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Abstract

This article is part of a comprehensive research project on liquidity risk in asset
management, which can be divided into three dimensions. The first dimension covers
liability liquidity risk (or funding liquidity) modeling, the second dimension focuses on
asset liquidity risk (or market liquidity) modeling, and the third dimension considers the
asset-liability management of the liquidity gap risk (or asset-liability matching). The
purpose of this research is to propose a methodological and practical framework in order
to perform liquidity stress testing programs, which comply with regulatory guidelines
(ESMA, 2019, 2020) and are useful for fund managers. The review of the academic
literature and professional research studies shows that there is a lack of standardized
and analytical models. The aim of this research project is then to fill the gap with the
goal of developing mathematical and statistical approaches, and providing appropriate
answers.

In this second article focused on asset liquidity risk modeling, we propose a market
impact model to estimate transaction costs. After presenting a toy model that helps
to understand the main concepts of asset liquidity, we consider a two-regime model,
which is based on the power-law property of price impact. Then, we define several
asset liquidity measures such as liquidity cost, liquidation ratio and shortfall or time
to liquidation in order to assess the different dimensions of asset liquidity. Finally,
we apply this asset liquidity framework to stocks and bonds and discuss the issues of
calibrating the transaction cost model.

Keywords: Asset liquidity, stress testing, bid-ask spread, market impact, transaction cost,
participation rate, power law, liquidation cost, liquidation ratio, liquidation shortfall, time
to liquidation.

JEL classification: C02, G32.
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Liquidity Stress Testing in Asset Management

1 Introduction

Since September 2020, the European Securities and Markets Authority (ESMA) has required
asset managers to adopt a liquidity stress testing (LST) policy for their investment funds
(ESMA, 2020). More precisely, each asset manager must assess the liquidity risk factors
across their funds in order to ensure that stress testing is tailored to the liquidity risk profile
of each fund. The issue of liquidity stress testing is that the analysis should include both
sides of the equation: liability (or funding) liquidity and asset (or market) liquidity. This
issue is not specific to the asset management industry, because it is a general problem faced
by financial firms including the banking industry:

“A liquidity stress test is the process of assessing the impact of an adverse sce-
nario on institution’s cash flows as well as on the availability of funding sources,
and on market prices of liquid assets” (BCBS, 2017, page 60).

However, the main difference between the asset management and banking sectors is that
banks have a longer experience than asset managers, both in the field of stress testing
and liquidity management (BCBS, 2013b). Another difference is that the methodology for
computing the liquidity coverage ratio and the monitoring tools are precise, comprehensive
and very detailed by the regulator (BCBS, 2013a). This is not the case for the redemption
coverage ratio, since the regulatory text only contains guidelines and no methodological
aspects. Certainly, these differences can be explained by the lack of maturity of this topic
in the asset management industry.

The aim of this research is to provide a methodological support for managing liquidity risk
of investment funds. Since it is a huge project, we have divided it into three dimensions: (1)
liability liquidity risk modeling, (2) asset liquidity risk measurement and (3) asset-liability
liquidity risk management. This article only covers the second dimension and proposes a
framework for assessing the liquidity of a portfolio given a redemption scenario1.

Assessing the asset liquidity risk is equivalent to measuring the transaction cost of liqui-
dating a portfolio. This means estimating the bid-ask spread component, the price impact of
the transaction, the time to liquidation, the implementation shortfall, etc. This also implies
defining a liquidation policy. Contrary to the liability liquidity risk where the academic
literature is poor and not helpful, there are many quantitative works on the aspects of as-
set liquidity risk. This is particularly true for the modeling of transaction costs, much less
for liquidation policies. The challenge is then to use the most interesting studies that are
relevant from a professional point of view, and to cast them into a practical stress testing
framework. This means simplifying and defining a few appropriate parameters that are
useful to assess the asset liquidity risk.

This paper is organized as follows. Section Two deals with transaction cost modeling. A
toy model will be useful to define the concepts of price impact and liquidation policies. Then,
we consider a two-regime transaction cost model based on the power-law property of the price
impact. In Section Three, we present the asset liquidity measures such as the liquidation
ratio, the time to liquidation or the implementation shortfall. The implementation of a stress
testing framework is developed in Section Four. In particular, we consider an approach that
distinguishes invariant parameters and risk parameters that are impacted by a stress regime.
We also discuss the portfolio distortion that may be induced by a liquidation policy, which
does not correspond to the proportional rule. Finally, Section Five applies the analytical
framework to stocks and bonds, and Section Six offers some concluding remarks.

1The liability liquidity risk is studied in Roncalli et al. (2020), whereas the asset-liability management
tools are presented in Roncalli et al. (2021)
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2 Transaction cost modeling

In this section, we develop a transaction cost model that incorporates both the bid-ask
spread and the market impact. For that, we first define these two concepts and explain the
difference between real and nominal variables. Then, we present a toy model that allows
to understand the main characteristics of a transaction cost function. Using the power-law
property of price impact, we derive the square-root-linear model and show how this model
can be calibrated.

2.1 Definition

2.1.1 Unit transaction cost

In what follows, we break down the unit transaction cost into two parts:

ccc (x) = s + πππ (x) (1)

where s does not depend on the trade size and represents half of the bid-ask spread of the
security, and πππ (x) depends on the trade size x and represents the price impact (or PI) of
the trade. The trade size x is an invariant variable and is the ratio between the number of
traded shares q (sold or purchased) and the daily trading volume v:

x =
q

v
(2)

It is also called the participation rate.

Remark 1 If we express the quantities in nominal terms, we have:

x =
Q

V
=
q · P
v · P

=
q

v

where P is the security price that is observed for the current date, and Q = q · P and
V = v · P are the nominal values of q and v (expressed in USD or EUR). In the sequel,
lowercase symbols generally represent quantities or numbers of shares whereas uppercase
symbols are reserved for nominal values. For example, the unit transaction cost CCC (Q,V ) is
defined by:

CCC (Q,V ) = ccc

(
Q

V

)
= ccc

( q
v

)
(3)

2.1.2 Total transaction cost

The total transaction cost of the trade is the product of the unit transaction cost and the
order size expressed in dollars:

T C (q) = q · P · ccc (x) = Q · ccc (x) (4)

where P is the price of the security. Again, we can break down T C (q) into two components:

T C (q) = BAS (q) + PI (q) (5)

where BAS (q) = Q · s is the trading cost due to the bid-ask spread and PI (q) = Q · πππ (x)
is the trading cost due to the market impact.

Remark 2 By construction, we have:

T C (Q,V ) = Q ·CCC (Q,V ) (6)
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2.1.3 Trading limit

The previous framework only assumes that x ≥ 0. However, this is not realistic since we
cannot trade any values of x in practice. From a theoretical point of view, we have q ≤ v,
meaning that x ≤ 1 and x is a participation rate. From a practical point of view, q is an
ex-post quantity whereas v is an ex-ante quantity, implying that x is a relative trading size
and can be larger than one. Nevertheless, it is highly unlikely that the fund manager will
trade a quantity larger than the ex-ante daily trading volume. It is more likely that the
asset manager’s trading policy imposes a trading limit x+ beyond which the fund manager
cannot trade:

0 ≤ x ≤ x+ < 1 (7)

This is equivalent to say that the unit transaction cost becomes infinite when the trade size
is larger than the trading limit. It follows that the unit transaction cost may be designed in
the following way:

ccc (x) =

{
s + πππ (x) if x ∈ [0, x+]
+∞ if x > x+

(8)

In this case, the concept of total transaction cost (or trading cost) only makes sense if the
trade size x is lower than the trading limit x+. Therefore, we will see later that the trading
(or liquidation) cost must be completed by liquidation measures such as liquidation ratio or
liquidation time.

Remark 3 The trading limit x+ is expressed in %. For instance, it is generally set at
10% for equity trading desks. This means that the trader can sell any volume up to 10% of
the average daily volume without any permissions. Above the 10% trading limit, the trader
must inform the risk manager and obtain authorization to execute its sell order. This trading
limit x+ can be expressed as a maximum number of shares q+. The advantage of this trading
policy is that it does not depend on the daily volume, which is time-varying. Another option
is to express the trading limit in nominal terms. Let Q+ be the nominal trading limit. We
have the following relationship:

x+ =
q+

v
=
Q+

V
(9)

2.2 A toy model of transaction cost

Let us consider a simple model where the unit transaction cost has the functional form
given in Figure 1. In this toy model, we assume that the unit transaction cost corresponds
to the bid-ask spread if the selling amount x is lower than a threshold x̃. Beyond this normal
market size, the transaction cost includes a market impact. This market impact is linear and
is an increasing function of x. Moreover, we generally assume that market impact becomes
infinite if the selling amount is larger than x+, which is known as the maximum trading size
or the trading limit. It follows that the unit transaction cost may be parameterized by this
function:

ccc′ (x) =

 s if x ≤ x̃
s + α (x− x̃) if x̃ ≤ x ≤ x+
+∞ if x > x+

(10)

It depends on four parameters: the bid-ask spread s , the slope α of the market impact and
two thresholds: the normal size x̃ and the maximum trading size x+. For example, we obtain
Figure 1 with the following set of parameters: s = 2 bps, α = 2%, x̃ = 2% and x+ = 8%.
The unit transaction cost is equal to 2 bps for small orders and reaches 14 bps when the
trade size equals to the trading limit that is equal to 8%.
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Figure 1: Simple modeling of unitary transaction costs
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For each security i, the unit transaction cost is then defined by the 4-tuple
(

si, αi, x̃i, x+i
)

where si is a security-specific parameter and αi is a model parameter. This means that αi is
the same for all securities that belong to the same liquidity bucket LBj . For instance, LBj
may group all large cap US stocks. x̃i and x+i may be security-specific parameters, but they
are generally considered as model parameters in order to simplify the calibration of the unit
transaction cost.

The previous approach may be simplified by considering that the market impact begins
at x = x̃ = 0. In this case, the unit transaction cost becomes:

ccc′′ (x) =

{
s + αx if x ≤ x+
+∞ if x > x+

(11)

The interest of this parametrization is to reduce the number of parameters since this unit
transaction cost function is then defined by the triplet

(
si, αi, x+i

)
for each security i. An

example is provided in Figure 29 on page 79.

Remark 4 The parameterization ccc′′ (x) allows us to use the traditional mean-variance frame-
work based on QP optimization (Chen et al., 2019). This explains the practitioners’ great in-
terest in the function ccc′′ (x) because it is highly tractable and is compatible with the Markowitz
approach with low computational complexity2.

Remark 5 In Appendix B.1 on page 71, we show how to transform the function ccc′ (x) into
the function ccc′′ (x), and vice versa. However, the right issue is to estimate ĉcc′′ (x) or more
precisely the slope α̂ of the market impact. In this case, we use Equations (61) and (62) on
page 72 to transform α̂ into α for the functions ccc′ (x) and ccc′′ (x).

2Nevertheless, this parameterization is less frequent than the simple approach that only considers the
bid-ask spread (Scherer, 2007): ccc′′′ (x) = s.
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2.3 The power-law model of price impact

2.3.1 General formula for the market impact

The previous trading cost model is useful for portfolio optimization, but price impact is
certainly too simple from a trading or risk management perspective. Nevertheless, price
impact has been extensively studied by academics3, and it is now well-accepted that market
impact is power-law:

πππ (x) := πππ (x; γ) = ϕγσx
γ (12)

where γ > 0 is a scalar, σ is the daily volatility of the security4 and ϕγ is a scaling factor5. In
particular, Equation (12) is valid under a no-arbitrage condition (Jusselin and Rosenbaum,
2020). Empirical studies showed that γ ∈ [0.3, 0.7]. For example, the seminal paper of Loeb
(1983) has been extensively used by Torre (1997) to develop the MSCI Barra market impact
model, which considers that γ = 0.5. Almgren et al. (2005) concluded that γ = 3/5 is a better
figure than γ = 1/2. On the contrary, Engle et al. (2012) found that γ ≈ 0.43 for NYSE stocks
and γ ≈ 0.37 for NASDAQ stocks, while Frazzini et al. (2018) estimated that the average
exponent is equal to 0.35 for developed equity markets. Bacry et al. (2015) confirmed a
square root temporary impact in the daily participation and observed a power-law pattern
with an exponent between 0.5 and 0.8. However, the results obtained by academics are
generally valid for small values of x. For instance, the median value of x is equal to 0.6% in
Almgren et al. (2005), Tóth et al. (2011) have used trades6, which are smaller than 0.01%,
Zarinelli et al. (2015) have considered a database of seven million metaorders, implying that
data with small values of x dominate data with large values of x, etc.

Even though there is an academic consensus7 that γ ≈ 0.5, this assumption is not
satisfactory from a practical point of view when we have to sell or buy a large order (x �
0.5%). Some academics have also exhibited that γ is an increasing function of x. For
instance, Moro et al. (2009) found that γ is equal to 0.64 for LSE stocks when there is a
low fraction of market orders, but γ is equal to 0.72 when there is a high fraction of market
orders. Similarly, Cont et al. (2014) estimated that γ is equal to 1 when we aggregate trades
and consider order flow imbalance instead of single trade sizes. Breen et al. (2002) used
a linear regression model for estimating the price impact. We also recall that the seminal
paper of Kyle (1985) assumes that γ = 1. In fact, these two concepts of transaction cost are
not necessarily exclusive:

“Empirically, both a linear model and a square root model explain transaction
costs well. A square-root model explains transaction costs for orders in the 90th
to 99th percentiles better than a linear model; a linear model explains transaction
costs for the largest 1% of orders slightly better than the square-root model”
(Kyle and Obizhaeva, 2016, page 1347).

This finding is shared by Boussema et al. (2002) and D’Hondt and Giraud (2008), who
observed that market impact increases significantly when trade size is greater than 1% or
turnover is lower than 0.03%.

3See for instance the survey articles of Bouchaud (2010) and Kyle and Obizhaeva (2018).
4The daily volatility is equal to the annualized volatility divided by the factor

√
260. In the sequel, we use

the symbol σ to name both the daily and annualized volatilities. When the volatility is used in a transaction
cost formula, it corresponds to a daily volatility. In the text, the volatility is always expressed on an annual
basis.

5The value of ϕγ depends on the value taken by the exponent γ.
6See Figure 1 in Tóth et al. (2011).
7For instance, the square-root model is used by Gârleanu and Pedersen (2013), Frazzini et al. (2018) and

Briere et al. (2020).
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Remark 6 According to Bucci et al. (2019), the relationship between trade size and market
impact is close to a square-root function for intermediate trading volumes (i.e. when 0.1% ≤
x ≤ 10%), but shows an approximate linear behavior for smaller trading volumes (i.e. when
0.001% ≤ x ≤ 0.1%). These different results demonstrate that there is no consensus on a
unique functional form for computing the price impact.

Figure 2: Convexity measure of the power-law model
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In Figure 2, we report the power function y = xγ and its first and second derivatives for
three exponents γ. We deduce that the concavity is larger for low values of γ and x. When
x is equal to 1, the power function converges to the same value y = 1 whatever the value of
γ. It follows that the choice of γ primarily impacts small trading sizes.

2.3.2 Special cases

From Equation (12), we deduce the two previous competing approaches of Loeb (1983) and
Kyle (1985), and also the constant (or bid-ask spread) model:

• The square-root model (γ = 1/2):

πππ (x; 1/2) ≈ ϕ1/2σ
√
x (13)

Generally, we assume that the scaling factor ϕ1/2 is close to one, implying that the
multiplicative factor is equal to the daily volatility.

• The linear model (γ = 1):

πππ (x; 1) ≈ ϕ1σx (14)

7
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In this case, the scaling factor ϕ1 may be calibrated with respect to ϕ1/2 by considering
that the two price impact functions coincide at a threshold x̃. We deduce that8:

πππ (x; 1) ≈ ϕ1/2σ
x√
x̃

(15)

• The constant model (γ = 0):
πππ (x; 0) ≈ ϕ0σ (16)

By assuming that ϕ0 = 0, we obtain the bid-ask spread model:

ccc (x) = s

In Tables 1 and 2, we have reported the values taken by the price impact function πππ (x)
for different values of the annualized volatility σ and trade size x. We assume that ϕ1/2 = 1
and x̃ = 1%. It follows that ϕ1 = 10. Results must be read as follows: a trade size of 0.50%
has a price impact of 4.4 bps when the asset volatility is 10% in the case of the square-root
model, whereas the price impact becomes 3.1 bps if we consider the linear model.

Table 1: Price impact in bps when γ = 1/2 (square-root model)

x 0.01% 0.05% 0.10% 0.50% 1% 2% 5% 10% 15%

σ

1% 0.1 0.1 0.2 0.4 0.6 0.9 1.4 2.0 2.4
5% 0.3 0.7 1.0 2.2 3.1 4.4 6.9 9.8 12.0

10% 0.6 1.4 2.0 4.4 6.2 8.8 13.9 19.6 24.0
15% 0.9 2.1 2.9 6.6 9.3 13.2 20.8 29.4 36.0
20% 1.2 2.8 3.9 8.8 12.4 17.5 27.7 39.2 48.0
25% 1.6 3.5 4.9 11.0 15.5 21.9 34.7 49.0 60.0
30% 1.9 4.2 5.9 13.2 18.6 26.3 41.6 58.8 72.1
50% 3.1 6.9 9.8 21.9 31.0 43.9 69.3 98.1 120.1

Table 2: Price impact in bps when γ = 1 (linear model)

x 0.01% 0.05% 0.10% 0.50% 1% 2% 5% 10% 15%

σ

1% 0.0 0.0 0.1 0.3 0.6 1.2 3.1 6.2 9.3
5% 0.0 0.2 0.3 1.6 3.1 6.2 15.5 31.0 46.5

10% 0.1 0.3 0.6 3.1 6.2 12.4 31.0 62.0 93.0
15% 0.1 0.5 0.9 4.7 9.3 18.6 46.5 93.0 139.5
20% 0.1 0.6 1.2 6.2 12.4 24.8 62.0 124.0 186.1
25% 0.2 0.8 1.6 7.8 15.5 31.0 77.5 155.0 232.6
30% 0.2 0.9 1.9 9.3 18.6 37.2 93.0 186.1 279.1
50% 0.3 1.6 3.1 15.5 31.0 62.0 155.0 310.1 465.1

Figure 3 shows the differences between the two models when the annualized volatility is
set to 10%. First, we notice that the concavity of the square-root model is mainly located

8We have:

πππ (x̃; 1) = πππ (x̃; 1/2) ⇔ ϕ1σx̃ = ϕ1/2σ
√
x̃

⇔ ϕ1 =
ϕ1/2√
x̃
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Figure 3: Square-root model versus linear model (σ = 10%)
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for small values of x, since the trading cost function πππ (x; 1/2) may be approximated by
a piecewise linear function with only three or four knots. Second, the square-root model
implies higher trading costs than the linear model when trade sizes are small, and we verify
that πππ (x; 1/2) ≥ πππ (x; 1) when x ≤ x̃ = 1%. For large trade sizes, it is the linear model that
produces higher trading costs compared to the square-root model9: πππ (x; 1)� πππ (x; 1/2).

2.4 A two-regime transaction cost model

2.4.1 General formula

In the toy model, we distinguish two market impact regimes. The first one corresponds to
small trading sizes — x ∈ [0, x̃], which generate a low price impact. In the second regime,
trading sizes are larger — x ∈ [x̃, x+], and the price impact has a significant contribution
to the transaction cost. The research studies on the power-law model also show that there
may be several regimes of market impact depending on the value of γ. Therefore, we can
generalize the toy model where the two regimes correspond to two power functions:

πππ (x) =

 ϕ1σx
γ1 if x ≤ x̃

ϕ2σx
γ2 if x̃ ≤ x ≤ x+

+∞ if x > x+
(17)

where γ1 and γ2 are the exponents of the two market impact regimes. Moreover, the scalars
ϕ1 and ϕ2 are related since the cost function πππ (x) is continuous. This implies that ϕ2 =
ϕ1x̃

γ1−γ2 . In this case, the price impact model is defined by the 5-tuple (ϕ1, γ1, γ2, x̃, x
+)

since ϕ2 is computed from these parameters. An alternative approach is to define the model

9This large difference between square-root and linear models has been already observed by Frazzini et al.
(2018).
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by the parameter set (γ1, γ2, x̃, x
+,πππ (x̃)). Here, we fix the market impact at the inflection

point, and we have ϕ1 = σ−1x̃−γ1 · πππ (x̃) and ϕ2 = ϕ1x̃
γ1−γ2 .

Remark 7 Another parameterization of the two-regime model may be:

πππ (x) =

 ϕ1σx
γ1 if x ≤ x̃

πππ (x̃) + ϕ2σ (x− x̃)
γ2 if x̃ < x ≤ x+

+∞ if x > x+
(18)

where πππ (x̃) = ϕ1σx̃
γ1 . This model is defined by the parameter set (ϕ1, γ1, ϕ2, γ2, x̃, x

+).

Remark 8 The model of Bucci et al. (2019) is obtained with the two parameterizations by
setting γ1 = 1, x̃ = 0.1% and γ2 = 1/2.

In Figure 4, we report three examples of the two-regime model. The first two examples
correspond to the first parameterization, whereas the last example uses the second parame-
terization. In this last case, we observe a step effect due to the high concavity10 applied to
the small values of x− x̃. Therefore, it is better to use the first parameterization.

Figure 4: Two-regime model (annualized volatility σ = 10%)
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Remark 9 One of the questions which emerges with the calibration of the two-regime model
is the effective difference between the two regimes. In particular, we have the choice between
γ1 > γ2 and γ2 > γ1. In other words, we have the choice to decrease or increase the convexity
beyond the inflection point x̃. The “small size effect” described by Bucci et al. (2019) is not
really an issue, because the impact is so small. Indeed, the order of magnitude of the price
impact for x ≤ 0.1% is one or two basis points in the power-law model11. The significant

10This step effect has been illustrated in Figure 2 on page 7.
11For instance, we have πππ (0.01%) = 0.62 bps and πππ (0.1%) = 1.92 bps when σ = 10% and γ = 0.5.
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issue is more to have a coherent approach when the trading size is close to the trading limit
x+. An example is provided in Figure 5 when the annualized volatility σ is 10% and ϕ1 = 1.
We recall that πππ (x) =∞ when x > x+ because of the order execution policy imposed by the
asset manager. Therefore, it is obvious that the right choice is γ2 > γ1, implying that the
convexity must increase. Otherwise, it is not consistent to impose a low convexity below x+

and an infinite convexity beyond x+.

Figure 5: Two-regime model (σ = 10%, ϕ1 = 1)
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2.4.2 The square-root-linear model

From the two-regime model, we can define the square-root-linear (SQRL) model which has
been suggested by Kyle and Obizhaeva (2016):

πππ (x) =


ϕ1σ
√
x if x ≤ x̃

ϕ1σ
x√
x̃

if x̃ ≤ x ≤ x+

+∞ if x > x+
(19)

In this case, we assume that the square-root model is valid for small trade sizes (x ≤ x̃),
whereas the linear model is better for large trade sizes (x̃ ≤ x̃ ≤ x+). However, beyond
the threshold value x+, we consider that trading costs are prohibitive and infinite. As for
the toy model, the value x+ may be interpreted as a trading limit. We have represented
the SQRL model in Figure 6 for the previous parameters (σ = 10% and ϕ1 = 1) when the
inflection point x̃ is equal to 1%.

In Table 3, we report the price impact of this model for several values of the annualized
volatility σ. We can compare these figures with those given in Tables 1 and 2 on page 8. Let
us consider the case when the volatility is equal to 20%, which corresponds to the typical

11
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Figure 6: Square-root-linear model (σ = 10%)
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volatility observed for single stocks. We observe that there is an acceleration of the price
impact beyond the inflection point. For instance, the price impact is equal to 24.8 bps for
x = 2%, 62.0 bps for x = 5%, etc.

Table 3: Price impact in bps (square-root-linear model)

x 0.01% 0.05% 0.10% 0.50% 1% 2% 5% 10% 15%

σ

1% 0.1 0.1 0.2 0.4 0.6 1.2 3.1 6.2 9.3
5% 0.3 0.7 1.0 2.2 3.1 6.2 15.5 31.0 46.5

10% 0.6 1.4 2.0 4.4 6.2 12.4 31.0 62.0 93.0
15% 0.9 2.1 2.9 6.6 9.3 18.6 46.5 93.0 139.5
20% 1.2 2.8 3.9 8.8 12.4 24.8 62.0 124.0 186.1
25% 1.6 3.5 4.9 11.0 15.5 31.0 77.5 155.0 232.6
30% 1.9 4.2 5.9 13.2 18.6 37.2 93.0 186.1 279.1
50% 3.1 6.9 9.8 21.9 31.0 62.0 155.0 310.1 465.1

Remark 10 The SQRL model and more generally the two-regime model can be used as an
incentive trading model, since trades are penalized when they are larger than x̃. In this case,
x+ is a hard threshold limit while x̃ can be considered as a soft threshold limit. Indeed, the
asset manager does not explicitly prohibit the fund manager from trading between x̃ and x+,
but he is clearly not encouraged to trade, because the transaction costs are high12. This is
particularly true if the asset manager has a centralized trading desk and ex-ante trading costs
are charged to the fund manager.

12For instance, the price impact is equal to 35.1 bps for x = 2% and 138.7 bps for x = 5% when we use a
two-regime model with the following parameters: σ = 20%, ϕ1 = 1, γ1 = 1/2, γ2 = 3/2 and x̃ = 1%.

12
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3 Asset liquidity measures

Since liquidity is a multi-faceted concept, we must use several measures in order to encom-
pass the different dimensions (Roncalli, 2020, page 347). If we focus on asset liquidity, we
generally distinguish two types of measurement. The first category assesses the liquidity
risk profile and includes the liquidation ratio, the time to liquidation and the liquidation
shortfall. The second category concerns liquidity costs such as transaction costs and effective
costs. The main difference between the two categories is that the first one focuses on the
volume, while the second one mixes both volume and price dimensions.

3.1 Redemption scenario

In Roncalli et al. (2020), we have developed several methods and tools in order to define a
redemption shock R for a given investment fund. This redemption shock is expressed as a
percentage of the fund’s total net asset TNA. Therefore, we can deduce the stress liability
outflow:

F− (t) := R = R · TNA (t)

The asset structure of the fund is given by the vector ω = (ω1, . . . , ωn) where ωi is the number
of shares of security i and n is the number of assets that make up the asset portfolio. By
construction, we have:

TNA (t) =

n∑
i=1

ωi · Pi (t)

where Pi (t) is the current price of security i. The redemption shock R must be translated
into the redemption scenario q = (q1, . . . , qn), where qi is the number of shares of security i
that must be sold. After the sell order, we must have the following equality13:

TNA
(
t+
)

:= TNA (t)−F− (t) =

n∑
i=1

(ωi − qi) · Pi (t) (20)

where t+ means t+ dt and dt is a small time step. Generally, we assume that the portfolio
composition remains the same, meaning that:

qi · Pi (t)

qj · Pj (t)
=
ωi · Pi (t)

ωj · Pj (t)

It follows that the solution is simple and is equal to the proportional rule:

qi = R · ωi (21)

It is called the vertical slicing approach (or pro-rata liquidation). Nevertheless, since ωi− qi
must be a natural number, qi must also be a natural number. Therefore, due to round-off
errors, the final redemption shock may not match the proportional rule.

Remark 11 In Section 4.3 on page 32, we discuss the construction of the redemption sce-
nario in more detail, in particular how to manage the distortion of the portfolio allocation
weights.

13We notice that the dollar value of the redemption is equal to
∑n
i=1 qi · Pi (t).
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3.2 Liquidity risk profile

We first consider volume-related liquidity measures. One of the most popular measures is
the liquidation ratio LR (q;h), which measures the proportion of a portfolio q that can be
liquidated after h trading days. This statistic depends on the size of each exposure qi and
the liquidation policy, which is defined by the trading limit q+i . Another interesting statistic
is the liquidation time (or time to liquidation) LT (q; p), which is the inverse function of
the liquidity ratio. It indicates the number of required trading days in order to liquidate a
proportion p of the portfolio.

3.2.1 Liquidation ratio

For each security that makes up the portfolio, we recall that q+i denotes the maximum
number of shares that can be sold during a trading day for the asset i. The number of
shares qi (h) liquidated after h trading days is defined as follows:

qi (h) = min

(qi − h−1∑
k=0

qi (k)

)+

, q+i

 (22)

where qi (0) = 0. The liquidation ratio LR (q;h) is then the proportion of the redemption
scenario q that is liquidated after h trading days:

LR (q;h) =

∑n
i=1

∑h
k=1 qi (k) · Pi∑n
i=1 qi · Pi

(23)

By definition, LR (q;h) is between 0 and 1. For instance, LR (q; 1) = 50% means that we
can fulfill 50% of the redemption on the first trading day, LR (q; 5) = 80% means that we
can fulfill 80% of the redemption after five trading days, etc.

We consider a portfolio, which is made up of 5 assets. The redemption scenario is defined
below by the number of shares qi that have to be sold:

Asset 1 2 3 4 5
qi 4 351 2 005 755 175 18
q+i 1 000 1 000 200 200 200
Pi 89 102 67 119 589

We also indicate the trading limit q+i and the current price Pi of each asset. In Table 4, we
report the number of liquidated shares qi (h) and the liquidation ratio LR (q;h). After the
first trading day, we have liquidated 1 000 shares of Asset #1 because of the trading policy
that imposes a trading limit of 1 000. We notice that we need 5 trading days in order to sell
4 351 shares of Asset #1. If we consider the liquidation ratio, we obtain LR (q; 1) = 35%,
LR (q; 2) = 65.34%, etc.

Remark 12 The liquidation period h+ = inf {h : LR (q;h) = 1} indicates how many trading
days we need to liquidate the redemption scenario q. In the previous example, h+ is equal
to 5, meaning that the liquidation of this redemption scenario requires five trading days.

We can break down the liquidation ratio as follows:

LR (q;h) =
1∑n

i=1 qi · Pi

h∑
k=1

n∑
i=1

LAi,k (q)

14
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Table 4: Number of liquidated shares qi (h)

h Asset #1 Asset #2 Asset #3 Asset #4 Asset #5 LR (q;h)
1 1 000 1 000 200 175 18 35.00%
2 1 000 1 000 200 0 0 65.34%
3 1 000 5 200 0 0 80.61%
4 1 000 0 155 0 0 95.36%
5 351 0 0 0 0 100.00%

Total 4 351 2 005 755 175 18

where LAi,k (q) = qi (k) · Pi is the liquidation amount for security i and trading day k. It
follows that:

LR (q;h) =

h∑
k=1

n∑
i=1

LCi,k (q) =

h∑
k=1

LCk (q)

where LCi,k (q) is the liquidation contribution for security i and trading day k:

LCi,k (q) =
LAi,k (q)∑n
i=1 qi · Pi

and LCk (q) =
∑n
i=1 LCi,k (q) is the liquidation contribution for trading day k. Another

useful decomposition is to consider the break-down by security:

LR (q;h) =

n∑
i=1

qi · Pi∑n
i=1 qi · Pi

∑h
k=1 LAi,k (q)

qi · Pi

=

n∑
i=1

wi · LR (qi;h)

=

n∑
i=1

LCi (q;h)

where wi is the relative weight of security i in portfolio q and LR (qi;h) is the liquidation
ratio applied to the selling order qi:

LR (qi;h) =

∑h
k=1 LAi,k (q)

qi · Pi

LCi (q;h) = wi · LR (qi;h) is the liquidation contribution of asset i.

We consider the previous example. Table 5 shows the values taken by the liquidation
contribution LCi,h (q). For instance, LC1,2 (q) = 15.14% means that the liquidation of 1 000
shares of the second asset during the first trading day represents 15.14% of the redemption
scenario. The sum of each row h corresponds to the liquidation contribution LCh (q). For
instance, we have 13.21% + 15.14% + 1.99% + 3.09% + 1.57% = 35.00%. The sum of

each column corresponds to the weights wi because we have14 wi =
∑h+

k=1 LCi,k (q). The
weights wi and the liquidation ratios LR (qi;h) are given in Table 6. We observe that the

14This result comes from the following identity:

h+∑
k=1

LCi,k (q) =
h+∑
k=1

LAi,k (q)∑n
j=1 qj · Pj

=

h+∑
k=1

qi (k) · Pi∑n
j=1 qj · Pj

=
qi · Pi∑n
j=1 qj · Pj

= wi
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Table 5: Liquidation contribution LCi,h (q) by trading day

h Asset #1 Asset #2 Asset #3 Asset #4 Asset #5 LCh (q)
1 13.21% 15.14% 1.99% 3.09% 1.57% 35.00%
2 13.21% 15.14% 1.99% 0.00% 0.00% 30.34%
3 13.21% 0.08% 1.99% 0.00% 0.00% 15.27%
4 13.21% 0.00% 1.54% 0.00% 0.00% 14.75%
5 4.64% 0.00% 0.00% 0.00% 0.00% 4.64%

Total 57.47% 30.35% 7.51% 3.09% 1.57% 100.00%

Table 6: Weight wi and liquidation ratio LR (qi;h) of the assets

Asset #1 Asset #2 Asset #3 Asset #4 Asset #5
LR (qi; 1) 22.98% 49.88% 26.49% 100.00% 100.00%
LR (qi; 2) 45.97% 99.75% 52.98% 100.00% 100.00%
LR (qi; 3) 68.95% 100.00% 79.47% 100.00% 100.00%
LR (qi; 4) 91.93% 100.00% 100.00% 100.00% 100.00%
LR (qi; 5) 100.00% 100.00% 100.00% 100.00% 100.00%

wi 57.47% 30.35% 7.51% 3.09% 1.57%

Table 7: Liquidation contribution LCi (q;h) by asset

h Asset #1 Asset #2 Asset #3 Asset #4 Asset #5 LR (q;h)
1 13.21% 15.14% 1.99% 3.09% 1.57% 35.00%
2 26.42% 30.28% 3.98% 3.09% 1.57% 65.34%
3 39.63% 30.35% 5.97% 3.09% 1.57% 80.61%
4 52.84% 30.35% 7.51% 3.09% 1.57% 95.36%
5 57.47% 30.35% 7.51% 3.09% 1.57% 100.00%

assets are respectively liquidated in five, three, three, four, one and one trading days. If
we multiply the weights wi by the liquidation ratios LR (qi;h), we obtain the liquidation
contribution LCi (q;h) by asset. If we sum the elements of each row, we obtain the liquidity
ratio LR (q;h).

As explained by Roncalli and Weisang (2015a), the liquidation ratio will depend on three
factors: the liquidity of the portfolio to sell, the amount to sell and the liquidation policy.
They illustrated the impact of these factors using several index portfolios. For instance, we
report in Figure 7 the example of the EUROSTOXX 50 index portfolio. We notice that the
liquidation ratio is different if we consider a selling order of $1, $10 or $50 bn. It is also
different if the trading limit is equal to 10% or 30% of the average daily volume15 (ADV).
In Figure 8, we compare the liquidation ratio for different index portfolios when the trading
limit is set to 10% of ADV. We notice that the liquidity profile is better for the S&P 500
Index and a size of $50 bn than for the EUROSTOXX 50 Index and a size of $10 bn. We
also observe that liquidating $1 bn of the MSCI INDIA Index is approximately equivalent to
liquidating $10 bn of the EUROSTOXX 50 Index. Of course, these results may differ from
one period to another, because the liquidity is time-varying. Nevertheless, we observe that
the liquidity of the portfolio is different depending on whether we consider small cap stocks
or large cap stocks. The liquidity ratio also decreases with the amount to sell. Finally, the
liquidity ratio also depends on the trading constraints or the liquidation policy.

15Roncalli and Weisang (2015a) used the three-month average daily volume computed by Bloomberg.
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Figure 7: Liquidation ratio (in %) of the EUROSTOX 50 index portfolio

Source: Roncalli and Weisang (2015a, Figure 15, page 50), data as of April 30, 2015.

Figure 8: Comparing the liquidation ratio (in %) between equity index portfolios

Source: Roncalli and Weisang (2015a, Figure 5, page 28), data as of April 30, 2015.
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3.2.2 Time to liquidation

The liquidation time is the inverse function of the liquidation ratio:

LT (q; p) = LR−1 (q; p)

= inf {h : LR (q;h) ≥ p}

For instance, LT (q; 75%) = 8 means that we need 8 trading days to fulfill 75% of the
redemption. The liquidation time is a step function because LT (q; p) is an integer. If we
consider the previous example, we have LR (q; 0) = 0, LR (q; 1) = 35%, LR (q; 2) = 65.34%,
etc. We deduce that LT (q; p) = 0 if p < 35%, LT (q; p) = 1 if 35% ≤ p < 65.34%, etc.

In Table 8, we report some figures of liquidation time that were calculated by Roncalli
and Weisang (2015a). The size of the equity index portfolio is set to $10 bn, and two
liquidation policies are tested (10% and 30% of the average daily volume). In the case of the
S&P 500 Index, liquidating 90% of a $10 bn equity index portfolio takes two trading days
with a trading limit of 10% of the ADV and one trading day with a trading limit of 30% of
the ADV. In the case of the MSCI EMU Small Cap Index, these liquidation times becomes
74 and 25 trading days.

Table 8: Time to liquidation (size = $10 bn)

Index S&P 500 ES 50 DAX NASDAQ
MSCI MSCI MSCI
EM INDIA EMU SC

p (in %) 10% of ADV
50 1 5 11 2 3 37 21
75 1 7 17 3 5 71 43
90 2 10 23 3 9 110 74
99 2 15 29 5 17 156 455

p (in %) 30% of ADV
50 1 2 4 1 1 13 7
75 1 3 6 1 2 24 15
90 1 4 8 1 3 37 25
99 1 5 10 2 6 52 152

Source: Roncalli and Weisang (2015a, Tables 6 and 7, page 26), data as of April 30, 2015.

Remark 13 The liquidation risk profile of the redemption scenario q can be defined by the
function h 7→ LR (q;h) or the function p 7→ LT (q; p). As shown by Roncalli and Weisang
(2015a), it depends on the asset liquidity, the liquidation policy and the portfolio composition.

3.2.3 Liquidation shortfall

The liquidation shortfall LS (q) is defined as the remaining redemption that cannot be
fulfilled after one trading day:

LS (q) = 1− LR (q; 1) (24)

For instance, it is equal to 65% for the previous example described on page 14. The liqui-
dation shortfall is an increasing function of the order size. An illustration is given in Figure
9 by considering three different liquidation policies.
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Figure 9: Liquidation shortfall with respect to the portfolio notional
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3.3 Liquidity cost

We now turn to liquidity measures that incorporate the price (or cost) dimension. Generally,
we measure the liquidity cost by the transaction cost. However, in a liquidity stress testing
program, this measure is merely theoretical since it is based on the transaction cost model.
Therefore, it can be completed by the ex-post liquidity cost, which is also called the effective
cost.

3.3.1 Transaction cost

We define the transaction cost of the redemption scenario q = (q1, . . . , qn) as the product of
the unit costs and the dollar volumes:

T C (q) =

n∑
i=1

qi · Pi · ccci (xi) =

n∑
i=1

Qi · ccci (xi) (25)

where Qi = qi · Pi is the nominal volume (expressed in $), xi = v−1i qi is the participation
rate when selling security i and ccci (x) is the unit transaction cost associated with security i.
We can then break down the liquidity cost into two parts16:

T C (q) = BAS (q) + PI (q)

where the bid-ask spread component is equal to:

BAS (q) =

n∑
i=1

Qi · si

16We have:
ccci (x) = si + πππi (x)
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and the market impact cost is given by:

PI (q) =

n∑
i=1

Qi · πππi (xi)

The previous analysis assumes that we can sell the portfolio q instantaneously or during
the same day. However, Equation (25) is only valid if the volumes qi are less than the trading
limits q+i = x+i · vi. Otherwise, we have:

T C (q) =

n∑
i=1

h+∑
h=1

1 {qi (h) > 0} · qi (h) · Pi · ccci
(
qi (h)

vi

)
(26)

In this case, the bid-ask spread component has the same expression, but the market impact
component is different. Indeed, we have17:

BAS (q) =

n∑
i=1

h+∑
h=1

1 {qi (h) > 0} · qi (h) · Pi · si

=

n∑
i=1

Qi · si (27)

but:

PI (q) = T C (q)− BAS (q) 6=
n∑
i=1

Qi · πππi (xi) (28)

Remark 14 We assume that qi ≤ q+i . We have qi (1) = qi and qi (h) = 0 for h > 1. We
obtain:

T C (q) =

n∑
i=1

qi (1) · Pi · ccci
(
qi (1)

vi

)

=

n∑
i=1

qi · Pi · ccci (xi)

We retrieve the expression given in Equation (25).

Remark 15 Since the transaction cost is measured in dollars, it may be useful to express
it as a percentage of the redemption value:

T Cr (q) =
T C (q)∑n
i=1 qi · Pi

An alternative measure is to compare the total transaction cost with the bid-ask spread com-
ponent:

T Cs (q) =
T C (q)

BAS (q)
17Because of the following identity:

h+∑
h=1

1 {qi (h) > 0} · qi (h) = qi
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We consider the previous example. We recall the characteristics of the redemption port-
folio:

Asset 1 2 3 4 5
qi 4 351 2 005 755 175 18
q+i 1 000 1 000 200 200 200

Pi (in $) 89 102 67 119 589

πππi (x) SQRL model with ϕ1 = 1, x̃ = 5% and x+ = 10%
σi (in %) 25 20 18 30 20

si (in bps) 4 4 5 5 5
vi 10 000 10 000 2 000 2 000 2 000

We also indicate the transaction cost function. It is given by the SQRL model with ϕ1 = 1,
x̃ = 5% and x+ = 10%. For each asset i, we also indicate the annualized volatility σi, the
value of the bid-ask spread si and the daily volume vi.

The value of the redemption portfolio is equal to $673 761. The total transaction cost
is equal to T C (q) = $4 373.55 with the following breakdown: BAS (q) = $277.71 and
PI (q) = $4 095.85. These figures represent respectively 64.9, 4.1 and 60.8 bps of the
portfolio value. We deduce that the price impact explains 93.7% of the transaction cost.
The contribution of each asset is respectively equal to 34.6%, 30.5% and 16.6%, 16.0% and
2.4%. More results can be found in Tables 37–41 on page 80.

3.3.2 Implementation shortfall and effective cost

The previous analysis assumes that the transaction cost is calculated with a model. There-
fore, Equation (26) defines an ex-ante transaction cost. In practice, this ex-ante transaction
cost will differ from the effective transaction cost. In order to define the latter, we must
reintroduce the time index t in the analysis. The current value of the redemption scenario
is equal to:

Vmid (q) =

n∑
i=1

qi (t) · Pmid
i (t)

where qi (t) and Pmid
i (t) are the number of shares to sell and the mid-price for the security

i at the current time t. The value of the liquidated portfolio is equal to:

Vliquidated (q) =

n∑
i=1

∑
tk≥t

qi (tk) · P bid
i (tk)

where qi (tk) and P bid
i (tk) are the number of shares that were sold and the bid price for the

security i at the execution time tk. The effective cost is then the difference between V mid (t)
and V liquidated (t):

IS (q) = max
(
Vmid (q)− Vliquidated (q) , 0

)
(29)

The effective cost18 IS (q) is called by Perold (1988) the implementation shortfall, which
measures the difference in price between the time a portfolio manager makes an invest-
ment decision and the actual traded price. Therefore, Vmid (q) is the benchmark price,
Vliquidated (q) is the traded price and IS (q) is the total amount of slippage.

18Since Vliquidated (q) can be higher than Vmid (q), IS (q) is floored at zero. This situation occurs when
execution times tk are very different than the current time t and market prices have gone up — Pbid

i (tk) ≥
Pmid
i (t).
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4 Implementing the stress testing framework

In this section, we detail the general approach for implementing the liquidity stress testing
program on the asset side. We will see that it is based on three steps. First, we have to
correctly define the asset liquidity buckets (or asset liquidity classes). Each asset liquidity
bucket is associated with a unique unit transaction cost function and a given liquidation
policy. Second, we have to calibrate the parameters of the transaction cost function that
are related to a given liquidity bucket. Third, we must define the appropriate estimation
method of the security-specific parameters. Nevertheless, before presenting the three-step
approach, we must understand how stress testing impacts transaction costs. Does stress
testing modify the conventional transaction cost function? Does stress testing change the
liquidation policy? What parameters are impacted? This analysis will help to justify the
three-step approach of asset liquidity stress testing. Finally, the last part of this section
is dedicated to an issue that generally occurs when implementing the LST program. This
concerns the distortion of the redemption scenario on the asset side. In this article, we only
present general considerations, but this issue will be extensively studied in our third article
dedicated to liquidity stress testing in asset management (Roncalli et al., 2021).

4.1 How does stress testing impact transaction costs?

If we consider the two-regime model, we have:

ccc
( q
v

)
=


s + ϕ1σ

( q
v

)γ1
if q ≤ x̃ · v

s + ϕ1x̃
γ1−γ2σ

( q
v

)γ2
if x̃ · v ≤ q ≤ x+ · v

+∞ if q > x+ · v

The parameters of the transaction cost model are s , ϕ1, σ, γ1, γ2, x̃ and x+. The question
is whether we need two sets of parameters:

1.
(

snormal, ϕnormal
1 , σnormal, γnormal

1 , γnormal
2 , x̃normal, x+normal

)
for normal periods;

2.
(

sstress, ϕstress
1 , σstress, γstress1 , γstress2 , x̃stress, x+stressl

)
for stress periods.

This is equivalent having two different transaction cost functions: cccnormal (x) and cccstress (x).
This is not satisfactory because this means that we need to calibrate many parameters in
the stress period. Moreover, we do not distinguish between parameters that are related to
the security and parameters that are related to the liquidity bucket. Clearly, we can assume
that the parameters (ϕ1, γ1, γ2, x̃, x

+) are the same for all the assets belonging to the same
liquidity bucket. They can change, but at a low frequency, for instance because of the annual
calibration exercise or a change to the liquidation policy. The other parameters s and σ are
defined at the security level and can change daily19. Therefore, the unit transaction cost
function must be written as cccx (x; si,t, σi,t) because si,t and σi,t change with the security and
the time. We notice that this transaction cost function uses the participation ratio x, which
is the ratio between the order size q and the daily volume v. However, v is another related-
security parameter since it changes every day. This is not equivalent to selling 1 000 shares
in the market if the daily volume is 10 000 or 20 000. It follows that the unit transaction
cost function must be written as cccq (q; si,t, σi,t, vi,t) because si,t, σi,t and vi,t change with
the security and the time. The q-approach to the unit transaction cost ccc (q; si,t, σi,t, vi,t)
differs then from the x-approach to the unit transaction cost ccc (x; si,t, σi,t) because it has an
additional parameter, which is the daily volume.

19Indeed, the spread and the volatility of the security change every day because of market conditions.
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Figure 10: The x-approach of the unit transaction cost
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Figure 11: The q-approach of the unit transaction cost
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Figure 12: Impact of security-specific parameters in the x-approach
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Figure 13: Impact of security-specific parameters in the q-approach
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At first sight, it seems that introducing the volume is a subtle distinction. For instance,
we have reported in Figures 10 and 11 the functions cccx (x; si,t, σi,t) and cccq (q; si,t, σi,t, vi,t)
when the price impact is given by the SQRL model20, the security-related parameters are
equal to si,t = 4 bps, σi,t = 10% and vi,t = 100 000, and the liquidation policy is set
to x+ = 10%. The two figures have exactly the same shape and we have the following
correspondence:

cccq (q; si,t, σi,t, vi,t) := cccx

(
x =

q

vi,t
; si,t, σi,t

)
Let us now see the impact of changing the parameters si,t, σi,t and vi,t. In a stress period, we
generally observe an increase in the bid-ask spread and the asset volatility, and a reduction
in the daily volume that is traded in the market. In the top panel in Figures 12 and 13,
we show the difference between the two unit transaction costs when the bid-ask spread
increases from 4 bps to 7 bps. We observe that the functions cccx and cccq are both shifted up,
but they are the same. In the bottom/left panel, we report the impact when the volatility
in the stress period is twice the volatility in the normal period21. We notice that the higher
volatility has shifted the trading cost upward and it has also changed the shape of the unit
transaction cost function. But again, the two functions cccx and cccq are the same using the
equivalence relationship q = x · vi,t. We now consider the impact of the volume. Generally,
the daily volume is reduced in stress periods. In the bottom/right panel in Figures 12 and
13, we assume that the daily volume is equal to vi,t = 100 000 in the normal period and
vi,t = 70 000 in the stress period. Contrary to the parameters si,t and σi,t, we observe that
the two functions cccx and cccq are not equivalent in this case. Indeed, vi,t has no impact on cccx
whereas it completely changes the shape of cccq because the inflection point q̃ and the trading
limit q+ are different. It follows that the invariance with respect to x does not imply the
invariance with respect to q.

In the case of a liquidity stress program, we have to consider the combination of the three
effects. Results are reported in Figure 14. We recall that the normal period is defined by
si,t = 4 bps, σi,t = 10% and vi,t = 100 000, while the stress period is defined by si,t = 7 bps,
σi,t = 20% and vi,t = 70 000. During the stress period, the transaction cost is higher because
the spread is larger, the volatility has shifted the trading cost upward and the lower volume
has moved the inflection point to the left. This is the primary effect. For instance, selling
40 000 shares of the security costs 16.40 bps during the normal period and 38.70 bps during
the stress period (see Table 9). The secondary effect is on the liquidation profile, because
the trading limit q+ expressed as a number of shares is reduced in the stress period even if
the liquidation policy does not change. This is because the liquidation policy is defined in
terms of the maximum participation rate x+. For instance, 100 000 shares of the security
can be sold in one trading day in the normal period. This is no longer true in the stress
period, and the position is liquidated in two trading days (see Table 9). It follows that the
stress testing program has a negative, non-linear impact both on the transaction cost and
the liquidation profile. In Table 9, we have ccc (40 000) = 38.70 bps, ccc (80 000) = 57.39 bps
and ccc (100 000) = 53.53 bps. We observe that ccc (q) is not necessarily an increasing function
of q because of the liquidation policy. Indeed, in the last case, 70 000 shares are sold at 62.47
bps during the first trading day and 30 000 shares are sold at 32.68 bps during the second
trading day. The relative cost of selling 100 000 shares is lower than the relative cost of
selling 70 000 shares, because the price impact is not at its maximum during the second day.
In Figure 30 on page 79, we report the two functions, the relative (or unit) transaction cost
ccc (q) and the total transaction cost T C (q), by assuming that the price is equal to $1. We
notice that the maximum relative cost is equal to 62.47 bps and is reached when the number

20We assume that ϕ1 = 1 and x̃ = 5%.
21The annualized volatility σi,t increases from 10% to 20%.
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Figure 14: Comparing the unit transaction cost in the normal and stress periods
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of shares is a multiple of 70 000, which is the trading limit. Therefore, ccc (q) is not increasing
because of the averaging effect. Of course, this is not the case for the total transaction cost,
which is an increasing function of q.

Table 9: Computation of the unit transaction cost

Normal Stress Normal Stress Normal Stress Normal Stress

q 10 000 40 000 80 000 100 000

q (h)
10 000 10 000 40 000 40 000 80 000 70 000 100 000 70 000

10 000 30 000

s 4.00 7.00 4.00 7.00 4.00 7.00 4.00 7.00
7.00 7.00

πππ (q (h))
6.20 14.82 12.40 31.70 22.19 55.47 27.74 55.47

14.82 25.68

ccc (q (h))
10.20 21.82 16.40 38.70 26.19 62.47 31.74 62.47

21.82 32.68

ccc (q) 10.20 21.82 16.40 38.70 26.19 57.39 31.74 53.53

Remark 16 The previous analysis shows that we do not need a new transaction cost func-
tion for the stress period, because there is no reason for the functional form to change and
the impact of the security-specific parameters are sufficient to implement the asset liquidity
stress testing program.
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4.2 A three-step approach

As explained above, implementing an asset liquidity stress testing program involves three
steps. In the first step, we define liquidity buckets. The second step corresponds to the
estimation of the transaction cost function for a given liquidity bucket. Finally, the third
step consists in calibrating the security-specific parameters.

4.2.1 Liquidity bucketing

Table 10: An example of classification matrix of liquidity buckets

Level 1 Level 2 Level 3 Level 4 HQLA Class

Equity

Large cap
DM

Region
1

EM 1

Small cap
DM

Region
2

EM 2

Derivatives
Futures

Turnover
1

Options 2
Private 5

Fixed-income

Sovereign
DM

Region
1/2

EM 2/3
Municipal 2

Inflation-linked
DM

Region
1/2

EM 2/3

Corporate
IG

Currency
3

HY 4

Securitization

ABS

US/Non-US 2/3/4
CLO

CMBS
RMBS

Derivatives

Caps/floors

Turnover 1/2/3
Futures
Options
Swaps

CDS
Single-name

Turnover
3

Multi-name 2

Currency
G10 1

Others 1/2/3

Commodity
Agriculture

Grain & Oilseed 4
Livestock 4

Soft 4

Energy
Electricity 2

Gas 2
Oil 2

Metal
Gold 1

Industrial 2/4
Precious 2

Classification matrix A liquidity bucket is a set of homogenous securities such that they
share the same functional form of the unit transaction cost22. For instance, we may consider
that equities and bonds correspond to two liquidity buckets, meaning that we need two dif-
ferent functions. But we can also split equities between large cap and small cap equities.

22Most of the time, they also share the same liquidation policy.
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An example of matrix classification is provided in Table 10. There are several levels depend-
ing on the requirements of the asset manager and the confidence level on the calibration.
Generally, Level 2 is sufficiently granular and enough to implement a liquidity stress testing
program. For instance, it is extensively used by external providers of LST solutions (MSCI
LiquidityMetrics, Bloomberg Liquidity Assessment (LQA), StateStreet Liquidity Risk Solu-
tion, etc.). Nevertheless, the asset manager may wish to go beyond Level 2 and adopt Level
3 for some buckets. For example, it could make sense to distinguish the functional form for
DM and EM sovereign bonds. Level 4 is the ultimate level and differentiates securities by
region, currency or turnover23. For example, if we consider the DM large cap stocks, we may
split this category by region, e.g., North America, Eurozone, Japan and Europe-ex-EMU.
In the case of corporate IG bonds, one generally splits these securities by currency, e.g.,
USD IG bonds, EUR IG bonds, GBP IG bonds, etc. For derivatives, one may build two
categories depending on the turnover value, e.g., the most liquid contacts and the other
derivative products.

HQLA classes In this article, we focus on the transaction cost. The asset-liability man-
agement will be studied in the third part of our comprehensive research project on liquidity
risk in asset management (Roncalli et al., 2021). Nevertheless, we notice that the asset man-
ager must develop two asset liquidity classification matrices: liquidity buckets and HQLA
classes. The term HQLA refers to the liquidity coverage ratio (LCR) introduced in the Basel
III framework (BCBS, 2010, 2013a). An asset is considered to be a high-quality liquid asset
if it can be easily converted into cash. Therefore, the concept of HQLA is related to asset
quality and asset liquidity. It is obvious that the LST regulation is inspired by the liquidity
management regulation developed by the Basel Committee on Banking Supervision. For
instance, the redemption coverage ratio (RCR) for asset managers is related to the liquidity
coverage ratio for banks. According to ESMA (2020), the redemption coverage ratio is “a
measurement of the ability of a fund’s assets to meet funding obligations arising from the
liabilities side of the balance sheet, such as a redemption shock”. In Roncalli et al. (2021),
we will see that it is helpful to define another asset liquidity classification matrix that is
complementary to the previous liquidity buckets. This new classification matrix uses HQLA
classes, whose goal is to group assets by their relative liquidity risk. For instance, such asset
liquidity classification matrix is already used in the US with the Rule 22e-4(b) (Roncalli et
al., 2020, page 5), which considers four classes: (1) highly liquid investments, (2) moder-
ately liquid investments, (3) less liquid investments and (4) illiquid investments. Here is an
example based on five HQLA classes24:

• Tier 1: Sovereign bonds (EUR, USD, GBP, AUD, JPY, SEK, CAD and domestic
currency of the asset manager), large cap equities, specified currency pairs25, bond
futures, equity index futures, etc.

• Tier 2: Other IG sovereign bonds, municipal bonds, small cap equities, other IG
currency pairs, multi-name CDS, commodity futures (energy, precious metals, non-
ferrous metals), equity options, etc.

23The turnover is defined as “the gross value of all new deals entered into during a given period and is
measured in terms of the nominal or notional amount of the contracts. It provides a measure of market
activity and can also be seen as a rough proxy for market liquidity” (Bank for International Settlements,
2014).

24It is derived from the liquidity period buckets defined in the Basel III capital requirements for market
risk (BCBS, 2019).

25They correspond to the 20 most liquid currencies: USD, EUR, JPY, GBP, AUD, CAD, CHF, MXN,
CNY, NZD, RUB, HKD, SGD, TRY, KRW, SEK, ZAR, INR, NOK and BRL.
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• Tier 3: IG corporate bonds, HY sovereign bonds, HY currency pairs, single-name
CDS, etc.

• Tier 4: HY corporate bonds, other commodity futures, etc.

• Tier 5: Private equities, real estate, etc.

For derivatives on interest rates, we can map them with respect to sovereign bonds. For
instance, interest rate swaps on EUR, USD, GBP, AUD, JPY, SEK and CAD are assigned
to Tier 1, interest rate swaps on IG currencies are assigned to Tier 2, interest rate swaps on
HY currencies are assigned to Tier 3, etc. For securitization products, the best approach is
to classify them with respect to their external credit rating.

4.2.2 Defining the unit transaction cost function

We consider that the two-regime model is the appropriate function to estimate the trans-
action cost of a redemption scenario. Nevertheless, we introduce some slight modifications,
because the power-law model has been mainly investigated in the stock market. These
modifications are necessary when we consider fixed-income products and derivatives.

The econometric model We assume that Security i belongs the jth liquidity bucket LBj
and rewrite the two-regime model as follows26:

ccci (qi; si,t, σi,t, vi,t) = β
(s)
j si,t + β

(πππ)
j σi,tπππ

?
j (qi; vi,t) (30)

where:

πππ?j (qi; vi,t) =



(
qi
vi,t

)γ1,j
if qi ≤ q̃i,t(

q̃i,t
vi,t

)γ1,j ( qi
q̃i,t

)γ2,j
if q̃i,t ≤ qi ≤ q+i,t

+∞ if qi > q+i,t

(31)

The total transaction cost of selling qi shares is then equal to27:

T C (qi) = αiqi +Qiccci (qi; si,t, σi,t, vi,t)

Compared to the conventional two-regime model, we notice the introduction of two new

parameters: αi and β
(s)
j . For some securities (e.g., derivatives), we have to pay a fixed

cost for each share, which motivates the addition of the term αiqi. The introduction of the

scaling factor β
(s)
j is motivated because quoted bid-ask spreads are not always available for

some liquidity buckets LBj . In this case, we can use an empirical model for computing si,t.
From a theoretical point of view, we should have β

(s)
j = 1. This is the case for equities for

instance, but not necessarily the case for some fixed-income securities. The reason is that

asset managers do not necessarily face the same bid-ask spread costs. Therefore, β
(s)
j may

be less or greater than one.

26We have the following relationship: β
(πππ)
j = ϕ1. We also recall that σi,t corresponds to the daily volatility

in the transaction cost formula.
27In the case of a redemption scenario q = (q1, . . . , qn), we obtain:

T C (q) =

n∑
i=1

h+∑
h=1

1 {qi (h) > 0} · (αiqi (h) + qi (h)Piccci (qi; si,t, σi,t, vi,t))
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The model parameters The calibration of the functional form consists in estimating at

least four parameters: β
(s)
j , β

(πππ)
j , γ1,j and γ2,j . We can use the method of non-linear least

squares. But we generally prefer to consider a two-stage approach by first determining the
exponents γ1,j and γ2,j and then running a linear regression in order to obtain the OLS

estimates of β
(s)
j and β

(πππ)
j .

Remark 17 The parameters q̃i,t and q+i,t are particular. From a theoretical point of view,

they are equal to q̃i,t = x̃jvi,t and q+i,t = x+j vi,t, meaning that we have two other parameters x̃j
and x+j that are related to LBj. Nevertheless, for some liquidity buckets, the asset manager

may choose to define the trading limit q+i,t at the security level, meaning that we have q+i,t =

x+i vi,t. For instance, if we consider the category of DM sovereign bonds, trading limits may
be fixed by country and maturity. Therefore, the liquidation policy may be different if we
consider 10Y US, German, French and UK government bonds. When the inflection point
x̃j (or x̃i) is difficult to estimate, it can be a fraction of the trading limit x+j (or x+i ). The

most frequent cases are x̃j = x+j /2 (or x̃i = x+i /2), and x̃j = x+j (or x̃i = x+i ) if we prefer
to consider only one regime.

The security-specific parameters They correspond to the bid-ask spread si,t, the
volatility σi,t and the daily volume vi,t. Contrary to the model parameters, these parame-
ters28 depend on the time t. They are the key elements of the stress testing program, since
their values will differ in normal and stress regimes.

Concerning the parameter si,t, we can consider an average of the bid-ask spread observed
during a normal period (e.g., the last month) or we can use the daily quoted bid-ask spread
in the case of stocks. For some fixed-income securities (e.g., corporate bonds, securitization
products, etc.), quoted bid-ask spreads are not always available. In this case, we can use a
statistical model that depends on the characteristics of the security. A simple model may
distinguish bid-ask spreads by credit ratings29. A more sophisticated model may use intrinsic
bond features such as maturity, notional outstanding, coupon value, credit rating, industrial
sector, etc. (Ben Slimane and de Jong, 2017; Jurksas, 2018; Feldhütter and Poulsen, 2018;
Guo et al., 2019).

The parameter σi,t measures the volatility of the asset i at time t. In the normal regime,
σi,t is measured with the historical volatility. We can consider a long-term volatility using
a study period of three months, or we can consider a short-term estimator such as the
exponentially weighted moving average (EWMA) volatility, the two-week empirical volatility
or the GARCH volatility. In this last case, the volatility rapidly changes on a daily basis,
and we can observe jumps in the transaction cost for the same securities from one day to
the next. Therefore, we think that it is better to use a long-term estimator, in particular
because the stress regime will incorporate these abnormal high-volatility regimes. For some
securities, the daily volatility is not the most appropriate measure for measuring their risk.
Therefore, it may be convenient to define σi,t as a function of the security characteristics.
For instance, we show in Appendix B.3 on page 76 that the main component of a corporate
bond’s volatility is the duration-times-spread (or DTS) of the bond30.

The third security-specific parameter is the daily volume vi,t. As for the volatility, we
can use a short-term or a long-term measure. For instance, we can use the daily volume

28In some cases, they also include q̃i,t and q+i,t.
29In this case, we assume that the bid-ask spread decreases with the credit quality, implying that the

bid-ask spread of AAA-rated bonds is less than the bid-ask spread of BBB-rated bonds. Generally, credit
ratings are grouped in order to form three or four categories.

30See Section 5.2.3 on page 48.
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of the previous day. However, there is a consensus to use a longer period and to consider
the three-month average daily volume. Again, we can alternatively use a statistical model
when the data of daily volumes are not available. For instance, it can be a function of the
outstanding amount for bonds, the turnover for derivatives, etc.

The trading limit q+i,t has a particular status because it may be either a security-specific
parameter or a model parameter. When it is a security-specific parameter, the asset manager
defines q+i,t at a low frequency, for instance every year or when there is a market change for

trading the security i. However, the most frequent case is to consider q+i,t as a model

parameter: q+i,t = x+j vi,t. In this situation, the asset manager generally uses the traditional

rule of thumb x+j = LR+
j where LR+

j is the liquidation policy ratio of the liquidity bucket
LBj . A typical value is 10% in the case of the stock market.

4.2.3 Calibration of the risk parameters in the stress regime

According to Roncalli (2020), there are three main approaches to generate a stress scenario:
historical, macro-economic and probabilistic. However, in the case of asset management,
the first two categories are more relevant, because asset managers do not have the same
experience as banks in this domain, and data on transaction costs under stress periods are
scarce. In this case, it is better to implement the probabilistic approach using the method
of multiplicative factors.

As explained previously, the values of the security-specific parameters allow to distinguish
the normal period and the stress period. The model parameters do not change, meaning
that we use the same unit transaction cost function whatever the study period. It follows
that the risk parameters are the bid-ask spread, the volatility and the volume. Therefore,
asset liquidity stress testing leads to stressing the values of these three parameters.

Historical stress scenarios The underlying idea of historical stress testing is to define
the triple (sstressi , σstress

i , vstressi ) from the sample {(si,t, σi,t, vi,t) , t ∈ T stress} where T stress is
the stress period and then to compute the stress transaction cost function:

cccstressi (qi) := ccci
(
qi; sstressi , σstress

i , vstressi

)
(32)

For instance, we can consider the empirical mean or the empirical quantile31 at the confidence
level α (e.g., α = 99%). Since this method seems to be very simple, we face a drawback
because the triple (sstressi , σstress

i , vstressi ) does not necessarily occur at the same trading day.
A more coherent approach consists in computing the trading cost for all days that make up
the stress period and taking the supremum:

cccstressi (qi) := sup
t∈T stress

ccci (qi; si,t, σi,t, vi,t) (33)

Remark 18 An alternative approach is to implement the worst-case scenario. The un-
derlying idea is to consider one stress period or several stress periods and to consider the
worst-case value: swcs

i = maxt∈T stress si,t, σwcs
i = maxt∈T stress σi,t and vwcs

i = mint∈T stress vi,t.
By construction, we verify the relationship cccwcs

i (qi) ≥ cccstressi (qi).

Remark 19 According to ESMA (2020, page 12, §31), “historical scenarios for LST could
include the 2008-2010 global financial crisis or the 2010-2012 European debt crisis”.

31For the volume, we consider the empirical quantile 1− α.
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Conditional stress scenarios In the case of macro-economic (or conditional) stress test-
ing, the goal is to estimate the relationship between risk parameters and risk factors that
define a stress scenario, and then deduce the stress value of these risk parameters (Roncalli,
2020, page 909). Let pi be a parameter (si, σi or vi). First, we consider the linear factor
model:

pi,t = β0 +

m∑
k=1

βkFk,t + εi,t (34)

where εi,t ∼ N
(
0, σ2

εi

)
and (F1,t, . . . ,Fm,t) is the set of risk factors at time t. Then, the esti-

mates
(
β̂0, β̂1, . . . , β̂m

)
are deduced from the method of ordinary least squares or the quantile

regression. Finally, we translate the stress scenario on the risk factors (F stress
1 , . . . ,F stress

m )
into a stress scenario on the risk parameter:

pstressi = β̂0 +

m∑
k=1

β̂kF stress
k (35)

Remark 20 From a practical point of view, pooling the data for the same liquidity class
offers a more robust basis for estimating the coefficients (β0, β1, . . . , βm). This is why the
estimation may use the panel data analysis with fixed effects instead of the classic linear
regression.

Remark 21 Concerning risk factors, we can use those provided by the “Dodd-Frank Act
stress testing” (DFAST) that was developed by the Board of Governors of the Federal Reserve
System (Board of Governors of the Federal Reserve System, 2017). They concern activity,
interest rates, inflation and market prices of financial assets.

The method of multiplicative factors Conditional stress testing is the appropriate
approach for dealing with hypothetical stress scenarios. Nevertheless, it is not obvious to find
an empirical relationship between the risk factors (F1,t, . . . ,Fm,t) and the risk parameters
(si,t, σi,t, vi,t). This is why it is better to use the method of multiplicative factors to generate
hypothetical scenarios. This approach assumes that there is a relationship between the stress
parameter and its normal value:

pstressi = mpp
normal
i (36)

where mp is the multiplicative factor. Therefore, defining the hypothetical stress scenario is
equivalent to applying the multiplicative factors to the current values of the risk parameters:(

sstressi , σstress
i , vstressi

)
:= (mssi,t,mσσi,t,mvvi,t) (37)

In this approach, the hypothetical stress scenario is determined by the triple (ms,mσ,mv).

4.3 Measuring the portfolio distortion

If we consider the proportional rule q ∝ ω (vertical slicing approach), the portfolio distortion
is equal to zero, but we may face high liquidation costs because of some illiquid securities.
On the contrary, we can concentrate the liquidation on the most liquid securities (waterfall
approach), but there is a risk of a high portfolio distortion. Therefore, we have a trade-off
between the liquidation cost and the portfolio distortion.
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In Appendix B.2.3 on page 75, we show that the optimal portfolio liquidation can be
obtained using the following optimization problem:

q? (λ) = arg min
1

2
σ2 (q | ω) + λc (q | ω) (38)

s.t.

{
1>nw (ω − q) = 1
w− (ω − q) ≤ w (ω − q) ≤ w+ (ω − q)

where σ (q | ω) is the tracking error due to the redemption and c (q | ω) is the liquidation cost.
The portfolio distortion is then measured by the tracking error between the portfolio before
the redemption and the portfolio after the redemption. Using the optimization problem, we
can find liquidation portfolios that induce a lower transaction cost than the proportional
rule for the same redemption amount R. The downside is that they also generate a tracking
error. Let us illustrate this trade-off with the following example32:

Asset 1 2 3 4 5
ωi 20 000 20 000 18 000 9 000 8 000

Pi (in $) 80 100 130 120 90
σi (in %) 30 30 30 15 15

si (in bps) 10 10 10 5 5
vi 10 000 10 000 10 000 20 000 20 000

The transaction cost function is given by the SQRL model with ϕ1 = 1, x̃ = 5% and
x+ = 10%. In Figure 15, we report the efficient frontier of liquidation. We notice that the
proportional rule implies a transaction cost of 88 bps. In order to reduce this cost, we must
accept a tracking error risk. For instance, if we reduce the transaction cost to 70 bps, the
liquidation has generated 22 bps of tracking error risk.

Therefore, managing the asset liquidity risk is not only a question of transaction cost,
but also a question of portfolio management. Indeed, the fund manager may choose to
change the portfolio allocation in a stress period by selling the most liquid assets in order
to fulfill the redemptions. The fund manager may also choose to maintain an exposure on
some assets in the event of a liquidity crisis. In these situations, the proportional rule is
not optimal and depends on the investment constraints. For instance, the definition of the
optimal liquidation policy is not the same for active managers and passive managers. This
is why liquidity stress testing on the asset side is not only a top-down approach, but must
also be completed by a bottom-up approach.

Remark 22 The liquidation tracking error is the right measure for assessing the portfolio
distortion in the case of an equity portfolio:

D (q | ω) = σ (q | ω)

=

√
(w (ω)− w (ω − q))>Σ (w (ω)− w (ω − q))

where w (ω) is the vector of portfolio weights before the redemption, w (ω − q) is the vector
of portfolio weights after the redemption and Σ is the covariance matrix of stock returns.

32The correlation matrix of asset returns is equal to:

ρ =


100%
10% 100%
40% 70% 100%
50% 40% 80% 100%
30% 30% 50% 50% 100%


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Figure 15: Optimal portfolio liquidation
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For a bond portfolio, it can be replaced by the liquidation active risk, which measures the
active risk due to the redemption:

D (q | ω) = AR (q | ω)

The active risk can be measured with respect to the modified duration (MD) or the duration-
times-spread (DTS). We can also use a hybrid approach by considering the average of the
MD and DTS active risks:

AR (q | ω) =
1

2

nSector∑
j=1

 ∑
i∈Sectorj

(wi (ω − q)− wi (ω)) MDi

2

+

1

2

nSector∑
j=1

 ∑
i∈Sectorj

(wi (ω − q)− wi (ω)) DTSi

2

where nSector is the number of sectors, MDi is the modified duration of Bond i and DTSi is
the duration-times-spread of Bond i.

5 Application to stock and bond markets

The accuracy of the model and the calibration is an issue. Indeed, we may wonder which
accuracy we must target for a liquidity stress testing exercise, given that there are multiple
unknowns in a liquidity crisis. In particular, the LST model may be different from the
proprietary pre-trade model and less precise because of two main reasons. First, in a liquidity
stress testing exercise, we are more interested in the global figures at the fund manager level,
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the asset class level and the asset manager level, and less interested in the figures at the
portfolio (or security) level. Second, the model must be simple in order to identify the stress
parameters. This is why the LST market impact model used by the risk department may be
less accurate than the pre-trade model used by the trading desk, because the challenges are
very different. The framework presented above is not complex enough for order execution33,
but it is sufficiently flexible and accurate to give the right order of magnitude for liquidity
stress testing purposes.

In our analytical framework, we recall that the backbone of the LST exercise on the asset
side is given by Equations (30) and (31) on page 29, and Equation (32) on page 31:

1. for each liquidity bucket LBj , we have to estimate the parameters β
(s)
j , β

(πππ)
j , γ1,j and

γ2,j of the unit transaction cost model;

2. for each security i, we have to define the bid-ask spread si,t, the volatility σi,t and the
daily volume vi,t;

3. we also have to specify the inflection point q̃i,t = x̃jvi,t:

(a) we generally estimate x̃j at the level of the liquidity bucket;

(b) if q̃i,t = q+i,t, there is only one regime, implying that the parameters γ2,j and x̃j
vanish;

4. we then have to specify the trading limit q+i,t for each security; except for large cap

equities and some sovereign bonds, we use the proportional rule q+i,t = x+j vi,t, where

x+j is the maximum trading limit of the liquidity bucket LBj defined by the asset
manager’s risk department;

5. finally, we have to specify how the three security parameters are stressed: sstressi , σstress
i

and vstressi .

It is obvious that the key challenge of the LST calibration is data availability. Since
the LST model may include a lot of parameters, we suggest proceeding step by step. For
instance, as a first step, we may calibrate the model for all global equities. Then, we may
distinguish between large cap and small cap equities. Next, we may consider an LST model
region by region (e.g., US, Eurozone, UK, Japan, etc.), and so on. In the early stages, we
may also use expert judgement in order to fix some parameters, for instance γ2,j , x̃j , etc.
Some parameters are also difficult to observe. For instance, the bid-ask spread si,t and the
trading volume vi,t are not available for many bonds. This is why we use a model or an
approximation formula. For example, we can replace the trading volume vi,t by the notional
outstanding amount ni. The volume-based participation rate xi = v−1i,t qi is then replaced by

the outstanding-based participation rate yi = n−1i qi, implying that we have to calibrate the

scaling factor β
(πππ)
j in order to take into account this new parameterization. We can also use

the rule Vi,t = ξM i,t where ξ is the proportionality factor between volume and outstanding
amount. Moreover, the volatility parameter is not always pertinent in the case of bonds,
and it may be better to use the duration-times-spread (DTS).

Remark 23 In this section, we remove the reference to the liquidity bucket LBj in order to

reduce the amount of notation when it is possible. This concerns the four parameters β
(s)
j ,

33Nevertheless, Curato et al. (2017) tested different pre-trade order models and concluded that “a fully
satisfactory and practical model of market impact [...] seems to be still lacking”. As such, pre-trade models
are not yet completely accurate, except perhaps for large cap equities.

35



Liquidity Stress Testing in Asset Management

β
(πππ)
j , γ1,j and γ2,j. Moreover, we consider the calibration of the single-regime model as a

first step:

ccci (qi; si,t, σi,t, vi,t) = β(s)si,t + β(πππ)σi,t

(
qi
vi,t

)γ1
= β(s)si,t + β(πππ)σi,tx

γ1
i,t (39)

The second regime is calibrated during the second step as shown in Section 5.3 on page
50. We also assume that the annualized volatility is scaled by the factor 1/

√
260 in order to

represent a daily volatility measure. This helps to understand the magnitude of the parameter
β(πππ). By default, we can then consider that β(πππ) ≈ 1.

5.1 The case of stocks

5.1.1 Large cap equities

We consider the dataset described in Appendix C.1 on page 77. We filter the data in order
to keep only the stocks that belong to the MSCI USA and MSCI Europe indices. For
each observation i, we have the transaction cost ccci, the (end-of-day) bid-ask spread si, the
participation rate xi and the daily volatility σi. We first test a highly constrained statistical
model:

ccci = si + σi
√
xi + εi (40)

where εi ∼ N
(
0, σ2

ε

)
. We obtain R2 = 53.47% and R2

c = 15.87%. Since we observe a
large discrepancy between R2 and R2

c , we must be careful about the interpretation of the
statistical models. This means that the average cost c̄cc explains a significant part of the
trading cost, implying that the dispersion of trading costs is not very large.

In order to improve the explanatory power of the transaction cost function, we consider
two alternative models:

ccci = β(s)si + β(πππ)σi
√
xi + εi (41)

and:
ccci = β(s)si + β(πππ)σix

γ1
i + εi (42)

Model (41) can be seen as a special case of Model (42) when the exponent γ1 is set to 1/2.
Using the method of non-linear least squares, we estimate the parameters, and the results
are reported in Tables 11 and 12. We notice that the assumptions (H1) β(s) = 1 and (H2)
β(πππ) = 1 are both rejected. When the estimation of γ1 is not constrained, its optimal value
is equal to 0.5873, which is a little bit higher than 0.5. Nevertheless, we observe that the
explanatory powers are very close for the constrained and unconstrained models. The fact
that β(πππ) is larger for the unconstrained model (0.2970 versus 0.1898) indicates a bias in our
dataset. The model tends to overfit the lowest values of xi and not the highest value of xi,
which are certainly not sufficiently represented in the dataset.

Table 11: Non-linear least squares estimation of Model (41)

Parameter Estimate Stderr t-student p-value

β(s) 1.4465 0.0014 1049.9020 0.0000
β(πππ) 0.1898 0.0030 62.7720 0.0000
γ1 0.5000 0.0053 93.5817 0.0000

R2 = 98.41% R2
c = 97.12%
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Table 12: Non-linear least squares estimation of Model (42)

Parameter Estimate Stderr t-student p-value

β(s) 1.4468 0.0012 1213.2593 0.0000
β(πππ) 0.2970 0.0039 76.0394 0.0000
γ1 0.5873 0.0044 132.7093 0.0000

R2 = 98.81% R2
c = 97.84%

Figure 16: Histogram of estimated parameters

Table 13: Descriptive statistics of the estimates

Parameter Mean Median Min. Q (10%) Q (25%) Q (75%) Q (90%) Max.

β(s) 1.256 1.234 0.992 1.001 1.082 1.443 1.487 1.558
β(πππ) 0.434 0.448 −0.209 0.330 0.391 0.500 0.510 0.527
γ1 0.531 0.525 0.368 0.446 0.488 0.563 0.597 1.676
R2
c 0.557 0.681 0.000 0.000 0.094 0.916 0.961 0.992
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The figures taken by R2 and R2
c are extremely high and not realistic. This confirms that

there is a bias in our dataset. To better understand this issue, we estimate Model (42) for
each stock. Results are reported in Figure 16 and Table 13. On average, R2

c is equal to 55.7%,
which is far from the previous result. We observe that the model presents a high explanatory
power for some stocks and a low explanatory power for other stocks (bottom/right panel in
Figure 16). These results highlight the heterogeneity of the database. Therefore, estimating
a transaction cost model is not easy when mixing small and large values of transaction
costs and participation rates. Finally, we propose the following benchmark formula for the
transaction cost model:

ccci (qi; si,t, σi,t, vi,t) = 1.25 · si,t + 0.40 · σi,t
√
xi,t (43)

The price impact of this function is reported in Figure 17 in the case where the annualized
volatility of the stock return is equal to 30%.

Figure 17: Estimated price impact (in bps)
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Remark 24 We notice sensitivity of the results when we filter the data with respect to the
participation rate. For instance, we obtain:

ccci (qi; si,t, σi,t, vi,t) = 1.51 · si,t + 0.56 · σi,tx0.78i,t

when we only consider the observations with a participation rate larger than 0.5%.

5.1.2 Small cap equities

In this analysis, we consider all the stocks that belong to the MSCI USA, MSCI Europe,
MSCI USA Small Cap and MSCI Europe Small cap indices. This means that the dataset
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Figure 18: Relationship between the market capitalization and the parameter β(s)
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Figure 19: Relationship between the market capitalization and the parameter β(πππ)
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Figure 20: Ratio of the parameters β(s) and β(πππ) with respect to the values of the large cap
class

corresponds to large cap and small cap stocks. We run the linear regression (41) for the
different stocks and estimate the parameters β(s) and β(πππ). In Figures 18 and 19, we report
the scatterplot between the market capitalization34 and these parameters. On average,
the estimate of β(s) is higher when the market capitalization is low than when the market
capitalization is high. In a similar way, we observe more dispersion of the estimate β(πππ) for
small cap stocks. In order to verify that small cap stocks are riskier than large cap stocks,
we split the stock universe into three buckets according to market capitalization35. In Figure
20, we plot the ratio of the estimates β(s) and β(πππ) with the values obtained for the large
cap class. We notice that the two parameters are larger for small cap stocks, especially if
we consider the 99% quantile. To take into account this additional risk, we propose the
following benchmark formula for small cap stocks:

ccci (qi; si,t, σi,t, vi,t) = 1.40 · si,t + 0.50 · σi,t
√
xi,t (44)

If we compare this function with Equation (43), we notice that the parameter β(s) is equal
to 1.40 instead of 1.25, implying an additional fixed transaction cost of +12% for small cap
stocks. For the parameter β(πππ), the value is equal to 0.50 instead of 0.40, implying that the
price impact is 25% higher for small cap stocks.

Remark 25 A conservative approach consists in using the highest values of β(πππ). For in-
stance, we can define β(πππ) = 0.50 for large cap stocks and β(πππ) = 0.75 for small cap stocks.
In this case, the price impact is 50% higher for small cap stocks.

34In order to obtain an easy-to-read graph, the x-axis corresponds to the logarithm of the market capital-
ization, which is expressed in billions of US dollars.

35We use the following classification: +$10 bn for large caps, $2 – $10 bn for mid caps and −$2 bn for
small caps.
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5.2 The case of bonds

5.2.1 Defining the participation rate

The key variable of the transaction cost formula is the participation rate:

x =
q

v
=
Q

V

where q is the number of shares to trade and v is the daily trading volume (expressed in
number of shares). We can also formulate the participation rate with the nominal values
Q and V expressed in USD or EUR. In the case of bonds, the daily trading volume is
not observed. Moreover, this statistic is not always relevant because some bonds are traded
infrequently. To illustrate this phenomenon, we can use the zero-trading days statistic, which
is defined as the ratio between the number of days with zero trades and the total number
of trading days within the period. For instance, Hotchkiss and Jostova (2017) report that
79.4% of US IG bonds and 84.1% of US HY bonds are not traded monthly between January
1995 to December 1999. Dick-Nielsen et al. (2012) find that the median number of zero-
trading days was equal to 60.7% on a quarterly basis from Q4 2004 to Q2 2009 in the US
corporate bond market.

The turnover is a measure related to the trading volume. It is the ratio between the
nominal trading volume V and the market capitalization M of the security, or between the
trading volume v and the number of issued shares36 n :

τ =
V

M
=
v

n

In the case of bonds, M and n correspond to the outstanding amount and the number of
issued bonds. It follows that V = τM and:

x =
Q

τM
=

q

τn

We deduce that the volume-based participation rate x is related to the outstanding-based
participation rate y:

y =
q

n
The scaling factor between y and x is then exactly equal to the daily turnover ratio τ .

According to SIFMA (2021a), the daily turnover ratio is equal to 0.36% for US corporate
bonds in 2019. This figure is relatively stable since it is in the range 0.30%−0.36% between
2005 and 2019, except in 2008 where we observe a turnover of 0.26%. However, it was
highest before 2005. For instance, it was equal to 0.44% in 2002. If we make the distinction
between IG and HY bonds, it seems that the turnover ratio is greater for the latter. For
instance, we obtain a turnover ratio of 0.27% for US IG bonds and 0.65% for HY bonds.
In the case of US treasury securities, the five-year average daily turnover figure is 4.6% for
bills, 1.2% for TIPS and 3.5% for notes and bonds (SIFMA, 2021b).

In the case of European bonds, statistics are only available for government bonds. We
can classify the countries into three categories (AFME, 2020):

• The daily turnover ratio is above 1% and close to 1.5% for Germany, Spain and UK.

• The daily turnover ratio is between 0.5% and 1.0% for Belgium, France, Ireland, Italy,
Netherlands, and Portugal.

36The market capitalization is equal to the number of shares times the price: M = nP .
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• The daily turnover ratio is lower than 0.5% for Denmark and Greece.

These different figures show that the turnover ratio cannot be considered as constant. There-
fore, the single-regime transaction cost function becomes:

ccci (qi; si,t, σi,t, vi,t) = β(s)si,t + β(πππ)σi,t

(
qi

τ i,tni

)γ1
= β(s)si,t + β

(πππ)
i,t σi,ty

γ1
i (45)

where yi = n−1i qi is the outstanding-based participation rate and β
(πππ)
i,t is the scaling factor

of the price impact:

β
(πππ)
i,t =

β(πππ)

τ γ1i,t
(46)

Since the turnover ratio is time-varying and depends on the security, it follows that β
(πππ)
i,t

depends on the time t and the security i. Equation (45) for bonds is then less attractive
than Equation (39) for equities. However, we can make two assumptions:

1. the turnover ratio τ i,t is stable on long-run periods;

2. the turnover ratio τ i,t computed at the security level is not representative of its trading
activity.

We notice that turnover ratios are generally computed for a group of bonds, for instance
all German government bonds or all US corporate IG bonds. The reason lies again in the
fact that the daily turnover of a given bond may be equal to zero very often because of the
zero-trading days effect. Nevertheless, if one bond is not traded at all for a given period
(e.g., a day or a week), it does not mean that it is perfectly illiquid during this period. This
may be due to a very low supply or demand during this period. In a bullish market, if no
investors want to sell some bonds because there is strong demand and low supply, these
investors are rational to keep their bonds. Since buy-and-hold strategies dominate in bond
markets, trading a bond is a signal that the bond is not priced fairly. In this framework,
the fundamental price of a bond must change in order to observe a trading activity on this
bond. The situation in the stock market is different because the computation of the fair
price uses a more short-term window and buy-and-hold strategies do not dominate.

Therefore, we can assume that the turnover ratio is equal for the same family of bonds,
implying that:

ccci (qi; si,t, σi,t, ni) = β(s)si,t + β̃(πππ)σi,ty
γ1
i (47)

This equation is similar to Equation (39) for equities. Nevertheless, there is a difference
between the two scaling coefficients β(πππ) and β̃(πππ). The last one is more sensitive because
we have:

β̃(πππ) =
β(πππ)

τ γ1

The underlying idea is then to consider more granular liquidity buckets LBj for the bond
asset class than the equity asset class in order to be sure that the securities belonging to
the same liquidity bucket have a similar turnover ratio τ . In Figure 21, we report the
relationship between τ and β̃(πππ) for several values of the exponent γ1. When γ1 is low, the
impact of τ on β̃(πππ) is very low, meaning that we can consider β̃(πππ) as a constant. However,
when γ1 is high (greater than 0.25), the turnover may have a high impact and β̃(πππ) cannot
be assumed to be a constant. In the first case, the estimation of β(s) and β̃(πππ) is robust.
In the second case, the estimation of β̃(πππ) only makes sense if the turnover is comparable
between the securities of the liquidity bucket LBj .
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Figure 21: Relationship between the turnover τ and the scaling factor β̃(πππ)
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Remark 26 In Table 14, we report the values of the outstanding-based participation rate
with respect to the volume-based participation rate x and the daily turnover τ . For example,
if x = 30% and τ = 4%, we obtain a participation rate of 1.2%. While volume-based
participation rates are expressed in %, we conclude that outstanding-based participation rates
are better expressed in bps.

Table 14: Outstanding-based participation rate (in bps) with respect to x and τ

τ x (in %)
(in %) 0.01 0.05 0.10 0.50 1 5 10 20 30

0.5 0.005 0.025 0.05 0.25 0.5 2.5 5 10 15
1.0 0.010 0.050 0.10 0.50 1.0 5.0 10 20 30
2.0 0.020 0.100 0.20 1.00 2.0 10.0 20 40 60
4.0 0.040 0.200 0.40 2.00 4.0 20.0 40 80 120

5.2.2 Sovereign bonds

We consider a dataset of sovereign bond trades, whose description is given in Appendix
C.2 on page 77. For each observation i, we have the transaction cost ccci, the spread si,
the outstanding-based participation rate yi and the daily volatility σi. We run a two-stage
regression model: {

ln (ccci − si)− lnσi = cγ + γ1 ln yi + ui if ccci > si
ccci = cβ + β(s)si +D(πππ)

i β̃(πππ)σiy
γ1
i + vi

(48)
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Table 15: Two-stage estimation of the sovereign bond transaction cost model

Parameter Estimate Stderr t-student p-value
cγ 0.3004 0.0500 6.0096 0.0000
γ1 0.2037 0.0046 44.6050 0.0000
cβ 0.0002 0.0000 15.7270 0.0000
β(s) 0.9099 0.0109 83.3412 0.0000

β̃(πππ) 2.1521 0.0153 140.6059 0.0000

R2 = 39.87% R2
c = 28.94%

where cγ and cβ are two intercepts, and ui and vi are two residuals. Since the transaction cost

can be lower than the bid-ask spread37, we introduce the dummy variable D(πππ)
i = 1 {ccci > si}.

We estimate the exponent γ1 using the first linear regression model. Then, we estimate the
parameters β(s) and β̃(πππ) using the second linear regression by considering the OLS estimate
of γ1. Results are given in Table 15. We obtain γ1 = 0.2037 � 0.5, which is lower than
the standard value for equities. We also obtain β(s) = 0.9099 and β̃(πππ) = 2.1521. Curiously,
the value of β(s) is less than one. One possible explanation is that we use trades from a
big asset manager that may have a power to negotiate and the capacity to trade inside the
bid-ask spreads when the participation rate is low. Nevertheless, the explanatory power of
the model is relatively good. Indeed, we obtain R2 = 39.87% and R2

c = 28.94%.

Another approach for calibrating the model is to consider a grid-search process. In this
case, we estimate the linear regression:

ccci = cβ + β(s)si +D(πππ)
i β̃(πππ)σiy

γ1
i + vi

by considering several values of γ1. The optimal model corresponds then to the linear
regression that maximizes the coefficient of determination R2

c . Figure 22 illustrates the grid
search process. The optimal solution is reached for γ1 = 0.0925, and we obtain the results
given in Table 16. The explanatory power is close to the one calibrated with the two-stage
approach (30.56% versus 28.94%). However, the two calibrated models differ if we compare
the parameters γ1 and β̃(πππ). In order to understand the differences, we draw the estimated
price impact function in Figure 23 when the annualized volatility of the sovereign bond is
equal to 4.36%, which is the median volatility of our dataset. We conclude that the two
estimated functions are in fact very close38.

Table 16: Grid-search estimation of the sovereign bond transaction cost model

Parameter Estimate Stderr t-student p-value
γ1 0.0925
cβ 0.0000 0.0000 0.9309 0.3519
β(s) 0.9556 0.0107 89.4426 0.0000

β̃(πππ) 0.8482 0.0057 149.2147 0.0000

R2 = 41.24% R2
c = 30.56%

37We recall that the bond market is not an electronic market. Bid-ask spreads are generally declarative
and not computed with quoted bid and ask prices.

38See Figure 31 on page 81 for a logarithmic scale. We note that the grid-search estimate is more conser-
vative for very low participation rates.
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Figure 22: Parameter estimation using the grid-search approach
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Figure 23: Estimated price impact (in bps)
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Figure 24: Estimated price impact (in bps) with respect to the volume-based participation
rate
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In order to better understand the transaction cost function, we consider the parameteriza-
tion with respect to the volume-based participation rate by using the following relationship:

x =
y

τ

Results are given in Figure 24 for different assumptions of the daily turnover τ . Again, it is
very difficult to prefer one of the two estimated models. Therefore, we perform an implicit
analysis. Using the estimates of the parameters, we can compute the implied scaling factor:

β̂(πππ) = τ γ1 β̃(πππ)

for a given value of the daily turnover. We can also compute the implied turnover:

τ̂ =

(
β(πππ)

β̃(πππ)

) 1
γ1

for a given scaling factor β(πππ). If we analyze the results reported in Table 17, it is obvious
that the two-stage estimated model is more realistic than the grid-search estimated model.
Indeed, when β(πππ) is set to 0.80, the implicit turnover τ̂ is respectively equal to 0.78% and
53.13%. This second figure is not realistic if we compare it to the empirical statistics of
daily turnover.

The previous model can be easily improved by considering more liquidity buckets. For
instance, if we calibrate39 the model by issuer or currency, we obtain the results reported in
Tables 18 and 19. We observe that γ1 ∈ [0.05, 0.29]. We also notice that β(s) < 1 in most
cases, except for Italy, Spain and the US. Moreover, we observe a large dispersion of the
parameter β̃(πππ). In a similar way, we can propose a parameterization of β̃(πππ):

β̃(πππ) = f (F1, . . . ,Fm)

39We use the two-stage estimation approach.
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Table 17: Implicit analysis

β(πππ) 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10

τ̂ (in %)
Two-stage 0.03 0.08 0.19 0.40 0.78 1.38 2.32 3.71

Grid-search 0.03 0.33 2.37 12.54 53.13 189.81 592.91 1661.42
τ (in %) 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.50

β̂(πππ) Two-stage 0.70 0.73 0.76 0.78 0.80 0.82 0.84 0.91
Grid-search 0.51 0.52 0.53 0.54 0.54 0.55 0.55 0.58

where {F1, . . . ,Fm} are a set of bond characteristics (Ben Slimane and de Jong, 2017). For
instance, if we assume that the parameters γ1 and β(s) are the same for all the bonds, we
observe that β̃(πππ) is an increasing function of the credit spread, the duration and the issue
date (or the age of the bond).

Table 18: Two-stage estimation of the sovereign bond transaction cost model by issuer

Issuer γ1 cβ β(s) β̃(πππ) R2 (in %) R2
c (in %)

Austria 0.2255 −0.0002 0.8599 3.1385 54.1 48.4
Belgium 0.2482 −0.0000 0.8097 3.3974 44.0 32.5
EM 0.0519 0.0010 0.6828 0.4473 74.9 47.4
Finland 0.2894 0.0000 0.7002 4.0287 46.3 31.8
France 0.2138 0.0000 0.8794 3.0087 40.1 29.7
Germany 0.2415 0.0001 0.9811 2.7007 51.6 38.7
Ireland 0.2098 0.0001 0.5403 2.4097 43.9 26.7
Italy 0.1744 −0.0004 2.7385 1.9030 31.3 22.3
Japan 0.0657 0.0001 0.4700 0.6407 79.5 56.4
Netherlands 0.2320 −0.0000 0.7640 3.7709 46.9 34.2
Portugal 0.2318 0.0001 0.9250 3.0248 49.6 33.0
Spain 0.2185 0.0000 1.2547 2.0758 40.9 26.7
United Kingdom 0.2194 0.0003 0.6837 2.3367 51.2 30.3
USA 0.1252 0.0001 1.0626 1.2866 53.8 40.9

Table 19: Two-stage estimation of the sovereign bond transaction cost model by currency

Currency γ1 cβ β(s) β̃(πππ) R2 (in %) R2
c (in %)

EUR 0.2262 0.0000 1.0233 2.9122 35.2 25.7
GBP 0.2117 0.0002 1.3602 2.0878 48.8 30.2
JPY 0.0834 0.0001 0.4811 0.8553 75.6 50.9
USD 0.1408 0.0004 0.8430 1.0121 61.5 46.9

Remark 27 If we perform the linear regression without the intercept cβ, we obtain the
results reported in Tables 42 and 43 on page 81. We notice that the impact on the coefficients
β(s) and β̃(πππ) is weak.

The choice of the value of γ1 is not obvious. Finally, we decide to fix its value at 0.25.
Based on the results given in Table 20, β(s) = 1.00 seems to be a good choice. If we consider
the results given in Tables 42 and 43, β(s) = 1.25 is more appropriate. We have used end-of-
day bid-ask spreads, which are generally lower than intra-day bisk-ask spreads. Therefore,
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Table 20: Estimation of the sovereign bond transaction cost model when γ1 is set to 0.25

Parameter Estimate Stderr t-student p-value
γ1 0.2500
β(s) 1.0068 0.0103 97.9041 0.0000

β̃(πππ) 3.1365 0.0214 146.6939 0.0000

R2 = 38.35% R2
c = 27.15%

to reflect this risk, it may be more prudent to assume that β(s) = 1.25. Finally, we propose
the following benchmark formula for computing the transaction cost for sovereign bonds:

ccci (qi; si,t, σi,t, ni) = 1.25 · si,t + 3.00 · σi,ty0.25i (49)

If we compare this expression with Equation (43), we notice that the coefficient of the bid-
ask spread is the same and the price impact exponent is lower (0.25 versus 0.50 for stocks),
implying a lower liquidity risk.

5.2.3 Corporate bonds

We estimate Model (48) by using a dataset of corporate bond trades, whose description is
given in Appendix C.3 on page 77. Results are given in Table 21. We notice that all the
estimates are significant at the 99% confidence level and the explanatory power is relatively
high since we have R2 = 64.77% and R2

c = 41.66%.

Table 21: Two-stage estimation of the corporate bond transaction cost model with the
volatility risk measure

Parameter Estimate Stderr t-student p-value
cγ 0.3652 0.0338 10.8119 0.0000
γ1 0.1168 0.0045 26.1322 0.0000
cβ 0.0008 0.0000 77.4368 0.0000
β(s) 0.7623 0.0042 183.1617 0.0000

β̃(πππ) 0.9770 0.0044 224.1741 0.0000

R2 = 64.77% R2
c = 41.66%

The previous model’s good results should be considered cautiously because of two rea-
sons. The first one is that the explanatory power depends on the maturity of the bonds. For
instance, if we focus on short-term corporate bonds when the time-to-maturity is less than
two years, we obtain R2

c = 18.86%, which is low compared to the previous figure of 41.66%.
The second reason is that the volatility data is not always available. This is particularly
true when the age of corporate bonds is very low. On average, we do not have the value of
the historical volatility for 20.95% of observations. Moreover, we recall that the asset risk is
measured by the daily volatility σi in the model. However, we know that the price volatility
is not a good measure for measuring the risk of a bond when the bond is traded at a very
low frequency. This is why we observe a poor explanatory power when we consider bonds
that present a high ratio of zero-trading days or a low turnover. This is the case of some EM
corporate bonds or some mid-cap issuers. Therefore, we propose replacing the transaction
cost function (47) with the following function:

ccci (qi; si,t, σi,t, ni) = β(s)si,t + β̃(πππ)Ri,tyγ1i (50)
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where Ri,t is a better risk measure than the bond return volatility.

Table 22: Two-stage estimation of the corporate bond transaction cost model with the DTS
risk measure

Parameter Estimate Stderr t-student p-value
cγ −3.4023 0.0309 −109.9488 0.0000
γ1 0.0796 0.0041 19.5020 0.0000
cβ 0.0005 0.0000 55.7256 0.0000
β(s) 0.7153 0.0034 207.4743 0.0000

β̃(πππ) 0.0356 0.0001 300.5100 0.0000

R2 = 68.64% R2
c = 46.45%

In Appendix B.3 on page 76, we show that the corporate bond risk is a function of
the duration-times-spread or DTS. Therefore, we consider the following transaction cost
function:

ccci (qi; si,t, σi,t, ni) = β(s)si,t + β̃(πππ) DTSi,t y
γ1
i (51)

Using our dataset of bond rates, we estimate the parameters by using the two-stage method:{
ln (ccci − si)− ln DTSi = cγ + γ1 ln yi + ui if ccci > si
ccci = cβ + β(s)si +D(πππ)

i β̃(πππ) DTSi y
γ1
i + vi

(52)

Results are given in Table 22. We notice that the results are a little bit better since the
explanatory power R2

c is equal to 46.45% instead of 41.66%, and all estimated coefficients are
significant at the 99% confidence level. Moreover, if we focus on corporate bonds where the
time-to-maturity is less than two years, we obtain R2

c = 38.21% or an absolute improvement
of 20%! Nevertheless, the value of γ1 is equal to 0.0796, which is a low value. This result is
disappointing because the model does not depend on the participation rate when γ1 ≈ 0:

lim
γ1→0

ccci (qi; si,t, σi,t, ni) = β(s)si,t + β̃(πππ) DTSi,t

This type of model is not useful and realistic when performing liquidity stress testing since
the liquidity cost does not depend on the trade size!

The asset manager that provided the data uses a trading/dealing desk with specialized
bond traders in order to minimize trading impacts and transaction costs. In particular, we
observe that bond traders may be very active. For example, they may decide to not sell
or buy the bond if the transaction cost is high. In this case, with the agreement of the
fund manager, they can exchange the bond of an issuer with another bond of the same
issuer40, a bond of another issuer or a basket of bonds in order to reduce the transaction
cost. More generally, they execute a sell or buy order of a bond with a high participation
rate only if the trading impact is limited, implying that these big trades are opportunistic
and not systematic contrary to small and medium trades. In a similar way, bond traders
may know the inventory or the axis of the brokers and market markers. They can offer to
fund managers to initiate a trade because the trade impact will be limited or even because
the transaction cost is negative! We conclude that the behavior of bond traders is different
depending on whether the trade is small/medium or large.

Since the goal of bond traders is to limit sensitivity to high participation rates, it is
normal that we obtain a low value for the coefficient γ1. We decide to force the coefficient

40With other characteristics such as the maturity.
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Table 23: Estimation of the corporate bond transaction cost model when γ1 is set to 0.25

Parameter Estimate Stderr t-student p-value
γ1 0.2500
β(s) 0.8979 0.0028 323.2676 0.0000

β̃(πππ) 0.1131 0.0004 293.5226 0.0000

R2 = 66.24% R2
c = 42.35%

γ1 and to use the standard value of 0.25 that has been chosen for the sovereign bond model.
Based on the results reported in Table 23, we finally propose the following benchmark
formula to compute the transaction cost for corporate bonds:

ccci (qi; si,t, σi,t, ni) = 1.50 · si,t + 0.125 ·DTSi,t y
0.25
i (53)

If we compare this expression with Equation (49), we notice that the coefficient of the bid-ask
spread is larger (1.50 versus 1.25 for sovereign bonds), because of the larger uncertainty on
the quoted spreads in the corporate bond universe. Concerning the price impact exponent,
we use the same value.

Remark 28 In order to compare sovereign and corporate bonds, we can transform Equa-
tion (49) by considering the relationship between the DTS and the daily volatility. In our
sample41, the average ratio is equal to 30.3. We deduce that the equivalent transaction cost
formula based on the DTS measure for sovereign bonds is equal to:

ccci (qi; si,t, σi,t, ni) = 1.25 · si,t + 0.10 ·DTSi,t y
0.25
i (54)

We notice that the price impact is +25% higher for corporate bonds compared to sovereign
bonds.

5.3 Extension to the two-regime model

As explained in Section 2.1.3 on page 4, the asset manager generally imposes a trading
limit, because it is not possible to have a 100% participation rate. In Figure 25, we have
reported the estimated price impact for corporate bonds42. Panel (a) corresponds to the
estimated raw function. From a mathematical point of view, the price impact is defined even
if the participation rate is larger than 100%. In the case of stocks, a 150% volume-based
participation rate is plausible, but it corresponds to a very big trade. In the case of bonds,
a 150% outstanding-based participation rate is impossible, because this trade size is larger
than the issued size! As such, imposing a trading limit is a first modification to obtain a
realistic transaction cost function. However, as explained in Section 2.4 on page 9, this is
not sufficient. For instance, we use a trading limit of 300 bps in Panel (b). Beyond this
trading limit, the price impact is infinite. But if we trade exactly 300 bps, the price impact
is equal to 34 bps, and we obtain a concave price impact before this limit. It is better to
introduce a second regime (see Equation 17 on page 9), implying the following function for

41Figure 32 on page 82 reports the relationship between the volatility and the duration-times-spread of
sovereign bonds.

42we recall that β̃(πππ) = 0.125 and γ1 = 0.25 for corporate bonds.
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the price impact:

πππ (y) =


β̃(πππ) DTS yγ1 if y ≤ ỹ(
β̃(πππ) ỹ

γ1

ỹγ2

)
DTS yγ2 if ỹ ≤ y ≤ y+

+∞ if y > y+

In Panel (c), the inflection point ỹ and the power γ2 are set to 200 bps and 1. We have two
areas. The grey area indicates that the trading is prohibitive beyond 300 bps. The red area
indicates that the trading is penalized between 200 bps and 300 bps, because trading costs
are no longer concave, but convex. Of course, we can use a larger value of γ2 to penalize
this area of participation rates (for example γ2 = 2). Finally, we obtain the final transaction
cost function in Panel (d).

Figure 25: From the single-regime model to the two-regime model (corporate bonds)

The issue of using a two-regime model is the calibration of the second regime. However,
as said previously, it is unrealistic to believe that we can estimate the inflection point and
the parameter γ2 from data. Indeed, asset managers do not experience sufficient big trades
and do not have enough data to calibrate the second regime. We are in an uncertain area,
and it is better that these values are given by experts. For instance, we can use γ2 = 1 or
γ2 = 2 to force the convexity of the second regime. The inflection point can be equal to 3/4
or 2/3 of the trading limit.

5.4 Stress testing of security-specific parameters

In this section, we conduct a stress testing program in order to define the transaction cost
function in a stress regime. We first define the methodological framework based on the
extreme value theory (EVT). Then, we apply the EVT approach to the security-specific
parameters. Finally, we give the transaction cost function in the case of a LST program for
equity funds.
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5.4.1 Methodological aspects

Following Roncalli (2020, Chapters 12 and 14), we consider the extreme value theory for
performing stress testing. We summarize this framework below and provide the main re-
sults43.

The block maxima (BM) approach We note X ∼ F a continuous random variable
and Xi:n the ith order statistic in the sample44 {X1, . . . , Xn}. The maximum order statistic
is defined by Xn:n = max (X1, . . . , Xn). We can show that Fn:n (x) = F (x)

n
. If there

exist two constants an and bn and a non-degenerate distribution function G such that
limn→∞Fn:n (anx+ bn) = G (x), the Fisher-Tippett theorem tells us that G can only be a
Gumbel, Fréchet or Weibull probability distribution. In practice, these three distributions
are replaced by the GEV distribution GEV (µ, σ, ξ):

G (x;µ, σ, ξ) = exp

(
−
(

1 + ξ

(
x− µ
σ

))−1/ξ)

defined on the support ∆ =
{
x : 1 + ξσ−1 (x− µ) > 0

}
. The parameters θ = (µ, σ, ξ) can

be calibrated by maximizing the log-likelihood function45:

θ̂ = arg max
∑
t

−1

2
lnσ2 −

(
1 + ξ

ξ

)
ln

(
1 + ξ

(
xt − µ
σ

))
−
(

1 + ξ

(
xt − µ
σ

))−1/ξ
where xt is the observed maximum for the tth block maxima period46. By assuming that
the length of the block maxima period is equal to nBM trading days, the stress scenario
associated with the random variable X for a given return time T is equal to:

S (T ) = G−1
(
α; µ̂, σ̂, ξ̂

)
where:

α = 1− nBM

T

and G−1 is the quantile function:

G−1 (α;µ, σ, ξ) = µ− σ

ξ

(
1− (− lnα)

−ξ
)

Finally, we obtain:

S (T ) = µ̂− σ̂

ξ̂

(
1−

(
− ln

(
1− nBM

T

))−ξ̂)
(55)

43See Roncalli (2020, pages 753-777 and 904-909) for a detailed presentation of extreme value theory and
its application to stress testing and scenario analysis.

44We assume that the random variables are iid.
45We recall that the probability density function of the GEV distribution is equal to:

g (x;µ, σ, ξ) =
1

σ

(
1 + ξ

(
x− µ
σ

))−(1+ξ)/ξ

exp

(
−
(

1 + ξ

(
x− µ
σ

))−1/ξ
)

46The block maxima approach consists of dividing the observation period into non-overlapping periods of
fixed size and computing the maximum of each period.
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The peak over threshold (POT) approach In this approach, we are interested in
estimating the distribution of exceedance over a certain threshold u:

Fu(x) = Pr {X − u ≤ x | X > u}

where 0 ≤ x < x0 − u and x0 = sup {x ∈ R : F(x) < 1}. We notice that:

Fu(x) =
F(u+ x)− F(u)

1− F(u)

For very large u, Fu(x) follows a generalized Pareto distribution GPD (σ, ξ):

Fu(x) ≈ H (x;σ, ξ)

= 1−
(

1 +
ξx

σ

)−1/ξ
defined on the support ∆ =

{
x : 1 + ξσ−1x > 0

}
.

Remark 29 In fact, there is a strong link between the block maxima approach and the peak
over threshold method. Suppose that Xn:n ∼ GEV (µ, σ, ξ). Using the fact that Fn:n (x) =
F (x)

n
, we can show that (Roncalli, 2020, page 774):

Fu(x) ≈ 1−
(

1 +
ξx

σ + ξ (u− µ)

)−1/ξ
= H (x;σ + ξ (u− µ) , ξ)

Therefore, we obtain a duality between GEV and GPD distribution functions.

The parameters θ = (σ, ξ) are estimated by the method of maximum likelihood47 once
the threshold u0 is found. To determine u0, we use the mean residual life plot, which consists
in plotting u against the empirical mean ê (u) of the excess:

ê (u) =

∑n
i=1 (xi − u)

+∑n
i=1 1 {xi > u}

For any value u ≥ u0, we must verify that the mean residual life is a linear function of u
since we have:

E [X − u | X > u] =
σ + ξu

1− ξ
The threshold u0 is then found graphically.

To compute the stress scenario S (T ), we recall that:

Fu(x) =
F(u+ x)− F(u)

1− F(u)
≈ H (x)

where H ∼ GPD (σ, ξ). We deduce that:

F (x) = F (u) + (1− F (u)) · Fu (x− u)

≈ F (u) + (1− F (u)) ·H (x− u)

47The probability density function of the GPD distribution is equal to:

h (x;σ, ξ) =
1

σ

(
1 +

ξx

σ

)−(1+ξ)/ξ
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We consider a sample of size n. We note n′ as the number of observations whose value xi is
larger than the threshold u0. The non-parametric estimate of F (u0) is then equal to:

F̂ (u0) = 1− n′

n

Therefore, we obtain the following semi-parametric estimate of F (x) for x larger than u0:

F̂ (x) = F̂ (u0) +
(

1− F̂ (u0)
)
· Ĥ (x− u0)

=

(
1− n′

n

)
+
n′

n

1−

(
1 +

ξ̂ (x− u0)

σ̂

)−1/ξ̂
= 1− n′

n

(
1 +

ξ̂ (x− u0)

σ̂

)−1/ξ̂
We can interpret F̂ (x) as the historical estimate of the probability distribution tail that is
improved by the extreme value theory. We have48:

F̂−1 (α) = u0 +
σ̂

ξ̂

(( n
n′

(1− α)
)−ξ̂
− 1

)
We recall that the stress scenario of the random variable X associated with the return time
T is equal to S (T ) = F̂−1 (α) where α = 1− T −1. Finally, we deduce that:

S (T ) = u0 +
σ̂

ξ̂

(( n

n′T

)−ξ̂
− 1

)
(56)

5.4.2 Application to asset liquidity

We assume that the current date t is not a stress period. Let pi,t be a security-specific
parameter observed at time t. We would like to compute its stress value pstressi,t+h for a given
time horizon h. As explained in Section 4.2.3 on page 31, we can use a multiplicative shock:

pstressi,t+h = mp · pi,t
where mp is the multiplier factor. Depending on the nature of the parameter, we can also
use an additive shock:

pstressi,t+h = pi,t + ∆p

where ∆p is the additive factor. For instance, we can assume that a multiplicative shock
is relevant for the trading volume, but an additive shock is more appropriate for the credit

spread. Using a sample {pi,1, . . . , pi,T } of the parameter p, we compute mt =
pi,t+h
pi,t

or mt =

pi,t+h − pi,t. Then, we apply the previous EVT framework to the time series {m1, . . . ,mT }
and estimate the stress scenario mp or ∆p for a given return time T and a holding period
h. We notice that two periods are used to define the stress scenario. The time horizon h
indicates the frequency of the stress scenario. It is different to compute a daily, weekly or
monthly stress. The return time T indicates the severity of the stress scenario. If T is set
to one year, we observe this stress scenario every year on average. Again, it is different to
compute a stress with a return time of one year, two years or five years. In some sense, h
corresponds to the holding period whereas T measures the occurrence probability.

48The quantile function of the GPD distribution is equal to:

H−1 (α;σ, ξ) =
σ

ξ

(
(1− α)−ξ − 1

)
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Market risk We consider the VIX index from January 1990 to February 2021. We have
a sample of 7 850 observations. In Figure 26, we report the histogram of the VIX index and
the multiplicative factor mσ for three time horizons (one day, one week and one month).
The estimates of the GEV and GPD distributions are reported in Table 24. Using Equations
55 and 55, we deduce the stress scenarios associated with mσ and ∆σ for three time horizons
(1D, 1W and 1M) and five return times (6M, 1Y, 2Y, 5Y, 10Y and 50Y) in Tables 25 and
26.

Figure 26: Empirical distribution of the multiplicative factor mσ

Table 24: EVT estimates of the VIX index

GEV GPD

µ̂ σ̂ ξ̂ u0 σ̂ ξ̂

mσ

1D 1.103 0.049 0.299 1.229 0.096 0.138
1W 1.157 0.101 0.229 1.460 0.203 0.243
1M 1.138 0.185 0.238 1.960 0.425 0.410

∆σ

1D 1.739 1.036 0.424 4.943 2.560 0.238
1W 2.568 1.821 0.322 2.950 2.022 0.291
1M 2.277 3.179 0.201 16.830 11.522 0.008

How should we interpret these results? For example, the multiplicative weekly stress
scenario is equal to 1.50 if we consider a return time of one year and the BM/GEV approach.
For the additive scenario, we obtain a figure of 9.66%. This means that the volatility can
be multiplied by 1.50 or increased by 9.66% in one week, and we observe this event (or
an equivalent more severe event) every year. If we average the historical, BM/GEV and
POT/GPD approaches, the 2Y weekly stress scenario is respectively ×1.80 (multiplicative
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stress) and +17% (additive stress). If we focus on the monthly stress scenario, these figures
become ×2.66 and +29%.

Table 25: Multiplicative stress scenarios of the volatility

T (in years) 0.385 1/2 1 2 5 10 50
α (in %) 99.00 99.23 99.62 99.81 99.92 99.96 99.99

1D
Historical 1.23 1.25 1.32 1.43 1.50 1.57
BM/GEV 1.20 1.22 1.29 1.37 1.51 1.65 2.09

POT/GPD 1.23 1.25 1.33 1.41 1.52 1.62 1.90

1W
Historical 1.46 1.51 1.70 1.89 2.26 2.56
BM/GEV 1.34 1.38 1.50 1.64 1.86 2.06 2.66

POT/GPD 1.46 1.51 1.68 1.87 2.18 2.47 3.35

1M
Historical 1.96 2.05 2.44 2.99 4.23 5.08
BM/GEV 1.47 1.55 1.78 2.04 2.46 2.83 3.99

POT/GPD 1.96 2.08 2.45 2.96 3.88 4.86 8.53

Table 26: Additive stress scenarios of the volatility

T (in years) 0.385 1/2 1 2 5 10 50
α (in %) 99.00 99.23 99.62 99.81 99.92 99.96 99.99

1D
Historical 4.94 5.50 7.72 10.77 14.15 18.22
BM/GEV 3.91 4.51 6.42 8.94 13.59 18.50 37.34

POT/GPD 4.93 5.58 7.12 8.42 9.85 10.74 12.31

1W
Historical 9.49 10.88 14.50 20.43 24.56 27.97
BM/GEV 6.08 6.97 9.66 12.95 18.53 23.96 42.34

POT/GPD 9.57 10.65 13.92 17.92 24.61 30.99 51.86

1M
Historical 16.83 19.04 27.22 35.62 46.59 61.40
BM/GEV 7.84 9.13 12.74 16.80 23.03 28.54 44.68

POT/GPD 16.64 19.67 27.70 35.77 46.51 54.70 73.88

Trading volume Dealing with volatility is relatively simple thanks to the availability of
the VIX. In the case of the trading volume, we face more difficulties because there is not a
standard index that measures the market depth. This means that we must use the trading
volume of the stocks. From a robustness point of view, it is obvious that computing a stress
for each stock is not relevant. Therefore, given the times series of vi,t for several stocks, we
would like to compute a synthetic stress scenario that is valid for all stocks. The first idea
is to compute the multipliers for each stock and to pool all the data. The second idea is to
compute the multipliers for each date and to average the data by date. For the BM/GEV
approach, we compute the maximum for each block and each stock, and then we average
the maxima by block.

We consider the 30-day average daily volume of the stocks that make up49 the EuroStoxx
50 Index from January 2010 to December 2020. At each date, we compute the multiplica-
tive factor of the trading volume50. Then, we apply the previous pooling and averaging

49Since the composition changes from one month to another, we have 73 stocks during the period. Nev-
ertheless, at each date, we only consider the 50 stocks that are valid at the first trading day of the month.

50In fact, it is a reductive factor since the risk is not that daily volumes increase, but that they decrease.
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approaches to these data51. Results are given in Table 27. If we average the historical,
BM/GEV and POT/GPD approaches, the 2Y weekly and monthly stress scenarios are re-
spectively ×0.75 and ×0.48. This means that the daily volume is approximately reduced by
25% if we consider a one-week holding period and 50% if we consider a one-month holding
period.

Table 27: Multiplicative stress scenarios of the trading volume

T (in years) 0.385 1/2 1 2 5 10 50
α (in %) 99.00 99.23 99.62 99.81 99.92 99.96 99.99

Historical 0.93 0.93 0.91 0.88 0.84 0.80 0.71
BM/GEV Pooling 0.94 0.94 0.92 0.90 0.87 0.85 0.80

1W POT/GPD Pooling 0.95 0.94 0.91 0.88 0.84 0.80 0.70
BM/GEV Averaging 0.94 0.94 0.93 0.92 0.91 0.90 0.89

POT/GPD Averaging 0.93 0.92 0.92 0.91 0.91 0.90 0.89
Historical 0.79 0.77 0.72 0.67 0.61 0.55 0.48
BM/GEV Pooling 0.86 0.85 0.81 0.78 0.74 0.71 0.65

1W POT/GPD Pooling 0.87 0.83 0.75 0.68 0.61 0.56 0.47
BM/GEV Averaging 0.87 0.86 0.84 0.82 0.79 0.77 0.73

POT/GPD Averaging 0.82 0.81 0.79 0.78 0.76 0.75 0.72
Historical 0.50 0.48 0.41 0.36 0.31 0.29 0.26
BM/GEV Pooling 0.72 0.69 0.62 0.56 0.50 0.46 0.39

1M POT/GPD Pooling 0.40 0.38 0.36 0.33 0.31 0.29 0.26
BM/GEV Averaging 0.75 0.73 0.68 0.63 0.58 0.55 0.49

POT/GPD Averaging 0.62 0.60 0.57 0.54 0.50 0.48 0.42

Bid-ask spread We have seen that stress scenarios of the daily volume are more difficult
to compute than stress scenarios of the volatility. This issue is even more important with
bid-ask spreads because of the data quality. Ideally, we would like to obtain the weighted
average bid-ask spread adjusted by the volume for each stock and each trading day. However,
this information is not easily available or is expensive. This is why databases of asset
managers and trading platforms generally report the end-of-day bid-ask spread. However,
unlike the closing price, which corresponds to the security’s end-of-day transaction price
observed during a regular market trading period, there is no standard definition of the bid
and ask end-of-day prices. In particular, it is not obvious that the end-of-day bid-ask spread
corresponds to the last bid-ask spread observed during the regular market trading period.
Rather, our experience shows that the end-of-day bid-ask spread may be impacted by after-
hours trading orders. It seems that this synchronization bias between regular trading and
after-hours trading only impacts bid-ask spreads and not closing prices.

To illustrate this issue, we report the end-of-day bid-ask spread of the BNP Paribas
stock between January 2010 and December 2020 in Figure 27. During this period, the
stock’s median bid-ask spread is equal to 1.22 bps. This value is relatively low, however, we
observe many trading days where the bid-ask spread is larger than 20 bps52. Therefore, the
bid-ask spread may jump from 2 bps to 80 bps in one day. It is obvious that these extreme
variations are not realistic and no institutional investor has paid a bid-ask spread of 80
bps for the BNP Paribas stock during the period. These extreme points are not unusual

51We can also transform these stress scenarios on the trading volume into stress scenarios on the partici-
pation rate using the following formula: mx = 1

mv
. Results are reported in Table 44 on page 84.

52These observations correspond to the red bars in 27
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Figure 27: Historical bid-ask spread of BNP Paribas (in bps)
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as illustrated by the figures reported in Table 28. For the 50 stocks of the Eurostoxx 50
Index, we have computed the frequency at which the bid-ask spread is negative, the daily
multiplicative factor is greater than 5 or 10, and the absolute variation is greater than 25
and 100 bps. We consider two well-known data providers, FactSet and Bloomberg, that are
extensively used by equity portfolio managers. These results illustrate that reported bid
and ask end-of-day prices may deviate substantially from the closing price because of the
synchronization bias between regular and after-hours trading.

Table 28: Statistics of daily multiplicative and additive factors for the Eurostoxx 50 stocks
(2010 – 2020)

Frequency Factset Bloomberg
Pr {s < 0} 0.01% 0.24%
Pr {ms > 10} 0.77% 0.62%
Pr {ms > 5} 3.49% 3.12%
Pr {|∆s | > 100 bps} 0.63% 0.44%
Pr {|∆s | > 25 bps} 4.52% 3.05%

There are different ways to fix the previous problem. For example, we can consider a
ten-day moving average of daily bid-ask spreads for each stock. Or we can calculate the
weighted average of the bid-ask spreads for a given universe of stocks for each trading day.
The first case corresponds to a time-series average, whereas the second case corresponds
to a cross-section average. In both cases, the underlying idea is to apply a denoising filter
in order to estimate the average trend. A variant of the second method is to consider the
median bid-ask spread, and we apply this approach to the stocks of the Eurostoxx 50 Index
from January 2010 to December 2020. As in the case of the daily volume, we only consider
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the 50 stocks that are in the index at each trading day. The empirical distributions of ms
and ∆s are given in Figures 35 and 36 on page 83. Using these data, we calibrate the GEV
and GPD models, and we obtain the stress scenarios that are reported in Tables 29 and
30. If we average the historical, BM/GEV and POT/GPD approaches, the 2Y weekly stress
scenario is respectively ×3 (multiplicative stress) and +6.5 bps (additive stress).

Table 29: Multiplicative stress scenarios of the bid-ask spread

T (in years) 0.385 1/2 1 2 5 10 50
α (in %) 99.00 99.23 99.62 99.81 99.92 99.96 99.99

1D
Historical 1.66 1.73 1.93 2.40 2.75 7.11
BM/GEV 1.63 1.70 1.92 2.19 2.64 3.08 4.56

POT/GPD 1.65 1.71 1.94 2.32 3.24 4.49 11.70

1W
Historical 1.74 1.88 2.58 3.49 6.78 9.76
BM/GEV 1.67 1.76 2.05 2.41 3.07 3.75 6.27

POT/GPD 1.81 1.93 2.41 3.22 5.20 7.92 23.78

1M
Historical 2.54 2.92 5.12 6.65 9.62 9.98
BM/GEV 1.75 1.86 2.18 2.58 3.25 3.90 6.12

POT/GPD 2.40 2.64 3.52 4.85 7.72 11.21 27.90

Table 30: Additive stress scenarios of the bid-ask spread

T (in years) 0.385 1/2 1 2 5 10 50
α (in %) 99.00 99.23 99.62 99.81 99.92 99.96 99.99

1D
Historical 1.67 1.82 2.93 6.46 10.94 18.14
BM/GEV 1.42 1.63 2.28 3.14 4.71 6.37 12.70

POT/GPD 1.77 2.04 3.07 4.76 8.78 14.17 44.13

1W
Historical 1.98 2.37 5.19 10.10 12.36 19.11
BM/GEV 1.48 1.70 2.40 3.33 5.08 6.94 14.17

POT/GPD 2.19 2.57 3.91 6.00 10.63 16.43 45.46

1M
Historical 3.36 3.98 7.90 10.60 16.04 21.36
BM/GEV 1.51 1.77 2.62 3.82 6.20 8.91 20.46

POT/GPD 2.99 3.57 5.73 9.23 17.33 27.95 84.86

5.4.3 Definition of the stress transaction cost function

If we assume that x+ = 10%, x̃ =
2

3
x+ and γ2 = 1, the transaction cost function for large

cap stocks is equal to:

ccc (q; s , σ, v) =

 1.25 · s + 0.40 · σ
√
x if x ≤ 6.66%

1.25 · s + 1.55 · σx if 6.66% ≤ x ≤ 10%
+∞ if x > 10%

(57)

We consider the following stress scenario53:

• ∆s = 8 bps

• ∆σ = 20%

53This stress scenario is approximatively the 2Y weekly stress scenario.
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• mv = 0.75

We deduce that the transaction cost function in the stress regime becomes:

ccc (q; s , σ, v) =


1.25 · (s + 8 bps) + 0.40 ·

(
σ +

20%√
260

)√
4

3
x if x ≤ 5%

1.25 · (s + 8 bps) + 1.55 ·
(
σ +

20%√
260

)
4

3
x if 5% ≤ x ≤ 7.5%

+∞ if x > 7.5%

Table 31: Stress testing computation

x Case
Annualized volatility Liquidation

10% 15% 20% 25% 30% 35% 40% LT LS LS
ccc (q; s , σ, v) (in bps) one-day two-day

0.00%
Normal 5.0 5.0 5.0 5.0 5.0 5.0 5.0 1 0% 0%
Stress 15.0 15.0 15.0 15.0 15.0 15.0 15.0 1 0% 0%

0.01%
Normal 5.2 5.4 5.5 5.6 5.7 5.9 6.0 1 0% 0%
Stress 15.9 16.0 16.1 16.3 16.4 16.6 16.7 1 0% 0%

0.05%
Normal 5.6 5.8 6.1 6.4 6.7 6.9 7.2 1 0% 0%
Stress 16.9 17.2 17.6 17.9 18.2 18.5 18.8 1 0% 0%

0.10%
Normal 5.8 6.2 6.6 7.0 7.4 7.7 8.1 1 0% 0%
Stress 17.7 18.2 18.6 19.1 19.5 20.0 20.4 1 0% 0%

0.50%
Normal 6.8 7.6 8.5 9.4 10.3 11.1 12.0 1 0% 0%
Stress 21.1 22.1 23.1 24.1 25.1 26.1 27.2 1 0% 0%

1.00%
Normal 7.5 8.7 10.0 11.2 12.4 13.7 14.9 1 0% 0%
Stress 23.6 25.0 26.5 27.9 29.3 30.8 32.2 1 0% 0%

5.00%
Normal 10.5 13.3 16.1 18.9 21.6 24.4 27.2 1 0% 0%
Stress 34.2 37.4 40.6 43.8 47.0 50.2 53.4 1 0% 0%

7.50%
Normal 12.2 15.8 19.4 23.0 26.6 30.2 33.8 1 0% 0%
Stress 43.8 48.6 53.4 58.2 63.0 67.8 72.6 1 0% 0%

10.00%
Normal 14.6 19.4 24.2 29.0 33.8 38.6 43.4 1 0% 0%
Stress 40.0 44.2 48.4 52.5 56.7 60.9 65.0 2 2.5% 0%

20.00%
Normal 14.6 19.4 24.2 29.0 33.8 38.6 43.4 2 10% 0%
Stress 41.4 45.8 50.2 54.6 59.0 63.4 67.8 3 12.5% 5.5%

In Table 31, we have reported an example of stress testing applied to single stocks. For
each value of σ and x, we report the unit cost ccc (q; s , σ, v) in bps for the normal and stress
regimes. For instance, if the annualized volatility is equal to 30% and the liquidation of the
exposure on the single stock represents 0.05% of the normal daily volume, the transaction
cost is equal to 6.7 bps in the normal period. In the stress period, it increases to 18.2
bps, which is an increase of 171%. We have also reported the liquidation time, the one-day
liquidation shortfall and the two-day liquidation shortfall. Let us consider a 10% liquidation.
Because of the liquidity policy, we can liquidate 7.5% the first day and 2.5% the second day
during the stress period, whereas we can liquidate the full exposure during the normal
period. Therefore, the liquidation time, which is normally equal to one day, takes two days
in the stress period. If we consider a 20% liquidation, the (one-day) liquidation shortfall is
equal to 12.5% and the time-to-liquidation is equal to three days.
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6 Conclusion and discussion

Liquidity stress testing is a recent topic in asset management, which has given rise to numer-
ous publications from regulators (AMF, 2017; BaFin, 2017; ESMA, 2019, 2020; FSB, 2017;
IOSCO, 2015, 2018). In particular, LST has been mandatory in Europe since September
2020. However, contrary to banks, asset managers have less experience conducting a liquid-
ity stress testing program at the global portfolio level. Moreover, this topic has not been
extensively studied by the academic research. Therefore, we are in a trial-and-error period
where standard models are not really established, and asset managers use very different
approaches to assess liquidity stress tests. The aim of this research project is to propose
a simple LST approach that may become a benchmark for asset managers. In a previous
paper, we have already developed a framework for modeling the liability liquidity risk (Ron-
calli et al., 2020). In a forthcoming paper, we will propose several tools for managing the
asset-liability liquidity gap. In this paper, we focus on measuring the asset liquidity risk.

Contrary to the first and third parts of this project, there is a large body of academic
literature that has studied the estimation of transaction costs. In particular, we assume that
price impact verifies the power-law property. This means that there is a concave relationship
between the participation rate and the transaction cost. This model is appealing because (1)
it has been proposed by the academic research in the case of stocks, (2) it is simple and (3) it
is suitable for stress testing purposes. The first reason is important, because the model must
be approved by the regulators. The fact that this model has academic roots is therefore a
key element in terms of robustness and independent validation. The second reason is critical,
because a complex transaction cost model with many parameters and variables may be not
an industrial solution. This is particularly true if the calibration requires a large amount of
data. In the case of our model, we have three parameters (spread sensitivity, price impact
sensitivity and price impact exponent) and three explanatory variables (bid-ask spread,
volatility risk and participation rate). If the asset manager does not have enough data,
it can always use some internal experts to set the value of these parameters. Moreover,
we have seen that this model can also be applied to bonds with some minor corrections.
For instance, in the case of corporate bonds, it is better to use the DTS instead of the
volatility in order to measure the market risk. Finally, the third reason is convenient when
we perform stress testing programs. When applied to liquidity in asset management, they
can concern the liability side and/or the asset side (Brunnermeier and Pedersen, 2009). For
instance, the asset manager can assume that the liquidity crisis is due to funding issues. In
this case, the stress scenario could be a severe redemption scenario. But it can also assume
that the liquidity crisis is due to market issues. In this case, the stress scenario could be a
market liquidity crisis with a substantial reduction in trading volumes and an increase in
volatility risk. Therefore, it is important that a stress scenario of market liquidity risk could
be implemented, and not only a stress scenario of funding liquidity risk. Our transaction
cost model has three variables that can be stressed: the spread, the market risk and the
trading volume (or the market depth). We think that these three transmission channels are
enough to represent a market liquidity crisis. Nevertheless, the high concavity of the price
impact function when the exponent is smaller than 1/2 is not always relevant when we also
impose trading policy limits. Therefore, we propose an extension of the previous model by
considering two regimes with two power-law models where the second exponent takes a larger
value than the first exponent. In this case, the transaction cost function has two additional
parameters: the exponent of the second regime and the inflection point that separates the
first and second regimes. Therefore, we can obtain a price impact which is more convex in
the second regime when the participation rate is high. In terms of calibration, we propose
using expert estimates, implying no more data analysis.
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Table 32: Impact of size on the market impact

Size Stocks Bonds
Unit Total Average Unit Total Average
cost cost cost cost cost cost

×1 ×1.0 ×1.0 +0% ×1.0 ×1.0 +0%
×2 ×1.4 ×2.8 +41% ×1.2 ×2.4 +19%
×3 ×1.7 ×5.2 +73% ×1.3 ×3.9 +32%
×4 ×2.0 ×8.0 +100% ×1.4 ×5.7 +41%
×5 ×2.2 ×11 +124% ×1.5 ×7.5 +50%
×10 ×3.2 ×32 +216% ×1.8 ×18 +78%

We have proposed some formulas for large cap stocks, small cap stocks, sovereign bonds
and corporate bonds54. This is an especially challenging exercise. Indeed, the calibrated
formulas highly depend on the data55. Because we use a small sample on a particular period
and this sample is specific to an asset manager, the data are not representative of the industry
as a whole. Moreover, in the case of bonds, we have decided to exclude opportunistic trades
with a negative transaction cost. This is why these calibrated formulas must be adjusted
and validated by the asset manager before using them. On page 78, we have reported the
values of the unit transaction cost. These tables can be used as a preliminary pricing grid
that can be modified. For instance, the asset manager generally knows its average price
impact, and can then change the values of βs , βπππ and γ1 in order to retrieve its average
cost. This pricing grid can also be modified by the trading desk cell by cell in order to avoid
some unrealistic values56. One of the difficulties is to maintain some coherency properties
between the different cells of the pricing grid. In the case of the power-law model, if we
multiply the size by α, the unit cost is multiplied by αγ1 while the total cost is multiplied
by α1+γ1 . In Table 32, we have reported the impact of the size on the price impact when
we consider our benchmark formulas57. For example, we notice that if we multiply the size
of the trade by 5, the average cost due to the price impact increases by 124% for stocks
and 50% for bonds. Quantifying these size effects is essential in a liquidity stress testing
program because the risk in a stress period is mainly related to the size issue. And it is not
always obvious to obtain a pricing grid that satisfies some basic coherency properties.

As explained in the introduction, our motivation is to propose a framework that can help
asset managers to implement liquidity stress testing, which is a relative new topic for this
industry. We are aware that it is challenging, and the final model can appear too simple to
describe the transaction cost function of any stocks and bonds. This is true. For instance,
it is not precise enough to calibrate swing prices. However, we reiterate that the goal is
not to build a pre-trade system, but to implement a liquidity stress testing program from
an industrial viewpoint. In a liquidity crisis, there are so many unknowns and uncertainties
that a sophisticated model does not necessarily enable redemption issues to be managed
better. An LST model must be sufficiently realistic and pragmatic in order to give the
magnitude order of the stress severity and compare the different outcomes. We think that
the model proposed here has some appealing properties to become a benchmark for asset
managers. However, the road to obtain the same standardization that we encounter in the
banking regulation of market, credit or counterparty risk is long. More research in this area
from academics and professionals is needed.

54These formulas correspond to Equations (43), (44), (49) and (53).
55For example, using Reuters bid-ask spreads instead of Bloomberg bid-ask spreads dramatically changes

the parameter βs for sovereign and corporate bonds.
56For instance, a price impact of 198 bps may be considered too high when the outstanding-based partic-

ipation rate is set to 100 bps and the DTS of the corporate bond is equal to 5 000 bps.
57We recall that γ1 is equal to 0.5 for stocks and 0.25 for bonds.
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Appendix

A Glossary

Bid-ask spread

The bid-ask spread corresponds to the difference between the ask price and the bid price of
a security divided by its mid-point price. It is a component of the liquidity cost, since the
unit transaction cost depends on the half bid-ask spread. In this article, we use the term
bid-ask spread in place of half bid-ask spread, and we denote it by s .

Break-even redemption scenario

The break-even redemption scenario is the maximum amount expressed in dollars that can
be liquidated in one day:

Rbreak−even = sup {R : LS (R) = 0}
= inf {R : LR (R; 1) = 1}

HQLA class

The term HQLA refers to high-quality liquid asset. An HQLA class groups all the securities
that present the same ability to be converted into cash. An HQLA class is different than
a liquidity bucket, because this latter classification is used to define the unit transaction
cost function. For instance, it does not make sense that a bond and a stock share the same
transaction cost function. However, they can belong to the same HQLA class if they have
the same conversion property into cash.

Implementation shortfall

The implementation shortfall measures the total amount of slippage, that is the difference
in price between the time a portfolio manager makes an investment decision and the actual
traded price. Its mathematical expression is:

IS (q) = max
(
Vmid (q)− Vliquidated (q) , 0

)
where Vmid (q) is the current value of the redemption scenario and Vliquidated (q) is the value
of the liquidated portfolio.

Liquidation policy

See trading limit.

Liquidation ratio

The liquidation ratio LR (q;h) is the proportion of the redemption trade that is liquidated
after h trading days. We generally focus on daily and weekly liquidation ratios LR (q; 1)
and LR (q; 5). The liquidation ratio is also used to define the liquidation time (or time to
liquidation), which is an important measure for managing the liquidity risk. We also use
the notation LR (R;h) where R is the dollar amount of the redemption scenario.
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Liquidation shortfall

The liquidation shortfall is defined as the residual redemption that cannot be fulfilled after
one trading day. It is expressed as a percentage of the redemption value. If it is equal to
0%, this means that we can liquidate the redemption in one trading day. More generally,
its mathematical expression is:

LS (q) = 1− LR (q; 1)

where LR (q;h) is the liquidation ratio. If the redemption scenario is expressed in dollars,
we have:

LS (R) = 1− LR (R; 1)

Liquidation time

See time to liquidation.

Liquidity bucket

A liquidity bucket defines a set of securities that share the same liquidity properties. There-
fore, the securities have the same functional form of the unit transaction cost. Examples of
liquidity buckets are large cap DM stocks, small cap stocks, sovereign bonds, corporate IG
bonds, HY USD bonds, HY EUR bonds, EM bonds, energy commodities, soft commodities,
metal commodities, agricultural commodities, G10 currencies, EM currencies, REITS, etc.
The jth liquidity bucket is denoted by LBj .

Market impact

See price impact.

Outstanding-based participation rate

The outstanding-based participation rate is a normalization of the trade size:

y =
q

n
where q is the number of shares that have been sold and n is the number of issued shares. The
outstanding-based participation rate is a modification of the (volume-based) participation
rate, because the trading volume cannot always be computed for some securities, for example
bonds.

Participation rate

The participation rate is a normalization of the trade size:

x =
q

v

where q is the number of shares that have been sold and v is the trading volume. The
participation rate is used to define the unit transaction cost function ccc (x).

Price impact (unit)

The (unit) price impact π (q) is the part of the unit transaction cost function which is not
explained by the bid-ask spread.
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Price impact (total)

The price impact (or market impact) PI (q) is the part of the transaction cost due to the
trade size:

PI (q) = T C (q)− BAS (q)

We generally expect that it is an increasing function of the redemption size.

Pro-rata liquidation

The pro-rata liquidation uses the proportional rule, implying that each asset is liquidated
such that the structure of the portfolio is the same before and after the liquidation.

Redemption scenario

A redemption scenario q is defined by the vector (q1, . . . , qn) where qi is the number of shares
of security i to sell. This scenario can be expressed in dollars:

Q := (Q1, . . . , Qn) = (q1P1, . . . , qnPn)

where Pi is the price of security i. The redemption scenario may also be defined by its dollar
value R:

R = V (q) =

n∑
i=1

qiPi

If we consider a portfolio defined by its weights w = (w1, . . . , wn), we have:

wi =
qiPi
R

Time to liquidation

The time to liquidation is the inverse function of the liquidation ratio. It indicates the
minimum number of days that it is necessary to liquidate the proportion p of the redemption.
It is denoted by the function LT (q; p) or LT (R; p).

Trading limit

The trading limit q+ is the maximum number of shares that can be sold in one trading day.
It can be expressed using the maximum participation rate:

x+ =
q+

v

where v is the daily volume.

Transaction cost

The transaction cost of a redemption is made up of two components: the bid-ask spread
cost and the price impact cost. It is denoted by T C (q).
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Unit transaction cost

The unit transaction cost function ccc (x) is the percentage cost associated with the partici-
pation rate x for selling one share. It has two components:

ccc (x) = s + πππ (x)

where s is the half bid-ask spread and πππ (x) is the price impact. The total transaction cost
of selling q shares is then:

T C (q) = q · P · ccc (x) = Q · ccc (x)

where P is the security price and Q = q · P is the nominal selling volume expressed in $.

Valuation function

The valuation function V (ω) gives the dollar value of the portfolio ω = (ω1, . . . , ωn), which
is expressed in number of shares:

V (ω) =

n∑
i=1

ωiPi

The dollar value of the redemption is equal to R = V (q) =
∑n
i=1 qiPi, whereas the dollar

value of the portfolio becomes V (ω − q) =
∑n
i=1 (ωi − qi)Pi after the liquidation of the

redemption scenario.

Vertical slicing

See pro-rata liquidation.

Volume-based participation rate

See participation rate.

Waterfall liquidation

In this approach, the portfolio is liquidate by selling the most liquid assets first.
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B Mathematical results

B.1 Relationship between the two unit cost functions in the toy
model

We note:

ccc′ (x) =

 s ′ if x ≤ x̃
s ′ + α′ (x− x̃) if x̃ ≤ x < x+

+∞ if x ≥ x+
(58)

and:

ccc′′ (x) =

{
s ′′ + α′′x if x < x+

+∞ if x ≥ x+ (59)

If we assume that ccc′ (0) = ccc′′ (0) and ccc′ (x+) = ccc′′ (x+), we have the following relationships:

α′ = α′′
(

x+

x+ − x̃

)
and:

α′′ = α′
(
x+ − x̃
x+

)
However, most of the time, we do not know the two analytical functions. Let us assume
that the true model is given by ccc′ (x), whereas we estimate the approximated model ĉcc′′ (x),
which is defined by:

ĉcc′′ (x) =

{
ŝ ′′ + α̂′′x if x < x+

+∞ if x ≥ x+ (60)

The least square estimates ŝ ′′ and α̂′′ are equal to:

ŝ ′′ = c̄cc′ (x)− α̂′′x̄

and:

α̂′′ =

∫ x+

0
(x− x̄) (ccc′ (x)− c̄cc′ (x)) dx∫ x+

0
(x− x̄)

2
dx

where x̄ and c̄cc′ (x) are given by the mean value theorem:

x̄ =

∫ x+

0
xdx

x+
=
x+

2

and:

c̄cc′ (x) =

∫ x+

0
ccc′ (x) dx

x+
= s′ + α′

(x+ − x̃)
2

2x+

We deduce that the least square estimates are:

α̂′′ = α′

(
1 + 2

(
x̃

x+

)3

− 3

(
x̃

x+

)2
)

and:

ŝ′′ = s′ − α′x̃
(

1− x̃

x+

)2
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because we have: ∫ x+

0

(x− x̄)
2

dx =

∫ x+

0

(
x− x+

2

)2

dx

=
1

3

[(
x− x+

2

)3
]x+

0

=
2

3

(
x+

2

)3

and58:

(∗) =

∫ x+

0

(x− x̄) (ccc′ (x)− c̄′ (x)) dx

=

∫ x̃

0

(
x− x+

2

)(
s′ − s′ − α′ (x

+ − x̃)
2

2x+

)
dx+

∫ x+

x̃

(
x− x+

2

)(
s′ + α′ (x− x̃)− s′ − α′ (x

+ − x̃)
2

2x+

)
dx

= α′
∫ x+

x̃

(
x− x+

2

)
(x− x̃) dx− α′ (x

+ − x̃)
2

2x+

∫ x+

0

(
x− x+

2

)
dx

= α′
∫ x+

x̃

(
x2 −

(
2x̃+ x+

2

)
x+

x̃x+

2

)
dx

= α′
[
x3

3
−
(

2x̃+ x+

4

)
x2 +

x̃x+

2
x

]x+

x̃

= α′
(

1

12

(
x+
)3

+
1

6
x̃3 − 1

4
x̃2x+

)

In Figure 28, we illustrate how to transform one form of cost function into another form.
In practice, we do not know the models ccc′ (x) and ccc′′ (x). In fact, we estimate ĉcc′′ (x). The
right issue is then to transform ĉcc′′ (x) into ccc′ (x) or even ccc′′ (x). If we consider that the true
model is ccc′ (x), we have the following relationships:

α′ = α̂′′
(x+)

3(
(x+)

3
+ 2x̃3 − 3x̃2x+

) (61)

and:

α′′ = α̂′′
(x+)

2
(x+ − x̃)(

(x+)
3

+ 2x̃3 − 3x̃2x+
) (62)

If the true model is ccc′′ (x), we have α′′ = α̂′′.

Remark 30 In Figure 28, the parameters are equal to s ′ = 2 bps, α′ = 2%, x̃ = 2% and
x+ = 8%. We find that α′′ = 1.5%, while the OLS estimation gives ŝ ′′ = −0.25 bps and
α̂′′ = 1.6875%.

58We have: ∫ x+

0

(
x−

x+

2

)
dx = 0
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Figure 28: Equivalence of cost models
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B.2 Analytics of portfolio distortion

B.2.1 Portfolio weights

We recall that the asset structure of the fund is given by the portfolio ω = (ω1, . . . , ωn),
where ωi is the number of shares of security i. The portfolio weights are then equal to
w (ω) = (w1 (ω) , . . . , wn (ω)) where:

wi (ω) =
ωiPi∑n
j=1 ωjPj

(63)

and Pi is the current price of security i. Let q = (q1, . . . , qn) be the redemption scenario. It
follows that the redemption weights are given by:

wi (q) =
qiPi∑n
j=1 qjPj

(64)

After the liquidation of q, the new asset structure is equal to ω − q, and the new weights of
the portfolio become:

wi (ω − q) =
(ωi − qi)Pi∑n
j=1 (ωj − qj)Pj

(65)

We note V (ω) =
∑n
j=1 ωjPj and V (ω − q) =

∑n
j=1 (ωj − qj)Pj the dollar value of the

portfolios before and after the liquidation. We notice that V (ω)−V (ω − q) is exactly equal
to the dollar value R of the redemption:

R = V (ω)− V (ω − q) =

n∑
j=1

qjPj = V (q)
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We have:

wi (ω − q) =
ωiPi

V (ω)− R
− qiPi

V (ω)− R

=
V (ω)

V (ω)− R
wi (ω)− R

V (ω)− R
wi (q)

The new weights wi (ω − q) are a non-linear function of the portfolio weights wi (ω), the
redemption weights wi (q) and the redemption value R. Except in the case59 where qi ∝ ωi,
computing the new weights is not straightforward because they depend on R. From a
theoretical point of view, we have 0 ≤ qi ≤ ωi because the maximum we can sell is the
number of shares in the portfolio. One problem is that the weights wi (ω − q) are continuous
whereas the number of shares qi is an integer. This is why we prefer to consider the fuzzy
constraint −ε ≤ qi ≤ ωi + ε, where ε is typically equal to 1/2. Since

∑n
i=1 wi (ω − q) = 1, we

deduce that:

−ε ≤ qi ≤ ωi + ε⇔ −εi ≤ wi (ω − q) ≤ min

(
V (ω)

V (ω)− R
wi (ω) + εi, 1

)
where:

εi =
εPi

V (ω)− R

We note the two bounds w−i (ω − q) and w+
i (ω − q).

Remark 31 From Equation (65), we deduce that:

qi =
V (ω) (wi (ω)− wi (ω − q)) + Rwi (ω − q)

Pi

We can then compute qi thanks to the previous equation when we know the portfolios weights
wi (ω) and wi (ω − q).

B.2.2 Liquidation tracking error

We assume that the asset returns are normally distributed: R = (R1, . . . , Rn) ∼ N (0,Σ).
The random return of the portfolio ω is then equal to:

R (ω) =

∑n
i=1 ωiPiRi∑n
j=1 ωjPj

=

n∑
i=1

wi (ω)Ri

= wi (ω)
>
R

We conclude that:
R (ω) ∼ N

(
0, w (ω)

>
Σw (ω)

)
If we consider the portfolio ω − q, we have R (ω − q) = w (ω − q)>R and:(

R (ω)
R (ω − q)

)
∼ N

((
0
0

)
,

(
w (ω)

>
Σw (ω) w (ω)

>
Σw (ω − q)

w (ω − q)>Σw (ω) w (ω − q)>Σw (ω − q)

))
59We have wi (ω − q) = wi (ω).
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Let e be the tracking error between the portfolios before and after the redemption. We have:

e = R (ω − q)−R (ω)

= (w (ω)− w (ω − q))>R

The standard deviation of e is called the “liquidation tracking error” and is denoted by
σ (q | ω):

σ (q | ω) =

√
(w (ω)− w (ω − q))>Σ (w (ω)− w (ω − q))

This is our measure of the portfolio distortion D (q | ω).

Remark 32 In the case where the redemption scenario does not modify the asset structure,
we have qi = R ωi and:

w (ω − q) =
(ωi − qi)Pi∑n
j=1 (ωj − qj)Pj

=
(ωi − R ωi)Pi∑n
j=1 (ωj − R ωj)Pj

=
(1− R )ωiPi∑n
j=1 (1− R )ωjPj

= wi

We conclude that the portfolio distortion is equal to zero.

B.2.3 Optimal portfolio liquidation

Let c (q | ω) be the cost of liquidating the redemption scenario q. The problem of optimal
portfolio liquidation is:

q? = arg min
q

c (q | ω) (66)

s.t.

 σ (q | ω) ≤ D+

1>nw (ω − q) = 1
w− (ω − q) ≤ w (ω − q) ≤ w+ (ω − q)

where D+ ≥ 0 is the maximum portfolio distortion. If D+ = 0, the optimal solution is
q? ∝ ω. If D+ =∞, the distortion constraint vanishes, and the solution corresponds to the
redemption scenario that presents the lower liquidating cost.

We can rewrite the previous problem as follows:

q? (λ) = arg min
1

2
σ2 (q | ω) + λc (q | ω) (67)

s.t.

{
1>nw (ω − q) = 1
w− (ω − q) ≤ w (ω − q) ≤ w+ (ω − q)

This optimization problem is close to the γ-problem of mean-variance optimization (Roncalli,
2013). Nevertheless, this is not a QP problem, meaning that it is more complex to solve nu-
merically. The underlying idea is then to write q as a function of w (q) with qi = wi (q)R/Pi
and minimizing the objective function (67) with respect to w (q). Given a dollar value R of
redemption, the set of optimal portfolio liquidations is given by {q? (λ) , λ ∈ [0,∞)} and the
efficient frontier corresponds to the parametric curve (σ (q? (λ) | ω) , c (q? (λ) | ω)).
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B.3 Modeling the market risk of corporate bonds

Let si (t) be the credit spread of the ith bond issuer. Following Roncalli (2013, pages 223-
227), we assume that the credit spread follows a general diffusion process:

dsi (t) = σs
i si (t) dWi (t) (68)

where Wi (t) is a standard Brownian motion and σs
i is a volatility parameter. We note

Bi (t,Di) the zero-coupon bond price with maturity (or duration) Di of the ith issuer. If we
assume that the recovery date is equal to zero, we have:

d lnBi (t,Di) = −Di dr (t)−Di dsi (t)

where r (t) is the risk-free interest rate. If we assume that the credit spread is not correlated
with the risk-free interest rate, we deduce that:

σ2 (d lnBi (t,Di)) = D2
i σ

2 (dr (t)) +D2
i σ

2 (dsi (t))

= D2
i σ

2 (dr (t)) +D2
i (σs

i )
2
s2i (t) dt (69)

We deduce that the volatility of a bond has two parts: an interest rate component and a
credit spread component.

If the credit risk component is sufficiently large with respect to the interest rate compo-
nent, we obtain:

σ (d lnBi (t,Di)) ≈ σs
i ·Di · si (t)

= σs
i ·DTSi (t) (70)

where DTSi (t) is the duration-times-spread (or DTS) measure (Ben Dor et al., 2007).

76



Liquidity Stress Testing in Asset Management

C Data

We consider the asset liquidity data provided by Amundi Asset Management. The database
is called “Amundi Liquidity Lab” and contains the trades made by Amundi, but also other
information such as order books for equities and the price quotations for bonds60. We
filter the data in order to obtain a dataset with all the available characteristics, which are
representative of normal trading. For instance, we exclude bond trades that are initiated by
the counterparty. We also exclude equity trades that are made by an index fund manager
when the transaction concerns a basket of stocks that replicate the index. Indeed, in this
case, the transaction cost is generally related to the index, and does not necessarily reflect
the transaction cost of each component. Finally, we use a subset of the data.

C.1 Equities

We use a sample of trades for the stocks that belong to the MSCI USA, MSCI Europe,
MSCI USA Small Cap and MSCI Europe Small Cap indices. We also complete this database
with pre-trade transaction costs computed by the BECS system (Citigroup, 2020) when we
observe few observations for a given stock. Finally, we have a sample of 149 896 trades.

C.2 Sovereign bonds

We use a sample of 196 286 trades from January 2018 to December 2020 with the following
split by currency:

Currency EUR USD GBP JPY AUD CAD DKK
# of trades 129 904 34 965 7 354 6 831 4 277 3 586 1 409
Currency SEK MXN PLN MYR SGD ZAR Other

# of trades 915 882 794 592 581 458 3 738

and the following split by the issuer’s country:

Country IT FR US DE ES BE GB
# of trades 31 870 23 033 20 798 19 587 16 668 8 961 7 646

Country JP NL AT AU CA PT Other
# of trades 6 874 6 663 6 619 4 383 3 950 3 900 35 334

C.3 Corporate bonds

We use a sample of 258 153 trades from January 2018 to December 2020 with the following
split by currency:

Currency EUR USD GBP SGD AUD CAD CNH Other
# of trades 204 724 46 620 5 791 307 194 138 128 251

and the following split by the issuer’s country:

Country US FR NL GB DE IT LU
# of trades 49 410 48 257 34 782 21 710 16 358 16 037 12 150

Country ES SE IE MX AT BE Other
# of trades 11 797 5 857 4 775 3 799 3 289 3 173 27 709

60For each trade, we have at least three price quotations by three different banks and brokers.
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D Price impact of the benchmark formulas

Table 33: Price impact (in bps) for large cap stocks

σ x (in %)
(in %) 0.01 0.05 0.10 0.50 1 5 10 20 30

10 0.2 0.6 0.8 1.8 2 6 8 11 14
20 0.5 1.1 1.6 3.5 5 11 16 22 27
30 0.7 1.7 2.4 5.3 7 17 24 33 41
40 1.0 2.2 3.1 7.0 10 22 31 44 54
50 1.2 2.8 3.9 8.8 12 28 39 55 68
60 1.5 3.3 4.7 10.5 15 33 47 67 82

Table 34: Price impact (in bps) for small cap stocks

σ x (in %)
(in %) 0.01 0.05 0.10 0.50 1 5 10 20 30

10 0.3 0.7 1.0 2.2 3 7 10 14 17
20 0.6 1.4 2.0 4.4 6 14 20 28 34
30 0.9 2.1 2.9 6.6 9 21 29 42 51
40 1.2 2.8 3.9 8.8 12 28 39 55 68
50 1.6 3.5 4.9 11.0 16 35 49 69 85
60 1.9 4.2 5.9 13.2 19 42 59 83 102

Table 35: Price impact (in bps) for sovereign bonds

σ y (in bps)
(in %) 0.01 0.10 1 2.5 5 10 20 50 100

1 0.6 1.0 1.9 2.3 2.8 3 4 5 6
2 1.2 2.1 3.7 4.7 5.6 7 8 10 12
3 1.8 3.1 5.6 7.0 8.3 10 12 15 18
5 2.9 5.2 9.3 11.7 13.9 17 20 25 29

10 5.9 10.5 18.6 23.4 27.8 33 39 49 59
15 8.8 15.7 27.9 35.1 41.7 50 59 74 88
20 11.8 20.9 37.2 46.8 55.6 66 79 99 118

Table 36: Price impact (in bps) for corporate bonds

DTS y (in bps)
(in bps) 0.01 0.10 1 2.5 5 10 20 50 100

50 0.2 0.4 0.6 0.8 0.9 1 1 2 2
100 0.4 0.7 1.3 1.6 1.9 2 3 3 4
250 1.0 1.8 3.1 3.9 4.7 6 7 8 10
500 2.0 3.5 6.3 7.9 9.3 11 13 17 20

1 000 4.0 7.0 12.5 15.7 18.7 22 26 33 40
2 500 9.9 17.6 31.3 39.3 46.7 56 66 83 99
5 000 19.8 35.1 62.5 78.6 93.5 111 132 166 198
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Figure 29: Linear modeling of unit transaction costs
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Figure 30: Comparing unit and total transaction costs in normal and stress periods
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Table 37: Participation rate xi (h) (in %)

h Asset #1 Asset #2 Asset #3 Asset #4 Asset #5
1 10.00% 10.00% 10.00% 8.75% 0.90%
2 10.00% 10.00% 10.00%
3 10.00% 0.05% 10.00%
4 10.00% 7.75%
5 3.51%

Table 38: Notional Qi (h) (in $)

h Asset #1 Asset #2 Asset #3 Asset #4 Asset #5
1 89 000 102 000 13 400 20 825 10 602
2 89 000 102 000 13 400
3 89 000 510 13 400
4 89 000 10 385
5 31 239

Table 39: Bid-ask spread cost (in $)

h Asset #1 Asset #2 Asset #3 Asset #4 Asset #5 Total
1 35.60 40.80 6.70 10.41 5.30 98.81
2 35.60 40.80 6.70 83.10
3 35.60 6.70 42.50
4 35.60 5.19 40.79
5 12.50 12.50

Total 154.90 81.80 25.29 10.41 5.30 277.71

Table 40: Price impact cost (in $)

h Asset #1 Asset #2 Asset #3 Asset #4 Asset #5 Total
1 617.10 565.79 66.90 151.62 12.48 1 413.89
2 617.10 565.79 66.90 1 249.80
3 617.10 0.14 66.90 684.14
4 617.10 40.18 657.28
5 90.74 90.74

Total 2 559.16 1 131.73 240.87 151.62 12.48 4 095.85

Table 41: Transaction cost (in $)

h Asset #1 Asset #2 Asset #3 Asset #4 Asset #5 Total
1 652.70 606.59 73.60 162.03 17.78 1 512.70
2 652.70 606.59 73.60 1 332.90
3 652.70 0.35 73.60 726.65
4 652.70 45.37 698.08
5 103.24 103.24

Total 2 714.05 1 213.53 266.16 162.03 17.78 4 373.55
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Figure 31: Estimated price impact (in bps) — logarithmic scale
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Table 42: Two-stage estimation of the sovereign bond transaction cost model without the
intercept by issuer

Issuer γ1 β(s) β̃(πππ) R2 (in %) R2
c (in %)

Austria 0.2255 0.8023 3.0845 53.9 48.2
Belgium 0.2482 0.7789 3.3738 44.0 32.5
EM 0.0519 0.9158 0.4746 73.6 44.7
Finland 0.2894 0.7114 4.0416 46.3 31.8
France 0.2138 0.8942 3.0148 40.1 29.7
Germany 0.2415 1.0413 2.7838 51.5 38.5
Ireland 0.2098 0.6600 2.4977 43.8 26.4
Italy 0.1744 2.4706 1.7640 31.0 22.0
Japan 0.0657 0.5635 0.7315 78.0 53.4
Netherlands 0.2320 0.7219 3.7355 46.9 34.2
Portugal 0.2318 0.9693 3.0639 49.6 33.0
Spain 0.2185 1.3000 2.0990 40.8 26.7
United Kingdom 0.2194 0.9739 2.6262 49.9 28.5
USA 0.1252 1.1055 1.3395 53.6 40.7

Table 43: Two-stage estimation of the sovereign bond transaction cost model without the
intercept by currency

Currency γ1 β(s) β̃(πππ) R2 (in %) R2
c (in %)

EUR 0.2262 1.0428 2.9347 35.2 25.7
GBP 0.2117 1.5328 2.2890 48.3 29.5
JPY 0.0834 0.5744 0.9771 74.2 48.2
USD 0.1408 0.9502 1.0906 60.4 45.4
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Figure 32: Relationship between volatility and duration-times-spread (sovereign bonds)
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Figure 33: Empirical distribution of the additive factor ∆σ
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Figure 34: Empirical distribution of the multiplicative factor mv

Figure 35: Empirical distribution of the multiplicative factor ms
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Figure 36: Empirical distribution of the additive factor ∆s

Table 44: Stress scenarios of the participation rate

T (in years) 0.385 1/2 1 2 5 10 50
α (in %) 99.00 99.23 99.62 99.81 99.92 99.96 99.99

Empirical 1.26 1.30 1.39 1.49 1.64 1.81 2.07
BM/GEV Pooling 1.16 1.18 1.23 1.28 1.35 1.40 1.53

1W POT/GPD Pooling 1.15 1.20 1.33 1.46 1.64 1.78 2.12
BM/GEV Averaging 1.14 1.16 1.19 1.22 1.27 1.30 1.37

POT/GPD Averaging 1.23 1.24 1.26 1.28 1.31 1.34 1.39
Empirical 1.99 2.10 2.45 2.81 3.27 3.49 3.79
BM/GEV Pooling 1.39 1.45 1.61 1.78 1.99 2.15 2.55

1M POT/GPD Pooling 2.53 2.60 2.80 2.99 3.25 3.45 3.90
BM/GEV Averaging 1.34 1.38 1.48 1.58 1.71 1.81 2.04

POT/GPD Averaging 1.62 1.65 1.75 1.85 1.98 2.10 2.38
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