Asset Management Lecture 5. Machine Learning in Asset Management

Thierry Roncalli*

*University of Paris-Saclay

January 2021

Thierry Roncalli Asset Management (Lecture 5) 1/204

General information

Overview

The objective of this course is to understand the theoretical and practical aspects of asset management

Prerequisites

M1 Finance or equivalent

ECTS

3

4 Keywords

Finance, Asset Management, Optimization, Statistics

Hours

Lectures: 24h, HomeWork: 30h

Evaluation

Project + oral examination

Course website

http://www.thierry-roncalli.com/RiskBasedAM.html

Objective of the course

The objective of the course is twofold:

- having a financial culture on asset management
- Deing proficient in quantitative portfolio management

Thierry Roncalli Asset Management (Lecture 5) 3 / 204

Class schedule

Course sessions

- January 8 (6 hours, AM+PM)
- January 15 (6 hours, AM+PM)
- January 22 (6 hours, AM+PM)
- January 29 (6 hours, AM+PM)

Class times: Fridays 9:00am-12:00pm, 1:00pm-4:00pm, University of Evry

Thierry Roncalli Asset Management (Lecture 5) 4 / 204

Agenda

- Lecture 1: Portfolio Optimization
- Lecture 2: Risk Budgeting
- Lecture 3: Smart Beta, Factor Investing and Alternative Risk Premia
- Lecture 4: Green and Sustainable Finance, ESG Investing and Climate Risk
- Lecture 5: Machine Learning in Asset Management

Textbook

 Roncalli, T. (2013), Introduction to Risk Parity and Budgeting, Chapman & Hall/CRC Financial Mathematics Series.

Thierry Roncalli Asset Management (Lecture 5) 6 / 204

Additional materials

 Slides, tutorial exercises and past exams can be downloaded at the following address:

http://www.thierry-roncalli.com/RiskBasedAM.html

 Solutions of exercises can be found in the companion book, which can be downloaded at the following address:

http://www.thierry-roncalli.com/RiskParityBook.html

Thierry Roncalli Asset Management (Lecture 5) 7 / 204

Agenda

- Lecture 1: Portfolio Optimization
- Lecture 2: Risk Budgeting
- Lecture 3: Smart Beta, Factor Investing and Alternative Risk Premia
- Lecture 4: Green and Sustainable Finance, ESG Investing and Climate Risk
- Lecture 5: Machine Learning in Asset Management

Prologue

- Machine learning is a hot topic in asset management (and more generally in finance)
- Machine learning and data mining are two sides of the same coin

backtesting performance \neq live performance

 Reaching for the stars: a complex/complicated process does not mean a good solution

Don't forget the 3 rules in asset management

- It is difficult to make money
- It is difficult to make money
- It is difficult to make money

Prologue

- In this lecture, we focus on ML optimization algorithms, because they have proved their worth
- We have no time to study classical ML methods that can be used by quants to build investment strategies¹

Thierry Roncalli Asset Management (Lecture 5) 10 / 204

¹Don't believe that they are always significantly better than standard statistical approaches!!!

- Gradient descent methods
- Conjugate gradient (CG) methods (Fletcher–Reeves, Polak–Ribiere, etc.)
- Quasi-Newton (QN) methods (NR, BFGS, DFP, etc.)
- Quadratic programming (QP) methods
- Sequential QP methods
- Interior-point methods

• We consider the following unconstrained minimization problem:

$$x^* = \arg\min_{x} f(x) \tag{1}$$

where $x \in \mathbb{R}^n$ and f(x) is a continuous, smooth and convex function

• In order to find the solution x^* , optimization algorithms use iterative algorithms:

$$x^{(k+1)} = x^{(k)} + \Delta x^{(k)}$$

= $x^{(k)} - \eta^{(k)} D^{(k)}$

where:

- $x^{(0)}$ is the vector of starting values
- $x^{(k)}$ is the approximated solution of Problem (1) at the k^{th} iteration
- $\eta^{(k)} > 0$ is a scalar that determines the step size
- $D^{(k)}$ is the direction

• Gradient descent:

$$D^{(k)} = \nabla f\left(x^{(k)}\right) = \frac{\partial f\left(x^{(k)}\right)}{\partial x}$$

Newton-Raphson method:

$$D^{(k)} = \left(\nabla^2 f\left(x^{(k)}\right)\right)^{-1} \nabla f\left(x^{(k)}\right) = \left(\frac{\partial^2 f\left(x^{(k)}\right)}{\partial x \partial x^{\top}}\right)^{-1} \frac{\partial f\left(x^{(k)}\right)}{\partial x}$$

• Quasi-Newton method:

$$D^{(k)} = H^{(k)} \nabla f\left(x^{(k)}\right)$$

where $H^{(k)}$ is an approximation of the inverse of the Hessian matrix

What are the issues?

- How to solve large-scale optimization problems?
- Output
 Output
 Output
 Description
 Descri solutions?
- How to just find an "acceptable" solution?

The case of neural networks and deep learning

⇒ Standard approaches are not well adapted

Machine learning optimization algorithms

Machine learning problems

- Non-smooth objective function
- Non-unique solution
- Large-scale dimension

Optimization in machine learning requires to reinvent numerical optimization

Machine learning optimization algorithms

We consider 4 methods:

- Cyclical coordinate descent (CCD)
- Alternative direction method of multipliers (ADMM)
- Proximal operators (PO)
- Dykstra's algorithm (DA)

Coordinate descent methods

The fall and the rise of the steepest descent method

In the 1980s:

- Conjugate gradient methods (Fletcher–Reeves, Polak–Ribiere, etc.)
- Quasi-Newton methods (NR, BFGS, DFP, etc.)

In the 1990s:

- Neural networks
- Learning rules: Descent, Momentum/Nesterov and Adaptive learning methods

In the 2000s.

- Gradient descent (by observations): Batch gradient descent (BGD), Stochatic gradient descent (SGD), Mini-batch gradient descent (MGD)
- Gradient descent (by parameters): Coordinate descent (CD), cyclical coordinate descent (CCD), Random coordinate descent (RCD)

Coordinate descent methods

Descent method

The descent algorithm is defined by the following rule:

$$x^{(k+1)} = x^{(k)} + \Delta x^{(k)} = x^{(k)} - \eta^{(k)} D^{(k)}$$

At the k^{th} Iteration, the current solution $x^{(k)}$ is updated by going in the opposite direction to $D^{(k)}$ (generally, we set $D^{(k)} = \partial_x f(x^{(k)})$)

Coordinate descent method

Coordinate descent is a modification of the descent algorithm by minimizing the function along one coordinate at each step:

$$x_i^{(k+1)} = x_i^{(k)} + \Delta x_i^{(k)} = x_i^{(k)} - \eta^{(k)} D_i^{(k)}$$

⇒ The coordinate descent algorithm becomes a scalar problem

Coordinate descent methods

Choice of the variable *i*

- Random coordinate descent (RCD) We assign a random number between 1 and n to the index i (Nesterov, 2012)
- Cyclical coordinate descent (CCD)
 We cyclically iterate through the coordinates (Tseng, 2001):

$$x_i^{(k+1)} = \underset{x}{\operatorname{arg\,min}} f\left(x_1^{(k+1)}, \dots, x_{i-1}^{(k+1)}, x, x_{i+1}^{(k)}, \dots, x_n^{(k)}\right)$$

Cyclical coordinate descent (CCD)

Example 1

We consider the following function:

$$f(x_1, x_2, x_3) = (x_1 - 1)^2 + x_2^2 - x_2 + (x_3 - 2)^4 e^{x_1 - x_2 + 3}$$

We have:

$$D_{1} = \frac{\partial f(x_{1}, x_{2}, x_{3})}{\partial x_{1}} = 2(x_{1} - 1) + (x_{3} - 2)^{4} e^{x_{1} - x_{2} + 3}$$

$$D_{2} = \frac{\partial f(x_{1}, x_{2}, x_{3})}{\partial x_{2}} = 2x_{2} - 1 - (x_{3} - 2)^{4} e^{x_{1} - x_{2} + 3}$$

$$D_{3} = \frac{\partial f(x_{1}, x_{2}, x_{3})}{\partial x_{3}} = 4(x_{3} - 2)^{3} e^{x_{1} - x_{2} + 3}$$

Cyclical coordinate descent (CCD)

The CCD algorithm is defined by the following iterations:

$$\begin{cases} x_1^{(k+1)} = x_1^{(k)} - \eta^{(k)} \left(2\left(x_1^{(k)} - 1\right) + \left(x_3^{(k)} - 2\right)^4 e^{x_1^{(k)} - x_2^{(k)} + 3} \right) \\ x_2^{(k+1)} = x_2^{(k)} - \eta^{(k)} \left(2x_2^{(k)} - 1 - \left(x_3^{(k)} - 2\right)^4 e^{x_1^{(k+1)} - x_2^{(k)} + 3} \right) \\ x_3^{(k+1)} = x_3^{(k)} - \eta^{(k)} \left(4\left(x_3^{(k)} - 2\right)^3 e^{x_1^{(k+1)} - x_2^{(k+1)} + 3} \right) \end{cases}$$

We have the following scheme:

$$\begin{pmatrix} x_1^{(0)}, x_2^{(0)}, x_3^{(0)} \end{pmatrix} \rightarrow x_1^{(1)} \rightarrow \begin{pmatrix} x_1^{(1)}, x_2^{(0)}, x_3^{(0)} \end{pmatrix} \rightarrow x_2^{(1)} \rightarrow \begin{pmatrix} x_1^{(1)}, x_2^{(1)}, x_3^{(0)} \end{pmatrix} \rightarrow x_3^{(1)} \rightarrow \begin{pmatrix} x_1^{(1)}, x_2^{(1)}, x_3^{(1)} \end{pmatrix} \rightarrow x_3^{(1)} \rightarrow \begin{pmatrix} x_1^{(1)}, x_2^{(1)}, x_3^{(1)} \end{pmatrix} \rightarrow x_2^{(1)} \rightarrow \begin{pmatrix} x_1^{(1)}, x_2^{(1)}, x_3^{(1)} \end{pmatrix} \rightarrow x_3^{(1)} \rightarrow \begin{pmatrix} x_1^{(1)}, x_2^{(1)}, x_3^{(1)} \end{pmatrix} \rightarrow \begin{pmatrix} x_1^{(1)}, x_2^{($$

Cyclical coordinate descent (CCD)

Table 1: Solution obtained with the CCD algorithm ($\eta^{(k)} = 0.25$)

k	$X_1^{(k)}$	$x_{2}^{(k)}$	$x_3^{(k)}$	$D_1^{(k)}$	$D_2^{(k)}$	$D_3^{(k)}$
0	1.0000	1.0000	1.0000			
1	-4.0214	0.7831	1.1646	20.0855	0.8675	-0.6582
2	-1.5307	0.8834	2.2121	-9.9626	-0.4013	-4.1902
3	-0.2663	0.6949	2.1388	-5.0578	0.7540	0.2932
4	0.3661	0.5988	2.0962	-2.5297	0.3845	0.1703
5	0.6827	0.5499	2.0758	-1.2663	0.1957	0.0818
6	0.8412	0.5252	2.0638	-0.6338	0.0989	0.0480
7	0.9205	0.5127	2.0560	-0.3172	0.0498	0.0314
8	0.9602	0.5064	2.0504	-0.1588	0.0251	0.0222
9	0.9800	0.5033	2.0463	-0.0795	0.0126	0.0166
∞	1.0000	0.5000	2.0000	0.0000	0.0000	0.0000

Asset Management (Lecture 5) Thierry Roncalli

The lasso revolution

Least absolute shrinkage and selection operator (lasso)

The lasso method consists in adding a ℓ_1 penalty function to the least square problem:

$$\hat{eta}^{\mathrm{lasso}}\left(au
ight) = rg \min rac{1}{2} \left(Y - Xeta
ight)^{ op} \left(Y - Xeta
ight)$$
 s.t. $\|eta\|_1 = \sum_{j=1}^m |eta_j| \leq au$

This problem is equivalent to:

$$\hat{eta}^{\mathrm{lasso}}\left(\lambda
ight) = \mathrm{arg\,min}\,rac{1}{2}\left(Y - Xeta
ight)^{ op}\left(Y - Xeta
ight) + \lambda\left\|eta
ight\|_{1}$$

We have:

$$au = \left\| \hat{eta}^{ ext{lasso}} \left(\lambda
ight)
ight\|_{1}$$

We introduce the parametrization:

$$\beta = (I_m - I_m) \begin{pmatrix} \beta^+ \\ \beta^- \end{pmatrix} = \beta^+ - \beta^-$$

under the constraints $\beta^+ \geq \mathbf{0}_m$ and $\beta^- \geq \mathbf{0}_m$. We deduce that:

$$\|\beta\|_{1} = \sum_{j=1}^{m} \left|\beta_{j}^{+} - \beta_{j}^{-}\right| = \sum_{j=1}^{m} \left|\beta_{j}^{+}\right| + \sum_{j=1}^{m} \left|\beta_{j}^{-}\right| = \mathbf{1}_{m}^{\top} \beta^{+} + \mathbf{1}_{m}^{\top} \beta^{-}$$

Augmented QP program of the lasso regression (λ -problem)

The augmented QP program is specified as follows:

$$\hat{\theta}$$
 = arg min $\frac{1}{2}\theta^{\top}Q\theta - \theta^{\top}R$
s.t. $\theta > \mathbf{0}_{2m}$

where
$$\theta = (\beta^+, \beta^-)$$
, $\tilde{X} = (X - X)$, $Q = \tilde{X}^\top \tilde{X}$ and $R = \tilde{X}^\top Y + \lambda \mathbf{1}_{2m}$. If we denote $T = (I_m - I_m)$, we obtain:

$$\hat{\beta}^{\mathrm{lasso}}(\lambda) = T\hat{\theta}$$

Augmented QP program of the lasso regression (τ -problem)

If we consider the τ -problem, we obtain another augmented QP program:

$$\hat{\theta}$$
 = arg min $\frac{1}{2}\theta^{\top}Q\theta - \theta^{\top}R$
s.t. $\begin{cases} C\theta \leq D \\ \theta \geq \mathbf{0}_{2m} \end{cases}$

where $Q = \tilde{X}^{\top} \tilde{X}$, $R = \tilde{X}^{\top} Y$, $C = \mathbf{1}_{2m}^{\top}$ and $D = \tau$. Again, we have:

$$\hat{\beta}\left(\tau\right) = T\hat{\theta}$$

We consider the linear regression:

$$Y = X\beta + \varepsilon$$

where Y is a $n \times 1$ vector, X is a $n \times m$ matrix and β is a $m \times 1$ vector. The optimization problem is:

$$\hat{\beta} = \arg\min f(\beta) = \frac{1}{2} (Y - X\beta)^{\top} (Y - X\beta)$$

Since we have $\partial_{\beta} f(\beta) = -X^{\top} (Y - X\beta)$, we deduce that:

$$\frac{\partial f(\beta)}{\partial \beta_{j}} = x_{j}^{\top} (X\beta - Y)$$

$$= x_{j}^{\top} (x_{j}\beta_{j} + X_{(-j)}\beta_{(-j)} - Y)$$

$$= x_{i}^{\top} x_{i}\beta_{j} + x_{i}^{\top} X_{(-i)}\beta_{(-i)} - x_{i}^{\top} Y$$

where x_i is the $n \times 1$ vector corresponding to the j^{th} variable and $X_{(-i)}$ is the $n \times (m-1)$ matrix (without the j^{th} variable)

At the optimum, we have $\partial_{\beta_i} f(\beta) = 0$ or:

$$\beta_{j} = \frac{x_{j}^{\top} Y - x_{j}^{\top} X_{(-j)} \beta_{(-j)}}{x_{j}^{\top} x_{j}} = \frac{x_{j}^{\top} \left(Y - X_{(-j)} \beta_{(-j)} \right)}{x_{j}^{\top} x_{j}}$$

CCD algorithm for the linear regression

We have:

$$\beta_j^{(k+1)} = \frac{x_j^\top \left(Y - \sum_{j'=1}^{j-1} x_{j'} \beta_{j'}^{(k+1)} - \sum_{j'=j+1}^{m} x_{j'} \beta_{j'}^{(k)} \right)}{x_j^\top x_j}$$

⇒ Introducing pointwise constraints is straightforward

The objective function becomes:

$$f(\beta) = \frac{1}{2} (Y - X\beta)^{\top} (Y - X\beta) + \lambda \|\beta\|_{1}$$
$$= f_{\text{OLS}}(\beta) + \lambda \|\beta\|_{1}$$

Since the norm is separable — $\|\beta\|_1 = \sum_{j=1}^m |\beta_j|$, the first-order condition is:

$$\frac{\partial f_{\text{OLS}}(\beta)}{\partial \beta_j} + \lambda \partial |\beta_j| = 0$$

or:

$$\underbrace{\left(x_{j}^{\top}x_{j}\right)}_{C}\beta_{j} - \underbrace{x_{j}^{\top}\left(Y - X_{(-j)}\beta_{(-j)}\right)}_{V} + \lambda\partial |\beta_{j}| = 0$$

Derivation of the soft-thresholding operator

We consider the following equation:

$$c\beta_i - v + \lambda \partial |\beta_i| \in \{0\}$$

where c > 0 and $\lambda > 0$. Since we have $\partial |\beta_i| = \operatorname{sign}(\beta_i)$, we deduce that:

$$\beta_j^{\star} = \begin{cases} c^{-1} (v + \lambda) & \text{if } \beta_j^{\star} < 0 \\ 0 & \text{if } \beta_j^{\star} = 0 \\ c^{-1} (v - \lambda) & \text{if } \beta_j^{\star} > 0 \end{cases}$$

If $\beta_i^* < 0$ or $\beta_i^* > 0$, then we have $v + \lambda < 0$ or $v - \lambda > 0$. This is equivalent to set $|v| > \lambda > 0$. The case $\beta_i^* = 0$ implies that $|v| \leq \lambda$. We deduce that:

$$\beta_j^{\star} = c^{-1} \cdot \mathcal{S}(v; \lambda)$$

where $S(v; \lambda)$ is the soft-thresholding operator:

$$\mathcal{S}(v;\lambda) = \begin{cases} 0 & \text{if } |v| \leq \lambda \\ v - \lambda \operatorname{sign}(v) & \text{otherwise} \end{cases}$$

= $\operatorname{sign}(v) \cdot (|v| - \lambda)_{+}$

CCD algorithm for the lasso regression

We have:

$$\beta_j^{(k+1)} = \frac{1}{x_j^\top x_j} \mathcal{S} \left(x_j^\top \left(Y - \sum_{j'=1}^{j-1} x_{j'} \beta_{j'}^{(k+1)} - \sum_{j'=j+1}^{m} x_{j'} \beta_{j'}^{(k)} \right); \lambda \right)$$

where $S(v; \lambda)$ is the **soft-thresholding operator**:

$$S(v; \lambda) = \operatorname{sign}(v) \cdot (|v| - \lambda)_{+}$$

Table 2: Matlab code

```
for k = 1:nIters
    for j = 1:m
        x_j = X(:,j);
        X_j = X;
        X_j(:,j) = zeros(n,1);
        if lambda > 0
            v = x_j'*(Y - X_j*beta);
            beta(j) = max(abs(v) - lambda,0) * sign(v) / (x_j'*x_j);
        else
            beta(j) = x_j'*(Y - X_j*beta) / (x_j'*x_j);
        end
    end
end
```

Example 2

We consider the following data:

i	У	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅
1	3.1	2.8	4.3	0.3	2.2	3.5
2	24.9	5.9	3.6	3.2	0.7	6.4
3	27.3	6.0	9.6	7.6	9.5	0.9
4	25.4	8.4	5.4	1.8	1.0	7.1
5	46.1	5.2	7.6	8.3	0.6	4.5
6	45.7	6.0	7.0	9.6	0.6	0.6
7	47.4	6.1	1.0	8.5	9.6	8.6
8	-1.8	1.2	9.6	2.7	4.8	5.8
9	20.8	3.2	5.0	4.2	2.7	3.6
10	6.8	0.5	9.2	6.9	9.3	0.7
11	12.9	7.9	9.1	1.0	5.9	5.4
12	37.0	1.8	1.3	9.2	6.1	8.3
13	14.7	7.4	5.6	0.9	5.6	3.9
14	-3.2	2.3	6.6	0.0	3.6	6.4
_15	44.3	7.7	2.2	6.5	1.3	0.7

Figure 1: Convergence of the CCD algorithm (lasso regression, $\lambda = 2$)

Note: we start the CCD algorithm with $\beta_i^{(0)} = 0$ (don't forget to standardize the data!)

- The dimension problem is (2m, 2m) for QP and (1, 0) for CCD!
- CCD is faster for lasso regression than for linear regression (because of the soft-thresholding operator)!

Suppose $n = 50\,000$ and $m = 1\,000\,000$ (DNA sequence problem!)

Example 3

- We consider an experiment with $n = 100\,000$ observations and m=50 variables.
- The design matrix X is built using the uniform distribution while the residuals are simulated using a Gaussian distribution and a standard deviation of 20%.
- The beta coefficients are distributed uniformly between -3 and +3except four coefficients that take a larger value.
- We then standardize the data of X and Y.
- For initializing the coordinates, we use uniform random numbers between -1 and +1.

Solving the lasso regression problem

Figure 2: Convergence of the CCD algorithm (lasso vs linear regression)

Definition

The alternating direction method of multipliers (ADMM) is an algorithm introduced by Gabay and Mercier (1976) to solve optimization problems which can be expressed as:

$$\{x^*, y^*\} = \arg\min_{(x,y)} f_x(x) + f_y(y)$$

s.t.
$$Ax + By = c$$

The algorithm is:

$$x^{(k+1)} = \arg\min_{x} \left\{ f_{x}(x) + \frac{\varphi}{2} \left\| Ax + By^{(k)} - c + u^{(k)} \right\|_{2}^{2} \right\}$$

$$y^{(k+1)} = \arg\min_{y} \left\{ f_{y}(y) + \frac{\varphi}{2} \left\| Ax^{(k+1)} + By - c + u^{(k)} \right\|_{2}^{2} \right\}$$

$$u^{(k+1)} = u^{(k)} + \left(Ax^{(k+1)} + By^{(k+1)} - c \right)$$

What is the underlying idea?

- Minimizing $f_x(x) + f_y(y)$ with respect to (x, y) is a difficult task
- Minimizing

$$g_{x}(x) = f_{x}(x) + \frac{\varphi}{2} ||Ax + By - c||_{2}^{2}$$

with respect to x and minimizing

$$g_{y}(y) = f_{y}(y) + \frac{\varphi}{2} ||Ax + By - c||_{2}^{2}$$

with respect to y is easier

We use the following notations:

• $f_x^{(k+1)}(x)$ is the objective function of the x-update step:

$$f_{x}^{(k+1)}(x) = f_{x}(x) + \frac{\varphi}{2} \left\| Ax + By^{(k)} - c + u^{(k)} \right\|_{2}^{2}$$

• $f_v^{(k+1)}(y)$ is the objective function of the y-update step:

$$f_{y}^{(k+1)}(y) = f_{y}(y) + \frac{\varphi}{2} \left\| Ax^{(k+1)} + By - c + u^{(k)} \right\|_{2}^{2}$$

When $A = I_n$ and $B = -I_n$, we have:

$$Ax + By^{(k)} - c + u^{(k)} = x - y^{(k)} - c + u^{(k)} = x - v_x^{(k+1)}$$

where:

$$v_x^{(k+1)} = y^{(k)} + c - u^{(k)}$$

$$Ax^{(k+1)} + By - c + u^{(k)} = x^{(k+1)} - y - c + u^{(k)} = v_y^{(k+1)} - y$$

where:

$$v_v^{(k+1)} = x^{(k+1)} - c + u^{(k)}$$

$$f_{x}^{(k+1)}(x) = f_{x}(x) + \frac{\varphi}{2} \|x - v_{x}^{(k+1)}\|_{2}^{2}$$

 $f_{y}^{(k+1)}(y) = f_{y}(y) + \frac{\varphi}{2} \|y - v_{y}^{(k+1)}\|_{2}^{2}$

• We consider a problem of the form:

$$x^* = \arg\min_{x} g(x)$$

The idea is then to write g(x) as a separable function:

$$g(x) = g_1(x) + g_2(x)$$

and to consider the following equivalent ADMM problem:

$$\{x^{\star}, y^{\star}\} = \arg\min_{(x,y)} f_{x}(x) + f_{y}(y)$$

s.t. $x = y$

where
$$f_x(x) = g_1(x)$$
 and $f_y(y) = g_2(y)$

• We consider a problem of the form:

$$x^* = \arg\min_{x} g(x)$$

s.t. $x \in \Omega$

We have:

$$\{x^*, y^*\}$$
 = $\underset{(x,y)}{\operatorname{arg \, min}} f_x(x) + f_y(y)$
s.t. $x = y$

where $f_x(x) = g(x)$, $f_y(y) = \mathbb{1}_{\Omega}(y)$ and:

$$\mathbb{1}_{\Omega}(y) = \begin{cases} 0 & \text{if} \quad y \in \Omega \\ +\infty & \text{if} \quad y \notin \Omega \end{cases}$$

Special case

$$\Omega = \left\{ x : x^- \le x \le x^+ \right\}$$

By setting $\varphi = 1$, the *y*-step becomes:

$$y^{(k+1)} = \arg \min \left\{ \mathbb{1}_{\Omega} (y) + \frac{1}{2} \left\| x^{(k+1)} - y + u^{(k)} \right\|_{2}^{2} \right\}$$
$$= \operatorname{prox}_{f_{y}} \left(x^{(k+1)} + u^{(k)} \right)$$

where the proximal operator is the box projection or the truncation operator:

$$\mathbf{prox}_{f_{y}}(v) = x^{-} \odot 1 \{v < x^{-}\} + \\
v \odot 1 \{x^{-} \le v \le x^{+}\} + \\
x^{+} \odot 1 \{v > x^{+}\} \\
= \mathcal{T}(v; x^{-}, x^{+})$$

Special case

$$\Omega = \left\{ x : x^- \le x \le x^+ \right\}$$

The ADMM algorithm is then:

$$x^{(k+1)} = \arg\min \left\{ g(x) + \frac{1}{2} \left\| x - y^{(k)} + u^{(k)} \right\|_{2}^{2} \right\}$$

$$y^{(k+1)} = \operatorname{prox}_{f_{y}} \left(x^{(k+1)} + u^{(k)} \right)$$

$$u^{(k+1)} = u^{(k)} + \left(x^{(k+1)} - y^{(k+1)} \right)$$

⇒ Solving the constrained optimization problem consists in solving the unconstrained optimization problem, applying the box projection and iterating these steps until convergence

Lasso regression

The λ -problem of the lasso regression has the following ADMM formulation:

$$\left\{eta^{\star}, ar{eta}^{\star}
ight\} = rg \min rac{1}{2} (Y - Xeta)^{\top} (Y - Xeta) + \lambda \|ar{eta}\|_{1}$$
 s.t. $eta - ar{eta} = \mathbf{0}_{m}$

We have:

$$f_{x}(\beta) = \frac{1}{2}(Y - X\beta)^{\top}(Y - X\beta)$$
$$= \frac{1}{2}\beta^{\top}(X^{\top}X)\beta - \beta^{\top}(X^{\top}Y) + \frac{1}{2}Y^{\top}Y$$

and:

$$f_{y}\left(\bar{\beta}\right) = \lambda \|\bar{\beta}\|_{1}$$

The x-step is:

$$\beta^{(k+1)} = \arg\min_{\beta} \left\{ \frac{1}{2} \beta^{\top} \left(\boldsymbol{X}^{\top} \boldsymbol{X} \right) \beta - \beta^{\top} \left(\boldsymbol{X}^{\top} \boldsymbol{Y} \right) + \frac{\varphi}{2} \left\| \beta - \bar{\beta}^{(k)} + \boldsymbol{u}^{(k)} \right\|_{2}^{2} \right\}$$

Since we have:

$$\frac{\varphi}{2} \left\| \beta - \bar{\beta}^{(k)} + u^{(k)} \right\|_{2}^{2} = \frac{\varphi}{2} \beta^{\top} \beta - \varphi \beta^{\top} \left(\bar{\beta}^{(k)} - u^{(k)} \right) + \frac{\varphi}{2} \left(\bar{\beta}^{(k)} - u^{(k)} \right)^{\top} \left(\bar{\beta}^{(k)} - u^{(k)} \right)$$

we deduce that the x-update is a standard QP problem where:

$$f_{x}^{(k+1)}(\beta) = \frac{1}{2}\beta^{\top} \left(X^{\top}X + \varphi I_{m} \right) \beta - \beta^{\top} \left(X^{\top}Y + \varphi \left(\overline{\beta}^{(k)} - u^{(k)} \right) \right)$$

It follows that the solution is:

$$\beta^{(k+1)} = \arg \min f_X^{(k+1)}(\beta)$$

$$= (X^\top X + \varphi I_m)^{-1} (X^\top Y + \varphi (\bar{\beta}^{(k)} - u^{(k)}))$$

The *y*-step is:

$$\bar{\beta}^{(k+1)} = \arg\min_{\bar{\beta}} \left\{ \lambda \|\bar{\beta}\|_1 + \frac{\varphi}{2} \|\beta^{(k+1)} - \bar{\beta} + u^{(k)}\|_2^2 \right\}$$

$$= \arg\min_{\bar{\beta}} \left\{ \frac{1}{2} \|\bar{\beta} - (\beta^{(k+1)} + u^{(k)})\|_2^2 + \frac{\lambda}{\varphi} \|\bar{\beta}\|_1 \right\}$$

We recognize the soft-thresholding problem with $v = \beta^{(k+1)} + u^{(k)}$. We have:

$$\bar{\beta}^{(k+1)} = \mathcal{S}\left(\beta^{(k+1)} + u^{(k)}; \varphi^{-1}\lambda\right)$$

where:

$$S(v; \lambda) = \operatorname{sign}(v) \cdot (|v| - \lambda)_{+}$$

ADMM-Lasso algorithm (Boyd et al., 2011)

Finally, the ADMM algorithm is made up of the following steps:

$$\begin{cases}
\beta^{(k+1)} = (X^{T}X + \varphi I_{m})^{-1} (X^{T}Y + \varphi (\bar{\beta}^{(k)} - u^{(k)})) \\
\bar{\beta}^{(k+1)} = S (\beta^{(k+1)} + u^{(k)}; \varphi^{-1}\lambda) \\
u^{(k+1)} = u^{(k)} + (\beta^{(k+1)} - \bar{\beta}^{(k+1)})
\end{cases}$$

Figure 3: Convergence of the ADMM algorithm (Example 3, $\lambda = 900$)

Note: the initial values are the OLS estimates and we set $\varphi = \lambda$

In practice, we use a time-varying parameter $\varphi^{(k)}$ (see Perrin and Roncalli, 2020).

Definition

The proximal operator $\mathbf{prox}_f(v)$ of the function f(x) is defined by:

$$\operatorname{prox}_{f}(v) = x^{*} = \arg\min_{x} \left\{ f_{v}(x) = f(x) + \frac{1}{2} \|x - v\|_{2}^{2} \right\}$$

Example 4

We consider the scalar-valued logarithmic barrier function $f(x) = -\lambda \ln x$

We have:

$$f_{v}(x) = -\lambda \ln x + \frac{1}{2}(x - v)^{2}$$

= $-\lambda \ln x + \frac{1}{2}x^{2} - xv + \frac{1}{2}v^{2}$

The first-order condition is $-\lambda x^{-1} + x - v = 0$. We obtain two roots with opposite signs:

$$x' = \frac{v - \sqrt{v^2 + 4\lambda}}{2}$$
 and $x'' = \frac{v + \sqrt{v^2 + 4\lambda}}{2}$

Since the logarithmic function is defined for x > 0, we deduce that:

$$\mathbf{prox}_f(v) = \frac{v + \sqrt{v^2 + 4\lambda}}{2}$$

In the case where $f(x) = \mathbb{1}_{\Omega}(x)$, we have:

$$\mathbf{prox}_{f}(v) = \arg\min_{x} \left\{ \mathbb{1}_{\Omega}(x) + \frac{1}{2} \|x - v\|_{2}^{2} \right\}$$
$$= \arg\min_{x \in \Omega} \left\{ \|x - v\|_{2}^{2} \right\}$$
$$= \mathcal{P}_{\Omega}(v)$$

where $\mathcal{P}_{\Omega}(v)$ is the standard projection of v onto Ω

Table 3: Projection for some simple polyhedra

Notation	Ω	$\mathcal{P}_{\Omega}\left(v ight)$
$\mathcal{A}_{\textit{ffineset}}\left[A,B\right]$	Ax = B	$V - A^{\dagger} (AV - B)$
$\mathcal{H}_{yperplane}\left[a,b ight]$	$a^{\top}x = b$	$v-rac{\left(a^{ op}v-b ight)}{\left\Vert a ight\Vert _{2}^{2}}a$
$\mathcal{H}_{\mathit{alfspace}}\left[c,d ight]$	$c^{\top}x \leq d$	$v - \frac{\left(c^{\top v} - d\right)_{+}}{\left\ c\right\ _{2}^{2}}c$
$\mathcal{B}_{ox}\left[x^{-},x^{+}\right]$	$x^- \le x \le x^+$	$\mathcal{T}(v; x^-, x^+)$

Source: Parikh and Boyd (2014)

Note: A^{\dagger} is the Moore-Penrose pseudo-inverse of A, and $\mathcal{T}\left(v;x^{-},x^{+}\right)$ is the truncation operator

Remark: No analytical formula for the (multi-dimensional) inequality constraint $Cx \leq D \Rightarrow$ it may be solved using the Dykstra's algorithm

Separable sum

If $f(x) = \sum_{i=1}^{n} f_i(x_i)$ is fully separable, then the proximal of f(v) is the vector of the proximal operators applied to each scalar-valued function $f_i(x_i)$:

$$\operatorname{\mathsf{prox}}_f(v) = \left(\begin{array}{c} \operatorname{\mathsf{prox}}_{f_1}(v_1) \\ \vdots \\ \operatorname{\mathsf{prox}}_{f_n}(v_n) \end{array} \right)$$

If $f(x) = -\lambda \ln x$, we have:

$$\mathbf{prox}_f(v) = \frac{v + \sqrt{v^2 + 4\lambda}}{2}$$

In the case of the vector-valued logarithmic barrier $f(x) = -\lambda \sum_{i=1}^{n} \ln x_i$, we deduce that:

$$\mathbf{prox}_f(v) = \frac{v + \sqrt{v \odot v + 4\lambda}}{2}$$

Moreau decomposition theorem

We have:

$$\operatorname{\mathsf{prox}}_f(v) + \operatorname{\mathsf{prox}}_{f^*}(v) = v$$

where f^* is the convex conjugate of f.

Application

If f(x) is a ℓ_q -norm function, then $f^*(x) = \mathbb{1}_{\mathcal{B}_p}(x)$ where \mathcal{B}_p is the ℓ_p unit ball and $p^{-1} + q^{-1} = 1$. Since we have $\mathbf{prox}_{f^*}(v) = \mathcal{P}_{\mathcal{B}_p}(v)$, we deduce that:

$$\operatorname{prox}_{f}(v) + \mathcal{P}_{\mathcal{B}_{p}}(v) = v$$

The proximal of the ℓ_p -ball can be deduced from the proximal operator of the ℓ_q -norm function.

Table 4: Proximal of the ℓ_p -norm function $f(x) = ||x||_p$

$$\begin{array}{c|c} p & \mathbf{prox}_{\lambda f}\left(v\right) \\ \hline p = 1 & \mathcal{S}\left(v;\lambda\right) = \mathrm{sign}\left(v\right) \odot \left(|v| - \lambda \mathbf{1}_{n}\right)_{+} \\ \hline p = 2 & \left(1 - \frac{\lambda}{\max\left(\lambda, \|v\|_{2}\right)}\right) v \\ \hline p = \infty & \mathrm{sign}\left(v\right) \odot \mathbf{prox}_{\lambda \max x}\left(|v|\right) \end{array}$$

We have:

$$\operatorname{prox}_{\lambda \max x}(v) = \min(v, s^{\star})$$

where s^* is the solution of the following equation:

$$s^{\star} = \left\{ s \in \mathbb{R} : \sum_{i=1}^{n} \left(v_i - s \right)_+ = \lambda \right\}$$

Table 5: Proximal of the ℓ_p -ball $\mathcal{B}_p\left(c,\lambda\right)=\left\{x\in\mathbb{R}^n:\left\|x-c\right\|_p\leq\lambda\right\}$ when c is equal to $\mathbf{0}_n$

р	$\mathcal{P}_{\mathcal{B}_{p}\left(0_{n},\lambda ight)}\left(v ight)$	q
p = 1	$v-\mathrm{sign}\left(v ight)\odotprox_{\lambdamaxx}\left(v ight)$	$q=\infty$
p = 2	$v-prox_{\lambda\parallel x\parallel_2}(v)$	q=2
$p=\infty$	$\mathcal{T}\left(\mathbf{v};-\lambda,\lambda\right)$	q = 1

Scaling and translation

Let us define g(x) = f(ax + b) where $a \neq 0$. We have:

$$\mathbf{prox}_{g}(v) = \frac{\mathbf{prox}_{a^{2}f}(av + b) - b}{a}$$

Application

We can use this property when the center c of the ℓ_p ball is not equal to $\mathbf{0}_n$. Since we have $\mathbf{prox}_g(v) = \mathbf{prox}_f(v-c) + c$ where g(x) = f(x-c) and the equivalence $\mathcal{B}_p(\mathbf{0}_n, \lambda) = \{x \in \mathbb{R}^n : f(x) \leq \lambda\}$ where $f(x) = \|x\|_p$, we deduce that:

$$\mathcal{P}_{\mathcal{B}_{p}(c,\lambda)}(v) = \mathcal{P}_{\mathcal{B}_{p}(\mathbf{0}_{n},\lambda)}(v-c) + c$$

Application to the τ -problem of the lasso regression

We have:

$$\hat{\beta}(\tau) = \arg\min_{\beta} \frac{1}{2} (Y - X\beta)^{\top} (Y - X\beta)$$

s.t. $\|\beta\|_{1} \le \tau$

The ADMM formulation is:

$$\left\{ eta^{\star}, ar{eta}^{\star}
ight\} = \underset{\left(eta, ar{eta}\right)}{\min} \frac{1}{2} \left(Y - X eta \right)^{\top} \left(Y - X eta \right) + \mathbb{1}_{\Omega} \left(ar{eta} \right)$$
s.t. $\beta = ar{eta}$

where $\Omega = \mathcal{B}_1 \left(\mathbf{0}_m, \tau \right)$ is the centered ℓ_1 ball with radius τ

Application to the τ -problem of the lasso regression

 \bullet The x-update is:

$$\beta^{(k+1)} = \arg\min_{\beta} \left\{ \frac{1}{2} (Y - X\beta)^{\top} (Y - X\beta) + \frac{\varphi}{2} \left\| \beta - \bar{\beta}^{(k)} + u^{(k)} \right\|_{2}^{2} \right\}$$
$$= (X^{\top} X + \varphi I_{m})^{-1} (X^{\top} Y + \varphi (\bar{\beta}^{(k)} - u^{(k)}))$$

where
$$v_x^{(k+1)} = \bar{\beta}^{(k)} - u^{(k)}$$

Application to the au-problem of the lasso regression

② The *y*-update is:

$$\begin{split} \bar{\beta}^{(k+1)} &= \arg\min_{\bar{\beta}} \left\{ \mathbb{1}_{\Omega} \left(\bar{\beta} \right) + \frac{\varphi}{2} \left\| \beta^{(k+1)} - \bar{\beta} + u^{(k)} \right\|_{2}^{2} \right\} \\ &= \operatorname{prox}_{f_{y}} \left(\beta^{(k+1)} + u^{(k)} \right) \\ &= \mathcal{P}_{\Omega} \left(v_{y}^{(k+1)} \right) \\ &= v_{y}^{(k+1)} - \operatorname{sign} \left(v_{y}^{(k+1)} \right) \odot \operatorname{prox}_{\tau \max x} \left(\left| v_{y}^{(k+1)} \right| \right) \end{split}$$
 where $v_{y}^{(k+1)} = \beta^{(k+1)} + u^{(k)}$

Application to the τ -problem of the lasso regression

The *u*-update is:

$$u^{(k+1)} = u^{(k)} + \beta^{(k+1)} - \bar{\beta}^{(k+1)}$$

Application to the au-problem of the lasso regression

ADMM-Lasso algorithm

The ADMM algorithm is:

$$\begin{cases}
\beta^{(k+1)} = \left(X^{\top}X + \varphi I_{m}\right)^{-1} \left(X^{\top}Y + \varphi \left(\bar{\beta}^{(k)} - u^{(k)}\right)\right) \\
\bar{\beta}^{(k+1)} = \begin{cases}
S\left(\beta^{(k+1)} + u^{(k)}; \varphi^{-1}\lambda\right) & (\lambda\text{-problem}) \\
\mathcal{P}_{\mathcal{B}_{1}(\mathbf{0}_{m},\tau)}\left(\beta^{(k+1)} + u^{(k)}\right) & (\tau\text{-problem}) \\
u^{(k+1)} = u^{(k)} + \left(\beta^{(k+1)} - \bar{\beta}^{(k+1)}\right)
\end{cases}$$

Remark

The ADMM algorithm is similar for λ - and τ -problems since the only difference concerns the y-step. However, the τ -problem is easier to solve with the ADMM algorithm from a practical point of view, because the y-update of the τ -problem is independent of the penalization parameter φ .

Derivation of the soft-thresholding operator

We consider the following equation:

$$cx - v + \lambda \partial |x| \in 0$$

where c > 0 and $\lambda > 0$. Since we have $\partial |x| = \operatorname{sign}(x)$, we deduce that:

$$x^{\star} = \begin{cases} c^{-1} (v + \lambda) & \text{if } x^{\star} < 0 \\ 0 & \text{if } x^{\star} = 0 \\ c^{-1} (v - \lambda) & \text{if } x^{\star} > 0 \end{cases}$$

If $x^* < 0$ or $x^* > 0$, then we have $v + \lambda < 0$ or $v - \lambda > 0$. This is equivalent to set $|v| > \lambda > 0$. The case $x^* = 0$ implies that $|v| \le \lambda$. We deduce that:

$$x^{\star} = c^{-1} \cdot \mathcal{S}(v; \lambda)$$

where $S(v; \lambda)$ is the soft-thresholding operator:

$$S(v; \lambda) = \begin{cases} 0 & \text{if } |v| \le \lambda \\ v - \lambda \operatorname{sign}(v) & \text{otherwise} \end{cases}$$
$$= \operatorname{sign}(v) \cdot (|v| - \lambda)_{+}$$

Derivation of the soft-thresholding operator

We use the result on the separable sum

Remark

If $f(x) = \lambda ||x||_1$, we have $f(x) = \lambda \sum_{i=1}^n |x_i|$ and $f_i(x_i) = \lambda |x_i|$. We deduce that the proximal operator of f(x) is the vector formulation of the soft-thresholding operator:

$$\operatorname{prox}_{\lambda \parallel x \parallel_{1}}(v) = \begin{pmatrix} \operatorname{sign}(v_{1}) \cdot (|v_{1}| - \lambda)_{+} \\ \vdots \\ \operatorname{sign}(v_{n}) \cdot (|v_{n}| - \lambda)_{+} \end{pmatrix} = \operatorname{sign}(v) \odot (|v| - \lambda \mathbf{1}_{n})_{+}$$

The soft-thresholding operator is the proximal operator of the ℓ_1 -norm $f(x) = ||x||_1$. Indeed, we have $\mathbf{prox}_f(v) = \mathcal{S}(v; 1)$ and $\mathsf{prox}_{\lambda f}(v) = \mathcal{S}(v; \lambda).$

Dykstra's algorithm

We consider the following optimization problem:

$$x^* = \arg \min f_x(x)$$

s.t. $x \in \Omega$

where Ω is a complex set of constraints:

$$\Omega = \Omega_1 \cap \Omega_2 \cap \cdots \Omega_m$$

We set y = x and $f_y(y) = \mathbb{1}_{\Omega}(y)$. The ADMM algorithm becomes

$$x^{(k+1)} = \arg\min \left\{ f_x(x) + \frac{\varphi}{2} \left\| x - y^{(k)} + u^{(k)} \right\|_2^2 \right\}$$

$$v^{(k)} = x^{(k+1)} + u^{(k)}$$

$$y^{(k+1)} = \mathcal{P}_{\Omega} \left(v^{(k)} \right)$$

$$u^{(k+1)} = u^{(k)} + \left(x^{(k+1)} - y^{(k+1)} \right)$$

How to compute $\mathcal{P}_{\Omega}(v)$?

Dykstra's algorithm

More generally, we consider the proximal optimization problem where the function f(x) is the convex sum of basic functions $f_i(x)$:

$$x^* = \arg\min_{x} \left\{ \sum_{j=1}^{m} f_j(x) + \frac{1}{2} \|x - v\|_2^2 \right\}$$

and the proximal of each basic function is known.

How to find the solution x^* ?

Dykstra's algorithm

The case m=2

- We know the proximal solution of the ℓ_1 -norm function $f_1\left(x\right) = \lambda_1 \left\|x\right\|_1$
- We know the proximal solution of the logarithmic barrier function $f_2(x) = \lambda_2 \sum_{i=1}^n \ln x_i$
- We don't know how to compute the proximal operator of $f(x) = f_1(x) + f_2(x)$:

$$x^* = \arg\min_{x} f_1(x) + f_2(x) + \frac{1}{2} ||x - v||_2^2$$

= $\mathbf{prox}_f(v)$

The case m=2

The Dykstra's algorithm consists in the following iterations:

$$\begin{cases} x^{(k+1)} = \mathbf{prox}_{f_1} \left(y^{(k)} + p^{(k)} \right) \\ p^{(k+1)} = y^{(k)} + p^{(k)} - x^{(k+1)} \\ y^{(k+1)} = \mathbf{prox}_{f_2} \left(x^{(k+1)} + q^{(k)} \right) \\ q^{(k+1)} = x^{(k+1)} + q^{(k)} - y^{(k+1)} \end{cases}$$

where
$$x^{(0)} = y^{(0)} = v$$
 and $p^{(0)} = q^{(0)} = \mathbf{0}_n$

The case m=2

This algorithm is related to the Douglas-Rachford splitting framework:

$$\begin{cases} x^{\left(k+\frac{1}{2}\right)} = \mathbf{prox}_{f_1} \left(x^{(k)} + p^{(k)} \right) \\ p^{(k+1)} = p^{(k)} - \Delta_{1/2} x^{\left(k+\frac{1}{2}\right)} \\ x^{(k+1)} = \mathbf{prox}_{f_2} \left(x^{\left(k+\frac{1}{2}\right)} + q^{(k)} \right) \\ q^{(k+1)} = q^{(k)} - \Delta_{1/2} x^{(k+1)} \end{cases}$$

where
$$\Delta_h x^{(k)} = x^{(k)} - x^{(k-h)}$$

The case m=2

Figure 4: Splitting method of the Dykstra's algorithm

The case m > 2

The case m > 2 is a generalization of the previous algorithm by considering *m* residuals:

The *x*-update is:

$$x^{(k+1)} = \mathbf{prox}_{f_{j(k)}} \left(x^{(k)} + z^{(k+1-m)} \right)$$

The z-update is:

$$z^{(k+1)} = x^{(k)} + z^{(k+1-m)} - x^{(k+1)}$$

where $x^{(0)} = v$, $z^{(k)} = \mathbf{0}_n$ for k < 0 and j(k) = mod(k + 1, m)denotes the modulo operator taking values in $\{1, \ldots, m\}$

Remark

The variable $x^{(k)}$ is updated at each iteration while the residual $z^{(k)}$ is updated every m iterations. This implies that the basic function $f_i(x)$ is related to the residuals $z^{(j)}$, $z^{(j+m)}$, $z^{(j+2m)}$, etc.

The case m > 2

Tibshirani (2017) proposes to write the Dykstra's algorithm by using two iteration indices k and j. The main index k refers to the cycle, whereas the sub-index j refers to the constraint number

The Dykstra's algorithm becomes:

• The *x*-update is:

$$x^{(k+1,j)} = \mathbf{prox}_{f_j} \left(x^{(k+1,j-1)} + z^{(k,j)} \right)$$

② The z-update is:

$$z^{(k+1,j)} = x^{(k+1,j-1)} + z^{(k,j)} - x^{(k+1,j)}$$

where
$$x^{(1,0)} = v$$
, $z^{(k,j)} = \mathbf{0}_n$ for $k = 0$ and $x^{(k+1,0)} = x^{(k,m)}$

The case m > 2

The Dykstra's algorithm is particularly efficient when we consider the projection problem:

$$x^{\star} = \mathcal{P}_{\Omega}(v)$$

where:

$$\Omega = \Omega_1 \cap \Omega_2 \cap \cdots \cap \Omega_m$$

Indeed, the Dykstra's algorithm becomes:

• The *x*-update is:

$$x^{(k+1,j)} = \mathbf{prox}_{f_j} \left(x^{(k+1,j-1)} + z^{(k,j)} \right) = \mathcal{P}_{\Omega_j} \left(x^{(k+1,j-1)} + z^{(k,j)} \right)$$

② The z-update is:

$$z^{(k+1,j)} = x^{(k+1,j-1)} + z^{(k,j)} - x^{(k+1,j)}$$

where
$$x^{(1,0)} = v$$
, $z^{(k,j)} = \mathbf{0}_n$ for $k = 0$ and $x^{(k+1,0)} = x^{(k,m)}$

Successive projections of $\mathcal{P}_{\Omega_i}\left(x^{(k+1,j-1)}\right)$ do not work!

Successive projections of $\mathcal{P}_{\Omega_j}\left(x^{(k+1,j-1)}+z^{(k,j)}\right)$ do work!

Table 6: Solving the proximal problem with linear inequality constraints

The goal is to compute the solution $x^* = \mathbf{prox}_f(v)$ where $f(x) = \mathbbm{1}_\Omega(x)$ and $\Omega = \{x \in \mathbb{R}^n : Cx \leq D\}$ We initialize $x^{(0,m)} \leftarrow v$ We set $z^{(0,1)} \leftarrow \mathbf{0}_n, \dots, z^{(0,m)} \leftarrow \mathbf{0}_n$ $k \leftarrow 0$ repeat $x^{(k+1,0)} \leftarrow x^{(k,m)}$ for j=1:m do The x-update is:

$$x^{(k+1,j)} = x^{(k+1,j-1)} + z^{(k,j)} - \frac{\left(c_{(j)}^{\top} x^{(k+1,j-1)} + c_{(j)}^{\top} z^{(k,j)} - d_{(j)}\right)_{+}}{\left\|c_{(j)}\right\|_{2}^{2}} c_{(j)}$$

The z-update is:

$$z^{(k+1,j)} = x^{(k+1,j-1)} + z^{(k,j)} - x^{(k+1,j)}$$

end for $k \leftarrow k + 1$ until Convergence return $x^* \leftarrow x^{(k,m)}$

Table 7: Solving the proximal problem with general linear constraints

The goal is to compute the solution
$$x^* = \mathbf{prox}_f(v)$$
 where $f(x) = \mathbb{1}_{\Omega}(x)$, $\Omega = \Omega_1 \cap \Omega_2 \cap \Omega_3$, $\Omega_1 = \{x \in \mathbb{R}^n : Ax = B\}$, $\Omega_2 = \{x \in \mathbb{R}^n : Cx \le D\}$ and $\Omega_3 = \{x \in \mathbb{R}^n : x^- \le x \le x^+\}$ We initialize $x_m^{(0)} \leftarrow \mathbf{v}$ We set $z_1^{(0)} \leftarrow \mathbf{0}_n$, $z_2^{(0)} \leftarrow \mathbf{0}_n$ and $z_3^{(0)} \leftarrow \mathbf{0}_n$ $k \leftarrow 0$ repeat
$$x_0^{(k+1)} \leftarrow x_m^{(k)} \\ x_1^{(k+1)} \leftarrow x_0^{(k+1)} + z_1^{(k)} - A^{\dagger} \left(Ax_0^{(k+1)} + Az_1^{(k)} - B\right) \\ z_1^{(k+1)} \leftarrow x_0^{(k+1)} + z_1^{(k)} - x_1^{(k+1)} \\ x_2^{(k+1)} \leftarrow \mathcal{P}_{\Omega_2} \left(x_1^{(k+1)} + z_2^{(k)}\right)$$
 \blacktriangleright Previous algorithm
$$z_2^{(k+1)} \leftarrow x_1^{(k+1)} + z_2^{(k)} - x_2^{(k+1)} \\ x_3^{(k+1)} \leftarrow \mathcal{T} \left(x_2^{(k+1)} + z_3^{(k)}; x^-, x^+\right) \\ z_3^{(k+1)} \leftarrow x_2^{(k+1)} + z_3^{(k)} - x_3^{(k+1)} \\ k \leftarrow k + 1$$

until Convergence

return
$$x^* \leftarrow x_3^{(k)}$$

Remark

Since we have:

$$\frac{1}{2} \|x - v\|_2^2 = \frac{1}{2} x^{\top} x - x^{\top} v + \frac{1}{2} v^{\top} v$$

the two previous problems can be cast into a QP problem:

$$x^*$$
 = $\arg\min_{x} \frac{1}{2} x^{\top} I_n x - x^{\top} v$
s.t. $x \in \Omega$

Dykstra's algorithm versus QP algorithm

- The vector v is defined by the elements $v_i = \ln (1 + i^2)$
- The set of constraints is:

$$\Omega = \left\{ x \in \mathbb{R}^n : \sum_{i=1}^n x_i \le \frac{1}{2}, \sum_{i=1}^n e^{-i} x_i \ge 0 \right\}$$

- Using a Matlab implementation, we find that the computational time of the Dykstra's algorithm when *n* is equal to 10 million is equal to the QP algorithm when *n* is equal to 12 500!
- The QP algorithm requires to store the matrix I_n impossible when $n > 10^5$. For instance, the size of I_n is equal to 7450.6 GB when $n = 10^6$

Application to portfolio allocation

Table 8: Some objective functions used in portfolio optimization

Item	Portfolio	f(x)	Reference			
$\overline{(1)}$	MVO	$\frac{1}{2}x^{\top}\Sigma x - \gamma x^{\top}\mu$	Markowitz (1952)			
(2)	GMV	$\frac{1}{2}x^{\top}\Sigma x$	Jagganathan and Ma (2003)			
(3)	MDP	$\ln\left(\sqrt{x^{ op}\Sigma x} ight) - \ln\left(x^{ op}\sigma ight)$	Choueifaty and Coignard (2008)			
(4)	KL	$\sum_{i=1}^{n} x_i \ln (x_i/\tilde{x}_i)$	Bera and Park (2008)			
(5)	ERC	$\frac{1}{2}x^{\top}\Sigma x - \lambda \sum_{i=1}^{n} \ln x_i$	Maillard <i>et al.</i> (2010)			
(6)	RB	$\mathcal{R}(x) - \lambda \sum_{i=1}^{n} \mathcal{R} \mathcal{B}_{i} \cdot \ln x_{i}$	Roncalli (2015)			
(7)	RQE	$\frac{1}{2}x^{\dagger}Dx$	Carmichael <i>et al.</i> (2018)			

Application to portfolio allocation

Table 9: Some regularization penalties used in portfolio optimization

Item	Regularization	$\Re(x)$	Reference
(8)	Ridge	$\lambda \ x - \tilde{x}\ _2^2$	DeMiguel <i>et al.</i> (2009)
(9)	Lasso	$\lambda \ x - \tilde{x}\ _{1}^{-}$	Brodie <i>at al.</i> (2009)
(10)	Log-barrier	$-\sum_{i=1}^n \lambda_i \ln x_i$	Roncalli (2013)
(11)	Shannon's entropy	$\lambda \sum_{i=1}^{n} x_i \ln x_i$	Yu <i>et al.</i> (2014)

Tutorial exercises

Application to portfolio allocation

Table 10: Some constraints used in portfolio optimization

Item	Constraint	Ω
$\overline{(12)}$	No cash and leverage	$\sum_{i=1}^{n} x_i = 1$
(13)	No short selling	$x_i \geq 0$
(14)	Weight bounds	$x_i^- \leq x_i \leq x_i^+$
(15)	Asset class limits	$c_i^- \leq \sum_{i \in \mathcal{C}_i} x_i \leq c_i^+$
(16)	Turnover	$\sum_{i=1}^{n} x_i - \tilde{x}_i \leq \tau^+$
(17)	Transaction costs	$\sum_{i=1}^{n} \left(c_{i}^{-} (\tilde{x}_{i} - x_{i})_{+} + c_{i}^{+} (x_{i} - \tilde{x}_{i})_{+} \right) \leq c^{+}$
(18)	Leverage limit	$\sum_{i=1}^{n} x_i \leq \hat{\mathcal{L}}^+$
(19)	Long/short exposure	$-\mathcal{LS}^{-} \leq \sum_{i=1}^{n} x_i \leq \mathcal{LS}^{+}$
(20)	Benchmarking	$\sqrt{\left(x-\tilde{x}\right)^{\top}\Sigma\left(x-\tilde{x}\right)}\leq\sigma^{+}$
(21)	Tracking error floor	$\sqrt{\left(x- ilde{x} ight)^{ op} \Sigma\left(x- ilde{x} ight)} \geq \sigma^{-}$
(22)	Active share floor	$\frac{1}{2}\sum_{i=1}^{n} x_i-\tilde{x}_i \geq \mathcal{AS}^-$
(23)	Number of active bets	$(x^{ op}x)^{-1} \geq \mathcal{N}^-$

Application to portfolio allocation

Most of portfolio optimization problems are a combination of:

- an objective function (Table 8)
- one or two regularization penalty functions (Table 9)
- some constraints (Table 10)

Perrin and Roncalli (2020) solve all these problems using CCD, ADMM, Dykstra and the appropriate proximal functions. For that, they derive:

- the semi-analytical solution of the x-step for all objective functions
- the proximal solution of the y-step for all regularization penalty functions and constraints

Formulation of the mathematical problem

- The second generation of minimum variance strategies uses a global diversification constraint
- The most popular solution is based on the Herfindahl index:

$$\mathcal{H}(x) = \sum_{i=1}^{n} x_i^2$$

• The effective number of bets is the inverse of the Herfindahl index:

$$\mathcal{N}\left(x\right) = \mathcal{H}\left(x\right)^{-1}$$

The optimization program is:

$$x^*$$
 = $\arg\min_{x} \frac{1}{2} x^{\top} \Sigma x$
s.t. $\begin{cases} \mathbf{1}_{n}^{\top} x = 1 \\ \mathbf{0}_{n} \le x \le x^{+} \\ \mathcal{N}(x) \ge \mathcal{N}^{-} \end{cases}$

where \mathcal{N}^- is the minimum number of effective bets.

The QP solution

• The Herfindhal constraint is equivalent to:

$$\mathcal{N}(x) \ge \mathcal{N}^- \quad \Leftrightarrow \quad (x^\top x)^{-1} \ge \mathcal{N}^- \\ \Leftrightarrow \quad x^\top x \le \frac{1}{\mathcal{N}^-}$$

• The QP problem is:

$$x^{\star}(\lambda) = \arg\min_{x} \frac{1}{2} x^{\top} \Sigma x + \lambda x^{\top} x = \frac{1}{2} x^{\top} (\Sigma + 2\lambda I_{n}) x$$
s.t.
$$\begin{cases} \mathbf{1}_{n}^{\top} x = 1 \\ \mathbf{0}_{n} \leq x \leq x^{+} \end{cases}$$

where $\lambda \geq 0$ is a scalar

- We have $\mathcal{N}(x) \in [\mathcal{N}(x^{\star}(0)), n]$
- The optimal value λ^* is found using the bi-section algorithm such that $\mathcal{N}\left(x^*\left(\lambda\right)\right) = \mathcal{N}^-$

The ADMM solution (first version)

• The ADMM form is:

$$\{x^{\star}, y^{\star}\} = \arg\min_{(x,y)} \frac{1}{2} x^{\top} \Sigma x + \mathbb{1}_{\Omega_{1}}(x) + \mathbb{1}_{\Omega_{2}}(y)$$
s.t. $x = y$

where
$$\Omega_1 = \left\{x \in \mathbb{R}^n : \mathbf{1}_n^\top x = 1, \mathbf{0}_n \le x \le x^+\right\}$$
 and $\Omega_2 = \mathcal{B}_2\left(\mathbf{0}_n, \sqrt{\frac{1}{\mathcal{N}^-}}\right)$

• The x-update is a QP problem:

$$x^{(k+1)} = \arg\min_{x} \left\{ \frac{1}{2} x^{\top} \left(\Sigma + \varphi I_{n} \right) x - \varphi x^{\top} \left(y^{(k)} - u^{(k)} \right) + \mathbb{1}_{\Omega_{1}} \left(x \right) \right\}$$

• The *y*-update is:

$$y^{(k+1)} = \frac{x^{(k+1)} + u^{(k)}}{\max\left(1, \sqrt{N^{-}} \left\|x^{(k+1)} + u^{(k)}\right\|_{2}\right)}$$

The ADMM solution (second version)

A better approach is to write the problem as follows:

$$\{x^{\star}, y^{\star}\} = \arg\min_{(x,y)} \frac{1}{2} x^{\top} \Sigma x + \mathbb{1}_{\Omega_3} (x) + \mathbb{1}_{\Omega_4} (y)$$

s.t. $x = y$

where $\Omega_3=\mathcal{H}_{yperplane}\left[\mathbf{1}_n,1
ight]$ and $\Omega_4=\mathcal{B}_{ox}\left[\mathbf{0}_n,x^+
ight]\cap\mathcal{B}_2\left(\mathbf{0}_n,\sqrt{rac{1}{\mathcal{N}^-}}
ight)$

• The *x*-update is:

$$x^{(k+1)} = (\Sigma + \varphi I_n)^{-1} \left(\varphi \left(y^{(k)} - u^{(k)} \right) + \frac{1 - \mathbf{1}_n^\top \left(\Sigma + \varphi I_n \right)^{-1} \varphi \left(y^{(k)} - u^{(k)} \right)}{\mathbf{1}_n^\top \left(\Sigma + \varphi I_n \right)^{-1} \mathbf{1}_n} \mathbf{1}_n \right)$$

• The *y*-update is:

$$y^{(k+1)} = \mathcal{P}_{\mathcal{B} ext{ox} - \mathcal{B} ext{all}} \left(x^{(k+1)} + u^{(k)}; \mathbf{0}_n, x^+, \mathbf{0}_n, \sqrt{rac{1}{\mathcal{N}^-}}
ight)$$

where $\mathcal{P}_{\mathcal{B}\text{ox}-\mathcal{B}\text{all}}$ corresponds to the Dykstra's algorithm given by Perrin and Roncalli (2020)

Remark

If we compare the computational time of the three approaches, we observe that the best method is the second version of the ADMM algorithm:

$$\mathcal{CT}(\mathrm{QP}; n = 1000) = 50 \times \mathcal{CT}(\mathrm{ADMM}_2; n = 1000)$$

$$\mathcal{CT}(\text{ADMM}_1; n = 1000) = 400 \times \mathcal{CT}(\text{ADMM}_2; n = 1000)$$

The QP solution

Example 5

We consider an investment universe of eight stocks. We assume that their volatilities are 21%, 20%, 40%, 18%, 35%, 23%, **7**% and 29%. The correlation matrix is defined as follows:

$$\rho = \begin{pmatrix} 100\% \\ 80\% & 100\% \\ 70\% & 75\% & 100\% \\ 60\% & 65\% & 90\% & 100\% \\ 70\% & 50\% & 70\% & 85\% & 100\% \\ 50\% & 60\% & 70\% & 80\% & 60\% & 100\% \\ 70\% & 50\% & 70\% & 75\% & 80\% & 50\% & 100\% \\ 60\% & 65\% & 70\% & 75\% & 65\% & 70\% & 80\% & 100\% \end{pmatrix}$$

Table 11: Minimum variance portfolios (in %)

$\overline{\mathcal{N}^{-}}$	1.00	2.00	3.00	4.00	5.00	6.00	6.50	7.00	7.50	8.00
$\overline{x_1^{\star}}$	0.00	3.22	9.60	13.83	15.18	15.05	14.69	14.27	13.75	12.50
x_2^{\star}	0.00	12.75	14.14	15.85	16.19	15.89	15.39	14.82	14.13	12.50
<i>x</i> ₃ *	0.00	0.00	0.00	0.00	0.00	0.07	2.05	4.21	6.79	12.50
X_4^{\star}	0.00	10.13	15.01	17.38	17.21	16.09	15.40	14.72	13.97	12.50
X_5^{\star}	0.00	0.00	0.00	0.00	0.71	5.10	6.33	7.64	9.17	12.50
x_6^{\star}	0.00	5.36	8.95	12.42	13.68	14.01	13.80	13.56	13.25	12.50
<i>X</i> ₇ *	100.00	68.53	52.31	40.01	31.52	25.13	22.92	20.63	18.00	12.50
<i>x</i> ₈ *	0.00	0.00	0.00	0.50	5.51	8.66	9.41	10.14	10.95	12.50
λ^* (in %)	0.00	1.59	3.10	5.90	10.38	18.31	23.45	31.73	49.79	∞

Note: the upper bound x^+ is set to $\mathbf{1}_n$. The solutions are those found by the ADMM algorithm. We also report the value of λ^* found by the bi-section algorithm when we use the QP algorithm.

We recall that:

$$x^* = \arg\min_{x} \frac{1}{2} x^{\top} \Sigma x - \lambda \sum_{i=1}^{n} \ln x_i$$

and:

$$x_{
m erc} = rac{x^{\star}}{\mathbf{1}_{n}^{\top} x^{\star}}$$

The CCD solution

• The first-order condition $(\Sigma x)_i - \lambda x_i^{-1} = 0$ implies that:

$$x_i^2 \sigma_i^2 + x_i \sigma_i \sum_{j \neq i} x_j \rho_{i,j} \sigma_j - \lambda = 0$$

• The CCD algorithm is:

$$x_i^{(k+1)} = \frac{-v_i^{(k+1)} + \sqrt{\left(v_i^{(k+1)}\right)^2 + 4\lambda\sigma_i^2}}{2\sigma_i^2}$$

where:

$$v_i^{(k+1)} = \sigma_i \sum_{j < i} x_j^{(k+1)} \rho_{i,j} \sigma_j + \sigma_i \sum_{j > i} x_j^{(k)} \rho_{i,j} \sigma_j$$

The ADMM solution

• In the case of the ADMM algorithm, we set:

$$f_{x}(x) = \frac{1}{2}x^{T}\Sigma x$$
 $f_{y}(y) = -\lambda \sum_{i=1}^{n} \ln y_{i}$
 $x = y$

• The *x*-update step is:

$$x^{(k+1)} = (\Sigma + \varphi I_n)^{-1} \varphi \left(y^{(k)} - u^{(k)} \right)$$

• The *y*-update step is:

$$y_i^{(k+1)} = \frac{1}{2} \left(\left(x_i^{(k+1)} + u_i^{(k)} \right) + \sqrt{\left(x_i^{(k+1)} + u_i^{(k)} \right)^2 + 4\lambda \varphi^{-1}} \right)$$

The RB portfolio is equal to:

$$x_{
m rb} = rac{x^{\star}}{\mathbf{1}_{n}^{ op} x^{\star}}$$

where x^* is the solution of the logarithmic barrier problem:

$$x^* = \arg\min_{x} \mathcal{R}(x) - \lambda \sum_{i=1}^{n} \mathcal{RB}_i \cdot \ln x_i$$

 λ is any positive scalar and \mathcal{RB}_i is the risk budget allocated to Asset i

The CCD solution (SD risk measure)

• In the case of the standard deviation-based risk measure:

$$\mathcal{R}(x) = -x^{\top} (\mu - r) + \xi \sqrt{x^{\top} \Sigma x}$$

the first-order condition for defining the CCD algorithm is:

$$-(\mu_i - r) + \xi \frac{(\Sigma x)_i}{\sqrt{x^{\top} \Sigma x}} - \lambda \frac{\mathcal{R}\mathcal{B}_i}{x_i} = 0$$

• It follows that $\xi x_i (\Sigma x)_i - (\mu_i - r) x_i \sigma(x) - \lambda \sigma(x) \cdot \mathcal{RB}_i = 0$ or equivalently:

$$\alpha_i x_i^2 + \beta_i x_i + \gamma_i = 0$$

where
$$\alpha_i = \xi \sigma_i^2$$
, $\beta_i = \xi \sigma_i \sum_{j \neq i} x_j \rho_{i,j} \sigma_j - (\mu_i - r) \sigma(x)$ and $\gamma_i = -\lambda \sigma(x) \cdot \mathcal{RB}_i$

The CCD solution (SD risk measure)

• The CCD algorithm is:

$$x_i^{(k+1)} = \frac{-\beta_i^{(k+1)} + \sqrt{\left(\beta_i^{(k+1)}\right)^2 - 4\alpha_i^{(k+1)}\gamma_i^{(k+1)}}}{2\alpha_i^{(k+1)}}$$

where:

$$\begin{cases} \alpha_{i}^{(k+1)} = \xi \sigma_{i}^{2} \\ \beta_{i}^{(k+1)} = \xi \sigma_{i} \left(\sum_{j < i} x_{j}^{(k+1)} \rho_{i,j} \sigma_{j} + \sum_{j > i} x_{j}^{(k)} \rho_{i,j} \sigma_{j} \right) - (\mu_{i} - r) \sigma_{i}^{(k+1)} (x) \\ \gamma_{i}^{(k+1)} = -\lambda \sigma_{i}^{(k+1)} (x) \cdot \mathcal{R} \mathcal{B}_{i} \\ \sigma_{i}^{(k+1)} (x) = \sqrt{\chi^{\top} \Sigma \chi} \\ \chi = \left(x_{1}^{(k+1)}, \dots, x_{i-1}^{(k+1)}, x_{i}^{(k)}, x_{i+1}^{(k)}, \dots, x_{n}^{(k)} \right) \end{cases}$$

The ADMM solution (convex risk measure)

• We have:

$$\{x^*, y^*\}$$
 = $\arg\min_{x,y} \mathcal{R}(x) - \lambda \sum_{i=1}^n \mathcal{RB}_i \cdot \ln y_i$
s.t. $x = y$

The ADMM algorithm is:

$$\begin{cases} x^{(k+1)} = \mathbf{prox}_{\varphi^{-1}\mathcal{R}(x)} \left(y^{(k)} - u^{(k)} \right) \\ v_y^{(k+1)} = x^{(k+1)} + u^{(k)} \\ y^{(k+1)} = \frac{1}{2} \left(v_y^{(k+1)} + \sqrt{v_y^{(k+1)} \odot v_y^{(k+1)} + 4\lambda \varphi^{-1} \cdot \mathcal{RB}} \right) \\ u^{(k+1)} = u^{(k)} + x^{(k+1)} - y^{(k+1)} \end{cases}$$

• Full allocation — $\sum_{i=1}^{n} x_i = 1$:

$$\Omega = \mathcal{H}_{yperplane}\left[\mathbf{1}_{n},1
ight]$$

We have:

$$\mathcal{P}_{\Omega}\left(v
ight) = v - \left(rac{\mathbf{1}_{n}^{ op}v - 1}{n}
ight)\mathbf{1}_{n}$$

• Cash neutral — $\sum_{i=1}^{n} x_i = 0$:

$$\Omega = \mathcal{H}_{yperplane} \left[\mathbf{1}_n, 0 \right]$$

We have:

$$\mathcal{P}_{\Omega}\left(v\right) = v - \left(\frac{\mathbf{1}_{n}^{\top}v}{n}\right)\mathbf{1}_{n}$$

• No short selling — $x \ge \mathbf{0}_n$:

$$\Omega = \mathcal{B}_{\mathsf{ox}} \left[\mathbf{0}_{\mathsf{n}}, \infty \right]$$

We have:

$$\mathcal{P}_{\Omega}(v) = \mathcal{T}(v; \mathbf{0}_n, \infty)$$

• Weight bounds — $x^- \le x \le x^+$:

$$\Omega = \mathcal{B}_{ox} \left[x^-, x^+ \right]$$

We have:

$$\mathcal{P}_{\Omega}(v) = \mathcal{T}(v; x^{-}, x^{+})$$

• μ -problem — $\mu(x) \ge \mu^*$:

$$\Omega = \mathcal{H}_{alfspace} \left[-\mu, -\mu^{\star} \right]$$

We have:

$$\mathcal{P}_{\Omega}\left(v
ight) = v + rac{\left(\mu^{\star} - \mu^{\top}v
ight)_{+}}{\left\|\mu
ight\|_{2}^{2}}\mu$$

• σ -problem — $\sigma(x) \leq \sigma^*$:

$$\Omega = \left\{ x : \sqrt{x^{\top} \Sigma x} \le \sigma^{\star} \right\}$$

We have:

$$\sqrt{x^{\top} \Sigma x} \leq \sigma^{\star} \quad \Leftrightarrow \quad \sqrt{x^{\top} (LL^{\top}) x} \leq \sigma^{\star}
\Leftrightarrow \quad ||y^{\top} y||_{2} \leq \sigma^{\star}
\Leftrightarrow \quad y \in \mathcal{B}_{2} (\mathbf{0}_{n}, \sigma^{\star})$$

where $y = L^{\top}x$ and L is the Cholesky decomposition of Σ . It follows that the proximal of the y-update is the projection onto the ℓ_2 ball $\mathcal{B}_2(\mathbf{0}_n, \sigma^*)$:

$$\mathcal{P}_{\Omega}(v) = v - \mathbf{prox}_{\sigma^{\star} \|x\|_{2}}(v)$$

$$= v - \left(1 - \frac{\sigma^{\star}}{\max(\sigma^{\star}, \|v\|_{2})}\right) v$$

• Leverage management — $\sum_{i=1}^{n} |x_i| \leq \mathcal{L}^+$:

$$\Omega = \{x : ||x||_1 \le \mathcal{L}^+\}$$
$$= \mathcal{B}_1(\mathbf{0}_n, \mathcal{L}^+)$$

The proximal of the *y*-update is the projection onto the ℓ_1 ball $\mathcal{B}_1(\mathbf{0}_n, \mathcal{L}^+)$:

$$\mathcal{P}_{\Omega}(v) = v - \operatorname{sign}(v) \odot \operatorname{prox}_{\mathcal{L}^{+} \operatorname{max}_{X}}(|v|)$$

• Leverage management — $\mathcal{LS}^- \leq \sum_{i=1}^n x_i \leq \mathcal{LS}^+$:

$$\Omega = \mathcal{H}_{\textit{alfspace}}\left[\mathbf{1}_{n}, \mathcal{LS}^{+}
ight] \cap \mathcal{H}_{\textit{alfspace}}\left[-\mathbf{1}_{n}, -\mathcal{LS}^{-}
ight]$$

The proximal of the y-update is obtained with the Dykstra's algorithm by combining the two half-space projections.

• Leverage management — $\left|\sum_{i=1}^{n} x_i\right| \leq \mathcal{L}^+$:

$$\Omega = \left\{ x : \left| \mathbf{1}_{n}^{\top} x \right| \le \mathcal{L}^{+} \right\}$$

This is a special case of the previous result where $\mathcal{LS}^+ = \mathcal{L}^+$ and $\mathcal{LS}^{-} = -\mathcal{L}^{+}$

$$\Omega = \mathcal{H}_{ extit{alfspace}} \left[\mathbf{1}_{ extit{n}}, \mathcal{L}^{+}
ight] \cap \mathcal{H}_{ extit{alfspace}} \left[-\mathbf{1}_{ extit{n}}, \mathcal{L}^{+}
ight]$$

Tutorial exercises

Concentration management²
 Portfolio managers can also use another constraint concerning the sum of the k largest values:

$$f(x) = \sum_{i=n-k+1}^{n} x_{(i:n)} = x_{(n:n)} + \ldots + x_{(n-k+1:n)}$$

where $x_{(i:n)}$ is the order statistics of x: $x_{(1:n)} \le x_{(2:n)} \le \cdots \le x_{(n:n)}$. Beck (2017) shows that:

$$\operatorname{prox}_{\lambda f(x)}(v) = v - \lambda \mathcal{P}_{\Omega}\left(\frac{v}{\lambda}\right)$$

where:

$$\Omega = \left\{ x \in \left[0,1\right]^n : \mathbf{1}_n^ op x = k
ight\} = \mathcal{B}_{ox}\left[\mathbf{0}_n, \mathbf{1}_n\right] \cap \mathcal{H}_{yperlane}\left[\mathbf{1}_n, k\right]$$

 $^{^2}$ An example is the 5/10/40 UCITS rule: A UCITS fund may invest no more than 10% of its net assets in transferable securities or money market instruments issued by the same body, with a further aggregate limitation of 40% of net assets on exposures of greater than 5% to single issuers.

 Entropy portfolio management Bera and Park (2008) propose using a cross-entropy measure as the objective function:

$$x^{\star} = \arg\min_{x} \operatorname{KL}(x \mid \tilde{x})$$
s.t.
$$\begin{cases} \mathbf{1}_{n}^{\top} x = 1 \\ \mathbf{0}_{n} \leq x \leq \mathbf{1}_{n} \\ \mu(x) \geq \mu^{\star}, \sigma(x) \leq \sigma^{\star} \end{cases}$$

where $\mathrm{KL}\left(x\mid\tilde{x}\right)$ is the Kullback-Leibler measure:

$$\mathrm{KL}\left(x\mid \tilde{x}\right) = \sum_{i=1}^{n} x_{i} \ln\left(x_{i}/\tilde{x}_{i}\right)$$

and \tilde{x} is a reference portfolio

 Entropy portfolio management We have:

$$\operatorname{\mathsf{prox}}_{\lambda \operatorname{KL}(v | \tilde{x})}(v) = \lambda \left(\begin{array}{c} W\left(\lambda^{-1} \tilde{x}_{1} e^{\lambda^{-1} v_{1} - \tilde{x}_{1}^{-1}}\right) \\ \vdots \\ W\left(\lambda^{-1} \tilde{x}_{n} e^{\lambda^{-1} v_{n} - \tilde{x}_{n}^{-1}}\right) \end{array} \right)$$

where W(x) is the Lambert W function

Remark

Since the Shannon's entropy is equal to $SE(x) = -KL(x \mid \mathbf{1}_n)$, we deduce that:

$$\operatorname{prox}_{\lambda \operatorname{SE}(x)}(v) = \lambda \begin{pmatrix} W\left(\lambda^{-1}e^{\lambda^{-1}v_{1}-1}\right) \\ \vdots \\ W\left(\lambda^{-1}e^{\lambda^{-1}v_{n}-1}\right) \end{pmatrix}$$

• Active share constraint — $\mathcal{AS}(x \mid \tilde{x}) \geq \mathcal{AS}^-$:

$$\mathcal{AS}\left(x\mid \tilde{x}\right) = \frac{1}{2}\sum_{i=1}^{n}\left|x_{i}-\tilde{x}_{i}\right| \geq \mathcal{AS}^{-}$$

We use the projection onto the complement $\bar{\mathcal{B}}_1(c,r)$ of the ℓ_1 ball and we obtain:

$$\mathcal{P}_{\Omega}(v) = v + \operatorname{sign}(v - \tilde{x}) \odot \frac{\max(2\mathcal{AS}^{-} - \|v - \tilde{x}\|_{1}, 0)}{n}$$

• Tracking error volatility — $\sigma(x \mid \tilde{x}) \leq \sigma^*$:

$$\sigma(x \mid \tilde{x}) \leq \sigma^{\star} \quad \Leftrightarrow \quad \sqrt{(x - \tilde{x})^{\top} \Sigma(x - \tilde{x})} \leq \sigma^{\star}$$

$$\Leftrightarrow \quad \|y\|_{2} \leq \sigma^{\star}$$

$$\Leftrightarrow \quad y \in \mathcal{B}_{2}(\mathbf{0}_{n}, \sigma^{\star})$$

where $y = L^{\top}x - L^{\top}\tilde{x}$. It follows that Ax + By = c where $A = L^{\top}$, $B = -I_n$ and $c = L^{\top}\tilde{x}$. It follows that the proximal of the y-update is the projection onto the ℓ_2 ball $\mathcal{B}_2(\mathbf{0}_n, \sigma^*)$:

$$\mathcal{P}_{\Omega}(v) = v - \mathbf{prox}_{\sigma^{\star} \|x\|_{2}}(v)$$

$$= v - \left(1 - \frac{\sigma^{\star}}{\max(\sigma^{\star}, \|v\|_{2})}\right) v$$

Bid-ask transaction cost management:

$$c(x \mid x_0) = \lambda \sum_{i=1}^{n} (c_i^- (x_{0,i} - x_i)_+ + c_i^+ (x_i - x_{0,i})_+)$$

where c_i^- and c_i^+ are the bid and ask transaction costs. We have:

$$\mathbf{prox}_{\boldsymbol{c}(x|x_0)}(v) = x_0 + \mathcal{S}\left(v - x_0; \lambda c^-, \lambda c^+\right)$$

where $S(v; \lambda_-, \lambda_+) = (v - \lambda_+)_+ - (v + \lambda_-)_-$ is the two-sided soft-thresholding operator.

• Turnover management:

$$\Omega = \left\{ x \in \mathbb{R}^n : \left\| x - x_0 \right\|_1 \le \boldsymbol{\tau}^+ \right\}$$

The proximal operator is:

$$\mathcal{P}_{\Omega}(v) = v - \operatorname{sign}(v - x_0) \odot \min(|v - x_0|, s^*)$$

where
$$s^{\star} = \left\{ s \in \mathbb{R} : \sum_{i=1}^{n} \left(|v_i - x_{0,i}| - s \right)_+ = \boldsymbol{\tau}^+ \right\}$$
.

Pattern learning and self-automated strategies

Table 12: What works / What doesn't

	Bond	Stock	Trend	Mean	Index	HF	Stock	Technical
	Scoring	Picking	Filtering	Reverting	Tracking	Tracking	Classification	Analysis
Lasso		©	©	©	②	©		
NMF							©	©
Boosting						©		
Bagging						©		
Random forests	©			©				©
Neural nets	©					©		
SVM	©	②	②				©	
Sparse Kalman					©	©		
K-NN	②							
K-means	©						©	
Testing protocols ³	•	•	©	©		©		

Source: Roncalli (2014), Big Data in Asset Management, ESMA/CEMA/GEA meeting, Madrid.

Thierry Roncalli Asset Management (Lecture 5) 116 / 204

³Cross-validation, training/test/probe sets, K-fold, etc.

Pattern learning and self-automated strategies

$$2021 \neq 2014$$

The evolution of machine learning in finance is fast, very fast!

Thierry Roncalli

Pattern learning and self-automated strategies

Some examples

- Natural Language Processing (NLP)
- Deep learning (DL)
- Reinforcement learning (RL)
- Gaussian process (GP) and Bayesian optimization (BO)
- Learning to rank (MLR)
- Etc.

Some applications

- Robo-advisory
- Stock classification
- $Q_1 Q_5$ long/short strategy
- Trend-following strategies
- Mean-reverting strategies
- Scoring models
- Sentiment and news analysis
- Etc.

Market generators

- The underlying idea is to simulate artificial multi-dimensional financial time series, whose statistical properties are the same as those observed in the financial markets
 - \approx Monte Carlo simulation of the financial market
- 3 main approaches:
 - Restricted Boltzmann machines (RBM)
 - @ Generative adversarial networks (GAN)
 - Convolutional Wasserstein models (W-GAN)
- The goal is to:
 - improve the the risk management of quantitative investment strategies
 - avoid the over-fitting bias of backtesting

The current research shows that results are disappointed until now

Thierry Roncalli Asset Management (Lecture 5) 119 / 204

Question 1

We consider the following optimization program:

$$x^* = \arg\min \frac{1}{2} x^\top \Sigma x - \lambda \sum_{i=1}^n b_i \ln x_i$$

where Σ is the covariance matrix, b is a vector of positive budgets and x is the vector of portfolio weights.

Question 1.a

Write the first-order condition with respect to the coordinate x_i and show that the solution x^* corresponds to a risk-budgeting portfolio.

Thierry Roncalli Asset Management (Lecture 5) 121 / 204

We have:

$$\mathcal{L}(x;\lambda) = \arg\min \frac{1}{2} x^{\top} \Sigma x - \lambda \sum_{i=1}^{n} b_i \ln x_i$$

The first-order condition is:

$$\frac{\partial \mathcal{L}(x;\lambda)}{\partial x_i} = (\Sigma x)_i - \lambda \frac{b_i}{x_i} = 0$$

or:

$$x_i \cdot (\Sigma x)_i = \lambda b_i$$

If we assume that the risk measure is the portfolio volatility:

$$\mathcal{R}\left(x\right) = \sqrt{x^{\top} \Sigma x}$$

the risk contribution of Asset *i* is equal to:

$$\mathcal{RC}_{i}(x) = \frac{x_{i} \cdot (\Sigma x)_{i}}{\sqrt{x^{\top} \Sigma x}}$$

We deduce that the optimization problem defines a risk budgeting portfolio:

$$\frac{x_{i} \cdot (\Sigma x)_{i}}{b_{i}} = \frac{x_{j} \cdot (\Sigma x)_{j}}{b_{j}} = \lambda \Leftrightarrow \frac{\mathcal{RC}_{i}(x)}{b_{i}} = \frac{\mathcal{RC}_{j}(x)}{b_{j}}$$

where the risk measure is the portfolio volatility and the risk budgets are (b_1, \ldots, b_n) .

Question 1.b

Find the optimal value x_i^* when we consider the other coordinates $(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)$ as fixed.

The first-order condition is equivalent to:

$$x_i \cdot (\Sigma x)_i - \lambda b_i = 0$$

We have:

$$(\Sigma x)_i = x_i \sigma_i^2 + \sigma_i \sum_{j \neq i} x_j \rho_{i,j} \sigma_j$$

It follows that:

$$x_i^2 \sigma_i^2 + x_i \sigma_i \sum_{j \neq i} x_j \rho_{i,j} \sigma_j - \lambda b_i = 0$$

We obtain a second-degree equation:

$$\alpha_i x_i^2 + \beta_i x_i + \gamma_i = 0$$

where:

$$\begin{cases} \alpha_{i} = \sigma_{i}^{2} \\ \beta_{i} = \sigma_{i} \sum_{j \neq i} x_{j} \rho_{i,j} \sigma_{j} \\ \gamma_{i} = -\lambda b_{i} \end{cases}$$

- The polynomial function is convex because we have $\alpha_i = \sigma_i^2 > 0$
- The product of the roots is negative:

$$x_i'x_i'' = \frac{\gamma_i}{\alpha_i} = -\frac{\lambda b_i}{\sigma_i^2} < 0$$

The discriminant is positive:

$$\Delta = \beta_i^2 - 4\alpha_i \gamma_i = \left(\sigma_i \sum_{j \neq i} \rho_{i,j} \sigma_j y_j\right)^2 + 4\lambda b_i \sigma_i^2 > 0$$

We always have two solutions with opposite signs. We deduce that the solution is the positive root of the second-degree equation:

$$x_{i}^{\star} = x_{i}^{"} = \frac{-\beta_{i} + \sqrt{\beta_{i}^{2} - 4\alpha_{i}\gamma_{i}}}{2\alpha_{i}}$$

$$= \frac{-\sigma_{i} \sum_{j \neq i} x_{j} \rho_{i,j} \sigma_{j} + \sqrt{\sigma_{i}^{2} \left(\sum_{j \neq i} x_{j} \rho_{i,j} \sigma_{j}\right)^{2} + 4\lambda b_{i} \sigma_{i}^{2}}}{2\sigma_{i}^{2}}$$

Question 1.c

We note $x_i^{(k)}$ the value of the i^{th} coordinate at the k^{th} iteration. Deduce the corresponding CCD algorithm. How to find the RB portfolio x_{rb} ?

Thierry Roncalli Asset Management (Lecture 5) 128 / 204

The CCD algorithm consists in iterating the following formula:

$$x_{i}^{(k)} = \frac{-\beta_{i}^{(k)} + \sqrt{(\beta_{i}^{(k)})^{2} - 4\alpha_{i}^{(k)}\gamma_{i}^{(k)}}}{2\alpha_{i}^{(k)}}$$

where:

$$\begin{cases} \alpha_i^{(k)} = \sigma_i^2 \\ \beta_i^{(k)} = \sigma_i \left(\sum_{j < i} \rho_{i,j} \sigma_j x_j^{(k)} + \sum_{j > i} \rho_{i,j} \sigma_j x_j^{(k-1)} \right) \\ \gamma_i^{(k)} = -\lambda b_i \end{cases}$$

The RB portfolio is the scaled solution:

$$x_{\rm rb} = \frac{x^*}{\sum_{i=1}^n x_i^*}$$

Question 1.d

We consider a universe of three assets, whose volatilities are equal to 20%, 25% and 30%. The correlation matrix is equal to:

$$\rho = \begin{pmatrix}
100\% \\
50\% & 100\% \\
60\% & 70\% & 100\%
\end{pmatrix}$$

We would like to compute the ERC portfolio^a using the CCD algorithm. We initialize the CCD algorithm with the following starting values $x^{(0)} = (33.3\%, 33.3\%, 33.3\%)$. We assume that $\lambda = 1$.

^aThis means that:

$$b_i = \frac{1}{3}$$

131 / 204

Portfolio optimization with CCD and ADMM algorithms

Question 1.d.i

Starting from $x^{(0)}$, find the optimal coordinate $x_1^{(1)}$ for the first asset.

Thierry Roncalli

Asset Management (Lecture 5)

We have:

$$\begin{cases} \alpha_1^{(1)} = 0.2^2 = 4\% \\ \beta_1^{(1)} = 0.02033 \\ \gamma_i^{(1)} = -0.333\% \end{cases}$$

We obtain:

$$x_1^{(1)} = 2.64375$$

Question 1.d.ii

Compute then the optimal coordinate $x_2^{(1)}$ for the second asset.

Thierry Roncalli

We have:

$$\begin{cases} \alpha_2^{(1)} = 0.25^2 = 6.25\% \\ \beta_2^{(1)} = 0.08359 \\ \gamma_2^{(1)} = -0.333\% \end{cases}$$

We obtain:

$$x_2^{(1)} = 1.73553$$

Question 1.d.iii

Compute then the optimal coordinate $x_3^{(1)}$ for the third asset.

Thierry Roncalli

We have:

$$\begin{cases} \alpha_3^{(1)} = 0.3^2 = 9\% \\ \beta_3^{(1)} = 0.18629 \\ \gamma_3^{(1)} = -0.333\% \end{cases}$$

We obtain:

$$x_3^{(1)} = 1.15019$$

Question 1.d.iv

Give the CCD coordinates $x_i^{(k)}$ for k = 1, ..., 10.

Table 13: CCD coordinates (k = 1, ..., 5)

k i		$\alpha_i^{(k)}$	$\beta_i^{(k)}$	$\gamma_i^{(k)}$	$x_i^{(k)}$	CCD coordinates		
Λ /	,	α_i	β_i	γ_i	X_i	x_1	x_2	<i>X</i> ₃
0						0.33333	0.33333	0.33333
1	1	0.04000	0.02033	-0.33333	2.64375	2.64375	0.33333	0.33333
1	2	0.06250	0.08359	-0.33333	1.73553	2.64375	1.73553	0.33333
1	3	0.09000	0.18629	-0.33333	1.15019	2.64375	1.73553	1.15019
2	1	0.04000	0.08480	-0.33333	2.01525	2.01525	1.73553	1.15019
2	2	0.06250	0.11077	-0.33333	1.58744	2.01525	1.58744	1.15019
2	3	0.09000	0.15589	-0.33333	1.24434	2.01525	1.58744	1.24434
3	1	0.04000	0.08448	-0.33333	2.01782	2.01782	1.58744	1.24434
3	2	0.06250	0.11577	-0.33333	1.56202	2.01782	1.56202	1.24434
3	3	0.09000	0.15465	-0.33333	1.24842	2.01782	1.56202	1.24842
4	1	0.04000	0.08399	-0.33333	2.02183	2.02183	1.56202	1.24842
4	2	0.06250	0.11609	-0.33333	1.56044	2.02183	1.56044	1.24842
4	3	0.09000	0.15471	-0.33333	1.24821	2.02183	1.56044	1.24821
5	1	0.04000	0.08395	-0.33333	2.02222	2.02222	1.56044	1.24821
5	2	0.06250	0.11609	-0.33333	1.56044	2.02222	1.56044	1.24821
_5	3	0.09000	0.15472	-0.33333	1.24817	2.02222	1.56044	1.24817

Thierry Roncalli Asset Management (Lecture 5) 138 / 204

Table 14: CCD coordinates (k = 6, ..., 10)

k	;	$\alpha_i^{(k)}$	$\beta_i^{(k)}$	$\gamma_i^{(k)}$	$x_i^{(k)}$	CCD coordinates		
٨	,					<i>x</i> ₁	x_2	<i>X</i> ₃
0						0.33333	0.33333	0.33333
6	1	0.04000	0.08395	-0.33333	2.02223	2.02223	1.56044	1.24817
6	2	0.06250	0.11608	-0.33333	1.56045	2.02223	1.56045	1.24817
6	3	0.09000	0.15472	-0.33333	1.24816	2.02223	1.56045	1.24816
7	1	0.04000	0.08395	-0.33333	2.02223	2.02223	1.56045	1.24816
7	2	0.06250	0.11608	-0.33333	1.56046	2.02223	1.56046	1.24816
7	3	0.09000	0.15472	-0.33333	1.24816	2.02223	1.56046	1.24816
8	1	0.04000	0.08395	-0.33333	2.02223	2.02223	1.56046	1.24816
8	2	0.06250	0.11608	-0.33333	1.56046	2.02223	1.56046	1.24816
8	3	0.09000	0.15472	-0.33333	1.24816	2.02223	1.56046	1.24816
9	1	0.04000	0.08395	-0.33333	2.02223	2.02223	1.56046	1.24816
9	2	0.06250	0.11608	-0.33333	1.56046	2.02223	1.56046	1.24816
9	3	0.09000	0.15472	-0.33333	1.24816	2.02223	1.56046	1.24816
10	1	0.04000	0.08395	-0.33333	2.02223	2.02223	1.56046	1.24816
10	2	0.06250	0.11608	-0.33333	1.56046	2.02223	1.56046	1.24816
_10	3	0.09000	0.15472	-0.33333	1.24816	2.02223	1.56046	1.24816

Question 1.d.v

Deduce the ERC portfolio.

The CCD algorithm has converged to the following solution:

$$x^* = \left(\begin{array}{c} 2.02223\\ 1.56046\\ 1.24816 \end{array}\right)$$

Since $\sum_{i=1}^{3} x_{i}^{*} = 4.83085$, we deduce that:

$$x_{\text{erc}} = \frac{1}{4.83085} \begin{pmatrix} 2.02223 \\ 1.56046 \\ 1.24816 \end{pmatrix} = \begin{pmatrix} 41.86076\% \\ 32.30189\% \\ 25.83736\% \end{pmatrix}$$

Question 1.d.vi

Compute the variance of the previous CCD solution. What do you notice? Explain this result.

Thierry Roncalli

We remind that the CCD solution is:

$$x^* = \left(\begin{array}{c} 2.02223\\ 1.56046\\ 1.24816 \end{array}\right)$$

We have:

$$\sigma^2(x^*) = x^{*\top} \Sigma x^* = 1$$

We notice that:

$$\sigma^2(x^*) = \lambda$$

At the optimum, we remind that:

$$\lambda = \frac{x_i^{\star} \cdot (\Sigma x^{\star})_i}{b_i} = \frac{x_i^{\star} \cdot (\Sigma x^{\star})_i}{n^{-1}}$$

We deduce that:

$$\lambda = \frac{1}{n} \sum_{i=1}^{n} \frac{x_i^* \cdot (\Sigma x^*)_i}{n^{-1}}$$

$$= \sum_{i=1}^{n} x_i^* \cdot (\Sigma x^*)_i$$

$$= x^{*\top} \Sigma x^*$$

$$= \sigma^2 (x^*)$$

It follows that the portfolio variance of the CCD solution is exactly equal to λ .

Question 1.d.vii

Verify that the CCD solution converges faster to the ERC portfolio when we assume that $\lambda = x_{\rm erc}^{\top} \Sigma x_{\rm erc}$.

Thierry Roncalli

We have:

$$\sigma\left(x_{\mathrm{erc}}\right) = \sqrt{x_{\mathrm{erc}}^{\top} \Sigma x_{\mathrm{erc}}} = 20.70029\%$$

and:

$$\sigma^2(x_{\rm erc}) = 4.28502\%$$

We obtain the results given in Table 15 when $\lambda = 4.28502\%$. If we compare with those given in Tables 13 and 14, it is obvious that the convergence is faster in the present case.

Table 15: CCD coordinates (k = 1, ..., 5)

k	i	$\alpha_i^{(k)}$	$\beta_i^{(k)}$	$\gamma_i^{(k)}$	$x_i^{(k)}$	CCD coordinates		
						x_1	<i>x</i> ₂	<i>X</i> ₃
0						0.33333	0.33333	0.33333
1	1	0.04000	0.02033	-0.01428	0.39521	0.39521	0.33333	0.33333
1	2	0.06250	0.02738	-0.01428	0.30680	0.39521	0.30680	0.33333
1	3	0.09000	0.03033	-0.01428	0.26403	0.39521	0.30680	0.26403
2	1	0.04000	0.01718	-0.01428	0.42027	0.42027	0.30680	0.26403
2	2	0.06250	0.02437	-0.01428	0.32133	0.42027	0.32133	0.26403
2	3	0.09000	0.03200	-0.01428	0.25847	0.42027	0.32133	0.25847
3	1	0.04000	0.01734	-0.01428	0.41893	0.41893	0.32133	0.25847
3	2	0.06250	0.02404	-0.01428	0.32295	0.41893	0.32295	0.25847
3	3	0.09000	0.03204	-0.01428	0.25835	0.41893	0.32295	0.25835
4	1	0.04000	0.01737	-0.01428	0.41863	0.41863	0.32295	0.25835
4	2	0.06250	0.02403	-0.01428	0.32302	0.41863	0.32302	0.25835
4	3	0.09000	0.03203	-0.01428	0.25837	0.41863	0.32302	0.25837
5	1	0.04000	0.01738	-0.01428	0.41861	0.41861	0.32302	0.25837
5	2	0.06250	0.02403	-0.01428	0.32302	0.41861	0.32302	0.25837
_5	3	0.09000	0.03203	-0.01428	0.25837	0.41861	0.32302	0.25837

Thierry Roncalli Asset Management (Lecture 5) 147 / 204

Question 2

We recall that the ADMM algorithm is based on the following optimization problem:

$$\{x^*, y^*\}$$
 = arg min $f_x(x) + f_y(y)$
s.t. $Ax + By = c$

Question 2.a

Describe the ADMM algorithm.

The ADMM algorithm consists in the following iterations:

$$\begin{cases} x^{(k+1)} = \arg\min_{x} \left\{ f_{x}(x) + \frac{\varphi}{2} \left\| Ax + By^{(k)} - c + u^{(k)} \right\|_{2}^{2} \right\} \\ y^{(k+1)} = \arg\min_{y} \left\{ f_{y}(y) + \frac{\varphi}{2} \left\| Ax^{(k+1)} + By - c + u^{(k)} \right\|_{2}^{2} \right\} \\ u^{(k+1)} = u^{(k)} + \left(Ax^{(k+1)} + By^{(k+1)} - c \right) \end{cases}$$

Question 2.b

We consider the following optimization problem:

$$w^*(\gamma) = \arg\min \frac{1}{2} (w - b)^\top \Sigma (w - b) - \gamma (w - b)^\top \mu$$

s.t.
$$\begin{cases} \mathbf{1}_n^\top w = 1 \\ \sum_{i=1}^n |w_i - b_i| \le \boldsymbol{\tau}^+ \\ \mathbf{0}_n \le w \le \mathbf{1}_n \end{cases}$$

Question 2.b.i

Give the meaning of the symbols w, b, Σ , and μ . What is the goal of this optimization program? What is the meaning of the constraint

$$\sum_{i=1}^n |w_i - b_i| \leq \tau^+?$$

Thierry Roncalli

• w is the vector of portfolio weights:

$$w = (w_1, \ldots, w_n)$$

• *b* is the vector of benchmark weights:

$$b=(b_1,\ldots,b_n)$$

- \bullet Σ is the covariance matrix of asset returns
- ullet μ is the vector of expected returns

The goal of the optimization problem is to tilt a benchmark portfolio by controlling the volatility of the tracking error:

$$\sigma\left(w\mid b\right) = \sqrt{\left(w-b\right)^{\top}\Sigma\left(w-b\right)}$$

and improving the expected excess return:

$$\mu\left(\mathbf{w}\mid\mathbf{b}\right)=\left(\mathbf{w}-\mathbf{b}\right)^{\top}\mu$$

This is a typical γ -problem when there is a benchmark

We remind that the turnover between the benchmark *b* and the portfolio *w* is equal to:

$$au\left(w\mid b
ight)=\sum_{i=1}^{n}\left|w_{i}-b_{i}\right|$$

Therefore, we impose that the turnover is less than an upper limit:

$$au\left(w\mid b
ight)\leq au^{+}$$

Question 2.b.ii

What is the best way to specify $f_x(x)$ and $f_y(y)$ in order to find numerically the solution. Justify your choice.

Thierry Roncalli Asset Management (Lecture 5) 156 / 204

The best way to specify $f_x(x)$ and $f_y(y)$ is to split the QP problem and the turnover constraint:

$$\{x^*, y^*\}$$
 = $\arg\min_{x,y} f_x(x) + f_y(y)$
s.t. $x - y = \mathbf{0}_n$

where:

$$f_{x}(x) = \frac{1}{2}(x-b)^{\top} \Sigma(x-b) - \gamma(x-b)^{\top} \mu + \mathbb{1}_{\Omega_{1}}(x) + \mathbb{1}_{\Omega_{3}}(x)$$

$$f_{y}(y) = \mathbb{1}_{\Omega_{2}}(y)$$

$$\Omega_{1}(x) = \left\{x : \mathbf{1}_{n}^{\top} x = 1\right\}$$

$$\Omega_{2}(y) = \left\{y : \sum_{i=1}^{n} |y_{i} - b_{i}| \leq \tau^{+}\right\}$$

$$\Omega_{3}(x) = \left\{x : \mathbf{0}_{n} \leq x \leq \mathbf{1}_{n}\right\}$$

Indeed, the x-update step is a standard QP problem whereas the y-update step is the projection onto the ℓ_1 -ball \mathcal{B}_1 (b, τ^+) .

Question 2.b.iii

Give the corresponding ADMM algorithm.

We have:

$$(*) = \frac{1}{2} (x - b)^{\top} \Sigma (x - b) - \gamma (x - b)^{\top} \mu$$

$$= \frac{1}{2} x^{\top} \Sigma x - x^{\top} \Sigma b + \frac{1}{2} b^{\top} \Sigma b - \gamma x^{\top} \mu + \gamma b^{\top} \mu$$

$$= \frac{1}{2} x^{\top} \Sigma x - x^{\top} (\Sigma b + \gamma \mu) + \underbrace{\left(\gamma b^{\top} \mu + \frac{1}{2} b^{\top} \Sigma b\right)}_{\text{constant}}$$

If we note $v_x^{(k+1)} = y^{(k)} - u^{(k)}$, we have:

$$\|x - y^{(k)} + u^{(k)}\|_{2}^{2} = \|x - v_{x}^{(k+1)}\|_{2}^{2}$$

$$= (x - v_{x}^{(k+1)})^{\top} (x - v_{x}^{(k+1)})$$

$$= x^{\top} I_{n} x - 2x^{\top} v_{x}^{(k+1)} + \underbrace{(v_{x}^{(k+1)})^{\top} v_{x}^{(k+1)}}_{\text{constant}}$$

It follows that:

$$f_{x}^{(k+1)}(x) = f_{x}(x) + \frac{\varphi}{2} \|x - y^{(k)} + u^{(k)}\|_{2}^{2}$$

$$= \frac{1}{2} (x - b)^{\top} \Sigma (x - b) - \gamma (x - b)^{\top} \mu + \frac{1}{\Omega_{1}} (x) + \frac{1}{\Omega_{3}} (x) + \frac{\varphi}{2} \|x - y^{(k)} + u^{(k)}\|_{2}^{2}$$

$$= \frac{1}{2} x^{\top} (\Sigma + \varphi I_{n}) x - x^{\top} (\Sigma b + \gamma \mu + \varphi v_{x}^{(k+1)}) + \frac{1}{\Omega_{1}} (x) + \frac{1}{\Omega_{3}} (x) + \text{constant}$$

We have:

$$f_{y}^{(k+1)}(y) = \mathbb{1}_{\Omega_{2}}(y) + \frac{\varphi}{2} \left\| x^{(k+1)} - y + u^{(k)} \right\|_{2}^{2}$$
$$= \mathbb{1}_{\Omega_{2}}(y) + \frac{\varphi}{2} \left\| y - v_{y}^{(k+1)} \right\|_{2}^{2}$$

where $v_y^{(k+1)} = x^{(k+1)} + u^{(k)}$. We deduce that:

$$y^{(k+1)} = \arg \min_{y} f_{y}^{(k+1)}(y)$$

$$= \mathcal{P}_{\Omega_{2}}\left(v_{y}^{(k+1)}\right)$$

where:

$$\Omega_2 = \mathcal{B}_1\left(b,oldsymbol{ au}^+
ight)$$

We remind that:

$$\mathcal{P}_{\mathcal{B}_{1}(c,\lambda)}(v) = \mathcal{P}_{\mathcal{B}_{1}(\mathbf{0}_{n},\lambda)}(v-c) + c$$

$$\mathcal{P}_{\mathcal{B}_{1}(\mathbf{0}_{n},\lambda)}(v) = v - \operatorname{sign}(v) \odot \operatorname{prox}_{\lambda \max x}(|v|)$$

$$\operatorname{prox}_{\lambda \max x}(v) = \min(v, s^{\star})$$

where s^* is the solution of the following equation:

$$s^{\star} = \left\{ s \in \mathbb{R} : \sum_{i=1}^{n} \left(v_i - s \right)_+ = \lambda \right\}$$

We deduce that:

$$\mathcal{P}_{\Omega_{2}}\left(v_{y}^{(k+1)}\right) = \mathcal{P}_{\mathcal{B}_{1}\left(b,\tau^{+}\right)}\left(v_{y}^{(k+1)}\right)$$

$$= \mathcal{P}_{\mathcal{B}_{1}\left(\mathbf{0}_{n},\tau^{+}\right)}\left(v_{y}^{(k+1)}-b\right)+b$$

$$= v_{y}^{(k+1)}-\operatorname{sign}\left(v_{y}^{(k+1)}-b\right)\odot\operatorname{prox}_{\tau^{+}\max x}\left(\left|v_{y}^{(k+1)}-b\right|\right)$$

$$= v_{y}^{(k+1)}-\operatorname{sign}\left(v_{y}^{(k+1)}-b\right)\odot\operatorname{min}\left(\left|v_{y}^{(k+1)}-b\right|,s^{\star}\right)$$

where s^* is the solution of the following equation:

$$s^\star = \left\{ s \in \mathbb{R} : \sum_{i=1}^n \left(\left| v_{y,i}^{(k+1)} - b_i
ight| - s
ight)_+ = oldsymbol{ au}^+
ight\}$$

The ADMM algorithm becomes:

$$\begin{cases} v_x^{(k+1)} = y^{(k)} - u^{(k)} \\ Q^{(k+1)} = \Sigma + \varphi I_n \\ R^{(k+1)} = \Sigma b + \gamma \mu + \varphi v_x^{(k+1)} \\ x^{(k+1)} = \arg\min_{x} \left\{ \frac{1}{2} x^{\top} Q^{(k+1)} x - x^{\top} R^{(k+1)} + \mathbb{1}_{\Omega_1} (x) + \mathbb{1}_{\Omega_3} (x) \right\} \\ v_y^{(k+1)} = x^{(k+1)} + u^{(k)} \\ s^* = \left\{ s \in \mathbb{R} : \sum_{i=1}^n \left(\left| v_{y,i}^{(k+1)} - b_i \right| - s \right)_+ = \tau^+ \right\} \\ y^{(k+1)} = v_y^{(k+1)} - \operatorname{sign} \left(v_y^{(k+1)} - b \right) \odot \min \left(\left| v_y^{(k+1)} - b \right|, s^* \right) \\ u^{(k+1)} = u^{(k)} + x^{(k+1)} - y^{(k+1)} \end{cases}$$

Question 2.c

We consider the following optimization problem:

$$w^*$$
 = $\arg\min \|w - \tilde{w}\|_1$
s.t.
$$\begin{cases} \mathbf{1}_n^\top w = 1 \\ \sqrt{(w - b)^\top \Sigma (w - b)} \leq \sigma^+ \\ \mathbf{0}_n \leq w \leq \mathbf{1}_n \end{cases}$$

Question 2.c.i

What is the meaning of the objective function $\|w - \tilde{w}\|_1$? What is the meaning of the constraint $\sqrt{(w-b)^\top \Sigma (w-b)} \leq \sigma^+$?

The objective function $\|w - \tilde{w}\|_1$ is the turnover between a given portfolio \tilde{w} and the optimized portfolio w

The constraint $\sqrt{(w-b)^{\top} \Sigma (w-b)} \leq \sigma^+$ is a tracking error limit with respect to a benchmark b

Question 2.c.ii

Propose an equivalent optimization problem such that $f_x(x)$ is a QP problem. How to solve the *y*-update?

Thierry Roncalli

The optimization problem is equivalent to solve the following program:

$$w^*$$
 = $\arg\min \frac{1}{2} (w - b)^{\top} \Sigma (w - b) + \lambda \|w - \tilde{w}\|_1$
s.t. $\begin{cases} \mathbf{1}_n^{\top} w = 1 \\ \mathbf{0}_n \le w \le \mathbf{1}_n \end{cases}$

We deduce that:

$$f_{x}\left(x\right) = \frac{1}{2}\left(x-b\right)^{\top}\Sigma\left(x-b\right) + \mathbb{1}_{\Omega_{1}}\left(x\right) + \mathbb{1}_{\Omega_{2}}\left(x\right)$$

where:

$$\Omega_1\left(x\right) = \left\{x : \mathbf{1}_n^\top x = 1\right\}$$

and:

$$\Omega_2(x) = \{x : \mathbf{0}_n \le x \le \mathbf{1}_n\}$$

We have:

$$f_{y}(y) = \lambda \|w - \tilde{w}\|_{1}$$

We remind that:

$$\operatorname{prox}_{\lambda \parallel x \parallel_{1}}(v) = \mathcal{S}(v; \lambda) = \operatorname{sign}(v) \odot (|v| - \lambda \mathbf{1}_{n})_{+}$$

and:

$$\mathsf{prox}_{f(x+b)}(v) = \mathsf{prox}_{f}(v+b) - b$$

The *y*-update step is then equal to:

$$y^{(k+1)} = \operatorname{prox}_{\lambda \| w - \tilde{w} \|_{1}} \left(x^{(k+1)} + u^{(k)} \right)$$

$$= \tilde{w} + \operatorname{sign} \left(x^{(k+1)} + u^{(k)} - \tilde{w} \right) \odot \left(\left| x^{(k+1)} + u^{(k)} - \tilde{w} \right| - \lambda \mathbf{1}_{n} \right)_{+}$$

because $f_y(y)$ is fully separable⁴

⁴Otherwise the scaling property does not work!

Exercise

We consider an investment universe with 6 assets. We assume that their expected returns are 4%, 6%, 7%, 8%, 10% and 10%, and their volatilities are 6%, 10%, 11%, 15%, 15% and 20%. The correlation matrix is given by:

$$\rho = \begin{pmatrix}
100\% \\
50\% & 100\% \\
20\% & 20\% & 100\% \\
50\% & 50\% & 80\% & 100\% \\
0\% & -20\% & -50\% & -30\% & 100\% \\
0\% & 20\% & 30\% & 0\% & 0\% & 100\%
\end{pmatrix}$$

Question 1

We restrict the analysis to long-only portfolios meaning that $\sum_{i=1}^{n} x_i = 1$ and $x_i \ge 0$.

Thierry Roncalli

Question 1.a

We consider the Herfindahl index $\mathcal{H}(x) = \sum_{i=1}^{n} x_i^2$. What are the two limit cases of $\mathcal{H}(x)$? What is the interpretation of the statistic $\mathcal{N}(x) = \mathcal{H}^{-1}(x)$?

We consider the following optimization problem:

$$x^*$$
 = arg min $\mathcal{H}(x)$
s.t. $\sum_{i=1}^{n} x_i = 1$

We deduce that the Lagrange function is:

$$\mathcal{L}(x;\lambda) = \mathcal{H}(x) - \lambda \left(\sum_{i=1}^{n} x_i = 1\right)$$
$$= x^{\top}x - \lambda \left(\mathbf{1}_{n}^{\top}x - 1\right)$$

The first-order condition is:

$$\frac{\partial \mathcal{L}(x;\lambda)}{\partial x} = x - \lambda \mathbf{1}_n = \mathbf{0}_n$$

Since we have $\mathbf{1}_n^{\top} x - 1 = 0$, we deduce that:

$$\lambda = \frac{1}{\mathbf{1}_n^{\top} \mathbf{1}_n} = \frac{1}{n}$$

We conclude that the lower bound is reached for the equally-weighted portfolio:

$$x_{\mathrm{ew}} = \frac{1}{n} \cdot \mathbf{1}_n$$

and we have:

$$\mathcal{H}\left(x_{\mathrm{ew}}\right) = \frac{1}{n^2} \cdot \mathbf{1}_n^{\top} \mathbf{1}_n = \frac{1}{n}$$

Since the weights are positive, we have:

$$\mathcal{H}(x) = \sum_{i=1}^{n} x_i^2$$

$$\leq \left(\sum_{i=1}^{n} x_i\right)^2$$

$$\leq 1$$

The upper bound is reached when the portfolio is concentrated on one asset:

$$\exists i: x_i = 1$$

We conclude that:

$$\frac{1}{n} \le \mathcal{H}(x) \le 1$$

The statistic $\mathcal{N}(x) = \mathcal{H}^{-1}(x)$ is the effective number of assets

Question 1.b

We consider the following optimization problem (\mathcal{P}_1) :

$$x^*(\lambda) = \arg\min \frac{1}{2} x^\top \Sigma x + \lambda x^\top x$$

s.t.
$$\begin{cases} \sum_{i=1}^n x_i = 1 \\ x_i \ge 0 \end{cases}$$

What is the link between this constrained optimization program and the weight diversification based on the Herfindahl index?

The optimization problem (\mathcal{P}_1) is equivalent to:

$$x^{\star} (\mathcal{H}^{+}) = \arg \min \frac{1}{2} x^{\top} \Sigma x$$
s.t.
$$\begin{cases} \sum_{i=1}^{n} x_{i} = 1 \\ x_{i} \geq 0 \\ x^{\top} x \leq \mathcal{H}^{+} \end{cases}$$

We obtain a long-only minimum variance portfolio with a diversification constraint based on the Herfindahl index:

$$\mathcal{H}(x) \leq \mathcal{H}^+$$

We have the following correspondance:

$$\mathcal{H}^{+} = \mathcal{H}\left(x^{\star}\left(\lambda\right)\right) = x^{\star}\left(\lambda\right)^{\top} x^{\star}\left(\lambda\right)$$

Given a value of λ , we can then compute the implicit constraint $\mathcal{H}(x) \leq \mathcal{H}^+$.

Question 1.c

Solve Program (\mathcal{P}_1) when λ is equal to respectively 0, 0.001, 0.01, 0.05, 0.10 and 10. Compute the statistic $\mathcal{N}(x)$. Comment on these results.

Table 16: Solution of the optimization problem (\mathcal{P}_1)

λ	0.000	0.001	0.010	0.050	0.100	10.000
$x_1^{\star}(\lambda)$ (in %)	44.60	35.66	23.97	18.71	17.76	16.68
$x_2^{\star}(\lambda)$ (in %)	9.12	14.60	18.10	17.08	16.89	16.67
$x_3^{\star}(\lambda)$ (in %)	25.46	26.57	19.96	16.89	16.71	16.67
$x_4^{\star}(\lambda)$ (in %)	0.00	0.00	7.64	14.46	15.52	16.65
$x_5^{\star}(\lambda)$ (in %)	20.40	22.11	22.38	19.31	18.21	16.69
$x_6^{\star}(\lambda)$ (in %)	0.43	1.07	7.94	13.55	14.92	16.65
$\mathcal{H}\left(x^{\star}\left(\lambda\right)\right)$	0.3137	0.2680	0.1923	0.1693	0.1675	0.1667
$\mathcal{N}\left(\mathbf{x}^{\star}\left(\lambda\right)\right)$	3.19	3.73	5.20	5.91	5.97	6.00

Question 1.d

Using the bisection algorithm, find the optimal value of λ^* that satisfies:

$$\mathcal{N}\left(x^{\star}\left(\lambda^{\star}\right)\right) = 4$$

Give the composition of $x^*(\lambda^*)$. What is the interpretation of $x^*(\lambda^*)$?

Thierry Roncalli

The optimal solution is:

$$\lambda^{\star} = 0.002301$$

The optimal weights (in %) are equal to:

$$x^* = \begin{pmatrix} 31.62\% \\ 17.24\% \\ 26.18\% \\ 0.00\% \\ 22.63\% \\ 2.33\% \end{pmatrix}$$

The effective number of bets $\mathcal{N}(x^*)$ is equal to 4

Question 2

We consider long/short portfolios and the following optimization problem (\mathcal{P}_2) :

$$x^{\star}(\lambda) = \arg\min \frac{1}{2} x^{\top} \Sigma x + \lambda \sum_{i=1}^{n} |x_i|$$

s.t.
$$\sum_{i=1}^{n} x_i = 1$$

Question 2.a

Solve Program (\mathcal{P}_2) when λ is equal to respectively 0, 0.0001, 0.001, 0.01, 0.05, 0.10 and 10. Comment on these results.

Thierry Roncalli

Table 17: Solution of the optimization problem (\mathcal{P}_2)

λ	0.000	0.0001	0.001	0.010	0.050	0.100	10.000
$x_1^{\star}(\lambda)$ (in %)	35.82	37.17	44.50	44.60	44.60	44.60	44.60
$x_2^{\star}(\lambda)$ (in %)	33.08	30.26	11.48	9.12	9.12	9.12	9.12
$x_3^{\star}(\lambda)$ (in %)	77.62	71.77	31.28	25.46	25.46	25.46	25.46
$x_4^{\star}(\lambda)$ (in %)	-53.48	-47.97	-7.16	0.00	0.00	0.00	0.00
$x_5^{\star}(\lambda)$ (in %)	20.83	20.56	19.90	20.40	20.40	20.40	20.40
$x_6^{\star}(\lambda)$ (in %)	-13.87	-11.78	0.00	0.43	0.43	0.43	0.43
$\mathcal{L}(x)$ (in %)	234.69	219.50	114.33	100.00	100.00	100.00	100.00

Question 2.b

For each optimized portfolio, calculate the following statistic:

$$\mathcal{L}(x) = \sum_{i=1}^{n} |x_i|$$

What is the interpretation of $\mathcal{L}(x)$? What is the impact of Lasso regularization?

$$\mathcal{L}(x) = \sum_{i=1}^{n} |x_i|$$
 is the leverage ratio. Their values are reported in Table 17.

Thierry Roncalli

Question 3

We assume that the investor holds an initial portfolio $x^{(0)}$ defined as follows:

$$x^{(0)} = \begin{pmatrix} 10\% \\ 15\% \\ 20\% \\ 25\% \\ 30\% \\ 0\% \end{pmatrix}$$

We consider the optimization problem (\mathcal{P}_3) :

$$x^*(\lambda) = \arg\min \frac{1}{2} x^\top \Sigma x + \lambda \sum_{i=1}^n \left| x_i - x_i^{(0)} \right|$$

s.t. $\sum_{i=1}^n x_i = 1$

Question 3.a

Solve Program (\mathcal{P}_3) when λ is equal respectively to 0, 0.0001, 0.001, 0.0015 and 0.01. Compute the turnover of each optimized portfolio. Comment on these results.

Table 18: Solution of the optimization problem (\mathcal{P}_3)

λ	0.000	0.000	0.001	0.002	0.010
$x_1^{\star}(\lambda)$ (in %)	35.82	35.55	27.90	24.28	10.00
$x_2^{\star}(\lambda)$ (in %)	33.08	30.61	15.00	15.00	15.00
$x_3^{\star}(\lambda)$ (in %)	77.62	72.35	33.36	22.86	20.00
$x_4^{\star}(\lambda)$ (in %)	-53.48	-48.00	-5.20	7.87	25.00
$x_5^{\star}(\lambda)$ (in %)	20.83	21.51	28.94	30.00	30.00
$x_6^{\star}(\lambda)$ (in %)	-13.87	-12.02	0.00	0.00	0.00
$\tau\left(x^{\star}\left(\lambda\right)\mid x^{(0)}\right)\;(\text{in }\%)$	203.04	187.02	62.51	34.27	0.00

Question 3.b

Using the bisection algorithm, find the optimal value of λ^* such that the two-way turnover is equal to 60%. Give the composition of x^* (λ^*).

The optimal solution is:

$$\lambda^{\star} = 0.00103$$

The optimal weights (in %) are equal to:

$$x^* = \begin{pmatrix} 27.23\% \\ 15.00\% \\ 32.77\% \\ -4.30\% \\ 29.30\% \\ 0.00\% \end{pmatrix}$$

The turnover $\tau (x^* \mid x^{(0)})$ is equal to 60%

Question 3.c

Same question when the two-way turnover is equal to 50%.

Thierry Roncalli

Asset Management (Lecture 5)

The optimal solution is:

$$\lambda^{\star} = 0.00119$$

The optimal weights (in %) are equal to:

$$x^* = \begin{pmatrix} 25.53\% \\ 15.00\% \\ 29.47\% \\ 0.00\% \\ 30.00\% \\ 0.00\% \end{pmatrix}$$

The turnover $\tau (x^* \mid x^{(0)})$ is equal to 50%

Question 3.d

What becomes the portfolio $x^*(\lambda)$ when $\lambda \to \infty$? How do you explain this result?

Thierry Roncalli

We notice that:

$$\lim_{\lambda \to \infty} x^{\star} \left(\lambda \right) = x^{(0)}$$

This is normal since we have:

$$x^{\star}(\lambda) = \arg\min \frac{1}{2} x^{\top} \Sigma x + \lambda \sum_{i=1}^{n} \left| x_i - x_i^{(0)} \right|$$

s.t. $\sum_{i=1}^{n} x_i = 1$

We deduce that:

$$x^{\star}(\infty) = \arg\min \sum_{i=1}^{n} \left| x_i - x_i^{(0)} \right|$$

s.t. $\sum_{i=1}^{n} x_i = 1$

The solution is $x^*(\infty) = x^{(0)}$

Main references

BECK, A. (2017)

First-Order Methods in Optimization, MOS-SIAM Series on Optimization, 25, SIAM.

Machine Learning for Factor Investing, Chapman and Hall/CRC Financial Mathematics Series.

PERRIN, S., and RONCALLI, T. (2020)

Machine Learning Algorithms and Portfolio Optimization, in Jurczenko, E. (Ed.), *Machine Learning in Asset Management: New Developments and Financial Applications*, Wiley, pp. 261-328, arxiv.org/abs/1909.10233.

Thierry Roncalli Asset Management (Lecture 5) 200 / 2

References I

BOURGERON, T., LEZMI, E., and RONCALLI, T. (2018)

Robust Asset Allocation for Robo-Advisors, arXiv, arxiv.org/abs/1902.07449.

BOYD, S., PARIKH, N., CHU, E., PELEATO, B., and ECKSTEIN, J. (2010)

Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Foundations and Trends® in Machine learning, 3(1), pp. 1-122.

GABAY, D., and MERCIER, B. (1976)

A Dual Algorithm for the Solution of Nonlinear Variational Problems via Finite Element Approximation, Computers & Mathematics with *Applications*, 2(1), pp. 17-40.

References II

- GONZALVEZ, J., LEZMI, E., RONCALLI, T., and XU, J. (2019) Financial Applications of Gaussian Processes and Bayesian Optimization, arXiv, arxiv.org/abs/1903.04841.
- GRIVEAU-BILLION, T., RICHARD, J-C., and RONCALLI, T. (2013)
 A Fast Algorithm for Computing High-dimensional Risk Parity
 Portfolios, SSRN, www.ssrn.com/abstract=2325255.
- Jurczenko, E. (2020)

 Machine Learning in Asset Management: New Developments and Financial Applications, Wiley.
- KONDRATYEV, A., and SCHWARZ, C. (2020)
 The Market Generator, SSRN, www.ssrn.com/abstract=3384948.

References III

LEZMI, E., ROCHE, J., RONCALLI, T., and Xu, J. (2020)

Improving the Robustness of Trading Strategy Backtesting with Boltzmann Machines and Generative Adversarial Networks, arXiv, https://arxiv.org/abs/2007.04838.

PARIKH, N., and BOYD, S. (2014)

Proximal Algorithms, Foundations and Trends® in Optimization, 1(3), pp. 127-239.

TIBSHIRANI, R. (1996)

Regression Shrinkage and Selection via the Lasso, Journal of the Royal Statistical Society B, 58(1), pp. 267-288.

References IV

TIBSHIRANI, R.J. (2017)

Dykstra's Algorithm, ADMM, and Coordinate Descent: Connections, Insights, and Extensions, in Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R. (Eds), *Advances in Neural Information Processing Systems*, 30, pp. 517-528.

TSENG, P. (2001)

Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization, *Journal of Optimization Theory and Applications*, 109(3), pp. 475-494.