Asset Management Lecture 2. Risk Budgeting

Thierry Roncalli*

*University of Paris-Saclay

January 2021

General information

Overview

The objective of this course is to understand the theoretical and practical aspects of asset management

Prerequisites

M1 Finance or equivalent

Sector

3

G Keywords

Finance, Asset Management, Optimization, Statistics

O Hours

Lectures: 24h, HomeWork: 30h

Evaluation

Project + oral examination

Course website

http://www.thierry-roncalli.com/RiskBasedAM.html

Objective of the course

The objective of the course is twofold:

- having a financial culture on asset management
- eing proficient in quantitative portfolio management

Class schedule

Course sessions

- January 8 (6 hours, AM+PM)
- January 15 (6 hours, AM+PM)
- January 22 (6 hours, AM+PM)
- January 29 (6 hours, AM+PM)

Class times: Fridays 9:00am-12:00pm, 1:00pm-4:00pm, University of Evry

Agenda

- Lecture 1: Portfolio Optimization
- Lecture 2: Risk Budgeting
- Lecture 3: Smart Beta, Factor Investing and Alternative Risk Premia
- Lecture 4: Green and Sustainable Finance, ESG Investing and Climate Risk
- Lecture 5: Machine Learning in Asset Management

Textbook

 Roncalli, T. (2013), Introduction to Risk Parity and Budgeting, Chapman & Hall/CRC Financial Mathematics Series.

Additional materials

• Slides, tutorial exercises and past exams can be downloaded at the following address:

http://www.thierry-roncalli.com/RiskBasedAM.html

 Solutions of exercises can be found in the companion book, which can be downloaded at the following address:

http://www.thierry-roncalli.com/RiskParityBook.html

Agenda

- Lecture 1: Portfolio Optimization
- Lecture 2: Risk Budgeting
- Lecture 3: Smart Beta, Factor Investing and Alternative Risk Premia
- Lecture 4: Green and Sustainable Finance, ESG Investing and Climate Risk
- Lecture 5: Machine Learning in Asset Management

Definition Special cases Properties Numerical solution

Portfolio optimization & portfolio diversification

Example 1

- We consider an investment universe of 5 assets
- (μ_i, σ_i) are respectively equal to (8%, 12%), (7%, 10%), (7.5%, 11%), (8.5%, 13%) and (8%, 12%)
- The correlation matrix is $C_5(\rho)$ with $\rho = 60\%$

The optimal portfolio x^* such that $\sigma(x^*) = 10\%$ is equal to:

$$x^{\star} = \left(egin{array}{ccc} 23.97\% \ 6.42\% \ 16.91\% \ 28.73\% \ 23.97\% \end{array}
ight)$$

Definition Special cases Properties Numerical soluti

Portfolio optimization & portfolio diversification

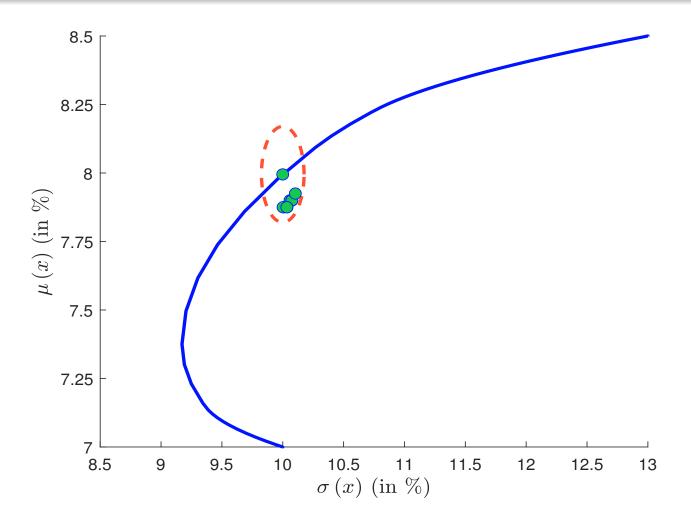


Figure 1: Optimized portfolios versus optimal diversified portfolios

Definition Special cases Properties Numerical soluti

Portfolio optimization & portfolio diversification

Table 1: Some equivalent mean-variance portfolios

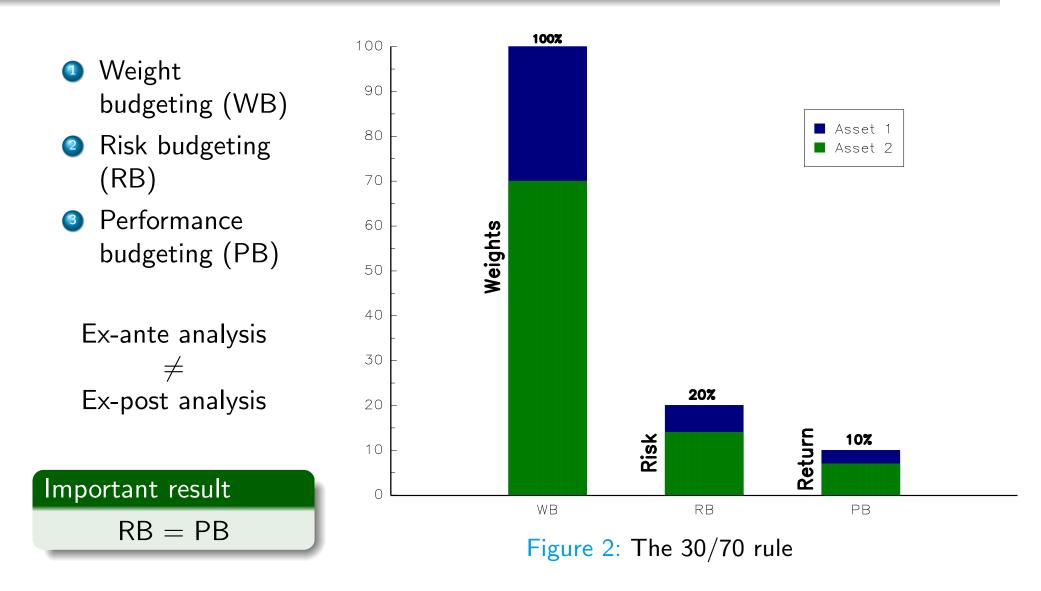
<i>x</i> ₁	23.97		5	5	35	35	50	5	5	10
<i>x</i> ₂	6.42	25		25	10	25	10	30		25
<i>X</i> 3	16.91	5	40		10	5	15		45	10
<i>x</i> ₄	28.73	35	20	30	5	35	10	35	20	45
<i>X</i> 5		35		40	40		15	30	30	10
$\mu(\mathbf{x})$	7.99	7.90	7.90	7.90	7.88	7.90	7.88	7.88	7.88	7.93
$\sigma(\mathbf{x})$	10.00	10.07	10.06	10.07	10.01	10.07	10.03	10.00	10.03	10.10

 \Rightarrow These portfolios have very different compositions, but lead to very close mean-variance features

Some of these portfolios appear more balanced and more diversified than the optimized portfolio

Definition Special cases Properties Numerical solution

Other methods to build a portfolio



Definition Special cases Properties Numerical solution

Weight budgeting versus risk budgeting

Let $x = (x_1, ..., x_n)$ be the weights of *n* assets in the portfolio. Let $\mathcal{R}(x_1, ..., x_n)$ be a coherent and convex risk measure. We have:

$$\mathcal{R}(x_1,\ldots,x_n) = \sum_{i=1}^n x_i \cdot \frac{\partial \mathcal{R}(x_1,\ldots,x_n)}{\partial x_i}$$
$$= \sum_{i=1}^n \mathcal{RC}_i (x_1,\ldots,x_n)$$

Let $b = (b_1, ..., b_n)$ be a vector of budgets such that $b_i \ge 0$ and $\sum_{i=1}^{n} b_i = 1$. We consider two allocation schemes:

Weight budgeting (WB)

$$x_i = b_i$$

Q Risk budgeting (RB)

$$\mathcal{RC}_i = b_i \cdot \mathcal{R}(x_1, \ldots, x_n)$$

Definition Special cases Properties Numerical solutic

Importance of the coherency and convexity properties

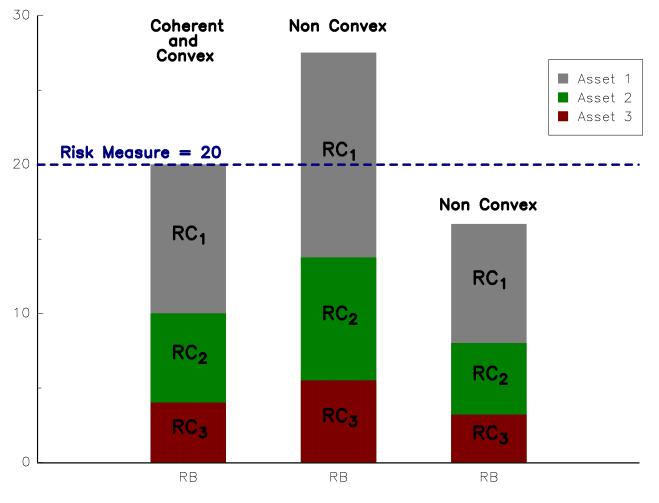


Figure 3: Risk Measure = 20 with a 50/30/20 budget rule

Definition Special cases Properties Numerical solutio

Application to the volatility risk measure

Let Σ be the covariance matrix of the assets returns. We note x the vector of the portfolio's weights:

$$x = \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right)$$

It follows that the portfolio volatility is equal to:

$$\sigma\left(x\right) = \sqrt{x^{\top} \Sigma x}$$

Definition Special cases Properties Numerical soluti

Computation of the marginal volatilities

The vector of marginal volatilities is equal to:

$$\frac{\partial \sigma (x)}{\partial x} = \begin{pmatrix} \frac{\partial \sigma (x)}{\partial x_{1}} \\ \vdots \\ \frac{\partial \sigma (x)}{\partial x_{n}} \end{pmatrix}$$
$$= \frac{\partial}{\partial x} (x^{\top} \Sigma x)^{1/2}$$
$$= \frac{1}{2} (x^{\top} \Sigma x)^{1/2-1} (2\Sigma x)^{1/2}$$
$$= \frac{\Sigma x}{\sqrt{x^{\top} \Sigma x}}$$

It follows that the marginal volatility of Asset *i* is given by:

$$\frac{\partial \sigma (x)}{\partial x_{i}} = \frac{(\Sigma x)_{i}}{\sqrt{x^{\top} \Sigma x}} = \sum_{j=1}^{n} \frac{\rho_{i,j} \sigma_{i} \sigma_{j} x_{j}}{\sigma (x)} = \sigma_{i} \sum_{j=1}^{n} x_{j} \frac{\rho_{i,j} \sigma_{j}}{\sigma (x)}$$

Definition Special cases Properties Numerical solutio

Computation of the risk contributions

We deduce that the risk contribution of the i^{th} asset is then:

$$\mathcal{RC}_{i} = x_{i} \cdot \frac{\partial \sigma (x)}{\partial x_{i}}$$
$$= \frac{x_{i} \cdot (\Sigma x)_{i}}{\sqrt{x^{\top} \Sigma x}}$$
$$= \sigma_{i} x_{i} \sum_{j=1}^{n} x_{j} \frac{\rho_{i,j} \sigma_{j}}{\sigma (x)}$$

Definition Special cases Properties Numerical solution

The Euler allocation principle

We verify that the volatility satisfies the full allocation property:

$$\sum_{i=1}^{n} \mathcal{RC}_{i} = \sum_{i=1}^{n} \sigma_{i} x_{i} \sum_{j=1}^{n} x_{j} \frac{\rho_{i,j} \sigma_{j}}{\sigma(x)} = \frac{1}{\sigma(x)} \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} \rho_{i,j} \sigma_{i} \sigma_{j}$$
$$= \frac{\sigma^{2}(x)}{\sigma(x)} = \sigma(x)$$

An alternative proof uses the definition of the dot product:

$$a \cdot b = \sum_{i=1}^n a_i b_i = a^\top b$$

Indeed, we have:

$$\sum_{i=1}^{n} \mathcal{RC}_{i} = \sum_{i=1}^{n} \frac{x_{i} \cdot (\Sigma x)_{i}}{\sqrt{x^{\top} \Sigma x}} = \frac{1}{\sqrt{x^{\top} \Sigma x}} \sum_{i=1}^{n} x_{i} \cdot (\Sigma x)_{i} = \frac{1}{\sqrt{x^{\top} \Sigma x}} x^{\top} \Sigma x = \sigma(x)$$

Definition Special cases Properties Numerical solutic

Definition of the risk contribution

Definition

The marginal risk contribution of Asset *i* is:

$$\mathcal{MR}_{i} = \frac{\partial \sigma (x)}{\partial x_{i}} = \frac{(\Sigma x)_{i}}{\sqrt{x^{\top} \Sigma x}}$$

The absolute risk contribution of Asset *i* is:

$$\mathcal{RC}_{i} = x_{i} \frac{\partial \sigma (x)}{\partial x_{i}} = \frac{x_{i} \cdot (\Sigma x)_{i}}{\sqrt{x^{\top} \Sigma x}}$$

The relative risk contribution of Asset *i* is:

$$\mathcal{RC}_{i}^{\star} = \frac{\mathcal{RC}_{i}}{\sigma(x)} = \frac{x_{i} \cdot (\Sigma x)_{i}}{x^{\top} \Sigma x}$$

Definition Special cases Properties Numerical solutio

The Euler allocation principle

Remark

We have $\sum_{i=1}^{n} \mathcal{RC}_{i} = \sigma(x)$ and $\sum_{i=1}^{n} \mathcal{RC}_{i}^{\star} = 100\%$.

Application

Example 2

We consider three assets. We assume that their expected returns are equal to zero whereas their volatilities are equal to 30%, 20% and 15%. The correlation of asset returns is given by the following matrix:

Definition

$$\rho = \left(\begin{array}{ccc} 1.00 & & \\ 0.80 & 1.00 & \\ 0.50 & 0.30 & 1.00 \end{array}\right)$$

We consider the portfolio *x*, which is given by:

$$x = \left(\begin{array}{c} 50\%\\20\%\\30\%\end{array}\right)$$

The ERC portfolioDefinitionExtensions to risk budgeting portfoliosSpecial casesRisk budgeting, risk premia and the risk parity strategyPropertiesTutorial exercisesNumerical solution

Application

Using the relationship $\Sigma_{i,j} = \rho_{i,j}\sigma_i\sigma_j$, we deduce that the covariance matrix is¹:

$$\Sigma = \left(\begin{array}{ccc} 9.00 & 4.80 & 2.25 \\ 4.80 & 4.00 & 0.90 \\ 2.25 & 0.90 & 2.25 \end{array} \right) \times 10^{-2}$$

It follows that the variance of the portfolio is:

$$\sigma^{2}(x) = 0.50^{2} \times 0.09 + 0.20^{2} \times 0.04 + 0.30^{2} \times 0.0225 + 2 \times 0.50 \times 0.20 \times 0.0480 + 2 \times 0.50 \times 0.30 \times 0.0225 + 2 \times 0.20 \times 0.30 \times 0.0090 = 4.3555\%$$

The volatility is then $\sigma(x) = \sqrt{4.3555\%} = 20.8698\%$.

 $^1 The$ covariance term between assets 1 and 2 is equal to $\Sigma_{1,2}=80\%\times 30\%\times 20\%$ or $\Sigma_{1,2}=4.80\%$

Application

The computation of the marginal volatilities gives:

$$\frac{\Sigma x}{\sqrt{x^{\top} \Sigma x}} = \frac{1}{20.8698\%} \left(\begin{array}{c} 6.1350\% \\ 3.4700\% \\ 1.9800\% \end{array} \right) = \left(\begin{array}{c} 29.3965\% \\ 16.6269\% \\ 9.4874\% \end{array} \right)$$

Definition

Definition Special cases Properties Numerical solutior

Application

Finally, we obtain the risk contributions by multiplying the weights by the marginal volatilities:

$$x \circ \frac{\Sigma x}{\sqrt{x^{\top}\Sigma x}} = \begin{pmatrix} 50\% \\ 20\% \\ 30\% \end{pmatrix} \circ \begin{pmatrix} 29.3965\% \\ 16.6269\% \\ 9.4874\% \end{pmatrix} = \begin{pmatrix} 14.6982\% \\ 3.3254\% \\ 2.8462\% \end{pmatrix}$$

We verify that the sum of risk contributions is equal to the volatility:

$$\sum_{i=1}^{3} \mathcal{RC}_{i} = 14.6982\% + 3.3254\% + 2.8462\% = 20.8698\%$$

Application

Table 2: Risk decomposition of the portfolio's volatility (Example 2)

Definition

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	50.00	29.40	14.70	70.43
2	20.00	16.63	3.33	15.93
3	30.00	9.49	2.85	13.64
$\sigma(x)$	•		20.87	

Definition Special cases Properties Numerical solutio

The ERC portfolio

Definition

- Let Σ be the covariance matrix of asset returns
- The risk measure corresponds to the volatility risk measure
- The ERC portfolio is the **unique** portfolio *x* such that the risk contributions are equal:

$$\mathcal{RC}_i = \mathcal{RC}_j \Leftrightarrow \frac{x_i \cdot (\Sigma x)_i}{\sqrt{x^\top \Sigma x}} = \frac{x_j \cdot (\Sigma x)_j}{\sqrt{x^\top \Sigma x}}$$

ERC = Equal Risk Contribution

Definition Special cases Properties Numerical solutio

The concept of risk budgeting

Example 3

- 3 assets
- Volatilities are respectively equal to 20%, 30% and 15%
- Correlations are set to 60% between the 1st asset and the 2nd asset and 10% between the first two assets and the 3rd asset
- Budgets are set to 50%, 25% and 25%
- For the ERC (Equal Risk Contribution) portfolio, all the assets have the same risk budget

Weight budgeting (or traditional approach)

Asset	Weight	Marginal	Risk Contribution	
Asset	weight	Risk	Absolute	Relative
1	50.00%	17.99%	9.00%	54.40%
2	25.00%	25.17%	6.29%	38.06%
3	25.00%	4.99%	1.25%	7.54%
Volatility			16.54%	

Risk budgeting approach

Asset	Weight	Marginal	Risk Contribution		
Assel	weight	Risk	Absolute	Relative	
1	41.62%	16.84%	7.01%	50.00%	
2	15.79%	22.19%	3.51%	25.00%	
3	42.58%	8.23%	3.51%	25.00%	
Volatility			14.02%		

ERC approach

Asset	Weight	Marginal	Risk Contribution		
Assel	weight	Risk	Absolute	Relative	
1	30.41%	15.15%	4.61%	33.33%	
2	20.28%	22.73%	4.61%	33.33%	
3	49.31%	9.35%	4.61%	33.33%	
Volatility			13.82%		

Definition Special cases Properties Numerical solution

The concept of risk budgeting

We have:

$$\sigma$$
 (50%, 25%, 25%) = 16.54%

The marginal risk for the first asset is:

$$\frac{\partial \sigma(x)}{\partial x_1} = \lim_{\varepsilon \to 0} \frac{\sigma(x_1 + \varepsilon, x_2, x_3) - \sigma(x_1, x_2, x_3)}{(x_1 + \varepsilon) - x_1}$$

If $\varepsilon = 1\%$, we have:

$$\sigma\,(0.51, 0.25, 0.25) = 16.72\%$$

We deduce that:

$$rac{\partial \, \sigma \left(x
ight)}{\partial \, x_{1}} \simeq rac{16.72\% - 16.54\%}{1\%} = 18.01\%$$

whereas the true value is equal to:

$$\frac{\partial \sigma \left(x \right)}{\partial x_1} = 17.99\%$$

Definition Special cases Properties Numerical solutio

The concept of risk budgeting

Example 4

- 3 assets
- Volatilities are respectively 30%, 20% and 15%
- Correlations are set to 80% between the $1^{\rm st}$ asset and the $2^{\rm nd}$ asset, 50% between the $1^{\rm st}$ asset and the $3^{\rm rd}$ asset and 30% between the $2^{\rm nd}$ asset and the $3^{\rm rd}$ asset and the $3^{\rm rd}$ asset

Weight budgeting (or traditional) approach

Asset	Weight	Marginal	Risk Contribution	
Asset		Risk	Absolute	Relative
1	50.00%	29.40%	14.70%	70.43%
2	20.00%	16.63%	3.33%	15.93%
3	30.00%	9.49%	2.85%	13.64%
Volatility			20.87%	

Risk budgeting approach

Asset	Weight	Marginal	Risk Contribution			
Asset	weight	Risk	Absolute	Relative		
1	31.15%	28.08%	8.74%	50.00%		
2	21.90%	15.97%	3.50%	20.00%		
3	46.96%	11.17%	5.25%	30.00%		
Volatility			17.49%			

ERC approach

		Marginal Risk Con		tribution	
Asset	Weight	Risk	Absolute	Relative	
1	19.69%	27.31%	5.38%	33.33%	
2	32.44%	16.57%	5.38%	33.33%	
3	47.87%	11.23%	5.38%	33.33%	
Volatility			16.13%		

Definition Special cases Properties Numerical solutio

The concept of risk budgeting

Question

We assume that the portfolio's wealth is set to \$1000. Calculate the nominal volatility of the previous WB, RB and ERC portfolios.

Definition Special cases Properties Numerical solutio

The concept of risk budgeting

We have:

$$\begin{aligned} \sigma(x_{\rm wb}) &= 10^3 \times 20.87\% = \$208.7 \\ \sigma(x_{\rm rb}) &= 10^3 \times 17.49\% = \$174.9 \\ \sigma(x_{\rm erc}) &= 10^3 \times 16.13\% = \$161.3 \end{aligned}$$

Definition Special cases Properties Numerical solutio

The concept of risk budgeting

Question

We increase the exposure of the 3 portfolios by \$10 as follows:

$$\Delta x = \begin{pmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta x_3 \end{pmatrix} = \begin{pmatrix} \$1 \\ \$5 \\ \$4 \end{pmatrix}$$

Calculate the nominal volatility of these new portfolios.

Definition Special cases Properties Numerical solution

The concept of risk budgeting

By assuming that $\Delta x \simeq 0$, we have:

$$\sigma (x_{
m wb} + \Delta x) \approx (\$500 + \$1) \times 0.2940 + (\$200 + \$5) \times 0.1663 + (\$300 + \$4) \times 0.0949 \ pprox \$210.2$$

 $\sigma (x_{
m rb} + \Delta x) \approx$ \$176.4 and $\sigma (x_{
m erc} + \Delta x) \approx$ \$162.9.

Definition Special cases Properties Numerical solution

Uniform correlation

- We assume a constant correlation matrix $C_n(\rho)$, meaning that $\rho_{i,j} = \rho$ for all $i \neq j$
- We have:

$$\begin{aligned} (\Sigma x)_{i} &= \sum_{k=1}^{n} \rho_{i,k} \sigma_{i} \sigma_{k} x_{k} \\ &= \sigma_{i}^{2} x_{i} + \rho \sigma_{i} \sum_{k \neq i}^{n} \sigma_{k} x_{k} \\ &= \sigma_{i}^{2} x_{i} + \rho \sigma_{i} \sum_{k=1}^{n} \sigma_{k} x_{k} - \rho \sigma_{i}^{2} x_{i} \\ &= (1 - \rho) x_{i} \sigma_{i}^{2} + \rho \sigma_{i} \sum_{k=1}^{n} x_{k} \sigma_{k} \\ &= \sigma_{i} \left((1 - \rho) x_{i} \sigma_{i} + \rho \sum_{k=1}^{n} x_{k} \sigma_{k} \right) \end{aligned}$$

Definition Special cases Properties Numerical solution

Uniform correlation

• Since we have:

$$\mathcal{RC}_{i} = \frac{x_{i} \left(\Sigma x \right)_{i}}{\sigma \left(x \right)}$$

we deduce that $\mathcal{RC}_i = \mathcal{RC}_j$ is equivalent to:

$$x_i\sigma_i\left((1-\rho)x_i\sigma_i+\rho\sum_{k=1}^n x_k\sigma_k\right)=x_j\sigma_j\left((1-\rho)x_j\sigma_j+\rho\sum_{k=1}^n x_k\sigma_k\right)$$

It follows that $x_i \sigma_i = x_j \sigma_j$. Because $\sum_{i=1}^n x_i = 1$, we deduce that:

$$x_i = \frac{\sigma_i^{-1}}{\sum_{j=1}^n \sigma_j^{-1}}$$

Result

The weight allocated to Asset *i* is inversely proportional to its volatility and does not depend on the value of the correlation

Definition Special cases Properties Numerical solution

Minimum uniform correlation

• The global minimum variance portfolio is equal to:

$$x_{ ext{gmv}} = rac{\Sigma^{-1} \mathbf{1}_n}{\mathbf{1}_n^\top \Sigma^{-1} \mathbf{1}_n}$$

- Let $\Sigma = \sigma \sigma^{\top} \circ C_n(\rho)$ be the covariance matrix with $C_n(\rho)$ the constant correlation matrix
- We have:

$$\Sigma^{-1} = \Gamma \circ \mathcal{C}_n^{-1}\left(\rho\right)$$

with $\Gamma_{i,j} = \sigma_i^{-1} \sigma_j^{-1}$ and:

$$C_n^{-1}(\rho) = \frac{\rho \mathbf{1}_n \mathbf{1}_n^{\top} - ((n-1)\rho + 1) I_n}{(n-1)\rho^2 - (n-2)\rho - 1}$$

Definition Special cases Properties Numerical solution

Minimum uniform correlation

• We deduce that the expression of the GMV weights are:

$$x_{\text{gmv},i} = \frac{-((n-1)\rho+1)\sigma_i^{-2} + \rho\sum_{j=1}^n (\sigma_i\sigma_j)^{-1}}{\sum_{k=1}^n (-((n-1)\rho+1)\sigma_k^{-2} + \rho\sum_{j=1}^n (\sigma_k\sigma_j)^{-1})}$$

The lower bound of C_n(ρ) is achieved for ρ = -(n-1)⁻¹
In this case, the solution becomes:

$$x_{\text{gmv},i} = \frac{\sum_{j=1}^{n} (\sigma_{i}\sigma_{j})^{-1}}{\sum_{k=1}^{n} \sum_{j=1}^{n} (\sigma_{k}\sigma_{j})^{-1}} = \frac{\sigma_{i}^{-1}}{\sum_{k=1}^{n} \sigma_{k}^{-1}}$$

Result

The ERC portfolio is equal to the GMV portfolio when the correlation is at its lowest possible value:

$$\lim_{\to -(n-1)^{-1}} x_{\rm gmv} = x_{\rm erc}$$

 ρ

Definition Special cases Properties Numerical solution

Uniform volatility

• If all volatilities are equal, i.e. $\sigma_i = \sigma$ for all *i*, the risk contribution becomes:

$$\mathcal{RC}_{i} = \frac{\left(\sum_{k=1}^{n} x_{i} x_{k} \rho_{i,k}\right) \sigma^{2}}{\sigma(x)}$$

• The ERC portfolio verifies then:

$$x_i\left(\sum_{k=1}^n x_k \rho_{i,k}\right) = x_j\left(\sum_{k=1}^n x_k \rho_{j,k}\right)$$

• We deduce that:

$$x_{i} = \frac{\left(\sum_{k=1}^{n} x_{k} \rho_{i,k}\right)^{-1}}{\sum_{j=1}^{n} \left(\sum_{k=1}^{n} x_{k} \rho_{j,k}\right)^{-1}}$$

Definition Special cases Properties Numerical solution

Uniform volatility

Result

The weight of asset i is inversely proportional to the weighted average of correlations of Asset i

Remark

Contrary to the previous case, this solution is endogenous since x_i is a function of itself directly

Definition Special cases Properties Numerical solution

• In the general case, we have:

$$\beta_i = \beta \left(\mathbf{e}_i \mid x \right) = \frac{\mathbf{e}_i^\top \Sigma x}{x^\top \Sigma x} = \frac{(\Sigma x)_i}{\sigma^2 \left(x \right)}$$

and:

General case

$$\mathcal{RC}_{i} = \frac{x_{i} (\Sigma x)_{i}}{\sigma(x)} = \sigma(x) x_{i} \beta_{i}$$

• We deduce that $\mathcal{RC}_i = \mathcal{RC}_j$ is equivalent to:

$$x_i\beta_i=x_j\beta_j$$

• It follows that:

$$x_i = \frac{\beta_i^{-1}}{\sum_{j=1}^n \beta_j^{-1}}$$

Definition **Special cases** Properties Numerical solution

General case

• We notice that:

$$\sum_{i=1}^{n} x_{i}\beta_{i} = \sum_{i=1}^{n} \frac{\mathcal{RC}_{i}}{\sigma(x)} = \frac{1}{\sigma(x)} \sum_{i=1}^{n} \mathcal{RC}_{i} = 1$$

and:

$$\sum_{i=1}^{n} x_i \beta_i = \sum_{i=1}^{n} \left(\frac{1}{\sum_{j=1}^{n} \beta_j^{-1}} \right) = 1$$

It follows that:

$$\frac{1}{\sum_{j=1}^n \beta_j^{-1}} = \frac{1}{n}$$

• We finally obtain:

$$x_i = \frac{1}{n\beta_i}$$

Definition Special cases Properties Numerical solutio

General case

Result

The weight of Asset *i* is proportional to the inverse of its beta:

 $x_i \propto \beta_i^{-1}$

Remark

This solution is endogenous since x_i is a function of itself because $\beta_i = \beta (\mathbf{e}_i \mid x)$.

General case

Example 5

We consider an investment universe of four assets with $\sigma_1 = 15\%$, $\sigma_2 = 20\%$, $\sigma_3 = 30\%$ and $\sigma_4 = 10\%$. The correlation of asset returns is given by the following matrix:

Special cases

$$ho = \left(egin{array}{cccccc} 1.00 & & & \ 0.50 & 1.00 & \ 0.00 & 0.20 & 1.00 & \ -0.10 & 0.40 & 0.70 & 1.00 \end{array}
ight)$$

Definition Special cases Properties Numerical solutior

General case

Table 3: Composition of the ERC portfolio (Example 5)

Asset	Xi	\mathcal{MR}_i	β_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	31.34%	8.52%	0.80	2.67%	25.00%
2	17.49%	15.27%	1.43	2.67%	25.00%
3	13.05%	20.46%	1.92	2.67%	25.00%
4	38.12%	7.00%	0.66	2.67%	25.00%
Volatility				10.68%	

We verify that:

$$x_1 = \frac{1}{(4 \times 0.7978)} = 31.34\%$$

Definition Special cases Properties Numerical solutio

Existence and uniqueness

We consider the following optimization problem:

$$y^{\star}(c) = rgmin rac{1}{2}y^{\top} \Sigma y$$

u.c. $\sum_{i=1}^{n} \ln y_i \ge c$

The Lagrange function is equal to:

$$\mathcal{L}(y;\lambda_c) = \frac{1}{2}y^{\top}\Sigma y - \lambda_c \left(\sum_{i=1}^n \ln y_i - c\right)$$

At the optimum, we have:

$$\frac{\partial \mathcal{L}(y;\lambda_c,\lambda)}{\partial y} = \mathbf{0}_n \Leftrightarrow (\Sigma y)_i - \frac{\lambda_c}{y_i} = 0$$

Definition Special cases Properties Numerical solutio

Existence and uniqueness

It follows that:

$$y_i (\Sigma y)_i = \lambda_c$$

or equivalently:

$$\mathcal{RC}_i = \mathcal{RC}_j$$

Since we minimize a convex function subject to a lower convex bound, the solution $y^*(c)$ exists and is unique

Definition Special cases Properties Numerical solutio

Existence and uniqueness

Question

What is the difference between $y^{*}(c)$ and $y^{*}(c')$?

Let $y' = \alpha y^{\star}(c)$. The first-order conditions are:

$$y_{i}^{\star}(c)(\Sigma y^{\star}(c))_{i} = \lambda_{c}$$

and:

$$y_i' (\Sigma y')_i = \alpha^2 \lambda_c = \lambda_{c'}$$

Since $\lambda_c \neq 0$, the Kuhn-Tucker condition becomes:

$$\min\left(\lambda_{c},\sum_{i=1}^{n}\ln y_{i}^{\star}(c)-c\right)=0\Leftrightarrow\sum_{i=1}^{n}\ln y_{i}^{\star}(c)-c=0$$

Definition Special cases Properties Numerical solution

Existence and uniqueness

It follows that:

$$\sum_{i=1}^{n} \ln \frac{y_i'(c)}{\alpha} = c$$

or:

$$\sum_{i=1}^{n} \ln y_i'(c) = c + n \ln \alpha = c'$$

We deduce that:

$$\alpha = \exp\left(\frac{c'-c}{n}\right)$$

 $y^{\star}(c')$ is a scaled solution of $y^{\star}(c)$:

$$y^{\star}(c') = \exp\left(\frac{c'-c}{n}\right)y^{\star}(c)$$

Definition Special cases Properties Numerical solutior

Existence and uniqueness

The ERC portfolio is the solution $y^{\star}(c)$ such that $\sum_{i=1}^{n} y_{i}^{\star}(c) = 1$:

$$x_{\rm erc} = \frac{y^{\star}(c)}{\sum_{i=1}^{n} y_{i}^{\star}(c)}$$

and corresponds to the following value of the logarithmic barrier:

$$c_{\rm erc} = c - n \ln \sum_{i=1}^{n} y_i^{\star}(c)$$

Definition Special cases **Properties** Numerical solutio

Existence and uniqueness

Theorem

Because of the previous results, x_{erc} exists and is unique. This is the solution of the following optimization problem^{*a*}:

$$\mathcal{L}_{\text{erc}} = \arg \min \frac{1}{2} x^{\top} \Sigma x$$
$$\text{u.c.} \quad \begin{cases} \sum_{i=1}^{n} \ln x_i \ge c_{\text{erc}} \\ \mathbf{1}_n^{\top} x = 1 \\ \mathbf{0}_n \le x \le \mathbf{1}_n \end{cases}$$

^aWe can add the last two constraints because they do not change the solution

Definition Special cases Properties Numerical solutio

Location of the ERC portfolio

The global global minimum variance portfolio is defined by:

$$egin{array}{rcl} x_{ ext{gmv}} &=& rg\min\sigma\left(x
ight)\ ext{u.c.} & \mathbf{1}_n^ op x = 1 \end{array}$$

We have:

$$\mathcal{L}(x;\lambda_0) = \sigma(x) - \lambda_0 \left(\mathbf{1}_n^{\top} x - 1\right)$$

The first-order condition is:

$$\frac{\partial \mathcal{L}(x;\lambda_0)}{\partial x} = \mathbf{0}_n \Leftrightarrow \frac{\partial \sigma(x)}{\partial x} - \lambda_0 \mathbf{1}_n = \mathbf{0}_n$$

Definition Special cases Properties Numerical solutic

Location of the ERC portfolio

Theorem

The global minimum variance portfolio satisfies:

$$\frac{\partial \sigma (x)}{\partial x_{i}} = \frac{\partial \sigma (x)}{\partial x_{j}}$$

The marginal volatilities are then the same.

Definition Special cases Properties Numerical solutio

Location of the ERC portfolio

The equally-weighted portfolio is defined by:

$$x_i = \frac{1}{n}$$

We deduce that:

$$x_i = x_j$$

Definition Special cases Properties Numerical solutic

Location of the ERC portfolio

We have:

$$x_{i} = x_{j}$$
(EW)

$$\frac{\partial \sigma (x)}{\partial x_{i}} = \frac{\partial \sigma (x)}{\partial x_{j}}$$
(GMV)

$$x_{i} \frac{\partial \sigma (x)}{\partial x_{i}} = x_{j} \frac{\partial \sigma (x)}{\partial x_{j}}$$
(ERC)

The ERC portfolio is a combination of GMV and EW portfolios

Definition Special cases Properties Numerical solutio

Volatility of the ERC portfolio

We consider the following optimization problem:

$$x^{\star}(c) = \arg \min \frac{1}{2} x^{\top} \Sigma x$$

u.c.
$$\begin{cases} \sum_{i=1}^{n} \ln x_{i} \ge c \\ \mathbf{1}_{n}^{\top} x = 1 \\ \mathbf{0}_{n} \le x \le \mathbf{1}_{n} \end{cases}$$

• We know that there exists a scalar $c_{\rm erc}$ such that:

$$x^{\star}(c_{\mathrm{erc}}) = x_{\mathrm{erc}}$$

• If $c = -\infty$, the logarithmic barrier constraint vanishes and we have:

$$x^{\star}(-\infty) = x_{\mathrm{mv}}$$

where $x_{\rm mv}$ is the long-only minimum variance portfolio

Definition Special cases Properties Numerical solution

Volatility of the ERC portfolio

• We notice that the function $f(x) = \sum_{i=1}^{n} \ln x_i$ such that $\mathbf{1}_n^{\top} x = 1$ reaches its maximum when:

$$\frac{1}{x_i} = \lambda_0$$

implying that $x_i = x_j = n^{-1}$. In this case, we have:

$$c_{\max} = \sum_{i=1}^{n} \ln \frac{1}{n} = -n \ln n$$

• If $c = -n \ln n$, we have:

$$x^{\star}\left(-n\ln n\right)=x_{\rm ew}$$

 Because we have a convex minimization problem and a lower convex bound, we deduce that:

$$c_{2} \geq c_{1} \Leftrightarrow \sigma\left(x^{\star}\left(c_{2}\right)\right) \geq \sigma\left(x^{\star}\left(c_{1}\right)\right)$$

Definition Special cases Properties Numerical solutio

Volatility of the ERC portfolio

Theorem

We obtain the following inequality:

$$\sigma(x_{\mathrm{mv}}) \leq \sigma(x_{\mathrm{erc}}) \leq \sigma(x_{\mathrm{ew}})$$

The ERC portfolio may be viewed as a portfolio "between" the MV portfolio and the EW portfolio.

Remark

The ERC portfolio is a form of variance-minimizing portfolio subject to a constraint of sufficient diversification in terms of weights

Relationship with naive diversification (1/n)

Special cases Properties Numerical solution

Optimality of the ERC portfolio

Let us consider the tangency (or maximum Sharpe ratio) portfolio defined by:

$$x_{
m msr} = rg \max rac{\mu(x) - r}{\sigma(x)}$$

where $\mu(x) = x^{\top}\mu$ and $\sigma(x) = \sqrt{x^{\top}\Sigma x}$. We recall that the portfolio is MSR if and only if:

$$\frac{\partial_{x_{i}} \mu(x) - r}{\partial_{x_{i}} \sigma(x)} = \frac{\mu(x) - r}{\sigma(x)}$$

Therefore, the MSR portfolio x_{msr} verifies the following relationship:

$$\mu - r \mathbf{1}_{n} = \left(\frac{\mu (x_{\rm msr}) - r}{\sigma^{2} (x_{\rm msr})} \right) \Sigma x_{\rm msr}$$
$$= \operatorname{SR} (x_{\rm msr} \mid r) \frac{\Sigma x_{\rm msr}}{\sigma (x_{\rm msr})}$$

Definition Special cases Properties Numerical solutio

Optimality of the ERC portfolio

• If we assume a constant correlation matrix, the ERC portfolio is defined by:

$$x_i = \frac{c}{\sigma_i}$$

where $c = \left(\sum_{j=1}^{n} \sigma_{j}^{-1}\right)^{-1}$

• We have:

$$(\Sigma x)_{i} = \sum_{j=1}^{n} \rho_{i,j} \sigma_{i} \sigma_{j} x_{j} = c \sigma_{i} \sum_{j=1}^{n} \rho_{i,j} = c \sigma_{i} (1 + \rho (n-1))$$

• We deduce that:

$$\frac{\partial \sigma(x)}{\partial x_{i}} = c \frac{\sigma_{i} \left((1 - \rho) + \rho n \right)}{\sigma(x)}$$

Definition Special cases Properties Numerical solutic

Optimality of the ERC portfolio

• The portfolio volatility is equal to:

$$\sigma^{2}(x) = \sigma(x) \sum_{i=1}^{n} x_{i} \frac{\partial \sigma(x)}{\partial x_{i}}$$
$$= \sigma(x) \sum_{i=1}^{n} \frac{c}{\sigma_{i}} \cdot c \frac{\sigma_{i} ((1-\rho) + \rho n)}{\sigma(x)}$$
$$= nc^{2} ((1-\rho) + \rho n)$$

• The ERC portfolio is the MSR portfolio if and only if:

$$\mu_{i} - r = \left(\frac{\sum_{j=1}^{n} (\mu_{j} - r) x_{j}}{\sigma^{2} (x)}\right) (\Sigma x)_{i}$$

$$= \left(\frac{\sum_{j=1}^{n} (\mu_{j} - r) c \sigma_{j}^{-1}}{nc^{2} ((1 - \rho) + \rho n)}\right) c \sigma_{i} (1 + \rho (n - 1))$$

$$= \left(\frac{1}{n} \sum_{j=1}^{n} \frac{\mu_{j} - r}{\sigma_{j}}\right) \sigma_{i}$$

Thierry Roncalli

Definition Special cases Properties Numerical solutic

Optimality of the ERC portfolio

• We can write this condition as follows:

$$\mu_i = r + \mathrm{SR} \cdot \sigma_i$$

where:

$$SR = \frac{1}{n} \sum_{j=1}^{n} \frac{\mu_j - r}{\sigma_j}$$

Theorem

The ERC portfolio is the tangency or MSR portfolio if and only if the correlation is uniform and the Sharpe ratio is the same for all the assets

Properties Numerical solution

Optimality of the ERC portfolio

Example 6

We consider an investment universe of five assets. The volatilities are respectively equal to 5%, 7%, 9%, 10% and 15%. The risk-free rate is equal to 2%. The correlation is uniform.

Definition Special cases Properties Numerical soluti

Optimality of the ERC portfolio

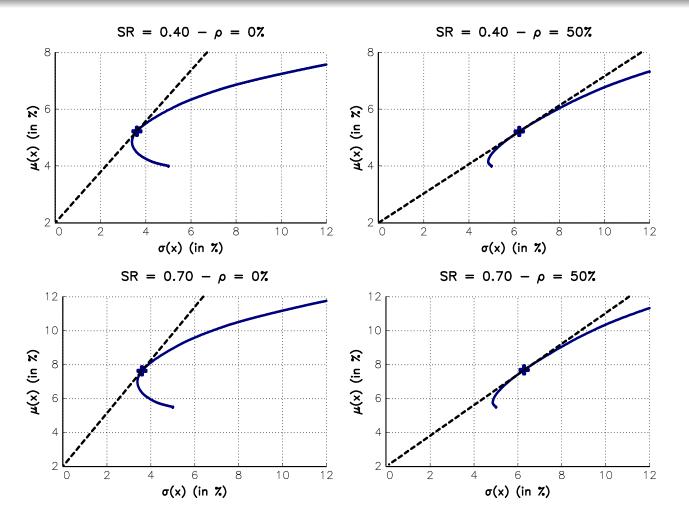


Figure 4: Location of the ERC portfolio in the mean-variance diagram when the Sharpe ratios are the same (Example 6)

Special cases Properties Numerical solution

Optimality of the ERC portfolio

Example 7

We consider an investment universe of five assets. The volatilities are respectively equal to 5%, 7%, 9%, 10% and 15%. The correlation matrix is equal to:

$$\rho = \begin{pmatrix} 1.00 \\ 0.50 & 1.00 \\ 0.25 & 0.25 & 1.00 \\ 0.00 & 0.00 & 0.00 & 1.00 \\ -0.25 & -0.25 & -0.25 & 0.00 & 1.00 \end{pmatrix}$$

Definition Special cases Properties Numerical solution

Optimality of the ERC portfolio

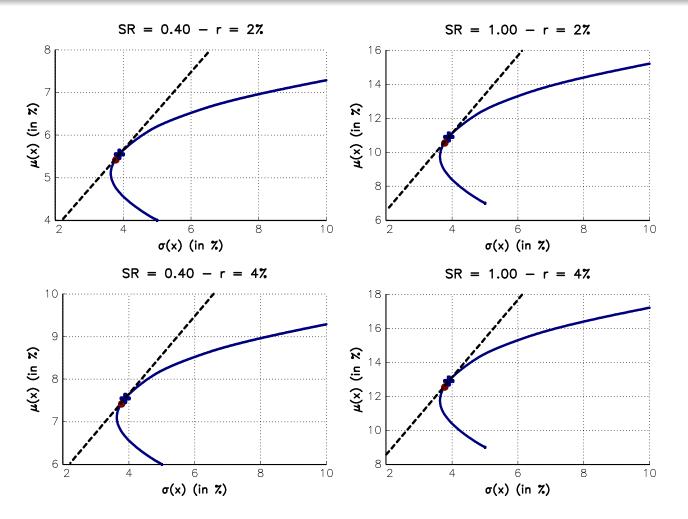


Figure 5: Location of the ERC portfolio in the mean-variance diagram when the Sharpe ratios are the same (Example 7)

Definition Special cases Properties Numerical solution

The SQP approach

• The ERC portfolio satisfies:

$$x_i \cdot (\Sigma x)_i = x_j \cdot (\Sigma x)_j$$

or:

$$x_i \cdot (\Sigma x)_i = \frac{x^\top \Sigma x}{n}$$

• We deduce that:

$$egin{array}{rcl} x_{
m erc} &=& rg\min f\left(x
ight) \ & \ {f u.c.} & \left\{ egin{array}{c} {f 1}_n^ op x = 1 \ {f 0}_n \leq x \leq {f 1}_n \end{array}
ight. \end{array}
ight.$$

and $f(x_{\rm erc}) = 0$

Remark

The optimization problem is solved using the sequential quadratic programming (or SQP) algorithm

Definition Special cases Properties Numerical solution

The SQP approach

• We can choose:

$$f(x) = \sum_{i=1}^{n} \left(x_i \cdot (\Sigma x)_i - \frac{1}{n} x^{\top} \Sigma x \right)^2$$

or:

$$f(x;b) = \sum_{i=1}^{n} \sum_{j=1}^{n} \left(x_i \cdot (\Sigma x)_i - x_j \cdot (\Sigma x)_j \right)^2$$

Definition Special cases Properties Numerical solution

The Jacobi approach

• We have:

$$\beta_i(x) = \frac{(\Sigma x)_i}{x^\top \Sigma x}$$

• The ERC portfolio satisfies:

$$x_{i} = rac{\beta_{i}^{-1}(x)}{\sum_{j=1}^{n} \beta_{j}^{-1}(x)}$$

or:

$$x_i \propto \frac{1}{(\Sigma x)_i}$$

Numerical solution

The Jacobi approach

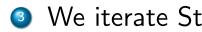
The Jacobi algorithm consists in finding the fixed point by considering the following iterations:

- We set $k \leftarrow 0$ and we note $x^{(0)}$ the vector of starting values²
- 2 At iteration k + 1, we compute:

$$y_i^{(k+1)} \propto rac{1}{eta_i\left(x^{(k)}
ight)} = rac{1}{\left(\Sigma x^{(k)}
ight)_i}$$

and:

$$x_{i}^{(k+1)} = \frac{y_{i}^{(k+1)}}{\sum_{j=1}^{n} y_{j}^{(k+1)}}$$



We iterate Step 2 until convergence

²For instance, we can use the following rule:

$$x_i^{(0)} = \frac{\sigma_i^{-1}}{\sum_{j=1}^n \sigma_j^{-1}}$$

Definition Special cases Properties Numerical solution

The Newton-Raphson approach

We consider the following optimization problem:

 $x^* = \arg\min f(x)$

The Newton-Raphson iteration is defined by:

$$x^{(k+1)} = x^{(k)} - \Delta x^{(k)}$$

where $\Delta x^{(k)}$ is the inverse of the Hessian matrix of $f(x^{(k)})$ times the gradient vector of $f(x^{(k)})$:

$$\Delta x^{(k)} = \left[\partial_x^2 f\left(x^{(k)}\right)\right]^{-1} \partial_x f\left(x^{(k)}\right)$$

Definition Special cases Properties Numerical solution

The Newton-Raphson approach

• We consider the Lagrange function:

$$f(y) = \frac{1}{2}y^{\top}\Sigma y - \lambda_c \sum_{i=1}^n \ln y_i$$

- We choose a value of λ_c (e.g. $\lambda_c = 1$)
- We note y^{-m} the vector $n \times 1$ matrix with elements $(y_1^{-m}, \ldots, y_n^{-m})$ and diag (y^{-m}) the $n \times n$ diagonal matrix with elements $(y_1^{-m}, \ldots, y_n^{-m})$:

diag
$$(y^{-m}) = \begin{pmatrix} y_1^{-m} & 0 & 0 \\ 0 & y_2^{-m} & & \\ & \ddots & 0 \\ 0 & & 0 & y_n^{-m} \end{pmatrix}$$

Definition Special cases Properties Numerical solution

The Newton-Raphson approach

• We apply the Newton-Raphson algorithm with:

$$\partial_{y}f(y) = \Sigma y - \lambda_{c}y^{-1}$$

and:

$$\partial_y^2 f(y) = \Sigma + \lambda_c \operatorname{diag}(y^{-2})$$

• The solution is given by:

$$x_{\rm erc} = \frac{y^{\star}}{\sum_{i=1}^{n} y_i^{\star}}$$

Definition Special cases Properties Numerical solution

The Newton-Raphson approach

• For the starting value $y_i^{(0)}$, we can assume that the correlations are uniform:

$$y_i^{(0)} = \frac{\sigma_i^{-1}}{\sum_{j=1}^n \sigma_j^{-1}}$$

• At the optimum, we recall that $\lambda_c = y_i^* \cdot (\Sigma y^*)_i$. We deduce that:

$$\lambda_{c} = \frac{1}{n} \sum_{i=1}^{n} y_{i}^{\star} \cdot (\Sigma y^{\star})_{i} = \frac{\sigma^{2}(y^{\star})}{n}$$

Therefore, we can choose:

$$\lambda_c = \frac{\sigma^2 \left(y^{(0)} \right)}{n}$$

Definition Special cases Properties Numerical solution

The Newton-Raphson approach

From a numerical point of view, it may be important to control the magnitude order α of y* (e.g. α = 10%, α = 1 or α = 10). For instance, we don't want that the magnitude order is 10⁻⁵ or 10⁵. In this case, we can use the following rule:

$$\lambda_{c} = n\alpha^{2}\sigma^{2}\left(x_{\rm erc}\right)$$

• For example, if n = 10 and $\alpha = 5$, and we guess that the volatility of the ERC portfolio is around 10%, we set:

$$\lambda_c = 10 \times 5^2 \times 0.10^2 = 2.5$$

Definition Special cases Properties Numerical solution

The CCD approach

Table 4: Cyclical coordinate descent algorithm

```
The goal is to find the solution x^* = \arg \min f(x)

We initialize the vector x^{(0)}

Set k \leftarrow 0

repeat

for i = 1 : n do

x_i^{(k+1)} = \arg \min_{\varkappa} f\left(x_1^{(k+1)}, \dots, x_{i-1}^{(k+1)}, \varkappa, x_{i+1}^{(k)}, \dots, x_n^{(k)}\right)

end for

k \leftarrow k + 1

until convergence

return x^* \leftarrow x^{(k)}
```

Definition Special cases Properties Numerical solution

The CCD approach

We have:

$$\mathcal{L}(y; \lambda_c) = \arg\min \frac{1}{2}y^{\top}\Sigma y - \lambda_c \sum_{i=1}^n \ln y_i$$

The first-order condition is equal to:

$$\frac{\partial \mathcal{L}(y;\lambda)}{\partial y_i} = (\Sigma y)_i - \frac{\lambda_c}{y_i} = 0$$

or:

$$y_i \cdot (\Sigma y)_i - \lambda_c = 0$$

It follows that:

$$\sigma_i^2 y_i^2 + \left(\sigma_i \sum_{j \neq i} \rho_{i,j} \sigma_j y_j\right) y_i - \lambda_c = 0$$

Special cases Properties Numerical solution

The CCD approach

We recognize a second-degree equation:

$$\alpha_i y_i^2 + \beta_i y_i + \gamma_i = 0$$

The polynomial function is convex because we have $\alpha_i = \sigma_i^2 > 0$ The product of the roots is negative:

$$y_i'y_i'' = \frac{\gamma_i}{\alpha_i} = -\frac{\lambda_c}{\sigma_i^2} < 0$$

The discriminant is positive:

$$\Delta = \beta_i^2 - 4\alpha_i \gamma_i = \left(\sigma_i \sum_{j \neq i} \rho_{i,j} \sigma_j y_j\right)^2 + 4\sigma_i^2 \lambda_c > 0$$

We always have two solutions with opposite signs. We deduce that the solution is the positive root of the second-degree equation:

$$y_i^{\star} = y_i^{\prime\prime} = \frac{-\beta_i + \sqrt{\beta_i^2 - 4\alpha_i \gamma_i}}{2\alpha_i}$$

Special cases Properties Numerical solution

The CCD approach

The CCD algorithm consists in iterating the following formula:

$$y_i^{(k+1)} = \frac{-\beta_i^{(k+1)} + \sqrt{\left(\beta_i^{(k+1)}\right)^2 - 4\alpha_i^{(k+1)}\gamma_i^{(k+1)}}}{2\alpha_i^{(k+1)}}$$

where:

$$\begin{aligned} \alpha_i^{(k+1)} &= \sigma_i^2 \\ \beta_i^{(k+1)} &= \sigma_i \left(\sum_{j < i} \rho_{i,j} \sigma_j y_j^{(k+1)} + \sum_{j > i} \rho_{i,j} \sigma_j y_j^{(k)} \right) \\ \gamma_i^{(k+1)} &= -\lambda_c \end{aligned}$$

The ERC portfolio is the scaled solution y^* :

$$x_{\rm erc} = \frac{y^{\star}}{\sum_{i=1}^{n} y_i^{\star}}$$

Special cases Properties Numerical solution

Efficiency of the algorithms

$\mathrm{CCD}\succ\mathrm{NR}\succ\mathrm{SQP}\succ\mathrm{Jacobi}$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Definition of RB portfolios

Definition

A risk budgeting (RB) portfolio x satisfies the following conditions:

 $\begin{cases} \mathcal{RC}_{1} = b_{1}\mathcal{R}(x) \\ \vdots \\ \mathcal{RC}_{i} = b_{i}\mathcal{R}(x) \\ \vdots \\ \mathcal{RC}_{n} = b_{n}\mathcal{R}(x) \end{cases}$

where $\mathcal{R}(x)$ is a coherent and convex risk measure and $b = (b_1, \ldots, b_n)$ is a vector of risk budgets such that $b_i \ge 0$ and $\sum_{i=1}^n b_i = 1$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Definition of RB portfolios

Remark

The ERC portfolio is a particular case of RB portfolios when $\mathcal{R}(x) = \sigma(x)$ and $b_i = \frac{1}{n}$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Coherent risk measure

Subadditivity

 $\mathcal{R}\left(x_{1}+x_{2}
ight)\leq\mathcal{R}\left(x_{1}
ight)+\mathcal{R}\left(x_{2}
ight)$

 $\mathcal{R}(\lambda x) = \lambda \mathcal{R}(x) \quad \text{if } \lambda \geq 0$

Monotonicity

if
$$x_{1}\prec x_{2}$$
, then $\mathcal{R}\left(x_{1}
ight)\geq\mathcal{R}\left(x_{2}
ight)$

Translation invariance

if
$$m \in \mathbb{R}$$
, then $\mathcal{R}(x + m) = \mathcal{R}(x) - m$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Convex risk measure

The convexity property is defined as follows:

$$\mathcal{R}\left(\lambda x_{1}+\left(1-\lambda
ight)x_{2}
ight)\leq\lambda\mathcal{R}\left(x_{1}
ight)+\left(1-\lambda
ight)\mathcal{R}\left(x_{2}
ight)$$

This condition means that diversification should not increase the risk

Euler allocation principle

This property is necessary for the Euler allocation principle:

$$\mathcal{R}(x) = \sum_{i=1}^{n} x_{i} \frac{\partial \mathcal{R}(x)}{\partial x_{i}}$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Some risk measures

The portfolio loss is L(x) = -R(x) where R(x) is the portfolio return. We consider then different risk measures:

• Volatility of the loss

$$\mathcal{R}(x) = \sigma(L(x)) = \sigma(x)$$

• Standard deviation-based risk measure

$$\mathcal{R}(x) = \mathrm{SD}_{c}(x) = \mathbb{E}[L(x)] + c \cdot \sigma(L(x)) = -\mu(x) + c \cdot \sigma(x)$$

• Value-at-risk

$$\mathcal{R}(x) = \operatorname{VaR}_{\alpha}(x) = \inf \left\{ \ell : \Pr \left\{ L(x) \leq \ell \right\} \geq \alpha \right\}$$

• Expected shortfall

$$\mathcal{R}(x) = \mathrm{ES}_{\alpha}(x) = \mathbb{E}\left[L(x) \mid L(x) \ge \mathrm{VaR}_{\alpha}(x)\right] = \frac{1}{1-\alpha} \int_{\alpha}^{1} \mathrm{VaR}_{u}(x) \, \mathrm{d}u$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Gaussian risk measures

We assume that the asset returns are normally distributed: $R \sim \mathcal{N}\left(\mu, \Sigma\right)$ We have:

$$\sigma(x) = \sqrt{x^{\top}\Sigma x}$$

$$SD_{c}(x) = -x^{\top}\mu + c \cdot \sqrt{x^{\top}\Sigma x}$$

$$VaR_{\alpha}(x) = -x^{\top}\mu + \Phi^{-1}(\alpha)\sqrt{x^{\top}\Sigma x}$$

$$ES_{\alpha}(x) = -x^{\top}\mu + \frac{\sqrt{x^{\top}\Sigma x}}{(1-\alpha)}\phi(\Phi^{-1}(\alpha))$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Gaussian risk contributions

• Volatility $\sigma(x)$

$$\mathcal{RC}_i = x_i \cdot \frac{(\Sigma x)_i}{\sqrt{x^\top \Sigma x}}$$

• Standard deviation-based risk measure $SD_{c}(x)$

$$\mathcal{RC}_i = x_i \cdot \left(-\mu_i + c \frac{(\Sigma x)_i}{\sqrt{x^\top \Sigma x}}\right)$$

• Value-at-risk
$$\operatorname{VaR}_{lpha}(x)$$

$$\mathcal{RC}_{i} = x_{i} \cdot \left(-\mu_{i} + \Phi^{-1}\left(\alpha\right) \frac{(\Sigma x)_{i}}{\sqrt{x^{\top} \Sigma x}}\right)$$

• Expected shortfall $\text{ES}_{\alpha}(x)$

$$\mathcal{RC}_{i} = x_{i} \cdot \left(-\mu_{i} + \frac{(\Sigma x)_{i}}{(1-\alpha)\sqrt{x^{\top}\Sigma x}}\phi\left(\Phi^{-1}\left(\alpha\right)\right)\right)$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Gaussian risk contributions

Example 8

We consider three assets. We assume that their expected returns are equal to zero whereas their volatilities are equal to 30%, 20% and 15%. The correlation of asset returns is given by the following matrix:

$$ho = \left(egin{array}{cccc} 1.00 & & \ 0.80 & 1.00 & \ 0.50 & 0.30 & 1.00 \end{array}
ight)$$

The portfolio is equal to (50%, 20%, 30%).

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Gaussian risk contributions

Table 5: Risk decomposition of the portfolio (Example 8)

$\mathcal{R}(x)$	Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
	1	50.00	29.40	14.70	70.43
	2	20.00	16.63	3.33	15.93
Volatility	3	30.00	9.49	2.85	13.64
	$\sigma(x)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.87		
Value-at-risk	1	50.00	68.39	34.19	70.43
	2	20.00	38.68	7.74	15.93
Value-at-risk	3	30.00	22.07	6.62	13.64
	$\operatorname{VaR}_{99\%}(x)$			48.55	
Expected shortfall	1	50.00	78.35	39.17	70.43
	2	20.00	44.31	8.86	15.93
	3	30.00	25.29	7.59	13.64
	$\mathrm{ES}_{99\%}\left(x ight)$			55.62	

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Gaussian risk contributions

Example 9

We consider three assets. We assume that their expected returns are equal to 10%, 5% and 8% whereas their volatilities are equal to 30%, 20% and 15%. The correlation of asset returns is given by the following matrix:

$$ho = \left(egin{array}{cccc} 1.00 & & \ 0.80 & 1.00 & \ 0.50 & 0.30 & 1.00 \end{array}
ight)$$

The portfolio is equal to (50%, 20%, 30%).

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Gaussian risk contributions

Table 6: Risk decomposition of the portfolio (Example 9)

$\mathcal{R}(x)$	Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
	1	50.00	29.40	14.70	70.43
	2	20.00	16.63	3.33	15.93
Volatility	3	30.00	9.49	2.85	13.64
	$\sigma(x)$	30.00 9.49 2.85 20.87 50.00 58.39 29.19 20.00 33.68 6.74 30.00 14.07 4.22) 40.15	20.87		
	1	50.00	58.39	29.19	72.71
Value-at-risk	2	20.00	33.68	6.74	16.78
Value-at-risk	3	30.00	14.07	4.22	10.51
	$\operatorname{VaR}_{99\%}(x)$			40.15	
Expected shortfall	1	50.00	68.35	34.17	72.37
	2	20.00	39.31	7.86	16.65
	3	30.00	17.29	5.19	10.98
	$\mathrm{ES}_{99\%}\left(x ight)$			47.22	

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Non-Gaussian risk contributions

They are not frequently used in asset management and portfolio allocation, except in the case of skewed assets (Bruder *et al.*, 2016; Lezmi *et al.*, 2018)

Non-parametric risk contributions are given in Chapter 2 in Roncalli (2013)

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Gaussian RB portfolios

Example 10

We consider three assets. We assume that their expected returns are equal to 10%, 5% and 8% whereas their volatilities are equal to 30%, 20% and 15%. The correlation of asset returns is given by the following matrix:

$$ho = \left(egin{array}{cccc} 1.00 & & \ 0.80 & 1.00 & \ 0.50 & 0.30 & 1.00 \end{array}
ight)$$

The risk budgets are equal to (50%, 20%, 30%).

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Gaussian RB portfolios

Table 7: Risk budgeting portfolios (Example 10)

$\mathcal{R}(x)$	Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
	1	31.14	28.08	8.74	50.00
	2	21.90	15.97	3.50	20.00
Volatility	3	46.96	11.17	5.25	30.00
	$\sigma(x)$	46.9611.175.2517.4929.1854.4720.3131.306.3650.5018.899.54	17.49		
	1	29.18	54.47	15.90	50.00
Value-at-risk	2	20.31	31.30	6.36	20.00
Value-at-risk	3	50.50	18.89	9.54	30.00
	$\operatorname{VaR}_{99\%}(x)$			31.79	
Expected shortfall	1	29.48	64.02	18.87	50.00
	2	20.54	36.74	7.55	20.00
	3	49.98	22.65	11.32	30.00
	$\mathrm{ES}_{99\%}\left(x ight)$			37.74	

Definition of RB portfolios **Properties of RB portfolios** Diversification measures Using risk factors instead of assets

Special cases

- The case of uniform correlation 3 $\rho_{i,j} = \rho$
 - Minimum correlation

$$x_i\left(-\frac{1}{n-1}\right) = \frac{\sigma_i^{-1}}{\sum_{j=1}^n \sigma_j^{-1}}$$

$$x_i(0) = rac{\sqrt{b_i}\sigma_i^{-1}}{\sum_{j=1}^n \sqrt{b_j}\sigma_j^{-1}}$$

Maximum correlation

$$x_i(1) = \frac{b_i \sigma_i^{-1}}{\sum_{j=1}^n b_j \sigma_j^{-1}}$$

• The general case

$$x_i = \frac{b_i \beta_i^{-1}}{\sum_{j=1}^n b_j \beta_j^{-1}}$$

where β_i is the beta of Asset *i* with respect to the RB portfolio

³The solution is noted $x_i(\rho)$.

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Existence and uniqueness

We have:

$$\frac{\partial \sigma(x)}{\partial x_{i}} = \frac{x_{i}\sigma_{i}^{2} + \sigma_{i}\sum_{j\neq i}x_{j}\rho_{i,j}\sigma_{j}}{\sigma(x)}$$

Suppose that the risk budget b_k is equal to zero. This means that:

$$x_k\left(x_k\sigma_k^2+\sigma_k\sum_{j\neq k}x_j\rho_{k,j}\sigma_j\right)=0$$

We obtain two solutions:

• The first one is:

$$x'_k = 0$$

One second one verifies:

$$x_k'' = -\frac{\sum_{j \neq k} x_j \rho_{k,j} \sigma_j}{\sigma_k}$$

Definition of RB portfolios **Properties of RB portfolios** Diversification measures Using risk factors instead of assets

Existence and uniqueness

- If $\rho_{k,j} \ge 0$ for all j, we have $\sum_{j \ne k} x_j \rho_{k,j} \sigma_j \ge 0$ because $x_j \ge 0$ and $\sigma_j > 0$. This implies that $x''_k \le 0$ meaning that $x'_k = 0$ is the unique positive solution
- The only way to have $x_k'' > 0$ is to have some negative correlations $\rho_{k,j}$. In this case, this implies that:

$$\sum_{j\neq k} x_j \rho_{k,j} \sigma_j < 0$$

• If we consider a universe of three assets, this constraint is verified for k = 3 and a covariance matrix such that $\rho_{1,3} < 0$ and $\rho_{2,3} < 0$

Definition of RB portfolios **Properties of RB portfolios** Diversification measures Using risk factors instead of assets

Existence and uniqueness

Example 11

We have
$$\sigma_1 = 20\%$$
, $\sigma_2 = 10\%$, $\sigma_3 = 5\%$, $\rho_{1,2} = 50\%$, $\rho_{1,3} = -25\%$ and $\rho_{2,3} = -25\%$

If the risk budgets are equal to (50%, 50%, 0%), the two solutions are:

(33.33%, 66.67%, 0%)

and:

(20%, 40%, 40%)

Two questions

O How many solutions do we have in the general case?

Which solution is the best?

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Existence and uniqueness

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	33.33	17.32	5.77	50.00
2	66.67	8.66	5.77	50.00
3	0.00	-1.44	0.00	0.00
Volatili	olatility 11.55			

 Table 8: First solution (Example 11)

Table 9: Second solution (Example 11)

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	20.00	16.58	3.32	50.00
2	40.00	8.29	3.32	50.00
3	40.00	0.00	0.00	0.00
Volatility			6.63	

Definition of RB portfolios **Properties of RB portfolios** Diversification measures Using risk factors instead of assets

Existence and uniqueness The case with strictly positive risk budgets

• We consider the following optimization problem:

$$y^{\star} = \arg \min \mathcal{R} (y)$$

u.c.
$$\begin{cases} \sum_{i=1}^{n} b_{i} \ln y_{i} \ge c \\ y \ge \mathbf{0}_{n} \end{cases}$$

where *c* is an arbitrary constant

• The associated Lagrange function is:

$$\mathcal{L}(y; \lambda, \lambda_c) = \mathcal{R}(y) - \lambda^{\top} y - \lambda_c \left(\sum_{i=1}^n b_i \ln y_i - c\right)$$

where $\lambda \in \mathbb{R}^n$ and $\lambda_c \in \mathbb{R}$

Definition of RB portfolios **Properties of RB portfolios** Diversification measures Using risk factors instead of assets

Existence and uniqueness The case with strictly positive risk budgets

• The solution y^* verifies the following first-order condition:

$$\frac{\partial \mathcal{L}(y; \lambda, \lambda_c)}{\partial y_i} = \frac{\partial \mathcal{R}(y)}{\partial y_i} - \lambda_i - \lambda_c \frac{b_i}{y_i} = 0$$

• The Kuhn-Tucker conditions are:

$$\begin{cases} \min(\lambda_i, y_i) = 0\\ \min(\lambda_c, \sum_{i=1}^n b_i \ln y_i - c) = 0 \end{cases}$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Existence and uniqueness The case with strictly positive risk budgets

- Because ln y_i is not defined for $y_i = 0$, it follows that $y_i > 0$ and $\lambda_i = 0$
- We note that the constraint $\sum_{i=1}^{n} b_i \ln y_i = c$ is necessarily reached (because the solution cannot be $y^* = \mathbf{0}_n$), then $\lambda_c > 0$ and we have:

$$y_{i}\frac{\partial \mathcal{R}(y)}{\partial y_{i}}=\lambda_{c}b_{i}$$

• We verify that the risk contributions are proportional to the risk budgets:

$$\mathcal{RC}_i = \lambda_c b_i$$

Definition of RB portfolios **Properties of RB portfolios** Diversification measures Using risk factors instead of assets

Existence and uniqueness The case with strictly positive risk budgets

Theorem

The optimization program has a unique solution and the RB portfolio is equal to:

$$x_{\rm rb} = \frac{y^{\star}}{\sum_{i=1}^{n} y_i^{\star}}$$

Remark

We note that the convexity property of the risk measure is essential to the existence and uniqueness of the RB portfolio. If $\mathcal{R}(x)$ is not convex, the preceding analysis becomes invalid.

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Existence and uniqueness Effect on the solution of setting risk budgets to zero

- Let \mathcal{N} be the set of assets such that $b_i = 0$
- The Lagrange function becomes:

$$\mathcal{L}(y; \lambda, \lambda_c) = \mathcal{R}(y) - \lambda^{\top} y - \lambda_c \left(\sum_{i \notin \mathcal{N}} b_i \ln y_i - c\right)$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Existence and uniqueness Effect on the solution of setting risk budgets to zero

• The solution y^* verifies the following first-order conditions:

$$\frac{\partial \mathcal{L}(y;\lambda,\lambda_c)}{\partial y_i} = \begin{cases} \partial_{y_i} \mathcal{R}(y) - \lambda_i - \lambda_c b_i y_i^{-1} = 0 & \text{if } i \notin \mathcal{N} \\ \partial_{y_i} \mathcal{R}(y) - \lambda_i = 0 & \text{if } i \in \mathcal{N} \end{cases}$$

 If *i* ∉ *N*, the previous analysis is valid and we verify that risk contributions are proportional to the risk budgets:

$$y_{i}\frac{\partial \mathcal{R}(y)}{\partial y_{i}}=\lambda_{c}b_{i}$$

- If $i \in \mathcal{N}$, we must distinguish two cases:
 - 1 If $y_i = 0$, it implies that $\lambda_i > 0$ and $\partial_{y_i} \mathcal{R}(y) > 0$ 2 In the other case, if $y_i > 0$, it implies that $\lambda_i = 0$ and $\partial_{y_i} \mathcal{R}(y) = 0$
- The solution y_i = 0 or y_i > 0 if i ∈ N will then depend on the structure of the covariance matrix Σ (in the case of a Gaussian risk measure)

Definition of RB portfolios **Properties of RB portfolios** Diversification measures Using risk factors instead of assets

Existence and uniqueness

Effect on the solution of setting risk budgets to zero

Theorem

We conclude that the solution y^* of the optimization problem exists and is unique even if some risk budgets are set to zero. As previously, we deduce the normalized RB portfolio x_{rb} by scaling y^* . This solution, noted S_1 , satisfies the following relationships:

$$\begin{cases} \mathcal{RC}_{i} = x_{i} \cdot \partial_{x_{i}} \mathcal{R}(x) = b_{i} & \text{if } i \notin \mathcal{N} \\ x_{i} = 0 \text{ and } \partial_{x_{i}} \mathcal{R}(x) > 0 & (i) \\ \text{or } & \text{if } i \in \mathcal{N} \\ x_{i} > 0 \text{ and } \partial_{x_{i}} \mathcal{R}(x) = 0 & (ii) \end{cases}$$

The conditions (*i*) and (*ii*) are mutually exclusive for one asset $i \in \mathcal{N}$, but not necessarily for all the assets $i \in \mathcal{N}$.

Definition of RB portfolios **Properties of RB portfolios** Diversification measures Using risk factors instead of assets

Effect on the solution of setting risk budgets to zero

The previous analysis implies that there may be several solutions to the following non-linear system when $b_i = 0$ for $i \in \mathcal{N}$:

$$\left\{\begin{array}{l} \mathcal{RC}_{1} = b_{1}\mathcal{R}\left(x\right) \\ \vdots \\ \mathcal{RC}_{i} = b_{i}\mathcal{R}\left(x\right) \\ \vdots \\ \mathcal{RC}_{n} = b_{n}\mathcal{R}\left(x\right) \end{array}\right.$$

- Let $\mathcal{N} = \mathcal{N}_1 \bigsqcup \mathcal{N}_2$ where \mathcal{N}_1 is the set of assets verifying the condition (*i*) and \mathcal{N}_2 is the set of assets verifying the condition (*ii*)
- The number of solutions is equal to 2^m where $m = |\mathcal{N}_2|$ is the cardinality of \mathcal{N}_2

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Existence and uniqueness Effect on the solution of setting risk budgets to zero

We note S_2 the solution with $x_i = 0$ for all assets such that $b_i = 0$. Even if S_2 is the solution expected by the investor, the only acceptable solution is S_1 . Indeed, if we impose $b_i = \varepsilon_i$ where $\varepsilon_i > 0$ is a small number for $i \in \mathcal{N}$, we obtain:

$$\lim_{\varepsilon_i\to 0}\mathcal{S}=\mathcal{S}_1$$

The solution converges to S_1 , and not to S_2 or the other solutions

Definition of RB portfolios **Properties of RB portfolios** Diversification measures Using risk factors instead of assets

Existence and uniqueness Effect on the solution of setting risk budgets to zero

Remark

The non-linear system is not well-defined, whereas the optimization problem is the right approach to define a RB portfolio

Definition

A RB portfolio is a minimum risk portfolio subject to a diversification constraint, which is defined by the logarithmic barrier function

Definition of RB portfolios **Properties of RB portfolios** Diversification measures Using risk factors instead of assets

Existence and uniqueness

Example 12

We consider a universe of three assets with $\sigma_1 = 20\%$, $\sigma_2 = 10\%$ and $\sigma_3 = 5\%$. The correlation of asset returns is given by the following matrix:

$$ho = \left(egin{array}{cccc} 1.00 & & \ 0.50 & 1.00 & \
ho_{1,3} &
ho_{2,3} & 1.00 \end{array}
ight)$$

We would like to build a RB portfolio such that the risk budgets with respect to the volatility risk measure are (50%, 50%, 0%). Moreover, we assume that $\rho_{1,3} = \rho_{2,3}$.

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Existence and uniqueness

Table 10: RB solutions when the risk budget b_3 is equal to 0 (Example 12)

$\rho_{1,3} = \rho_{2,3}$	So	lution	1	2	3	$\sigma(x)$
		Xi	20.00%	40.00%	40.00%	
	$ S_1 $	\mathcal{MR}_i	16.58%	8.29%	0.00%	6.63%
		\mathcal{RC}_i	50.00%	50.00%	0.00%	
		Xi	33.33%	66.67%	0.00%	
-25%	S_2	\mathcal{MR}_i	17.32%	8.66%	-1.44%	11.55%
		\mathcal{RC}_i	50.00%	50.00%	0.00%	
		Xi	19.23%	38.46%	42.31%	
	\mathcal{S}'_1	\mathcal{MR}_i	16.42%	8.21%	0.15%	6.38%
		\mathcal{RC}_i	49.50%	49.50%	1.00%	
		Xi	33.33%	66.67%	0.00%	
25%	$ \mathcal{S}_1 $	\mathcal{MR}_i	17.32%	8.66%	1.44%	11.55%
		\mathcal{RC}_i	50.00%	50.00%	0.00%	

Definition of RB portfolios **Properties of RB portfolios** Diversification measures Using risk factors instead of assets

Existence and uniqueness

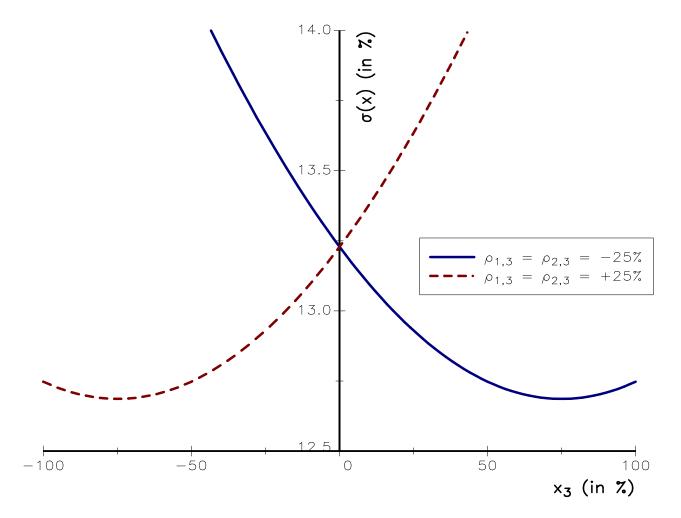


Figure 6: Evolution of the portfolio's volatility with respect to x_3

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Location of the RB portfolio

We have:

$$\frac{x_i}{b_i} = \frac{x_j}{b_j} \tag{WB}$$

$$\frac{\partial \mathcal{R}(x)}{\partial x_{i}} = \frac{\partial \mathcal{R}(x)}{\partial x_{j}}$$
(MR)

$$\frac{1}{b_{i}}\left(x_{i}\frac{\partial \mathcal{R}(x)}{\partial x_{i}}\right) = \frac{1}{b_{j}}\left(x_{j}\frac{\partial \mathcal{R}(x)}{\partial x_{j}}\right)$$
(ERC)

The RB portfolio is a combination of MR (long-only minimum risk) and WB (weight budgeting) portfolios

Definition of RB portfolios **Properties of RB portfolios** Diversification measures Using risk factors instead of assets

Risk of the RB portfolio

Theorem

We obtain the following inequality:

$$\mathcal{R}\left(x_{\mathrm{mr}}
ight) \leq \mathcal{R}\left(x_{\mathrm{rb}}
ight) \leq \mathcal{R}\left(x_{\mathrm{wb}}
ight)$$

The RB portfolio may be viewed as a portfolio "between" the MR portfolio and the WB portfolio

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Diversification index

Definition

The diversification index is equal to:

I

$$\mathcal{P}(x) = \frac{\mathcal{R}\left(\sum_{i=1}^{n} L_{i}\right)}{\sum_{i=1}^{n} \mathcal{R}(L_{i})}$$
$$= \frac{\mathcal{R}(x)}{\sum_{i=1}^{n} x_{i} \mathcal{R}(\mathbf{e}_{i})}$$

Definition of RB portfolios Properties of RB portfolios **Diversification measures** Using risk factors instead of assets

Diversification index

- The diversification index is the ratio between the risk measure of portfolio x and the weighted risk measure of the assets
- If \mathcal{R} is a coherent risk measure, we have $\mathcal{D}(x) \leq 1$
- If $\mathcal{D}(x) = 1$, it implies that the losses are comonotonic
- If \mathcal{R} is the volatility risk measure, we obtain:

$$\mathcal{D}(x) = \frac{\sqrt{x^{\top} \Sigma x}}{\sum_{i=1}^{n} x_i \sigma_i}$$

It takes the value one if the asset returns are perfectly correlated meaning that the correlation matrix is $C_n(1)$

Definition of RB portfolios Properties of RB portfolios **Diversification measures** Using risk factors instead of assets

Concentration index

- Let $\pi \in \mathbb{R}^n_+$ such that $\mathbf{1}^\top_n \pi = 1 \Rightarrow \pi$ is a probability distribution
- The probability distribution π^+ is perfectly concentrated if there exists one observation i_0 such that $\pi^+_{i_0} = 1$ and $\pi^+_i = 0$ if $i \neq i_0$
- When *n* tends to $+\infty$, the limit distribution is noted π^+_∞
- On the opposite, the probability distribution π^- such that $\pi_i^- = 1/n$ for all i = 1, ..., n has no concentration

Definition of RB portfolios Properties of RB portfolios **Diversification measures** Using risk factors instead of assets

Concentration index

Definition

A concentration index is a mapping function $C(\pi)$ such that $C(\pi)$ increases with concentration and verifies:

 $\mathcal{C}\left(\pi^{-}
ight)\leq\mathcal{C}\left(\pi
ight)\leq\mathcal{C}\left(\pi^{+}
ight)$

- For instance, if π represents the weights of the portfolio, $C(\pi)$ measures then the weight concentration
- By construction, $\mathcal{C}(\pi)$ reaches the minimum value if the portfolio is equally weighted
- To measure the risk concentration of the portfolio, we define π as the distribution of the risk contributions. In this case, the portfolio corresponding to the lower bound C (π⁻) = 0 is the ERC portfolio

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Herfindahl index

Definition

The Herfindahl index associated with π is defined as:

$$\mathcal{H}\left(\pi\right) = \sum_{i=1}^{n} \pi_{i}^{2}$$

- This index takes the value 1 for the probability distribution π^+ and 1/n for the distribution with uniform probabilities π^-
- To scale the statistics onto [0, 1], we consider the normalized index $\mathcal{H}^{\star}(\pi)$ defined as follows:

$$\mathcal{H}^{\star}\left(\pi
ight)=rac{n\mathcal{H}\left(\pi
ight)-1}{n-1}$$

Gini index

- The Gini index is based on the Lorenz curve of inequality
- Let X and Y be two random variables. The Lorenz curve $y = \mathbb{L}(x)$ is defined by the following parameterization:

Diversification measures

$$\begin{cases} x = \Pr \{ X \le x \} \\ y = \Pr \{ Y \le y \mid X \le x \} \end{cases}$$

- The Lorenz curve admits two limit cases
 - 0 If the portfolio is perfectly concentrated, the distribution of the weights corresponds to π^+_∞
 - 2 On the opposite, the least concentrated portfolio is the equally weighted portfolio and the Lorenz curve is the bisecting line y = x

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Gini index

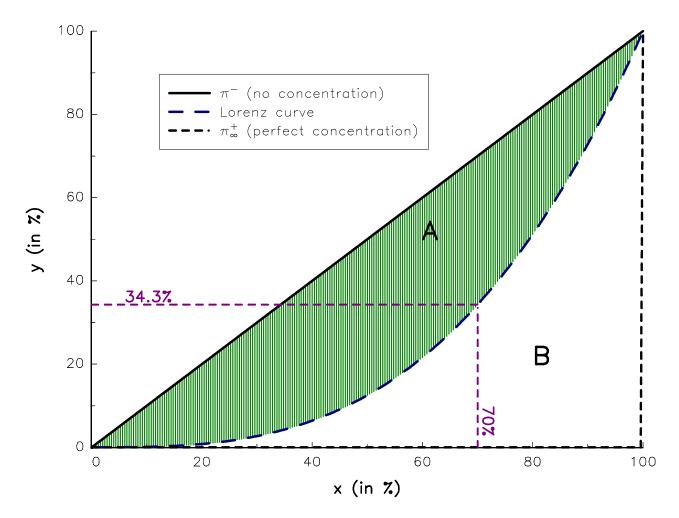


Figure 7: Geometry of the Lorenz curve

Gini index

Definition

The Gini index is then defined as:

$$\mathcal{G}\left(\pi
ight)=rac{A}{A+B}$$

Diversification measures

with A the area between $\mathbb{L}(\pi^{-})$ and $\mathbb{L}(\pi)$, and B the area between $\mathbb{L}(\pi)$ and $\mathbb{L}(\pi_{\infty}^{+})$

The ERC portfolioDefinition of RB portfoliosExtensions to risk budgeting portfoliosProperties of RB portfoliosRisk budgeting, risk premia and the risk parity strategyDiversification measuresTutorial exercisesUsing risk factors instead of assets

Gini index

• By construction, we have
$$\mathcal{G}\left(\pi^{-}
ight)=$$
 0, $\mathcal{G}\left(\pi^{+}_{\infty}
ight)=$ 1 and:

$$\mathcal{G}(\pi) = \frac{(A+B)-B}{A+B}$$
$$= 1 - \frac{1}{A+B}B$$
$$= 1 - 2\int_0^1 \mathbb{L}(x) \, \mathrm{d}x$$

In the case when π is a discrete probability distribution, we obtain:

$$\mathcal{G}(\pi) = \frac{2\sum_{i=1}^{n} i\pi_{i:n}}{n\sum_{i=1}^{n} \pi_{i:n}} - \frac{n+1}{n}$$

where $\{\pi_{1:n}, \ldots, \pi_{n:n}\}$ are the ordered statistics of $\{\pi_1, \ldots, \pi_n\}$.

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Shannon entropy

Definition

The Shannon entropy is equal to:

$$\mathcal{I}(\pi) = -\sum_{i=1}^{n} \pi_{i} \ln \pi_{i}$$

• The diversity index corresponds to the statistic:

$$\mathcal{I}^{\star}\left(\pi\right) = \exp\left(\mathcal{I}\left(\pi\right)\right)$$

• We have
$$\mathcal{I}^{\star}\left(\pi^{-}
ight)=n$$
 and $\mathcal{I}^{\star}\left(\pi^{+}
ight)=1$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Impact of the reparametrization on the asset universe

- We consider a set of *m* primary assets $(\mathcal{A}'_1, \ldots, \mathcal{A}'_m)$ with a covariance matrix Ω
- We define *n* synthetic assets (A_1, \ldots, A_n) which are composed of the primary assets
- We denote W = (w_{i,j}) the weight matrix such that w_{i,j} is the weight of the primary asset A'_j in the synthetic asset A_i (we have ∑^m_{j=1} w_{i,j} = 1)
- The covariance matrix of the synthetic assets Σ is equal to $W\Omega W^{ op}$
- The synthetic assets can be interpreted as portfolios of the primary assets
- For example, \mathcal{A}'_i may represent a stock whereas \mathcal{A}_i may be an index

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Impact of the reparametrization on the asset universe

• We consider a portfolio $x = (x_1, ..., x_n)$ defined with respect to the synthetic assets. We have:

$$\mathcal{RC}_i = x_i \cdot \frac{(\Sigma x)_i}{\sqrt{x^\top \Sigma x}}$$

2 We also define the portfolio with respect to the primary assets. In this case, the composition is $y = (y_1, \ldots, y_m)$ where $y_j = \sum_{i=1}^n x_i w_{i,j}$ (or $y = W^{\top} x$). We have:

$$\mathcal{RC}_j = y_j \cdot \frac{(\Omega y)_j}{\sqrt{y^\top \Omega y}}$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Impact of the reparametrization on the asset universe

Example 13

We have six primary assets. The volatility of these assets is respectively 20%, 30%, 25%, 15%, 10% and 30%. We assume that the assets are not correlated. We consider two equally weighted synthetic assets with:

$$W = \begin{pmatrix} 1/4 & 1/4 & 1/4 & 1/4 \\ & 1/4 & 1/4 & 1/4 & 1/4 \end{pmatrix}$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Impact of the reparametrization on the asset universe

Table 11: Risk decomposition of Portfolio #1 with respect to the synthetic assets (Example 13)

Asset i	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
\mathcal{A}_1	36.00	9.44	3.40	33.33
\mathcal{A}_2	38.00	8.90	3.38	33.17
\mathcal{A}_3	26.00	13.13	3.41	33.50

Table 12: Risk decomposition of Portfolio #1 with respect to the primary assets (Example 13)

Asset j	Уј	\mathcal{MR}_{j}	\mathcal{RC}_j	\mathcal{RC}_{j}^{\star}
\mathcal{A}_1'	9.00	3.53	0.32	3.12
\mathcal{A}_2'	9.00	7.95	0.72	7.02
\mathcal{A}'_3	31.50	19.31	6.08	59.69
\mathcal{A}'_4	31.50	6.95	2.19	21.49
\mathcal{A}_5'	9.50	0.93	0.09	0.87
\mathcal{A}_6'	9.50	8.39	0.80	7.82

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Impact of the reparametrization on the asset universe

Table 13: Risk decomposition of Portfolio #2 with respect to the synthetic assets (Example 13)

Asset i	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
\mathcal{A}_1	48.00	9.84	4.73	49.91
\mathcal{A}_2	50.00	9.03	4.51	47.67
\mathcal{A}_3	2.00	11.45	0.23	2.42

Table 14: Risk decomposition of Portfolio #2 with respect to the primary assets (Example 13)

Asset j	Уј	\mathcal{MR}_{j}	\mathcal{RC}_j	\mathcal{RC}_{j}^{\star}
\mathcal{A}_1'	12.00	5.07	0.61	6.43
\mathcal{A}_2'	12.00	11.41	1.37	14.46
\mathcal{A}'_3	25.50	16.84	4.29	45.35
\mathcal{A}_{4}^{\prime}	25.50	6.06	1.55	16.33
\mathcal{A}_5'	12.50	1.32	0.17	1.74
$\mathcal{A}_{6}^{'}$	12.50	11.88	1.49	15.69

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Impact of the reparametrization on the asset universe

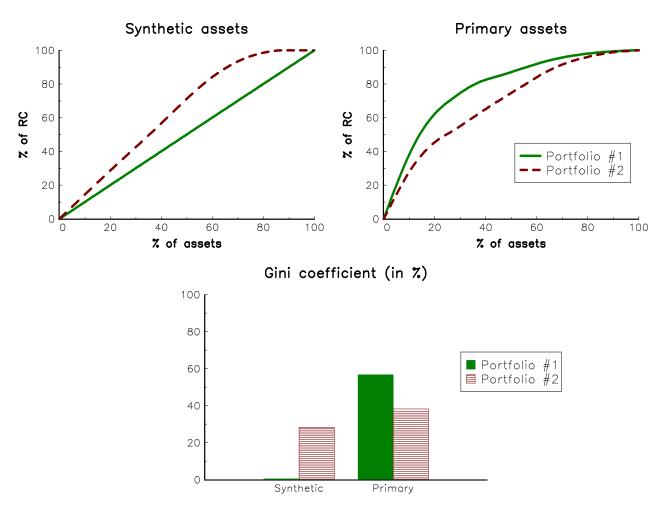


Figure 8: Lorenz curve of risk contributions (Example 13)

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk decomposition with respect to the risk factors

- We consider a set of *n* assets $\{A_1, \ldots, A_n\}$ and a set of *m* risk factors $\{F_1, \ldots, F_m\}$
- R_t is the $(n \times 1)$ vector of asset returns at time t
- Σ is the covariance matrix of asset returns
- \mathcal{F}_t is the $(m \times 1)$ vector of factor returns at time t
- Ω is the covariance matrix of factor returns

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk decomposition with respect to the risk factors

Linear factor model

We consider the linear factor model:

$$R_t = A\mathcal{F}_t + \varepsilon_t$$

where \mathcal{F}_t and ε_t are two uncorrelated random vectors, ε_t is a centered random vector $(n \times 1)$ of covariance D and A is the $(n \times m)$ loadings matrix

We have the following relationship:

$$\Sigma = A\Omega A^{\top} + D$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk decomposition with respect to the risk factors

We decompose the portfolio's asset exposures x by the portfolio's risk factors exposures y in the following way:

$$x = B^+ y + \tilde{B}^+ \tilde{y}$$

where:

- B^+ is the Moore-Penrose inverse of A^{\top}
- $ilde{B}^+$ is any n imes (n-m) matrix that spans the left nullspace of B^+
- \tilde{y} corresponds to n m residual (or additional) factors that have no economic interpretation

It follows that:

$$\begin{cases} y = A^{\top} x \\ \tilde{y} = \tilde{B} x \end{cases}$$

where $\tilde{B} = \ker \left(A^{\top} \right)^{\top}$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk decomposition with respect to the risk factors

Risk decomposition I

• We can show that the marginal risk of the *j*th factor exposure is given by:

$$\mathcal{MR}(\mathcal{F}_j) = \frac{\partial \sigma(x)}{\partial y_j} = \frac{(A^+ \Sigma x)_j}{\sigma(x)}$$

whereas its risk contribution is equal to:

$$\mathcal{RC}(\mathcal{F}_j) = y_j \frac{\partial \sigma(x)}{\partial y_j} = \frac{(A^{\top}x)_j \cdot (A^{+}\Sigma x)_j}{\sigma(x)}$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk decomposition with respect to the risk factors

Risk decomposition II

• For the residual factors, we have:

$$\mathcal{MR}\left(\tilde{\mathcal{F}}_{j}\right) = rac{\partial \sigma\left(x
ight)}{\partial \tilde{y}_{j}} = rac{\left(\tilde{B}\Sigma x
ight)_{j}}{\sigma\left(x
ight)}$$

and:

$$\mathcal{RC}\left(\tilde{\mathcal{F}}_{j}\right) = \tilde{y}_{j}\frac{\partial \sigma\left(x\right)}{\partial \tilde{y}_{j}} = \frac{\left(\tilde{B}x\right)_{j} \cdot \left(\tilde{B}\Sigma x\right)_{j}}{\sigma\left(x\right)}$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk decomposition with respect to the risk factors

Remark

We can show that these risk contributions satisfy the allocation principle:

$$\sigma(x) = \sum_{j=1}^{m} \mathcal{RC}(\mathcal{F}_{j}) + \sum_{j=1}^{n-m} \mathcal{RC}(\tilde{\mathcal{F}}_{j})$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk decomposition with respect to the risk factors

Let pinv(C) and null(C) be the Moore-Penrose pseudo-inverse and the orthonormal basis for the right null space of C

• Computation of A^+

$$A^+ = \operatorname{pinv}(A) = \left(A^{ op}A
ight)^{-1}A^{ op}$$

Computation of B

$$B = A^{\top}$$

• Computation of B^+

$$B^+ = \operatorname{pinv}\left(B
ight) = B^{ op} \left(BB^{ op}
ight)^{-1}$$

• Computation of \tilde{B}

$$\tilde{B} = \operatorname{pinv}\left(\operatorname{null}\left(B^{+^{\top}}\right)\right) \cdot \left(I_n - B^+ A^{\top}\right)$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk decomposition with respect to the risk factors

Remark

The previous results can be extended to other coherent and convex risk measures (Roncalli and Weisang, 2016)

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk decomposition with respect to the risk factors

Example 14

We consider an investment universe with four assets and three factors. The loadings matrix A is:

$${oldsymbol{\mathcal{A}}}=\left(egin{array}{cccc} 0.9 & 0.0 & 0.5\ 1.1 & 0.5 & 0.0\ 1.2 & 0.3 & 0.2\ 0.8 & 0.1 & 0.7 \end{array}
ight)$$

The three factors are uncorrelated and their volatilities are 20%, 10% and 10%. We assume a diagonal matrix D with specific volatilities 10%, 15%, 10% and 15%.

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk decomposition with respect to the risk factors

The correlation matrix of asset returns is (in %):

$$\rho = \left(\begin{array}{cccc} 100.0 & & & \\ 69.0 & 100.0 & & \\ 79.5 & 76.4 & 100.0 & \\ 66.2 & 57.2 & 66.3 & 100.0 \end{array}\right)$$

and their volatilities are respectively equal to 21.19%, 27.09%, 26.25% and 23.04%.

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk decomposition with respect to the risk factors

We obtain that:

$$\mathcal{A}^{+} = \left(egin{array}{ccccccc} 1.260 & -0.383 & 1.037 & -1.196\ -3.253 & 2.435 & -1.657 & 2.797\ -0.835 & 0.208 & -1.130 & 2.348 \end{array}
ight)$$

and:

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk decomposition with respect to the risk factors

Table 15: Risk decomposition of the EW portfolio with respect to the assets (Example 14)

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	25.00	18.81	4.70	21.97
2	25.00	23.72	5.93	27.71
3	25.00	24.24	6.06	28.32
4	25.00	18.83	4.71	22.00
Volatility			21.40	

Table 16: Risk decomposition of the EW portfolio with respect to the risk factors (Example 14)

Factor	Уј	\mathcal{MR}_j	\mathcal{RC}_j	\mathcal{RC}_{j}^{\star}
\mathcal{F}_1	100.00	17.22	17.22	80.49
\mathcal{F}_2	22.50	9.07	2.04	9.53
\mathcal{F}_3	35.00	6.06	2.12	9.91
$\begin{bmatrix} & & \mathcal{\widetilde{F}}_1^{-} & & \\ & & \mathcal{\widetilde{F}}_1^{-} & & \end{bmatrix}$	2.75	0.52	0.01	0.07
Volatilit	у	21.40		

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk factor parity (or RFP) portfolios

RFP portfolios are defined by:

$$\mathcal{RC}\left(\mathcal{F}_{j}\right)=b_{j}\mathcal{R}\left(x
ight)$$

They are computed using the following optimization problem:

$$egin{aligned} &(y^{\star}, \hat{y}^{\star}) &= &rg\min\sum_{j=1}^m \left(\mathcal{RC}\left(\mathcal{F}_j
ight) - b_j\mathcal{R}\left(x
ight)
ight)^2 \ & ext{u.c.} \quad \mathbf{1}_n^{ op}\left(B^+y + ilde{B}^+ ilde{y}
ight) = 1 \end{aligned}$$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk factor parity (or RFP) portfolios

Example 15

We consider an investment universe with four assets and three factors. The loadings matrix A is:

$$A = \left(\begin{array}{rrrr} 0.9 & 0.0 & 0.5 \\ 1.1 & 0.5 & 0.0 \\ 1.2 & 0.3 & 0.2 \\ 0.8 & 0.1 & 0.7 \end{array}\right)$$

The three factors are uncorrelated and their volatilities are 20%, 10% and 10%. We assume a diagonal matrix D with specific volatilities 10%, 15%, 10% and 15%. We consider the following factor risk budgets:

b = (49%, 25%, 25%)

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Risk factor parity (or RFP) portfolios

Table 17: Risk decomposition of the RFP portfolio with respect to the risk factors (Example 15)

Factor	Уј	\mathcal{MR}_j	\mathcal{RC}_j	\mathcal{RC}_{j}^{\star}
\mathcal{F}_1	93.38	11.16	10.42	49.00
\mathcal{F}_2	24.02	22.14	5.32	25.00
\mathcal{F}_3	39.67	13.41	5.32	25.00
$\begin{bmatrix} & \widetilde{\mathcal{F}}_1^{-} & & \\ & & \end{bmatrix}$	16.39	1.30	0.21	1.00
Volatility			21.27	

Table 18: Risk decomposition of the RFP portfolio with respect to the assets (Example 15)

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	15.08	17.44	2.63	12.36
2	38.38	23.94	9.19	43.18
3	0.89	21.82	0.20	0.92
4	45.65	20.29	9.26	43.54
Volatility			21.27	

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Minimizing the risk concentration between the risk factors

We now consider the following problem:

 $\mathcal{RC}\left(\mathcal{F}_{j}
ight)\simeq\mathcal{RC}\left(\mathcal{F}_{k}
ight)$

 \Rightarrow The portfolios are computed by minimizing the risk concentration between the risk factors

Remark

We can use the Herfindahl index, the Gini index or the Shanon entropy

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Minimizing the risk concentration between the risk factors

Example 16

We consider an investment universe with four assets and three factors. The loadings matrix A is:

$$\mathcal{A}=\left(egin{array}{cccc} 0.9 & 0.0 & 0.5\ 1.1 & 0.5 & 0.0\ 1.2 & 0.3 & 0.2\ 0.8 & 0.1 & 0.7 \end{array}
ight)$$

The three factors are uncorrelated and their volatilities are 20%, 10% and 10%. We assume a diagonal matrix D with specific volatilities 10%, 15%, 10% and 15%.

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Minimizing the risk concentration between the risk factors

Table 19: Risk decomposition of the balanced RFP portfolio with respect to the risk factors (Example 16)

Factor	Уј	\mathcal{MR}_{j}	\mathcal{RC}_{j}	\mathcal{RC}_{j}^{\star}
\mathcal{F}_1	91.97	7.91	7.28	33.26
\mathcal{F}_2	25.78	28.23	7.28	33.26
\mathcal{F}_3	42.22	17.24	7.28	33.26
$\begin{bmatrix} & \widetilde{\mathcal{F}}_1^{-} & & \\ & & \widetilde{\mathcal{F}}_1 & & \end{bmatrix}$	6.74	0.70	0.05	0.21
Volatilit	У		21.88	

Table 20: Risk decomposition of the balanced RFP portfolio with respect to the assets (Example 16)

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	0.30	16.11	0.05	0.22
2	39.37	23.13	9.11	41.63
3	0.31	20.93	0.07	0.30
4	60.01	21.09	12.66	57.85
Volatili	ity		21.88	

Properties of RB portfolios Diversification measures Using risk factors instead of assets

Minimizing the risk concentration between the risk factors

We have $\mathcal{H}^{\star} = 0$, $\mathcal{G} = 0$ and $\mathcal{I}^{\star} = 3$

Definition of RB portfolios Properties of RB portfolios Diversification measures Using risk factors instead of assets

Minimizing the risk concentration between the risk factors

Table 21: Balanced RFP portfolios with $x_i \ge 10\%$ (Example 16)

Criterion	$\mathcal{H}(x)$	$\mathcal{G}(x)$	$\mathcal{I}(x)$
<i>x</i> ₁	10.00	10.00	10.00
x ₂	22.08	18.24	24.91
<i>x</i> ₃	10.00	10.00	10.00
X4	57.92	61.76	55.09
$\begin{bmatrix}\bar{\mathcal{H}}^{\star} \end{bmatrix}$	0.0436	0.0490	0.0453
\mathcal{G}	0.1570	0.1476	0.1639
\mathcal{I}^{\star}	2.8636	2.8416	2.8643

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolio

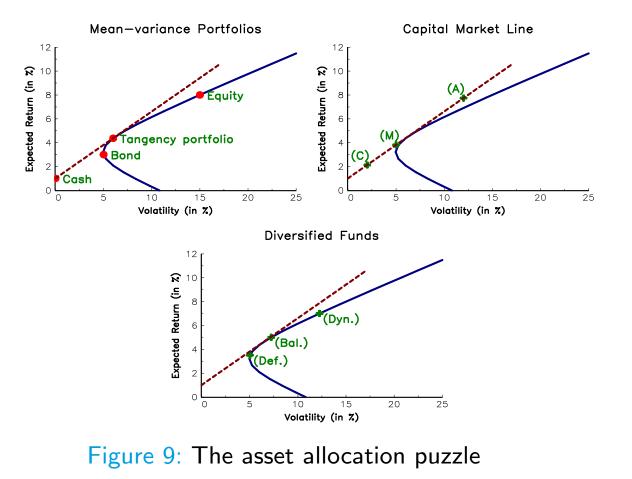
Justification of diversified funds

Investor Profiles

- Conservative (low risk)
- Moderate (medium risk)
- Aggressive (high risk)

Fund Profiles

- Defensive (20% equities and 80% bonds)
- Balanced (50% equities and 50% bonds)
- Oynamic (80% equities and 20% bonds)



Diversified funds Risk premium Risk parity strategies Performance budgeting portfolio

What type of diversification is offered by diversified funds?

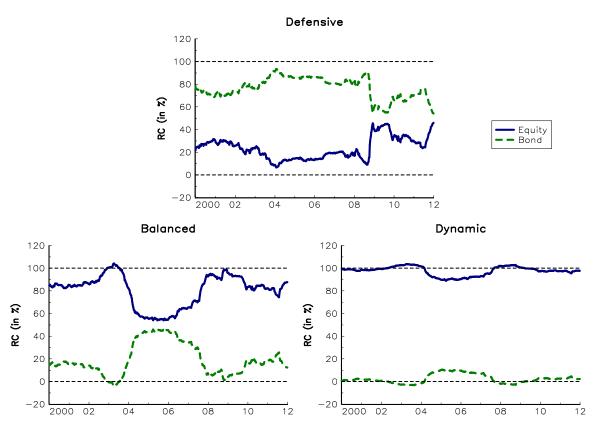


Figure 10: Equity (MSCI World) and bond (WGBI) risk contributions

Diversified funds

Marketing idea?

- Contrarian constant-mix strategy
- Deleverage of an equity exposure
- Low risk diversification
- No mapping between fund profiles and investor profiles
- Static weights
- Dynamic risk contributions

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolios

Risk-balanced allocation

- Multi-dimensional target volatility strategy
- Trend-following portfolio (if negative correlation between return and risk)
- Dynamic weights
- Static risk contributions (risk budgeting)
- High diversification

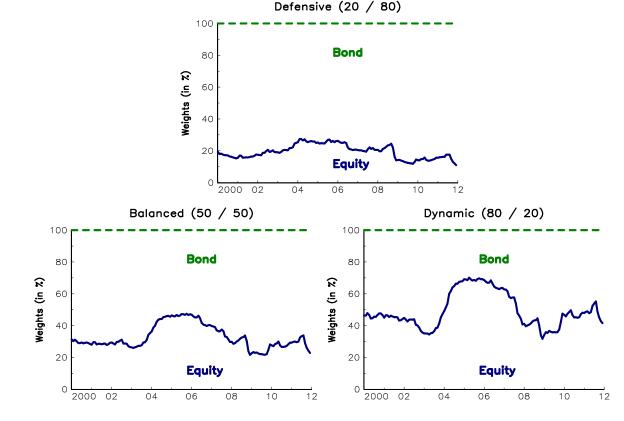


Figure 11: Equity and bond allocation

Risk premium Risk parity strategies Performance budgeting portfolio

Characterization of the stock/bond market portfolio

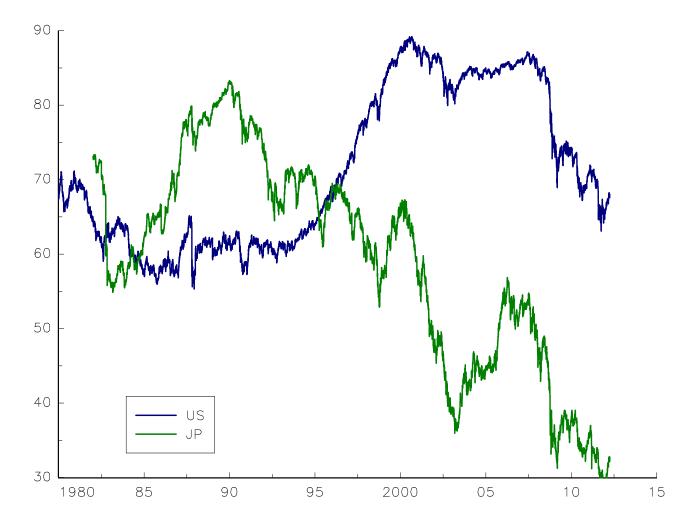


Figure 12: Evolution of the equity weight for United States and Japan

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolios

Characterization of the stock/bond market portfolio

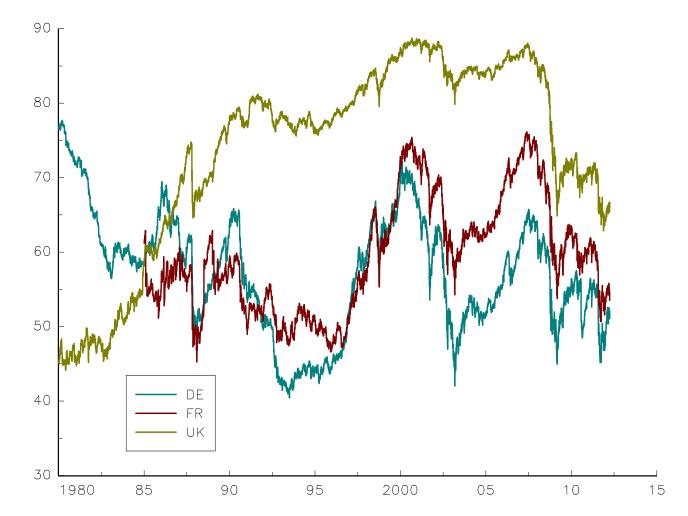


Figure 13: Evolution of the equity weight for Germany, France and UK

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolios

Link between risk premium and risk contribution

Let π_i and π_M be the risk premium of Asset *i* and the market risk premium. We have:

$$\pi_{i} = \beta_{i} \cdot \pi_{M}$$

$$= \frac{\operatorname{cov}(R_{i}, R_{M})}{\sigma(R_{M})} \cdot \frac{\pi_{M}}{\sigma(R_{M})}$$

$$= \frac{\partial \sigma(x_{M})}{\partial x_{i}} \cdot \operatorname{SR}(x_{M})$$

The risk premium of Asset *i* is then proportional to the marginal volatility of Asset *i* with respect to the market portfolio

Foundation of the risk budgeting approach

For the tangency portfolio, we have:

performance contribution = risk contribution

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolio

Link between risk premium and risk contribution

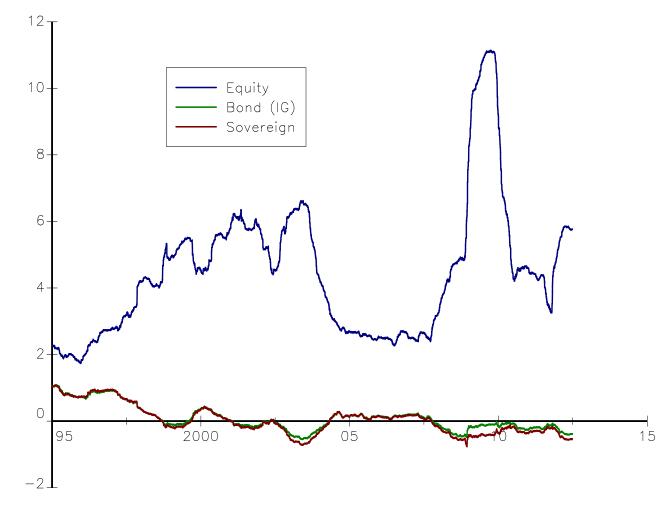
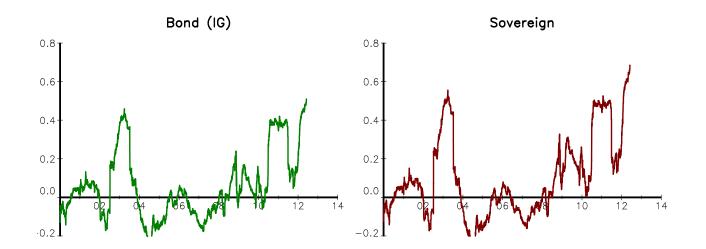


Figure 14: Risk premia (in %) for the US market portfolio (SR (x_M) = 25%)

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolios

Link between risk premium and risk contribution



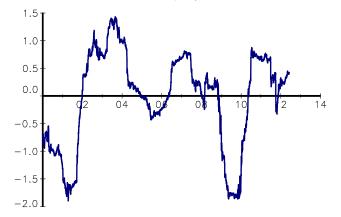


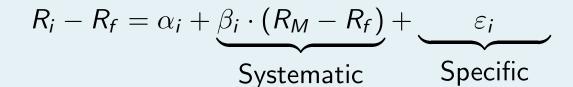
Figure 15: Difference (in %) between EURO and US risk premia $(SR(x_M) = 25\%)$

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolios

Sharpe theory of risk premia

The one-factor risk model

We deduce that:



Risk

We necessarily have:

1
$$\alpha_i = 0$$

2 $\mathbb{E}[\varepsilon_i] = 0$

 \Rightarrow On average, only the systematic risk is rewarded, not the idiosyncratic risk

Risk

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolio

Sharpe theory of risk premia

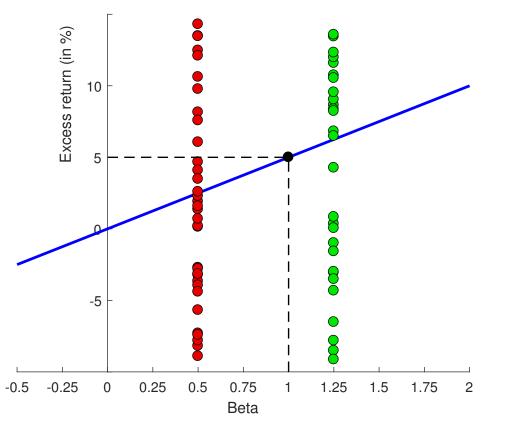


Figure 16: The security market line (SML)

- Risk premium is an increasing function of the systematic risk
- Risk premium may be negative (meaning that some assets can have a return lower than the risk-free asset!)

• More risk \neq more return

Risk premium Risk parity strategies Performance budgeting portfolios

Black-Litterman theory of risk premia

In the Black-Litterman model, the expected (or ex-ante/implied) risk premia are equal to:

$$ilde{\pi} = ilde{\mu} - r = \mathrm{SR}\left(x \mid r\right) rac{\Sigma x}{\sqrt{x^{\top}\Sigma x}}$$

where SR(x | r) is the expected Sharpe ratio of the portfolio.

Risk premium Risk parity strategies Performance budgeting portfolios

Black-Litterman theory of risk premia

Example 17

We consider four assets. Their expected returns are equal to 5%, 6%, 8% and 6% while their volatilities are equal to 15%, 20%, 25% and 30%. The correlation matrix of asset returns is given by the following matrix:

$$C = \left(\begin{array}{cccc} 1.00 & & & \\ 0.10 & 1.00 & & \\ 0.40 & 0.70 & 1.00 & \\ 0.50 & 0.40 & 0.80 & 1.00 \end{array}\right)$$

We also assume that the return of the risk-free asset is equal to 1.5%.

Risk premium Risk parity strategies Performance budgeting portfolios

Black-Litterman theory of risk premia

Table 22: Black-Litterman risk premia (Example 17)

	CAPM		Black-Litterman			
Asset	π_i	x_i^{\star}	Xi	$ ilde{\pi}_i$	Xi	$ ilde{\pi}_i$
#1	3.50%	63.63%	25.00%	2.91%	40.00%	3.33%
#2	4.50%	19.27%	25.00%	4.71%	30.00%	4.97%
#3	6.50%	50.28%	25.00%	7.96%	20.00%	7.69%
#4	4.50%	-33.17%	25.00%	9.07%	10.00%	8.18%
$\mu(\mathbf{x})$	6.37%		6.25%		6.00%	
$\sigma(\mathbf{x})$	14.43%		18.27%		15.35%	
$\tilde{\mu}(\mathbf{x})$	6.37%		7.66%		6.68%	

Risk premium Risk parity strategies Performance budgeting portfolios

Black-Litterman theory of risk premia

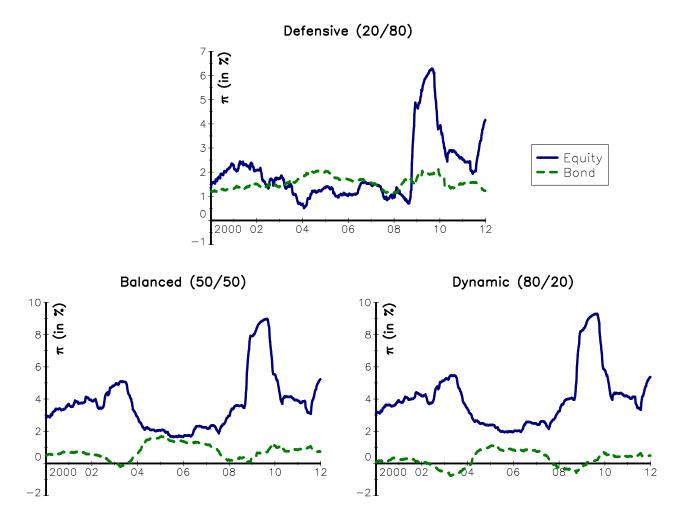


Figure 17: Equity and bond implied risk premia for diversified funds

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolios

Performance assets versus hedging assets

• We recall that:

$$ilde{\pi} = \mathrm{SR}\left(x \mid r
ight) rac{\partial \, \sigma \left(x
ight)}{\partial \, x}$$

where $\sigma(x)$ is the volatility of portfolio x

• We have:

$$\frac{\partial \sigma (x)}{\partial x_{i}} = \frac{(\Sigma x)_{i}}{\sigma (x)}$$
$$= \frac{\left(x_{i}\sigma_{i}^{2} + \sigma_{i}\sum_{j\neq i}x_{j}\rho_{i,j}\sigma_{j}\right)}{\sigma (x)}$$

• We deduce that

$$\tilde{\pi}_{i} = \operatorname{SR}(x \mid r) \frac{\left(x_{i}\sigma_{i}^{2} + \sigma_{i}\sum_{j \neq i} x_{j}\rho_{i,j}\sigma_{j}\right)}{\sigma(x)}$$

Risk premium Risk parity strategies Performance budgeting portfolios

Performance assets versus hedging assets

In the two-asset case, we obtain:

$$\tilde{\pi}_{1} = c(x) \left(\underbrace{x_{1}\sigma_{1}^{2}}_{\text{variance}} + \underbrace{\rho\sigma_{1}\sigma_{2}(1-x_{1})}_{\text{covariance}} \right)$$

and:

$$\tilde{\pi}_{2} = c(x) \left(\underbrace{x_{2}\sigma_{2}^{2}}_{\text{variance}} + \underbrace{\rho\sigma_{1}\sigma_{2}(1-x_{2})}_{\text{covariance}} \right)$$

where c(x) is equal to $SR(x | r) / \sigma(x)$ and ρ is the cross-correlation between the two asset returns

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolios

Performance assets versus hedging assets

In the two-asset case, the implied risk premium becomes:

$$\tilde{\pi}_{i} = \frac{\mathrm{SR}\left(x \mid r\right)}{\sigma\left(x\right)} \left(\underbrace{x_{i} \cdot \sigma_{i}^{2}}_{\text{variance}} + \underbrace{\left(1 - x_{i}\right) \cdot \rho \sigma_{i} \sigma_{j}}_{\text{covariance}}\right)$$

There are two components in the risk premium:

- a variance risk component, which is an increasing function of the volatility and the weight of the asset
- a (positive or negative) covariance risk component, which depends on the correlation between asset returns

Performance asset versus hedging asset

- When $\tilde{\pi}_i > 0$, the asset *i* is a performance asset for Portfolio *x*
- When $\tilde{\pi}_i < 0$, the asset *i* is a hedging asset for Portfolio *x*

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolios

Performance assets versus hedging assets

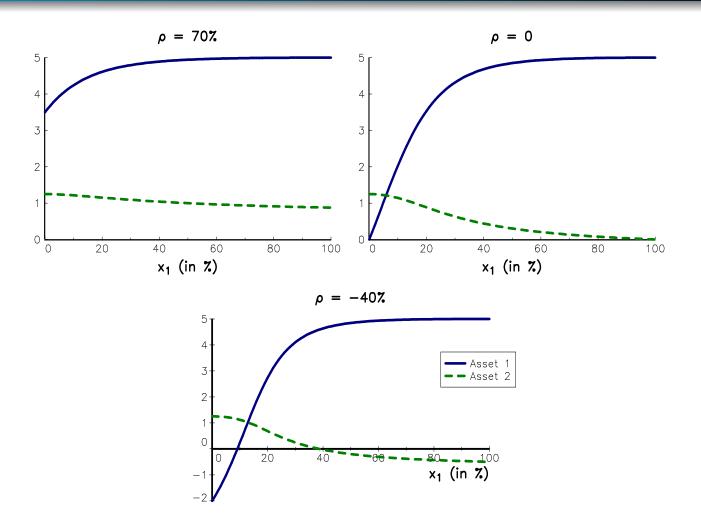


Figure 18: Impact of the correlation on the expected risk premium ($\sigma_1 = 20\%$, $\sigma_2 = 5\%$ and SR (x) = 0.25)

Diversified funds **Risk premium** Risk parity strategies Performance budgeting portfolios

Are bonds performance or hedging assets?

- Stocks are always considered as performance assets, while bonds may be performance or hedging assets, depending on the region and the period⁴
- 1990-2008: (Sovereign) bonds were perceived as performance assets
- The 2008 GFC has strengthened the fly-to-quality characteristic of bonds
- 2013-2017: Bonds are now more and more perceived as hedging assets⁵

Diversified stock-bond portfolios \Rightarrow **Deleveraged equity portfolios**

⁴For instance bonds were hedging assets in 2008 and performance assets in 2011 ⁵This is particular true in the US and Europe, where the implied risk premium is negative. In Japan, the implied risk premium continue to be positive

Risk premium Risk parity strategies Performance budgeting portfolios

Diversified versus risk parity funds

Table 23: Statistics of diversified and risk parity portfolios (2000-2012)

Portfolio	$\hat{\mu}_{1Y}$	$\hat{\sigma}_{1\mathrm{Y}}$	SR	\mathcal{MDD}	γ_1	γ_2
Defensive	5.41	6.89	0.42	-17.23	0.19	2.67
Balanced	3.68	9.64	0.12	-33.18	-0.13	3.87
Dynamic	1.70	14.48	-0.06	-48.90	-0.18	5.96
Risk parity	5.12	7.29	0.36	-21.22	0.08	2.65
Static	4.71	7.64	0.29	-23.96	0.03	2.59
Leveraged RP	6.67	9.26	0.45	-23.74	0.01	0.78

- The 60/40 constant mix strategy is not the right benchmark
- Results depend on the investment universe (number/granularity of asset classes)
- What is the impact of rising interest rates?

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolios

Optimality of the RB portfolio

We consider the utility function:

$$\mathcal{U}(\mathbf{x}) = (\mu(\mathbf{x}) - \mathbf{r}) - \phi \mathcal{R}(\mathbf{x})$$

Portfolio x is optimal if the vector of expected risk premia satisfies this relationship:

$$\tilde{\pi} = \phi \frac{\partial \mathcal{R}(x)}{\partial x}$$

If the RB portfolio is optimal, we deduce that the (excess) performance contribution \mathcal{PC}_i of asset *i* is proportional to its risk budget:

$$\mathcal{PC}_i = x_i \tilde{\pi}_i$$

 $= \phi \cdot \mathcal{RC}_i$
 $\propto b_i$

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolios

Optimality of the RB portfolio

In the Black-Litterman approach of risk premia, we have:

$$ilde{\pi}_i = ilde{\mu}_i - r = \mathrm{SR}\left(x \mid r\right) rac{(\Sigma x)_i}{\sqrt{x^{\top} \Sigma x}}$$

This implies that the (excess) performance contribution is equal to:

$$\mathcal{PC}_{i} = \operatorname{SR}(x \mid r) \frac{x_{i} \cdot (\Sigma x)_{i}}{\sqrt{x^{\top} \Sigma x}}$$
$$= \operatorname{SR}(x \mid r) \cdot \mathcal{RC}_{i}$$

where SR(x | r) is the expected Sharpe ratio of the RB portfolio

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolios

Optimality of the RB portfolio

Remark

From an ex-ante point of view, performance budgeting and risk budgeting are equivalent

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolios

Optimality of the RB portfolio

Example 18

We consider a universe of four assets. The volatilities are respectively 10%, 20%, 30% and 40%. The correlation of asset returns is given by the following matrix:

$$ho = \left(egin{array}{ccccc} 1.00 & & & \ 0.80 & 1.00 & & \ 0.20 & 0.20 & 1.00 & \ 0.20 & 0.20 & 0.50 & 1.00 \end{array}
ight)$$

The risk-free rate is equal to zero

Diversified funds Risk premium Risk parity strategies Performance budgeting portfolios

Optimality of the RB portfolio

Table 24: Implied risk premia when b = (20%, 25%, 40%, 15%) (Example 18)

Asset	Xi	\mathcal{MR}_i	$ ilde{\mu}_i$	\mathcal{PC}_i	\mathcal{PC}_{i}^{\star}
1	40.91	7.10	3.55	1.45	20.00
2	25.12	14.46	7.23	1.82	25.00
3	25.26	23.01	11.50	2.91	40.00
4	8.71	25.04	12.52	1.09	15.00
Expected return 7.27					

Table 25: Implied risk premia when b = (10%, 10%, 10%, 70%) (Example 18)

Asset	Xi	\mathcal{MR}_i	$ ilde{\mu}_i$	\mathcal{PC}_i	\mathcal{PC}_i^{\star}
1	35.88	5.27	2.63	0.94	10.00
2	17.94	10.53	5.27	0.94	10.00
3	10.18	18.56	9.28	0.94	10.00
4	35.99	36.75	18.37	6.61	70.00
Expected return				9.45	

Risk premium Risk parity strategies Performance budgeting portfolios

Main result

There is no neutral allocation. Every portfolio corresponds to an active bet.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Question 1

We note Σ the covariance matrix of asset returns.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Question 1.a

What is the risk contribution \mathcal{RC}_i of asset *i* with respect to portfolio *x*?

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Let $\mathcal{R}(x)$ be a risk measure of the portfolio x. If this risk measure satisfies the Euler principle, we have (TR-RPB, page 78):

$$\mathcal{R}(x) = \sum_{i=1}^{n} x_{i} \frac{\partial \mathcal{R}(x)}{\partial x_{i}}$$

We can then decompose the risk measure as a sum of asset contributions. This is why we define the risk contribution \mathcal{RC}_i of asset *i* as the product of the weight by the marginal risk:

$$\mathcal{RC}_{i} = x_{i} \frac{\partial \mathcal{R}(x)}{\partial x_{i}}$$

When the risk measure is the volatility $\sigma(x)$, it follows that:

$$\mathcal{RC}_{i} = x_{i} \frac{(\Sigma x)_{i}}{\sqrt{x^{\top} \Sigma x}}$$
$$= \frac{x_{i} \left(\sum_{k=1}^{n} \rho_{i,k} \sigma_{i} \sigma_{k} x_{k}\right)}{\sigma(x)}$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Question 1.b

Define the ERC portfolio.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

The ERC portfolio corresponds to the risk budgeting portfolio when the risk measure is the return volatility $\sigma(x)$ and when the risk budgets are the same for all the assets (TR-RPB, page 119). It means that $\mathcal{RC}_i = \mathcal{RC}_j$, that is:

$$x_i \frac{\partial \sigma(x)}{\partial x_i} = x_j \frac{\partial \sigma(x)}{\partial x_j}$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Question 1.c

Calculate the variance of the risk contributions. Define an optimization program to compute the ERC portfolio. Find an equivalent maximization program based on the \mathcal{L}^2 norm.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

We have:

$$\overline{\mathcal{RC}} = \frac{1}{n} \sum_{i=1}^{n} \mathcal{RC}_{i}$$
$$= \frac{1}{n} \sigma(x)$$

It follows that:

$$\operatorname{var}(\mathcal{RC}) = \frac{1}{n} \sum_{i=1}^{n} \left(\mathcal{RC}_{i} - \overline{\mathcal{RC}}\right)^{2}$$
$$= \frac{1}{n} \sum_{i=1}^{n} \left(\mathcal{RC}_{i} - \frac{1}{n}\sigma(x)\right)^{2}$$
$$= \frac{1}{n^{2}\sigma(x)} \sum_{i=1}^{n} \left(nx_{i}(\Sigma x)_{i} - \sigma^{2}(x)\right)^{2}$$

2

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

To compute the ERC portfolio, we may consider the following optimization program:

$$x^{\star} = \arg\min\sum_{i=1}^{n} \left(nx_i \left(\Sigma x\right)_i - \sigma^2 \left(x\right)\right)^2$$

Because we know that the ERC portfolio always exists (TR-RPB, page 108), the objective function at the optimum x^* is necessarily equal to 0. Another equivalent optimization program is to consider the L^2 norm. In this case, we have (TR-RPB, page 102):

$$x^{\star} = \arg\min\sum_{i=1}^{n}\sum_{j=1}^{n}\left(x_{i}\cdot(\Sigma x)_{i}-x_{j}\cdot(\Sigma x)_{j}\right)^{2}$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Question 1.d

Let $\beta_i(x)$ be the beta of asset *i* with respect to portfolio *x*. Show that we have the following relationship in the ERC portfolio:

$$x_{i}\beta_{i}(x)=x_{j}\beta_{j}(x)$$

Propose a numerical algorithm to find the ERC portfolio.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

We have:

$$\beta_{i}(x) = \frac{(\Sigma x)_{i}}{x^{\top}\Sigma x} \\ = \frac{\mathcal{M}\mathcal{R}_{i}}{\sigma(x)}$$

We deduce that:

$$\mathcal{RC}_{i} = x_{i} \cdot \mathcal{MR}_{i}$$
$$= x_{i}\beta_{i}(x)\sigma(x)$$

The relationship $\mathcal{RC}_i = \mathcal{RC}_j$ becomes:

$$x_{i}\beta_{i}(x)=x_{j}\beta_{j}(x)$$

It means that the weight is inversely proportional to the beta:

$$x_i \propto rac{1}{eta_i\left(x
ight)}$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

We can use the Jacobi power algorithm (TR-RPB, page 308). Let $x^{(k)}$ be the portfolio at iteration k. We define the portfolio $x^{(k+1)}$ as follows:

$$x^{(k+1)} = \frac{\beta_i^{-1}(x^{(k)})}{\sum_{j=1}^n \beta_j^{-1}(x^{(k)})}$$

Starting from an initial portfolio $x^{(0)}$, the limit portfolio is the ERC portfolio if the algorithm converges:

$$\lim_{k\to\infty} x^{(k)} = x_{\rm erc}$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Question 1.e

We suppose that the volatilities are 15%, 20% and 25% and that the correlation matrix is:

$$p = \left(egin{array}{cccc} 100\% & & \ 50\% & 100\% & \ 40\% & 30\% & 100\% \end{array}
ight)$$

Compute the ERC portfolio using the beta algorithm.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Starting from the EW portfolio, we obtain for the first five iterations:

k	0	1	2	3	4	5
$x_1^{(k)}$ (in %)	33.3333	43.1487	40.4122	41.2314	40.9771	41.0617
$x_{2}^{(k)}$ (in %)	33.3333	32.3615	31.9164	32.3529	32.1104	32.2274
$x_{3}^{(k)}$ (in %)	33.3333	24.4898	27.6714	26.4157	26.9125	26.7109
$\left[-\overline{\beta_1} \left(\overline{x^{(k)}} \right)^{-} \right]$	0.7326	0.8341	0.8046	0.8147	0.8113	0.8126
$\beta_2(x^{(k)})$	0.9767	1.0561	1.0255	1.0397	1.0337	1.0363
$\beta_3(x^{(k)})$	1.2907	1.2181	1.2559	1.2405	1.2472	1.2444

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

The next iterations give the following results:

k	6	7	8	9	10	11
$x_1^{(k)}$ (in %)	41.0321	41.0430	41.0388	41.0405	41.0398	41.0401
$x_{2}^{(k)}$ (in %)	32.1746	32.1977	32.1878	32.1920	32.1902	32.1909
$x_{3}^{(k)}$ (in %)	26.7933	26.7593	26.7734	26.7676	26.7700	26.7690
$\left[-\overline{\beta_1} \left(x^{(k)} \right)^{-} \right]$	0.8121	0.8123	0.8122	0.8122	0.8122	0.8122
$\beta_2(x^{(k)})$	1.0352	1.0356	1.0354	1.0355	1.0355	1.0355
$\beta_3(x^{(k)})$	1.2456	1.2451	1.2453	1.2452	1.2452	1.2452

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Finally, the algorithm converges after 14 iterations with the following stopping criteria:

$$\sup_{i} \left| x_{i}^{(k+1)} - x_{i}^{(k)} \right| \le 10^{-6}$$

and we obtain the following results:

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	41.04%	12.12%	4.97%	33.33%
2	32.19%	15.45%	4.97%	33.33%
3	26.77%	18.58%	4.97%	33.33%

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Question 2

We now suppose that the return of asset *i* satisfies the CAPM model:

$$R_i = \beta_i R_m + \varepsilon_i$$

where R_m is the return of the market portfolio and ε_i is the idiosyncratic risk. We note $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n)$. We assume that $R_m \perp \varepsilon$, $\operatorname{var}(R_m) = \sigma_m^2$ and $\operatorname{cov}(\varepsilon) = D = \operatorname{diag}(\tilde{\sigma}_1^2, \ldots, \tilde{\sigma}_n^2)$.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Question 2.a

Calculate the risk contribution \mathcal{RC}_i .

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

We have:

$$\boldsymbol{\Sigma} = \boldsymbol{\beta} \boldsymbol{\beta}^{\top} \boldsymbol{\sigma}_{m}^{2} + \operatorname{diag}\left(\tilde{\sigma}_{1}^{2}, \ldots, \tilde{\sigma}_{n}^{2}\right)$$

We deduce that:

$$\mathcal{RC}_{i} = \frac{x_{i} \left(\sum_{k=1}^{n} \beta_{i} \beta_{k} \sigma_{m}^{2} x_{k} + \tilde{\sigma}_{i}^{2} x_{i}\right)}{\tilde{\sigma}(x)}$$
$$= \frac{x_{i} \beta_{i} B + x_{i}^{2} \tilde{\sigma}_{i}^{2}}{\sigma(x)}$$

with:

$$B = \sum_{k=1}^{n} x_k \beta_k \sigma_m^2$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Question 2.b

We assume that $\beta_i = \beta_j$. Show that the ERC weight x_i is a decreasing function of the idiosyncratic volatility $\tilde{\sigma}_i$.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Using Equation 2.a, we deduce that the ERC portfolio satisfies:

$$x_i\beta_iB + x_i^2\tilde{\sigma}_i^2 = x_j\beta_jB + x_j^2\tilde{\sigma}_j^2$$

or:

$$(x_i\beta_i - x_j\beta_j) B = (x_j^2\tilde{\sigma}_j^2 - x_i^2\tilde{\sigma}_i^2)$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

If $\beta_i = \beta_j = \beta$, we have:

$$(x_i - x_j) \beta B = (x_j^2 \tilde{\sigma}_j^2 - x_i^2 \tilde{\sigma}_i^2)$$

Because $\beta > 0$, we deduce that:

$$\begin{array}{ll} x_i > x_j & \Leftrightarrow & x_j^2 \tilde{\sigma}_j^2 - x_i^2 \tilde{\sigma}_i^2 > 0 \\ & \Leftrightarrow & x_j \tilde{\sigma}_j > x_i \tilde{\sigma}_i \\ & \Leftrightarrow & \tilde{\sigma}_i < \tilde{\sigma}_j \end{array}$$

We conclude that the weight x_i is a decreasing function of the specific volatility $\tilde{\sigma}_i$.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Question 2.c

We assume that $\tilde{\sigma}_i = \tilde{\sigma}_j$. Show that the ERC weight x_i is a decreasing function of the sensitivity β_i to the common factor.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

If $\tilde{\sigma}_i = \tilde{\sigma}_j = \tilde{\sigma}$, we have:

$$(x_i\beta_i - x_j\beta_j) B = (x_j^2 - x_i^2) \tilde{\sigma}^2$$

We deduce that:

$$\begin{array}{ll} x_i > x_j & \Leftrightarrow & \left(x_i \beta_i - x_j \beta_j \right) B < 0 \\ & \Leftrightarrow & x_i \beta_i < x_j \beta_j \\ & \Leftrightarrow & \beta_i < \beta_j \end{array}$$

We conclude that the weight x_i is a decreasing function of the sensitivity β_i .

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

Question 2.d

We consider the numerical application: $\beta_1 = 1$, $\beta_2 = 0.9$, $\beta_3 = 0.8$, $\beta_4 = 0.7$, $\tilde{\sigma}_1 = 5\%$, $\tilde{\sigma}_2 = 5\%$, $\tilde{\sigma}_3 = 10\%$, $\tilde{\sigma}_4 = 10\%$, and $\sigma_m = 20\%$. Find the ERC portfolio.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Variation on the ERC portfolio

We obtain the following results:

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	21.92%	19.73%	4.32%	25.00%
2	24.26%	17.83%	4.32%	25.00%
3	25.43%	17.00%	4.32%	25.00%
4	28.39%	15.23%	4.32%	25.00%

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

Question 1

We consider the Lorenz curve defined by:

We assume that \mathbb{L} is an increasing function and $\mathbb{L}(x) > x$.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

Question 1.a

Represent graphically the function \mathbb{L} and define the Gini coefficient \mathcal{G} associated with \mathbb{L} .

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

We have represented the function $y = \mathcal{L}(x)$ in Figure 19. It verifies $\mathcal{L}(x) \ge x$ and $\mathcal{L}(x) \le 1$. The Gini coefficient is defined as follows (TR-RPB, page 127):

$$G = \frac{A}{A+B}$$
$$= \left(\int_0^1 \mathcal{L}(x) \, \mathrm{d}x - \frac{1}{2}\right) / \frac{1}{2}$$
$$= 2\int_0^1 \mathcal{L}(x) \, \mathrm{d}x - 1$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

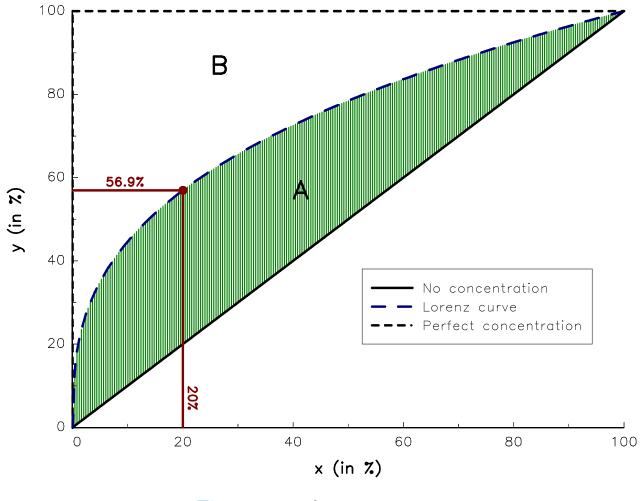


Figure 19: Lorenz curve

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

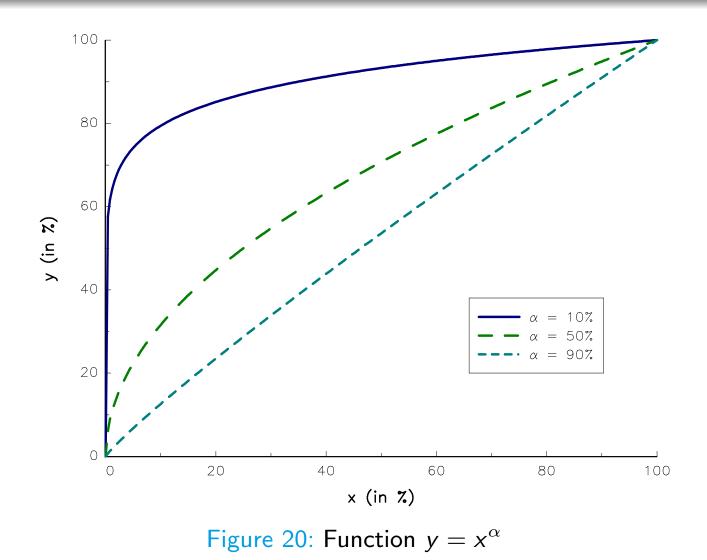
Weight concentration of a portfolio

Question 1.b

We set $\mathbb{L}_{\alpha}(x) = x^{\alpha}$ with $\alpha \geq 0$. Is the function \mathbb{L}_{α} a Lorenz curve? Calculate the Gini coefficient $\mathcal{G}(\alpha)$ with respect to α . Deduce $\mathcal{G}(0)$, $\mathcal{G}(\frac{1}{2})$ and $\mathcal{G}(1)$.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio



Thierry Roncalli

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

If $\alpha \geq 0$, the function $\mathcal{L}_{\alpha}(x) = x^{\alpha}$ is increasing. We have $\mathcal{L}_{\alpha}(1) = 1$, $\mathcal{L}_{\alpha}(x) \leq 1$ and $\mathcal{L}_{\alpha}(x) \geq x$. We deduce that \mathcal{L}_{α} is a Lorenz curve. For the Gini index, we have:

$$\mathcal{G}(\alpha) = 2 \int_0^1 x^{\alpha} \, \mathrm{d}x - 1$$
$$= 2 \left[\frac{x^{\alpha+1}}{\alpha+1} \right]_0^1 - 1$$
$$= \frac{1-\alpha}{1+\alpha}$$

We deduce that $\mathcal{G}(0) = 1$, $\mathcal{G}(\frac{1}{2}) = \frac{1}{3}$ et $\mathcal{G}(1) = 0$. $\alpha = 0$ corresponds to the perfect concentration whereas $\alpha = 1$ corresponds to the perfect equality.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

Question 2

Let w be a portfolio of n assets. We suppose that the weights are sorted in a descending order: $w_1 \ge w_2 \ge \ldots \ge w_n$.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

Question 2.a

We define $\mathbb{L}_{w}(x)$ as follows:

$$\mathbb{L}_{w}(x) = \sum_{j=1}^{i} w_{j}$$
 if $\frac{i}{n} \leq x < \frac{i+1}{n}$

with $\mathbb{L}_w(0) = 0$. Is the function \mathbb{L}_w a Lorenz curve ? Calculate the Gini coefficient with respect to the weights w_i . In which cases does \mathcal{G} take the values 0 and 1?

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

We have $\mathcal{L}_w(0) = 0$ and $\mathcal{L}_w(1) = \sum_{j=1}^n w_j = 1$. If $x_2 \ge x_1$, we have $\mathcal{L}_w(x_2) \ge \mathcal{L}_w(x_2)$. \mathcal{L}_w is then a Lorenz curve. The Gini coefficient is equal to:

$$\mathcal{G} = 2 \int_0^1 \mathcal{L}(x) \, \mathrm{d}x - 1$$
$$= \frac{2}{n} \sum_{i=1}^n \sum_{j=1}^i w_j - 1$$

If $w_j = n^{-1}$, we have:

$$\lim_{n \to \infty} \mathcal{G} = \lim_{n \to \infty} \frac{2}{n} \sum_{i=1}^{n} \frac{i}{n} - 1$$
$$= \lim_{n \to \infty} \frac{2}{n} \cdot \frac{n(n+1)}{2n} - 1$$
$$= \lim_{n \to \infty} \frac{1}{n} = 0$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

If $w_1 = 1$, we have:

$$\lim_{n \to \infty} \mathcal{G} = \lim_{n \to \infty} 1 - \frac{1}{n}$$
$$= 1$$

We note that the perfect equality does not correspond to the case $\mathcal{G} = 0$ except in the asymptotic case. This is why we may slightly modify the definition of $\mathcal{L}_w(x)$:

$$\mathcal{L}_{w}(x) = \begin{cases} \sum_{j=1}^{i} w_{j} & \text{if } x = n^{-1}i \\ \sum_{j=1}^{i} w_{j} + w_{i+1}(nx-i) & \text{if } n^{-1}i < x < n^{-1}(i+1) \end{cases}$$

While the previous definition corresponds to a constant piecewise function, this one defines an affine piecewise function. In this case, the computation of the Gini index is done using a trapezoidal integration:

$$G = rac{2}{n} \left(\sum_{i=1}^{n-1} \sum_{j=1}^{i} w_j + rac{1}{2} \right) - 1$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

Question 2.b

The definition of the Herfindahl index is:

$$\mathcal{H} = \sum_{i=1}^{n} w_i^2$$

In which cases does \mathcal{H} take the value 1? Show that \mathcal{H} reaches its maximum when $w_i = n^{-1}$. What is the interpretation of this result?

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

The Herfindahl index is equal to 1 if the portfolio is concentrated in only one asset. We seek to minimize $\mathcal{H} = \sum_{i=1}^{n} w_i^2$ under the constraint $\sum_{i=1}^{n} w_i = 1$. The Lagrange function is then:

$$f(w_1,\ldots,w_n;\lambda) = \sum_{i=1}^n w_i^2 - \lambda \left(\sum_{i=1}^n w_i - 1\right)$$

The first-order conditions are $2w_i - \lambda = 0$. We deduce that $w_i = w_j$. \mathcal{H} reaches its minimum when $w_i = n^{-1}$. It corresponds to the equally weighted portfolio. In this case, we have:

$$\mathcal{H} = \frac{1}{n}$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

Question 2.c

We set $\mathcal{N} = \mathcal{H}^{-1}$. What does the statistic \mathcal{N} mean?

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The statistic \mathcal{N} is the degree of freedom or the equivalent number of equally weighted assets. For instance, if $\mathcal{H} = 0.5$, then $\mathcal{N} = 2$. It is a portfolio equivalent to two equally weighted assets.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

Question 3

We consider an investment universe of five assets. We assume that their asset returns are not correlated. The volatilities are given in the table below:

σ_i	2%	5%	10%	20%	30%
$W_i^{(1)}$		10%	20%	30%	40%
$W_i^{(2)}$	40%	20%		30%	10%
$W_i^{(3)}$	20%	15%	25%	35%	5%

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

Question 3.a

Find the minimum variance portfolio $w^{(4)}$.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

The minimum variance portfolio is equal to:

$$w^{(4)} = \begin{pmatrix} 82.342\% \\ 13.175\% \\ 3.294\% \\ 0.823\% \\ 0.366\% \end{pmatrix}$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

Question 3.b

Calculate the Gini and Herfindahl indices and the statistic \mathcal{N} for the four portfolios $w^{(1)}$, $w^{(2)}$, $w^{(3)}$ and $w^{(4)}$.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

For each portfolio, we sort the weights in descending order. For the portfolio $w^{(1)}$, we have $w_1^{(1)} = 40\%$, $w_2^{(1)} = 30\%$, $w_3^{(1)} = 20\%$, $w_4^{(1)} = 10\%$ and $w_5^{(1)} = 0\%$. It follows that:

$$\mathcal{H}(w^{(1)}) = \sum_{i=1}^{5} (w_i^{(1)})^2$$

= 0.10² + 0.20² + 0.30² + 0.40²
= 0.30

We also have:

 \mathcal{G}

$$\begin{pmatrix} w^{(1)} \end{pmatrix} = \frac{2}{5} \left(\sum_{i=1}^{4} \sum_{j=1}^{i} \tilde{w}_{j}^{(1)} + \frac{1}{2} \right) - 1$$

$$= \frac{2}{5} \left(0.40 + 0.70 + 0.90 + 1.00 + \frac{1}{2} \right) - 1$$

$$= 0.40$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

For the portfolios $w^{(2)}$, $w^{(3)}$ and $w^{(4)}$, we obtain $\mathcal{H}(w^{(2)}) = 0.30$, $\mathcal{H}(w^{(3)}) = 0.25$, $\mathcal{H}(w^{(4)}) = 0.70$, $\mathcal{G}(w^{(2)}) = 0.40$, $\mathcal{G}(w^{(3)}) = 0.28$ and $\mathcal{G}(w^{(4)}) = 0.71$. We have $\mathcal{N}(w^{(2)}) = \mathcal{N}(w^{(1)}) = 3.33$, $\mathcal{N}(w^{(3)}) = 4.00$ and $\mathcal{N}(w^{(4)}) = 1.44$.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Weight concentration of a portfolio

Question 3.c

Comment on these results. What differences do you make between portfolio concentration and portfolio diversification?

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

All the statistics show that the least concentrated portfolio is $w^{(3)}$. The most concentrated portfolio is paradoxically the minimum variance portfolio $w^{(4)}$. We generally assimilate variance optimization to diversification optimization. We show in this example that diversifying in the Markowitz sense does not permit to minimize the concentration.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Question 1

We consider four assets. Their volatilities are equal to 10%, 15%, 20% and 25% whereas the correlation matrix of asset returns is:

$$\rho = \begin{pmatrix} 100\% & & & \\ 60\% & 100\% & & \\ 40\% & 40\% & 100\% & \\ 30\% & 30\% & 20\% & 100\% \end{pmatrix}$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Question 1.a

Find the long-only minimum variance, ERC and equally weighted portfolios.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

The weights of the three portfolios are:

Asset	MV	ERC	EW
1	87.51%	37.01%	25.00%
2	4.05%	24.68%	25.00%
3	4.81%	20.65%	25.00%
4	3.64%	17.66%	25.00%

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Question 1.b

We consider the following portfolio optimization problem:

$$x^{\star}(c) = \arg \min \sqrt{x^{\top} \Sigma x}$$
(1)
u.c.
$$\begin{cases} \sum_{i=1}^{n} \ln x_{i} \ge c \\ \mathbf{1}_{n}^{\top} x = 1 \\ x \ge \mathbf{0}_{n} \end{cases}$$

with Σ the covariance matrix of asset returns. We note λ_c and λ_0 the Lagrange coefficients associated with the constraints $\sum_{i=1}^{n} \ln x_i \ge c$ and $\mathbf{1}_n^\top x = 1$. Write the Lagrange function of the optimization problem. Deduce then an equivalent optimization problem that is easier to solve than Problem (1).

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

The Lagrange function is:

$$\mathcal{L}(x;\lambda,\lambda_0,\lambda_c) = \sqrt{x^{\top}\Sigma x} - \lambda^{\top}x - \lambda_0 \left(\mathbf{1}_n^{\top}x - 1\right) - \lambda_c \left(\sum_{i=1}^n \ln x_i - c\right)$$

$$= \left(\sqrt{x^{\top}\Sigma x} - \lambda_c \sum_{i=1}^n \ln x_i\right) - \lambda^{\top}x - \lambda_0 \left(\mathbf{1}_n^{\top}x - 1\right) + \lambda_c c$$

We deduce that an equivalent optimization problem is:

$$\begin{split} \tilde{x}^{\star}(\lambda_{c}) &= \arg\min\sqrt{\tilde{x}^{\top}\Sigma\tilde{x}} - \lambda_{c}\sum_{i=1}^{n}\ln\tilde{x}_{i} \\ \text{u.c.} & \left\{ \begin{array}{l} \mathbf{1}_{n}^{\top}\tilde{x} = 1 \\ \tilde{x} \geq \mathbf{0}_{n} \end{array} \right. \end{split}$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

We notice a strong difference between the two problems because they don't use the same control variable. However, the control variable c of the first problem may be deduced from the solution of the second problem:

$$c = \sum_{i=1}^{n} \ln \tilde{x}_{i}^{\star} \left(\lambda_{c} \right)$$

We also know that (TR-RPB, page 131):

$$c_{-} \leq \sum_{i=1}^{n} \ln x_{i} \leq c_{+}$$

where $c_{-} = \sum_{i=1}^{n} \ln (x_{mv})_i$ and $c_{+} = -n \ln n$. It follows that:

$$\left\{ egin{array}{ll} x^{\star}\left(c
ight)= ilde{x}^{\star}\left(0
ight) & ext{if } c\leq c_{-} \ x^{\star}\left(c
ight)= ilde{x}^{\star}\left(\infty
ight) & ext{if } c\geq c_{+} \end{array}
ight.$$

If $c \in]c_-, c_+[$, there exists a scalar $\lambda_c > 0$ such that:

$$x^{\star}(c) = \tilde{x}^{\star}(\lambda_{c})$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Question 1.c

Represent the relationship between λ_c and $\sigma(x^*(c))$, c and $\sigma(x^*(c))$ and $\mathcal{I}^*(x^*(c))$ and $\sigma(x^*(c))$ where $\mathcal{I}^*(x)$ is the diversity index of the weights.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

For a given value $\lambda_c \in [0, +\infty[$, we solve numerically the second problem and find the optimized portfolio $\tilde{x}^*(\lambda_c)$. Then, we calculate $c = \sum_{i=1}^n \ln \tilde{x}_i^*(\lambda_c)$ and deduce that $x^*(c) = \tilde{x}^*(\lambda_c)$. We finally obtain $\sigma(x^*(c)) = \sigma(\tilde{x}^*(\lambda_c))$ and $\mathcal{I}^*(x^*(c)) = \mathcal{I}^*(\tilde{x}^*(\lambda_c))$. The relationships between λ_c , c, $\mathcal{I}^*(x^*(c))$ and $\sigma(x^*(c))$ are reported in Figure 21.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

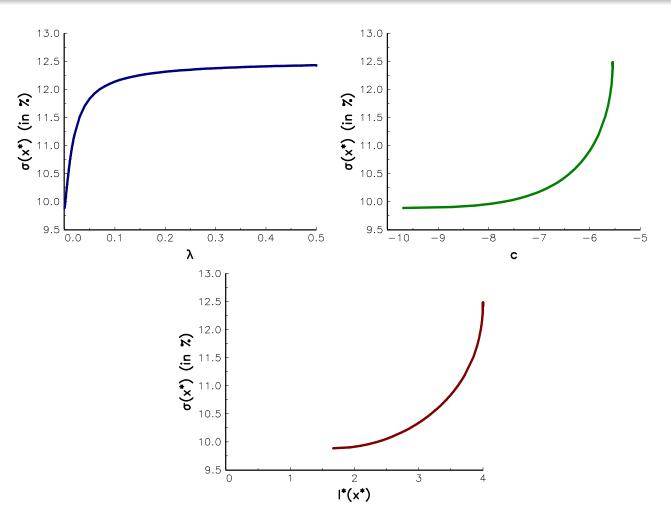


Figure 21: Relationship between λ_c , c, $\mathcal{I}^{\star}(x^{\star}(c))$ and $\sigma(x^{\star}(c))$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Question 1.d

Represent the relationship between λ_c and $\mathcal{I}^*(\mathcal{RC})$, c and $\mathcal{I}^*(\mathcal{RC})$ and $\mathcal{I}^*(\mathcal{RC})$ and $\mathcal{I}^*(\mathcal{RC})$ where $\mathcal{I}^*(\mathcal{RC})$ is the diversity index of the risk contributions.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

If we consider $\mathcal{I}^{\star}(\mathcal{RC})$ in place of $\sigma(x^{\star}(c))$, we obtain Figure 22.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

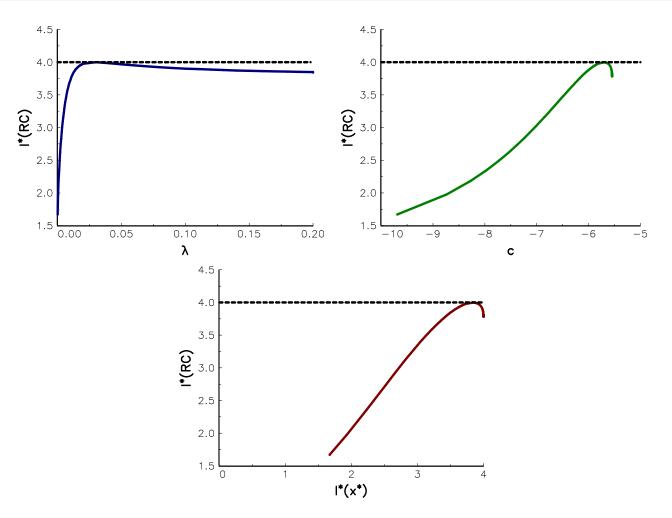


Figure 22: Relationship between λ_c , c, $\mathcal{I}^{\star}(x^{\star}(c))$ and $\mathcal{I}^{\star}(\mathcal{RC})$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Question 1.e

Draw the relationship between $\sigma(x^*(c))$ and $\mathcal{I}^*(\mathcal{RC})$. Identify the ERC portfolio.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

In Figure 23, we have reported the relationship between $\sigma(x^*(c))$ and $\mathcal{I}^*(\mathcal{RC})$. The ERC portfolio satisfies the equation $\mathcal{I}^*(\mathcal{RC}) = n$.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

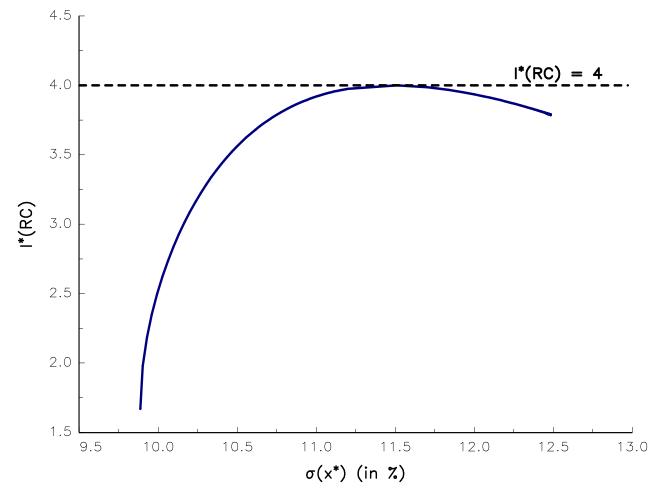


Figure 23: Relationship between $\sigma(x^{\star}(c))$ and $\mathcal{I}^{\star}(\mathcal{RC})$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Question 2

We now consider a slight modification of the previous optimization problem:

$$x^{*}(c) = \arg \min \sqrt{x^{\top} \Sigma x}$$
(2)
u.c.
$$\begin{cases} \sum_{i=1}^{n} \ln x_{i} \ge c \\ x \ge \mathbf{0}_{n} \end{cases}$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Question 2.a

Why does the optimization problem (1) not define the ERC portfolio?

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Let us consider the optimization problem when we impose the constraint $\mathbf{1}_n^{\top} x = 1$. The first-order condition is:

$$\frac{\partial \sigma (x)}{\partial x_i} - \lambda_i - \lambda_0 - \frac{\lambda_c}{x_i} = 0$$

Because $x_i > 0$, we deduce that $\lambda_i = 0$ and:

$$x_{i}\frac{\partial \sigma \left(x\right) }{\partial x_{i}}=\lambda_{0}x_{i}+\lambda_{c}$$

If this solution corresponds to the ERC portfolio, we obtain:

$$\mathcal{RC}_i = \mathcal{RC}_j \Leftrightarrow \lambda_0 x_i + \lambda_c = \lambda_0 x_j + \lambda_c$$

If $\lambda_0 \neq 0$, we deduce that:

$$x_i = x_j$$

It corresponds to the EW portfolio meaning that the assumption $\mathcal{RC}_i = \mathcal{RC}_j$ is false.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Question 2.b

Find the optimized portfolio of the optimization problem (2) when c is equal to -10. Calculate the corresponding risk allocation.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

If c is equal to -10, we obtain the following results:

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	12.65%	7.75%	0.98%	25.00%
2	8.43%	11.63%	0.98%	25.00%
3	7.06%	13.89%	0.98%	25.00%
4	6.03%	16.25%	0.98%	25.00%
$\overline{\sigma}(x)$			3.92%	

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Question 2.c

Same question if c = 0.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

If c is equal to 0, we obtain the following results:

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}
1	154.07%	7.75%	11.94%	25.00%
2	102.72%	11.63%	11.94%	25.00%
3	85.97%	13.89%	11.94%	25.00%
4	73.50%	16.25%	11.94%	25.00%
$\overline{\sigma(x)}^{-}$			47.78%	

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Question 2.d

Demonstrate then that the solution to the second optimization problem is:

$$x^{\star}(c) = \exp\left(\frac{c-c_{\mathrm{erc}}}{n}\right) x_{\mathrm{erc}}$$

where $c_{\text{erc}} = \sum_{i=1}^{n} \ln x_{\text{erc},i}$. Comment on this result.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

In this case, the first-order condition is:

$$\frac{\partial \sigma(x)}{\partial x_i} - \lambda_i - \frac{\lambda_c}{x_i} = 0$$

As previously, $\lambda_i = 0$ because $x_i > 0$ and we obtain:

$$x_{i}\frac{\partial \sigma \left(x\right) }{\partial x_{i}}=\lambda_{a}$$

The solution of the second optimization problem is then a non-normalized ERC portfolio because $\sum_{i=1}^{n} x_i$ is not necessarily equal to 1. If we note $c_{\text{erc}} = \sum_{i=1}^{n} \ln (x_{\text{erc}})_i$, we deduce that:

$$x_{\text{erc}} = \arg \min \sqrt{x^{\top} \Sigma x}$$

u.c.
$$\begin{cases} \sum_{i=1}^{n} \ln x_{i} \ge c_{\text{erc}} \\ x \ge \mathbf{0}_{n} \end{cases}$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Let $x^{\star}(c)$ be the portfolio defined by:

$$x^{\star}(c) = \exp\left(\frac{c-c_{\mathrm{erc}}}{n}\right) x_{\mathrm{erc}}$$

We have $x^{\star}(c) > \mathbf{0}_n$,

$$\sqrt{x^{\star}(c)^{\top}\Sigma x^{\star}(c)} = \exp\left(\frac{c-c_{\mathrm{erc}}}{n}\right)\sqrt{x_{\mathrm{erc}}^{\top}\Sigma x_{\mathrm{erc}}}$$

and:

$$\sum_{i=1}^{n} \ln x_{i}^{\star}(c) = \sum_{i=1}^{n} \ln \left(\exp \left(\frac{c - c_{\text{erc}}}{n} \right) x_{\text{erc}} \right)_{i}$$
$$= c - c_{\text{erc}} + \sum_{i=1}^{n} \ln (x_{\text{erc}})_{i}$$
$$= c$$

We conclude that $x^{*}(c)$ is the solution of the optimization problem.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

 $x^{\star}(c)$ is then a leveraged ERC portfolio if $c > c_{\text{erc}}$ and a deleveraged ERC portfolio if $c < c_{\text{erc}}$.

In our example, $c_{\rm erc}$ is equal to -5.7046. If c = -10, we have:

$$\exp\left(\frac{c-c_{\rm erc}}{n}\right) = 34.17\%$$

We verify that the solution of Question 2.b is such that $\sum_{i=1}^{n} x_i = 34.17\%$ and $RC_i^{\star} = RC_i^{\star}$.

If c = 0, we obtain:

$$\exp\left(\frac{c-c_{\rm erc}}{n}\right) = 416.26\%$$

In this case, the solution is a leveraged ERC portfolio.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

Question 2.e

Show that there exists a scalar c such that the Lagrange coefficient λ_0 of the optimization problem (1) is equal to zero. Deduce then that the volatility of the ERC portfolio is between the volatility of the long-only minimum variance portfolio and the volatility of the equally weighted portfolio:

 $\sigma(\mathbf{x}_{\mathrm{mv}}) \leq \sigma(\mathbf{x}_{\mathrm{erc}}) \leq \sigma(\mathbf{x}_{\mathrm{ew}})$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

From the previous question, we know that the ERC optimization portfolio is the solution of the second optimization problem if we use $c_{\rm erc}$ for the control variable. In this case, we have $\sum_{i=1}^{n} x_i^* (c_{\rm erc}) = 1$ meaning that $x_{\rm erc}$ is also the solution of the first optimization problem. We deduce that $\lambda_0 = 0$ if $c = c_{\rm erc}$. The first optimization problem is a convex problem with a convex inequality constraint. The objective function is then an increasing function of the control variable c:

$$c_{1} \leq c_{2} \Rightarrow \sigma\left(x^{\star}\left(c_{1}\right)\right) \geq \sigma\left(x^{\star}\left(c_{2}\right)\right)$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

The optimization problem of the ERC portfolio

We have seen that the minimum variance portfolio corresponds to $c = -\infty$, that the EW portfolio is obtained with $c = -n \ln n$ and that the ERC portfolio is the solution of the optimization problem when c is equal to $c_{\rm erc}$. Moreover, we have $-\infty \le c_{\rm erc} \le -n \ln n$. We deduce that the volatility of the ERC portfolio is between the volatility of the long-only minimum variance portfolio and the volatility of the equally weighted portfolio:

 $\sigma(x_{\rm mv}) \le \sigma(x_{\rm erc}) \le \sigma(x_{\rm ew})$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

Question 1

We consider a universe of three asset classes^a which are stocks (S), bonds (B) and commodities (C). We have computed the one-year historical covariance matrix of asset returns for different dates and we obtain the following results (all the numbers are expressed in %):

	3	31/12/1999			31/12/2002			30/12/2005		
σ_i	12.40	5.61	12.72	20.69	7.36	13.59	7.97	7.01	16.93	
	100.00			100.00			100.00			
$\rho_{i,j}$	-5.89	100.00		-36.98	100.00		29.25	100.00		
	-4.09	-7.13	100.00	22.74	-13.12	100.00	15.75	15.05	100.00	
	3	31/12/2007			31/12/2008			31/12/2010		
σ_i	12.94	5.50	14.54	33.03	9.73	29.00	16.73	6.88	16.93	
	100.00	-25.76		100.00			100.00			
$\rho_{i,j}$	-25.76	100.00		-16.26	100.00		15.31	100.00		
	31.91	6.87	100.00	47.31	9.13	100.00	64.13	15.46	100.00	

^aIn fact, we use the MSCI World index, the Citigroup WGBI index and the DJ UBS Commodity index to represent these asset classes.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

Question 1.a

Compute the weights and the volatility of the risk parity^a (RP portfolio) portfolios for the different dates.

^aHere, risk parity refers to the ERC portfolio when we do not take into account the correlations.

Risk parity funds

The RP portfolio is defined as follows:

$$x_i = \frac{\sigma_i^{-1}}{\sum_{j=1}^n \sigma_j^{-1}}$$

We obtain the following results:

Date	1999	2002	2005	2007	2008	2010
S	23.89%	18.75%	38.35%	23.57%	18.07%	22.63%
B	52.81%	52.71%	43.60%	55.45%	61.35%	55.02%
C	23.29%	28.54%	18.05%	20.98%	20.58%	22.36%
$\begin{bmatrix} \overline{\sigma}(\overline{x}) \end{bmatrix}$	4.83%	6.08%	6.26%	5.51%	$1\overline{1}.\overline{6}4\overline{\%}$	8.38%

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

Question 1.b

Same question by considering the ERC portfolio.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

In the ERC portfolio, the risk contributions are equal for all the assets:

$$\mathcal{RC}_i = \mathcal{RC}_j$$

with:

$$\mathcal{RC}_i = \frac{x_i \cdot (\Sigma x)_i}{\sqrt{x^\top \Sigma x}} \tag{3}$$

We obtain the following results:

Date	1999	2002	2005	2007	2008	2010
S	23.66%	18.18%	37.85%	23.28%	17.06%	20.33%
B	53.12%	58.64%	43.18%	59.93%	66.39%	59.61%
C	23.22%	23.18%	18.97%	16.79%	16.54%	20.07%
$\begin{bmatrix} \overline{\sigma} (\overline{x}) \end{bmatrix}$	4.82%	5.70%	6.32%	5.16%	10.77%	7.96%

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

Question 1.c

What do you notice about the volatility of RP and ERC portfolios? Explain these results.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

We notice that $\sigma(x_{erc}) \leq \sigma(x_{rp})$ except for the year 2005. This date corresponds to positive correlations between assets. Moreover, the correlation between stocks and bonds is the highest. Starting from the RP portfolio, it is then possible to approach the ERC portfolio by reducing the weights of stocks and bonds and increasing the weight of commodities. At the end, we find an ERC portfolio that has a slightly higher volatility.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

Question 1.d

Find the analytical expression of the volatility $\sigma(x)$, the marginal risk \mathcal{MR}_i , the risk contribution \mathcal{RC}_i and the normalized risk contribution \mathcal{RC}_i^* in the case of RP portfolios.

Risk parity funds

The volatility of the RP portfolio is:

$$\sigma(x) = \frac{1}{\sum_{j=1}^{n} \sigma_j^{-1}} \sqrt{(\sigma^{-1})^\top \Sigma \sigma^{-1}}$$

$$= \frac{1}{\sum_{j=1}^{n} \sigma_j^{-1}} \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{\sigma_i \sigma_j} \rho_{i,j} \sigma_i \sigma_j}$$

$$= \frac{1}{\sum_{j=1}^{n} \sigma_j^{-1}} \sqrt{n + 2 \sum_{i>j} \rho_{i,j}}$$

$$= \frac{1}{\sum_{j=1}^{n} \sigma_j^{-1}} \sqrt{n (1 + (n-1) \overline{\rho})}$$

where $\bar{\rho}$ is the average correlation between asset returns.

Risk parity funds

For the marginal risk, we obtain:

-

$$\mathcal{MR}_{i} = \frac{\left(\Sigma\sigma^{-1}\right)_{i}}{\sigma\left(x\right)\sum_{j=1}^{n}\sigma_{j}^{-1}}$$

$$= \frac{1}{\sqrt{n\left(1+\left(n-1\right)\bar{\rho}\right)}}\sum_{j=1}^{n}\rho_{i,j}\sigma_{i}\sigma_{j}\frac{1}{\sigma_{j}}$$

$$= \frac{\sigma_{i}}{\sqrt{n\left(1+\left(n-1\right)\bar{\rho}\right)}}\sum_{j=1}^{n}\rho_{i,j}$$

$$= \frac{\sigma_{i}\bar{\rho}_{i}\sqrt{n}}{\sqrt{1+\left(n-1\right)\bar{\rho}}}$$

where $\bar{\rho}_i$ is the average correlation of asset *i* with the other assets (including itself).

Risk parity funds

The expression of the risk contribution is then:

$$\mathcal{RC}_{i} = \frac{\sigma_{i}^{-1}}{\sum_{j=1}^{n} \sigma_{j}^{-1}} \frac{\sigma_{i} \bar{\rho}_{i} \sqrt{n}}{\sqrt{1 + (n-1)\bar{\rho}}}$$
$$= \frac{\bar{\rho}_{i} \sqrt{n}}{\sqrt{1 + (n-1)\bar{\rho}} \sum_{j=1}^{n} \sigma_{j}^{-1}}$$

We deduce that the normalized risk contribution is:

$$\mathcal{RC}_{i}^{\star} = \frac{\bar{\rho}_{i}\sqrt{n}}{\sigma(x)\sqrt{1+(n-1)\bar{\rho}}\sum_{j=1}^{n}\sigma_{j}^{-1}}$$
$$= \frac{\bar{\rho}_{i}}{1+(n-1)\bar{\rho}}$$

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

Question 1.e

Compute the normalized risk contributions of the previous RP portfolios. Comment on these results.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

We obtain the following normalized risk contributions:

Date	1999	2002	2005	2007	2008	2010
S	33.87%	34.96%	34.52%	32.56%	34.45%	36.64%
В	32.73%	20.34%	34.35%	24.88%	24.42%	26.70%
C	33.40%	44.69%	31.14%	42.57%	41.13%	36.67%

We notice that the risk contributions are not exactly equal for all the assets. Generally, the risk contribution of bonds is lower than the risk contribution of equities, which is itself lower than the risk contribution of commodities.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

Question 2

We consider four parameter sets of risk budgets:

Set	b_1	b_2	<i>b</i> ₃
#1	45%	45%	10%
#2	70%	10%	20%
#3	20%	70%	10%
#4	25%	25%	50%

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

Question 2.a

Compute the RB portfolios for the different dates.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

We obtain the following RB portfolios:

Date	bi	1999	2002	2005	2007	2008	2010
S	45%	26.83%	22.14%	42.83%	27.20%	20.63%	25.92%
B	45%	59.78%	66.10%	48.77%	66.15%	73.35%	67.03%
C	10%	13.39%	11.76%	8.40%	6.65%	6.02%	7.05%
<u> </u>	70%	40.39%	29.32%	65.53%	39.37%	33.47%	46.26%
B	10%	37.63%	51.48%	19.55%	47.18%	52.89%	37.76%
C	20%	21.98%	19.20%	14.93%	13.45%	13.64%	15.98%
<u> </u>	20%	$\overline{17.55\%}$	16.02%	25.20%	18.78%	12.94%	13.87%
B	70%	69.67%	71.70%	66.18%	74.33%	80.81%	78.58%
C	10%	12.78%	12.28%	8.62%	6.89%	6.24%	7.55%
<u> </u>	25%	21.69%	15.76%	34.47%	20.55%	14.59%	16.65%
В	25%	48.99%	54.03%	39.38%	55.44%	61.18%	53.98%
C	50%	29.33%	30.21%	26.15%	24.01%	24.22%	29.37%

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

Question 2.b

Compute the implied risk premium $\tilde{\pi}_i$ of the assets for these portfolios if we assume a Sharpe ratio equal to 0.40.

Risk parity funds

To compute the implied risk premium $\tilde{\pi}_i$, we use the following formula (TR-RPB, page 274):

$$\widetilde{\pi}_{i} = \operatorname{SR}(x \mid r) \cdot \mathcal{MR}_{i}$$
$$= \operatorname{SR}(x \mid r) \cdot \frac{(\Sigma x)_{i}}{\sigma(x)}$$

where SR(x | r) is the Sharpe ratio of the portfolio.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

We obtain the following results:

Date	bi	1999	2002	2005	2007	2008	2010
S	45%	3.19%	4.60%	2.49%	3.15%	8.64%	5.20%
В	45%	1.43%	1.54%	2.19%	1.29%	2.43%	2.01%
C	10%	1.42%	1.92%	2.82%	2.86%	6.58%	4.24%
	70%	4.05%	6.45%	2.86%	4.31%	$\overline{11.56\%}$	6.32%
В	10%	0.62%	0.52%	1.37%	0.51%	1.04%	1.11%
C	20%	2.13%	2.81%	3.59%	3.61%	8.11%	5.23%
- S	20%	2.06%	2.68%	$\overline{1.91\%}$	1.93%	5.61%	3.91%
В	70%	1.82%	2.10%	2.54%	1.71%	3.14%	2.42%
C	10%	1.42%	1.75%	2.79%	2.64%	5.82%	3.60%
Γ ¯ Ŝ ¯ ¯	25%	2.33%	3.78%	1.98%	2.74%	8.06%	5.13%
В	25%	1.03%	1.10%	1.74%	1.02%	1.92%	1.58%
C	50%	3.45%	3.95%	5.23%	4.69%	9.71%	5.82%

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

Question 2.c

Comment on these results.

The ERC portfolioVariation on the ERC portfolioExtensions to risk budgeting portfoliosWeight concentration of a portfolioRisk budgeting, risk premia and the risk parity strategy
Tutorial exercisesThe optimization problem of the ERC portfolioRisk budgeting, risk premia and the risk parity strategy
Tutorial exercisesRisk parity funds

Risk parity funds

We have:

$$x_i \tilde{\pi}_i = \mathrm{SR}\left(x \mid r\right) \cdot \mathcal{RC}_i$$

We deduce that:

$$ilde{\pi}_i \propto rac{b_i}{x_i}$$

 x_i is generally an increasing function of b_i . As a consequence, the relationship between the risk budgets b_i and the risk premiums $\tilde{\pi}_i$ is not necessarily increasing. However, we notice that the bigger the risk budget, the higher the risk premium. This is easily explained. If an investor allocates more risk budget to one asset class than another investor, he thinks that the risk premium of this asset class is higher than the other investor.

Variation on the ERC portfolio Weight concentration of a portfolio The optimization problem of the ERC portfolio Risk parity funds

Risk parity funds

However, we must be careful. This interpretation is valid if we compare two sets of risk budgets. It is false if we compare the risk budgets among themselves. For instance, if we consider the third parameter set, the risk budget of bonds is 70% whereas the risk budget of stocks is 20%. It does not mean that the risk premium of bonds is higher than the risk premium of equities. In fact, we observe the contrary. If we would like to compare risk budgets among themselves, the right measure is the implied Sharpe ratio, which is equal to:

$$SR_{i} = \frac{\tilde{\pi}_{i}}{\sigma_{i}}$$
$$= SR(x \mid r) \cdot \frac{\mathcal{MR}_{i}}{\sigma_{i}}$$

For instance, if we consider the most diversified portfolio, the marginal risk is proportional to the volatility and we retrieve the result that Sharpe ratios are equal if the MDP is optimal.

Main references

Roncalli, **T**. (2013)

Introduction to Risk Parity and Budgeting, Chapman and Hall/CRC Financial Mathematics Series, Chapter 2.

RONCALLI, **T.** (2013)

Introduction to Risk Parity and Budgeting — Companion Book, Chapman and Hall/CRC Financial Mathematics Series, Chapter 2.

References I

- BRUDER, B., KOSTYUCHYK, N., and RONCALLI, T. (2016) Risk Parity Portfolios with Skewness Risk: An Application to Factor Investing and Alternative Risk Premia, *SSRN*, www.ssrn.com/abstract=2813384.
- LEZMI, E., MALONGO, H., RONCALLI, T., and SOBOTKA, R. (2018) Portfolio Allocation with Skewness Risk: A Practical Guide, *SSRN*, www.ssrn.com/abstract=3201319.
- MAILLARD, S., RONCALLI, T. and TEÏLETCHE, J. (2010) The Properties of Equally Weighted Risk Contribution Portfolios, *Journal of Portfolio Management*, 36(4), pp. 60-70.
 - Roncalli, T. (2015)

Introducing Expected Returns into Risk Parity Portfolios: A New Framework for Asset Allocation, *Bankers, Markets & Investors*, 138, pp. 18-28.

References II

RONCALLI, T., and WEISANG, G. (2016)

Risk Parity Portfolios with Risk Factors, *Quantitative Finance*, 16(3), pp. 377-388

SCHERER, **B**. (2007)

Portfolio Construction & Risk Budgeting, Third edition, Risk Books.