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Abstract

Stock-bond correlation is an important component of portfolio allocation. It is
widely used by institutional investors to determine strategic asset allocation, and is
carefully monitored by multi-asset fund managers to implement tactical asset alloca-
tion. Over the past 20 years, the correlation between stock and bond returns in the US
has been negative, while it was largely positive prior to the dot-com crisis. Investors
currently believe that a negative stock-bond correlation is more beneficial than a posi-
tive stock-bond correlation because it reduces the risk of a balanced portfolio and limits
drawdowns during periods of equity market distress.

In this study, we provide an overview of stock-bond correlation modeling. In the
first part, we present several theoretical models related to the comovement of stock
and bond returns. We distinguish between performance and hedging assets and show
that negative correlation implies a negative bond risk premium due to the covariance
risk premium component. In contrast, the payoff approach can explain that bonds
can be both performance and hedging assets. In addition, a good understanding of the
stock-bond correlation requires an assessment of the relationship between the aggregate
stock-bond correlation at the portfolio level and the individual stock-bond correlation
at the asset level. Macroeconomic models are also useful in interpreting the sign of the
stock-bond correlation. They can be divided into three categories: inflation-centric,
real-centric, and inflation-growth based.

The second part presents the empirical results. We find that the joint dynamics of
stock and bond returns differ across countries. The negative stock-bond correlation is
mainly associated with the North American market and the European market before
the European debt crisis. When sovereign credit risk is a concern, we generally observe
a positive stock-bond correlation. However, even in the US, we cannot speak of a
unique stock-bond correlation, as the level depends strongly on the composition of the
equity portfolio. We also confirm the influence of the inflation factor, but the results
for the growth factor are not robust. Finally, we show that the stock-bond correlation
is mainly explained by the extreme market regimes, since the stock-bond correlation
can be assumed to be zero in normal market regimes.
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1 Introduction

Asset correlation, along with expected return and volatility, is one of the key elements of
portfolio optimization. It is therefore closely related to the concept of diversification. Among
the various asset correlations, one is of primary interest: the stock-bond correlation. This is
the linear (or Pearson) correlation between stock and bond returns. One of the big questions
about the stock-bond correlation is its sign. Is it negative or positive? Until the beginning of
this century, investors believed that the natural rule was a positive correlation. This is easily
explained by valuation models because the present value of both stock and bond cash flows
are similarly affected by changes in discount rates. Therefore, when interest rates fall (or
rise), the prices of stocks and bonds rise (or fall), creating a positive covariance between stock
and bond returns. A break is observed during the dot-com cycle, and the years 2000-2019 are
associated in the minds of many investors with a negative stock-bond correlation. During
these periods, investors believed that negative correlation was the natural rule. However,
this new normal is being challenged as recent years have shown that both stocks and bonds
can suffer at the same time. As a result, the estimated correlation has generally been positive
over the past four years. The fear that the negative regime will disappear and lead to a
regime of positive correlation has captured some investors, which explains the great debate
on this parameter in the financial community.

To answer the question of whether the stock-bond correlation must be positive or nega-
tive, it is important to define what we mean by stock-bond correlation. In many studies, the
concept of stock-bond correlation is generally not well defined. First, it is the correlation
between the returns of long-duration government bonds and the returns of the country’s
stock market. Typically, the US stock-bond correlation refers to the correlation between the
10-year US Treasury bond and the S&P 500 Index. It is important to note that bond returns
are calculated using a given maturity, while stock returns are calculated using a proxy for
the market portfolio of large-cap stocks. The choice of 10 years is somewhat arbitrary, as we
could use a shorter maturity, say 7 years, but the duration of the bond must be sufficiently
long. When applying to other countries or regions, we generally use the same approach, tak-
ing into account local currency yields and calculating the stock-bond correlation from the
perspective of local investors. Otherwise, it will be biased by currency risk and may reflect
the dependence of equity and bond markets on the US dollar. Another important choice is
the statistical method used to estimate the stock-bond correlation. In particular, we need
to distinguish between short-term and long-term stock-bond correlations. In this paper, we
refer to different time concepts. For the sake of clarity, we use the following definitions:

• The frequency or time frequency is the period used to calculate a given quantity,
typically asset returns. A short-term stock-bond correlation is a correlation between
stock and bond returns calculated at a short frequency, typically daily, weekly or
monthly. A long-term stock-bond correlation is based on a longer time frequency, such
as the correlation between annual, three-year or five-year returns.

• The time horizon refers to the period of analysis, and we distinguish between short-run
and long-run analysis. Short-run analysis covers a few weeks or months, less than a
year. Long-run analysis looks at a long period of time, such as ten, twenty, or thirty
years. Medium-run analysis is not well defined (Blanchard, 1997), but can be thought
of as the time period in the middle, and mainly concerns one- and two-year dynamics.

• The final time scale is the rolling window used to estimate a statistic. For example, we
typically use a four-year rolling window to estimate the stock-bond correlation with
monthly returns. This means that the estimator is based on 48 monthly observations.
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The correlation between stocks and bonds has been extensively studied in the academic
literature, with research tracing the influence of current valuation models, such as those
developed by Shiller, on the movements of both stocks and bonds (Shiller, 1982; Barsky,
1986; Campbell and Shiller, 1988; Shiller and Beltratti, 1992). But the real turning point is
the release of the seminal and unpublished paper by Li (2002). For this author, uncertainty
about expected inflation (or inflation risk) is a more important factor than unexpected infla-
tion and real interest rates in understanding the stock-bond correlation. Another important
publication is Ilmanen (2003), who investigated why the stock-bond correlation can change
sign and found that growth, inflation and volatility are the three most important factors.
Other economic factors will be explored later such as monetary policy or the demand for
cash. Uncertainties about growth and inflation continue to be seen as the primary channels
linking the economy to stock and bond comovements, but it is too simplistic to reduce the
correlation between stocks and bonds to a simple pass-through mechanism from the economy
to the financial market. The concept of stock-bond correlation is more complex because it
has many implications for investors’ views. For example, it is related to diversification and
thus to the implied risk premia priced in by the market. A negative stock-bond correlation is
associated with a lower, and often negative, bond risk premium. In this context, bonds are
seen as a hedge for equity exposure. At the same time, bonds are a source of carry. Does this
mean that investors do not use bonds as a carry asset when the correlation between stocks
and bonds is negative? Certainly not, otherwise the cost of hedging would be too high. This
question is related to an important stylized fact. In the US, the stock-bond correlation tends
to be positive when interest rates are high. This is also the case in many countries with high
credit risk. This may imply that a negative stock-bond correlation reflects flight-to-quality
episodes, i.e. the behavior of investors during periods of poor equity performance. The case
of the US stock-bond correlation could not then be extended to countries where investors
have little confidence in the management of economic risk and debt sustainability. These
comments also raise the question of whether an exposure to local bonds is a better equity
hedge than an exposure to US bonds.

The paper is organized as follows. In the second section, we review the various theoret-
ical models related to the stock-bond correlation. We clarify the concepts of performance
assets and hedging assets. To this end, we present the Black-Litterman approach to risk
premia. We show how the sign of correlation affects equity and bond risk premia through
the covariance risk premium. To reconcile a positive bond risk premium with a negative
stock-bond correlation, we need to consider another framework based on nonlinear payoff
functions. In this section, we also examine how the aggregate stock-bond correlation relates
to individual stock-bond correlations and the composition of the equity portfolio. The last
part of this section is devoted to macroeconomic models of the stock-bond covariance. Sev-
eral economic factors can explain the magnitude and sign of the correlation, at least three
of them: inflation risk, growth risk and real interest rates. In addition, the behavior of
investors, especially during periods of flight-to-quality, has also been studied by academics.
In a third section, we conduct an empirical analysis. First, we estimate the stock-bond cor-
relation for the US, but also for other DM and EM countries. We find that the correlation
cycle in the other countries does not necessarily coincide with the correlation cycle in the US.
Thus, it is misleading to speak of a negative stock-bond correlation since the dot-com crisis.
Second, we estimate the equity and bond risk premia priced in by the market and analyze
the various components, in particular the importance of the covariance risk premium. In
the case of the US market, these results are extended to the credit market and to sector and
factor equity portfolios. This section ends with an econometric analysis of the relationship
between the stock-bond correlation and economic factors and an investigation of the bond
payoff. Finally, Section Four provides some concluding remarks.
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2 Theoretical models

2.1 Performance assets versus hedging assets

2.1.1 Black-Litterman approach of risk premia

We follow the presentation of Roncalli (2013). We consider an investment universe with
n assets. Let x = (x1, . . . , xn) be the vector of weights in the portfolio. Let µ and Σ be
the vector of expected returns and the covariance matrix of asset returns, respectively. The
risk-free rate is equal to r. It follows that the expected excess return and the volatility of
the portfolio are equal to π (x) = x> (µ− r1n) and σ (x) =

√
x>Σx. The Markowitz utility

function is:

U (x) := π (x)− φ

2
σ2 (x) = x> (µ− r1n)− φ

2
x>Σx

where φ is the risk-aversion parameter. Maximizing the quadratic utility function implies
that the unconstrained tangent portfolio is given by1:

x? =
1

φ
Σ−1 (µ− r1n) =

Σ−1 (µ− r1n)

1>nΣ−1 (µ− r1n)

Given an optimal portfolio x? = x, we can compute the implied risk premia π̃ using the
previous formula. We have:

π̃ := µ̃− r1n = φΣx

where µ̃ is the vector of implied expected returns. Since we have x> (µ̃− r1n) = φx>Σx,
we deduce that the associated risk-aversion parameter is equal to:

φ =
x> (µ̃− r1n)

x>Σx
=

SR
(
x | r

)
√
x>Σx

Finally, we get:

π̃ = SR
(
x | r

) Σx√
x>Σx

= SR
(
x | r

) ∂σ (x)

∂x
(1)

π̃ is the vector of implied risk premia in the Black-Litterman model. It is equal to the Sharpe
ratio of the portfolio times the vector of marginal volatilities. In other words, if one asset
has a higher marginal volatility than another, then it has a higher expected risk premium:

∂σ (x)

∂xi
≥ ∂σ (x)

∂xj
⇔ π̃i ≥ π̃j

2.1.2 Impact of correlation on risk premia

The case of negative correlations To understand Equation (1), we use the formula for
the marginal volatility of asset i:

∂σ (x)

∂xi
=
xiσ

2
i + σi

∑
j 6=i xjρi,jσj

σ (x)

where σj is the volatility of asset j and ρi,j is the correlation between the returns of assets
i and j. We deduce that:

π̃i = SR
(
x | r

) ∂σ (x)

∂xi

=
SR
(
x | r

)
σ (x)

xiσ2
i + σi

∑
j 6=i

xjρi,jσj


1See Roncalli (2013, pages 13-14).
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We notice that all the terms are positive except for the correlations, which can be negative.
In particular, if the correlations between asset i and the other assets are positive, the risk
premium of asset i is necessarily positive:

ρi,j ≥ 0⇒ π̃i ≥ 0

The risk premium is negative only if at least one of the correlations is negative:

π̃i < 0⇒ ∃j 6= i : ρi,j < 0

To illustrate the previous two mathematical properties, we consider an example with
an investment universe of three assets. The volatilities are 20%, 10% and 5% respectively.
We consider three sets of parameters for the correlation values

(
ρ1,2, ρ1,3, ρ2,3

)
and assume

that the market portfolio is
(
50%, 40%, 10%

)
and its Sharpe ratio2 is 0.25. The results are

shown in Table 1. When correlations are positive, risk premia are positive and generally
increase with volatility risk. When correlations are negative, we can obtain both positive
and negative risk premia. For example, in the second case, the risk premium of the third
asset is −55 bps. In the third case, the risk premium of the third asset is +52 bps, even
though ρ2,3 is negative.

Table 1: Implied risk premia (in %)

(
ρ1,2, ρ1,3, ρ2,3

)
π̃1 π̃2 π̃3(

50%, 60%, 70%
)

4.79 1.82 0.90(
60%,−40%,−50%

)
4.85 1.94 −0.55(

50%, 60%,−30%
)

4.85 1.74 0.52

In finance, we learn that risk is rewarded, which means that the expected return must
increase as we take on more risk. How is it possible for an asset to have a negative implied risk
premium? Put another way, it means that assets can have an implied expected return that
is lower than that of the risk-free asset: π̃i < 0⇒ µ̃i < r where r is the risk-free return. In
our previous example, if

(
ρ1,2, ρ1,3, ρ2,3

)
=
(
60%,−40%,−50%

)
, we have µ̃3 = r− 0.55 bps.

In fact, we need to distinguish between performance assets and hedging assets. According to
Roncalli (2013), hedging assets correspond to assets whose implied risk premium is negative.
Investors accept to include these assets in their portfolio because they would like to hedge
the risk of the other assets. Since we know that hedging has a cost, it is therefore normal for
the implied risk premium of hedging assets to be negative. In contrast, performance assets
systematically have a positive implied risk premium.

Sensitivity of the risk premium to correlations In Appendix A.1 on page 92, we
compute the derivative of π̃i with respect to the correlation ρi,j and get:

∂π̃i
∂ρi,j

= SR
(
x | r

)( 1

σ (x)
−
xi (Σx)i
σ3 (x)

)
xjσiσj

We have:

∂π̃i
∂ρi,j

≥ 0 ⇔ 1

σ (x)
−
xi (Σx)i
σ3 (x)

≥ 0

⇔
xi (Σx)i
σ (x)

≤ σ (x)

⇔ RCi ≤ σ (x)

2In this section, we assume that the Sharpe ratio of the portfolio is always equal to 25%.
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where RCi is the risk contribution of asset i if the risk measure is the portfolio volatility.
The previous inequality is almost always true because we have the Euler decomposition:

σ (x) =

n∑
i=1

RCi =

n∑
i=1

xi
∂σ (x)

∂xi

RCi > σ (x) can therefore only be obtained in a very specific configuration, when the universe
of assets is not large and some assets have a negative risk contribution. Apart from this case,
this means that the risk premium of the asset is an increasing function of its correlations
with the other assets.

The relationship between π̃i and the correlation ρj,k between two other assets is equal
to:

∂π̃i
∂ρj,k

= −SR
(
x | r

) (Σx)i
σ3 (x)

xjxkσjσk

= −SR
(
x | r

) xjxkσjσk
σ2 (x)

∂σ (x)

∂xi

In general, the marginal volatility is positive, implying that the relationship is decreasing:

∂σ (x)

∂xi
≥ 0⇒ ∂π̃i

∂ρj,k
≤ 0

The investment universe consists of four assets. The volatility parameters are σ1 = 20%,
σ2 = 10%, σ3 = 5%, and σ4 = 40%, while the correlation matrix is:

ρ =


100%
35% 100%
50% 60% 100%
70% 80% 90% 100%


The composition of the market portfolio is x =

(
20%, 10%, 30%, 40%

)
. The derivative of

the risk premium with respect to the correlations is given in Table 2. We check that the
derivative is positive with intra-correlations and negative with inter-correlations.

Table 2: Calculation of the derivative
∂π̃i
∂ρj,k

(in %)

ρj,k
∂π̃1

∂ρj,k

∂π̃2

∂ρj,k

∂π̃3

∂ρj,k

∂π̃4

∂ρj,k

ρ1,2 0.202 0.457 −0.010 −0.089
ρ1,3 0.304 −0.026 0.222 −0.134
ρ1,4 3.239 −0.275 −0.158 0.466
ρ2,3 −0.013 0.171 0.056 −0.034
ρ2,4 −0.139 1.829 −0.040 0.116
ρ3,4 −0.209 −0.103 0.890 0.175

2.1.3 Calculating the implied correlation

For a given value of the risk premium π?i , the implied correlation ρ̃i,j is the correlation value
of ρi,j such that π̃i = π?i , all else being equal. In Appendix A.2 on page 93, we show that
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the implied correlation, if it exists, is equal to:

ρ̃i,j = ρi,j +
−b±

√
b2 − ac
a

where: 
a = x2

jσ
2
i σ

2
j SR2

(
x | r

)
b = xjσiσj

(
SR2

(
x | r

)
(Σx)i − xiπ?

2

i

)
c =

(
SR
(
x | r

)
(Σx)i

)2

−
(
π?i σ

(
x | ρ

))2

This analysis is useful when the level of the implied risk premium is far from what market
participants expect. Let us consider an example to illustrate this. We take an investment
universe of 3 assets, whose volatilities are 20% and whose correlation matrix is:

ρ =

 100%
60% 100%
−10% −50% 100%


The composition of the market portfolio is

(
50%, 45%, 5%

)
. The calculation of the implied

risk premia gives π̃1 = 4.58%, π̃2 = 4.34% and π̃3 = −1.35%. We might think that the last
risk premium is disturbing, because it is negative. Let us assume that the market prices a risk
premium π?3 = 1.00%. We can then estimate the implied correlation ρ̃2,3 that corresponds
to this level of risk premium. We obtain ρ̃2,3 = 38.2%. The calculation is illustrated in
Figure 1, which shows the relationship between π?3 and ρ̃2,3. The explicit approach to risk
premia is to define the correlations and derive the risk premia, while the implicit approach
is to derive the correlations from the risk premia.

Figure 1: Implied correlation ρ̃2,3

-2 -1.5 -1 -0.5 0.5 1 1.5 2

:?
3 (in %)

-75

-50

-25

25

50

75

~; 2
;3

(i
n

%
)

Explicit correlation

!1:35%

Implicit correlation
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2.1.4 Application to the stock-bond constant-mix strategy

The stock-bond constant-mix strategy is a special case of the previous framework when we
consider two assets. Let x = (xS , xB) be the portfolio, where xS and xB are the equity and
bond allocations, respectively expressed in %. According to the analysis of Roncalli (2013,
page 277), we have:

π̃S =
SR
(
x | r

)
σ (x)

 xSσ
2
S︸ ︷︷ ︸

variance

+ xBρσSσB︸ ︷︷ ︸
covariance


and:

π̃B =
SR
(
x | r

)
σ (x)

 xBσ
2
B︸ ︷︷ ︸

variance

+ xSρσSσB︸ ︷︷ ︸
covariance


The risk premium has then two components:

risk premium = variance premium + covariance premium

The variance premium is a reward to the investor for the specific risk of the asset, while the
covariance premium is a reward only if the risk of the asset covaries with the other asset.
Therefore, the variance premium is always positive, while the covariance risk can be positive
or negative depending on the correlation between the two assets:{

ρ ≥ 0⇔ covariance premium ≥ 0
ρ < 0⇔ covariance premium < 0

When the stock-bond correlation is positive, the bond risk premium benefits from the risk
of stocks. The higher the equity volatility σS , the higher the bond risk premium π̃B :

∂π̃B
∂σS

> 0

When the stock-bond correlation is negative, the bond risk premium is reduced because the
bond exposure hedges part of the equity exposure. Indeed, we have3:

π̃B =
SR
(
x | r

)
σ (x)

xBσB (σB − ρσS)︸ ︷︷ ︸
≥0

+ ρσSσB︸ ︷︷ ︸
≤0


The bond investor then systematically pays the covariance risk ρσSσB . The effect of a
fly-to-quality regime then has a large impact on the risk premium. During an equity crisis
episode, the demand for government bonds increases, leading to a decrease in the stock-
bond correlation (Beber et al., 2009; Brière et al., 2012), which coincides with the increase
in equity volatility:

fly-to-quality⇒
{

ρ↘
σS ↗

⇒ π̃B ↘

Figure 2 shows the evolution of the bond risk premium π̃B relative to the correlation
parameter ρ for a 60/40 constant-mix portfolio. The volatilities are σS = 15% and σB = 4%.
We check that the risk premium becomes negative when the correlation is significantly low.
In this example, bonds are considered hedging assets if the correlation is less than −17.78%.
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Figure 2: Bond risk premium relative to the stock-bond correlation (60/40 constant-mix)
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In fact, we have the following property:

π̃B ≤ 0⇔ ρ ≤ −
(

xB
1− xB

)
σB
σS

This means that a negative bond risk premium is associated with a negative stock-bond
correlation, while a sufficiently negative stock-bond correlation induces a negative bond risk
premium. This result seems inconsistent with multi-asset management, since fund managers
want both a positive bond risk premium and a negative stock-bond correlation. They want
a positive bond risk premium because they want to generate performance. They also want
a negative stock-bond correlation to reduce portfolio risk and protect the fund from equity
drawdowns. The preceding framework suggests that this vision of multi-asset management
may be flawed. In this framework, when the stock-bond correlation is negative, the bond
allocation must be viewed as a hedging strategy for the equity allocation. One implication
of negative stock-bond correlation and negative bond premium is that bond exposure is
bounded:

π̃B ≤ 0⇔ xB ≤ −
ρσSσB

σB (σB − ρσS)

This means that the hedging ability of bonds increases with the equity allocation. At first
glance, it seems easier to hedge the equity allocation of a 20/80 constant-mix portfolio than
that of an 80/20 constant-mix portfolio because the former has fewer equities. However,
this is not the case in this framework because investors in the 20/80 constant-mix portfolio
view bonds as a performance asset, not a hedging asset. On the contrary, in an 80/20
constant-mix portfolio, the bond allocation can only be used as a hedging buffer because the

3Since we have xS + xB = 1, we obtain:

xBσ
2
B + xSρσSσB = xBσ

2
B + (1− xB) ρσSσB = xBσB (σB − ρσS) + ρσSσB
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20% in bonds is not enough to significantly affect the performance of the overall portfolio.
Figure 3 illustrates the dependence of the bond risk premium on the equity allocation. If
the latter is low, the implied bond risk premium can only be positive even if the stock-bond
correlation is negative. Since π̃B is a decreasing function with respect to xS , we can get
negative risk premia. For example, if σS = 15% and σB = 4%, Figure 3 shows that the bond
risk premium is negative when xS ≥ 50% and ρ ≤ −25%. These results can be summarized
as follows:

1. When the stock-bond correlation is positive, a stock-bond constant-mix portfolio is a
diversified strategy; the investor expects performance from both the bond and stock
allocations;

2. When the stock-bond correlation is negative and the stock allocation is sufficiently
high, a stock-bond constant-mix portfolio is a deleveraged equity strategy in which
the bond allocation serves to hedge or protect some of the equity risk; the investor
does not expect the bond allocation to participate in the performance of the portfolio
and expects to pay a cost for this hedging exposure.

Figure 3: Bond risk premium relative to the stock allocation
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;
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-0.75
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So far, we have implicitly assumed that the bond allocation is in government bonds. Now
let us see the effect of bond volatility. In the previous examples, we assumed that σS = 15%
and σB = 4%, which means that σB � σS . This indicates that bond volatility is low. If
we look at a bond allocation that includes more credit risk, we see that the variance risk
premium goes up, but the impact on the covariance risk premium depends on the sign of
the stock-bond correlation:

σB ↗⇒

 xBσ
2
B ↗

ρσSσBxS ↗ if ρ ≥ 0
ρσSσBxS ↘ if ρ < 0

10
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If ρ ≥ 0, then it is obvious that π̃B is an increasing function of σB . If ρ < 0, the result is
uncertain. In Appendix A.3 on page 94, we compute the derivative of π̃B relative to σB and
find that:

∂π̃B
∂σB

=
SR
(
x | r

)
σ3 (x)

x2
SxB

(
2 + ρ2

)
σ2
SσB + x3

Bσ
3
B︸ ︷︷ ︸

≥0

+ ρ︸ ︷︷ ︸
<0

· x3
Sσ

3
S + 3xSx

2
BσSσ

2
B︸ ︷︷ ︸

≥0


Again, we have two opposite effects. Each of the terms is of order O

(
x3
)

and O
(
σ3
)
. The

residual order is O
(
3 + ρ2

)
for the first term, while it is O (4ρ) for the second term. Since

3 + ρ2 ≥ 4ρ, this means that the positive term dominates the negative term, except in some
special cases.

Summary and main results

In the CAPM, a risk premium has two components: a variance risk premium,
which is always positive, and a covariance risk premium, which is negative when
the correlation risk is negative. Stocks always have a positive risk premium
because the variance component largely dominates the covariance component.
This explains why equities are performance assets. When bonds have high
risks, such as default risk, or when interest rate risk is high, bonds have a
positive risk premium. This explains why corporate bonds have a positive
risk premium. For sovereign bonds, the sign of the risk premium depends
strongly on two factors: the idiosyncratic risk of the bonds and the correlation
of the bonds with stocks. When correlation is negative and idiosyncratic risk
is low, the covariance risk premium dominates the variance risk premium and
sovereign bonds have a negative risk premium. In this case, sovereign bonds are
hedging assets. Sovereign bonds are performance assets and exhibit a positive
risk premium only when the correlation with equities is positive or when the
idiosyncratic risk is high enough to offset the negative correlation risk.

2.2 Payoff approach of the diversification

In the previous section, we analyzed the risk premium πB of bonds, or equivalently the
expected return µB of bonds, since we have the relationship µB = πB + r. We have seen
that there is a relationship between the bond risk premium and the equity risk premium,
because the market risk premium is a function of the two risk premia:

πm = xSπS + xBπB = SR
(
xm | r

)
σm

where πm and σm are the market risk premium and the market volatility associated with
the market portfolio xm. Therefore, we can write:

πB =
1

xB
πm −

xS
xB

πS

Below, we consider the payoff approach to the bond risk premium, i.e. we calculate the
conditional bond risk premium with respect to the performance of the stock market:

πB|S = E
[
RB (t) | RS (t)

]
11
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2.2.1 The linear payoff case

Multi-asset investment universe Consider an investment universe with n assets. We
assume that asset returns are Gaussian: R (t) ∼ N (µ,Σ). Let Ri (t) be the return of asset
i. In Appendix A.4 on page 95, we show that:

Ri (t) = αi +
∑
j 6=i

β(i,j)Rj (t) + ui (t)

= αi + β>(i)R(−i) (t) + ui (t) (2)

We use the notation (−i) to denote a vector or a matrix with (n− 1) dimensions, where
asset i is excluded. We have:

αi = µi − β>(i)µ(−i)

β(i) = Σ−1
(−i,−i)Σ(−i,i)

ui (t) ∼ N
(

0,Σ(i,i) − Σ(i,−i)Σ
−1
(−i,−i)Σ(−i,i)

)
From Equation (2), we see that the unconditional expectation of Ri (t) is the expected return
µi:

E
[
Ri (t)

]
= E

[
αi + β>(i)R(−i) (t) + ui (t)

]
= αi + β>(i)E

[
R(−i) (t)

]
= µi − β>(i)µ(−i) + β>(i)µ(−i)

= µi

From Equation (2), we can also estimate the conditional expectation of Ri (t) with respect
to the performance of the other assets:

E
[
Ri (t) | R(−i) (t)

]
= αi + β>(i)R(−i) (t)

= αi +
∑
j 6=i

β(i,j)Rj (t) (3)

6= µi

Equation (3) describes the payoff relationship of the asset return Ri (t). If we care about
risk, the unconditional variance of Ri (t) is the variance σ2

i :

var
(
Ri (t)

)
= E

[((
αi + β>(i)R(−i) (t) + ui (t)

)
− µi

)2
]

= E

[(
β>(i)

(
R(−i) (t)− µ(−i)

)
+ ui (t)

)2
]

= β>(i)Σ(−i,−i)β(i) + Σ(i,i) − Σ(i,−i)Σ
−1
(−i,−i)Σ(−i,i)

= Σ(i,i) + Σ(i,−i)Σ
−1
(−i,−i)Σ(−i,−i)Σ

−1
(−i,−i)Σ(−i,i) − Σ(i,−i)Σ

−1
(−i,−i)Σ(−i,i)

= Σ(i,i)

12
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while the conditional variance takes the following expression:

var
(
Ri (t) | R(−i) (t)

)
= E

[((
αi + β>(i)R(−i) (t) + ui (t)

)
−
(
αi + β>(i)R(−i) (t)

))2
]

= E
[
ui (t)

2
]

= Σ(i,i) − Σ(i,−i)Σ
−1
(−i,−i)Σ(−i,i)

We check that var
(
Ri (t) | R(−i) (t)

)
≤ σ2

i .

Remark 1. The previous analysis can be extended to risk premia. Indeed, we have R (t)−r ∼
N (µ− r,Σ). So we can replace Ri (t) by Ri (t)− r and µi by πi = µi − r and the analysis
remains valid.

Two-asset investment universe Let us apply the previous analysis to the stock-bond
constant-mix strategy. The payoff relationship is:

E
[
RB (t) | RS (t)

]
= αB + βBRS (t) (4)

where αB = µB − βBµS and βB = ρ
σB
σS

, while the conditional variance is:

var
(
RB (t) | RS (t)

)
= σ2

B −
(ρσBσS)

2

σ2
S

=
(

1− ρ2
)
σ2
B

To analyze the payoff of bonds relative to stocks, we distinguish two cases:

• The stock-bond correlation is positive
The bond payoff is positive when stock returns are greater than a threshold:

E
[
RB (t) | RS (t)

]
≥ 0 ⇔ αB + βBRS (t) ≥ 0

⇔ RS (t) ≥ −αB
βB

⇔ RS (t) ≥ µS −
µBσS
ρσB

Since µS ≥ 0, if stock returns are positive, then the bond payoff is positive.

• The stock-bond correlation is negative
Since the coefficient βB is negative, the bond payoff is positive when stocks do not
perform well:

E
[
RB (t) | RS (t)

]
≥ 0 ⇔ αB + βBRS (t) ≥ 0

⇔ RS (t) ≤ −αB
βB

⇔ RS (t) ≤ −µS +
µBσS
ρσB

If stock returns are negative, then the bond payoff is positive.

We assume that µS = 8%, µB = 2%, σS = 15%, σB = 3%. Figure 4 shows the bond
payoff for three values of the stock-bond correlation ρ. When ρ = 0%, the payoff does not
depend on stock returns. When ρ = 50%, we obtain an upward payoff, which means that

13
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Figure 4: Bond payoff relative to equity return
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Figure 5: Best and worst cases of a bond payoff
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the expected performance of bonds increases with the performance of the stock market.
When ρ = −30%, we obtain a downward payoff. In this case, when stocks perform very
poorly, bonds perform very well. In a bear market for stocks, the performance of bonds is,
on average, greater than the unconditional bond risk premium.

As noted by Roncalli (2018), the payoff of equity asset classes is an increasing affine
function, and it is noteworthy that the payoffs of stocks and bonds cross in the upper right
quadrant (green payoff4 in Figure 5). The worst case of diversification is when the good
return from stocks is offset by the bad return from bonds. This is the case, for example, for
a bond payoff where the stock-bond correlation is highly negative or the bond risk premium
is low (red payoff5 in Figure 5). Therefore, a long-only diversified portfolio of stocks and
bonds really makes sense when bonds diversify stocks in bad times and are a performance
asset in good times.

The previous analysis then clarifies the concept of hedging assets in a diversified portfolio.
In fact, investors do not need to be diversified all the time. In particular, they do not need
diversification in good times because they do not want the positive returns of some assets
to be offset by the negative returns of other assets. Therefore, diversification can destroy
portfolio performance in good times. Investors only need diversification in bad economic
times and stressed markets. Therefore, in the case of the stock-bond constant-mix strategy,
investors prefer a negative stock-bond correlation in bad times, but they are happy with a
positive stock-bond correlation in good times. From this perspective, bonds can be both a
hedging asset and a performance asset, and the concept of a hedging asset only makes sense
in bad times and not all the time. To characterize the hedging property of bonds in bad
times, we compute the probability that the bond return is positive conditional on the stock
return:

Pr
{
RB (t) ≥ 0 | RS (t)

}
= Pr

{
uB (t) ≥ −

(
αB + βBRS (t)

)}
= Φ

(
αB + βBRS (t)√

1− ρ2σB

)

= Φ

(
µB + βB

(
RS (t)− µS

)√
1− ρ2σB

)

= Φ

(
µBσS + ρσB

(
RS (t)− µS

)√
1− ρ2σSσB

)
Figure 6 shows the evolution of Pr

{
RB (t) ≥ 0 | RS (t) = −20%

}
with respect to the stock-

bond correlation ρ when the default parameters are µS = 8%, µB = 2%, σS = 15%, and
σB = 3%. In this case, the probability is greater than 50% when the correlation is less
than 40%. This is a good situation because bonds have a high probability of generating
positive returns when stocks underperform, except when the correlation is high. When
µB = 0%, this probability is shifted to the left. Finally, when µB = −2% and σS = 30%,
the probability of overperformance is greater than the probability of underperformance only
when the stock-bond correlation is highly negative, less than 70%.

Remark 2. To observe a probability greater than 50%, the stock-bond correlation must be
lower than the critical value ρ?, which is equal to:

Pr
{
RB (t) ≥ 0 | RS (t)

}
≥ 50%⇔ ρ ≤ ρ? =

µB
σB

/
µS −RS (t)

σS

4The parameters are µS = 8%, µB = 2%, σS = 15%, σB = 3% and ρ = −25%.
5The parameters are µS = 8%, µB = 0%, σS = 15%, σB = 6% and ρ = −40%.
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Figure 6: Probability Pr
{
RB (t) ≥ 0 | RS (t) = −20%

}
in % that the bond return is positive

when the performance of the stock market is −20%
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2.2.2 The nonlinear payoff case

We have seen that diversification is necessary in bad times, but not always interesting in
good times. Therefore, a negative stock-bond correlation provides a good diversification for
a stock-bond constant-mix allocation, because we can hedge some of the equity underper-
formance with the bond exposure. This property is related to the flight-to-quality regime,
which can be interpreted as the opposite of the contagion regime (Baur and Lucey, 2009).
Nevertheless, as seen in the first section, a positive stock-bond correlation helps to observe
a positive bond risk premium. In order to reconcile these two contradictory statements, we
need to consider that the stock-bond correlation is time-varying and not constant (Ander-
sson et al., 2008; Brixton et al., 2023). For example, Figure 7 shows two nonlinear bond
payoffs. The blue curve represents the fly-to-quality regime6, while the red curve could be
the bond payoff in a contagion regime7.

Theory In statistical terms, a linear payoff is the conditional expectation of the random
variable Y given the value of the random vector X:

y = E
[
Y | X = x

]
= α+ β>x

Here, the linear relationship between x and y justifies the name “linear payoff ”. A nonlinear
payoff is a generalization of the previous framework when the relationship is nonlinear:

y = E
[
Y | X = x

]
= m (x)

6This payoff was generated by assuming a parametric function of the stock-bond correlation: ρ = −1.10+

Φ
(
σ−1
S (RS − µS)

)0.20
.

7The parametric function of the stock-bond correlation is ρ =
(
σ−2
S R2

S − 1
)
/10.
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Figure 7: Nonlinear bond payoff
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Here, the function m (x) is not necessarily linear. For example, a call option is a nonlinear

payoff because we have y = max (0, x− c) where c is a constant. y = (x− c)2
is a straddle

option payoff. The concept of payoff is important in option theory because the PnL of
the option buyer depends on the performance of an underlying asset (Figure 8). It is also
important in alternative risk premia because it helps to understand how to position the
performance of investment strategies relative to a reference asset, which in most cases is the
performance of the stock market (Hamdan et al., 2016; Roncalli, 2017). In Figure 9, we show
different stylized payoff profiles. In general, the constant profile corresponds to the payoff
of an alpha strategy that has no beta component or directional risk. The convex profile is
the most common payoff implemented in investment portfolios and describes the conditional
performance of carry strategies (e.g., the short volatility strategy). This profile is similar
to a short put payoff and has high downside risk. Another popular profile is the concave
payoff, which we encounter when we consider a trend-following or time-series momentum
strategy (Jusselin et al., 2017).

Remark 3. While we estimate linear payoffs using ordinary least squares and linear re-
gression, estimating nonlinear payoffs requires more advanced statistical tools. According
to Roncalli (2020), this can be done using Nadaraya-Watson regression, local polynomial
regression, or local quantile regression.

Bond payoff Let’s apply the previous framework to the stock-bond allocation. We have:

y = E
[
RB | RS = x

]
=

∫
R
y fB|S (y;x) dy

=

∫
R
y
fS,B (x, y)

fS (x)
dy
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Figure 8: Option payoff profiles
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Figure 9: Stylized payoff profiles
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where fS,B is the joint density of (RS , RB), fS is the density function of RS and fB|S is the
conditional density of RB given the value of RS . If we consider a copula representation, we
get:

y =

∫
R
y cS,B

(
FS (x) ,FB (y)

)
fB (y) dy

where cS,B is the copula density function of (RS , RB), FS and FB are the two cumulative
distribution functions of RS and RB , and fB is the density function of RB . This means
that the bond payoff depends on the dependence between bond returns and stock returns.
In the case where CS,B is the independent or product copula, we conclude that the bond
payoff is constant and equal to the unconditional expectation of the bond return:

y = m (x) =

∫
R
y fB (y) dy = E [RB ]

In the case where CS,B is the Gaussian copula and the margins are normal, we can show
that the bond payoff is linear and equal to the previous formula (Roncalli, 2020, page 737):

y = m (x) = αB + βBx

If the margins are not normal or if the copula is not Gaussian, the bond payoff is not linear.

Figure 10: Effect of marginal distributions and copula functions on bond payoff (ρ = −25%,
Clayton copula)
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To illustrate the nonlinearity property, we consider several hypotheses concerning the
marginal distributions of RS and RB , and the copula function of (RS , RB). First, we assume
that the copula is Normal with ρ = −25%, which corresponds to the copula of the bivariate
Gaussian distribution with a correlation of −25%. The margins are Student’s t distributions:
σ−1
S (RS − µS) ∼ tνS and σ−1

B (RB − µB) ∼ tνB . Using the following parameters µS = 8%,
µB = 2%, σS = 15%, and σB = 3%, Figure 60 on page 106 shows the bond payoff for
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different values of νS and νB . The degree of nonlinearity depends on the fat tail of the asset
returns. For example, if νS = 1 and νB = 1, the payoff is highly nonlinear. If νS = 5 and
νB = 1, meaning that the fat tail of bond returns is larger than the fat tail of stock returns,
the slope of the payoff is high. The pure effect of the copula functions8 is shown in Figure
61 on page 107. Here, we assume that the margins are Gaussian: σ−1

S (RS − µS) ∼ N (0, 1)
and σ−1

B (RB − µB) ∼ N (0, 1). The effect is not important, except in the bear market.
We see a significant difference between the Clayton and Frank copulas. If the marginal
distributions are the Student’s t1 distributions, the impact is more significant (Figure 62
on page 107). If we combine all these effects, we get the option profiles in Figure 10. This
analysis emphasizes two important features: the dependence function of stock and bond
returns and their marginal distributions. In particular, we know that the tail dependence
is not symmetric, and that the stock-bond correlation is not a good metric for measuring
the joint behavior of stock and bond returns locally at the extremes. This mean that the
long-term stock-bond correlation is a mixture of the stock-bond correlation in bear, flat and
bull markets.

One implication of the nonlinear payoff is that there is an asymmetry in excess corre-
lation: large negative returns are not correlated in the same way as large positive returns.
These stylized facts are well documented in the academic literature. Following the seminal
work of Longin and Solnik (2001), we can find many references to these asymmetries be-
tween stock and bond returns (Garcia and Tsafack, 2011; Chui and Yang, 2012; Jammazi
et al., 2015; Shahzad et al., 2017). This line of research, based on copula functions and
extreme value theory, joins another area of research based on the time-varying covariance
between stock and bond returns (Li, 2002; Scruggs and Glabadanidis, 2003). Whatever the
factors explaining conditional heteroskedasticity, e.g., stock market uncertainty (Connolly
et al., 2007; Andersson et al., 2008; Baur and Lucey, 2009), the main conclusion is that a
constant stock-bond correlation and hence a constant conditional bond risk premium does
not make much sense. If this is true in the long run, it is also true in the short run. For ex-
ample, we may wonder whether a one-year rolling correlation captures the correct empirical
dependence between stock and bond returns.

Summary and main results

The payoff approach to diversification distinguishes between good and bad
times. Contrary to the CAPM, a negative stock-bond correlation is consistent
with bonds being both hedging and performance assets. Indeed, when the
stock-bond correlation is negative, the payoff of the bond return is positive when
stock returns are negative, but in some situations it can remain positive even
when stock returns are positive. However, the best explanation for bonds being
both a hedge and a performance asset is that the stock-bond correlation is time-
varying, which implies that the conditional payoff of bonds is nonlinear. There
is an apparent contradiction between measuring the stock-bond dependence
with the stock-bond correlation and the fact that the bond payoff is nonlinear.
To resolve this problem, we need to consider the local dependence function
or the regime correlation between stock and bond returns. In fact, measuring
the dependence with the stock-bond correlation cannot explain the asymmetric
features between bad and good times. This implies going beyond the constant
stock-bond correlation.

8The copula functions are calibrated to have the same correlation ρ = −25%.
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2.3 Portfolio composition and aggregate correlation

2.3.1 Individual vs. aggregate correlation

Let RS and RB be the stock and bond returns. The stock-bond correlation is defined as the
ratio of the stock-bond covariance to the product of standard deviations:

ρS,B =
E
[(
RS − E [RS ]

) (
RB − E [RB ]

)]
σ (RS)σ (RB)

The problem is that there is no security or asset that measures the performance of the stock
market or the performance of the bond market. In practice, we proxy the performance of a
market by the performance of an index or a basket of assets. For example, Rankin and Idil
(2014) calculated the stock-bond correlation by looking at monthly changes over a rolling
three-year window using the S&P 500 Index and the 10-year US Treasury bond9. This
means that the calculated correlation is an aggregate correlation. Therefore, we are not sure
that the behavior of this correlation can be compared to the correlation between two assets,
that is to an individual correlation. For example, we know that an aggregate volatility, that
is the volatility of a basket of assets, is different than an individual volatility, that is the
volatility of an asset. The main reason is the impact of the diversification effect. We have
the same results when considering aggregate and individual covariances. There is no reason
that it is different for aggregate and individual correlations.

2.3.2 The mathematics of aggregate stock-bond correlation

We assume that the stock market return is the weighted average of a basket of n stocks:

RS (t) =

n∑
i=1

wi (t)Ri (t)

where Ri (t) is the return of asset i and wi (t) is the weight of asset i at time t. We
use the notations σi (t) = σ

(
Ri (t)

)
, σS (t) = σ

(
RS (t)

)
and ρi,B (t) = ρ

(
Ri (t) , RB (t)

)
. In

Appendix A.5.1 on page 95, we show that the stock-bond correlation ρS,B (t) is the weighted
sum of the individual correlations:

ρS,B (t) =

n∑
i=1

ωi (t) ρi,B (t)

where:

ωi (t) =
wi (t)σi (t)

σS (t)

A first finding is that the aggregate stock-bond correlation ρS,B (t) is not the weighted
average of the individual correlations10:

ρS,B (t) 6=
n∑
i=1

wi (t) ρi,B (t) := ρ̄S,B (t)

9Similarly, Li et al. (2022) used the daily returns of the stock market index from Ken French’s data
library and the 5-year US Treasury. Duffee (2023) used the 10-year nominal zero-coupon Treasury bond,
but did not specify the definition of the US stock market. Brixton et al. (2023) did not explain how the
stock-bond correlations were computed. The analysis of Molenaar et al. (2023) is close to that of Rankin
and Idil (2014), but they used the stock market index from Ken French’s data library.

10Except when all individual correlations ρi,B (t) are equal to 1.
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To illustrate the previous results, let us consider an example with four stocks and one
bond. The volatilities are 20%, 10%, 15%, 25% and 5%. The correlation matrix is:

ρ =


1.00 0.80 0.25 0.25 −0.50
0.80 1.00 0.25 0.25 −0.30
0.25 0.25 1.00 0.80 0.30
0.25 0.25 0.80 1.00 0.40
−0.50 −0.30 0.30 0.40 1.00


We observe two blocks of stocks. The first block, consisting of the first and second stocks,
is negatively correlated with the bond, while the second block, consisting of the third and
fourth stocks, is positively correlated with the bond. Using different baskets, we obtain the
results shown in Table 3. The first basket is an equally weighted portfolio of the first block.
The stock-bond correlation is −45.40%, while the average correlation is −40%. The second
basket is an equally weighted portfolio of the second block. The stock-bond correlation is
now positive and equal to +38.08%. The last basket is an equally weighted portfolio of the
entire stock investment universe. The stock-bond correlation is positive, while the average
correlation is negative (ρS,B (t) = +2.80% vs. ρ̄S,B (t) = −2.50%).

Table 3: Aggregate vs. average stock-bond correlation

Basket #1 #2 #3
i wi ωi wi ωi wi ωi
1 50.00% 69.84% 25.00% 37.33%
2 50.00% 34.92% 25.00% 18.67%
3 50.00% 39.39% 25.00% 28.00%
4 50.00% 65.65% 25.00% 46.67%

ρS,B −45.40% 38.08% 2.80%
ρ̄S,B −40.00% 35.00% −2.50%

One lesson from the previous example is that two equity portfolios in the same investment
universe can have two opposite stock-bond correlations. If we investigate further, we find
that the stock-bond correlation can be written as:

ρS,B (t) =

n∑
i=1

wi (t) γi (t) ρi,B (t)

where γi (t) =
σi (t)

σS (t)
is the volatility ratio. The contribution of stock i to the stock-bond

correlation is an increasing function of its weight and its volatility ratio. A second finding
is that the stock-bond correlation is mainly driven by large-cap and highly volatile stocks.

To illustrate these results, we consider the composition of the S&P 500 Index at the end
of each year from 1990 and 2023. We compute the Herfindahl index H (w) =

∑n
i=1 wi (t)

and the number of equivalent bets H−1 (w), which summarizes the concentration of portfolio
weights. In fact, we have 1 ≤ H−1 (w) ≤ n, which means that the bounds are reached for the
single stock concentrated portfolio and the equally weighted portfolio, respectively. Then,
we estimate the cross-sectional dispersion of the stock volatilities:

CSV =

√√√√ 1

n

n∑
i=1

(
σi (t)− σ̄ (t)

)2
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Table 4: Statistics of the S&P 500 Index

Year H−1 (w) CSV φ L (ω) Ωm (t) (in %) ηα (t)
(in %) 5 10 25 25% 50% 75%

1 990 127.1 13.94 0.87 1.70 10.6 17.6 31.8 18 59 157
1 991 127.9 12.79 0.89 1.84 10.6 18.0 31.1 17 62 162
1 992 141.3 10.68 1.10 2.46 9.2 15.9 29.5 20 67 171
1 993 154.1 9.76 1.13 2.85 9.1 15.9 29.2 20 65 167
1 994 150.5 8.24 0.84 2.39 8.7 15.7 29.0 20 66 170
1 995 150.7 8.96 1.15 2.88 9.2 16.3 29.7 19 62 160
1 996 144.0 9.23 0.78 2.17 10.8 18.6 32.6 16 56 150
1 997 137.9 9.77 0.54 1.70 10.8 18.8 34.6 15 49 134
1 998 113.1 12.13 0.60 1.83 12.1 19.9 37.1 14 44 117
1 999 86.1 13.36 0.74 2.30 15.1 25.6 44.1 10 33 96
2 000 105.0 19.92 0.90 2.30 12.7 21.7 38.3 13 42 115
2 001 99.5 22.50 1.05 1.90 15.4 24.5 39.3 11 43 126
2 002 105.7 23.20 0.89 1.59 13.6 22.9 39.0 12 42 132
2 003 114.3 12.44 0.73 1.63 12.6 21.2 35.4 14 50 148
2 004 122.7 10.05 0.91 1.95 10.8 18.3 31.7 17 59 163
2 005 130.3 8.26 0.80 2.04 10.3 16.5 30.1 19 64 168
2 006 128.8 8.73 0.87 2.10 10.2 16.5 30.3 19 63 168
2 007 123.1 9.04 0.57 1.57 11.8 18.4 32.9 16 60 160
2 008 105.1 26.76 0.65 1.31 13.7 21.5 36.0 14 49 145
2 009 126.7 24.01 0.88 1.61 14.8 22.4 36.3 13 51 151
2 010 134.1 9.47 0.52 1.45 10.3 17.9 32.1 17 60 169
2 011 124.1 10.56 0.45 1.28 11.1 18.0 32.4 17 61 171
2 012 126.0 9.72 0.76 1.69 12.6 19.9 33.1 15 59 170
2 013 145.0 7.59 0.69 1.85 11.6 17.5 31.1 18 62 169
2 014 149.7 6.96 0.61 1.76 10.5 16.1 29.2 20 65 170
2 015 142.6 8.76 0.57 1.56 11.8 18.7 32.2 17 58 161
2 016 141.5 10.29 0.79 1.82 10.8 17.5 29.9 18 67 175
2 017 129.5 7.58 1.14 2.66 11.9 18.1 31.0 18 63 174
2 018 118.4 7.95 0.47 1.56 15.4 22.5 36.4 13 49 147
2 019 103.0 7.95 0.64 1.83 15.9 22.3 35.4 13 52 150
2 020 72.5 15.99 0.46 1.36 20.5 26.9 39.8 9 45 142
2 021 67.5 9.20 0.70 1.99 22.6 30.5 42.0 7 39 135
2 022 85.0 11.23 0.47 1.42 19.5 27.2 39.4 9 46 142
2 023 61.3 8.50 0.65 2.03 25.3 35.3 46.7 5 32 123

It corresponds to the standard deviations of the portfolio’s stock volatilities for a given date

t. To analyze this metric, we introduce the ratio φ =
CSV

σS (t)
, which compares the cross-

sectional dispersion of the stock volatilities with the volatility of the index portfolio. The
leverage metric L (ω) is the sum of the weights ωi (t) and gives an idea of the amplification
effect of the individual stock-bond correlations. We introduce the function Ωm (t), which is
the cumulative proportion of the m largest weights ωi (t):

Ωm (t) =

∑n
i=n−m+1 ωi:n (t)∑n

i=1 ωi (t)

where ωi:n (t) is the ith order statistic of ωi (t). Ωm (t) measures the contribution of the
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m most influential stocks to the formation of the stock-bond correlation. For the different
dates, we compute the contribution indices Ω5 (t), Ω10 (t) and Ω25 (t). Finally, we estimate
the number of stocks that explain a given fraction α of the stock-bond correlation: ηα (t) ={

inf m : Ωm (t) ≥ α
}

. For example, if α = 50%, ηα (t) is the number of stocks that explain
50% of the stock-bond correlation. Results are shown in Table 4. We observe a trend in
the number of equivalent bets. It increased in the early 1990s, but fell during the dot-com
bubble and remained low until 2008. After the global financial crisis, it was between 130 and
140 stocks. Since 2017, it has fallen dramatically, reaching its lowest value in 2023. In fact,
in that year, the number of equivalent bets was only 61 stocks because of the magnificent
7 stocks (Apple, Alphabet, Microsoft, Amazon, Meta, Tesla and Nvidia). Cross-sectional
volatility changes a lot over time11. The lowest value was 6.96% in December 2014, while the
highest value was 26.76% in December 2008. The ratio φ is generally less than 1, meaning
that the cross-sectional volatility is lower than the market portfolio volatility. However,
there are some exceptions, which concern the years 1992, 1993, 1995, 2001 and 2017. Finally,
the leverage ratio takes its values between 1.28 and 2.88. The amplification effect is then
completely different from one year to another. In Figure 12, we estimate the empirical and
parametric distribution of the aggregate stock-bond correlation ρS,B when the individual
stock-bond correlation is set to −25%. On average, ρS,B is close to −50%. Furthermore, we
observe a high dispersion and a negative skewness. Therefore, the amplification effect, which
is a consequence of the leverage ratio, can be significant and take its value between 1 and
3. All these results show that we must be careful in interpreting the stock-bond correlation,
since a large part of its value is explained by the structure of the stock market and is not
related to the dependence between the stock and bond markets.

Figure 11: Number of stocks that explain 50% of the US stock-bond correlation (S&P 500
Index)

1990 1995 2000 2005 2010 2015 2020 2025
Year

20

30

40

50

60

70

11We use a one-year historical window to estimate stock volatility.
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Figure 12: Amplification effect of the individual stock-bond correlation
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Remark 4. The concentration index Ωm (t) and its inverse function ηα (t) confirm the
previous statement. In 2023, 25% of the stock-bond correlation is explained by only 5 stocks
and 50% by 32 stocks. In this context, the idiosyncratic behavior of some stocks can have a
large impact on the stock-bond correlation, and this measure can give a false perception of
the stock-bond dependence (see Figure 11).

Assume that the individual correlations between stocks and the bond are equal: ρi,B =
ρstock
S,B . We deduce that the aggregate stock-bond correlation is equal to the product of the

individual stock-bond correlation and the diversification ratio:

ρS,B (t) = ρstock
S,B · DR

(
w (t)

)
Since DR

(
w (t)

)
≥ 1, we conclude that the aggregate stock-bond correlation is always

greater than the individual stock-bond correlation in absolute value:∣∣ρS,B (t)
∣∣ ≥ ∣∣∣ρstock

S,B

∣∣∣
We face a paradox here, because if each individual stock is −10% correlated with the bond,
we expect the stock-bond correlation to be −10%, but the previous result shows that the
stock-bond correlation ρS,B (t) could be −50%.

Consider again an example with four stocks and one bond. The volatilities are 20%,
10%, 15%, 25% and 5%. The correlation matrix is:

ρ =


1.00 0.80 0.45 0.35 −0.30
0.80 1.00 0.25 0.25 −0.30
0.45 0.25 1.00 0.50 −0.30
0.35 0.25 0.50 1.00 −0.30
−0.30 −0.30 −0.30 −0.30 1.00
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We estimate four risk-based equity portfolios: the equally weighted (EW) portfolio (DeMiguel
et al., 2009), the long-only minimum variance (MV) portfolio (Clarke et al., 2011; Richard
and Roncalli, 2015), the equal risk contribution (ERC) portfolio (Maillard et al., 2010), and
the most diversified portfolio or MDP (Choueifaty and Coignard, 2008). The results are
presented in Table 5. For each smart beta portfolio, we report the allocation wi and the
weight ωi for each stock i. We notice that the minimum variance portfolio has the lowest
stock-bond correlation (ρS,B = −36.74%), while the most diversified portfolio has the high-
est stock-bond correlation (ρS,B = −40.45%), as expected by theory. These results highlight
the relationship between stock-bond correlation and stock portfolio diversification. In par-
ticular, the absolute level of the stock-bond correlation increases with the diversification of
the benchmark equity portfolio. For example, the stock-bond correlation is different when
we use the Dow Jones, S&P 500, and Russell 3000 indexes as benchmarks, even though
they measure the stock market performance of the same country. The same is true when
we compare the stock-bond correlation between two countries. For example, the magnitude
of the stock-bond correlation will be different if the country’s investment universe is small
(e.g., if we use the BEL 20 or DAX 30 indexes) or large (e.g., if we use the Eurostoxx or
Stoxx 600 indexes).

Table 5: Stock-bond correlation with smart beta portfolios

Basket EW MV ERC MDP
i wi ωi wi ωi wi ωi
1 25.00% 37.37% 0.00% 0.00% 17.44% 29.70% 0.00% 0.00%
2 25.00% 18.68% 75.00% 81.65% 39.36% 33.51% 55.55% 53.93%
3 25.00% 28.02% 25.00% 40.82% 26.66% 34.06% 27.78% 40.45%
4 25.00% 46.71% 0.00% 0.00% 16.54% 35.21% 16.67% 40.45%

ρS,B −39.23% −36.74% −39.74% −40.45%

We further assume that the individual correlations between stocks and the bond are equal
(ρi,B = ρstock

S,B ), while the correlation matrix between stock returns is constant (ρi,j = ρstock).
Earlier, we showed that the stock-bond correlation is bounded:∣∣∣ρstock

S,B

∣∣∣ ≤ ∣∣ρS,B (t)
∣∣ ≤ ∣∣∣ρstock

S,B

∣∣∣ · DR(wmdp
)

The lower bound is reached when the diversification ratio of the stock portfolio is equal to
1. We can prove this:

DR (w) = 1⇔


∃i : wi = 1

or
ρi,j = ρstock = 1

This means that the lower bound is reached when the concentration is maximum (the stock
portfolio is invested in one stock) or when there are no diversification opportunities (when
the correlations between the stock returns are all equal to 1). The upper bound is reached
when the diversification ratio is maximum, i.e. when the stock market portfolio is the most
diversified portfolio as defined by Choueifaty and Coignard (2008). In Appendix A.6 on
page 98, we compute the expression for the diversification ratio DR

(
wmdp

)
. We deduce

that the ratio between the aggregate stock-bond correlation and the individual stock-bond
correlation satisfies the following inequalities:

1 ≤ ρS,B (t)

ρstock
S,B

≤ 1√
ρstock +

(
1− ρstock

)
n
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When n→∞, we get:

1 ≤ ρS,B (t)

ρstock
S,B

≤ 1√
ρstock

In Figure 13, we show the aggregate stock-bond correlation ρS,B (t) of the most diversified
portfolio with respect to the stock correlation ρstock when considering two values of ρstock

S,B

(−50% and +50%). We can clearly see that diversification strongly influences and exacer-
bates the stock-bond correlation. Two factors play an important role: the level of average
correlation in the equity market and the depth of the equity investment universe. However,
the effect of diversification is less pronounced when the individual stock-bond correlation is
low (Figure 65 on page 109).

Figure 13: Aggregate stock-bond correlation with the MDP (
∣∣∣ρstock
S,B

∣∣∣ = 50%)
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2.3.3 Sector analysis

In Appendix A.7 on page 98, we show that:

∆ρS,B (t+ 1) =

n∑
i=1

wi (t)σi (t)

σS (t)

(
ξi (t+ 1) ρi,B (t+ 1)− ρi,B (t)

)
We deduce that:

∆ρi,B (t+ 1)⇒ ∆ρS,B (t+ 1) 6= 0

Even if the individual stock-bond correlations do not change, the stock-bond correlation
changes because of the stock returns. In fact, we have:

ξi (t+ 1) =

(
1 +Ri (t+ 1)

)
σi (t+ 1)

σi (t)(
1 +RS (t+ 1)

)
σS (t+ 1)

σS (t)

27



Stock-Bond Correlation: Theory & Empirical Results

Assume that the stock and index volatilities remain constant between t and t+1. We obtain:

ξi (t+ 1) =
1 +Ri (t+ 1)

1 +RS (t+ 1)

Stocks that outperform the market contribute more than stocks that underperform the mar-
ket. This result is very intuitive and consistent with the previous analysis. The implication
is that the aggregate stock-bond correlation reflects the stock-bond dependence of the best
performing stocks, sectors or factors. However, there is little research in the academic litera-
ture that examines the stock-bond correlation across sectors. We found only two references.
First, Brixton et al. (2023) show that the stock-bond correlation may depend on the sector.
In particular, they conclude that utilities, real estate, and consumer staples have a higher
correlation than energy, industrials, and materials. Second, Duffee (2023) suggest that
“time variation in the stock-bond covariance may be driven by changing sector dynamics”,
particularly in the real estate sector.

Summary and main results

Since there is no asset that represents the stock market, the stock-bond corre-
lation is calculated using an index portfolio or a basket of stocks. Therefore,
the calculated stock-bond correlation is an aggregate correlation, not an indi-
vidual correlation. Like the volatility measure, the behavior of an aggregate
correlation or covariance differs from the behavior of an individual correlation
or covariance because of the diversification effect. This means that the stock-
bond correlation is highly dependent on the composition of the stock basket
and the weighting scheme. For example, the stock-bond correlation may be
different if the basket is skewed toward growth, value, defensive, large-cap, or
quality stocks. The assumption that the aggregate stock-bond correlation is
a summary of the individual stock-bond correlations is incorrect because the
cross-sectional variance of individual stock-bond correlations is large and the
aggregate stock-bond correlation is a leveraged version of the individual stock-
bond correlation. The amplification effect is significant and can range from 1 to
3, with an average of 2. This means that an individual correlation of −25% or
+25% generally translates into an aggregate stock-bond correlation of −50% or
+50%, respectively. In addition, the amplification effect has a negative skew-
ness, which raises some questions about the market’s narrative of stock-bond
comovement. In fact, investors may have a false sense of true diversification
between the stock and bond markets. Using the same investment universe, we
can show that the stock-bond correlation can be positive or negative simply
because the basket weights are different. The big question in studying the
dynamics of the aggregate stock-bond correlation is then the effect of the dy-
namics of the basket weights. Comparing the stock-bond correlation during the
dot-com bubble, the subprime crisis, or the covid event is extremely mislead-
ing because the stock market portfolio was completely different during these
three periods. In particular, we need to separate the correlation effects from
the sector allocation effects. In this context, it is important to understand how
the stock-bond correlation is formed and what the individual contributions are.
For example, about thirty stocks explain 50% of the US stock-bond correlation
at the end of 2023.
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2.4 Macroeconomic models of the stock-bond covariance

So far, we have focused on the relationship between stock-bond correlation and portfolio
construction. Let us now turn to the economic models. Li (2002) is certainly one of the
first references to relate the stock-bond correlation to macroeconomic factors. It is not new
to define pricing factors in terms of macroeconomic variables (Chen et al., 1986), but the
main result of Li (2002) is to consider a time-varying relationship. This publication opened
the door to a significant research activity on macroeconomics and stock-bond comovement.
The survey provided by Duffee (2023) distinguishes between inflation-centric and real-centric
models. Inflation-centric models emphasize the role of expected inflation and inflation uncer-
tainty in explaining the stock-bond correlation. Real-centric models assume that aggregate
shocks affect real interest rates and the stock-bond correlation. These two types of models
can be summarized by a stylized growth-inflation model.

2.4.1 Inflation-centric model

The model We consider the model developed by Li (2002). It is described in detail in
Appendix A.8 on page 99. Li (2002) assumes that the real interest rate r (t), the inflation
rate π (t) and the dividend yield δ (t) follow affine mean-reverting processes:

r (t+ 1) = r̄ + %r
(
r (t)− r̄

)
+ εr (t+ 1)

π (t+ 1) = π̄ + %π
(
π (t)− π̄

)
+ επ (t+ 1)

δ (t+ 1) = δ̄ + %δ
(
δ (t)− δ̄

)
+ εδ (t+ 1)

where r̄, π̄ and δ̄ are the long-run equilibria, %r, %π and %δ are the adjustment velocities,
and εr (t+ 1), επ (t+ 1) and εδ (t+ 1) are the innovation shocks distributed according to
N
(
0, σ2

r

)
, N

(
0, σ2

π

)
, and N

(
0, σ2

δ

)
. We note ρr,π, ρr,δ and ρπ,δ the correlations between

the innovation shocks.

Expression of the stock-bond correlation In Appendix A.8 on page 99, we show that
the conditional correlation between the bond return RB and the stock return RS is equal
to:

ρS,B =
σS,B
σBσS

=
x>BΣxS√

x>BΣxB

√
x>SΣxS

(5)

where xB =
(
xBr , x

B
π , x

B
δ

)
, xS =

(
xSr , x

S
π , x

S
δ

)
, xBr = −1− %nr

1− %r
, xBπ = −1− %nπ

1− %π
%π, xBδ = 0,

xSr = − 1

1− %r
, xSπ = 1, xSδ =

1

1− %δ
and n is the bond duration. The expression of the

covariance is then equal to:

σS,B := cov (RB , RS) =
(1− %nr )

(1− %r)2σ
2
r −

(1− %nπ) %π
(1− %π)

σ2
π +

(1− %nπ) %π − (1− %nr ) (1− %π)

(1− %r) (1− %π)
ρr,πσrσπ −

(1− %nr )

(1− %r) (1− %δ)
ρr,δσrσδ −

(1− %nπ) %π
(1− %π) (1− %δ)

ρπ,δσπσδ (6)

For the variance terms, we have:

σ2
B =

(
1− %nr
1− %r

)2

σ2
r +

(
1− %nπ
1− %π

%π

)2

σ2
π +

2 (1− %nr ) (1− %nπ) %π
(1− %r) (1− %π)

ρr,πσrσπ (7)
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and:

σ2
S =

1

(1− %r)2σ
2
r + σ2

π +
1

(1− %δ)2σ
2
δ −

2

(1− %r)
ρr,πσrσπ −

2

(1− %r) (1− %δ)
ρr,δσrσδ +

2

(1− %δ)
ρπ,δσπσδ (8)

Interpretation of the model We generally assume that the adjustment rates are less
than 1, meaning that there is a mean-reverting effect. For example, since Et

[
r (t+ 1)

]
=

r (t) + (%r − 1)
(
r (t)− r̄

)
and %r ≤ 1, we have:{

r (t) ≥ r̄ ⇒ Et
[
r (t+ 1)

]
≤ r (t)

r (t) ≤ r̄ ⇒ Et
[
r (t+ 1)

]
≥ r (t)

We distinguish two cases:

1. Positive auto-correlation:

%r ∈ [0, 1]⇒

{
r (t) ≥ r̄ ⇒ r̄ ≤ Et

[
r (t+ 1)

]
≤ r (t)

r (t) ≤ r̄ ⇒ r (t) ≤ Et
[
r (t+ 1)

]
≤ r̄

The expected real rate is between the equilibrium and the current real rate.

2. Negative auto-correlation:

%r ∈
[
−1

2
, 0

]
⇒

{
r (t) ≥ r̄ ⇒ Et

[
r (t+ 1)

]
≤ r̄ ≤ r (t)

r (t) ≤ r̄ ⇒ r (t) ≤ r̄ ≤ Et
[
r (t+ 1)

]
There is an overreaction and the adjustment is too strong.

The volatility of real and inflation rates is generally low, between 0.5% and 2%, while the
volatility of dividend yields is higher, typically between 2% and 20%. Economic theory also
suggests that:

• The correlation between real interest rates and inflation is negative (Fisher equation);

• The correlation between real interest rates and dividend yields is negative;

• The correlation between inflation and dividend yields can be either negative or positive;

Assuming that the default values of the parameters are %r = 0.5, %π = 0.6, %δ = 0.20,
σr = 1%, σπ = 1%, σδ = 5%, ρr,π = −25%, ρr,δ = −25% and ρπ,δ = −25%, we find
that the stock-bond correlation12 is 51%. In Tables 6 and 7, we calculate the sensitivity
of ρS,B with respect to the speed of adjustment or volatility, holding all other parameters
constant. It is noteworthy that the stock-bond correlation is almost systematically positive.
The only case where ρS,B is negative is when the volatility of inflation shocks is large13. If
we consider the case of negative autocorrelation, we obtain the results in Tables 8 and 9.
Again, all stock-bond correlations are positive. To obtain a negative correlation, we need a
positive correlation between inflation and dividend yield shocks and a large value of inflation
or dividend yield volatility (Table 10).

12We consider a 10-year bond, meaning that n = 10.
13If σπ = 5%, then ρS,B = −34.3%.
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Table 6: Effect of the adjustment speed (% > 0)

%r ρS,B %π ρS,B %δ ρS,B
0.10 34.9% 0.10 55.7% 0.10 51.9%
0.25 39.6% 0.25 56.7% 0.25 50.6%
0.50 51.1% 0.50 55.4% 0.50 47.9%
0.75 70.1% 0.75 37.1% 0.75 44.4%

The default parameters are %r = 0.5, %π = 0.6, %δ = 0.20, σr = 1%, σπ = 1%, σδ = 5%, ρr,π = −25%,

ρr,δ = −25% and ρπ,δ = −25%.

Table 7: Effect of the volatility (% > 0)

σr ρS,B σπ ρS,B σδ ρS,B
1% 51.1% 1% 51.1% 1% 53.8%
2% 70.5% 2% 24.1% 5% 51.1%
3% 80.4% 3% −0.2% 10% 46.6%
5% 89.9% 5% −34.3% 30% 42.5%

The default parameters are %r = 0.5, %π = 0.6, %δ = 0.20, σr = 1%, σπ = 1%, σδ = 5%, ρr,π = −25%,

ρr,δ = −25% and ρπ,δ = −25%.

Table 8: Effect of the adjustment speed (% < 0)

%r ρS,B %π ρS,B %δ ρS,B
−0.10 47.8% −0.10 46.2% −0.10 42.9%
−0.20 46.2% −0.20 44.9% −0.20 44.9%
−0.30 44.9% −0.30 43.6% −0.30 46.8%
−0.50 42.5% −0.50 41.3% −0.50 50.4%

The default parameters are %r = −0.3, %π = −0.2, %δ = −0.2, σr = 1%, σπ = 1%, σδ = 5%, ρr,π = −25%,

ρr,δ = −25% and ρπ,δ = −25%.

Table 9: Effect of the volatility (% < 0)

σr ρS,B σπ ρS,B σδ ρS,B
1% 44.9% 1% 44.9% 1% 83.5%
2% 58.4% 2% 52.8% 5% 44.9%
3% 67.9% 3% 61.8% 10% 32.2%
5% 79.9% 5% 76.4% 30% 23.0%

The default parameters are %r = −0.3, %π = −0.2, %δ = −0.2, σr = 1%, σπ = 1%, σδ = 5%, ρr,π = −25%,

ρr,δ = −25% and ρπ,δ = −25%.

Table 10: Effect of the volatility (ρπ,δ > 0)

σr ρS,B σπ ρS,B σδ ρS,B
1% 4.4 1% 4.4% 1% 28.3%
2% 45.6 2% −33.4% 5% 4.4%
3% 64.9 3% −53.1% 10% −2.7%
5% 82.3 5% −72.0% 30% −8.3%

The default parameters are %r = 0.5, %π = 0.6, %δ = 0.20, σr = 1%, σπ = 1%, σδ = 5%, ρr,π = −25%,

ρr,δ = −25% and ρπ,δ = 50%.
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Figure 14: Probability density function of ρS,B (inflation-centric model)
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Figure 15: Cumulative distribution function of ρS,B (inflation-centric model)
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To verify that the stock-bond correlation is generally positive in the inflation-centric
model, we run a Monte Carlo simulation. We assume that the model parameters are uni-
formly distributed: %r ∼ U[0.1,0.9], %π ∼ U[0.1,0.9], %δ ∼ U[0.1,0.9], σr ∼ U[0,2%], σπ ∼ U[0,2%],

σδ ∼ U[0,2%], ρr,π ∼ U[−50%,0], ρr,δ ∼ U[−50%,0] and ρπ,δ ∼ U[−50%,0]. The estimated prob-

ability density function is shown in Figure 14 and corresponds to the curve ρπ,δ ≤ 0. We
verify that the probability of observing a negative stock-bond correlation is low, less than
5% (Figure 15). If we assume that σπ ∼ U[2%,10%], we obtain the curve σπ ≥ 2%. Notice

that the probability density function has shifted to the left. There is now a 40% probability
of observing a negative stock-bond correlation. We have the same conclusion if we assume
that the correlation ρπ,δ ∼ U[0,50%] is positive. The main difference is the shape of the

density function when the stock-bond correlation is close to −1. Let us now combine the
two effects. We conclude that in an environment of high inflation volatility and a positive
correlation between inflation and dividend yields, the stock-bond correlation is more likely
to be negative than positive.

To get an economic interpretation of the stock-bond correlation, we can decompose σS,B
into three terms:

σS,B = σS,B (σr) + σS,B (σπ) + σS,B
(
ρπ,δ, σπ

)
where:

σS,B (σr) =

(
(1− %nr ) (1− %δ)σr − (1− %r) (1− %nr ) ρr,δσδ

(1− %r)2
(1− %δ)

)
σr+(

(1− %nπ) %π − (1− %nr ) (1− %π)

(1− %r) (1− %π)
ρr,πσπ

)
σr ≥ 0

σS,B (σπ) = −
(

(1− %nπ) %π
(1− %π)

)
σ2
π ≤ 0

σS,B
(
ρπ,δ, σπ

)
= −

(
(1− %nπ) %π

(1− %π) (1− %δ)
σδ

)
ρπ,δσπ ≷ 0

The first term depends on the uncertainty of real interest rates. The stock-bond covariance
generally increases with the volatility risk σr of interest rates. As Li (2002) explains, this
is intuitive “because the real interest rate determines how an investor discounts stock and
bond cash flows. Therefore, interest rate shocks are likely to move stock and bond prices
in the same direction.” The first component then implies a positive correlation due to asset
valuation. The second term depends on the volatility of inflation shocks. It has a negative
contribution. When the risk of inflation is high, bonds may be less attractive due to the
erosion of purchasing power, while equities offer a better potential hedge. Finally, the last
term depends on both inflation risk and the correlation between inflation and dividend yields.
When ρπ,δ is negative, the third component is positive. Indeed, as inflation rises, dividend
yields tend to fall, creating a positive comovement between stock and bond returns. If ρπ,δ
is positive, the third component is negative, because as inflation rises, dividend yields tend
to rise. In this case, bond returns tend to fall while stock returns tend to rise.

Let us illustrate the decomposition process with the previous Monte Carlo simulations.
Results are provided in Table 11. We consider the case where the correlation between
inflation and dividend yield is positive. Assuming that ρS,B ≥ 0, the average stock-bond
correlation is 43.8% and we have the following decomposition:

43.8%︸ ︷︷ ︸
ρ̄S,B

= 40.5%︸ ︷︷ ︸
ρ̄S,B(σr)

+ −18.5%︸ ︷︷ ︸
ρ̄S,B(σπ)

+ 21.7%︸ ︷︷ ︸
ρ̄S,B(ρπ,δ,σπ)
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We verify that the interest rate component is positive and the inflation component is neg-
ative. The third component ρS,B

(
ρπ,δ, σπ

)
is positive when ρπ,δ ≤ 0 and negative when

ρπ,δ ≥ 0. Moreover, we notice that even thought contribution of ρS,B (σr) is always positive,
it tends to decrease as σπ increases. Therefore, we can have a negative comovement between
the interest rate component and the inflation component.

Table 11: Decomposition of the stock-bond correlation in the inflation-centric model

Sign Condition ρ̄S,B σ̄S,B (σr) σ̄S,B (σπ) σ̄S,B
(
ρπ,δ, σπ

)
ρπ,δ ≥ 0

ρS,B ≥ 0 43.8% 40.5% −18.5% 21.7%
ρS,B ≥ 50% 66.0% 57.2% −3.3% 12.1%

ρπ,δ ≤ 0
ρS,B ≤ 0 −50.0% 79.1% −60.7% −68.4%

ρS,B ≤ −50% −70.6% 5.2% −40.1% −35.7%

We can also consider another decomposition of σS,B :

σS,B = σ′S,B (σr) + σ′S,B (σπ)

where:

σ′S,B (σr) =

(
(1− %nr ) (1− %δ)σr − (1− %r) (1− %nr ) ρr,δσδ

(1− %r)2
(1− %δ)

)
σr ≥ 0

σ′S,B (σπ) = −
(

(1− %nπ) %π
(1− %π)

)
σ2
π +

(
(1− %nπ) %π − (1− %nr ) (1− %π)

(1− %r) (1− %π)
ρr,πσr

)
σπ

−
(

(1− %nπ) %π
(1− %π) (1− %δ)

σδ

)
ρπ,δσπ ≷ 0

The contribution of the unexpected inflation shocks can be positive if the correlation ρπ,δ

is negative and %π ≤
1

2
. This means that small adjustments to the inflation equilibrium

increase the stock-bond correlation. Therefore, we must be careful with the model as it is
very sensitive to the values of the parameters, especially the signs of the correlations, but also
to the adjustment mechanisms of the macroeconomic factors to their equilibrium. Li (2002)
complements his model with an empirical analysis. He finds empirically that uncertainty
about expected inflation increases the comovement between stock and bond returns, while
lower inflation risk decreases the stock-bond correlation. In summary, the changing nature
of the stock-bond correlation is due to the level risk of macroeconomic factors and is mainly
driven by inflation risk, more specifically expected inflation, as the effect of inflation shocks
and real interest rates is less significant.

In the previous model, the macroeconomic variables are the real interest rate and infla-
tion, while the financial variable is the dividend yield. However, the latter can be related to
economic growth and can therefore also be considered as a macroeconomic variable. Has-
seltoft (2009) and Burkhardt and Hasseltoft (2012) developed a model that explicitly refers
to growth. Indeed, they assume that real consumption growth, inflation, stock and bond
returns follow a vector autoregression process, while investor preferences are given by the
recursive Epstein-Zin utility function. They then introduce inflation regimes, in particular
two regimes:

1. A countercyclical inflation regime whose typical period is between 1965 and 2000;

2. A procyclical inflation regime, which occurs after 2000.
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Again, they show that expected inflation and inflation volatility are important drivers of
stock and bond returns. One of their key findings is that inflation reduces bond returns
when inflation is countercyclical and increases bond returns when inflation is procyclical:

“[...] inflation risk is always negatively related to stock prices but can either
decrease or increase bond prices depending on whether inflation is counter- or
procyclical. In countercyclical inflation regimes, nominal bonds are risky assets
and therefore perform badly as inflation risk increases. However, nominal bonds
provide a hedge against bad times when inflation is procyclical. This produces a
drop in nominal rates as inflation risk increases, generating positive bond returns.
We find that this asymmetry in how inflation risk impacts asset prices helps
explain why the stock-bond correlation switches sign over time.” (Burkhardt
and Hasseltoft, 2012).

These two seminal papers have led to a large body of research in which inflation dynamics
and the correlation between inflation and growth are the main drivers of the sign of the
stock-bond correlation. For example, Campbell et al. (2017) estimated a positive bond risk
premium in the 1980s and a negative bond risk premium during the dot-com crisis and
the 2008 global financial crisis. They attributed these changes to changes in the stock-bond
correlation over time due to changes in the covariance between inflation and the real economy,
specifically inflation and the output gap (Campbell et al., 2020). They also mentioned the
effect of monetary policy on the stock-bond correlation. This new explanatory factor was
investigated by Song (2017) and Baele and Van Holle (2017). They both showed that
accommodating monetary policy can be an important factor to explain the negative stock-
bond correlation:

“Negative stock-bond correlations are associated with periods of accommodating
monetary policy, but only in times of low inflation. Irrespective of the inflation
and/or growth regime, stock-bond correlations are always positive when mone-
tary policy is restrictive. Pure inflation and growth regimes instead have little
explanatory power for stock-bond correlations.” (Baele and Van Holle, 2017).

Even though empirical results have found a relationship between inflation dynamics and
changes in the sign of the stock-bond correlation, the magnitude of the change remains
puzzling, according to Duffee (2023).

2.4.2 Real-centric model

While inflation-centric models focus on inflation and are based on the nominal channel, i.e.
changes in nominal yields, real-centric models focus on macroeconomic shocks and are based
on the real channel, i.e. changes in real yields (Chernov et al., 2021; Duffee, 2023). Cher-
nov et al. (2021) considered two types of macroeconomic shocks, transitory and permanent
shocks to consumption, but Duffee (2023) explained that any macroeconomic shocks can be
considered. Some shocks can produce a positive stock-bond correlation, while other shocks
can produce a negative stock-bond correlation, and the transition from one shock regime to
another induces a time-varying evolution of the stock-bond correlation. From this perspec-
tive, real-centric models are more heterogeneous than inflation-centric models because the
underlying factors are very different from one model to another. However, they generally
shared a common framework, which is the long-run risk model of Bansal and Yaron (2004).
This model relates consumption and dividend growth rates and analyzes two main situa-
tions: persistent expected growth and fluctuating economic uncertainty. Macroeconomic
news and shocks affect investors’ market sentiment and then change asset pricing. Here are
some examples:
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• Ermolov (2022) considers two different macroeconomic shocks: demand-like and supply-
like.

• For Jones and Pyun (2023), it is the shocks to expected consumption growth that
drive the stock-bond correlation.

• Laarits (2022) explores the impact of the precautionary savings channel and risk com-
pensation on safe rates, which can explain the flight to quality behavior.

In Table 12, we report the different economic mechanisms of the stock-bond comovement
identified by Duffee (2023).

Table 12: Covariance between stock returns and bond returns (real-centric models)

Economic mechanism Sign
Positively serially correlated shocks to consumption growth rates −
Flight to quality −
Countercyclical flight to quality −
Transitory shocks to consumption +
Procyclical conditional volatility of the SDF +
Slow-moving habit +
Stochastic time rate of preference +

Source: Duffee (2023, pages 11-12).

2.4.3 Growth-inflation model

Brixton et al. (2023) assume that the stock-bond correlation is driven by growth and infla-
tion, the two main macroeconomic factors:

“[...] Positive growth news raises equity investors’ expectations of future cash
flows and, hence, equity prices. It also raises expectations for short-term interest
rates, through both the systematic response of central banks [...], so bond prices
fall. In other words, stocks and bonds have opposite-signed sensitivities to growth
news. [...] Positive inflation news directly reduces the value of bonds’ fixed
nominal cash flows, as well as raising short-term interest rate expectations, so
prices fall. Equities, in theory, give investors a claim on real cash flows, but in
practice, rising inflation has usually been associated with falling stock prices.
Stocks and bonds therefore have same-signed sensitivities to inflation news.”
(Brixton et al., 2023, page 3).

To illustrate their assumption, Brixton et al. (2023) compute the Sharpe ratio of US stocks
and bonds by dividing the period January 1972-June 2022 into up and down growth and
inflation regimes. They then report the difference between the Sharpe ratio of a particular
regime and the Sharpe ratio of the entire period. We reproduce their results in Figure 16.
They find that stocks outperform in a growth up regime, while bond returns are higher in a
growth down regime. In the case of inflation, both stocks and bonds prefer an inflation down
regime. In this approach, the stock-bond correlation is negative when the growth component
dominates, while the stock-bond correlation is positive when the inflation dimension drives
the financial market.
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Figure 16: Sharpe ratio differentials by macroeconomic environment (US, January 1972-June
2022)
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Source: Brixton et al. (2023, Exhibit 3, page 5).

The model developed by Brixton et al. (2023) assumes a two-factor model for the asset
return innovations: {

RS (t)− Et−1

[
RS (t)

]
= βS,gεg (t) + βS,πεπ (t)

RB (t)− Et−1

[
RB (t)

]
= βB,gεg (t) + βB,πεπ (t)

where εg (t) ∼ N
(

0, σ2
g

)
and επ (t) ∼ N

(
0, σ2

π

)
are the growth and inflation shocks. Accord-

ing to the previous empirical results, the sensitivity parameters satisfy βS,g ≥ 0, βS,π ≤ 0,
βB,g ≤ 0 and βB,π ≤ 0. In Appendix A.9 on page 104, we show that the stock-bond
covariance has the following expression:

σS,B = βS,gβB,g︸ ︷︷ ︸
negative

σ2
g + βS,πβB,π︸ ︷︷ ︸

positive

σ2
π +

(
βS,gβB,π + βS,πβB,g

)︸ ︷︷ ︸
positive/negative

ρg,πσgσπ

The above expression can be written as:

σS,B (t) = βgσ
2
g (t) + βπσ

2
π (t) + βg,πρg,π (t)σg (t)σπ (t)

where βg = βS,gβB,g, βπ = βS,πβB,π and βg,π = βS,gβB,π + βS,πβB,g. The stock-bond
covariance is then time-varying because growth and inflation risks change over time, as does
the growth-inflation correlation. Let us first assume that ρg,π = 0. Note that βg < 0
implies that an increase in growth risk reduces the stock-bond covariance, while an increase
in inflation risk increases the stock-bond covariance because βπ > 0. When the growth-
inflation correlation is not equal to zero, the effect of the third term depends on the signs
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of βg,π and ρg,π (t). We have:

βg,π ≥ 0⇔ βS,g ≤ β?S,g :=

∣∣∣∣∣βS,πβB,gβB,π

∣∣∣∣∣
We conclude that the effect of the third term is ambiguous. Here is a summary of the effect
of the three components on the stock-bond covariance:

Growth risk Inflation risk Growth-inflation correlation
βg βπ βS,g ≤ β?S,g βS,g ≥ β?S,g
− + − + ρg,π (t) ≤ 0
− + + − ρg,π (t) ≥ 0

Another interesting result is that the stock-bond correlation does not depend on the level of
the growth and inflation volatilities, but only on the ratio of the growth risk to the inflation
risk:

ρS,B =
βS,gβB,gϕ

2
g,π + βS,πβB,π +

(
βS,gβB,π + βS,πβB,g

)
ρg,πϕg,π√

β2
B,gϕ

2
g,π + β2

B,π + 2βB,gβB,πρg,πϕg,π
√
β2
S,gϕ

2
g,π + β2

S,π + 2βS,gβS,πρg,πϕg,π

where:
ϕg,π =

σg
σπ

To illustrate the effect of each parameter, we plot the relationship between ρS,B and one
parameter while holding the other parameters constant. We assume that the standard
parameters are βS,g = 1, βS,π = βB,g = βB,π = −1 and ϕg,π = 2. Results are shown
in Figure 66 on page 109. Most of the time, the stock-bond correlation is expected to be
negative except when βS,g or βB,g is very low. If we assume that βS,g = 0.20, the correlation
ρS,B can be positive, especially if the correlation ρg,π is positive (Figure 67 on page 110).
The impact of ϕg,π is given in Figure 68 on page 110. We observe a downward-slopping
function. The higher the growth-inflation risk ratio, the lower the stock-bond correlation.
The effect of ρg,π is more complex to analyze, as shown in Figure 69 on page 111.

Table 13: Growth volatility, inflation volatility, growth-inflation correlation (in %) and
growth-inflation ratio

Country
1960-2000 2000-2023

σg σπ ρg,π ϕg,π σg σπ ρg,π ϕg,π
France 2.3 3.9 −13.9 0.6 3.2 1.3 20.4 2.4
Germany 2.3 1.9 −13.7 1.2 2.7 1.7 14.2 1.6
Japan 2.7 5.0 −4.5 0.5 2.5 1.2 3.8 2.1
UK 2.5 5.4 −49.1 0.5 4.6 1.8 8.7 2.5
US 2.4 3.1 −45.2 0.8 2.2 1.8 35.0 1.2

Source: OECD (2024), data.oecd.org/gdp/quarterly-gdp.htm,

data.oecd.org/price/inflation-cpi.htm & Author’s calculations.

In Figures 70-73 on pages 111-113, we have calculated the 4-year rolling window estimates
of the four macroeconomic parameters (σg, σπ, ρg,π and ϕg,π) for five countries: France,
Germany, Japan, the United Kingdom and the United States. As expected, these macroe-
conomic drivers change significantly over time. This is especially true for ρg,π and ϕg,π. If
we divide the period 1965-2023 into two subperiods before and after 2000, we obtain the
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results shown in Table 13. The first period is characterized by a negative growth-inflation
correlation and a low growth-inflation risk ratio. In this case, the positive components of
the stock-bond covariance dominate the negative components and the stock-bond correlation
tends to be positive. In contrast, the period between 2000 and 2023 is characterized by a
positive growth-inflation correlation and a high growth-inflation risk ratio. In this situation,
the growth-inflation model predicts a negative correlation.

Summary and main results

Three types of models are useful for studying the stock-bond correlation:
inflation-centric models, real-centric models, and growth-inflation models. In
inflation-centric models, the key driver of the stock-bond correlation is infla-
tion, specifically expected inflation and inflation risk (or inflation innovations).
This can lead to both positive and negative stock-bond correlations, depend-
ing on the correlation between inflation, consumption growth and dividend
yields. A negative (positive) correlation between inflation and dividend yields
generally leads to a positive (negative) correlation. Modern inflation-centric
theories emphasize the importance of the dynamics between inflation and the
economy. In these approaches, countercyclical inflation is associated with a
positive stock-bond correlation. Conversely, procyclical inflation generates a
negative stock-bond correlation as bonds become hedging assets. The concept
of the inflation regime is then central, but other factors may also play a role. In
particular, accommodating monetary policy is a source of negative stock-bond
correlation.

Factors Sign
Accommodating monetary policy −
Beta-sensitivity to growth −
Consumption risk −
Flight to quality −
Growth risk −
Growth-inflation risk ratio −
Real interest rate +
Inflation risk +
Risk aversion −

The dynamics of real interest rates and the real economy are the focus of real-
centric models. In this approach, macroeconomic shocks are the drivers of the
stock-bond correlation. In most cases, these shocks lead to a negative correla-
tion, such as shocks to consumption growth or shocks to perceived risk. They
explain the flight to quality phenomenon. In this type of models, we can observe
a positive stock-bond correlation when real interest rates are high. The third
type of model is a two-factor model, where the two main risk factors are growth
uncertainty and inflation uncertainty. Growth risk pushes the stock-bond cor-
relation to negative, while inflation risk pushes the stock-bond correlation to
positive. In this approach, the correlation can be positive or negative, and its
sign depends on the ratio of growth to inflation risk and the magnitude of the
beta sensitivity of asset returns to growth and inflation shocks. A low beta
sensitivity to growth tends to produce a positive correlation, while a high beta
sensitivity to growth tends to produce a negative correlation. The table above
summarizes the impact of various macroeconomic factors.
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3 Empirical results

While the first part of the paper was dedicated to the theory of understanding the drivers
of the stock-bond correlation, in this second part we conduct an empirical and econometric
analysis in relation to the first part. As always in economics and finance, there is no single
answer. It is an illusion to try to fine-tune a one-size-fits-all model. Investor behavior
varies from period to period, market structure changes significantly over time, financial
risk becomes more complex, and so on. Using the same model to explain the stock-bond
correlation in the 1960s and the stock-bond correlation today has many limitations. Instead
of testing the various theoretical models developed in the first part and choosing the best
one, we take a different approach. We assume that each model is more or less correct and
examine the empirical implications from an investor’s perspective.

3.1 Estimation of the stock-bond correlation

3.1.1 Estimation method

Estimating the stock-bond correlation is not straightforward because it involves several
methodological choices. The first choice concerns the selection of the bond and the index
portfolio. In the case of the US, we can choose between several equity benchmarks, such as
the S&P 500 Index, the MSCI USA Index or the Russell 1000 Index. For the bond, we have
to choose the maturity (e.g., 1, 3, 5, 7, 10 or 30 years) and the type of bond (rolling asset or
generic asset). The second choice concerns the performance measure. For the stock portfolio,
the choice is between price index performance and total return performance. For bonds, the
choice is between total return and yield-to-maturity. The third choice is the frequency
of the performance measure. Do we want to look at daily, weekly or monthly returns?
Finally, the fourth choice is the estimation method itself. Three main approaches have been
studied in the academic literature. The first considers the empirical estimator based on
a rolling window, the second uses the exponentially weighted moving average estimator,
while the third assumes a GARCH model family. Each model requires the calibration of
some parameters. For example, for the empirical model we need to define the length of the
window, while for the EWMA estimator we need to set the decay parameter. In the case
of GARCH models, there are many models to choose from. For example, Andersson et al.
(2008), Wu and Lin (2014), and Chiang et al. (2015) used DCC-GARCH, GJR-GARCH,
and ADCC-GARCH, respectively.

3.1.2 US analysis

We look at monthly time series of the 10-year generic bond and the S&P 500 index provided
by Bloomberg14. We compute the empirical correlation ρ̂S,B (t) of the stock and bond
returns with a 4-year rolling window15. Results are given in Figure 17. It is remarkable that
we observe three regimes:

• The correlation is positive from 1965 to April 2001. During this period, the average
ρ̄S,B is 30.6%. It peaks in September 1997 and reaches a value of 64.7%.

• The correlation is then negative until July 2022. During this period, the average ρ̄S,B
is −33.3%. It peaks in April 2013 and reaches a value of −63.8%.

• Since August 2022, the correlation is positive again.

14The Bloomberg tickers are USGG10YR (US Generic Govt 10Yr) and SPX (S&P 500).
15Monthly bond return is calculated using the formula RB (t) = −S (t) ·

(
y (t)− y (t− 1)

)
, where S (t) is

the sensitivity of the bond at month t and y (t) is the yield-to-maturity of the bond at month t.
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Figure 17: Rolling 4-year stock-bond correlation (US, 10Y, 1965-2023, monthly frequency)
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Source: Bloomberg (2024) & Authors’ calculations.

Figure 18: Kendall correlation between ρ̂S,B (t,m) and ρ̂S,B (t, 10Y) (US, 2065-2023,
monthly frequency)
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Source: Bloomberg (2024) & Authors’ calculations.
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The previous break dates are underestimated because the estimated correlation is a long-
term estimate based on four years of historical data. Therefore, the turning point is certainly
earlier16. The estimation of the correlation depends on several parameters. For example,
it depends on the maturity of the generic bond. In Figure 75 on page 114, we show the
evolution of ρ̂S,B (t) when we consider the 3-month generic bond. We can observe a period
before 2000 when the stock-bond correlation is negative and a period after 2000 when the
stock-bond correlation is positive. Thus, the results obtained with the 3-month maturity
are not always consistent with those obtained with the 10-year maturity. On the contrary,
we observe a strong coherence between the 10-year and the 30-year maturities17 (Figure 76
on page 114).

Let ρ̂S,B (t,m) be the correlation for a given maturity m of the generic bond. Figure
18 shows the Kendall correlation between ρ̂S,B (t,m) and ρ̂S,B (t, 10Y) for several values of
m. This correlation is greater than 75% when m is greater than or equal to 2 years. For
shorter maturities, the correlation is lower. It is even negative for the one-month generic
bond. Clearly, we need to distinguish between the short part of the yield curve and the rest
of the yield curve. The reason is that the slope of the yield curve can be inverted and the
correlation between stocks and bonds can change from one period to another. Therefore, in
the following, we assume that the estimated stock-bond correlation with the 10-year generic
bond is the benchmark.

The calculation of the correlation is also sensitive to the frequency and the estimation
method. To illustrate this, we look at daily returns and show the rolling 4-year stock-bond
correlation in Figure 19. The overall picture remains the same. Nevertheless, we generally
find that the daily correlation is lower than the monthly correlation in more than 70% of
the observations (Figure 77 on page 115). If we consider only the cases where the monthly
correlation is positive, this frequency is more than 75%. Another popular estimation method
is to use an exponentially-weighted moving average correlation. In this case, it depends on
the decay factor λ, which controls the degree of weighting decrease18. When λ is equal to
one, we get the traditional empirical estimator. When λ is less than one, the estimator
gives more weight on the most recent period and we can obtain a very reactive short-term
estimator when λ ≤ 0.95. Figure 20 shows the EWMA stock-bond correlation when λ is set
to 0.96, which implies that the half-life of the estimator is 25 days. We observe very rapid
reversals when the correlation is measured at a daily frequency. The difference between the
daily and monthly behavior is the result of the two main motivations for holding US bonds.
On the one hand, investors want to capture a long-term bond premium. On the other hand,
investors want to protect their equity exposure in the short run. These two states (risk
premium and flight to quality) do not operate at the same frequency.

We may wonder if the calculation of the stock-bond correlation is different if we consider
another equity investment universe. Table 14 shows the Kendall correlation matrix for 8
equity indices19. We note that the results are very consistent between the S&P 500 Index,

16Later, we obtain a more precise estimate of the turning point when we use time series with a higher
frequency (daily and weekly).

17However, there are some significant differences between 2000 and 2016. Between 2001 and 2006, the
stock-bond correlation for the 30-year bond is lower than for the 10-year bond, while it is higher between
2013 and 2015.

18The formula of the EWMA stock-bond correlation is:

ρ̂S,B (t) =

∑m
s=1 ωs

(
RS (t− s)−

∑m
s=1 ωsRS (t− s)

) (
RB (t− s)−

∑m
s=1 ωsRB (t− s)

)√∑m
s=1 ωs

(
RS (t− s)−

∑m
s=1 ωsRS (t− s)

)2∑m
s=1 ωs

(
RB (t− s)−

∑m
s=1 ωsRB (t− s)

)2
where ωs = (1− λ)λs−1/ (1− λm).

19In Figures 78 and 79 on page 115, we also show the scatterplot of the stock-bond correlation using two
different stock indices. We can see that the results can be very different from one stock index to another.
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Figure 19: Rolling 4-year stock-bond correlation (US, 10Y, 1965-2023, daily frequency)
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Figure 20: EWMA stock-bond correlation (US, 10Y, 1965-2023, daily frequency, λ = 0.96)
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Table 14: Kendall correlation matrix of the stock-bond correlation (in %)

# Index (1) (2) (3) (4) (5) (6) (7) (8)
(1) S&P 500 100.0 82.4 78.1 88.6 98.2 98.0 83.6 97.2
(2) Nasdaq 82.4 100.0 89.3 77.1 83.1 83.4 83.2 83.7
(3) Nasdaq 100 78.1 89.3 100.0 69.7 78.6 78.0 72.5 77.7
(4) Dow Jones 88.6 77.1 69.7 100.0 88.8 88.8 83.9 89.0
(5) MSCI USA 98.2 83.1 78.6 88.8 100.0 98.1 83.8 97.4
(6) Russell 1000 98.0 83.4 78.0 88.8 98.1 100.0 85.0 98.8
(7) Russell 2000 83.6 83.2 72.5 83.9 83.8 85.0 100.0 86.0
(8) Russell 3000 97.2 83.7 77.7 89.0 97.4 98.8 86.0 100.0

Source: Datastream (2024) & Authors’ calculations.

the MSCI USA Index, and the Russell 1000 Index. However, the stock-bond correlation
profile changes when we use the Nasdaq 100 Index or the Russell 2000 Index instead of the
S&P 500 Index. The former is heavily weighted toward technology companies, while the
Russell 2000 Index measures the performance of small-cap US companies. These empirical
results support the theoretical results obtained in Section 2.3 on page 21, which show that
the stock-bond correlation is sensitive to the equity portfolio construction, in particular to
the sector and factor weights.

3.1.3 Other countries

On pages 117 to 122, we estimated the stock-bond correlation for a variety of countries,
including developed, developing, emerging, European, American, and Asian nations. We
note that the patterns observed for the United States are far from being common to the
other countries. In fact, only Canada has a stock-bond correlation behavior that is in phase
with the US cycle (Figure 21). Looking at the other developed countries, we generally
observe a reversal of the positive correlation during the dot-com crisis, as in the US. In
Japan, however, the reversal occurs earlier, in 1994. Another big difference is the reversal
of the negative stock-bond correlation, which happens between 2016 and 2017 for many
developed countries, including Australia, France, Germany and the UK (Figure 22). We
also note that the European debt crisis has a strong impact on the southern European
countries: Greece, Italy, Portugal and Spain (Figure 23). Indeed, the stock-bond correlation
for these countries turns positive at the onset of the European debt crisis and has remained
positive to date. The case of Ireland is more complex, with a correlation close to zero in
the 10 years following the European debt crisis. Developing and emerging countries present
a unique case. We observe two distinct clusters: one where the stock-bond correlation is
consistently positive, and another where it can be either positive or negative. For example,
the stock-bond correlation is systematically positive for Brazil, South Africa and Turkey
(Figure 24), while the stock-bond correlation has been negative in some periods for China,
India and Singapore (Figure 25). One reason for this dichotomy is the impact of sovereign
credit risk and currency risk on stock prices. As we have seen in Section 2, the stock-bond
correlation rises with the credit risk of the country. Therefore, the normal situation for
emerging countries is to observe a positive stock-bond correlation. In the case of some
countries with strong economies, the credit risk component has become less important. It
is also interesting to note that these empirical results are coherent with the status of the
currency in foreign exchange markets (Baku et al., 2019). All these results show that the US-
centric view of the stock-bond correlation that we find among academics and professionals
cannot be generalized to other countries.
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Figure 21: Rolling 4-year stock-bond correlation (Australia, Canada, Japan)
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Figure 22: Rolling 4-year stock-bond correlation (France, Germany, UK)
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Figure 23: Rolling 4-year stock-bond correlation (Italy, Spain, Switzerland)
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Figure 24: Rolling 4-year stock-bond correlation (Brazil, South Africa, Turkey)
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Figure 25: Rolling 4-year stock-bond correlation (China, India, Singapore)
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Summary and main results

It is generally accepted that the stock-bond correlation was positive between
1965 and 2000 and has been negative since then, except for the last years. This
view is shared by academics and professionals. We confirm these empirical
patterns when we focus on the North American market (US and Canada), but
it is not true for other regions and countries. In Europe, the most recent reversal
occurred at the beginning of 2015 for countries with low credit risk (France,
Germany, UK), while the stock-bond correlation has been positive since the
European debt crisis for countries with high credit risk (Greece, Italy, Portugal,
Spain). In the case of developing countries, we find two groups: a group of
countries for which the stock-bond correlation is systematically positive and
a group of countries for which the stock-bond correlation can change sign. In
this case, the factor that determines the sign of the correlation depends on the
country risk perceived by the market through credit risk and currency risk.
Below is the average stock-bond correlation for the period 2014-2023:

AUS 16.9 AUT 8.0 BEL 22.7 BRA 58.3
BGR 11.9 CAN 8.5 CHL 16.2 CHN −9.5
COL 25.8 CZE −1.7 DNK 31.4 FIN 28.3
FRA 25.5 DEU 17.1 GRC 32.0 HKG 29.2
HUN 26.5 IND 3.8 IDN 49.8 IRL 27.2
ISR 32.5 ITA 36.5 JPN −17.7 KOR 22.7
MYS 29.5 MEX 29.6 NLD 40.3 NZL 42.1
NOR −28.2 PER 41.8 PHL 41.2 POL 21.0
PRT 27.7 ROU 37.0 RUS −1.0 SGP 5.4
ZAF 47.8 ESP 18.7 SWE 18.1 CHE 16.5
TWN −4.4 TUR 31.2 GBR 12.8 USA 4.6
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3.2 Risk premium analysis

3.2.1 US analysis

Global risk premium Using the results obtained in Section 2.1.4 on page 8, we calculate
the equity and bond risk premia assuming that the market portfolio has a Sharpe ratio
of 30%. At each date t, we estimate σS (t), σB (t), and ρS,B (t) using a three-year rolling
window, and calculate the equity allocation in the market portfolio as follows:

xS (t) =
MVS (t)

MVS (t) + MVB (t)

where MVS (t) and MVB (t) are the market values of all US stocks and US Treasury bonds
with maturities greater than one year. The bond allocation in the market portfolio is then
xB (t) = 1 − xS (t). To calculate all of these metrics, we use Datastream indices: US DS
Market Index (TOTMKUS) and US Total All Lives DS Govt Index (AUSGVAL). The equity
and bond risk premia priced by the market are:

π̃S (t) = π̃
(var)
S (t) + π̃

(cov)
S (t)

=
SR
(
x (t) | r

)
xS (t)σ2

S (t)

σ
(
x (t)

) +
SR
(
x (t) | r

)
xB (t) ρS,B (t)σS (t)σB (t)

σ
(
x (t)

) (9)

and:

π̃B (t) = π̃
(var)
B (t) + π̃

(cov)
B (t)

=
SR
(
x (t) | r

)
xB (t)σ2

B (t)

σ
(
x (t)

) +
SR
(
x (t) | r

)
xS (t) ρS,B (t)σS (t)σB (t)

σ
(
x (t)

) (10)

where:

σ
(
x (t)

)
=
√
x2
S (t)σ2

S (t) + x2
B (t)σ2

B (t) + 2ρS,B (t)xS (t)xB (t)σS (t)σB (t)

The results are shown in Figure 26. We see that the stock-bond allocation has evolved
significantly over the past 50 years. The equity allocation was 70% in the early 1980s and
then fell to 60% in the mid-1980s. It then rose to 90% during the dot-com bubble and
remained high at 85% until the global financial crisis. After the crisis, it stabilized between
70% and 80%. The equity risk premium ranged from 2.7% to 7.3%, with an average of
4.6%, while the bond risk premium ranged from −65 bps to 190 bps, with an average of 22
bps. As expected by the theory of the consumption-based model (Lucas, 1978; Cochrane,
2001), the equity risk premium has increased in each bad period, i.e. it is a skewness risk
premium (Roncalli, 2017). The behavior of the bond risk premium is different. It decreases
from 1980 to 2005 to become negative between 2000 and 2020. Therefore, the nature of US
bonds changes over this long period. While they were performance assets before 2000, they
become hedging assets after the dot-com bubble. Only recently have they returned to their
performance asset status. Figure 27 shows the decomposition of the risk premium into its
variance and covariance components. While the variance risk premium has the same impact
on equity and bond risk premia, the covariance risk premium does not. The latter has a
small impact on the equity risk premium, as its contribution is less than 5%. The story is
different for the bond risk premium. On average, the covariance risk premium explains 68%
of the bond risk premium and can reach a level of 90% in some periods.

The main drivers of the bond risk premium are then the bond volatility and the stock-
bond correlation. Let us compute the risk premia priced in by the market when we assume
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Figure 26: US stock and bond risk premia
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Figure 27: Variance and covariance components of US equity and bond risk premia
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Figure 28: US bond risk premium under different hypothesis on the stock-bond correlation
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Figure 29: US equity risk premium under different hypothesis on the stock-bond correlation
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different values of ρS,B (t). Results are given in Figures 28 and 29. We find that the
stock-bond correlation has a small effect on the equity risk premium, especially since 1995.
In contrast, the effect on the bond risk premium is massive. While the average bond risk
premium was 22 bps with the empirical stock-bond correlation, it is −51 bps when ρS,B (t) =
−50% and +86 bps when ρS,B (t) = +50%. Again, we see the importance of the stock-bond
correlation on the bond risk premium.

Implied stock-bond correlation Given a level π?B (t) of the bond risk premium, we can
calculate the corresponding implied stock-bond correlation ρ̃S,B (t). Figure 30 shows the
evolution of ρ̃S,B (t) when π?B (t) is equal to 100 bps. As expected, the implied stock-bond
correlation is positive. Since 1990, it is above 50%. In Figure 31, we plot the evolution of
the break-even stock-bond correlation when π?B (t) is equal to 0 bps. Contrary to some ideas
we find in the market, a positive bond risk premium requires the stock-bond correlation to
be above a threshold. Looking at the period 1997-2023, we get the following result:

πB (t) ≥ 0⇔ ρS,B (t) ≥ −10%

Figure 30: US implied stock-bond correlation when π?B (t) = 100 bps
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Source: Datastream (2024) & Authors’ calculations.

Term risk premium The previous estimate of the bond risk premium does not take
into account the term structure of interest rates. Therefore, π̂B (t) can be considered as an
average of the different maturities issued by the US government. However, we can split the
total market value of US bonds by considering several maturity bands. Figure 32 shows the
evolution of the implied bond risk premium π̂B (t;m) for the maturity band m. As expected,
we check that:

m2 > m1 ⇒
∣∣π̂B (t;m2)

∣∣ ≥ ∣∣π̂B (t;m1)
∣∣
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Figure 31: US break-even stock-bond correlation
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Figure 32: US term structure of bond risk premia
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However, this inequality does not hold if we consider nominal values rather than absolute
values. Thus, we are faced with the paradox that the implied bond risk premium is higher
for short-term maturities than for long-term maturities when stock-bond correlations are
negative. And this result does not require an inverted yield curve. This paradox is easy to
understand. Indeed, we recall that the covariance risk premium for bonds is:

π̃
(cov)
B (t) =

SR
(
x (t) | r

)
xS (t)σS (t)

σ
(
x (t)

) · ρS,B (t) · σB (t)

Since bond volatility is an increasing function of bond maturity, we deduce that the absolute
value of the bond premium is an increasing function of bond maturity. The term structure
of bond premia is respected when the stock-bond correlation is positive, but it is inverted
when the stock-bond correlation is negative. This paradox shows that a negative stock-
bond correlation is not a natural situation. It can only occur during short-term periods
corresponding to a flight-to-quality episode. When a negative stock-bond correlation persists
for a long time, it clearly indicates that investors are very risk-averse and use bonds as a
hedge of the stock market.

Considering the credit asset class Let us now introduce other asset classes in the
market portfolio. We denote them by the letter C. Let

(
xS (t) , xB (t) , xC (t)

)
be the

composition of the market portfolio at time t. In this case, the bond premium is π̃B (t) =

π̃
(var)
B (t) + π̃

(cov)
B (t) where π̃

(var)
B (t) =

SR
(
x (t) | r

)
σ
(
x (t)

) · xB (t) · σ2
B (t) and:

π̃
(cov)
B (t) =

SR
(
x (t) | r

)
σ
(
x (t)

) ·

xS (t) ρS,B (t)σS (t)︸ ︷︷ ︸
Equity

+ xC (t) ρC,B (t)σC (t)︸ ︷︷ ︸
Other asset classes

 · σB (t)

Note that the formula for the variance premium is the same, but the covariance premium
has changed and depends on the correlation between the returns on government bonds and
the returns on asset class C. In Figure 33, in addition to the US equity and US government
bond markets, we consider the US corporate bond market and divide it into investment
grade (IG) and high yield (HY) bonds20. The empirical results are consistent with the
theory, since the following inequalities are systematically verified:

π̃Gov (t) ≤ π̃IG (t) ≤ π̃HY (t)

The ex-ante risk premium is higher for high yield bonds, then for investment grade bonds
and finally for government bonds. The main reason is that we observe an ordering between
the stock-bond correlations, as shown in Figure 34. Indeed, we have:

ρS,Gov (t) ≤ ρS,IG (t) ≤ ρS,HY (t)

Figure 35 shows the boxplot of the stock-bond correlation when considering credit rating
classes of corporate bonds. We verify the following inequality ordering:

ρ̄S,Gov (t) ≤ ρ̄S,AAA (t) ≤ ρ̄S,AA (t) ≤ ρ̄S,A (t) ≤ ρ̄S,BBB (t)︸ ︷︷ ︸
Corp.IG

≤ ρ̄S,BB (t) ≤ ρ̄S,B (t) ≤ ρ̄S,CCC (t)︸ ︷︷ ︸
Corp. HY

This confirms that the stock-bond correlation highly depends on the credit risk of the coun-
try. It can only be negative if the market perceives government bonds as a safe haven
asset. Again, this shows that the negative stock-bond correlation is mainly explained by
fly-to-quality behavior.

20We use the ICE BofA US Corporate Index (C0AO) and ICE BofA US High Yield Index (H0A0).

53



Stock-Bond Correlation: Theory & Empirical Results

Figure 33: US Gov., Corp. IG and Corp. HY bond risk premia
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Figure 34: US stock-bond correlation (Gov., Corp. IG and Corp. HY)
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Figure 35: Boxplot of the US stock-bond correlation by credit rating (2000-2023)
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3.2.2 Other countries

Figures 91-100 on pages 122 to 127 show the equity and bond risk premia priced in by the
market for various countries. These results confirm those obtained for the United States.
The bond risk premium can be negative (and is generally negative) when the stock-bond
correlation is negative. In Figure 36, we focus on the period of the European debt crisis.
It is interesting to note the jump in the Greek bond premium in 2010. The Greek bond
premium reached a peak in November 2012 and coincide with the agreement with the IMF.
The second country to see an increase in its bond risk premium is Portugal, followed by Italy
and Spain. Conversely, the impact of the European debt crisis has little effect on the implied
bond risk premium of France and Germany. These results are counterintuitive given the risk
sentiment toward these two countries at the time. However, they can be easily understood
as the bonds of these two countries became the safe haven assets in the European Union.

Let us now look at emerging markets. The evolution of the bond risk premium is shown
in Figure 37. The reader may be surprised by the size of these risk premia. One reason
is that we use the same Sharpe ratio of 30% for all countries. We know that investors
in EM countries require a higher Sharpe ratio because they do not have the same risk
appetite and utility function as investors in DM countries. The second reason is that the
estimates are for an investment in local currency bonds, not hard currency. In this case, the
perception of the country’s credit risk is different. This reason is the main factor explaining
the relatively low level of EM bond risk premia. More interesting is the ranking of bond
risk premia among countries. At the end of December 2023, we have the following order:
Turkey, South Africa, Brazil, Malaysia, India, Singapore and China. We recall that the
implied risk premium corresponds to the expected return required by the investor to invest
in the asset. Therefore, we conclude that local investors have less confidence in Turkish,
South African and Brazilian government bonds than in Malaysian, Indian, Singaporean and
Chinese government bonds.
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Figure 36: Bond risk premium during the European debt crisis
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Figure 37: Bond risk premium of EM countries (local currency)
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Table 15: Average risk premia in % as priced in by the market (local currency)

Country
Equity Bond

1990s 2000s 2010s 2020s 1990s 2000s 2010s 2020s
Australia 4.76 4.17 4.56 4.72 0.66 −0.18 −0.18 0.28
Brazil 6.30 6.16 0.56 0.82
Canada 3.49 4.79 4.28 4.53 0.94 −0.06 −0.23 0.10
China 7.19 5.73 0.05 −0.06
France 5.00 5.96 5.57 5.79 0.82 −0.24 0.04 0.41
Germany 4.79 6.11 5.46 5.41 0.47 −0.19 −0.20 0.13
Greece 6.55 9.68 7.06 0.11 6.93 2.35
India 5.89 5.52 0.29 0.30
Italy 6.70 5.66 6.24 5.57 0.91 0.03 1.58 2.13
Japan 5.74 6.32 6.36 4.80 0.09 −0.14 −0.04 0.06
Malaysia 3.23 3.59 0.20 0.45
Poland 5.65 6.05 0.33 0.31
Portugal 4.72 5.24 4.47 0.03 2.76 1.23
Singapore 3.54 4.32 0.11 −0.04
South Africa 5.13 6.20 0.81 1.74
Spain 5.44 5.60 6.42 5.21 0.75 −0.13 1.11 0.95
Switzerland 4.39 5.41 4.69 4.18 0.16 −0.33 −0.28 0.10
Turkey 6.90 8.40 1.33 1.76
UK 4.12 4.96 4.89 4.45 0.84 −0.23 −0.10 1.11
US 3.96 5.11 4.58 5.29 0.69 −0.22 −0.35 0.01

Source: Datastream (2024) & Authors’ calculations.

In Table 15, we report the average equity and risk premia as priced in by the market for
the different countries and different decades. For developed countries, we also report the
implied risk premia in 2023 in Table 16. We distinguish between different maturities of gov-
ernment bonds. As expected from theory, we find that the risk premium on bonds increases
with maturity. However, these results are valid because most stock-bond correlations are
positive in 2023. All these findings show the importance of the stock-bond risk premium and
its relationship with the bond risk premium. Setting a stock-bond correlation to be negative
has then a high impact when designing a strategic asset allocation (see Section 3.5.3 on page
78).

Table 16: 2023 risk premia in % as priced in by the market

Country Equity 1-3 years 3-5 years 5-7 years 7-10 years 10+ years
Australia 4.27 0.19 0.33 0.56 0.85 1.19
Canada 4.43 0.05 0.13 0.24 0.48 0.80
France 5.77 0.13 0.31 0.52 0.73 1.16
Germany 5.40 0.11 0.34 0.52 0.75 1.10
Italy 5.12 0.58 1.24 1.81 2.41 3.57
Japan 4.57 0.01 0.03 0.08 0.12 0.26
Portugal 4.57 0.28 0.82 1.32 1.83 2.60
Spain 4.78 0.28 0.68 1.03 1.49 2.12
Switzerland 4.23 0.10 0.27 0.40 0.68 0.93
UK 3.94 0.40 0.82 1.17 1.62 3.69
US 5.53 0.12 0.34 0.54 0.75 0.99

Source: Datastream (2024) & Authors’ calculations.
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Summary and main results

In the United States, the equity risk premium priced in by the market varies
widely between 1983 and 2023, ranging from 2.7% to 7.3%. We observe four
similar cycles over this period. The bond risk premium has also varied widely,
from −65 bps to 190 bps, but unlike the equity risk premium, it does not exhibit
cyclical behavior. The level of the implied bond risk premium highly depends on
the stock-bond correlation, while this latter has little influence on the equity
risk premium. This is because, on average, about 70% of the US bond risk
premium is explained by the covariance risk premium, while the variance risk
premium is the main component of the US equity risk premium, accounting
for about 95%. As expected, we find the effects of maturity and credit rating
on the bond risk premium. These different results also hold for the other
countries. In local currency terms, there is no significant difference between
developed and emerging market government bonds. This means that local
investors do not demand a higher risk premium when investing in EM bonds
than in DM bonds. Nevertheless, we observe a significant difference between
DM and EM bonds. Since the stock-bond correlation is generally positive in
EM markets, the bond risk premium is generally positive. In DM markets, the
implied bond risk premium can be negative due to the impact of the stock-bond
correlation through the covariance risk premium component. This again shows
that a negative long-term stock-bond correlation is not a normal situation,
as investors are willing to accept a negative bond risk premium. In the long
run, this is not sustainable, especially from the perspective of a strategic asset
allocation framework.

3.3 How the structure of the stock market affects the stock-bond
correlation

3.3.1 Sectors

We have already seen that the structure of the stock index has a strong impact on the stock-
bond correlation. We can therefore see that the stock-bond correlation may be different if
we look at a sub-sample of the stock market universe. A natural way to sample the market
is to look at sectors. Using the S&P 500 sector indices based on the GICS classification, we
have calculated the stock-bond correlation for each sector. The first thing we notice is that
the range of the stock-bond correlation calculated using the sector indices is wide. In Figure
38, we show the minimum and maximum values of the 11 correlations for each date. The
difference is never less than 25%. The sector range peaks at the beginning of 2018 with a
difference of 125% between the maximum and minimum correlation (see Figure 101 on page
127).

In Table 17, we give the average difference of ρSector
S,B − ρIndex

S,B for different periods, where

ρSector
S,B is the stock-bond correlation calculated with the S&P 500 sector index and ρIndex

S,B

is the traditional stock-bond correlation calculated with the S&P 500 cap-weighted index.
We find that the stock-bond correlation is systematically higher for real estate and utilities.
This is also the case for communication services, consumer staples and health care, but
only since 2000, when the stock-bond correlation turns negative. The case of utilities is
particularly interesting because there are very few periods when we observe a negative
correlation. Most of the time, the correlation between utilities and bonds is positive. These
results are consistent because sectors with stable cash flows and bond-like behavior tend
to have higher correlations, and inflation-resistant sectors tend to have higher correlations
(Brixton et al., 2023).
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Figure 38: Sector range of US stock-bond correlation
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Figure 39: US stock-bond correlation (cap-weighted vs. utilities)
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Source: Datastream (2024) & Authors’ calculations.
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Table 17: Difference ρSector
S,B − ρIndex

S,B in % (S&P 500)

Sector
1995 2000 2005 2010 2015 2020 1995
1999 2004 2009 2014 2019 2023 2003

Communication Services −0.9 7.8 12.3 34.6 36.2 13.7 17.4
Consumer Discretionary −21.4 −6.9 2.9 5.8 2.0 9.2 −1.7

Consumer Staples −12.8 14.2 19.6 26.2 43.7 10.6 17.1
Energy −11.7 13.8 9.5 −1.1 −3.0 −26.2 −2.5

Financials 3.1 2.7 8.1 0.7 −23.9 −21.6 −4.7
Health Care −14.5 20.7 19.5 16.5 18.8 9.8 11.9
Industrials −8.6 −3.1 −4.4 3.8 −2.3 −10.5 −4.0

Information Technology −27.3 2.7 1.0 −5.0 5.1 14.9 −1.9
Materials −25.3 1.9 −9.2 1.0 −1.7 −5.0 −6.4

Real Estate 23.0 16.1 71.1 24.4 34.5
Utilities 18.7 16.5 42.4 35.9 82.4 21.4 36.7

Remark 5. These sector results also apply to the MSCI EMU Index and the MSCI Europe
Index (see Tables 30 and 31 on page 137).

3.3.2 Factors

We do the same exercise with equity factors21. Results are given in Table 18. As expected,
the low volatility factor has the highest correlation with bonds (Cazalet et al., 2014; Stagnol
et al., 2021). On average, we observe a difference of +20% with respect to the traditional
stock-bond correlation over the period 1995-2003. Between 2015 and 2019, the difference is
even more greater than +40%. We also find a higher correlation for high dividend and quality
factors, although it is more modest for the latter. However, the lower correlation observed
between 2020 and 2023 for the quality factor is puzzling. In theory, growth stocks are more
correlated than value stocks. We confirm these patterns on average, but the relationship is
not stable and is mainly due to the period 2015-2023. More surprising are the results for
the momentum factor, which has a higher correlation than the overall market.

Table 18: Difference ρFactor
S,B − ρIndex

S,B in % (S&P 500)

Period
Pure Pure High Low Momen- High Qua-
Value Growth beta Vol. tum Div. lity

1995-1999 −4.1 −5.5 −8.3 6.2 5.0 0.6 8.4
2000-2004 7.3 −2.8 −4.6 14.2 11.8 7.9 8.5
2005-2009 7.7 3.8 3.3 16.9 0.6 16.0 1.9
2010-2014 −1.0 −2.0 −5.3 18.1 −3.2 16.1 3.4
2015-2019 −13.6 7.9 −15.2 43.6 9.7 33.3 3.7
2020-2023 −27.4 9.2 −12.5 6.0 10.2 −22.1 2.8
2000-2023 −4.6 2.8 −6.7 19.9 5.6 11.1 4.2

Remark 6. These factor results between two regions are less consistent than the sector
results. For instance, Table 32 on page 138 shows the results for the MSCI Europe. One
reason could be that the sector allocations in each factor differ from region to region. Another
reason could be the country bias due to currency risk.

21We use the following S&P indices: S&P 500/CITIGROUP Pure Value Index, S&P 500/CITIGROUP
Pure Growth Index, S&P 500 High Beta Index, S&P 500 Low Volatility Index, S&P 500 Momentum Index,
S&P 500 High Dividend Index and S&P 500 Quality Index.
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Figure 40: US stock-bond correlation (cap-weighted vs. low volatility)
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Source: Datastream (2024) & Authors’ calculations.

3.3.3 Individual stocks

As shown in Section 2.3 on page 21, the aggregate stock-bond correlation computed for a
stock index differs from the individual stock-bond correlations of the components of the
stock index. For example, in Figure 41 we compare the stock-bond correlation computed for
the S&P 500 Index with the range of individual stock-bond correlations. If we compute the
confidence interval at the α level, we obtain Figure 42. We see that the aggregate stock-bond
correlation can be outside the confidence interval of the individual correlations. The reason
is the leverage effect due to the diversification of the portfolio, as shown in Figure 43. We
obtain an average leverage factor of 2.06 with a standard deviation of 0.35. These empirical
results confirm the previous theoretical results. However, leverage cannot explain the sign of
the aggregate stock-bond correlation. In each period, we can find stocks that have positive
and negative correlations, and the sign of the aggregate correlation depends strongly on the
frequency of positive and negative correlations. Again, market structure does not seem to
explain why more stocks are positively correlated with the US 10-year bond.

3.3.4 Equity duration

The price of a financial asset is the expected value of the stochastic discounted value of the
cash flow leg. Under some assumptions (Roncalli, 2020, chapter 3), we can show that:

P (t) =
∑
tm>t

B (t, tm)E
[
CF (tm) | Ft

]
where Ft is the filtration under the risk-neutral probability measure Q, B (t, tm) is the
discount factor for the maturity date tm and

{
CF (tm) , tm ≥ t

}
is the stream of stochastic
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Figure 41: Confidence interval of the individual stock-bond correlation (US, monthly return,
α = 0%)
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Figure 42: Confidence interval of the individual stock-bond correlation (US, monthly return,
α = 25%)
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Figure 43: Average stock-bond correlation vs. aggregate stock-bond correlation (US,
monthly return)
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cash flows. The duration is defined as the time weighted average of the expected cash flows:

D (t) =
∑
tm>t

(tm − t)B (t, tm)E
[
CF (tm) | Ft

]
By assuming a flat yield curve, we can show that:

∂ P (t)

∂ r (t)
= −P (t)

D (t)

1 + r (t)

where r (t) is the short-term interest rate. The impact of the yield curve on the price changes
is then:

∆P (t)

P (t)
= −D̃ (t) ∆r (t)

where D̃ (t) =
D (t)

1 + r (t)
is the modified duration. We can use the previous framework for

both bonds and equities. In the case of a bond, we have22 E
[
CF (tm) | Ft

]
= C (tm) S (t, tm)

where tm is the coupon date, C (tm) is the coupon value (including the notional amount to
be repaid at maturity), and S (t, tm) is the issuer’s survival function (because of the credit
risk). In the case of a stock, the expected cash flows are the projected earnings of the
company that will be distributed to shareholders, and the pricing formula corresponds to
the dividend discount model (DDM). If we assume that the main risk factor is the yield
curve, we obtain the following first-order approximation:

cov

(
∆PS (t)

PS (t)
,

∆PB (t)

PB (t)

)
≈ D̃S (t) D̃B (t)σ2

r (t)

22We assume that the recovery rate in the event of default is zero.
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The DDM model then implies that the stock-bond correlation is positive and depends mainly
on interest rate volatility and equity duration, since bond duration does not change much.
However, equity risk factors cannot be reduced to the yield curve factor, and the previous
approximation is not generally true.

The previous analysis highlights the role of equity duration in the stock-bond correlation.
This confirms the empirical results we have obtained with sector and factor analysis. Port-
folios with long-duration stocks tend to have higher stock-bond correlations than portfolios
with short-duration stocks. One of the difficulties is the calculation of equity duration, since
it involves the series of projected earnings. However, we can obtain some approximate for-
mulas that do not require the forecast of companies’ cash flows. The Gordon growth model
assumes that:

P (t) =

∞∑
tm=t+1

CF (tm)(
1 + r (t)

)(tm−t)
where CF (tm) =

(
1 + g (t)

)(tm−t)
CF (t) and g (t) is the growth rate. We deduce that:

P (t) = CF (t)

∞∑
tm=t+1

(
1 + g (t)

)(tm−t)(
1 + r (t)

)(tm−t)
= CF (t)

1 + g (t)

r (t)− g (t)

=
CF (t+ 1)

r (t)− g (t)

If the discount rate r (t) and the growth rate g (t) are independent, we obtain23:

D̃ (t) = − 1

P (t)
· ∂ P (t)

∂ r (t)

=
1

r (t)− g (t)

=
1

DY (t)
(12)

where DY (t) =
CF (t+ 1)

P (t)
is the dividend to price ratio or dividend yield. Figure 44

shows the evolution of the equity duration of the S&P 500 Index. The Kendall correlation
between the stock-bond correlation and equity duration is zero. If we use the change in
equity duration instead of its contemporaneous level, the Kendall correlation increases. For
example, it is 16% and 33% for the one-year and three-year changes, respectively. If we
calculate the equity duration with Equation (11), the results are different (see Figure 104 on
page 129). The Kendall correlation is equal to zero. So, the relationship between the equity
duration and the stock-bond correlation is highly sensitive to the computation of D̃ (t).

23Otherwise, we have the following general formula:

D̃ (t) =
1

r (t)− g (t)

(
1−

∂ g (t)

∂ r (t)

)
(11)
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Figure 44: Equity duration in year (US, Equation 12)
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Summary and main results

As shown in the theoretical part, the stock-bond correlation depends on the
composition of the equity portfolio. Therefore, we naturally observe differ-
ences when we look at a subset of the market rather than the global market.
This is true when we analyze the stock-bond correlation at the sector level
or when we use equity factors. For example, real estate and utilities have a
higher correlation than the overall market. The same is true for communica-
tion services, consumer staples and health care, but to a lesser extent. On the
other hand, industrials and materials have a lower correlation than the overall
market. The case of financials is more complex, as the correlation was higher
before the 2008 global financial crisis and lower after. Among equity factors,
value stocks have a more negative correlation with bonds, while growth, low
volatility, high dividend and quality stocks have a more positive correlation
with bonds. We confirm the theoretical results on the relationship between
individual and aggregate stock-bond correlations. On average, the stock-bond
correlation calculated for the S&P 500 Index is twice as high as the average
stock-bond correlation calculated for the individual stocks that make up the
S&P 500 Index. The multiplication factor depends on the concentration of the
stock market because diversification reduces variance risk faster than covari-
ance risk. We also examine the empirical relationship between the stock-bond
correlation and the equity duration of the stock market. Defining equity du-
ration as the inverse of the dividend yield, we observe a positive relationship
between the level of the stock-bond correlation and the change in equity dura-
tion. That is, an increase in equity duration tends to increase the stock-bond
correlation. This result is consistent with the findings for growth stocks, but
puzzling for bond-like equity portfolios such as the low-volatility risk factor or
the utilities sector. However, the relationship between stock-bond correlation
and equity duration is not robust and disappears when we consider other ways
of calculating the latter.
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3.4 Stock-bond correlation and the macroeconomy

We now examine the relationship between the stock-bond correlation and macroeconomic
variables. As we have seen, growth and inflation are the most important factors from a
theoretical point of view. We also include the interest rate component because it affects
equity duration, is one of the two main risk factors in the dividend discount model, and is
the central variable in real-centric models.

3.4.1 Yield factors

We have several choices for the interest rate factor. If we believe that the bond carry has an
impact on the stock-bond correlation, then the ten-year bond yield to maturity y (t) is the
right choice. If we believe that the interest rate channel is mainly driven by the discount
factor, we can use a short-term interest rate such as the fed funds rate r (t). However, if we
are more interested in the effect of monetary policy, it is better to use the target rate r? (t)
set by the Federal Open Market Committee (FOMC) of the Federal Reserve.

Figure 45: Dynamics of the stock-bond correlation ρS,B (t) and the ten-year bond yield to
maturity y (t) (US, 1965-2023)
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Figure 45 compares the dynamics of the stock-bond correlation ρS,B (t) and the dynamics
of the ten-year bond yield to maturity y (t). It is not obvious to relate the two dynamics.
However, we can derive a very simple rule of thumb. The stock-bond correlation is positive
when the bond carry is high (e.g., y (t)� 5%) and negative when the bond carry is low (e.g.,
y (t) � 5%). An exception is the most recent period (Figure 105 on page 129). If we look
at the fed funds rate r (t) or the FOMC target rate r? (t), the rule of thumb is less robust
(Figures 106 and 107 on page 130). To confirm that the level of stock-bond correlation
depends on the bond yield, we run the following linear regression:

ρS,B (t) = β0 + β1y (t) + ε (t)
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where ε (t) is a white noise process. Results are given in Table 19. The coefficient of

determination R2
c is equal to 48.72%. We verify that the estimated coefficients β̂0 and β̂1

are significant at the 1% confidence level. In addition, β̂1 has the correct sign. A 1% increase
in the yield to maturity induces a 7.75% increase in the stock-bond correlation. If we replace
the bond yield y (t) with the fed funds rate r (t) and the FMOC target rate r? (t), we get
similar results, but with a lower coefficient of determination R2

c of about 41%.

Table 19: Linear regression of the stock-bond correlation on interest rate factors (US, 1965-
2023)

y (t) r (t) r? (t)

β̂0 −0.40∗∗∗ −0.22∗∗∗ −0.23∗∗∗

β̂1 7.75∗∗∗ 5.73∗∗∗ 5.99∗∗∗

R2
c 48.72% 41.36% 41.84%

3.4.2 Inflation factors

To test the relationship between the stock-bond correlation and the inflation factors, we
calculate the inflation rate as:

π (t) =
CPI (t)

CPI (t− h)
− 1

where CPI (t) is the consumer price index and h is the time frequency. To be consistent
with the estimation of the stock-bond correlation, we calculate the inflation volatility σπ (t)
with a 4-year rolling window. Following Brixton et al. (2023), we run the linear regression:

ρS,B (t) = β0 + βππ (t) + βσπσπ (t) + ε (t)

Theoretically, we expect that βπ ≥ 0 and βσπ ≥ 0. Results are given in Table 20. First, note
that βσπ has the correct sign only when h is greater than or equal to one year. Moreover,
βσπ is not significant when the frequency h is equal to one year. Second, we note that the
coefficient of determination R2

c is relatively low, but it increases with the frequency h. In
this case, the level of explanatory power is mainly explained by the inflation volatility σπ (t).
These results are disappointing compared to those obtained by Brixton et al. (2023). The
difference between the two approaches is that Brixton et al. (2023) used a 10-year rolling
window to estimate the stock-bond correlation and inflation volatility, while we use a 4-
year rolling window. Again, the distinction between short-term and long-term estimates is
important.

Table 20: Linear regression of the stock-bond correlation on inflation factors (US, 1965-2023)

h 1M 1Y 2Y 3Y 5Y

β̂0 0.19∗∗∗ −0.10∗∗∗ −0.14∗∗∗ −0.17∗∗∗ −0.25∗∗∗

β̂π 25.57∗∗∗ 3.53∗∗∗ 1.70∗∗∗ 1.02∗∗∗ 0.87∗∗∗

β̂σπ −24.78∗∗∗ 1.57 4.21∗∗∗ 7.28∗∗∗ 9.96∗∗∗

R2
c 10.44% 10.26% 15.16% 21.65% 34.56%

3.4.3 Growth factors

We conduct the same analysis with the growth factors. In this case, we replace the inflation
level and inflation volatility with the quarterly level of GDP and its standard deviation.
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Results are given in Table 21. We find that the growth level is an important factor, but not
the growth volatility, which is not significant and has an explanatory power of less than 6%.
Since the data are quarterly and not monthly, it is common to use another economic indicator
to measure growth. The main approach is to look at monthly industrial production. In this
case, the growth volatility is significant but the coefficient of determination is less than 15%
and the estimated sign of βσg is opposite to the expected sign of βσg . In addition, we note
that the volatility calculated with industrial production is very different from the volatility
calculated with GDP (see Figure 110 on page 132). Therefore, we consider a third measure
of growth. We perform a linear regression of GDP on several economic variables: industrial
production, personal income, personal consumption, and the unemployment rate. We then
use the forecast of GDP at the monthly level to construct the monthly GDP proxy. In this
case, we obtain the correct sign for growth volatility. However, the explanatory power of
σg (t) remains low, less than 5%.

Table 21: Linear regression of the stock-bond correlation on growth factors (US, 1965-2023)

h 1M/1Q 1Y 2Y 3Y 5Y

GDP

β̂0 −0.00 −0.18∗∗∗ −0.28∗∗∗ −0.34∗∗∗ −0.44∗∗∗

β̂g 6.39∗∗∗ 4.02∗∗∗ 2.85∗∗∗ 2.15∗∗∗ 1.30∗∗∗

β̂σg −1.02 −0.24 −0.98 −1.44 0.83
R2
c 5.35% 14.75% 24.55% 30.55% 35.27%

Industrial
production

β̂0 0.10 0.00 −0.06∗∗ −0.13∗∗∗ −0.06∗

β̂g 3.50∗∗∗ 1.78∗∗∗ 1.58∗∗∗ 1.57∗∗∗ 1.08∗∗∗

β̂σg −1.47∗ 0.75 1.54∗∗ 2.72∗∗∗ −0.44
R2
c 1.47% 6.29% 11.35% 15.73% 14.46%

Monthly
GDP proxy

β̂0 −0.05 −0.33∗∗∗ −0.54∗∗∗ −0.72∗∗∗ −0.91∗∗∗

β̂g 9.39∗∗∗ 3.98∗∗∗ 2.87∗∗∗ 2.33∗∗∗ 1.58∗∗∗

β̂σg 2.73 −3.90∗∗ −4.82∗∗∗ −3.64∗∗ 1.71
R2
c 3.65% 18.51% 29.28% 36.79% 41.63%

3.4.4 Combined factors

In Table 22, we give the evolution of the coefficient of determination R2
c as we add supple-

mentary factors24. We start with the yield factor y (t), then we add the inflation factors
π (t) and σπ (t) and finally we include the growth factors g (t) and σg (t). These results
show that yield is the most important factor, followed by inflation volatility, growth level,
inflation level and finally growth volatility. Thus, economic factors such as inflation and
growth explain less than 10% of the dynamics of the stock-bond correlation. Moreover, we
do not get the correct sign of βσπ and βσg . Our results are therefore not consistent with
those of Brixton et al. (2023).

Table 22: Coefficient of determination R2
c in % (US, 1965-2023)

Factors 1M 1Y 2Y 3Y 5Y
Yield 48.72% 48.72% 48.72% 48.72% 48.72%

+ Inflation 55.01% 52.41% 52.32% 51.49% 52.92%
+ Growth 57.90% 55.51% 55.66% 56.92% 56.44%

24The estimates are given in Tables 33 and 34 on page 138.
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Summary and main results

Econometric analysis indicates that growth uncertainties have low explanatory
power in modeling the stock-bond correlation. Indeed, carry emerges as the
most significant economic factor, followed by inflation. Nevertheless, the econo-
metric analysis reveals that the relationship between economic factors and the
stock-bond correlation is unstable and highly dependent on the time horizon.

3.5 Diversification, payoff and stock-bond correlation

The previous empirical analyses provide a global picture of the stock-bond correlation. How-
ever, they do not distinguish between market regimes, such as bear and bull markets, and
nonlinearity in the joint stock-bond dynamics. In this section, we extend the study by
considering the local dynamics between stock and bond returns.

3.5.1 Average, local and extreme dependence

The stock-bond correlation computed in the previous analyses corresponds to the Pearson
correlation and can be seen as an average measure of the dependence between stock and
bond returns, assuming they are normally distributed. To go further, we must first remove
the assumption that returns are Gaussian, since we know that asset returns are fat-tailed and
have a kurtosis greater than 3. We can then calibrate the local dependence function between
stock and bond returns by considering copula theory. However, in order to interpret the
local dependence as a Pearson correlation and thus as a traditional stock-bond correlation,
we will implicitly assume that the copula function remains Gaussian.

Figure 46: Dependogram of the Gaussian copula
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To analyze the local dependence, we extensively use the concept of the dependogram
(Roncalli, 2020, page 743). The dependogram between two random variables is the empirical
copula of the realizations of these random variables. This is also the scatterplot between
the two random variables normalized by their marginals. Like the copula function, the
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dependogram does not depend on the univariate probability distributions. In Figure 46,
we show the dependogram of 3 000 random variates following the bivariate Gaussian copula
with parameter ρ. If the correlation ρ is negative, the contour density plot corresponds
to an ellipsoid with the major axis oriented from top/left to bottom/right. This means
that the extremes are generally located at these two corners. Conversely, if the correlation
ρ is positive, the extremes will be at the bottom/left and top/right corners due to the
axis orientation of the ellipsoid. We consider the daily stock and bond returns RS (t) and
RB (t) for the US market and the 40-year period 1980-2019. Since we have seen that the
correlation changed sign around the beginning of the dot-com crisis, we split the sample
into two equal subperiods 1980-1999 and 2000-2019. Then we compute the empirical copula
of RS (t) and RB (t) by considering the probability integral transform and the empirical
distribution F̂S and F̂B : uS (t) = F̂S

(
RS (t)

)
and uB (t) = F̂B

(
RB (t)

)
. The dependogram

of
(
RS (t) , RB (t)

)
, i.e. the empirical copula between uS (t) and uB (t), is given in Figures

47 and 48. First, we notice that the subperiods have two different dependencies. The 1980-
1999 subperiod is characterized by a positive dependence, while the 2000-2019 subperiod
has a negative dependence. This result confirms the previous finding that the short-term
stock-bond correlation in the US turns from positive to negative between 1980 and 2020. In
the first period, the copula correlation was +34.2% and changes to −33.7% in the second
period. Since the second value is almost the opposite of the first value, we would expect a
complete symmetry between the two dependograms. This is not the case. In particular, we
see that the local dependence is higher in bad and good times between 2000 and 2019 than
between 1980 and 1999. To confirm this observation, we compute the local probability. Let
US and UB be the normalized stock and bond returns, respectively. We note:

p
([
u′S , u

′′
S

]
×
[
u′B , u

′′
B

])
= Pr

(
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)
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)
−C

(
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′
B

)
−C

(
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′′
B

)
+ C

(
u′S , u

′
B

)
where C is the copula function of US and UB . Using the scale invariance property, we also
have:

p
([
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′′
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]
×
[
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B
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(
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))

p
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′′
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]
×
[
u′B , u

′′
B

])
calculates then the joint local probability of

(
RS (t) , RB (t)

)
. We

define bad times as the observations corresponding to the worst returns and good times
as the observations corresponding to the best returns. Normal times correspond to all
other observations. Let α ∈ [0, 0.5] be the frequency of bad or good times. We have
t ∈ Bad⇔ R (t) ≤ F−1 (α), t ∈ Good⇔ R (t) ≥ F−1 (1− α) and t ∈ N ormal ⇔ F−1 (α) ≤
R (t) ≤ F−1 (1− α). For example, if α is set to 10%, the bad and good times correspond
to the 10% worst and best returns, respectively. In Figures 47 and 48, the boundary of the
bad and good times is shown by the dashed black lines.

In Table 23, we calculate the local probability of each stock-bond market regime25 when
α is set to 10%. How do we read these numbers? Let us first focus on the first period from
1980 to 1999. For example, the theoretical probability26 of observing bad times in both stock
and bond markets is 2.37%. The probability of observing bad times in the stock market
and good times in the bond market is 0.24%. We get a lower number, which is normal since
the stock-bond correlation is positive. If we look at the empirical copula, we get different

25The rows correspond to the stock regimes, while the columns correspond to the bond regimes. For
example, the bad stock market regime is in the first row, while the good bond market regime is in the third
column.

26The theoretical probability is calculated by assuming a Gaussian copula with a correlation of +34.2%.
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Figure 47: Dependogram of RS (t) and RB (t) (US, daily returns, 1980-1999)
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Figure 48: Dependogram of RS (t) and RB (t) (US, daily returns, 2000-2019)
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Table 23: Probability in % of stock-bond market regimes (US, daily returns, α = 10%)

Copula
Stock-bond 1980-1999 2000-2019

market regime Bad N ormal Good Bad N ormal Good

Theoretical
Bad 2.37 7.40 0.24 0.24 7.42 2.34
N ormal 7.40 65.20 7.40 7.42 65.17 7.42
Good 0.24 7.40 2.37 2.34 7.42 0.24

Empirical
Bad 2.90 6.45 0.65 0.66 5.77 3.56
N ormal 6.66 66.52 6.82 6.39 67.70 5.93
Good 0.44 7.04 2.52 2.95 6.55 0.50

results. In fact, the empirical probability of observing bad times in both the stock and
bond markets over the period 1980-1999 is now 2.90%, which is higher than the theoretical
probability. Similarly, the probability of observing bad times in the stock market and good
times in the bond market is 0.65%, again higher than the theoretical probability. If we focus
on the second period from 2000 to 2019, we obtain the following results. The theoretical27

and empirical probabilities of observing bad times in both the stock and bond markets are
now 0.24% and 0.66%, respectively. If we consider bad times in the stock market and good
times in the bond market, the theoretical and empirical probabilities become 2.34% and
3.56%, respectively.

Table 24: Pearson correlation of the market regime (N ormal,N ormal) (US, daily returns)

α 1980-1999 2000-2019
0% 34.2% −33.7%
1% 33.0% −32.0%
5% 27.9% −24.1%

10% 21.9% −20.4%
25% 11.4% −6.3%

For each market regime, we can compute the local correlation such that the theoretical
probability of observing a regime is exactly equal to its empirical frequency. In this case, we
can show that the calibration cannot be done for all regimes. For example, if we consider the
market regime characterized by normal times in the stock market and normal times in the
bond market, we can show that the calibrated correlation is mostly undefined because it can
range from −50% to +50%. Thus, zero correlation is certainly the best estimate. This result
is confirmed if we calculate the Pearson correlation of the market regime (N ormal,N ormal).
As shown in Table 24, the correlation decreases as α increases.

Table 25: Local correlation in % of stock-bond market regimes (US, daily returns, α = 10%)

Stock-bond 1980-1999 2000-2019 2021-2023
market regime Bad Good Bad Good Bad Good

Bad 44.17 12.49 −12.36 −55.06 26.38 −20.63
Good 22.35 37.22 −45.05 −19.35 4.28 11.05

Full period 34.2 −33.7 5.83

In our cases, only four regimes can then be calibrated, those that include both bad and
good times and do not rely on normal times. Results are given in Table 25. Since the

27The theoretical probability is calculated by assuming a Gaussian copula with a correlation of −33.7%.
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Figure 49: Pearson correlation of the market regime (N ormal,N ormal) (daily returns,
2000-2019)
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Figure 50: Pearson correlation of the market regime (N ormal,N ormal) (daily returns,
2010-2019)
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stock-bond correlation was 34.2% for the whole period 1980-1999, it is 44.17% if we consider
the stock-bond regime (Bad,Bad). We note that the stock-bond correlation is actually an
average of the correlation of the four regimes, weighted by their frequency of occurrence.
Between 1980 and 1999, the stock-bond correlation is then mainly driven by two market
regimes: (1) bad times in both the stock and bond markets and, (2) good times in both
the stock and bond markets. For the period 2000 and 2019, the contribution of the market
regimes is different. The stock-bond correlation is mainly driven by periods when the stock
and bond markets are asynchronous. In particular, the contribution is highest when the
stock market is in bad times and the bond market is in good times. More recently, the
positive stock-bond correlation is explained by the contribution when both stock and bond
markets are in bad times. The short-term stock-bond correlation remains negative when
stocks are in bad times and bonds are in good times.

Figure 51: Local correlation in % with respect to α (US, daily returns)
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Remark 7. The previous results question the origin of the bad and good times of each market
regime. In fact, we can assume that one market can lead the other, i.e. the second market
reacts to the bad or good performance of the first market. For example, a bad performance of
the stock market can result in a good performance of the bond market due to the increase in
risk aversion and the flight-to-quality behavior of investors. However, a poor stock market
performance can also lead to a poor bond market performance due to the anticipation of
negative growth and a rise in interest rates due to an increase in public debt. We can
also assume that the stock market reacts to the bond market. In the previous analysis, we
computed the stock-bond correlation conditional on the state of the market regardless of the
cause of the state, but we could also compute the stock-bond correlation conditional on the
trigger of the bad and good times.
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Figure 52: Estimated linear stock-bond payoff and top 4% influential observations (US, daily
return, 1980-1999)
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Figure 53: Estimated linear stock-bond payoff and top 4% influential observations (US, daily
return, 2000-2019)
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3.5.2 Payoff of the stock-bond correlation

In this section, we continue to examine the conditional comovement of stock and bond
returns. We apply the payoff theory defined in Section 2.2 on page 11. By assuming that
the stock market leads the bond market, the bond payoff is given by the parametric function
rB = m (rS):

m (rS) = E
[
RB (t;h) | RS (t;h) = rS

]
where RS (t;h) and RB (t;h) are the stock and bond returns calculated with frequency h.

Linear payoff To estimate the linear function m (rS), we use the linear regression:

rB (t;h) = β0 + β1rS (t;h) + u (t)

and we have m̂ (rS) = β̂0+β̂1rS . The estimated payoff functions are shown in Figures 52 and
53. As expected, the slope of the payoff was upward for the period 1980-1999 and downward
for the period 2000-2019. More surprising is the fact that the bond payoff is systematically
negative when stock returns are positive in the second period. This finding again highlights
the hedging status of US bonds between 2000 and 2019. For each linear payoff, we have also
reported the top 4% influential observations28, which account for 25% of the explanatory
power of the linear regression.

Nonlinear payoff To estimate the nonlinear function m (rS), we use the local polynomial
regression:

rB (t;h) = β0 +

p∑
j=1

βj
(
rS (t;h)− rS

)j
+ u (t)

where p is the degree of the polynomial. The least squares problem becomes:

(
β̂0, β̂1, . . . , β̂p

)
= arg min

T∑
t=1

K
(
rS − rS (t;h)

κ

)rB (t;h)− β0 −
p∑
j=1

βj
(
rS (t;h)− rS

)j2

where K (x) is the kernel. We can then show that m̂ (rS) = β̂0 (Roncalli, 2020, page 643).
In the following, we use the Gaussian kernel with a bandwidth κ equal to 2 · σ̂ ·T−0.20, where
σ̂ is the standard deviation of rS (t;h).

Figure 54 shows the scatter plot of the joint daily returns
(
RS (t;h) , RB (t;h)

)
and

the estimated payoff corresponding to the dotted red line for the period 1980-1999. The
slope of the payoff is negative for very bad stock market periods, otherwise it is positive.
This confirms that the unconditional stock-bond correlation was positive during this period.
For the second period, the negativity of the unconditional stock-bond correlation is also
confirmed, but we note that the slope of the payoff is flat or positive for very good stock
market periods, when the daily return of the S&P 500 index is greater than 3% (Figure 55).
These results are then consistent with the empirical analysis of the short-term stock-bond
correlation. When we look at monthly returns29, the story is different. For the 1980-1999
period, the slope of the payoff is first strongly negative when monthly stock returns are
negative, and then strongly positive when monthly stock returns are positive. And the slope
increases during large bull markets. For the second period 2000-2019, the slope remains

28We compute the hat matrix H = X
(
X>X

)−1
X> where X is the exogenous matrix of the regression

model Y = Xβ + U . The most influential observations are those with the highest leverage Hi,i.
29See Figures 112 and 113 on page 133.
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Figure 54: Estimated nonlinear stock-bond payoff (US, daily return, 1980-1999)
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Figure 55: Estimated nonlinear stock-bond payoff (US, daily return, 2000-2019)
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negative. If we take a longer time frequency, the payoff for 3-year returns is flat for the first
period (Figure 114 on page 134). For the second period, the slope of the payoff is negative,
then flat and finally positive (Figure 115 on page 134). Because we are constrained by the
size of the period, we cannot explore 10-year or 30-year time frequencies. However, we can

make the hypothesis that the slope of the payoff is close to zero: limh→∞
∂ m (rS)

∂ h
≈ 0.

In the long run, it is difficult to assume that the unconditional stock-bond correlation is
negative, because this would imply a negative long-term bond risk premium30. In fact, the
long-term correlation between stocks and bonds is the comovement of the trends31, which
have been clearly up for forty years. For example, the non-overlapping five-year stock-bond
correlation has been equal to +19% between 1980 and 2023 (Figure 56).

Figure 56: Cumulative performance of the S&P 500 Index and the generic US 10Y bond
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3.5.3 Implications for strategic asset allocation

The stock-bond correlation is an important component that drives strategic asset allocation.
In particular, we can find some expectations in the reports of asset owners and managers,
called Capital Market Assumptions (CMA). Below, we list some of the values suggested
by asset managers32: BlackRock Investment Institute: −16%, BNY Mellon: +3%, Capital

30If we consider reasonable figures of stock and bond volatilities.
31The long-term stock-bond correlation is highly related to the concept of cointegration.
32Sources are the following CMA reports found on asset manager websites:

• BlackRock Investment Institute (2024), Capital Market Assumptions, February 2024.

• BNY Mellon (2023), 2024 Capital Market Assumptions: The Path to Normalization, November 2023.

• Capital Group (2024), Capital Market Assumptions, January 2024.

• Invesco (2023), 2024 Long-term Capital Market Assumptions, September 2023.

• J.P. Morgan Asset Management (2023), 2024 Long-term Capital Market Assumptions, December
2023.
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Group: −9%, Invesco: −4% and J.P. Morgan AM: −11%. Several observations can be
made. First, correlations are not always defined in CMA reports. Some CMA reports focus
exclusively on expected returns, others include volatility figures, but only a third of CMA
reports provide assumptions on correlations. One of the reasons is that correlations are
certainly more difficult to predict because there are no economically or statistically proven
models. In the case of expected returns and volatilities, we can choose from several existing
models that have been used for many years. Second, we note that even if the CMA report
contains correlation figures, this does not mean that we can find the expected stock-bond
correlation as defined in this study, i.e. the correlation between the 10-year government
bond and the large-cap stock market. The final comment concerns the time horizon. Do
the figures reported refer to a short-term or a long-term stock-bond correlation?

The last question echoes the question raised in the introduction about the concept of
time. Since it is relatively clear that the time horizon of the CMA reports corresponds to a
long-run analysis, typically 10 years, the time frequency of the figures reported is generally
not defined. The choice between short-term and long-term stock-bond correlation depends
on the investor’s approach to portfolio management. If the investor is a large institution that
does not have the ability to rebalance its portfolio due to the size of the portfolio and the
cost of market impacts, it is better to use a long-term stock-bond correlation. On the other
hand, if the investor is very active and implements a tactical asset allocation, it is better to
use a short-term stock-bond correlation. Therefore, we cannot use the same correlation for
a buy-and-hold strategy and a constant-mix strategy. For example, in the current context,
we expect sovereign wealth funds to use a higher correlation value than active multi-asset
fund managers.

Summary and main results

The stock-bond correlation is an unconditional Pearson correlation, which is
an average of different correlations conditional on different market regimes.
The stock-bond correlation is indeterminate in normal times, which is not the
case in bad times and good times. Therefore, the stock-bond correlation is
largely the result of the comovement of stock and bond returns in bad and
good times, since the contribution of normal times is small and we can assume
that the stock-bond correlation is close to zero in normal times. Because of
the averaging formula, the magnitude of the stock-bond correlation is generally
underestimated in the two extreme market conditions. When we compute the
conditional stock-bond correlation, the payoff analysis shows that negative and
positive correlations can coexist in the same period. We note that the slope of
the bond payoff is highly dependent on time frequency. Therefore, the stock-
bond correlation can be very different when we look at daily returns, monthly
returns, annual returns, five-year returns, etc. The choice of time frequency
for calculating the stock-bond correlation is then an important element in the
design of the portfolio allocation. Indeed, it is better to consider a long-term
correlation for buy-and-hold strategies, while a short-term correlation is more
appropriate when the portfolio is managed on an active basis, as in constant-
mix strategies.
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3.6 Economic narratives of the stock-bond correlation

Investors believe that there are at least 3 dimensions that need to be squared to define an
asset allocation based on the economic cycle: growth, inflation and monetary policy. Growth
is important for optimal risk exposure across asset classes, while inflation tends to drive asset
allocation within asset classes. Central banks and monetary policy are affected by growth
and inflation and can influence asset allocation at different levels. Using a proprietary
tool, we disentangle this multi-dimensional framework between an investment cycle and an
inflation cycle, identifying the relevant phases and their determinants. As we have seen over
the past 50 years, inflation obviously affects growth and monetary policy actions through
conventional and unconventional instruments, adapting their tone to the different upward
and downward pressures in the economic and social system. In the 1970s and 1980s, Volker’s
FED was able to lower long-term inflation expectations by aggressively raising interest rates,
while after the GFC, central banks developed unconventional monetary policy tools to boost
liquidity and escape deflationary gravity for more than a decade. The extraordinary inflation
rebalancing in 2022 introduced a new regime and monetary policy had to change, affecting
growth and market dynamics.

An economic cycle typically has four phases: expansion, peak, contraction and correc-
tion. However, we can also identify an additional economic regime, known as asset reflation,
in which monetary policy interventions support financial asset returns and dampen market
volatility despite the absence of an additional boost from growth. This phase can explain
what has happened several times over the past decade, i.e. the economy growing on average
at trend rates while inflation remains stubbornly below target despite central bank balance
sheet expansion. Figure 57 shows the evolution of the business cycle index33 and the iden-
tification of the five regimes. It can be compared with the inflation patterns34 reported in
Figure 58.

Under normal conditions, the sequence of growth fluctuations is the driver of inflation
and central banks react with interest rates in a countercyclical manner, as stated in their
official statement. The early recovery phase is driven by inventory restocking and inflation
starts to rise due to the demand for goods in the production space. Typically, producer
prices spike, but tend to normalise relatively quickly and regularly. Therefore, central banks
are in a wait-and-see mode and are quite accommodative. The yield curve tends to steepen,
discounting higher growth and inflation expectations. In such a phase, equities outperform
govies and the stock-bond correlation is negative. If central banks are successful in their
vigilance, they will begin to react when the economy enters an overheating phase in which
growth is above trend, inflation crosses the trough from producer prices to consumer prices,
paving the way for a potential imbalance, and central banks become uncomfortable with
inflation above their target. The normal response is to start raising interest rates in line
with the forces of the business cycle. Typically, at this stage, valuation adjustments occur,
volatilities rise, equity and government bond yields move closer together and correlations
increase. The economy then begins to cool (growth and inflation), central banks begin
to adjust interest rates to focus more on full employment and, if successful, the economy
emerges from recession. Government bonds become a very effective hedge against risky
assets and correlations turn significantly negative. The bottom line investment implications
are as follows. The normal sequence of expansionary and contracting phases in the economic

33The business cycle index is calculated using a clustering algorithm applied to a set of economic and
financial variables distributed along four dimensions: growth (e.g., GDP, unemployment, sales or EPS),
inflation (e.g., CPI, PPI or unit labour costs), monetary policy (e.g., monetary aggregates, policy rates or
central bank balance sheets) and leverage (e.g., public and private debt).

34The inflation index is the first principal component of four inflation indicators: US CPI, US PPI, ULC
and Core PCE.
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cycle, with a normal response from central banks, will obviously produce different returns for
equities and government bonds and for a balanced portfolio, but the stock-bond correlation
will work in the right way, mitigating overall volatility and large drawdowns.

However, we can identify two exceptional conditions: asset reflation (Goldilocks) and in-
flationary shocks (pain). In the case of asset reflation, the unconventional monetary policies
implemented since the first quarter of 2009 in the aftermath of the GFC have provided un-
precedented injections of liquidity into financial markets, leading to unusual inflation: asset
prices have risen across the board. The expansion of central banks’ balance sheets was ulti-
mately aimed at ensuring the stability of financial intermediaries and creating pricing power
by increasing the supply of wealth effects and, to some extent, circumventing the significant
fragility of the financial sector in the aftermath of the GFC. It has been sustained for more
than a decade by real deflationary pressures from the sovereign debt crisis, low growth and
global credit deleveraging. Overall, it has been an extraordinary decade for markets, with
very positive returns for equities and govies, with negative stock-bond correlation during
periods of risk asset sell-offs. In short, a strong hedge with positive carry (Goldilocks).

However, since the 1990s, and even more so since the asset reflation, investors have
tended to forget some important aspects:

1. The dynamics of inflation are less regular than those of growth, so fluctuations and
shifts tend to be more persistent and less predictable.

2. Inflation isn’t stationary mainly because it’s multifaceted; there are different forces
that generate inflation and they naturally have different effects on the persistence of
fluctuations.

3. More importantly, some forces are endogenous and others are exogenous, i.e. some are
internal to the economic system and others are external and act as a shock (positive
or negative) to the economic system.

4. Central banks are more effective in dealing with endogenous forces and less effective
in absorbing external shocks; if at all, they very often tend to exacerbate and amplify
shocks in the economic system rather than absorb them.

From an investment perspective, there are four important components of inflation: cyclical
(demand driven), services, energy and food. Energy and food are often associated with
external commodity shocks that cause severe damage to the economy, financial markets and
asset class behaviour. In fact, shocks tend to be persistent and move across all inflation
components, such as services and core, creating hyperinflationary regimes. In such an en-
vironment, central banks have to suppress some growth to counter the risk of de-anchoring
long-term inflation expectations, drain liquidity and tighten financial conditions more than
the growth dimension would suggest, often pushing the economy into stagflation. The over-
all disorderly financial deleveraging and huge discounts in cross-asset valuations are creating
twin bear markets with negative returns for equities and bonds, positive stock-bond corre-
lation and limited diversification in cash.

From an ex-post point of view, we can always understand the behaviour of the stock-
bond correlation and the previous narratives show that the concept of inflation and growth
risks goes beyond the concept of inflation and growth volatilities. They are more complex
because we cannot simplify these patterns into two regimes: high-risk and low-risk regimes.
This may explain the poor econometric results in section 3.4 on page 66. Surely a more
sophisticated or non-linear model is needed. However, we must be cautious about predicting
the stock-bond correlation in the long run, as new regimes may emerge.
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4 Conclusion

Stock-bond correlation is a fundamental part of portfolio allocation. Investors consider that
the last two decades, 2000-2019, have been a fortunate period for diversification. They
have benefited from falling interest rates, which imply good mark-to-market bond returns,
and negative stock-bond correlation, which helps during equity market drawdowns. The
most recent period has been more challenging, as we have seen a rise in stock-bond correla-
tion, and many investors are concerned about a lack of diversification due to less attractive
comovements between bonds and stocks. However, it is misleading to say that the bond
market is less attractive because it has generated higher carry. If we look at the period
before 2000, the correlation between stocks and bonds is positive. So we can conclude that
it was not a good period in terms of diversification. However, if we compare the period
1980-1999 (positive stock-bond correlation) with the period 2000-2019 (negative stock-bond
correlation), the nominal performance of a diversified stock-bond portfolio is better in the
first period than in the second35 (Figure 59). Thus, investors’ concerns about correlation
are not performance concerns, but risk concerns. In fact, we know that the expected return
of portfolios does not depend on correlations, which only affect the volatility and higher
statistical moments of the P&L. Therefore, investors demand a negative stock-bond corre-
lation because they want to hedge their equity exposure, reduce the drawdown of diversified
funds, and smooth short-term performance. In a sense, negative stock-bond correlation is
a management tool for active investors, while buy-and-hold investors care little about the
level and sign of stock-bond correlation.

Figure 59: Cumulative performance of US 50/50 equity-bond constant-mix portfolio
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Our empirical results show that the US stock-bond correlation was positive between
1965 and 2000, negative since 2000 after the dot-com crisis, and positive again in recent
years. This confirms the empirical evidence of many empirical studies (Brixton et al., 2023;
Molenaar et al., 2023). These results were obtained using the 10-year US Treasury bond
and the S&P 500 Index, and hold for other bond maturities greater than one year. However,
the behavior of the stock-bond correlation is different at shorter maturities. In this case, we
observe more frequent periods of positive and negative correlations. For example, for the

35This is also true when we look at real performance adjusted for inflation, as there is an annualized
difference of 4.5% between the two periods.
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3-month US Treasury Bill bond, we have 13 different sub-periods instead of the previous
3 sub-periods. Looking at other countries, the behavior of the stock-bond correlation is
different. In fact, we found that only Canada seems to have the same behavior as the US.
Japan experienced a change in the sign of the stock-bond correlation long before, and this
structural break coincides with the introduction of the zero interest rate policy in 1995.
Southern European countries, which were more affected during the European debt crisis,
have recorded a positive correlation since 2010 (Greece, Italy, Portugal and Spain). For
some other European Union countries, the return to a positive correlation occurred later
in 2015-2016 (Denmark, Finland, France, Germany, Ireland and the Netherlands). Most
emerging economies didn’t experience a negative correlation between stocks and bonds,
with the exception of China, India and Singapore. In this context, it is clear that credit risk
and local investors’ confidence in the sustainability of the country’s debt are two important
factors explaining the sign of the stock-bond correlation in both developed and developing
countries. In summary, the fact that the stock-bond correlation was positive between 1980
and 1999 and then negative between 2000 and 2019 is a purely US-centric view. However,
if you talk to European portfolio managers, most of them explain that they use US bonds
to hedge non-US equities, for instance European equities, because it is a better instrument
than, for example, European bonds. So the US stock-bond correlation and US bonds have
a special status compared to other stock-bond correlations and other sovereign bonds. The
challenge for the next few years will be for US government bonds to continue to have the
confidence of investors that they are a good hedge for broad equities.

Since the stock-bond correlation does not affect the expected return of a diversified
stock-bond portfolio, it is a key component in calculating the ex-ante equity and bond
risk premia. In particular, we can show that the required risk premium in the Capital Asset
Pricing Model has two components: a variance risk premium and a covariance risk premium.
Theoretically, the stock-bond correlation has little effect on the equity risk premium, while
it has a large effect on the bond risk premium. These findings are confirmed by our empirical
results. On average, about 70% of the US bond risk premium is explained by the covariance
risk premium, while the variance risk premium is the main component of the US equity
risk premium, accounting for about 95%. Another theoretical finding is that the bond risk
premium is an increasing function of both the stock-bond correlation and the indiosyncratic
risk of bonds. Therefore, a necessary condition for the bond risk premium to be negative
is that the stock-bond correlation is negative and below a certain value, called the break-
even stock-bond correlation. This condition is not sufficient because the idiosyncratic risk
of bonds can offset the effect of the negative stock-bond correlation. Our empirical results
show that the market priced in a negative bond risk premium between 2000 and 2020 due
to the negative US stock-bond correlation. More recently, the US bond risk premium has
turned positive, mainly due to the reversal of the stock-bond correlation. Indeed, the break-
even stock-bond correlation has been roughly the same since 2010, suggesting that we are
not observing a shift in the market’s perception of the idiosyncratic risk of US bonds. Our
results demonstrate that investors are willing to pay a cost in the form of a negative bond
risk premium in order to benefit from the hedging characteristics of US bonds. Turning to
the credit asset class, we observe an increasing relationship between the implied bond risk
premium and corporate bond ratings, as expected by theory. This implies that credit risk
is an important determinant of both the stock-bond correlation and the required bond risk
premium. For example, in the 2020s, the highest bond risk premia are observed for Greece,
Italy, Portugal, South Africa and Turkey. Thus, the highest risk premia are not necessarily
observed for EM economies from the perspective of local investors. For example, China and
Singapore have the lowest ex-ante bond risk premia between 2020 and 2023, comparable to
the levels observed in Japan, Switzerland and the US.
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Just as the choice of bond affects the level of stock-bond correlation, the choice of stock
portfolio affects the correlation measure. First, we need to distinguish between the aggregate
stock-bond correlation, which is calculated for a portfolio of stocks, and the individual stock-
bond correlation, which is calculated for individual stocks. Like the volatility risk measure,
the correlation of the portfolio return with the bond return is not an average of individual
correlations. This is because diversification increases correlation risk, which is the opposite
of what we observe for portfolio volatility, where diversification reduces volatility risk. In
other words, portfolio diversification has a greater effect on volatility than on covariance,
resulting in a leverage effect on correlation. If we assume that the individual stock-bond cor-
relations are homogeneous and equal, then the aggregate stock-bond correlation depends on
the diversification ratio of the equity portfolio. In this case, the absolute value of the stock-
bond correlation is obtained for the most diversified portfolio (MDP). Portfolio construction
and composition matters when computing the stock-bond correlation. Theoretically, the
leverage between individual and aggregate stock-bond correlations is between a factor of 1
and 3. On average, we get a leverage of two for the S&P 500 Index. Since the composi-
tion of the portfolio is important, we get different values if we look at small-cap indices,
sectors or factor portfolios. In the US, for example, real estate and utilities have a higher
correlation than the overall market. The same is true for communication services, consumer
staples and health care, but to a lesser extent. On the other hand, industrials and materials
have a lower correlation than the overall market. Among equity factors, value stocks have a
more negative correlation with bonds, while growth, low volatility, high dividend and quality
stocks have a more positive correlation with bonds. It is tempting to interpret these results
in terms of the equity duration of the portfolio, but the relationship between stock-bond
correlation and equity duration is not always robust.

Academics have identified several factors that drive the stock-bond correlation and have
proposed many macroeconomic models to describe its dynamics. We can group them into
three families: inflation-centric models, real-centric models, and growth-inflation models.
Except for a few real-centric models, inflation is the main driver of the stock-bond corre-
lation. It takes several forms and can be the level of inflation, expected inflation, inflation
volatility, inflation risk, and inflation innovation. Real-centric models may use other trigger
variables, but they focus more or less on the flight-to-quality behavior of investors. The third
type of model is more of a battle between growth uncertainty and inflation uncertainty. In
theory, the stock-bond correlation rises with inflation risk and falls with growth risk. There-
fore, the negative stock-bond correlation is explained when investors are concerned about
growth risk. Our empirical results are not convincing. While the econometric results show
that inflation has a higher explanatory power than growth, the coefficient of determination
is relatively low and, more importantly, the regression coefficients do not always have the
correct sign predicted by the theory. In fact, carry (or yield) turns out to be the most
important economic factor. This is not surprising if US bonds are used as an equity hedge
and there is a cost to dynamically hedging the equity exposure, as this cost is a function of
the carry.

The final issue examined in this study is the payoff function of government bonds. In the
payoff approach, a negative stock-bond correlation can be consistent with a positive bond
risk premium for several reasons. First, we need to distinguish time horizons. A negative
short-term stock-bond correlation can coexist with a long-term stock-bond correlation. And
our empirical results show that the bond payoff is different when we consider short-term and
long-term returns. Second, the payoff may be nonlinear. In this case, we need to distinguish
the analysis in bad, normal and good times. Our empirical results confirm that local and
conditional correlations are different from a global correlation and show that we can assume
that the stock-bond correlation is close to zero in normal times. The third reason, which
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is related to the second, is that not all observations are equal when calculating the stock-
bond correlation, and a few extreme observations can make a large contribution. This is the
case for the US stock-bond correlation between 2000 and 2019, which is mainly driven by
flight-to-quality episodes.

The sign and magnitude of the stock-bond correlation is clearly related to the status of
bonds. In general, we believe that a negative stock-bond correlation indicates a situation
where investors can benefit from the hedging status of bonds. From this perspective, we
can say that the hedging property comes from the sign of the stock-bond correlation. In
this way, the stock-bond correlation is an exogenous parameter determined by the economy,
inflation, monetary policy, etc., and investors observe this parameter in order to hedge or
not hedge their equity portfolios. But we can reverse the relationship (or causality). Perhaps
the level of correlation between stocks and bonds is a consequence of investors’ decisions.
If investors believe that bonds can hedge their equity exposure, this behaviour may imply
a negative stock-bond correlation. From this perspective, the stock-bond correlation is a
parameter determined by both macro-financial fundamentals and investor perceptions. This
assumption would explain why the stock-bond correlation varies so much across countries.
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A Mathematical results

A.1 First derivative of implied risk premium with respect to cor-
relation
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A.1.2 The case ρj,k with j 6= i ∧ k 6= i
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It follows that:
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A.2 Implied correlation

Let ρ be the current correlation matrix and ρ̃ the implied correlation matrix. By definition,
we have ρ̃i,k = ρi,k for k 6= j. Let θ = ρ̃i,j be the implied correlation to be computed. We
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If there is a solution, it is given by:
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3. ρ̃ is a correlation matrix.

A.3 First derivative of implied risk premium with respect to bond
volatility

We have:

π̃B =
SR
(
x | r

)
σ (x)

(
xBσ

2
B + xSρσSσB

)
and:

σ2 (x) = x2
Sσ

2
S + x2

Bσ
2
B + 2xSxBρσSσB

Let us first compute the derivative of σ (x):

∂σ (x)

∂σB
=
x2
BσB + xSxBρσS

σ (x)

We thus get:
∂π̃B
∂σB

=
SR
(
x | r

)
σ3 (x)

(A−B)

where:

A = (2xBσB + xSρσS)σ2 (x)

= (2xBσB + xSρσS)
(
x2
Sσ

2
S + x2

Bσ
2
B + 2xSxBρσSσB

)
= 2x2

SxBσ
2
SσB + 2x3

Bσ
3
B + 4xSx

2
BρσSσ

2
B +

x3
Sρσ

3
S + xSx

2
BρσSσ

2
B + 2x2

SxBρ
2σ2
SσB

and:

B =
(
xBσ

2
B + xSρσSσB

)(
x2
BσB + xSxBρσS

)
= x3

Bσ
3
B + 2xSx

2
BρσSσ

2
B + x2

SxBρ
2σ2
SσB

We deduce that:

A−B = 2x2
SxBσ

2
SσB + 2x3

Bσ
3
B + 4xSx

2
BρσSσ

2
B + x3

Sρσ
3
S + xSx

2
BρσSσ

2
B +

2x2
SxBρ

2σ2
SσB − x3

Bσ
3
B − 2xSx

2
BρσSσ

2
B − x2

SxBρ
2σ2
SσB

= x2
SxB

(
2 + ρ2

)
σ2
SσB + x3

Bσ
3
B + x3

Sρσ
3
S + 3xSx

2
BρσSσ

2
B
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Finally, we conclude that:

∂π̃B
∂σB

=
SR
(
x | r

)
σ3 (x)

(
x2
SxB

(
2 + ρ2

)
σ2
SσB + x3

Bσ
3
B + x3

Sρσ
3
S + 3xSx

2
BρσSσ

2
B

)

A.4 Relationship between the conditional normal distribution and
the linear regression

Consider a Gaussian random vector defined as follows:(
X
Y

)
∼ N

((
µx
µy

)
,

(
Σxx Σxy
Σyx Σyy

))

The conditional distribution of Y given X = x is a multivariate normal distribution:

Y | X = x ∼ N
(
µy|x,Σyy|x

)
where:

µy|x = E
[
Y | X = x

]
= µy + ΣyxΣ−1

xx (x− µx)

and:

Σyy|x = σ2
[
Y | X = x

]
= Σyy − ΣyxΣ−1

xxΣxy

It follows that Y = µy|x +U where U is a centered Gaussian random variable with variance
s2 = Σyy|x. We recognize the linear regression of Y on X:

Y = µy + ΣyxΣ−1
xx (x− µx) + U

=
(
µy − ΣyxΣ−1

xxµx

)
+ ΣyxΣ−1

xxx+ U

= α+ β>x+ U

where α = µy − ΣyxΣ−1
xxµx and β = ΣyxΣ−1

xx . Moreover, we have:

R2 = 1− var (U)

var (Y )

= 1− s2

Σyy

=
ΣyxΣ−1

xxΣxy
Σyy

A.5 Stock-bond correlation and aggregation effects

A.5.1 Covariance formula

We assume that the stock market return is the weighted average of a basket of stocks:

RS (t) =

n∑
i=1

wi (t)Ri (t)

where Ri (t) is the return of stock i and wi (t) is the weight of asset i at time t. Here, asset
i denotes an individual stock or a sector. We deduce that the stock-bond covariance at time
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t is equal to the weighted average of the covariance values:

cov
(
RS (t) , RB (t)

)
= E

[(
RS (t)− E

[
RS (t)

]) (
RB (t)− E

[
RB (t)

])]

= E


 n∑
i=1

wi (t)Ri (t)− E

 n∑
i=1

wi (t)Ri (t)


(RB (t)− E

[
RB (t)

])
=

n∑
i=1

wi (t)E
[(
Ri (t)− E

[
Ri (t)

]) (
RB (t)− E

[
RB (t)

])]

=

n∑
i=1

wi (t) cov
(
Ri (t) , RB (t)

)
=

n∑
i=1

wi (t) ρi,B (t)σi (t)σB (t)

where cov
(
Ri (t) , RB (t)

)
is the covariance between asset i and bond returns. We use the

notations σi (t) = σ
(
Ri (t)

)
, σB (t) = σ

(
RB (t)

)
and ρi,B (t) = ρ

(
Ri (t) , RB (t)

)
. We

deduce that:

ρS,B (t) =

∑n
i=1 wi (t) ρi,B (t)σi (t)σB (t)

σS (t)σB (t)

=

n∑
i=1

(
wi (t)σi (t)

σS (t)

)
ρi,B (t)

=

n∑
i=1

ωi (t) ρi,B (t)

where ωi (t) depends on the volatility ratio γi (t):

ωi (t) =
wi (t)σi (t)

σS (t)
= wi (t) γi (t)

A.5.2 Variance formula

We have:

σ2
S (t) = σ2

 n∑
i=1

wi (t)Ri (t)


=

n∑
i=1

w2
i (t)σ2

i (t) + 2
∑
i>j

wi (t)wj (t) ρi,j (t)σi (t)σj (t)

where ρi,j (t) = ρ
(
Ri (t) , Rj (t)

)
is the cross-correlation between assets i and j. If ρi,j (t) =

0, we get:

σS (t) =

√√√√ n∑
i=1

w2
i (t)σ2

i (t)

96



Stock-Bond Correlation: Theory & Empirical Results

When ρi,j (t) = 1, the standard deviation becomes:

σS (t) =

√√√√ n∑
i=1

n∑
j=1

wi (t)wj (t)σi (t)σj (t)

=

√√√√ n∑
i=1

wi (t)σi (t)

n∑
j=1

wj (t)σj (t)

=

n∑
i=1

wi (t)σi (t)

In the other cases, we can show that the previous expression is an upper bound:

σS (t) ≤
n∑
i=1

wi (t)σi (t)

A.5.3 Weight formula

By construction, we have
∑n
i=1 wi (t) = 1. If ρi,j (t) = 0, we get:

ωi (t) =
wi (t)σi (t)

σS (t)
=

σi (t)√∑n
j=1 w

2
j (t)σ2

j (t)
wi (t)

In particular, in the homogeneous case (σi (t) = σj (t)), we have:

ωi (t) =
wi (t)√
HS (t)

where HS (t) =
∑n
i=1 w

2
i (t) is the Herfindahl index of the stock market at time t. We deduce

that:
n∑
i=1

ωi (t) =

n∑
i=1

wi (t)√
HS (t)

=
1√
HS (t)

≥ 1

When ρi,j (t) = 1, the correlation weight ωi (t) becomes:

ωi (t) =
wi (t)σi (t)∑n
i=1 wj (t)σj (t)

6= wi (t)

and we check that the sum of the correlation weights is equal to one:

n∑
i=1

ωi (t) =

∑n
i=1 wi (t)σi (t)∑n
i=1 wj (t)σj (t)

= 1

In the other cases we have:

n∑
i=1

ωi (t) =

∑n
i=1 wi (t)σi (t)

σS (t)

= DR
(
w (t)

)
≥ 1

where DR (w) is the diversification ratio introduced by Choueifaty and Coignard (2008).
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A.6 Maximum diversification ratio with constant correlation ma-
trix

In the case of a constant correlation matrix ρi,j = ρ, we have w>σ =
∑n
i=1 wiσi and:

w>Σw =

n∑
i=1

n∑
j=1

wiwjρi,jσiσj

= ρ

 n∑
i=1

wiσi

2

+ (1− ρ)

 n∑
i=1

w2
i σ

2
i


We deduce that the expression of the diversification ratio is equal to:

DR (w) =
w>σ√
w>Σw

=

∑n
i=1 wiσi√

ρ
(∑n

i=1 wiσi
)2

+ (1− ρ)
(∑n

i=1 w
2
i σ

2
i

)
=

1√
ρ+ (1− ρ)ϕ2 (w)

where ϕ (w) is the coefficient of variation of volatilities using the weighting scheme w:

ϕ (w) =

√∑n
i=1 w

2
i σ

2
i∑n

i=1 wiσi

Since the most diversified portfolio is equal to the ERC portfolio when the correlation matrix
is constant (Demey et al., 2010; Roncalli, 2013), we have:

wmdp
i =

σ−1
i∑n

i=1 σ
−1
i

We deduce that:

ϕ
(
wmdp

)
=

1√
n

We conclude that:

DR
(
wmdp

)
=

1√
ρ+

(1− ρ)

n

A.7 Aggregation with time-varying equity baskets

We have seen that the stock-bond correlation formula is:

ρS,B (t) =

n∑
i=1

wi (t)σi (t)

σS (t)
ρi,B (t)

In a capitalization-weighted index, the weights are given by:

wi (t) =
NiPi (t)∑n
j=1NjPj (t)
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where Ni is the number of shares outstanding for the ith stock and Pi (t) is the price at time
t. The stock and index returns Ri (t+ 1) and RS (t+ 1) between t and t + 1 satisfy the
following equations:{

Pi (t+ 1) =
(
1 +Ri (t+ 1)

)
Pi (t)∑n

j=1NjPj (t+ 1) =
(
1 +RS (t+ 1)

)∑n
j=1NjPj (t)

It follows that the weights at time t+ 1 becomes:

wi (t+ 1) =
NiPi (t+ 1)∑n
j=1NjPj (t+ 1)

=
NiPi (t+ 1)

NiPi (t)
· NiPi (t)∑n

j=1NjPj (t)
·
∑n
j=1NjPj (t)∑n

j=1NjPj (t+ 1)

=
1 +Ri (t+ 1)

1 +RS (t+ 1)
wi (t)

We deduce that:

ρS,B (t+ 1) =

n∑
i=1

wi (t+ 1)σi (t+ 1)

σS (t+ 1)
ρi,B (t+ 1)

=

n∑
i=1

(
1 +Ri (t+ 1)

1 +RS (t+ 1)

)(
σi (t+ 1)

σS (t+ 1)

)
wi (t) ρi,B (t+ 1)

and:

ρS,B (t+ 1)− ρS,B (t) =

n∑
i=1

wi (t)σi (t)

σS (t)

(
ξi (t+ 1) ρi,B (t+ 1)− ρi,B (t)

)
where:

ξi (t+ 1) =

(
1 +Ri (t+ 1)

)
σi (t+ 1)

σi (t)(
1 +RS (t+ 1)

)
σS (t+ 1)

σS (t)

A.8 The inflation-centric model of Li (2002)

A.8.1 The economy

The real interest rate r (t), the inflation rate π (t) and the dividend yield δ (t) follow affine
mean-reverting processes:

r (t+ 1) = r̄ + %r
(
r (t)− r̄

)
+ εr (t+ 1)

π (t+ 1) = π̄ + %π
(
π (t)− π̄

)
+ επ (t+ 1)

δ (t+ 1) = δ̄ + %δ
(
δ (t)− δ̄

)
+ εδ (t+ 1)

where r̄, π̄ and δ̄ are the long-run equilibria, %r, %π and %δ are the adjustment velocities,
and εr (t+ 1), επ (t+ 1) and εδ (t+ 1) are the innovation shocks distributed according to
N
(
0, σ2

r

)
, N

(
0, σ2

π

)
, and N

(
0, σ2

δ

)
. We note ρr,π, ρr,δ and ρπ,δ the correlations between

the innovation shocks. The logarithm of the real pricing kernel of the economy M (t+ 1)
follows the standard process:

m (t+ 1) = lnM (t+ 1)

= −r (t)− µm + εm (t+ 1)
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where εm (t+ 1) ∼ N
(
0, σ2

m

)
and εm (t) is a linear function of the innovation shocks:

εm (t+ 1) =
∑

x=r,π,δ

φxεx (t+ 1)

= φrεr (t+ 1) + φπεπ (t+ 1) + φδεδ (t+ 1)

= φ>ε (t+ 1)

φr, φπ and φδ are the weights of the innovation processes to form the kernel innovation. We
have φ = (φr, φπ, φδ) and ε (t+ 1) =

(
εr (t+ 1) , επ (t+ 1) , εδ (t+ 1)

)
. The non-arbitrage

condition implies that the real interest rate is the return of the one-period real bond:

r (t) = − lnEt
[
M (t+ 1)

]
= r (t) + µm −

1

2
var
(
εm (t+ 1)

)
We deduce that:

µm :=
1

2
σ2
m

=
1

2

∑
x=r,π,δ

∑
y=r,π,δ

φxφyρx,yσxσy

=
1

2
φ>Σφ

where Σ is the covariance matrix of ε (t+ 1). Finally, we get:

m (t+ 1) = −r (t)− µm + εm (t+ 1)

The pricing kernel is then distributed as a log-normal distribution:

M (t+ 1) = em(t+1) ∼ LN
(
−
(
r (t) + µm

)
, σ2
m

)
A.8.2 Asset returns

Preliminary results We have:

ϑ (t+ 1) = m (t+ 1) + c+ arr (t+ 1) + aππ (t+ 1) + aδδ (t+ 1)

= −r (t)− µm + εm (t+ 1) + c+

ar

((
r̄ + %r

(
r (t)− r̄

)
+ εr (t+ 1)

))
+

aπ

(
π̄ + %π

(
π (t)− π̄

)
+ επ (t+ 1)

)
+

aδ

(
δ̄ + %δ

(
δ (t)− δ̄

)
+ εδ (t+ 1)

)
= −µm + c+

(ar%r − 1) r (t) + aπ%ππ (t) + aδ%δδ (t) +

ar (1− %r) r̄ + aπ (1− %π) π̄ + aδ (1− %δ) δ̄ +

(φr + ar) εr (t+ 1) + (φπ + aπ) επ (t+ 1) + (φδ + aδ) εδ (t+ 1)

We deduce that ϑ (t+ 1) is Gaussian with:

Et
[
ϑ (t+ 1)

]
= −µm + c+

(ar%r − 1) r (t) + aπ%ππ (t) + aδ%δδ (t) +

ar (1− %r) r̄ + aπ (1− %π) π̄ + aδ (1− %δ) δ̄
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and:

var t
(
ϑ (t+ 1)

)
=

∑
x=r,π,δ

∑
y=r,π,δ

(φx + ax)
(
φy + ay

)
ρx,yσxσy

= (φ+ a)
>

Σ (φ+ a)

where a = (ar, aπ, aδ). We note:

µϑ =
1

2
(φ+ a)

>
Σ (φ+ a) (13)

It follows that:

Et
[
eϑ(t+1)

]
= exp

(
Et
[
ϑ (t+ 1)

]
+

1

2
var t

(
ϑ (t+ 1)

))
= exp

(
µϑ − µm + c+ ar (1− %r) r̄ + aπ (1− %π) π̄ + aδ (1− %δ) δ̄

)
·

exp
(
(ar%r − 1) r (t)

)
· exp

(
aπ%ππ (t)

)
· exp

(
aδ%δδ (t)

)
(14)

In the sequel, we will also use the following identities36:
α′rr (t+ 1)− αrr (t) = α′r (1− %r) r̄ +

(
α′r%r − αr

)
r (t) + α′rεr (t+ 1)

α′ππ (t+ 1)− αππ (t) = α′π (1− %π) π̄ +
(
α′π%π − απ

)
π (t) + α′πεπ (t+ 1)

α′δδ (t+ 1)− αδδ (t) = α′δ (1− %δ) r̄ +
(
α′δ%δ − αδ

)
δ (t) + α′δεδ (t+ 1)

(15)

Bond return We consider a nominal bond, whose remaining maturity is n period. We
assume that its price B (t) has an exponential form:

Bn (t) = exp
(
αn0 + αnr r (t) + αnππ (t)

)
Li (2002) showed that the log pricing kernel of this nominal bond is m (t+ 1) − π (t+ 1),
implying that:

Bn (t) = Et
[
em(t+1)−π(t+1)Bn−1 (t+ 1)

]
We have:

Bn (t) = Et
[
exp

(
m (t+ 1)− π (t+ 1) + αn−1

0 + αn−1
r r (t+ 1) + αn−1

π π (t+ 1)
)]

Using the results (14) on page 101 with c = αn−1
0 , ar = αn−1

r , aπ = αn−1
π − 1 and aδ = 0,

we deduce that:

Bn (t) = exp

(
µϑ − µm + αn−1

0 + αn−1
r (1− %r) r̄ +

(
αn−1
π − 1

)
(1− %π) π̄

)
·

exp

((
αn−1
r %r − 1

)
r (t)

)
· exp

((
αn−1
π − 1

)
%ππ (t)

)
Li (2002) obtained the following recursive relationships:

αn0 = µϑ − µm + αn−1
0 + αn−1

r (1− %r) r̄ +
(
αn−1
π − 1

)
(1− %π) π̄

αnr = αn−1
r %r − 1

αnπ =
(
αn−1
π − 1

)
%π

36Because we have:

α′rr (t+ 1)− αrr (t) = α′r

(
r̄ + %r

(
r (t)− r̄

)
+ εr (t+ 1)

)
− αrr (t)
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We deduce that:

αnr = −1− %nr
1− %r

and:

αnπ = −1− %nπ
1− %π

%π

The bond return is defined as:

RB (t+ 1) = lnBn−1 (t+ 1)− lnBn (t)

=
(
αn−1

0 − αn0
)

+
(
αn−1
r r (t+ 1)− αnr r (t)

)
+
(
αn−1
π π (t+ 1)− αnππ (t)

)
Since we have:

αn−1
0 − αn0 = µm − µϑ − αn−1

r (1− %r) r̄ −
(
αn−1
π − 1

)
(1− %π) π̄

we deduce that:

RB (t+ 1) = µm − µϑ − αn−1
r (1− %r) r̄ −

(
αn−1
π − 1

)
(1− %π) π̄ +

αn−1
r (1− %r) r̄ +

(
αn−1
r %r − αnr

)
r (t) + αn−1

r εr (t+ 1) +

αn−1
π (1− %π) π̄ +

(
αn−1
π %π − αnπ

)
π (t) + αn−1

π επ (t+ 1)

= µm − µϑ + r (t) + (1− %π) π̄ + %ππ (t) +

αn−1
r εr (t+ 1) + αn−1

π επ (t+ 1)

= r (t) + π̂ (t) + µm − µϑ + εB (t+ 1)

where:

π̂ (t) = Et
[
π (t+ 1)

]
= π̄ + %π

(
π (t)− π̄

)
and:

εB (t+ 1) = αn−1
r εr (t+ 1) + αn−1

π επ (t+ 1)

The conditional distribution of RB (t+ 1) is then Gaussian:

RB (t+ 1) ∼ N
(
µB (t) , σ2

B (t)
)

where µB (t) = r (t) + π̂ (t) + µm − µϑ, σ2
B (t) = α>Σα and α =

(
αn−1
r , αn−1

π , 0
)
.

Stock return We assume that the stock pays a dividend until the period n. Li (2002)
showed that the stock price S (t) is equal to:

S (t) = Et
[
M (t+ 1)

(
S (t+ 1) +D (t+ 1)

)]
= Et

[
M (t+ 1)

(
1 + δ (t+ 1)

)
S (t+ 1)

]
where D (t) is the nominal dividend and δ (t) is the dividend yield. Let us assume that S (t)
has an exponential form:

S (t) = exp
(
αn0 + αnr r (t) + αnδ δ (t)

)
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Since ln
(
1 + δ (t+ 1)

)
≈ δ (t+ 1), we deduce that:

S (t) = Et
[
exp

(
lnM (t+ 1) + ln

(
1 + δ (t+ 1)

)
+ lnS (t+ 1)

)]
= Et

[
exp

(
m (t+ 1) + αn−1

0 + αn−1
r r (t+ 1) +

(
αn−1
δ + 1

)
δ (t+ 1)

)]
Using the results (14) on page 101 with c = αn−1

0 , ar = αn−1
r , aπ = 0 and aδ = αn−1

δ + 1,
we deduce that:

S (t) = exp

(
µϑ − µm + αn−1

0 + αn−1
r (1− %r) r̄ +

(
αn−1
δ + 1

)
(1− %δ) δ̄

)
·

exp

((
αn−1
r %r − 1

)
r (t)

)
· exp

((
αn−1
δ + 1

)
%δδ (t)

)
Li (2002) obtained the following recursive relationships:

αn0 = µϑ − µm + αn−1
0 + αn−1

r (1− %r) r̄ +
(
αn−1
δ + 1

)
(1− %δ) δ̄

αnr = αn−1
r %r − 1

αnδ =
(
αn−1
δ + 1

)
%δ

We deduce that:

αr = lim
n→∞

αnr = − 1

1− %r
and:

αδ = lim
n→∞

αnδ =
%δ

1− %δ
The stock return is defined as:

RS (t+ 1) = lnS (t+ 1)− lnS (t) + δ (t+ 1) + π (t+ 1)

=
(
αn−1

0 − αn0
)

+ αrr (t+ 1)− αrr (t) +

π (t+ 1) + (αδ + 1) δ (t+ 1)− αδδ (t)

We have:

αr
(
r (t+ 1)− r (t)

)
= αr (1− %r) r̄ + (αr%r − αr) r (t) + αrεr (t+ 1)

= −r̄ + r (t) + αrεr (t+ 1)

and:

(αδ + 1) δ (t+ 1)− αδδ (t) = (αδ + 1)
(
δ̄ + %δ

(
δ (t)− δ̄

)
+ εδ (t+ 1)

)
− αδδ (t)

= δ̄ + (αδ + 1) εδ (t+ 1)

Since we have αn−1
0 − αn0 = µm − µϑ + r̄ − δ̄, we deduce that:

RS (t+ 1) = r (t) + π̂ (t) + µm − µϑ + εS (t+ 1)

where:
εS (t+ 1) = αrεr (t+ 1) + επ (t+ 1) + (αδ + 1) εδ (t+ 1)

The conditional distribution of RS (t+ 1) is then Gaussian:

RS (t+ 1) ∼ N
(
µS (t) , σ2

S (t)
)

where µS (t) = r (t) + π̂ (t) + µm − µϑ, σ2
S (t) = α>Σα and α = (αr, 1, αδ + 1).
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A.8.3 The stock-bond covariance

We note xBr = −1− %nr
1− %r

, xBπ = −1− %nπ
1− %π

%π, xBδ = 0, xSr = − 1

1− %r
, xSπ = 1 and xSδ =

1

1− %δ
.

We deduce that the conditional stock-bond covariance is given by:

cov
(
RB (t+ 1) , RS (t+ 1)

)
= E

[
εB (t+ 1) εS (t+ 1)

]
= E

[(
x>BεB (t+ 1)

)(
x>S εS (t+ 1)

)]
= x>BΣxS (16)

where xB =
(
xBr , x

B
π , x

B
δ

)
and xS =

(
xSr , x

S
π , x

S
δ

)
, while the stock-bond correlation is:

ρS,B =
x>BΣxS√

x>BΣxB

√
x>SΣxS

(17)

The calculation gives:

cov
(
RB (t) , RS (t)

)
= xBr x

S
r σ

2
r + xBπ σ

2
π +(

xBr + xBπ x
S
r

)
ρr,πσrσπ + xBr x

S
δ ρr,δσrσδ + xBπ x

S
δ ρπ,δσπσδ

The expression of the covariance is then equal to:

cov
(
RB (t) , RS (t)

)
=

(1− %nr )

(1− %r)2σ
2
r −

(1− %nπ) %π
(1− %π)

σ2
π +

(1− %nπ) %π − (1− %nr ) (1− %π)

(1− %r) (1− %π)
ρr,πσrσπ −

(1− %nr )

(1− %r) (1− %δ)
ρr,δσrσδ −

(1− %nπ) %π
(1− %π) (1− %δ)

ρπ,δσπσδ (18)

For the variance terms, we have:

σ2
B (t) = x>BΣxB

=

(
1− %nr
1− %r

)2

σ2
r +

(
1− %nπ
1− %π

%π

)2

σ2
π + 2

(1− %nr ) (1− %nπ) %π
(1− %r) (1− %π)

ρr,πσrσπ (19)

and:

σ2
S (t) = x>SΣxS

=

(
1

1− %r

)2

σ2
r + σ2

π +

(
%δ

1− %δ

)2

σ2
δ −

2

(
1

1− %r

)
ρr,πσrσπ − 2

1

(1− %r) (1− %δ)
ρr,δσrσδ +

2

(
1

1− %δ

)
ρπ,δσπσδ (20)

A.9 Calculating the stock-bond correlation in the growth-inflation
model

In the growth-inflation model, the dynamics of asset returns are given by a two-factor model:{
RS (t)− Et−1

[
RS (t)

]
= βS,gεg (t) + βS,πεπ (t)

RB (t)− Et−1

[
RB (t)

]
= βB,gεg (t) + βB,πεπ (t)

104



Stock-Bond Correlation: Theory & Empirical Results

where εg (t) ∼ N
(

0, σ2
g

)
and επ (t) ∼ N

(
0, σ2

π

)
are the growth and inflation shocks, re-

spectively. We also assume that εg (t) and επ (t) are two correlated processes and denote
ρ
(
εg (t) , επ (t)

)
= ρg,π. We deduce that:

σ2
B = var

(
RB (t)

)
= β2

B,gσ
2
g + β2

B,πσ
2
π + 2βB,gβB,πρg,πσgσπ

σ2
S = var

(
RS (t)

)
= β2

S,gσ
2
g + β2

S,πσ
2
π + 2βS,gβS,πρg,πσgσπ

σ2
S,B = cov

(
RS (t) , RB (t)

)
= βS,gβB,gσ

2
g + βS,πβB,πσ

2
π +

(
βS,gβB,π + βS,πβB,g

)
ρg,πσgσπ

Let ϕg,π = σg/σπ be the ratio of the growth volatility to the inflation volatility. We have
σg = ϕg,πσπ. We deduce that:

σ2
B =

(
β2
B,gϕ

2
g,π + β2

B,π + 2βB,gβB,πρg,πϕg,π

)
σ2
π

σ2
S =

(
β2
S,gϕ

2
g,π + β2

S,π + 2βS,gβS,πρg,πϕg,π

)
σ2
π

σ2
S,B =

(
βS,gβB,gϕ

2
g,π + βS,πβB,π +

(
βS,gβB,π + βS,πβB,g

)
ρg,πϕg,π

)
σ2
π

We conclude that the stock-bond correlation does not depend on the level of the growth and
inflation volatilities, but only on the ratio ϕg,π:

ρS,B =
βS,gβB,gϕ

2
g,π + βS,πβB,π +

(
βS,gβB,π + βS,πβB,g

)
ρg,πϕg,π√

β2
B,gϕ

2
g,π + β2

B,π + 2βB,gβB,πρg,πϕg,π
√
β2
S,gϕ

2
g,π + β2

S,π + 2βS,gβS,πρg,πϕg,π
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B Additional results

B.1 Figures

Figure 60: Effect of marginal distributions on bond payoff (ρ = −25%, Normal copula)
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Figure 61: Effect of copula functions on bond payoff (ρ = −25%, Gaussian margins)
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Figure 62: Effect of copula functions on bond payoff (ρ = −25%, Student t1 margins)
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Figure 63: Number of stocks that explain 25% of the US stock-bond correlation (S&P 500
Index)
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Figure 64: Number of stocks that explain 75% of the US stock-bond correlation (S&P 500
Index)
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Figure 65: Aggregate stock-bond correlation of the MDP (
∣∣∣ρstock
S,B

∣∣∣ = 10%)
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Figure 66: Stock-bond correlation ρS,B in the growth-inflation model (βS,g = 1, βS,π =
βB,g = βB,π = −1 and ϕg,π = 2)
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Figure 67: Stock-bond correlation ρS,B in the growth-inflation model (βS,g = 0.2, βS,π =
βB,g = βB,π = −1 and ϕg,π = 2)
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Figure 68: Stock-bond correlation ρS,B in the growth-inflation model (βS,π = βB,g = βB,π =
−1 and ρg,π = −40%)
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Figure 69: Stock-bond correlation ρS,B in the growth-inflation model (βS,π = βB,g = βB,π =
−1 and ϕg,π = 2)
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Figure 70: 4-year rolling window estimates of σg, σπ, ρg,π and ϕg,π (France)
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Source: OECD (2024), data.oecd.org/gdp/quarterly-gdp.htm,

data.oecd.org/price/inflation-cpi.htm & Author’s calculations.
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Figure 71: 4-year rolling window estimates of σg, σπ, ρg,π and ϕg,π (Germany)
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Source: OECD (2024), data.oecd.org/gdp/quarterly-gdp.htm,

data.oecd.org/price/inflation-cpi.htm & Author’s calculations.

Figure 72: 4-year rolling window estimates of σg, σπ, ρg,π and ϕg,π (Japan)
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Source: OECD (2024), data.oecd.org/gdp/quarterly-gdp.htm,

data.oecd.org/price/inflation-cpi.htm & Author’s calculations.
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Figure 73: 4-year rolling window estimates of σg, σπ, ρg,π and ϕg,π (United Kingdom)
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Source: OECD (2024), data.oecd.org/gdp/quarterly-gdp.htm,

data.oecd.org/price/inflation-cpi.htm & Author’s calculations.

Figure 74: 4-year rolling window estimates of σg, σπ, ρg,π and ϕg,π (United States)
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Source: OECD (2024), data.oecd.org/gdp/quarterly-gdp.htm,

data.oecd.org/price/inflation-cpi.htm & Author’s calculations.

113

data.oecd.org/gdp/quarterly-gdp.htm
data.oecd.org/price/inflation-cpi.htm
data.oecd.org/gdp/quarterly-gdp.htm
data.oecd.org/price/inflation-cpi.htm


Stock-Bond Correlation: Theory & Empirical Results

Figure 75: Rolling 4-year stock-bond correlation (US, 3M, 1965-2023, monthly frequency)

1970 1980 1990 2000 2010 2020
-60

-40

-20

0

20

40

60

7;S;B = 11:1%

7;S;B = !16:4%

Source: Bloomberg (2024) & Authors’ calculations.

Figure 76: Rolling 4-year stock-bond correlation (US, 30Y, 1980-2023, monthly frequency)
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Figure 77: Scatterplot of rolling 4-year stock-bond monthly and daily correlations (US, 10Y,
1965-2023)
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Source: Bloomberg (2024) & Authors’ calculations.

Figure 78: Scatterplot of rolling 4-year stock-bond correlations (US, 10Y, 1980-2023)
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Source: Datastream (2024) & Authors’ calculations.
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Figure 79: Scatterplot of rolling 4-year stock-bond correlations (US, 10Y, 1980-2023)
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Source: Datastream (2024) & Authors’ calculations.

Below we report the estimated stock-bond correlation for the different countries. We
use the Benchmark 10 Year DS Govt. Index (Total Return) for all countries except the
following:

• Bulgaria, China, Colombia, Hong Kong, India, Israel, Peru, Philippines, Romania,
Russia and Turkey: ICE BofA Government Index (Total Return);

• Brazil: Bloomberg EM Gov IL 7-10Y (Total Return);

• Chile, Malaysian and Taiwan: FTSE Government Bond Index 7+ Year (Total Return).

For the equity index, we use the MSCI Country Local Currency (Total Return Index) for
all countries except the following:

• Bulgaria: Bulgaria SE SOFIX (Price Index);

• Peru: S&P/BVL General(IGBVL) (Price Index);

• Romania: Romania BET (L) (Price Index);

• Russia: MOEX Russia Index (Total Return).

116



Stock-Bond Correlation: Theory & Empirical Results

Figure 80: Rolling 4-year stock-bond correlation (Australia, Austria, Belgium, Brazil)
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Source: Datastream (2024) & Authors’ calculations.

Figure 81: Rolling 4-year stock-bond correlation (Bulgaria, Canada, Chile, China)
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Figure 82: Rolling 4-year stock-bond correlation (Colombia, Czechia, Denmark, Finland)
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Source: Datastream (2024) & Authors’ calculations.

Figure 83: Rolling 4-year stock-bond correlation (France, Germany, Greece, Hong Kong)
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Source: Datastream (2024) & Authors’ calculations.
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Figure 84: Rolling 4-year stock-bond correlation (Hungary, India, Indonesia, Ireland)
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Source: Datastream (2024) & Authors’ calculations.

Figure 85: Rolling 4-year stock-bond correlation (Israel, Italy, Japan, Korea)
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Figure 86: Rolling 4-year stock-bond correlation (Malaysia, Mexico, Netherlands, New
Zealand)
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Source: Datastream (2024) & Authors’ calculations.

Figure 87: Rolling 4-year stock-bond correlation (Norway, Peru, Philippines, Poland)
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Source: Datastream (2024) & Authors’ calculations.
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Figure 88: Rolling 4-year stock-bond correlation (Portugal, Romania, Russia, Singapore)
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Source: Datastream (2024) & Authors’ calculations.

Figure 89: Rolling 4-year stock-bond correlation (South Africa, Spain, Sweden, Switzerland)
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Source: Datastream (2024) & Authors’ calculations.
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Figure 90: Rolling 4-year stock-bond correlation (Taiwan, Turkey, United Kingdom, United
States)
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Source: Datastream (2024) & Authors’ calculations.

Figure 91: Stock and bond risk premia (Australia, Brazil)
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Source: Datastream (2024) & Authors’ calculations.
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Figure 92: Stock and bond risk premia (Canada, China)
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Source: Datastream (2024) & Authors’ calculations.

Figure 93: Stock and bond risk premia (France, Germany)
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Figure 94: Stock and bond risk premia (Greece, India)
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Figure 95: Stock and bond risk premia (Italy, Japan)
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Source: Datastream (2024) & Authors’ calculations.
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Figure 96: Stock and bond risk premia (Malaysia, Poland)
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Source: Datastream (2024) & Authors’ calculations.

Figure 97: Stock and bond risk premia (Portugal, Singapore)
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Source: Datastream (2024) & Authors’ calculations.

125



Stock-Bond Correlation: Theory & Empirical Results

Figure 98: Stock and bond risk premia (South Africa, Spain)

05 10 15 20

4

5

6

7

8

~: S
(t

)
(i
n

%
)

South Africa

05 10 15 20
0

0.5

1

1.5

2

~: B
(t

)
(i
n

%
)

South Africa

95 00 05 10 15 20
2

4

6

8

~: S
(t

)
(i
n

%
)

Spain

95 00 05 10 15 20
-1

0

1

2

3

~: B
(t

)
(i
n

%
)

Spain

Source: Datastream (2024) & Authors’ calculations.

Figure 99: Stock and bond risk premia (Switzerland, Turkey)
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Figure 100: Stock and bond risk premia (United Kingdom, United States)
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Figure 101: Difference in % between the maximum and minimum US sector-level stock-bond
correlation
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Source: Datastream (2024) & Authors’ calculations.
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Figure 102: Confidence interval of the individual stock-bond correlation (US, monthly re-
turn, α = 5%)
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Figure 103: Confidence interval of the individual stock-bond correlation (US, monthly re-
turn, α = 10%)
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Figure 104: Equity duration (US, Equation 11)
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Figure 105: Dynamics of ρS,B (t) and y (t)− 5% (US, 1965-2023)
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Figure 106: Dynamics of the stock-bond correlation ρS,B (t) and the fed funds rate r? (t)
(US, 1965-2023)
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Figure 107: Dynamics of the stock-bond correlation ρS,B (t) and the FOMC target rate
r? (t) (US, 1965-2023)
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Figure 108: Dynamics of the stock-bond correlation ρS,B (t) and the inflation level π (t) (US,
1965-2023)
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Figure 109: Dynamics of the stock-bond correlation ρS,B (t) and the inflation volatility σπ (t)
(US, 1965-2023)
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Figure 110: Three measures of growth volatility σg (t) (US, 1965-2023)
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Figure 111: Pearson correlation of the market regime (N ormal,N ormal) (US, daily returns)
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Figure 112: Estimated stock-bond payoff (US, monthly return, 1980-1999)
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Figure 113: Estimated stock-bond payoff (US, monthly return, 2000-2019)
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Figure 114: Estimated stock-bond payoff (US, 3-year return, 1980-1999)
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Figure 115: Estimated stock-bond payoff (US, 3-year return, 2000-2019)
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Figure 116: Estimated stock-bond payoff (Italy, daily return, 2010-2023)
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Figure 117: Estimated stock-bond payoff (Turkey, daily return, 2010-2023)
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B.2 Tables

Table 26: Stock-bond correlation (1990-1999)

AUS 41.7 AUT 15.6 BEL 44.6 BRA
BGR CAN 40.5 CHL CHN
COL CZE DNK 46.0 FIN 27.9
FRA 44.0 DEU 27.8 GRC HKG
HUN IND IDN IRL 40.2
ISR ITA 47.0 JPN 4.8 KOR
MYS MEX NLD 29.7 NZL 32.6
NOR 33.8 PER PHL POL
PRT 30.5 ROU RUS SGP
ZAF ESP 45.9 SWE 36.7 CHE 33.9
TWN TUR GBR 55.1 USA 35.5

Source: Datastream (2024) & Authors’ calculations.

Table 27: Stock-bond correlation (2000-2009)

AUS −26.0 AUT −17.3 BEL −16.9 BRA
BGR 31.0 CAN −10.5 CHL CHN −43.4
COL CZE 16.6 DNK −25.8 FIN −20.8
FRA −33.7 DEU −42.1 GRC 5.8 HKG −16.5
HUN 52.9 IND IDN IRL −9.4
ISR ITA −11.1 JPN −38.1 KOR
MYS MEX NLD −31.6 NZL −6.5
NOR −31.7 PER PHL POL 31.0
PRT −11.8 ROU RUS SGP
ZAF 4.5 ESP −12.4 SWE −27.5 CHE −26.4
TWN TUR GBR −16.7 USA −24.6

Source: Datastream (2024) & Authors’ calculations.
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Table 28: Stock-bond correlation (2010-2019)

AUS −21.2 AUT −20.5 BEL 20.4 BRA 42.2
BGR −12.9 CAN −29.7 CHL CHN −9.4
COL 37.2 CZE 0.6 DNK −5.8 FIN −11.9
FRA −12.6 DEU −27.9 GRC 44.6 HKG 3.1
HUN 31.3 IND 4.8 IDN 57.7 IRL 1.5
ISR 0.5 ITA 36.1 JPN −41.8 KOR −16.7
MYS 23.8 MEX 20.2 NLD −12.9 NZL 9.3
NOR −38.6 PER 33.6 PHL 43.8 POL 15.5
PRT 35.5 ROU 24.5 RUS 35.7 SGP 3.8
ZAF 30.9 ESP 34.6 SWE −28.1 CHE −23.7
TWN −14.4 TUR 49.4 GBR −11.3 USA −48.2

Source: Datastream (2024) & Authors’ calculations.

Table 29: Stock-bond correlation (2020-2023)

AUS 24.8 AUT 26.0 BEL 19.3 BRA 61.2
BGR 21.2 CAN 21.1 CHL 21.9 CHN −32.0
COL 21.2 CZE 1.6 DNK 45.4 FIN 35.8
FRA 39.5 DEU 34.4 GRC 18.5 HKG 31.9
HUN 40.1 IND 11.9 IDN 53.0 IRL 40.3
ISR 52.1 ITA 41.8 JPN 17.8 KOR 46.8
MYS 26.1 MEX 38.7 NLD 60.3 NZL 52.8
NOR −29.1 PER 39.7 PHL 41.1 POL 27.1
PRT 38.4 ROU 46.8 RUS SGP 12.8
ZAF 57.8 ESP 22.9 SWE 37.3 CHE 43.2
TWN −3.8 TUR 18.9 GBR 17.2 USA 25.8

Source: Datastream (2024) & Authors’ calculations.

Table 30: Difference ρSector
S,B − ρIndex

S,B in % (MSCI EMU)

Sector
2000 2005 2010 2015 2020 1995
2004 2009 2014 2019 2023 2003

Communication Services 7.8 25.5 26.3 11.4 5.3 14.7
Consumer Discretionary 4.2 −2.9 8.9 2.3 −0.0 2.8

Consumer Staples 11.9 12.4 21.0 40.6 29.6 22.3
Energy 11.0 10.3 −11.6 1.7 −28.0 −2.4

Financials 4.9 2.5 4.2 −28.9 −25.5 −7.7
Health Care 21.2 13.3 21.5 20.5 11.3 17.4
Industrials −4.2 −0.3 5.9 4.3 3.0 1.4

Information Technology −5.3 9.9 8.7 13.0 14.9 7.1
Materials 0.5 −14.5 −0.3 −3.5 −4.6 −4.9

Real Estate 24.2 24.2
Utilities 23.0 23.5 0.6 15.8 31.8 18.1

Source: Datastream (2024) & Authors’ calculations.
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Table 31: Difference ρSector
S,B − ρIndex

S,B in % (MSCI Europe in $)

Sector
2000 2005 2010 2015 2020 1995
2004 2009 2014 2019 2023 2003

Communication Services 3.4 16.7 15.4 7.1 1.9 8.8
Consumer Discretionary 0.1 −1.2 4.1 1.0 1.9 1.3

Consumer Staples 19.3 16.7 12.8 34.7 23.7 20.6
Energy 13.2 7.4 −9.7 5.2 −22.4 −0.4

Financials 4.0 1.9 4.2 −21.8 −18.9 −5.4
Health Care 22.3 9.6 20.8 22.1 13.4 17.6
Industrials −11.4 −4.2 2.8 3.5 5.6 −1.6

Information Technology −13.5 4.7 2.7 14.4 13.3 3.4
Materials −3.4 −11.9 −2.6 −2.5 −5.7 −5.7

Real Estate 14.1 28.6 15.6 19.8
Utilities 31.4 27.5 −0.9 18.1 30.4 21.0

Source: Datastream (2024) & Authors’ calculations.

Table 32: Difference ρFactor
S,B − ρIndex

S,B in % (MSCI Europe in $)

Period Value Growth
Low Momen- High Qua-
Vol. tum Div. lity

2005-2009 −4.3 −8.9 15.1 2.3 5.7 2.0
2010-2014 3.1 1.3 4.7 −2.6 4.0 1.8
2015-2019 9.3 32.5 15.0 12.8 4.4 16.5
2020-2023 −8.3 23.6 14.8 7.7 −3.8 12.8
2000-2023 0.5 12.6 12.2 5.1 2.7 8.4

Source: Datastream (2024) & Authors’ calculations.

Table 33: Linear regression of the stock-bond correlation on economic factors (US, 1965-
2023, yield-inflation)

h 1M/1Q 1Y 2Y 3Y 5Y

β̂0 −0.18∗∗∗ −0.35∗∗∗ −0.39∗∗∗ −0.39∗∗∗ −0.41∗∗∗

β̂y 8.03∗∗∗ 9.33∗∗∗ 9.98∗∗∗ 10.08∗∗∗ 9.25∗∗∗

β̂π −3.68 −0.89∗∗ −0.73∗∗∗ −0.95∗∗∗ −0.64∗∗∗

β̂σπ −25.61∗∗∗ −7.40∗∗∗ −5.35∗∗∗ −1.42 4.74∗∗∗

R2
c 55.01% 52.41% 52.32% 51.49% 52.92%
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Table 34: Linear regression of the stock-bond correlation on economic factors (US, 1965-
2023, yield-inflation-growth)

h 1M/1Q 1Y 2Y 3Y 5Y

GDP

β̂0 −0.19∗∗∗ −0.44∗∗∗ −0.48∗∗∗ −0.42∗∗∗ −0.43∗∗∗

β̂y 8.30∗∗∗ 9.40∗∗∗ 9.24∗∗∗ 8.73∗∗∗ 8.11∗∗∗

β̂π −9.96∗ −1.58∗ −1.52∗∗∗ −1.50∗∗∗ −0.76∗∗

β̂σπ −31.30∗∗∗ −11.54∗∗∗ −6.20∗∗∗ −0.20 5.33∗∗

β̂g −0.20 1.26∗∗ 1.43∗∗∗ 1.05∗∗∗ 0.36

β̂σg 2.14∗∗∗ 2.68∗∗ 0.75 −2.23∗∗ −1.05
R2
c 56.03% 53.77% 53.83% 54.36% 53.13%

Industrial
production

β̂0 −0.23∗∗∗ −0.43∗∗∗ −0.43∗∗∗ −0.37∗∗∗ −0.40∗∗∗

β̂y 8.50∗∗∗ 9.59∗∗∗ 9.30∗∗∗ 7.51∗∗∗ 6.80∗∗∗

β̂π −8.47∗∗∗ −0.95∗∗ −0.61∗∗ −0.31 −0.23∗

β̂σπ −34.33∗∗∗ −11.56∗∗∗ −4.82∗∗∗ 2.52∗∗ 6.08∗∗∗

β̂g 1.80∗∗ 0.88∗∗∗ 0.88∗∗∗ 0.95∗∗∗ 0.61∗∗∗

β̂σg 3.84∗∗∗ 2.73∗∗∗ 0.83 −2.52∗∗∗ −1.90∗∗

R2
c 57.90% 55.51% 55.66% 56.92% 56.44%

Monthly
GDP proxy

β̂0 −0.24∗∗∗ −0.59∗∗∗ −0.64∗∗∗ −0.63∗∗∗ −0.73∗∗∗

β̂y 7.95∗∗∗ 9.97∗∗∗ 9.26∗∗∗ 8.19∗∗∗ 7.65∗∗∗

β̂π −7.02∗∗ −1.44∗∗∗ −1.33∗∗∗ −1.33∗∗∗ −0.87∗∗∗

β̂σπ −29.86∗∗∗ −13.93∗∗∗ −6.22∗∗∗ −0.32 3.98∗∗∗

β̂g 2.15 1.52∗∗∗ 1.39∗∗∗ 1.17∗∗∗ 0.72∗∗∗

β̂σg 7.14∗∗∗ 9.49∗∗∗ 2.72∗ −3.29∗∗ 3.64∗

R2
c 56.13% 56.59% 55.97% 56.47% 55.35%
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