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General information

1 Overview
The objective of this course is to understand the theoretical and
practical aspects of asset management

2 Prerequisites
M1 Finance or equivalent

3 ECTS
3

4 Keywords
Finance, Asset Management, Optimization, Statistics

5 Hours
Lectures: 24h, HomeWork: 30h

6 Evaluation
Project + oral examination

7 Course website
www.thierry-roncalli.com/AssetManagementCourse.html
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Objective of the course

The objective of the course is twofold:

1 having a financial culture on asset management

2 being proficient in quantitative portfolio management
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Class schedule

Course sessions

January 12 (6 hours, AM+PM)

January 19 (6 hours, AM+PM)

January 26 (6 hours, AM+PM)

February 2 (6 hours, AM+PM)

Class times: Fridays 9:00am-12:00pm, 1:00pm–4:00pm, University of Evry
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Agenda

Lecture 1: Portfolio Optimization

Lecture 2: Risk Budgeting

Lecture 3: Smart Beta, Factor Investing and Alternative Risk Premia

Lecture 4: Equity Portfolio Optimization with ESG Scores

Lecture 5: Climate Portfolio Construction

Lecture 6: Equity and Bond Portfolio Optimization with Green
Preferences

Lecture 7: Machine Learning in Asset Management
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Textbook (Asset Management)

Roncalli, T. (2013), Introduction to Risk Parity and Budgeting,
Chapman & Hall/CRC Financial Mathematics Series.
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Textbook (Sustainable Finance)

Roncalli, T. (2024), Handbook of Sustainable Finance.
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Additional materials

Slides, tutorial exercises and past exams can be downloaded at the
following address:

www.thierry-roncalli.com/AssetManagementCourse.html

Solutions of exercises can be found in the companion book, which can
be downloaded at the following address:

http://www.thierry-roncalli.com/RiskParityBook.html
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Agenda

Lecture 1: Portfolio Optimization

Lecture 2: Risk Budgeting

Lecture 3: Smart Beta, Factor Investing and Alternative Risk Premia

Lecture 4: Equity Portfolio Optimization with ESG Scores

Lecture 5: Climate Portfolio Construction

Lecture 6: Equity and Bond Portfolio Optimization with Green
Preferences

Lecture 7: Machine Learning in Asset Management
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Prologue

Machine learning is a hot topic in asset management (and more
generally in finance)

Machine learning and data mining are two sides of the same coin

backtesting performance 6= live performance

Reaching for the stars: a complex/complicated process does not mean
a good solution

Don’t forget the 3 rules in asset management

1 It is difficult to make money

2 It is difficult to make money

3 It is difficult to make money
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Prologue

In this lecture, we focus on ML optimization algorithms, because they
have proved their worth

We have no time to study classical ML methods that can be used by
quants to build investment strategies2

2Don’t believe that they are always significantly better than standard statistical
approaches!!!
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Standard optimization algorithms
Machine learning optimization algorithms
Application to portfolio allocation

Standard optimization algorithms

Gradient descent methods

Conjugate gradient (CG) methods (Fletcher–Reeves, Polak–Ribiere,
etc.)

Quasi-Newton (QN) methods (NR, BFGS, DFP, etc.)

Quadratic programming (QP) methods

Sequential QP methods

Interior-point methods
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Standard optimization algorithms

We consider the following unconstrained minimization problem:

x? = arg min
x

f (x) (1)

where x ∈ Rn and f (x) is a continuous, smooth and convex function

In order to find the solution x?, optimization algorithms use iterative
algorithms:

x (k+1) = x (k) + ∆x (k)

= x (k) − η(k)D(k)

where:

x (0) is the vector of starting values
x (k) is the approximated solution of Problem (1) at the kth iteration
η(k) > 0 is a scalar that determines the step size
D(k) is the direction
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Standard optimization algorithms

Gradient descent:

D(k) = ∇f
(
x (k)

)
=
∂ f
(
x (k)

)
∂ x

Newton-Raphson method:

D(k) =
(
∇2f

(
x (k)

))−1

∇f
(
x (k)

)
=

(
∂2 f

(
x (k)

)
∂ x ∂ x>

)−1
∂ f
(
x (k)

)
∂ x

Quasi-Newton method:

D(k) = H(k)∇f
(
x (k)

)
where H(k) is an approximation of the inverse of the Hessian matrix
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Standard optimization algorithms

What are the issues?

1 How to solve large-scale optimization problems?

2 How to solve optimization problems where there are multiple
solutions?

3 How to just find an “acceptable” solution?

The case of neural networks and deep learning

⇒ Standard approaches are not well adapted
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Machine learning optimization algorithms

Machine learning problems

Non-smooth objective function

Non-unique solution

Large-scale dimension

Optimization in machine learning requires

to reinvent numerical optimization
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Machine learning optimization algorithms

We consider 4 methods:

Cyclical coordinate descent (CCD)

Alternative direction method of multipliers (ADMM)

Proximal operators (PO)

Dykstra’s algorithm (DA)
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Coordinate descent methods

The fall and the rise of the steepest descent method

In the 1980s:

Conjugate gradient methods (Fletcher–Reeves, Polak–Ribiere, etc.)

Quasi-Newton methods (NR, BFGS, DFP, etc.)

In the 1990s:

Neural networks

Learning rules: Descent, Momentum/Nesterov and Adaptive learning
methods

In the 2000s:

Gradient descent (by observations): Batch gradient descent (BGD),
Stochatic gradient descent (SGD), Mini-batch gradient descent
(MGD)

Gradient descent (by parameters): Coordinate descent (CD), cyclical
coordinate descent (CCD), Random coordinate descent (RCD)
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Coordinate descent methods

Descent method

The descent algorithm is defined by the following rule:

x (k+1) = x (k) + ∆x (k) = x (k) − η(k)D(k)

At the kth Iteration, the current solution x (k) is updated by going in the
opposite direction to D(k) (generally, we set D(k) = ∂x f

(
x (k)

)
)

Coordinate descent method

Coordinate descent is a modification of the descent algorithm by
minimizing the function along one coordinate at each step:

x
(k+1)
i = x

(k)
i + ∆x

(k)
i = x

(k)
i − η(k)D

(k)
i

⇒ The coordinate descent algorithm becomes a scalar problem
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Coordinate descent methods

Choice of the variable i

1 Random coordinate descent (RCD)
We assign a random number between 1 and n to the index i
(Nesterov, 2012)

2 Cyclical coordinate descent (CCD)
We cyclically iterate through the coordinates (Tseng, 2001):

x
(k+1)
i = arg min

x
f
(
x

(k+1)
1 , . . . , x

(k+1)
i−1 , x , x

(k)
i+1, . . . , x

(k)
n

)
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Cyclical coordinate descent (CCD)

Example 1

We consider the following function:

f (x1, x2, x3) = (x1 − 1)2 + x2
2 − x2 + (x3 − 2)4 ex1−x2+3

We have:

D1 =
∂ f (x1, x2, x3)

∂ x1
= 2 (x1 − 1) + (x3 − 2)4 ex1−x2+3

D2 =
∂ f (x1, x2, x3)

∂ x2
= 2x2 − 1− (x3 − 2)4 ex1−x2+3

D3 =
∂ f (x1, x2, x3)

∂ x3
= 4 (x3 − 2)3 ex1−x2+3
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Cyclical coordinate descent (CCD)

The CCD algorithm is defined by the following iterations:

x
(k+1)
1 = x

(k)
1 − η(k)

(
2
(
x

(k)
1 − 1

)
+
(
x

(k)
3 − 2

)4

ex
(k)
1 −x

(k)
2 +3

)
x

(k+1)
2 = x

(k)
2 − η(k)

(
2x

(k)
2 − 1−

(
x

(k)
3 − 2

)4

ex
(k+1)
1 −x

(k)
2 +3

)
x

(k+1)
3 = x

(k)
3 − η(k)

(
4
(
x

(k)
3 − 2

)3

ex
(k+1)
1 −x

(k+1)
2 +3

)
We have the following scheme:(

x
(0)
1 , x

(0)
2 , x

(0)
3

)
→ x

(1)
1 →

(
x

(1)
1 , x

(0)
2 , x

(0)
3

)
→ x

(1)
2 →

(
x

(1)
1 , x

(1)
2 , x

(0)
3

)
→ x

(1)
3 →(

x
(1)
1 , x

(1)
2 , x

(1)
3

)
→ x

(2)
1 →

(
x

(2)
1 , x

(1)
2 , x

(1)
3

)
→ x

(2)
2 →

(
x

(2)
1 , x

(2)
2 , x

(1)
3

)
→ x

(2)
3 →(

x
(2)
1 , x

(2)
2 , x

(2)
3

)
→ x

(3)
1 → . . .
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Cyclical coordinate descent (CCD)

Table 1: Solution obtained with the CCD algorithm (η(k) = 0.25)

k x
(k)
1 x

(k)
2 x

(k)
3 D

(k)
1 D

(k)
2 D

(k)
3

0 1.0000 1.0000 1.0000
1 -4.0214 0.7831 1.1646 20.0855 0.8675 -0.6582
2 -1.5307 0.8834 2.2121 -9.9626 -0.4013 -4.1902
3 -0.2663 0.6949 2.1388 -5.0578 0.7540 0.2932
4 0.3661 0.5988 2.0962 -2.5297 0.3845 0.1703
5 0.6827 0.5499 2.0758 -1.2663 0.1957 0.0818
6 0.8412 0.5252 2.0638 -0.6338 0.0989 0.0480
7 0.9205 0.5127 2.0560 -0.3172 0.0498 0.0314
8 0.9602 0.5064 2.0504 -0.1588 0.0251 0.0222
9 0.9800 0.5033 2.0463 -0.0795 0.0126 0.0166
∞ 1.0000 0.5000 2.0000 0.0000 0.0000 0.0000
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The lasso revolution

Least absolute shrinkage and selection operator (lasso)

The lasso method consists in adding a `1 penalty function to the least
square problem:

β̂lasso (τ) = arg min
1

2
(Y − Xβ)> (Y − Xβ)

s.t. ‖β‖1 =
m∑

j=1

|βj | ≤ τ

This problem is equivalent to:

β̂lasso (λ) = arg min
1

2
(Y − Xβ)> (Y − Xβ) + λ ‖β‖1

We have:
τ =

∥∥∥β̂lasso (λ)
∥∥∥

1
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Solving the lasso regression problem

We introduce the parametrization:

β =
(
Im −Im

)( β+

β−

)
= β+ − β−

under the constraints β+ ≥ 0m and β− ≥ 0m. We deduce that:

‖β‖1 =
m∑

j=1

∣∣∣β+
j − β

−
j

∣∣∣ =
m∑

j=1

∣∣∣β+
j

∣∣∣+
m∑

j=1

∣∣∣β−j ∣∣∣ = 1>mβ
+ + 1>mβ

−
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Solving the lasso regression problem

Augmented QP program of the lasso regression (λ-problem)

The augmented QP program is specified as follows:

θ̂ = arg min
1

2
θ>Qθ − θ>R

s.t. θ ≥ 02m

where θ = (β+, β−), X̃ =
(
X −X

)
, Q = X̃>X̃ and

R = X̃>Y + λ12m. If we denote T =
(
Im −Im

)
, we obtain:

β̂lasso (λ) = T θ̂
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Solving the lasso regression problem

Augmented QP program of the lasso regression (τ -problem)

If we consider the τ -problem, we obtain another augmented QP program:

θ̂ = arg min
1

2
θ>Qθ − θ>R

s.t.

{
Cθ ≤ D
θ ≥ 02m

where Q = X̃>X̃ , R = X̃>Y , C = 1>2m and D = τ . Again, we have:

β̂ (τ) = T θ̂
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Solving the lasso regression problem

We consider the linear regression:

Y = Xβ + ε

where Y is a n × 1 vector, X is a n ×m matrix and β is a m × 1 vector.
The optimization problem is:

β̂ = arg min f (β) =
1

2
(Y − Xβ)> (Y − Xβ)

Since we have ∂β f (β) = −X> (Y − Xβ)), we deduce that:

∂ f (β)

∂ βj
= x>j (Xβ − Y )

= x>j
(
xjβj + X(−j)β(−j) − Y

)
= x>j xjβj + x>j X(−j)β(−j) − x>j Y

where xj is the n × 1 vector corresponding to the jth variable and X(−j) is

the n × (m − 1) matrix (without the jth variable)
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Solving the lasso regression problem

At the optimum, we have ∂βj f (β) = 0 or:

βj =
x>j Y − x>j X(−j)β(−j)

x>j xj
=

x>j
(
Y − X(−j)β(−j)

)
x>j xj

CCD algorithm for the linear regression

We have:

β
(k+1)
j =

x>j

Y −
j−1∑
j′=1

xj′β
(k+1)
j′ −

m∑
j′=j+1

xj′β
(k)
j′


x>j xj

⇒ Introducing pointwise constraints is straightforward
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Solving the lasso regression problem

The objective function becomes:

f (β) =
1

2
(Y − Xβ)> (Y − Xβ) + λ ‖β‖1

= fOLS (β) + λ ‖β‖1

Since the norm is separable — ‖β‖1 =
∑m

j=1 |βj |, the first-order condition
is:

∂ fOLS (β)

∂ βj
+ λ∂ |βj | = 0

or: (
x>j xj

)︸ ︷︷ ︸
c

βj − x>j
(
Y − X(−j)β(−j)

)︸ ︷︷ ︸
v

+ λ∂ |βj | = 0
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Derivation of the soft-thresholding operator

We consider the following equation:

cβj − v + λ∂ |βj | ∈ {0}

where c > 0 and λ > 0. Since we have ∂ |βj | = sign (βj ), we deduce that:

β?j =


c−1 (v + λ) if β?j < 0
0 if β?j = 0
c−1 (v − λ) if β?j > 0

If β?j < 0 or β?j > 0, then we have v + λ < 0 or v − λ > 0. This is
equivalent to set |v | > λ > 0. The case β?j = 0 implies that |v | ≤ λ. We
deduce that:

β?j = c−1 · S (v ;λ)

where S (v ;λ) is the soft-thresholding operator:

S (v ;λ) =

{
0 if |v | ≤ λ
v − λ sign (v) otherwise

= sign (v) · (|v | − λ)+

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 31 / 205



Portfolio optimization
Pattern learning and self-automated strategies

Market generators
Tutorial exercises

Standard optimization algorithms
Machine learning optimization algorithms
Application to portfolio allocation

Solving the lasso regression problem

CCD algorithm for the lasso regression

We have:

β
(k+1)
j =

1

x>j xj
S

x>j

Y −
j−1∑
j′=1

xj′β
(k+1)
j′ −

m∑
j′=j+1

xj′β
(k)
j′

 ;λ


where S (v ;λ) is the soft-thresholding operator:

S (v ;λ) = sign (v) · (|v | − λ)+
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Solving the lasso regression problem

Table 2: Matlab code'

&

$

%

for k = 1:nIters

for j = 1:m

x_j = X(:,j);

X_j = X;

X_j(:,j) = zeros(n,1);

if lambda > 0

v = x_j’*(Y - X_j*beta);

beta(j) = max(abs(v) - lambda,0) * sign(v) / (x_j’*x_j);

else

beta(j) = x_j’*(Y - X_j*beta) / (x_j’*x_j);

end

end

end
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Solving the lasso regression problem

Example 2

We consider the following data:

i y x1 x2 x3 x4 x5

1 3.1 2.8 4.3 0.3 2.2 3.5
2 24.9 5.9 3.6 3.2 0.7 6.4
3 27.3 6.0 9.6 7.6 9.5 0.9
4 25.4 8.4 5.4 1.8 1.0 7.1
5 46.1 5.2 7.6 8.3 0.6 4.5
6 45.7 6.0 7.0 9.6 0.6 0.6
7 47.4 6.1 1.0 8.5 9.6 8.6
8 −1.8 1.2 9.6 2.7 4.8 5.8
9 20.8 3.2 5.0 4.2 2.7 3.6

10 6.8 0.5 9.2 6.9 9.3 0.7
11 12.9 7.9 9.1 1.0 5.9 5.4
12 37.0 1.8 1.3 9.2 6.1 8.3
13 14.7 7.4 5.6 0.9 5.6 3.9
14 −3.2 2.3 6.6 0.0 3.6 6.4
15 44.3 7.7 2.2 6.5 1.3 0.7
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Solving the lasso regression problem

0 1 2 3 4 5 6

-0.5

0

0.5

1

1.5

2

2.5

3

Figure 1: Convergence of the CCD algorithm (lasso regression, λ = 2)

Note: we start the CCD algorithm with β
(0)
j = 0 (don’t forget to standardize the data!)
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Solving the lasso regression problem

1 The dimension problem is (2m, 2m) for QP and (1, 0) for CCD!

2 CCD is faster for lasso regression than for linear regression (because
of the soft-thresholding operator)!

Suppose n = 50 000 and m = 1 000 000 (DNA sequence problem!)
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Solving the lasso regression problem

Example 3

We consider an experiment with n = 100 000 observations and
m = 50 variables.

The design matrix X is built using the uniform distribution while the
residuals are simulated using a Gaussian distribution and a standard
deviation of 20%.

The beta coefficients are distributed uniformly between −3 and +3
except four coefficients that take a larger value.

We then standardize the data of X and Y .

For initializing the coordinates, we use uniform random numbers
between −1 and +1.
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Solving the lasso regression problem
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Figure 2: Convergence of the CCD algorithm (lasso vs linear regression)
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Alternative direction method of multipliers

Definition

The alternating direction method of multipliers (ADMM) is an algorithm
introduced by Gabay and Mercier (1976) to solve optimization problems
which can be expressed as:

{x?, y?} = arg min
(x,y)

fx (x) + fy (y)

s.t. Ax + By = c

The algorithm is:

x (k+1) = arg min
x

{
fx (x) +

ϕ

2

∥∥∥Ax + By (k) − c + u(k)
∥∥∥2

2

}
y (k+1) = arg min

y

{
fy (y) +

ϕ

2

∥∥∥Ax (k+1) + By − c + u(k)
∥∥∥2

2

}
u(k+1) = u(k) +

(
Ax (k+1) + By (k+1) − c

)
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Alternative direction method of multipliers

What is the underlying idea?

Minimizing fx (x) + fy (y) with respect to (x , y) is a difficult task

Minimizing

gx (x) = fx (x) +
ϕ

2
‖Ax + By − c‖2

2

with respect to x and minimizing

gy (y) = fy (y) +
ϕ

2
‖Ax + By − c‖2

2

with respect to y is easier
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Alternative direction method of multipliers

We use the following notations:

f
(k+1)

x (x) is the objective function of the x-update step:

f (k+1)
x (x) = fx (x) +

ϕ

2

∥∥∥Ax + By (k) − c + u(k)
∥∥∥2

2

f
(k+1)

y (y) is the objective function of the y -update step:

f (k+1)
y (y) = fy (y) +

ϕ

2

∥∥∥Ax (k+1) + By − c + u(k)
∥∥∥2

2
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Alternative direction method of multipliers

When A = In and B = −In, we have:
1

Ax + By (k) − c + u(k) = x − y (k) − c + u(k) = x − v (k+1)
x

where:
v (k+1)

x = y (k) + c − u(k)

2

Ax (k+1) + By − c + u(k) = x (k+1) − y − c + u(k) = v (k+1)
y − y

where:
v (k+1)

y = x (k+1) − c + u(k)

3

f (k+1)
x (x) = fx (x) +

ϕ

2

∥∥∥x − v (k+1)
x

∥∥∥2

2

f (k+1)
y (y) = fy (y) +

ϕ

2

∥∥∥y − v (k+1)
y

∥∥∥2

2
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Alternative direction method of multipliers

We consider a problem of the form:

x? = arg min
x

g (x)

The idea is then to write g (x) as a separable function:

g (x) = g1 (x) + g2 (x)

and to consider the following equivalent ADMM problem:

{x?, y?} = arg min
(x,y)

fx (x) + fy (y)

s.t. x = y

where fx (x) = g1 (x) and fy (y) = g2 (y)
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Alternative direction method of multipliers

We consider a problem of the form:

x? = arg min
x

g (x)

s.t. x ∈ Ω

We have:

{x?, y?} = arg min
(x,y)

fx (x) + fy (y)

s.t. x = y

where fx (x) = g (x), fy (y) = 1Ω (y) and:

1Ω (y) =

{
0 if y ∈ Ω
+∞ if y /∈ Ω
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Alternative direction method of multipliers

Special case

Ω =
{
x : x− ≤ x ≤ x+

}
By setting ϕ = 1, the y -step becomes:

y (k+1) = arg min

{
1Ω (y) +

1

2

∥∥∥x (k+1) − y + u(k)
∥∥∥2

2

}
= proxfy

(
x (k+1) + u(k)

)
where the proximal operator is the box projection or the truncation
operator:

proxfy
(v) = x− � 1

{
v < x−

}
+

v � 1
{
x− ≤ v ≤ x+

}
+

x+ � 1
{
v > x+

}
= T

(
v ; x−, x+

)
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Alternative direction method of multipliers

Special case

Ω =
{
x : x− ≤ x ≤ x+

}
The ADMM algorithm is then:

x (k+1) = arg min

{
g (x) +

1

2

∥∥∥x − y (k) + u(k)
∥∥∥2

2

}
y (k+1) = proxfy

(
x (k+1) + u(k)

)
u(k+1) = u(k) +

(
x (k+1) − y (k+1)

)
⇒ Solving the constrained optimization problem consists in solving the
unconstrained optimization problem, applying the box projection and
iterating these steps until convergence
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Alternative direction method of multipliers

Lasso regression

The λ-problem of the lasso regression has the following ADMM
formulation:{

β?, β̄?
}

= arg min
1

2
(Y − Xβ)>(Y − Xβ) + λ‖β̄‖1

s.t. β − β̄ = 0m

We have:

fx (β) =
1

2
(Y − Xβ)>(Y − Xβ)

=
1

2
β>
(
X>X

)
β − β>

(
X>Y

)
+

1

2
Y>Y

and:
fy
(
β̄
)

= λ‖β̄‖1
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Alternative direction method of multipliers

The x-step is:

β(k+1) = arg min
β

{
1

2
β>
(
X>X

)
β − β>

(
X>Y

)
+
ϕ

2

∥∥∥β − β̄(k) + u(k)
∥∥∥2

2

}
Since we have:

ϕ

2

∥∥∥β − β̄(k) + u(k)
∥∥∥2

2
=

ϕ

2
β>β − ϕβ>

(
β̄(k) − u(k)

)
+

ϕ

2

(
β̄(k) − u(k)

)> (
β̄(k) − u(k)

)
we deduce that the x-update is a standard QP problem where:

f (k+1)
x (β) =

1

2
β>
(
X>X + ϕIm

)
β − β>

(
X>Y + ϕ

(
β̄(k) − u(k)

))
It follows that the solution is:

β(k+1) = arg min f (k+1)
x (β)

=
(
X>X + ϕIm

)−1
(
X>Y + ϕ

(
β̄(k) − u(k)

))
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Alternative direction method of multipliers

The y -step is:

β̄(k+1) = arg min
β̄

{
λ‖β̄‖1 +

ϕ

2

∥∥∥β(k+1) − β̄ + u(k)
∥∥∥2

2

}
= arg min

{
1

2

∥∥∥β̄ − (β(k+1) + u(k)
)∥∥∥2

2
+
λ

ϕ
‖β̄‖1

}
We recognize the soft-thresholding problem with v = β(k+1) + u(k). We
have:

β̄(k+1) = S
(
β(k+1) + u(k);ϕ−1λ

)
where:

S (v ;λ) = sign (v) · (|v | − λ)+
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Alternative direction method of multipliers

ADMM-Lasso algorithm (Boyd et al., 2011)

Finally, the ADMM algorithm is made up of the following steps: β(k+1) =
(
X>X + ϕIm

)−1 (
X>Y + ϕ

(
β̄(k) − u(k)

))
β̄(k+1) = S

(
β(k+1) + u(k);ϕ−1λ

)
u(k+1) = u(k) +

(
β(k+1) − β̄(k+1)

)
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Alternative direction method of multipliers
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Figure 3: Convergence of the ADMM algorithm (Example 3, λ = 900)

Note: the initial values are the OLS estimates and we set ϕ = λ
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Alternative direction method of multipliers

In practice, we use a time-varying parameter ϕ(k) (see Perrin and Roncalli,
2020).

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 52 / 205



Portfolio optimization
Pattern learning and self-automated strategies

Market generators
Tutorial exercises

Standard optimization algorithms
Machine learning optimization algorithms
Application to portfolio allocation

Proximal operator

Definition

The proximal operator proxf (v) of the function f (x) is defined by:

proxf (v) = x? = arg min
x

{
fv (x) = f (x) +

1

2
‖x − v‖2

2

}
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Proximal operator

Example 4

We consider the scalar-valued logarithmic barrier function f (x) = −λ ln x
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Proximal operator

We have:

fv (x) = −λ ln x +
1

2
(x − v)2

= −λ ln x +
1

2
x2 − xv +

1

2
v2

The first-order condition is −λx−1 + x − v = 0. We obtain two roots with
opposite signs:

x ′ =
v −
√
v2 + 4λ

2
and x ′′ =

v +
√
v2 + 4λ

2

Since the logarithmic function is defined for x > 0, we deduce that:

proxf (v) =
v +
√
v2 + 4λ

2
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Proximal operator

In the case where f (x) = 1Ω (x), we have:

proxf (v) = arg min
x

{
1Ω (x) +

1

2
‖x − v‖2

2

}
= arg min

x∈Ω

{
‖x − v‖2

2

}
= PΩ (v)

where PΩ (v) is the standard projection of v onto Ω
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Proximal operator

Table 3: Projection for some simple polyhedra

Notation Ω PΩ (v)
Affineset [A,B] Ax = B v − A† (Av − B)

Hyperplane [a, b] a>x = b v −
(
a>v − b

)
‖a‖2

2

a

Halfspace [c , d ] c>x ≤ d v −
(
c>v − d

)
+

‖c‖2
2

c

Box [x−, x+] x− ≤ x ≤ x+ T (v ; x−, x+)

Source: Parikh and Boyd (2014)

Note: A† is the Moore-Penrose pseudo-inverse of A, and T
(

v ; x−, x+
)

is the truncation operator

Remark: No analytical formula for the (multi-dimensional) inequality constraint Cx ≤ D ⇒ it may

be solved using the Dykstra’s algorithm
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Proximal operator

Separable sum

If f (x) =
∑n

i=1 fi (xi ) is fully separable, then the proximal of f (v) is the
vector of the proximal operators applied to each scalar-valued function
fi (xi ):

proxf (v) =

 proxf1
(v1)

...
proxfn

(vn)
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Proximal operator

If f (x) = −λ ln x , we have:

proxf (v) =
v +
√
v2 + 4λ

2

In the case of the vector-valued logarithmic barrier f (x) = −λ
∑n

i=1 ln xi ,
we deduce that:

proxf (v) =
v +
√
v � v + 4λ

2
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Proximal operator

Moreau decomposition theorem

We have:
proxf (v) + proxf ∗ (v) = v

where f ∗ is the convex conjugate of f .

Application

If f (x) is a `q-norm function, then f ∗ (x) = 1Bp (x) where Bp is the `p

unit ball and p−1 + q−1 = 1. Since we have proxf ∗ (v) = PBp (v), we
deduce that:

proxf (v) + PBp (v) = v

The proximal of the `p-ball can be deduced from the proximal operator of
the `q-norm function.
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Proximal operator

Table 4: Proximal of the `p-norm function f (x) = ‖x‖p

p proxλf (v)
p = 1 S (v ;λ) = sign (v)� (|v | − λ1n)+

p = 2

(
1− λ

max (λ, ‖v‖2)

)
v

p =∞ sign (v)� proxλmax x (|v |)

We have:
proxλmax x (v) = min (v , s?)

where s? is the solution of the following equation:

s? =

{
s ∈ R :

n∑
i=1

(vi − s)+ = λ

}
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Proximal operator

Table 5: Proximal of the `p-ball Bp (c, λ) =
{
x ∈ Rn : ‖x − c‖p ≤ λ

}
when c is

equal to 0n

p PBp(0n,λ) (v) q
p = 1 v − sign (v)� proxλmax x (|v |) q =∞
p = 2 v − proxλ‖x‖2

(v) q = 2

p =∞ T (v ;−λ, λ) q = 1
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Proximal operator

Scaling and translation

Let us define g (x) = f (ax + b) where a 6= 0. We have:

proxg (v) =
proxa2f (av + b)− b

a

Application

We can use this property when the center c of the `p ball is not equal to
0n. Since we have proxg (v) = proxf (v − c) + c where g (x) = f (x − c)
and the equivalence Bp (0n, λ) = {x ∈ Rn : f (x) ≤ λ} where
f (x) = ‖x‖p, we deduce that:

PBp(c,λ) (v) = PBp(0n,λ) (v − c) + c
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Application to the τ -problem of the lasso regression

We have:

β̂ (τ) = arg min
β

1

2
(Y − Xβ)> (Y − Xβ)

s.t. ‖β‖1 ≤ τ

The ADMM formulation is:{
β?, β̄?

}
= arg min

(β,β̄)

1

2
(Y − Xβ)> (Y − Xβ) + 1Ω

(
β̄
)

s.t. β = β̄

where Ω = B1 (0m, τ) is the centered `1 ball with radius τ
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Application to the τ -problem of the lasso regression

1 The x-update is:

β(k+1) = arg min
β

{
1

2
(Y − Xβ)> (Y − Xβ) +

ϕ

2

∥∥∥β − β̄(k) + u(k)
∥∥∥2

2

}
=

(
X>X + ϕIm

)−1
(
X>Y + ϕ

(
β̄(k) − u(k)

))
where v

(k+1)
x = β̄(k) − u(k)
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Application to the τ -problem of the lasso regression

2 The y -update is:

β̄(k+1) = arg min
β̄

{
1Ω

(
β̄
)

+
ϕ

2

∥∥∥β(k+1) − β̄ + u(k)
∥∥∥2

2

}
= proxfy

(
β(k+1) + u(k)

)
= PΩ

(
v (k+1)

y

)
= v (k+1)

y − sign
(
v (k+1)

y

)
� proxτ max x

(∣∣∣v (k+1)
y

∣∣∣)
where v

(k+1)
y = β(k+1) + u(k)
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Application to the τ -problem of the lasso regression

3 The u-update is:

u(k+1) = u(k) + β(k+1) − β̄(k+1)
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Application to the τ -problem of the lasso regression

ADMM-Lasso algorithm

The ADMM algorithm is :
β(k+1) =

(
X>X + ϕIm

)−1 (
X>Y + ϕ

(
β̄(k) − u(k)

))
β̄(k+1) =

{
S
(
β(k+1) + u(k);ϕ−1λ

)
(λ-problem)

PB1(0m,τ)

(
β(k+1) + u(k)

)
(τ -problem)

u(k+1) = u(k) +
(
β(k+1) − β̄(k+1)

)

Remark

The ADMM algorithm is similar for λ- and τ -problems since the only
difference concerns the y -step. However, the τ -problem is easier to solve
with the ADMM algorithm from a practical point of view, because the
y -update of the τ -problem is independent of the penalization parameter ϕ.
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Derivation of the soft-thresholding operator

We consider the following equation:

cx − v + λ∂ |x | ∈ 0

where c > 0 and λ > 0. Since we have ∂ |x | = sign (x), we deduce that:

x? =

 c−1 (v + λ) if x? < 0
0 if x? = 0
c−1 (v − λ) if x? > 0

If x? < 0 or x? > 0, then we have v + λ < 0 or v − λ > 0. This is
equivalent to set |v | > λ > 0. The case x? = 0 implies that |v | ≤ λ. We
deduce that:

x? = c−1 · S (v ;λ)

where S (v ;λ) is the soft-thresholding operator:

S (v ;λ) =

{
0 if |v | ≤ λ
v − λ sign (v) otherwise

= sign (v) · (|v | − λ)+
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Derivation of the soft-thresholding operator

We use the result on the separable sum

Remark

If f (x) = λ ‖x‖1, we have f (x) = λ
∑n

i=1 |xi | and fi (xi ) = λ |xi |. We
deduce that the proximal operator of f (x) is the vector formulation of the
soft-thresholding operator:

proxλ‖x‖1
(v) =

 sign (v1) · (|v1| − λ)+
...

sign (vn) · (|vn| − λ)+

 = sign (v)� (|v | − λ1n)+

The soft-thresholding operator is the proximal operator of the `1-norm
f (x) = ‖x‖1. Indeed, we have proxf (v) = S (v ; 1) and
proxλf (v) = S (v ;λ).
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Dykstra’s algorithm

We consider the following optimization problem:

x? = arg min fx (x)

s.t. x ∈ Ω

where Ω is a complex set of constraints:

Ω = Ω1 ∩ Ω2 ∩ · · ·Ωm

We set y = x and fy (y) = 1Ω (y). The ADMM algorithm becomes

x (k+1) = arg min

{
fx (x) +

ϕ

2

∥∥∥x − y (k) + u(k)
∥∥∥2

2

}
v (k) = x (k+1) + u(k)

y (k+1) = PΩ

(
v (k)

)
u(k+1) = u(k) +

(
x (k+1) − y (k+1)

)
How to compute PΩ (v)?
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Dykstra’s algorithm

More generally, we consider the proximal optimization problem where the
function f (x) is the convex sum of basic functions fj (x):

x? = arg min
x


m∑

j=1

fj (x) +
1

2
‖x − v‖2

2


and the proximal of each basic function is known.

How to find the solution x??
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Dykstra’s algorithm
The case m = 2

We know the proximal solution of the `1-norm function
f1 (x) = λ1 ‖x‖1

We know the proximal solution of the logarithmic barrier function
f2 (x) = λ2

∑n
i=1 ln xi

We don’t know how to compute the proximal operator of
f (x) = f1 (x) + f2 (x):

x? = arg min
x

f1 (x) + f2 (x) +
1

2
‖x − v‖2

2

= proxf (v)
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Dykstra’s algorithm
The case m = 2

The Dykstra’s algorithm consists in the following iterations:
x (k+1) = proxf1

(
y (k) + p(k)

)
p(k+1) = y (k) + p(k) − x (k+1)

y (k+1) = proxf2

(
x (k+1) + q(k)

)
q(k+1) = x (k+1) + q(k) − y (k+1)

where x (0) = y (0) = v and p(0) = q(0) = 0n

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 74 / 205



Portfolio optimization
Pattern learning and self-automated strategies

Market generators
Tutorial exercises

Standard optimization algorithms
Machine learning optimization algorithms
Application to portfolio allocation

Dykstra’s algorithm
The case m = 2

This algorithm is related to the Douglas-Rachford splitting framework:
x(k+ 1

2 ) = proxf1

(
x (k) + p(k)

)
p(k+1) = p(k) −∆1/2x

(k+ 1
2 )

x (k+1) = proxf2

(
x(k+ 1

2 ) + q(k)
)

q(k+1) = q(k) −∆1/2x
(k+1)

where ∆hx
(k) = x (k) − x (k−h)
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Dykstra’s algorithm
The case m = 2

x (k−1) x (k) x (k+1) x (k+2)x(k− 1
2) x(k+ 1

2) x(k+ 3
2)

f1 (x) f1 (x) f1 (x)f2 (x) f2 (x) f2 (x)

p(k) p(k+1) p(k+2)

q(k) q(k+1) q(k+2)

Residual of f1 (x)

Residual of f2 (x)

Figure 4: Splitting method of the Dykstra’s algorithm
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Dykstra’s algorithm
The case m > 2

The case m > 2 is a generalization of the previous algorithm by
considering m residuals:

1 The x-update is:

x (k+1) = proxfj(k)

(
x (k) + z (k+1−m)

)
2 The z-update is:

z (k+1) = x (k) + z (k+1−m) − x (k+1)

where x (0) = v , z (k) = 0n for k < 0 and j (k) = mod (k + 1,m)
denotes the modulo operator taking values in {1, . . . ,m}

Remark

The variable x (k) is updated at each iteration while the residual z (k) is
updated every m iterations. This implies that the basic function fj (x) is
related to the residuals z (j), z (j+m), z (j+2m), etc.
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Dykstra’s algorithm
The case m > 2

Tibshirani (2017) proposes to write the Dykstra’s algorithm by using two
iteration indices k and j . The main index k refers to the cycle, whereas
the sub-index j refers to the constraint number

The Dykstra’s algorithm becomes:

1 The x-update is:

x (k+1,j) = proxfj

(
x (k+1,j−1) + z (k,j)

)
2 The z-update is:

z (k+1,j) = x (k+1,j−1) + z (k,j) − x (k+1,j)

where x (1,0) = v , z (k,j) = 0n for k = 0 and x (k+1,0) = x (k,m)
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Dykstra’s algorithm
The case m > 2

The Dykstra’s algorithm is particularly efficient when we consider the
projection problem:

x? = PΩ (v)

where:
Ω = Ω1 ∩ Ω2 ∩ · · · ∩ Ωm

Indeed, the Dykstra’s algorithm becomes:

1 The x-update is:

x (k+1,j) = proxfj

(
x (k+1,j−1) + z (k,j)

)
= PΩj

(
x (k+1,j−1) + z (k,j)

)
2 The z-update is:

z (k+1,j) = x (k+1,j−1) + z (k,j) − x (k+1,j)

where x (1,0) = v , z (k,j) = 0n for k = 0 and x (k+1,0) = x (k,m)
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Dykstra’s algorithm

Successive projections of PΩj

(
x (k+1,j−1)

)
do not work!

Successive projections of PΩj

(
x (k+1,j−1) + z (k,j)

)
do work!
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Dykstra’s algorithm

Table 6: Solving the proximal problem with linear inequality constraints

The goal is to compute the solution x? = proxf (v) where f (x) = 1Ω (x) and Ω = {x ∈ Rn : Cx ≤ D}
We initialize x (0,m) ← v
We set z (0,1) ← 0n, . . . , z

(0,m) ← 0n

k ← 0
repeat
x (k+1,0) ← x (k,m)

for j = 1 : m do
The x-update is:

x (k+1,j) = x (k+1,j−1) + z (k,j) −

(
c>(j)x

(k+1;j−1) + c>(j)z
(k,j) − d(j)

)
+∥∥c(j)

∥∥2

2

c(j)

The z-update is:
z (k+1,j) = x (k+1,j−1) + z (k,j) − x (k+1,j)

end for
k ← k + 1

until Convergence
return x? ← x (k,m)
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Dykstra’s algorithm

Table 7: Solving the proximal problem with general linear constraints

The goal is to compute the solution x? = proxf (v) where f (x) = 1Ω (x), Ω = Ω1 ∩ Ω2 ∩ Ω3, Ω1 =
{x ∈ Rn : Ax = B}, Ω2 = {x ∈ Rn : Cx ≤ D} and Ω3 = {x ∈ Rn : x− ≤ x ≤ x+}
We initialize x

(0)
m ← v

We set z
(0)
1 ← 0n, z

(0)
2 ← 0n and z

(0)
3 ← 0n

k ← 0
repeat

x
(k+1)
0 ← x

(k)
m

x
(k+1)
1 ← x

(k+1)
0 + z

(k)
1 − A†

(
Ax

(k+1)
0 + Az

(k)
1 − B

)
z

(k+1)
1 ← x

(k+1)
0 + z

(k)
1 − x

(k+1)
1

x
(k+1)
2 ← PΩ2

(
x

(k+1)
1 + z

(k)
2

)
I Previous algorithm

z
(k+1)
2 ← x

(k+1)
1 + z

(k)
2 − x

(k+1)
2

x
(k+1)
3 ← T

(
x

(k+1)
2 + z

(k)
3 ; x−, x+

)
z

(k+1)
3 ← x

(k+1)
2 + z

(k)
3 − x

(k+1)
3

k ← k + 1
until Convergence

return x? ← x
(k)
3
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Dykstra’s algorithm

Remark

Since we have:

1

2
‖x − v‖2

2 =
1

2
x>x − x>v +

1

2
v>v

the two previous problems can be cast into a QP problem:

x? = arg min
x

1

2
x>Inx − x>v

s.t. x ∈ Ω
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Dykstra’s algorithm

Dykstra’s algorithm versus QP algorithm

The vector v is defined by the elements vi = ln
(
1 + i2

)
The set of constraints is:

Ω =

{
x ∈ Rn :

n∑
i=1

xi ≤
1

2
,

n∑
i=1

e−ixi ≥ 0

}

Using a Matlab implementation, we find that the computational time
of the Dykstra’s algorithm when n is equal to 10 million is equal to
the QP algorithm when n is equal to 12 500!

The QP algorithm requires to store the matrix In — impossible when
n > 105. For instance, the size of In is equal to 7450.6 GB when
n = 106
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Table 8: Some objective functions used in portfolio optimization

Item Portfolio f (x) Reference
(1) MVO 1

2x
>Σx − γx>µ Markowitz (1952)

(2) GMV 1
2x
>Σx Jagganathan and Ma (2003)

(3) MDP ln
(√

x>Σx
)
− ln

(
x>σ

)
Choueifaty and Coignard (2008)

(4) KL
∑n

i=1 xi ln (xi/x̃i ) Bera and Park (2008)
(5) ERC 1

2x
>Σx − λ

∑n
i=1 ln xi Maillard et al. (2010)

(6) RB R (x)− λ
∑n

i=1RBi · ln xi Roncalli (2015)
(7) RQE 1

2x
>Dx Carmichael et al. (2018)
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Table 9: Some regularization penalties used in portfolio optimization

Item Regularization R (x) Reference

(8) Ridge λ ‖x − x̃‖2
2 DeMiguel et al. (2009)

(9) Lasso λ ‖x − x̃‖1 Brodie at al. (2009)
(10) Log-barrier −

∑n
i=1 λi ln xi Roncalli (2013)

(11) Shannon’s entropy λ
∑n

i=1 xi ln xi Yu et al. (2014)
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Table 10: Some constraints used in portfolio optimization

Item Constraint Ω
(12) No cash and leverage

∑n
i=1 xi = 1

(13) No short selling xi ≥ 0
(14) Weight bounds x−i ≤ xi ≤ x+

i

(15) Asset class limits c−j ≤
∑

i∈Cj
xi ≤ c+

j

(16) Turnover
∑n

i=1 |xi − x̃i | ≤ τ+

(17) Transaction costs
∑n

i=1

(
c−i (x̃i − xi )+ + c+

i (xi − x̃i )+

)
≤ ccc+

(18) Leverage limit
∑n

i=1 |xi | ≤ L+

(19) Long/short exposure −LS− ≤
∑n

i=1 xi ≤ LS+

(20) Benchmarking

√
(x − x̃)>Σ (x − x̃) ≤ σ+

(21) Tracking error floor

√
(x − x̃)> Σ (x − x̃) ≥ σ−

(22) Active share floor 1
2

∑n
i=1 |xi − x̃i | ≥ AS−

(23) Number of active bets
(
x>x

)−1 ≥ N−
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Most of portfolio optimization problems are a combination of:

1 an objective function (Table 8)

2 one or two regularization penalty functions (Table 9)

3 some constraints (Table 10)

Perrin and Roncalli (2020) solve all these problems using CCD, ADMM,
Dykstra and the appropriate proximal functions. For that, they derive:

the semi-analytical solution of the x-step for all objective functions

the proximal solution of the y -step for all regularization penalty
functions and constraints
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Herfindahl-MV optimization
Formulation of the mathematical problem

The second generation of minimum variance strategies uses a global
diversification constraint
The most popular solution is based on the Herfindahl index:

H (x) =
n∑

i=1

x2
i

The effective number of bets is the inverse of the Herfindahl index:

N (x) = H (x)−1

The optimization program is:

x? = arg min
x

1

2
x>Σx

s.t.

 1>n x = 1
0n ≤ x ≤ x+

N (x) ≥ N−

where N− is the minimum number of effective bets.
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Herfindahl-MV optimization
The QP solution

The Herfindhal constraint is equivalent to:

N (x) ≥ N− ⇔
(
x>x

)−1 ≥ N−

⇔ x>x ≤ 1

N−

The QP problem is:

x? (λ) = arg min
x

1

2
x>Σx + λx>x =

1

2
x> (Σ + 2λIn) x

s.t.

{
1>n x = 1
0n ≤ x ≤ x+

where λ ≥ 0 is a scalar

We have N (x) ∈ [N (x? (0)) , n]

The optimal value λ? is found using the bi-section algorithm such
that N (x? (λ)) = N−
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Herfindahl-MV optimization
The ADMM solution (first version)

The ADMM form is:

{x?, y?} = arg min
(x,y)

1

2
x>Σx + 1Ω1 (x) + 1Ω2 (y)

s.t. x = y

where Ω1 =
{
x ∈ Rn : 1>n x = 1, 0n ≤ x ≤ x+

}
and

Ω2 = B2

(
0n,
√

1
N−

)
The x-update is a QP problem:

x (k+1) = arg min
x

{
1

2
x> (Σ + ϕIn) x − ϕx>

(
y (k) − u(k)

)
+ 1Ω1 (x)

}
The y -update is:

y (k+1) =
x (k+1) + u(k)

max
(

1,
√
N−

∥∥x (k+1) + u(k)
∥∥

2

)
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Herfindahl-MV optimization
The ADMM solution (second version)

A better approach is to write the problem as follows:

{x?, y?} = arg min
(x,y)

1

2
x>Σx + 1Ω3 (x) + 1Ω4 (y)

s.t. x = y

where Ω3 = Hyperplane [1n, 1] and Ω4 = Box [0n, x
+] ∩ B2

(
0n,
√

1
N−

)
The x-update is:

x (k+1) = (Σ + ϕIn)−1

ϕ(y (k) − u(k)
)

+
1− 1>n (Σ + ϕIn)−1 ϕ

(
y (k) − u(k)

)
1>n (Σ + ϕIn)−1 1n

1n


The y -update is:

y (k+1) = PBox−Ball

(
x (k+1) + u(k); 0n, x

+, 0n,

√
1

N−

)
where PBox−Ball corresponds to the Dykstra’s algorithm given by

Perrin and Roncalli (2020)
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Herfindahl-MV optimization

Remark

If we compare the computational time of the three approaches, we observe
that the best method is the second version of the ADMM algorithm:

CT (QP; n = 1000) = 50× CT (ADMM2; n = 1000)

CT (ADMM1; n = 1000) = 400× CT (ADMM2; n = 1000)
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Herfindahl-MV optimization
The QP solution

Example 5

We consider an investment universe of eight stocks. We assume that their
volatilities are 21%, 20%, 40%, 18%, 35%, 23%, 7% and 29%. The
correlation matrix is defined as follows:

ρ =



100%
80% 100%
70% 75% 100%
60% 65% 90% 100%
70% 50% 70% 85% 100%
50% 60% 70% 80% 60% 100%
70% 50% 70% 75% 80% 50% 100%
60% 65% 70% 75% 65% 70% 80% 100%
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Table 11: Minimum variance portfolios (in %)

N− 1.00 2.00 3.00 4.00 5.00 6.00 6.50 7.00 7.50 8.00
x?1 0.00 3.22 9.60 13.83 15.18 15.05 14.69 14.27 13.75 12.50
x?2 0.00 12.75 14.14 15.85 16.19 15.89 15.39 14.82 14.13 12.50
x?3 0.00 0.00 0.00 0.00 0.00 0.07 2.05 4.21 6.79 12.50
x?4 0.00 10.13 15.01 17.38 17.21 16.09 15.40 14.72 13.97 12.50
x?5 0.00 0.00 0.00 0.00 0.71 5.10 6.33 7.64 9.17 12.50
x?6 0.00 5.36 8.95 12.42 13.68 14.01 13.80 13.56 13.25 12.50
x?7 100.00 68.53 52.31 40.01 31.52 25.13 22.92 20.63 18.00 12.50
x?8 0.00 0.00 0.00 0.50 5.51 8.66 9.41 10.14 10.95 12.50

λ? (in %) 0.00 1.59 3.10 5.90 10.38 18.31 23.45 31.73 49.79 ∞

Note: the upper bound x+ is set to 1n. The solutions are those found by the ADMM algorithm. We

also report the value of λ? found by the bi-section algorithm when we use the QP algorithm.
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ERC portfolio optimization

We recall that:

x? = arg min
x

1

2
x>Σx − λ

n∑
i=1

ln xi

and:

xerc =
x?

1>n x?
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ERC portfolio optimization
The CCD solution

The first-order condition (Σx)i − λx
−1
i = 0 implies that:

x2
i σ

2
i + xiσi

∑
j 6=i

xjρi,jσj − λ = 0

The CCD algorithm is:

x
(k+1)
i =

−v (k+1)
i +

√(
v

(k+1)
i

)2

+ 4λσ2
i

2σ2
i

where:
v

(k+1)
i = σi

∑
j<i

x
(k+1)
j ρi,jσj + σi

∑
j>i

x
(k)
j ρi,jσj
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ERC portfolio optimization
The ADMM solution

In the case of the ADMM algorithm, we set:

fx (x) =
1

2
x>Σx

fy (y) = −λ
n∑

i=1

ln yi

x = y

The x-update step is:

x (k+1) = (Σ + ϕIn)−1
ϕ
(
y (k) − u(k)

)
The y -update step is:

y
(k+1)
i =

1

2

((
x

(k+1)
i + u

(k)
i

)
+

√(
x

(k+1)
i + u

(k)
i

)2

+ 4λϕ−1

)
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RB portfolio optimization

The RB portfolio is equal to:

xrb =
x?

1>n x?

where x? is the solution of the logarithmic barrier problem:

x? = arg min
x
R (x)− λ

n∑
i=1

RBi · ln xi

λ is any positive scalar and RBi is the risk budget allocated to Asset i
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RB portfolio optimization
The CCD solution (SD risk measure)

In the case of the standard deviation-based risk measure:

R (x) = −x> (µ− r) + ξ
√
x>Σx

the first-order condition for defining the CCD algorithm is:

− (µi − r) + ξ
(Σx)i√
x>Σx

− λRBi

xi
= 0

It follows that ξxi (Σx)i − (µi − r) xiσ (x)− λσ (x) · RBi = 0 or
equivalently:

αix
2
i + βixi + γi = 0

where αi = ξσ2
i , βi = ξσi

∑
j 6=i xjρi,jσj − (µi − r)σ (x) and

γi = −λσ (x) · RBi
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RB portfolio optimization
The CCD solution (SD risk measure)

The CCD algorithm is:

x
(k+1)
i =

−β(k+1)
i +

√(
β

(k+1)
i

)2

− 4α
(k+1)
i γ

(k+1)
i

2α
(k+1)
i

where:

α
(k+1)
i = ξσ2

i

β
(k+1)
i = ξσi

(∑
j<i x

(k+1)
j ρi,jσj +

∑
j>i x

(k)
j ρi,jσj

)
− (µi − r)σ

(k+1)
i (x)

γ
(k+1)
i = −λσ(k+1)

i (x) · RBi

σ
(k+1)
i (x) =

√
χ>Σχ

χ =
(
x

(k+1)
1 , . . . , x

(k+1)
i−1 , x

(k)
i , x

(k)
i+1 . . . , x

(k)
n

)
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RB portfolio optimization
The ADMM solution (convex risk measure)

We have:

{x?, y?} = arg min
x,y
R (x)− λ

n∑
i=1

RBi · ln yi

s.t. x = y

The ADMM algorithm is:
x (k+1) = proxϕ−1R(x)

(
y (k) − u(k)

)
v

(k+1)
y = x (k+1) + u(k)

y (k+1) = 1
2

(
v

(k+1)
y +

√
v

(k+1)
y � v

(k+1)
y + 4λϕ−1 · RB

)
u(k+1) = u(k) + x (k+1) − y (k+1)
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Tips and tricks of portfolio optimization

Full allocation —
∑n

i=1 xi = 1:

Ω = Hyperplane [1n, 1]

We have:

PΩ (v) = v −
(

1>n v − 1

n

)
1n

Cash neutral —
∑n

i=1 xi = 0:

Ω = Hyperplane [1n, 0]

We have:

PΩ (v) = v −
(

1>n v

n

)
1n
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Tips and tricks of portfolio optimization

No short selling — x ≥ 0n:

Ω = Box [0n,∞]

We have:
PΩ (v) = T (v ; 0n,∞)

Weight bounds — x− ≤ x ≤ x+:

Ω = Box

[
x−, x+

]
We have:

PΩ (v) = T
(
v ; x−, x+

)
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Tips and tricks of portfolio optimization

µ-problem — µ (x) ≥ µ?:

Ω = Halfspace [−µ,−µ?]

We have:

PΩ (v) = v +

(
µ? − µ>v

)
+

‖µ‖2
2

µ
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Tips and tricks of portfolio optimization

σ-problem — σ (x) ≤ σ?:

Ω =
{
x :
√
x>Σx ≤ σ?

}
We have:

√
x>Σx ≤ σ? ⇔

√
x> (LL>) x ≤ σ?

⇔
∥∥y>y∥∥

2
≤ σ?

⇔ y ∈ B2 (0n, σ
?)

where y = L>x and L is the Cholesky decomposition of Σ. It follows
that the proximal of the y -update is the projection onto the `2 ball
B2 (0n, σ

?):

PΩ (v) = v − proxσ?‖x‖2
(v)

= v −
(

1− σ?

max (σ?, ‖v‖2)

)
v
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Tips and tricks of portfolio optimization

Leverage management —
∑n

i=1 |xi | ≤ L+:

Ω =
{
x : ‖x‖1 ≤ L

+
}

= B1

(
0n,L+

)
The proximal of the y -update is the projection onto the `1 ball
B1 (0n,L+):

PΩ (v) = v − sign (v)� proxL+ max x (|v |)
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Tips and tricks of portfolio optimization

Leverage management — LS− ≤
∑n

i=1 xi ≤ LS+:

Ω = Halfspace

[
1n,LS+

]
∩Halfspace

[
−1n,−LS−

]
The proximal of the y -update is obtained with the Dykstra’s
algorithm by combining the two half-space projections.

Leverage management —
∣∣∑n

i=1 xi

∣∣ ≤ L+:

Ω =
{
x :
∣∣1>n x

∣∣ ≤ L+
}

This is a special case of the previous result where LS+ = L+ and
LS− = −L+:

Ω = Halfspace

[
1n,L+

]
∩Halfspace

[
−1n,L+

]
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Tips and tricks of portfolio optimization

Concentration management3

Portfolio managers can also use another constraint concerning the
sum of the k largest values:

f (x) =
n∑

i=n−k+1

x(i :n) = x(n:n) + . . .+ x(n−k+1:n)

where x(i :n) is the order statistics of x : x(1:n) ≤ x(2:n) ≤ · · · ≤ x(n:n).
Beck (2017) shows that:

proxλf (x) (v) = v − λPΩ

(v
λ

)
where:

Ω =
{
x ∈ [0, 1]n : 1>n x = k

}
= Box [0n, 1n] ∩Hyperlane [1n, k]

3An example is the 5/10/40 UCITS rule: A UCITS fund may invest no more than
10% of its net assets in transferable securities or money market instruments issued by
the same body, with a further aggregate limitation of 40% of net assets on exposures of
greater than 5% to single issuers.
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Tips and tricks of portfolio optimization

Entropy portfolio management
Bera and Park (2008) propose using a cross-entropy measure as the
objective function:

x? = arg min
x

KL (x | x̃)

s.t.

 1>n x = 1
0n ≤ x ≤ 1n

µ (x) ≥ µ?, σ (x) ≤ σ?

where KL (x | x̃) is the Kullback-Leibler measure:

KL (x | x̃) =
n∑

i=1

xi ln (xi/x̃i )

and x̃ is a reference portfolio
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Tips and tricks of portfolio optimization

Entropy portfolio management
We have:

proxλKL(v |x̃) (v) = λ


W
(
λ−1x̃1e

λ−1v1−x̃−1
1

)
...

W
(
λ−1x̃ne

λ−1vn−x̃−1
n

)


where W (x) is the Lambert W function

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 111 / 205



Portfolio optimization
Pattern learning and self-automated strategies

Market generators
Tutorial exercises

Standard optimization algorithms
Machine learning optimization algorithms
Application to portfolio allocation

Tips and tricks of portfolio optimization

Remark

Since the Shannon’s entropy is equal to SE (x) = −KL (x | 1n), we
deduce that:

proxλ SE(x) (v) = λ


W
(
λ−1eλ

−1v1−1
)

...

W
(
λ−1eλ

−1vn−1
)
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Tips and tricks of portfolio optimization

Active share constraint — AS (x | x̃) ≥ AS−:

AS (x | x̃) =
1

2

n∑
i=1

|xi − x̃i | ≥ AS−

We use the projection onto the complement B̄1 (c , r) of the `1 ball
and we obtain:

PΩ (v) = v + sign (v − x̃)�
max

(
2AS− − ‖v − x̃‖1 , 0

)
n
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Tips and tricks of portfolio optimization

Tracking error volatility — σ (x | x̃) ≤ σ?:

σ (x | x̃) ≤ σ? ⇔
√

(x − x̃)>Σ (x − x̃) ≤ σ?

⇔ ‖y‖2 ≤ σ
?

⇔ y ∈ B2 (0n, σ
?)

where y = L>x − L>x̃ . It follows that Ax + By = c where A = L>,
B = −In and c = L>x̃ . It follows that the proximal of the y -update is
the projection onto the `2 ball B2 (0n, σ

?):

PΩ (v) = v − proxσ?‖x‖2
(v)

= v −
(

1− σ?

max (σ?, ‖v‖2)

)
v
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Tips and tricks of portfolio optimization

Bid-ask transaction cost management:

ccc (x | x0) = λ

n∑
i=1

(
c−i (x0,i − xi )+ + c+

i (xi − x0,i )+

)
where c−i and c+

i are the bid and ask transaction costs. We have:

proxccc(x|x0) (v) = x0 + S
(
v − x0;λc−, λc+

)
where S (v ;λ−, λ+) = (v − λ+)+ − (v + λ−)− is the two-sided
soft-thresholding operator.
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Tips and tricks of portfolio optimization

Turnover management:

Ω =
{
x ∈ Rn : ‖x − x0‖1 ≤ τ

+
}

The proximal operator is:

PΩ (v) = v − sign (v − x0)�min (|v − x0| , s?)

where s? =
{
s ∈ R :

∑n
i=1 (|vi − x0,i | − s)+ = τ+

}
.
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Table 12: What works / What doesn’t

Bond Stock Trend Mean Index HF Stock Technical
Scoring Picking Filtering Reverting Tracking Tracking Classification Analysis

Lasso , , , / ,
NMF , /

Boosting , ,
Bagging , ,

Random forests , / /
Neural nets , /

SVM , / / /
Sparse Kalman / ,

K-NN /
K-means , ,

Testing protocols4 , , , , ,

Source: Roncalli (2014), Big Data in Asset Management, ESMA/CEMA/GEA meeting, Madrid.

4Cross-validation, training/test/probe sets, K-fold, etc.
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2021 6= 2014

The evolution of machine learning in finance is fast, very fast!
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Some examples

Natural Language Processing
(NLP)

Deep learning (DL)

Reinforcement learning (RL)

Gaussian process (GP) and
Bayesian optimization (BO)

Learning to rank (MLR)

Etc.

Some applications

Robo-advisory

Stock classification

Q1 − Q5 long/short strategy

Trend-following strategies

Mean-reverting strategies

Scoring models

Sentiment and news analysis

Etc.
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Market generators

The underlying idea is to simulate artificial multi-dimensional financial
time series, whose statistical properties are the same as those
observed in the financial markets

≈ Monte Carlo simulation of the financial market

3 main approaches:

1 Restricted Boltzmann machines (RBM)
2 Generative adversarial networks (GAN)
3 Convolutional Wasserstein models (W-GAN)

The goal is to:

improve the the risk management of quantitative investment strategies
avoid the over-fitting bias of backtesting

The current research shows that results are disappointed until now
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Portfolio optimization with CCD and ADMM algorithms

Question 1

We consider the following optimization program:

x? = arg min
1

2
x>Σx − λ

n∑
i=1

bi ln xi

where Σ is the covariance matrix, b is a vector of positive budgets and x is
the vector of portfolio weights.
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Portfolio optimization with CCD and ADMM algorithms

Question 1.a

Write the first-order condition with respect to the coordinate xi and show
that the solution x? corresponds to a risk-budgeting portfolio.
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Portfolio optimization with CCD and ADMM algorithms

We have:

L (x ;λ) = arg min
1

2
x>Σx − λ

n∑
i=1

bi ln xi

The first-order condition is:

∂ L (x ;λ)

∂ xi
= (Σx)i − λ

bi

xi
= 0

or:
xi · (Σx)i = λbi
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Portfolio optimization with CCD and ADMM algorithms

If we assume that the risk measure is the portfolio volatility:

R (x) =
√
x>Σx

the risk contribution of Asset i is equal to:

RC i (x) =
xi · (Σx)i√

x>Σx

We deduce that the optimization problem defines a risk budgeting
portfolio:

xi · (Σx)i

bi
=

xj · (Σx)j

bj
= λ⇔ RC i (x)

bi
=
RCj (x)

bj

where the risk measure is the portfolio volatility and the risk budgets are
(b1, . . . , bn).
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Portfolio optimization with CCD and ADMM algorithms

Question 1.b

Find the optimal value x?i when we consider the other coordinates
(x1, . . . , xi−1, xi+1, . . . , xn) as fixed.
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The first-order condition is equivalent to:

xi · (Σx)i − λbi = 0

We have:
(Σx)i = xiσ

2
i + σi

∑
j 6=i

xjρi,jσj

It follows that:
x2

i σ
2
i + xiσi

∑
j 6=i

xjρi,jσj − λbi = 0
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We obtain a second-degree equation:

αix
2
i + βixi + γi = 0

where: 
αi = σ2

i

βi = σi

∑
j 6=i xjρi,jσj

γi = −λbi

1 The polynomial function is convex because we have αi = σ2
i > 0

2 The product of the roots is negative:

x ′i x
′′
i =

γi

αi
= −λbi

σ2
i

< 0

3 The discriminant is positive:

∆ = β2
i − 4αiγi =

σi

∑
j 6=i

ρi,jσjyj

2

+ 4λbiσ
2
i > 0
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We always have two solutions with opposite signs. We deduce that the
solution is the positive root of the second-degree equation:

x?i = x ′′i =
−βi +

√
β2

i − 4αiγi

2αi

=
−σi

∑
j 6=i xjρi,jσj +

√
σ2

i

(∑
j 6=i xjρi,jσj

)2

+ 4λbiσ2
i

2σ2
i
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Question 1.c

We note x
(k)
i the value of the i th coordinate at the kth iteration. Deduce

the corresponding CCD algorithm. How to find the RB portfolio xrb?
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The CCD algorithm consists in iterating the following formula:

x
(k)
i =

−β(k)
i +

√(
β

(k)
i

)2

− 4α
(k)
i γ

(k)
i

2α
(k)
i

where: 
α

(k)
i = σ2

i

β
(k)
i = σi

(∑
j<i ρi,jσjx

(k)
j +

∑
j>i ρi,jσjx

(k−1)
j

)
γ

(k)
i = −λbi

The RB portfolio is the scaled solution:

xrb =
x?∑n

i=1 x
?
i
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Portfolio optimization with CCD and ADMM algorithms

Question 1.d

We consider a universe of three assets, whose volatilities are equal to 20%,
25% and 30%. The correlation matrix is equal to:

ρ =

 100%
50% 100%
60% 70% 100%


We would like to compute the ERC portfolioa using the CCD algorithm.
We initialize the CCD algorithm with the following starting values
x (0) = (33.3%, 33.3%, 33.3%). We assume that λ = 1.

aThis means that:

bi =
1

3
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Question 1.d.i

Starting from x (0), find the optimal coordinate x
(1)
1 for the first asset.
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We have: 
α

(1)
1 = 0.22 = 4%

β
(1)
1 = 0.02033

γ
(1)
i = −0.333%

We obtain:
x

(1)
1 = 2.64375
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Question 1.d.ii

Compute then the optimal coordinate x
(1)
2 for the second asset.
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We have: 
α

(1)
2 = 0.252 = 6.25%

β
(1)
2 = 0.08359

γ
(1)
2 = −0.333%

We obtain:
x

(1)
2 = 1.73553
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Question 1.d.iii

Compute then the optimal coordinate x
(1)
3 for the third asset.
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We have: 
α

(1)
3 = 0.32 = 9%

β
(1)
3 = 0.18629

γ
(1)
3 = −0.333%

We obtain:
x

(1)
3 = 1.15019
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Question 1.d.iv

Give the CCD coordinates x
(k)
i for k = 1, . . . , 10.
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Table 13: CCD coordinates (k = 1, . . . , 5)

k i α
(k)
i β

(k)
i γ

(k)
i x

(k)
i

CCD coordinates
x1 x2 x3

0 0.33333 0.33333 0.33333
1 1 0.04000 0.02033 −0.33333 2.64375 2.64375 0.33333 0.33333
1 2 0.06250 0.08359 −0.33333 1.73553 2.64375 1.73553 0.33333
1 3 0.09000 0.18629 −0.33333 1.15019 2.64375 1.73553 1.15019
2 1 0.04000 0.08480 −0.33333 2.01525 2.01525 1.73553 1.15019
2 2 0.06250 0.11077 −0.33333 1.58744 2.01525 1.58744 1.15019
2 3 0.09000 0.15589 −0.33333 1.24434 2.01525 1.58744 1.24434
3 1 0.04000 0.08448 −0.33333 2.01782 2.01782 1.58744 1.24434
3 2 0.06250 0.11577 −0.33333 1.56202 2.01782 1.56202 1.24434
3 3 0.09000 0.15465 −0.33333 1.24842 2.01782 1.56202 1.24842
4 1 0.04000 0.08399 −0.33333 2.02183 2.02183 1.56202 1.24842
4 2 0.06250 0.11609 −0.33333 1.56044 2.02183 1.56044 1.24842
4 3 0.09000 0.15471 −0.33333 1.24821 2.02183 1.56044 1.24821
5 1 0.04000 0.08395 −0.33333 2.02222 2.02222 1.56044 1.24821
5 2 0.06250 0.11609 −0.33333 1.56044 2.02222 1.56044 1.24821
5 3 0.09000 0.15472 −0.33333 1.24817 2.02222 1.56044 1.24817
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Table 14: CCD coordinates (k = 6, . . . , 10)

k i α
(k)
i β

(k)
i γ

(k)
i x

(k)
i

CCD coordinates
x1 x2 x3

0 0.33333 0.33333 0.33333
6 1 0.04000 0.08395 −0.33333 2.02223 2.02223 1.56044 1.24817
6 2 0.06250 0.11608 −0.33333 1.56045 2.02223 1.56045 1.24817
6 3 0.09000 0.15472 −0.33333 1.24816 2.02223 1.56045 1.24816
7 1 0.04000 0.08395 −0.33333 2.02223 2.02223 1.56045 1.24816
7 2 0.06250 0.11608 −0.33333 1.56046 2.02223 1.56046 1.24816
7 3 0.09000 0.15472 −0.33333 1.24816 2.02223 1.56046 1.24816
8 1 0.04000 0.08395 −0.33333 2.02223 2.02223 1.56046 1.24816
8 2 0.06250 0.11608 −0.33333 1.56046 2.02223 1.56046 1.24816
8 3 0.09000 0.15472 −0.33333 1.24816 2.02223 1.56046 1.24816
9 1 0.04000 0.08395 −0.33333 2.02223 2.02223 1.56046 1.24816
9 2 0.06250 0.11608 −0.33333 1.56046 2.02223 1.56046 1.24816
9 3 0.09000 0.15472 −0.33333 1.24816 2.02223 1.56046 1.24816

10 1 0.04000 0.08395 −0.33333 2.02223 2.02223 1.56046 1.24816
10 2 0.06250 0.11608 −0.33333 1.56046 2.02223 1.56046 1.24816
10 3 0.09000 0.15472 −0.33333 1.24816 2.02223 1.56046 1.24816

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 140 / 205



Portfolio optimization
Pattern learning and self-automated strategies

Market generators
Tutorial exercises

Portfolio optimization with CCD and ADMM algorithms
Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Question 1.d.v

Deduce the ERC portfolio.
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The CCD algorithm has converged to the following solution:

x? =

 2.02223
1.56046
1.24816


Since

∑3
i=1 x

?
i = 4.83085, we deduce that:

xerc =
1

4.83085

 2.02223
1.56046
1.24816

 =

 41.86076%
32.30189%
25.83736%



Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 142 / 205



Portfolio optimization
Pattern learning and self-automated strategies

Market generators
Tutorial exercises

Portfolio optimization with CCD and ADMM algorithms
Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Question 1.d.vi

Compute the variance of the previous CCD solution. What do you notice?
Explain this result.
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We remind that the CCD solution is:

x? =

 2.02223
1.56046
1.24816


We have:

σ2 (x?) = x?>Σx? = 1

We notice that:
σ2 (x?) = λ
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At the optimum, we remind that:

λ =
x?i · (Σx?)i

bi
=

x?i · (Σx?)i

n−1

We deduce that:

λ =
1

n

n∑
i=1

x?i · (Σx?)i

n−1

=
n∑

i=1

x?i · (Σx?)i

= x?>Σx?

= σ2 (x?)

It follows that the portfolio variance of the CCD solution is exactly equal
to λ.
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Question 1.d.vii

Verify that the CCD solution converges faster to the ERC portfolio when
we assume that λ = x>ercΣxerc.
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We have:

σ (xerc) =
√

x>ercΣxerc = 20.70029%

and:
σ2 (xerc) = 4.28502%

We obtain the results given in Table 15 when λ = 4.28502%. If we
compare with those given in Tables 13 and 14, it is obvious that the
convergence is faster in the present case.
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Table 15: CCD coordinates (k = 1, . . . , 5)

k i α
(k)
i β

(k)
i γ

(k)
i x

(k)
i

CCD coordinates
x1 x2 x3

0 0.33333 0.33333 0.33333
1 1 0.04000 0.02033 −0.01428 0.39521 0.39521 0.33333 0.33333
1 2 0.06250 0.02738 −0.01428 0.30680 0.39521 0.30680 0.33333
1 3 0.09000 0.03033 −0.01428 0.26403 0.39521 0.30680 0.26403
2 1 0.04000 0.01718 −0.01428 0.42027 0.42027 0.30680 0.26403
2 2 0.06250 0.02437 −0.01428 0.32133 0.42027 0.32133 0.26403
2 3 0.09000 0.03200 −0.01428 0.25847 0.42027 0.32133 0.25847
3 1 0.04000 0.01734 −0.01428 0.41893 0.41893 0.32133 0.25847
3 2 0.06250 0.02404 −0.01428 0.32295 0.41893 0.32295 0.25847
3 3 0.09000 0.03204 −0.01428 0.25835 0.41893 0.32295 0.25835
4 1 0.04000 0.01737 −0.01428 0.41863 0.41863 0.32295 0.25835
4 2 0.06250 0.02403 −0.01428 0.32302 0.41863 0.32302 0.25835
4 3 0.09000 0.03203 −0.01428 0.25837 0.41863 0.32302 0.25837
5 1 0.04000 0.01738 −0.01428 0.41861 0.41861 0.32302 0.25837
5 2 0.06250 0.02403 −0.01428 0.32302 0.41861 0.32302 0.25837
5 3 0.09000 0.03203 −0.01428 0.25837 0.41861 0.32302 0.25837
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Question 2

We recall that the ADMM algorithm is based on the following
optimization problem:

{x?, y?} = arg min fx (x) + fy (y)

s.t. Ax + By = c
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Question 2.a

Describe the ADMM algorithm.
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The ADMM algorithm consists in the following iterations:
x (k+1) = arg minx

{
fx (x) +

ϕ

2

∥∥Ax + By (k) − c + u(k)
∥∥2

2

}
y (k+1) = arg miny

{
fy (y) +

ϕ

2

∥∥Ax (k+1) + By − c + u(k)
∥∥2

2

}
u(k+1) = u(k) +

(
Ax (k+1) + By (k+1) − c

)
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Question 2.b

We consider the following optimization problem:

w? (γ) = arg min
1

2
(w − b)> Σ (w − b)− γ (w − b)> µ

s.t.

 1>n w = 1∑n
i=1 |wi − bi | ≤ τ+

0n ≤ w ≤ 1n
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Question 2.b.i

Give the meaning of the symbols w , b, Σ, and µ. What is the goal of this
optimization program? What is the meaning of the constraint∑n

i=1 |wi − bi | ≤ τ+?
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w is the vector of portfolio weights:

w = (w1, . . . ,wn)

b is the vector of benchmark weights:

b = (b1, . . . , bn)

Σ is the covariance matrix of asset returns

µ is the vector of expected returns
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The goal of the optimization problem is to tilt a benchmark portfolio by
controlling the volatility of the tracking error:

σ (w | b) =

√
(w − b)>Σ (w − b)

and improving the expected excess return:

µ (w | b) = (w − b)> µ

This is a typical γ-problem when there is a benchmark
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We remind that the turnover between the benchmark b and the portfolio
w is equal to:

τ (w | b) =
n∑

i=1

|wi − bi |

Therefore, we impose that the turnover is less than an upper limit:

τ (w | b) ≤ τ+
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Question 2.b.ii

What is the best way to specify fx (x) and fy (y) in order to find
numerically the solution. Justify your choice.
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The best way to specify fx (x) and fy (y) is to split the QP problem and
the turnover constraint:

{x?, y?} = arg min
x,y

fx (x) + fy (y)

s.t. x − y = 0n

where:

fx (x) =
1

2
(x − b)>Σ (x − b)− γ (x − b)> µ+ 1Ω1 (x) + 1Ω3 (x)

fy (y) = 1Ω2 (y)

Ω1 (x) =
{
x : 1>n x = 1

}
Ω2 (y) =

{
y :

n∑
i=1

|yi − bi | ≤ τ+

}
Ω3 (x) = {x : 0n ≤ x ≤ 1n}

Indeed, the x-update step is a standard QP problem whereas the y -update
step is the projection onto the `1-ball B1 (b, τ+).
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Question 2.b.iii

Give the corresponding ADMM algorithm.
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We have:

(∗) =
1

2
(x − b)>Σ (x − b)− γ (x − b)> µ

=
1

2
x>Σx − x>Σb +

1

2
b>Σb − γx>µ+ γb>µ

=
1

2
x>Σx − x> (Σb + γµ) +

(
γb>µ+

1

2
b>Σb

)
︸ ︷︷ ︸

constant
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If we note v
(k+1)
x = y (k) − u(k), we have:∥∥∥x − y (k) + u(k)

∥∥∥2

2
=

∥∥∥x − v (k+1)
x

∥∥∥2

2

=
(
x − v (k+1)

x

)> (
x − v (k+1)

x

)
= x>Inx − 2x>v (k+1)

x +
(
v (k+1)

x

)>
v (k+1)

x︸ ︷︷ ︸
constant
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It follows that:

f (k+1)
x (x) = fx (x) +

ϕ

2

∥∥∥x − y (k) + u(k)
∥∥∥2

2

=
1

2
(x − b)> Σ (x − b)− γ (x − b)> µ+

1Ω1 (x) + 1Ω3 (x) +
ϕ

2

∥∥∥x − y (k) + u(k)
∥∥∥2

2

=
1

2
x> (Σ + ϕIn) x − x>

(
Σb + γµ+ ϕv (k+1)

x

)
+

1Ω1 (x) + 1Ω3 (x) + constant
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We have:

f (k+1)
y (y) = 1Ω2 (y) +

ϕ

2

∥∥∥x (k+1) − y + u(k)
∥∥∥2

2

= 1Ω2 (y) +
ϕ

2

∥∥∥y − v (k+1)
y

∥∥∥2

2

where v
(k+1)
y = x (k+1) + u(k). We deduce that:

y (k+1) = arg min
y

f (k+1)
y (y)

= PΩ2

(
v (k+1)

y

)
where:

Ω2 = B1

(
b, τ+

)
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We remind that:

PB1(c,λ) (v) = PB1(0n,λ) (v − c) + c

PB1(0n,λ) (v) = v − sign (v)� proxλmax x (|v |)
proxλmax x (v) = min (v , s?)

where s? is the solution of the following equation:

s? =

{
s ∈ R :

n∑
i=1

(vi − s)+ = λ

}
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We deduce that:

PΩ2

(
v (k+1)

y

)
= PB1(b,τ+)

(
v (k+1)

y

)
= PB1(0n,τ+)

(
v (k+1)

y − b
)

+ b

= v (k+1)
y − sign

(
v (k+1)

y − b
)
� proxτ+ max x

(∣∣∣v (k+1)
y − b

∣∣∣)
= v (k+1)

y − sign
(
v (k+1)

y − b
)
�min

(∣∣∣v (k+1)
y − b

∣∣∣ , s?)
where s? is the solution of the following equation:

s? =

{
s ∈ R :

n∑
i=1

(∣∣∣v (k+1)
y ,i − bi

∣∣∣− s
)

+
= τ+

}
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The ADMM algorithm becomes:

v
(k+1)
x = y (k) − u(k)

Q(k+1) = Σ + ϕIn
R(k+1) = Σb + γµ+ ϕv

(k+1)
x

x (k+1) = arg minx

{
1
2x
>Q(k+1)x − x>R(k+1) + 1Ω1 (x) + 1Ω3 (x)

}
v

(k+1)
y = x (k+1) + u(k)

s? =

{
s ∈ R :

∑n
i=1

(∣∣∣v (k+1)
y ,i − bi

∣∣∣− s
)

+
= τ+

}
y (k+1) = v

(k+1)
y − sign

(
v

(k+1)
y − b

)
�min

(∣∣∣v (k+1)
y − b

∣∣∣ , s?)
u(k+1) = u(k) + x (k+1) − y (k+1)
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Question 2.c

We consider the following optimization problem:

w? = arg min ‖w − w̃‖1

s.t.


1>n w = 1√

(w − b)> Σ (w − b) ≤ σ+

0n ≤ w ≤ 1n
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Question 2.c.i

What is the meaning of the objective function ‖w − w̃‖1? What is the

meaning of the constraint

√
(w − b)>Σ (w − b) ≤ σ+?
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The objective function ‖w − w̃‖1 is the turnover between a given portfolio
w̃ and the optimized portfolio w

The constraint

√
(w − b)> Σ (w − b) ≤ σ+ is a tracking error limit with

respect to a benchmark b
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Question 2.c.ii

Propose an equivalent optimization problem such that fx (x) is a QP
problem. How to solve the y -update?
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The optimization problem is equivalent to solve the following program:

w? = arg min
1

2
(w − b)>Σ (w − b) + λ ‖w − w̃‖1

s.t.

{
1>n w = 1
0n ≤ w ≤ 1n
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We deduce that:

fx (x) =
1

2
(x − b)>Σ (x − b) + 1Ω1 (x) + 1Ω2 (x)

where:
Ω1 (x) =

{
x : 1>n x = 1

}
and:

Ω2 (x) = {x : 0n ≤ x ≤ 1n}

Thierry Roncalli Course 2023-2024 in Portfolio Allocation and Asset Management 172 / 205



Portfolio optimization
Pattern learning and self-automated strategies

Market generators
Tutorial exercises

Portfolio optimization with CCD and ADMM algorithms
Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

We have:
fy (y) = λ ‖w − w̃‖1

We remind that:

proxλ‖x‖1
(v) = S (v ;λ) = sign (v)� (|v | − λ1n)+

and:
proxf (x+b) (v) = proxf (v + b)− b

The y -update step is then equal to:

y (k+1) = proxλ‖w−w̃‖1

(
x (k+1) + u(k)

)
= w̃ + sign

(
x (k+1) + u(k) − w̃

)
�
(∣∣∣x (k+1) + u(k) − w̃

∣∣∣− λ1n

)
+

because fy (y) is fully separable5

5Otherwise the scaling property does not work!
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Exercise

We consider an investment universe with 6 assets. We assume that their
expected returns are 4%, 6%, 7%, 8%, 10% and 10%,, and their
volatilities are 6%, 10%, 11%, 15%, 15% and 20%. The correlation matrix
is given by:

ρ =


100%

50% 100%
20% 20% 100%
50% 50% 80% 100%

0% −20% −50% −30% 100%
0% 20% 30% 0% 0% 100%
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Question 1

We restrict the analysis to long-only portfolios meaning that
∑n

i=1 xi = 1
and xi ≥ 0.
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Question 1.a

We consider the Herfindahl index H (x) =
∑n

i=1 x
2
i . What are the two

limit cases of H (x)? What is the interpretation of the statistic
N (x) = H−1 (x)?
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We consider the following optimization problem:

x? = arg minH (x)

s.t.
n∑

i=1

xi = 1

We deduce that the Lagrange function is:

L (x ;λ) = H (x)− λ

(
n∑

i=1

xi = 1

)
= x>x − λ

(
1>n x − 1

)
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The first-order condition is:

∂ L (x ;λ)

∂ x
= x − λ1n = 0n

Since we have 1>n x − 1 = 0, we deduce that:

λ =
1

1>n 1n
=

1

n

We conclude that the lower bound is reached for the equally-weighted
portfolio:

xew =
1

n
· 1n

and we have:

H (xew) =
1

n2
· 1>n 1n =

1

n
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Since the weights are positive, we have:

H (x) =
n∑

i=1

x2
i

≤

(
n∑

i=1

xi

)2

≤ 1

The upper bound is reached when the portfolio is concentrated on one
asset:

∃i : xi = 1
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We conclude that:
1

n
≤ H (x) ≤ 1

The statistic N (x) = H−1 (x) is the effective number of assets
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Question 1.b

We consider the following optimization problem (P1):

x? (λ) = arg min
1

2
x>Σx + λx>x

s.t.

{ ∑n
i=1 xi = 1

xi ≥ 0

What is the link between this constrained optimization program and the
weight diversification based on the Herfindahl index?
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The optimization problem (P1) is equivalent to:

x?
(
H+
)

= arg min
1

2
x>Σx

s.t.


∑n

i=1 xi = 1
xi ≥ 0
x>x ≤ H+

We obtain a long-only minimum variance portfolio with a diversification
constraint based on the Herfindahl index:

H (x) ≤ H+

We have the following correspondance:

H+ = H (x? (λ)) = x? (λ)> x? (λ)

Given a value of λ, we can then compute the implicit constraint
H (x) ≤ H+.
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Question 1.c

Solve Program (P1) when λ is equal to respectively 0, 0.001, 0.01, 0.05,
0.10 and 10. Compute the statistic N (x). Comment on these results.
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Table 16: Solution of the optimization problem (P1)

λ 0.000 0.001 0.010 0.050 0.100 10.000
x?1 (λ) (in %) 44.60 35.66 23.97 18.71 17.76 16.68
x?2 (λ) (in %) 9.12 14.60 18.10 17.08 16.89 16.67
x?3 (λ) (in %) 25.46 26.57 19.96 16.89 16.71 16.67
x?4 (λ) (in %) 0.00 0.00 7.64 14.46 15.52 16.65
x?5 (λ) (in %) 20.40 22.11 22.38 19.31 18.21 16.69
x?6 (λ) (in %) 0.43 1.07 7.94 13.55 14.92 16.65
H (x? (λ)) 0.3137 0.2680 0.1923 0.1693 0.1675 0.1667
N (x? (λ)) 3.19 3.73 5.20 5.91 5.97 6.00
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Question 1.d

Using the bisection algorithm, find the optimal value of λ? that satisfies:

N (x? (λ?)) = 4

Give the composition of x? (λ?). What is the interpretation of x? (λ?)?
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The optimal solution is:
λ? = 0.002301

The optimal weights (in %) are equal to:

x? =


31.62%
17.24%
26.18%

0.00%
22.63%

2.33%


The effective number of bets N (x?) is equal to 4
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Question 2

We consider long/short portfolios and the following optimization problem
(P2):

x? (λ) = arg min
1

2
x>Σx + λ

n∑
i=1

|xi |

s.t.
n∑

i=1

xi = 1
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Question 2.a

Solve Program (P2) when λ is equal to respectively 0, 0.0001, 0.001, 0.01,
0.05, 0.10 and 10. Comment on these results.
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Table 17: Solution of the optimization problem (P2)

λ 0.000 0.0001 0.001 0.010 0.050 0.100 10.000
x?1 (λ) (in %) 35.82 37.17 44.50 44.60 44.60 44.60 44.60
x?2 (λ) (in %) 33.08 30.26 11.48 9.12 9.12 9.12 9.12
x?3 (λ) (in %) 77.62 71.77 31.28 25.46 25.46 25.46 25.46
x?4 (λ) (in %) −53.48 −47.97 −7.16 0.00 0.00 0.00 0.00
x?5 (λ) (in %) 20.83 20.56 19.90 20.40 20.40 20.40 20.40
x?6 (λ) (in %) −13.87 −11.78 0.00 0.43 0.43 0.43 0.43
L (x) (in %) 234.69 219.50 114.33 100.00 100.00 100.00 100.00
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Question 2.b

For each optimized portfolio, calculate the following statistic:

L (x) =
n∑

i=1

|xi |

What is the interpretation of L (x)? What is the impact of Lasso
regularization?
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L (x) =
∑n

i=1 |xi | is the leverage ratio. Their values are reported in Table
17.
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Question 3

We assume that the investor holds an initial portfolio x (0) defined as
follows:

x (0) =


10%
15%
20%
25%
30%

0%


We consider the optimization problem (P3):

x? (λ) = arg min
1

2
x>Σx + λ

n∑
i=1

∣∣∣xi − x
(0)
i

∣∣∣
s.t.

n∑
i=1

xi = 1
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Question 3.a

Solve Program (P3) when λ is equal respectively to 0, 0.0001, 0.001,
0.0015 and 0.01. Compute the turnover of each optimized portfolio.
Comment on these results.
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Table 18: Solution of the optimization problem (P3)

λ 0.000 0.000 0.001 0.002 0.010
x?1 (λ) (in %) 35.82 35.55 27.90 24.28 10.00
x?2 (λ) (in %) 33.08 30.61 15.00 15.00 15.00
x?3 (λ) (in %) 77.62 72.35 33.36 22.86 20.00
x?4 (λ) (in %) −53.48 −48.00 −5.20 7.87 25.00
x?5 (λ) (in %) 20.83 21.51 28.94 30.00 30.00
x?6 (λ) (in %) −13.87 −12.02 0.00 0.00 0.00

τ
(
x? (λ) | x (0)

)
(in %) 203.04 187.02 62.51 34.27 0.00
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Question 3.b

Using the bisection algorithm, find the optimal value of λ? such that the
two-way turnover is equal to 60%. Give the composition of x? (λ?).
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The optimal solution is:
λ? = 0.00103

The optimal weights (in %) are equal to:

x? =


27.23%
15.00%
32.77%
−4.30%
29.30%

0.00%


The turnover τ

(
x? | x (0)

)
is equal to 60%
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Question 3.c

Same question when the two-way turnover is equal to 50%.
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The optimal solution is:
λ? = 0.00119

The optimal weights (in %) are equal to:

x? =


25.53%
15.00%
29.47%

0.00%
30.00%

0.00%


The turnover τ

(
x? | x (0)

)
is equal to 50%
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Question 3.d

What becomes the portfolio x? (λ) when λ→∞? How do you explain
this result?
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We notice that:
lim
λ→∞

x? (λ) = x (0)

This is normal since we have:

x? (λ) = arg min
1

2
x>Σx + λ

n∑
i=1

∣∣∣xi − x
(0)
i

∣∣∣
s.t.

n∑
i=1

xi = 1

We deduce that:

x? (∞) = arg min
n∑

i=1

∣∣∣xi − x
(0)
i

∣∣∣
s.t.

n∑
i=1

xi = 1

The solution is x? (∞) = x (0)
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