 3.(e).

We obtain the following solution:

$$w^{\star} = (18.7360, 15.8657, 17.8575, 13.2589, 11, 9.4622, 0, 13.8196) \times 10^{-2}$$

$$\tau^{\star}_{w} = (3.2640, 3.1343, 0.8575, 0.2589, 0, 1.4622, 6, 9.8196) \times 10^{-2}$$

$$\tau_{\text{MD}} = (0, 0)$$

$$\tau_{\text{DTS}} = (0, 0)$$

Carbon intensity of the benchmark Equity portfolios Bond portfolios

Table 132: Solution of the bond optimization problem (scope \mathcal{SC}_{1-3})

		2()	A ()
Problem	Benchmark	3.(e)	4.(c)
W ₁	22.0000	16.9796	18.7360
<i>W</i> ₂	19.0000	17.2102	15.8657
W ₃	17.0000	18.2582	17.8575
W4	13.0000	13.4494	13.2589
W ₅	11.0000	12.1009	11.0000
W ₆	8.0000	9.4553	9.4622
W7	6.0000	0.0000	0.0000
W ₈	4.0000	12.5464	13.8196
$\overline{MD}(w)$	5.9597	5.9683	5.9597
DTS(w)	210.7300	210.6791	210.7300
$\sigma_{\rm AS}(w \mid b)$	0.0000	11.9400	12.4837
$\sigma_{\mathrm{MD}} \left(\textit{w} \mid \textit{b} \right)$	0.0000	0.0308	0.0000
$\sigma_{ m DTS} \left(\textit{w} \mid \textit{b} ight)$	0.0000	0.0561	0.0000
$\overline{\mathcal{D}}_{AS}(w \mid b)$	0.0000	25.6203	24.7964
$\mathcal{D}_{\mathrm{MD}}(w \mid b)$	0.0000	0.0426	0.0000
$\mathcal{D}_{\mathrm{DTS}}\left(\textit{w} \mid \textit{b} ight)$	0.0000	0.0608	0.0000
$\overline{\mathcal{CI}}(w)$	76.9427	38.4713	38.4713

 \mathcal{L}_2 -norm risk measures \mathcal{L}_1 -norm risk measures

In Table 132, we compare the two solutions³³. They are very close. In fact, we notice that the LP solution matches perfectly the MD and DTS constraints, but has a higher AS risk $\sigma_{AS}(w \mid b)$. If we note the two solutions $w^*(\mathcal{L}_1)$ and $w^*(\mathcal{L}_2)$, we have:

$$\begin{cases} \mathcal{R}(w^{\star}(\mathcal{L}_{2}) \mid b) = 1.4524 < \mathcal{R}(w^{\star}(\mathcal{L}_{1}) \mid b) = 1.5584 \\ \mathcal{D}(w^{\star}(\mathcal{L}_{2}) \mid b) = 13.9366 > \mathcal{D}(w^{\star}(\mathcal{L}_{1}) \mid b) = 12.3982 \end{cases}$$

There is a trade-off between the \mathcal{L}_1 - and \mathcal{L}_2 -norm risk measures. This is why we cannot say that one solution dominates the other.

³³The units are the following: % for the weights w_i , and the active share metrics $\sigma_{AS}(w \mid b)$ and $\mathcal{D}_{AS}(w \mid b)$; years for the modified duration metrics MD(w), $\sigma_{MD}(w \mid b)$ and $\mathcal{D}_{MD}(w \mid b)$; bps for the duration-times-spread metrics DTS(w), $\sigma_{DTS}(w \mid b)$ and $\mathcal{D}_{DTS}(w \mid b)$; tCO₂e/\$ mn for the carbon intensity DTS(w).

Course 2022-2023 in Sustainable Finance Lecture 12. Physical Risk Modeling

Thierry Roncalli*

*Amundi Asset Management³⁴

*University of Paris-Saclay

March 2023

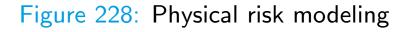
³⁴The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

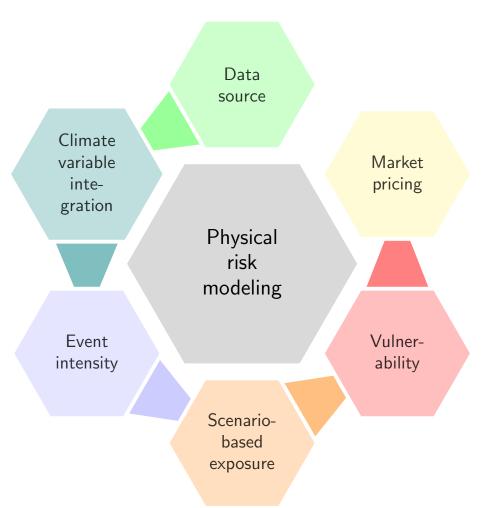
Chronic vs. acute risk

Physical risk and investors

"Responsible investors have paid more attention to the transition risk than to the physical risk. However, recent events show that physical risk is also a big concern. It corresponds to the financial losses that really come from climate change, and not from the adaptation of the economy to prevent them. It includes droughts, floods, storms, etc." (Le Guenedal and Roncalli, 2022).

Chronic vs. acute risk


Chronic risk

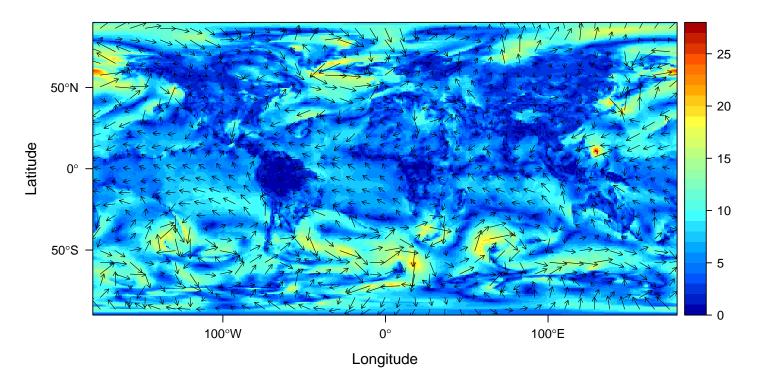

Chronic vs. acute risk

Acute risk

General framework Geolocation

Statistical modeling of physical risk

Statistical modeling of physical risk


Climate variable and data source

- The climate data source is the set $\Theta_s = \{\theta(\lambda, \varphi, z, t)\}$
- $\theta = (\theta_1, \dots, \theta_k)$ is a vector of k climate variables such as temperature, pressure or wind speed
- Each variable θ_k has four coordinates:
 - Latitude λ
 - 2 Longitude φ
 - Height (or altitude) z
 - Time t
- Three types of sources:
 - Meteorological records
 - 2 Reanalysis
 - Historical simulations by a climate model

General framework Geolocation

Statistical modeling of physical risk

Figure 229: Slice^{*} of wind speed (07/11/2013, tropical cyclone Haiyan)

Source: Modern-Era Retrospective analysis for Research and Applications, Version 2, Global Modeling and Assimilation Office, NASA. *This is a slice of the MERRA-2 reanalysis at a height of 10 meters on 7th November 2013. The red dot is the location of the eye of the tropical cyclone Haiyan, which affected more than 10 million people in the Philippines

Statistical modeling of physical risk

Event intensity sensitivity

- We first have define the sensitivity of the intensity of extreme events to climate change
- Let $\mathbb{E}[I(\Theta_s(C))]$ be the expected intensity of the event in the scenario associated with the GHG concentration C
- The sensitivity of the event is equal to:

 $\Delta I(C) = \mathbb{E}\left[I(\Theta_{s}(C))\right] - I(\Theta_{s}(C_{0}))$

where $I(\Theta_s(C_0))$ is the current intensity or the reference intensity in a scenario where climate objectives are met

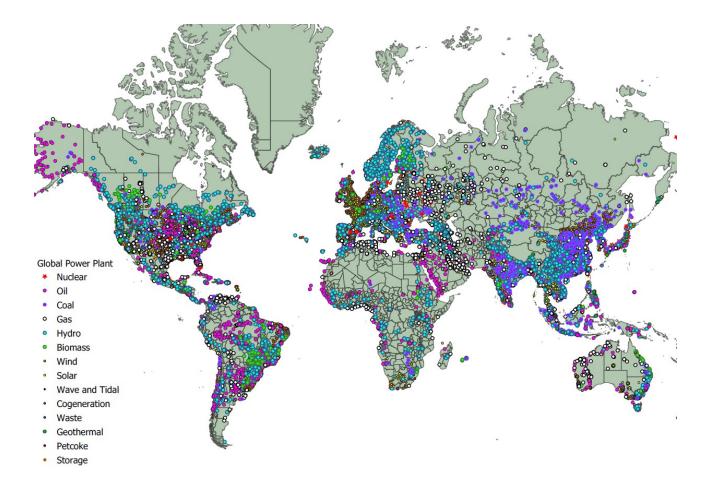
• For instance, we know that the maximum wind of tropical cyclones increases by more than 10% in scenarios with a high GHG concentration

General framework Geolocation

Statistical modeling of physical risk

Asset exposure

• The asset value of the portfolio can then be written as:


$$\Psi(t) = \sum_{j=1}^{n} x_{j} \Psi_{j}(\lambda, \varphi, t)$$

where $\Psi_j(\lambda, \varphi, t)$ is the geolocated asset value estimated at time tand x_j is the weight of asset j in the portfolio

• This requires the geolocation of the portfolio

Statistical modeling of physical risk

Figure 230: Geolocation of world power plants by energy source

Source: Global Power Database version 1.3 (June 2021).

General framework Geolocation

Statistical modeling of physical risk

Vulnerability

- The damage function Ω_j (I) ∈ [0, 1] is the fraction of property loss with respect to the intensity
- It is generally calibrated on past damages (insurance claims, economic loss, etc.) and disasters

Statistical modeling of physical risk

Market pricing

• The physical risk implied by the concentration scenario C is equal to:

$$\Delta \mathcal{Loss}(t, C) = \beta \cdot \mathcal{DD}(t, C) = \beta \sum_{j=1}^{n} x_{j} \Psi_{j}(\lambda, \varphi, t) \Omega_{j}(\Delta I(t, C))$$

- $\Delta \mathcal{L}oss(t, C)$ is the relative loss due to the events on the portfolio
- β is the transmission factor of the direct damage DD(t, C) on the underlying to the loss of financial value in the investment portfolio
- For example, if the facilities of an energy producer are damaged at 50%, the securities issued by this company will be impacted at $50\% \times \beta$

General framework Geolocation

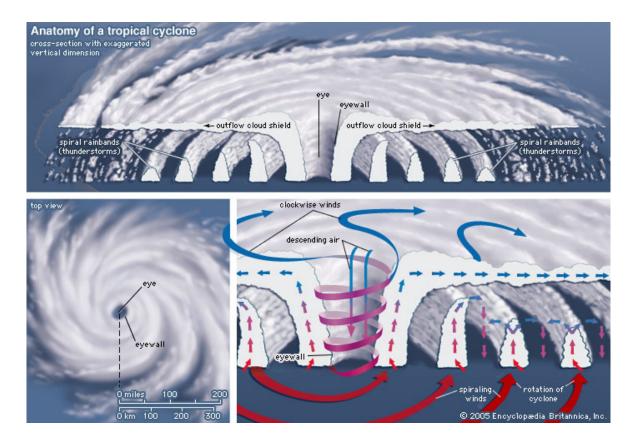
Climate hazard location

General framework Geolocation

Asset location

Cyclones and hurricanes Floods Other physical risks

Le Guenedal, Drobinski, and Tankov (2021), Measuring and Pricing Cyclone-Related Physical Risk under Changing Climate, *Amundi Working Paper*, www.ssrn.com/abstract=3850673

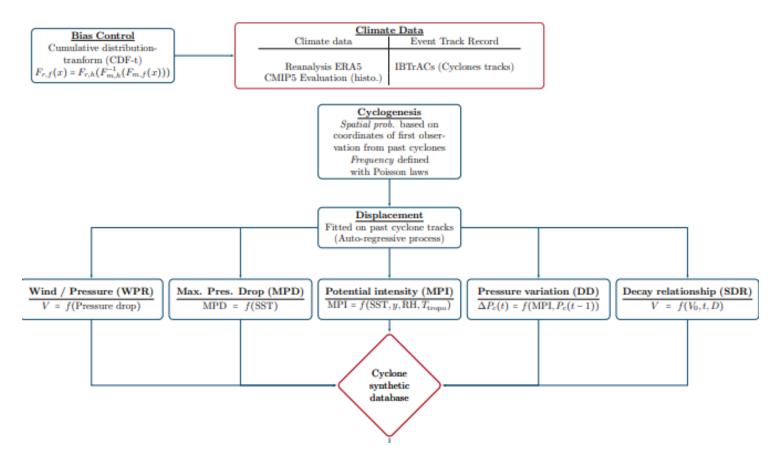

Two main modules:

- Simulation and generation of tropical cyclones under a given climate change scenario
- Geolocation of assets, damage modeling and loss estimation

Cyclones and hurricanes Floods Other physical risks

Applications Tropical cyclone damage modeling

Figure 231: What is a cyclone?

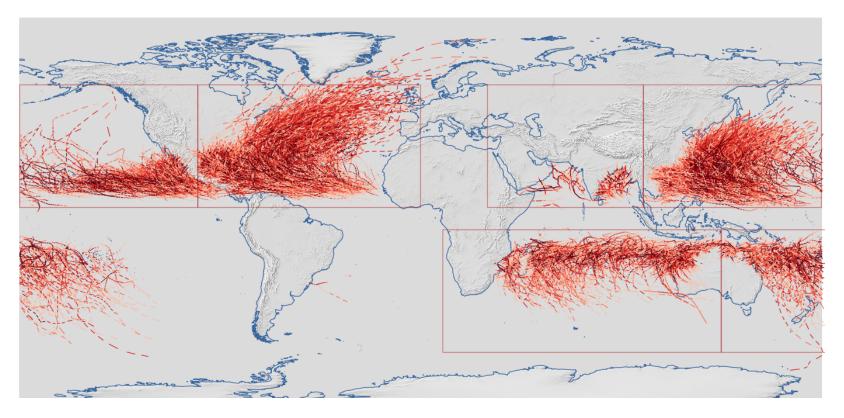


Source: www.geosci.usyd.edu.au/users/prey/teaching/geos-2111gis/cyclone/cln006.html

Cyclones and hurricanes Floods Other physical risks

Applications Tropical cyclone damage modeling

Figure 232: Modeling framework (Module 1)



Source: Le Guenedal et al. (2021).

Cyclones and hurricanes Floods Other physical risks

Applications Tropical cyclone damage modeling

Figure 233: Sample of storms (ERA-5 climate data)

Source: Le Guenedal et al. (2021).

Cyclones and hurricanes Floods Other physical risks

Applications Tropical cyclone damage modeling

Physics of cyclones

• Wind pressure relationship (Bloemendaal *et al.*, 2020):

$$V = a \left(P_{\rm env} - P_c \right)^b$$

2 Maximum potential intensity (Holland, 1997; Emanuel, 1999):

$$MPI = f(y, SST, T_{tropo}, MSLP, RH, P_c)$$

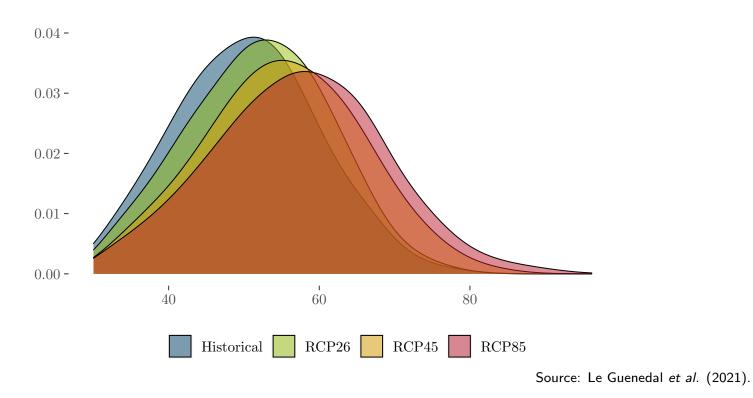
Maximum pressure drop (Bloemendaal *et al.*, 2020):

$$MPD \sim P_{\rm env} - P_c = A + Be^{C({
m SST}-T_0)}$$
 $T_0 = 30^{\circ}{
m C}$

Pressure incremental variation (James and Mason, 2005):

$$\begin{array}{lll} \Delta_{t}P_{c}\left(t\right) & = & c_{0}+c_{1}\Delta_{t}P_{c}\left(t-1\right)+c_{2}e^{-c_{3}\left(P_{c}\left(t\right)-MPI\left(x,y,t\right)\right)}+\varepsilon\left(P_{c},t\right) \\ & \varepsilon\left(P_{c},t\right) & \sim & \mathcal{N}\left(0,\sigma_{P_{c}}^{2}\right) \end{array}$$

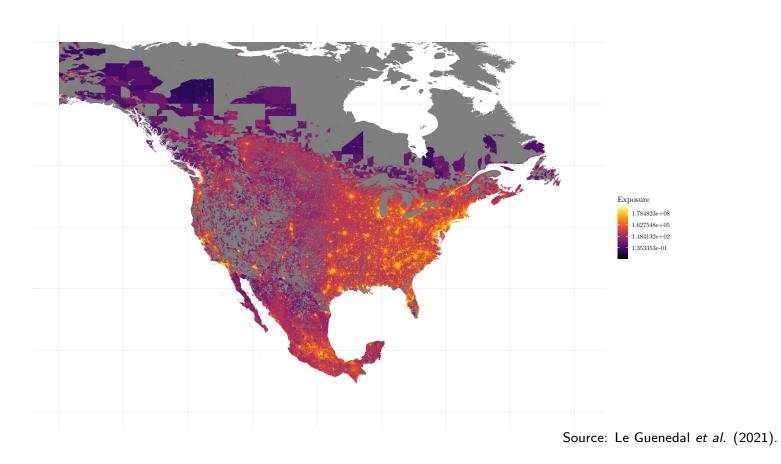
Decay function (Kaplan and DeMaria, 1995):


$$V(t_L) = V_b + (R \cdot V_0 - V_b)e^{-\alpha t} - C$$

where $C = m \left(\ln \frac{D}{D_0} \right) + b$, $m = \tilde{c}_1 t_L \left(t_{0,L} - t_L \right)$ and $b = d_1 t_L \left(t_{0,L} - t_L \right)$

Cyclones and hurricanes Floods Other physical risks

Applications Tropical cyclone damage modeling


Figure 234: Maximum wind speed in m/s (2070-2100)

The cyclone simulation database must be sensitive to the climate change scenario

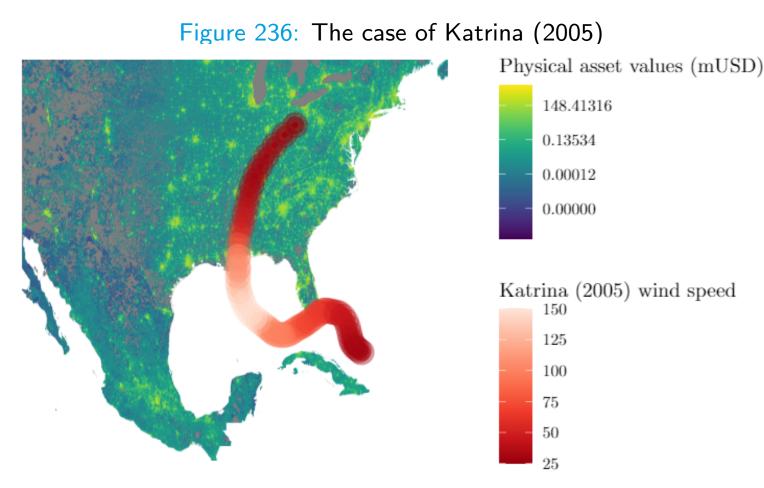
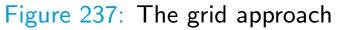
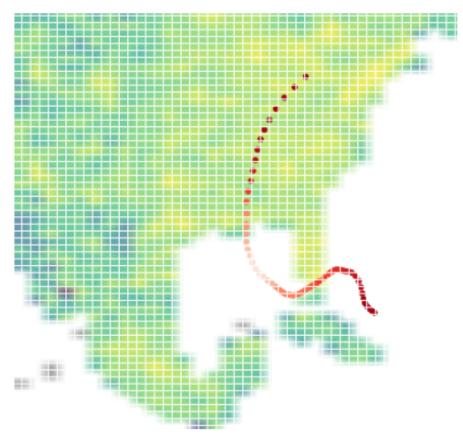

Cyclones and hurricanes Floods Other physical risks

Figure 235: GDP decomposition of North America (or physical asset values) (Litpop database)

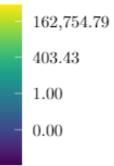
Cyclones and hurricanes Floods Other physical risks

Applications Tropical cyclone damage modeling

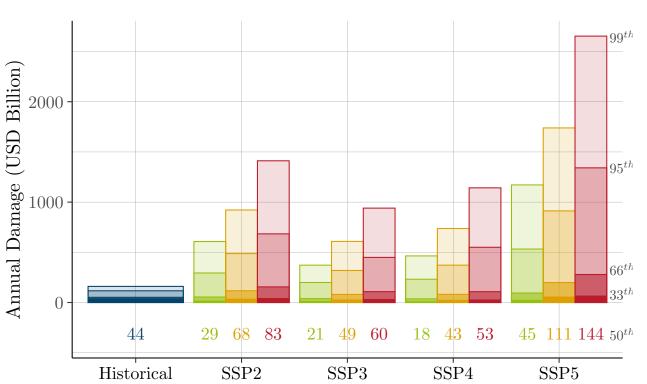



Source: Le Guenedal et al. (2021).

Thierry Roncalli


Cyclones and hurricanes Floods Other physical risks

Applications Tropical cyclone damage modeling


Physical asset values (mUSD)

Source: Le Guenedal et al. (2021).

Cyclones and hurricanes Floods Other physical risks

Applications Tropical cyclone damage modeling

RCP26

Hist.

Figure 238: Average global losses

Source: Le Guenedal et al. (2021).

RCP85

RCP45

Cyclones and hurricanes Floods Other physical risks

Table 133: Average increase of financial losses per year

SSP	RCP 2.6	RCP 4.5	RCP 8.5
SSP2	+43%	+153%	+247%
SSP5	+157%	+360%	+543%

Source: Le Guenedal et al. (2021).

Remark

- There are simulations that lead to annual losses that easily exceed 2 or 3 trillion dollars per year
- 1 Katrina = \$180 billion in 2005

DefinitionCyclones and hurricanesStatistical modeling of physical riskFloodsApplicationsOther physical risks

Floods

Drought

Definition Statistical modeling of physical risk Applications Cyclones and hurricanes Floods Other physical risks

Water stress

Extreme heat

Wildfire

Course 2022-2023 in Sustainable Finance Lecture 13. Climate Stress Testing and Risk Management

Thierry Roncalli*

*Amundi Asset Management³⁵

*University of Paris-Saclay

March 2023

³⁵The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

forthcoming

