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Abstract
In this paper, we present a methodology for capital adequacy. Capital adequacy in a bank could

be viewed as an asset allocation problem. Therefore it is possible to use the framework of the portfolio
theory. But it requires to estimate the correlation matrix of the business line returns. In this work, we
estimate this correlation matrix by using a factor model based on external data. In a second part of this
article, we provide some illustrations to rebalance optimally the capital allocation within the bank.

1 Introduction
Capital allocation within a bank is getting more important as the regulatory requirements are moving towards
economic-based measures of risk. Banks are urged to build sound internal measures of credit and market
risks for all their activities. In this context, capital allocation is a crucial task which is very similar to a
portfolio management problem. More precisely, a top-down approach consists in disaggregating a bank's
portfolio into di�erent business lines with di�erent ratios of expected return and di�erent risks. Then the
capital should be allocated in order to balance the portfolio in an optimal way.

According to the portfolio theory, a bank has to evaluate not only the expected return and the risk of
every business line, but also the correlation matrix of these business lines' returns. In most cases, the bank
has a good knowledge of its expected returns and risks. As for the correlation matrix, the problem is more
complex: the bank does not have enough internal data and information to estimate it accurately. In this
respect, we develop an approach based on a Market Factor Model: we estimate an implied correlation matrix
using the returns of a panel of banks. The second section presents this model.

The third section deals with the allocation problem. An asset allocation problem cannot exactly stand
for a capital allocation problem. Nevertheless the portfolio theory can be adapted so that it takes capital
allocation's speci�c issues into account. For example, a bank has to abide by some solvency rules, it also has
to reach some implicit objectives �xed by its shareholders. Besides, capital allocation could be viewed as an
optimisation problem or an economic utility function problem under speci�c constraints.

Actually, the allocation problem is not exactly the problem a bank has to cope with. A bank is caracterised
by its initial allocation. Moving to a new and better allocation generates costs that can be taken into account
by penalizing the utility function. Nonetheless, if such a method determines the position of the optimum,
it does not exhibit any path going from the initial allocation to the optimal one. Then, we introduce
reallocation signals allowing a dynamic policy that leads to the optimum.

∗We gratefully thank Jean-Yves Rossignol, Patrick Amat, Andrée-Lise Rémy as well as the Capital Allocation team at
Crédit Lyonnais for stimulating discussions. All remaining errors are ours. To send us your comments, contact Antoine Frachot
(antoine.frachot@creditlyonnais.fr) or Thierry Roncalli (thierry.roncalli@creditlyonnais.fr).

1



This paper is based on two works made at the Operational Research Group of Crédit Lyonnais ([7],
[15]). The �ndings being con�dential, this paper is not extensively illustrated by �gures. Moreover, we have
decided to conceal any reference to particular �nancial institutions. Yet, the main lines have been preserved.

2 A market factor model
Let's consider a bank organized into M business lines. Let f

(m)
t be the return of the business line m and

α
(m)
t be the proportion of capital allocated to this business line at the period t. The bank's return rt is

assumed to be equal to

rt =
M∑

m=1

α
(m)
t f

(m)
t , (1)

which means that the total return of the bank amounts to the sum of the business lines' returns. We can
impose that f

(m)
t does not depend on the bank so that f

(m)
t is assimilated to a factor, and the asset class

factor model (Sharpe [1992]) is

rt =
M∑

m=1

α
(m)
t f

(m)
t + ut (2)

This model is quite classical and it can be traced back to the Asset Pricing Theory from Ross [1976]. In the
equation (2), ut is the �non-factor� component of the return. One of the main problem lies in determining
the values of the unknown factors f

(m)
t . Nevertheless, in a context of gaussian asset allocation, the problem

can be solved if the the factors' �rst and the second moments are known.

Using this model, we can estimate the correlations between the di�erent business lines' returns. Then,
this �external� correlation matrix can be used in an internal model based on top-down methodology. Let's
point out that such a model is not perfect: an �internal� correlation matrix would be more relevant but,
most of the time, a bank lacks internal data to estimate it acurrately. The approach above gets rid of this
problem.

2.1 Assumptions and statistical properties of the model
Let's consider a panel of N banks. Let rt,n be the observed market return of the bank n at the period t. Let
αt,n =

(
α

(m)
t,n

)
denote its sensitivity vector at the same period

αt,n =




α
(1)
t,n
...

α
(m)
t,n
...

α
(M)
t,n




(3)

The statistical model can be written as
rt,n = α>t,nft + ut,n (4)

where ft =
(
f

(m)
t

)
1≤m≤M

is the random vector of the business lines' returns and ut,n an indiosyncratic
term which captures all the speci�cities of the bank n. Since ft does not depend on the bank, α>t,nft can
be viewed as the market composant of the stock return. The residual ut,n takes into account the fact
that two banks with similar capital allocations does not necessarily have the same stock returns. As a
consequence, we naturally suppose that the ut,n are statistically uncorrelated between two banks and also
serially uncorrelated. Moreover, we suppose that ft and ut are independant and we assume that ft ∼ N (µ, Σ)
and ut,n ∼ N (

0, σ2
n

)
. Then, we have

E [rt,n] = α>t,nµ (5)
var [rt,n] = α>t,nΣαt,n + σ2

n (6)
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It becomes apparent that the variance of the bank's return is the sum of two components. The �rst component
is a factor risk common to every bank. Two banks with the same capital allocation have the same factor
risk. Let's notice that this factor risk is a lower risk bound (var [rt,n] ≥ α>t,nΣαt,n). The second component
is a speci�c risk that can be viewed as an e�ciency measure of the management of the bank.

2.2 The estimation method
With a panel of N banks, the matrix form of the relationship (4) is

rt = Atft + ut (7)

where rt = (rt,n) is the N×1 vector of returns, At =
(
α>t,n

)
the M×N matrix of sensitivities and ut = (ut,n)

the N×1 vector of residuals. Let D denote the covariance matrix of ut. To simplify the problem, we suppose
that there is no correlation between the speci�c components of two di�erent banks. Then, we have

D := diag
(

σ2
1 · · · σ2

n · · · σ2
N

)
(8)

The log-likelihood function of the model (7) is easy to derive in a gaussian framework but it still provides
unbiased estimates under alternative statistical assumptions (see Gourieroux, Monfort and Trognon
[1984]). This property is useful since returns can hardly be considered as gaussian. Given T dates of
observation, the pseudo log-likelihood function is

`(µ,Σ, D| r) ≡
T∑

t=1

`t(µ, Σ, D| rt)

= −NT

2
ln 2π − 1

2

T∑
t=1

ln
∣∣AtΣA>t + D

∣∣− 1
2

T∑
t=1

(rt −Atµ)>
(
AtΣA>t + D

)−1
(rt −Atµ)

(9)

Let θ = (µ, Σ, D) be the parameter vector. The maximum likelihood estimate is de�ned as the solution of
the following optimisation problem

θ̂ = arg max `(r|µ, Σ, D)

u.c.
{

Σ > 0
D > 0

(10)

This problem could be solved numerically using a quasi-Newton algorithm like BFGS.

Remark 1 If we assume that the matrix At is time-independant, then the score vector of the concentrated
log-likelihood is

g (θc| r) = −

 vech

(
TA>

(
Ω−1 − Ω−1V̂ Ω−1

)
AH

)

Diag
(
T∆

(
Ω−1 − Ω−1V̂ Ω−1

))

 (11)

with
θc =

[
vechH
Diag ∆

]
(12)

Ω corresponds to AHH>A>+∆2 and the matrices H and ∆ are de�ned such that H is the lower triangular
Cholesky decomposition of Σ and ∆ is the squared root matrix of D. V̂ is the empirical N ×N covariance
matrix of the returns rt. We could also determine θ̂c

ML as the solution of the likelihood equations g (θc| r) = 0.
And µ̂ML is de�ned as A†r̂ with A† the Moore-Penrose pseudo-inverse of A and r̂ the empirical mean vector
of the returns.

Remark 2 We are interested in the correlation matrix ρ of the business lines' returns. Let's point out that
the MLE of ρ is very easy to compute once Σ or H are estimated .

Remark 3 Since the number of parameters is very high (dim θc = N + M(M+1)
2 ), starting values are very

important for the optimisation convergence. We note that we could easily compute them using the OLS (or
GLS) estimates of the model (7).
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2.3 Data description
In order to perform the estimates, we �rst have to specify the data we need to de�ne the model inputs:

1. The annual report may be used to de�ne the returns rt,n. Yet, in this case, the number of observations
is not large enough to obtain consistency in ML estimation. So we have taken the daily stock returns
from january 1994 to july 1999.

2. As for the factors f
(m)
t , we decompose the banking activity into 8 typical business lines: retail banking,

middle-market, asset mangement, corporate banking, structured �nance, corporate market, life insur-
ance and non-life insurance. The model can be applied to our whole panel or separetely, to di�erent
geographic areas. In this work, we have de�ned a European area and an American one. Then, we
obtain 16 di�erent factors.

3. The main issue lies in determining the di�erent banks' sensitivities. We may assume that they are
related to the current capital allocations. In this respect, each bank's capital allocation was conveniently
treated to obtain a consistent (but probably approximated) measure of the economic capital dedicated
to each business line. This hard task was performed by our Crédit Lyonnais expert, J-Y. Rossignol.

Secondly, we built a panel of �nancial institutions with KMV Monitor. The panel contains 315 banks,
insurance and �nancial institutions. We encountered some problems with asian banks so that we decided to
leave them out of the panel. As a consequence, we de�ned only two geographic areas. Moreover, some of the
banks' stock returns presented particularities because of fusion, capital modi�cations and so on. Finally, we
obtained a panel of 173 �nancial institutions. The geographic decomposition of our panel is as follows:

Germany 22
France 24
United Kingdom 20
Italy 15
Spain 8
Netherlands 6
Swiss 5
Other european countries 18
United States 55

The following table exhibits the overall allocation in Europe and in the United States:

Business lines Europe United States Total
Retail banking 16% 28% 20%
Middle-market 22% 22% 22%
Asset mangement 6% 5% 6%
Corporate banking 15% 7% 12%
Corporate market 11% 17% 13%
Structured �nance 5% 6% 6%
Non-life insurance 13% 10% 12%
Life insurance 12% 5% 10%

2.4 Econometric results
In order to preserve the con�dentiality of our �ndings, we do not present them exhaustively. Moreover, we
renamed randomly the business lines.

Some interesting results comes out of the estimated values. For example, the European correlation
matrix presents some coe�cients that are very di�erent from the American ones. Thus, the correlation
coe�cient value between the business lines BL #1 and BL #4 is 0.83 for the United States and -0.34 for
Europe ! It also appears that some European correlation coe�cients are non signi�cant as it is the case for
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ρ (BL #1,BL #2). Finally, we may point out that the cross-correlations between business lines in Europe
and in the United States are smaller than the correlations observed separetely in both geographic areas, but
only one is negative !

As an illustration, we exhibit the correlation matrix between the 8 American business lines:

BL #1 BL #2 BL #3 BL #4 BL #5 BL #6 BL #7 BL #8
BL #1 1.00 0.63 0.57 0.83 0.87 0.91 0.87 0.80
BL #2 1.00 0.31 0.69 0.44 0.64 0.60 0.46
BL #3 1.00 0.41 0.73 0.45 0.68 0.62
BL #4 1.00 0.53 0.94 0.75 0.71
BL #5 1.00 0.69 0.75 0.68
BL #6 1.00 0.76 0.73
BL #7 1.00 0.91
BL #8 1.00

After estimating the worldwide correlation matrix, we performed its principal component analysis, which
leads to the following results. With the �rst seven components, we obtain a cumulative quality of about
95%. The �rst component re�ects a worldwide trend factor (we may notice that almost all the business
lines are represented in a same proportion). The second component is a geographic component: we clearly
observe an opposition between European and American business lines. Nonetheless, three business lines do
not take part in the elaboration of this axis (European BL #1 and American BL #2 and BL #3). The
third component shows a link between the three European activites BL #1, BL #2 and BL #4. The fourth
component is an american axis and concerns the activites BL #2, BL #3, BL #4 and BL #5. The remaining
components oppose speci�c European activities to other speci�c American activities.

Moreover, the model presented here is interesting because the equation (6) gives the decomposition of
the risk of a bank between a factor-market risk and a speci�c risk. We can evaluate the proportion κn of
the risk explained by the factor-market risk. With the ML estimate, κn takes the following value

κn =
α>n Σ̂αn

α>n Σ̂αn + σ̂2
n

(13)

Thus, it is possible to classify the �nancial institutions according to κn. The graphic (1) represents the
histogram of κn. We observe that in general, European banks have a smaller κ than American banks. That
probably indicates that stock returns contains more information in American markets than in European
ones.

Until now, we only considered the correlation matrix between the di�erent business lines' returns. Let's
point out that the model also permits to estimate the expected returns and risks. In an internal approach of
capital allocation, these informations does not seem very useful. Internal expected returns and risks of every
business line would be more relevant. Nethertheless, the estimates based on our panel stress out European
and American speci�c behaviours. In the �gure (2), we performed a mean-variance analysis. European
business lines are generally less risky that American ones, but in the same time have smaller expected
returns. We computed the e�cient portfolios that are given by the traditional mean-variance optimisation
program1 (Markowitz [1987]):

sup
α

α>µ

u.c.

{
α>Σα ≤ s
α>1 = 1

(14)

The solution of the program (14) is the e�cient frontier (every combination of portfolios belonging to this
frontier remains e�cient). We clearly note that the European frontier is on the left of the American one,

1The �rst constraint α>Σα ≤ s can be interpreted as a regulatory requirement similar to a value-at-risk requirement.
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Figure 1: Proportion of risk explained by the factor-market risk

Figure 2: Mean-Variance analysis
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which illustrates the previous remark. Such a result may be explained by the di�erence of growth trend
observed between Europe and the United States.

If we go back to the main point at issue, we now dispose of an estimated correlation matrix which allows
to implement a top-down approach of the internal capital allocation,

3 The capital allocation problem
In this section, we try to de�ne the capital allocation problem. In a �rst paragraph, we introduce the concept
of internal model and the interest of such a tool. In a second paragraph, we show that a capital allocation
problem is not as simple as portfolio management. Finally, we provide an example using the correlation
matrix we estimated.

3.1 Building an internal model
We consider an objective function that has to be maximized. In corporate �nance, this function is the �rm
value, more precisely the shareholder's wealth. The Shareholder Value Added analysis (SVA) consists in
de�ning the rules permitting to reach this objective. One problem is to de�ne exactly the shareholder's wealth
and its measure. We could for example simplify the problem by utilizing the Market Value Added (MVA)
which is equal to the �rm's total maket value minus the capital invested. This shareholder value concept
is directly derived from market capitalisation. At this point, we must consider the following problem: it is
not certain that stock prices accurately re�ect the value of the �rm. That's why we refer to the shareholder
utility function without any speci�c reference to a value added measure or a shareholder wealth measure.
Actually, the shareholder utility function is the core of any capital allocation internal model.

An internal model for capital allocation must be based on a methodology. In portfolio management,
we traditionally distinguish among two methods. The �rst method, called top-down, consists in allocating
capital to di�erent asset classes, and then selecting the best securities within each asset class. In the second
method, the bottom-up approach, we directly select the best securities. These two methods are now being
used in bank capital allocation, but with some di�erences (reference [2]) because capital allocation systems in
banks are based on the notion of Economic Capital: we could de�ne it as the amount of capital appropriate
to cover worst-case losses in all but the most extreme economic scenarios.

The report [2] shows that �the banks reviewed by the Task Force utilize internal economic capital allo-
cations for two broad purposes: measuring risk-adjusted pro�tability, and portfolio risk management�. The
bottom-up approach is relevant in the �rst case whereas the top-down approach is adapted to portfolio man-
agement. A top-down internal allocation model can be viewed as a portfolio problem, the portfolio consisting
of the bank's business lines.

The model uses two di�erent categories of data. Internal data provide us with the expected returns
and the risks of the bank's business lines. External data are employed to estimate the correlation matrix
as de�ned in the methodology above. The expected returns and the risk measures could be completed by
performance objectives announced by the di�erent business lines. Let's notice that data collection is an
important step and one has to be careful with the numbers provided by an historical analysis.

Moreover, the internal model has to take regulatory requirements into account. Another constraint
concerns strategic issues, the general orientation of the bank's policy. Eventually, the solution given by the
model is bound to depend on the current allocation. Indeed we do not deal with an allocation model but a
reallocation one, which generates speci�c costs.

The �gure (3) sums up the internal model process.
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Figure 3: Internal model building scheme

3.2 Mathematical setting
Let α denote the allocation vector of the M business lines. The internal allocation model can be formulated
as an optimisation problem

α? = arg max f (α; I)
u.c. α ∈ Ω (15)

where f is the objective function. In a SVA approach, this objective function is linked (directly or not) to the
shareholder's wealth. I stands for the data the bank disposes of: the correlation matrix, its past performance,
its objectives. Ω is a constraint �eld which take into account regulatory and strategic requirements, and
other technical constraints

Ω = RM
+

⋂
ΩReg.

⋂
ΩStrat.

⋂
C (16)

As said in the previous section, reallocation generates costs we must evaluate and introduce into the model.
This could be done by using a penalized objective function or/and by modelling some technical constraints.
In the �rst case, the objective function becomes f (α; I)−ζg (α, α0): g represents a positive bounded function
(g (α0, α0) = 0) and α0 is the current allocation vector. In the second case, technical constraints de�ne a
maximal di�erence between the actual allocation and the solution. Another technical constraint could be
introduced in order to take sector competition into account.

We have done a graphical representation of the optimisation problem at the �gure (4). This is just an
illustration, but the scheme allows us to understand the di�erence between a traditional asset allocation and
a capital allocation problem.

Without any constraint, the solution is generally located on the e�cient frontier. Introducing a penalized
cost function moves the solution out of the the e�cient frontier, to the inside of it. We notice another e�ect
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due to the objective function: the transformation is usually non linear in respect of the expected return and
the risk of the portfolio.

If costs of reallocation are directly captured by the technical constraints, Ω may become a closed space.
In main cases, regulatory requirements introduce a boundary on the right part of the space because they
are aimed at limiting risk. We also represent strategic constraints even though, most of the time, strategic
constraints cannot be represented by a geometric area on a mean-variance scheme.

Figure 4: Graphical representation of the optimisation problem

3.3 An illustration
In this paragraph, we present some examples illustrating the modelling of capital allocation. For convenience,
α denotes the proportion of each business line in the portfolio. Then, we have

α>1 = 1

Let R̃ denote the random vector of the business lines' returns. µ and σ are respectively the vector of the
expected returns and the vector of risks. ρ is the correlation matrix of the business lines' returns. The
expected return of a portfolio is given by α>µ whereas the total risk corresponds to

√
α>Σα with

Σi,j = ρi,jσiσj

Let's point out a small di�erence with the market factor model presented in the section 2 page 2. In the
internal allocation model, σm is the overall risk of the bank's business line m. There is no reason to add
any speci�c risk and furthermore, we assume that σm is a global measure that contains operating risks, etc.

Remark 4 All the computations are done with the values of expected returns and risks obtained previously.
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Let's �rst introduce a very simple example based on risk-adjusted performance measures (RAPM). Pun-
jabi [1998] describes these measures as follows:

These measures take into account the risks embedded in the returns as well as the returns
themselves and provide a common, aggregated framework to access the contributions of various
transactions and business units to the �rm's value.

There are di�erent RAPM measures, but the most known (and the leading approach) is RAROC which is
extensively documented in the litterature (James [1996] and Zaik, Walter, Kelling and James [1996]).
RAROC could be viewed as a performance measure de�ned as follows (Stoughton and Zechner [1999a]):

RAROC =
(Expected) Return minus risk adjustement

Economic Capital = ς

We suppose that the cost of equity capital is zero so that we have

ς (α) =
α>µ

kβ ·
√

α>Σα
(17)

In the equation above, the Economic Capital EC is assimilated to a VaR measure. In a pure gaussian
framework with a 99% con�dence level, kβ is equal to

∣∣Φ−1 (0.01)
∣∣ = 2, 33. If we do not impose any

constraints, the optimisation of ς (α) consists in �nding the tangent to the e�cient frontier line which cuts
the origin as explained in the �gure (5).

Figure 5: The RAROC problem

Let C denote the capital. With a non-zero cost of capital r, the formula (17) becomes2

ς (α) =
α>µ− rC

kβ ·
√

α>Σα
(18)

2Because of the de�nition of α, C is equal to 1 for our example.
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The consequence of cost of capital is represented at the �gure (6). By analogy to market equilibrium theory,
the tangent is the Capital Market Line and the solution of the precedent problem corresponds to the
Market Portfolio that has the highest Sharpe Ratio. However, we point out that this market portfolio
may be constrained by regulatory requirements on risk. To illustrate this fact, we introduce the restriction
c
√

α>Σα ≤ C, which could be interpreted as a VaR constraint. We clearly see that the market portfolio is
likely to be unattainable.

Remark 5 The Market Portfolio de�ned in the previous paragraph is an �internal� portfolio computed
from the past performance of the bank's business lines .

Figure 6: E�ect of the cost of capital and regulatory requirements

We now present some examples of reallocation. Let's suppose that the current allocation is as follows:

BL #1 BL #2 BL #3 BL #4 BL #5 BL #6 BL #7 BL #8
European Business Lines 15% 15% 5% 25% 10% 10% 5%
American Business Lines 10% 5%
Total 15% 15% 5% 35% 10% 15% 0% 5%

If we do not impose any constraint, the solution of the RAROC problem is the market portfolio. Unfortunately,
the solution does not depend on the actual allocation. Such a solution is not realistic because it does not
take reallocation costs or/and strategic issues into account.

Suppose that the bank managers prefer a �smoothed� reallocation. In a �rst situation (case I), we impose
that each business line share cannot move over 5%. The solution is represented at the �gure (7). In a second
situtation (case II), we suppose that we consider a geographic reallocation: the amount of each business
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Figure 7: Reallocation examples

line's allocation remains the same but it is apportionned di�erently among the geographical areas. The case
III is the same as the �rst one, but the move can reach 10%.

Even if the choice of the objective function is not obvious, the main di�culty lies in de�ning the constraints
in a mathematical point of view, in particular strategic ones. Yet this is a very important step which permits
to know wether a reallocation policy is feasible or not. Indeed, we must take care that the problem has
a solution. Suppose that we impose a target for the expected ROE in the third case3. If the target is too
high, there is no solution to the problem. In this example, it is very easy to understand and to detect the
inconsistency of the constraint. But when the problem becomes more complex, the inconsistency could be
more easily detected when the mathemetic translation is done.

4 Implementing reallocation policy
The point of the previous section is to determine the optimum but it does not exhibit any path going from the
initial allocation to the optimal one. The purpose of this section is to present a very simple method based on
the lagrangian multipliers to give reallocation signals. We show that a dynamic policy based on these signals
leads to the desired optimum. Implementing such a policy also allows constraints to evolve: the structure
of constraints (in particular, strategic and technical constraints) depends on the implemented allocation so
that changing the allocation transforms the contraints. The model we develop take this important issue into
account.

3This could be written as
α>µ

C
≥ ROE−
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4.1 Lagrangian multipliers as marginal prices
Let's consider the convex optimisation program

P
{

α? = arg max C (α)
s.c. α ∈ Ω (19)

where C (α) represents the objective function and Ω the �eld of admissible values. We note Pα? the program
value, which means

Pα? = sup C (α)
α ∈ Ω (20)

To simplify the problem, we suppose that Ω is de�ned by I inequality constraints:

Ω =
{
α ∈ RM : gi (α) ≤ γi, i ∈ I

}
(21)

Remark 6 Equality constraints can be taken into account: a constraint h (α) = ζ is replaced by the inequality
constraints {

h (α) ≤ ζ
−h (α) ≤ −ζ

(22)

We assume that the P problem has a solution (see Demange et Rochet [1992] for existence theorems
and unicity ones). In this case, we can prove that there exists a vector λ ∈ RI satisfying





∂ C(α)
∂ α

∣∣∣
α=α?

=
∑

i∈I

λi • ∂ gi(α)
∂ α

∣∣∣
α=α?

gi (α?) ≤ γi

λi ≥ 0
λi = 0 if gi (α?) < γi

(23)

λi coe�cients are called lagrangian coe�cients (or Kühn and Tucker multipliers). Let's point out that these
coe�cients are always positive. From an economic point of view, they can be interpreted as the marginal
prices of the di�erent constraints. A parametrisation α? (γ) (the optimum is associated to the vector γ
representing the second member of the inequalities) sheds light on this last point. Indeed, we can prove that,
for every vector ε in the vicinity of 0M ,

Pα?(γ+ε) = Pα?(γ) + 〈λ, ε〉+ o (‖ε‖) (24)

Releasing the ith constraint by the acquisition of a marginal capacity unit εi raises the objective function by
λiεi.

Thus, we can establish wether a reallocation process is pro�table or not by comparing λi to this unit's
marginal cost of acquisition, and an optimal policy can be implemented so that a constraint is tightened if
λi = 0 or loosened in the other case.

4.2 An example
We consider a very simple example based on the previous RAROC problem. We use the allocation of six
French banks. The �gure (8) represent the expected return and the risk of these six allocation vectors.
The table below report the dual prices (or the lagrandian coe�cients). We observe that even if two banks
are closer in the mean-variance diagram, they may have di�erent dual prices, because their allocation are
di�erent. Moreover, the dual prices indicates which allocation to reduce or to increase.
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Figure 8: Portfolio performance of the six bank allocations

Bank 1 Bank 2 Bank 3
αi < α̇i αi > α̇i αi < α̇i αi > α̇i αi < α̇i αi > α̇i

BL 1 0.1207 0.2500 0.1023
BL 2 0.0042 0.0634 0.0038
BL 3 0.0712 0.1066 0.0611
BL 4 0.0080 0.0606 0.0056
BL 5 0.0206 0.0337 0.0170
BL 6 0.1443 0.5862 0.1349
BL 7 0.0438 0.1936 0.0401
BL 8 0.0263 0.0194 0.0217

Bank 4 Bank 5 Bank 6
αi < α̇i αi > α̇i αi < α̇i αi > α̇i αi < α̇i αi > α̇i

BL 1 0.1028 0.0868 0.1221
BL 2 0.0009 0.0027 0.0015
BL 3 0.0622 0.0517 0.0734
BL 4 0.0050 0.0046 0.0068
BL 5 0.0214 0.0137 0.0250
BL 6 0.1051 0.1121 0.1203
BL 7 0.0315 0.0330 0.0366
BL 8 0.0243 0.0186 0.0289
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4.3 Optimum implementation
The lagrangian multipliers play a very important role in the implementation of a program
optimum which, in our case, can be interpreted as a dynamic reallocation exercise. Implementing
an optimum amounts to �nding a bounded or boundless series {αt, t ∈ T} satisfying

C
(
αt

)
< C

(
αt+1

)
(25)

and ∥∥αT − α?
∥∥ = 0 (26)

{αt, t ∈ T} is a path that leads to the optimum. Thus, going from the current situation α̇ to the optimal
one α? requires several steps, which seems quite relevant in the case of reallocation. Indeed, a reallocation
policy has to be progressive in order to take into account the constraints linked to the current allocation.

Let P be the convex optimisation problem

P
{

maxC (α)
α ∈ Ω =

{
α ∈ RM : gi (α) ≤ γi, i ∈ I

} (27)

Let P+ be the reduced problem
P+

{
max C (α)
α ∈ Ω

⋂ C−⋂ C+ (28)

with
C− =

{
α ∈ RM : α ≤ α̇

}
C+ =

{
α ∈ RM : −α ≤ −α̇

} (29)

This problem is equivalent to the starting problem with the additional constraint α = α̇. Let λ−m denote
the dual price associated with the constraint αm ≤ α̇m, and λ+

m the price associated with the constraint
αm ≥ α̇m. The optimum α? of the program P can be implemented quite easily by applying the equation
(24) to the program P+. Indeed, we know that there exists a vector ε0 in the vicinity of 0M satisfying the
condition (25) since dual prices are positive or null, and we can de�ne α1 as follows

α1 = α̇ + ε0 (30)

Then, with α1 standing in for α̇, we can �nd out another vector ε1 in the vicinity of 0M satisfying the
condition (25) and we de�ne the new vector α2

α2 = α1 + ε1 (31)

We reiterate this process until (26) is satis�ed. Thus, we obtain a series {αt, t ∈ T} implementing the
optimum.

Remark 7 There exist a large number of series {εt, t ∈ T} based on the equation (24) and satisfying the
condition (25). A simple way of choosing a vector εt consists in considering the dual prices λ−m and λ+

m. Let
assume for exemple that Ω = RM . Let m− and m+ be the two business lines associated with the largest dual
prices λ−m et λ+

m 



m− = arg max
m∈M

λ−m

m+ = arg max
m∈M

λ+
m

(32)

Then, we can de�ne εt such that




εt
m = 0 if m ∈ M ∧ {m−;m+}

εt
m_ < 0

εt
m+ > 0

εt
m+ + εt

m_ = 0

(33)

It amounts to modifying the allocation vector αt as follows: the business line corresponding to the highest
dual price λ+

m is extended while the one corresponding to the highest price λ−m is reduced.
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We applied the technique above to implement the RAROC solution with εt
m+ = 0.5%. The graphic (9)

exhibits the evolution of the portfolio's path in the mean-variance diagram for four initial allocation vectors.
Besides, we implemented the following sequential optimisation program in order to compare the results

{
supC

(
αt+1

)
∥∥αt+1 − αt

∥∥ ≤ ϕ
(34)

The graphic (10) exhibits the results in the case of the L1 norm with ϕ = 0.0035. Let's notice that the path
we obtain using the dual prices is quite close to the one we get from the sequential program. Actually, the
two paths coincide when variations are in�nitesimal (ϕ −→ 0+ and εt

m_ −→ εt
m+).

Figure 9: Examples of optimum implementation

In the previous example, we suppose that the parameters and the structure of the constraints always
remain the same from one iteration to another. Yet, we may consider that they are likely to evolve. For
example, increasing the economic capital of one business line generates some market competition and, as
a consequence, reduces the expected return. Therefore, it may be better to consider µ and σ as evolving
parameters.

Moreover, moving the allocation may change the structure of the strategic or technical constraints. We
could easily take this type of modi�cation into account by modifying the problem at each step t

Pt

{
maxCt (α,Ξt)
α ∈ Ωt =

{
α ∈ RM : gt

i (α,Ξt) ≤ γt
i , i ∈ I

} (35)

Ξt is de�ned as a subset of
{
α0, . . . , αt−1

}
:

• If Ξt = ∅, then the solution of the program depends neither on the current allocation nor on the
portfolio's path.
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Figure 10: Sequential optimisation with L1 norm

• We could also take Ξt =
{
α0, . . . , αt−1

}
. In this case, the solution depends on the entire path.

Implementing an optimum with programs like (35) can be viewed as a scenario analysis and/or
hypothesis testing.

BL #1 BL #2 BL #3 BL #4 BL #5 BL #6 BL #7 BL #8
α0 European Business Lines 15% 15% 5% 25% 10% 10% 5%

American Business Lines 10% 5%
(0) European Business Lines 46% 2% 19%

American Business Lines 33%
(1) European Business Lines 43% 9% 25% 7% 6%

American Business Lines 2% 1% 2% 1% 1% 4%
(2) European Business Lines 24% 10% 24% 11% 6%

American Business Lines 5% 4% 1% 3% 2% 10%
(3) European Business Lines 20% 16% 8% 11% 12% 6%

American Business Lines 7% 2% 2% 7% 9%

The �gure (11) illustrates this approach:

0. Given a current allocation, we have computed the portfolio's path and the solution it leads to, without
any constraints.

1. Then, we can suppose that because of market limitations, the expected returns depend on the di�erence
between the current allocation and the future one

µ = µ
(
µ0, α0, α

)
(36)

with µ0 the current observed expected return and µ < µ0 if α > α0.
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Figure 11: Step-varying optimum implementation

We have considered a numerical example4 whose path is reported at the �gure (11). In this case, the
solution is very di�erent from the Market Portfolio allocation (see the table above).

2. In the program (2), the uncertainty of returns is taken into account when the allocation moves5.

3. In a third problem, the objective function Ct depends on Ξt =
{
α0, . . . , αt−1

}
. The underlying idea

is that reallocation induces costs6.

We could do some remarks on these illustrative examples. First, we clearly see that the Market Portfolio
is far from the current portfolio. For instance, the American BL #8 represents 33% of the Market Portfolio.
When we consider reallocation costs, the proportion is reduced to only 9% (program 3). Since the current

4The path (1) has been obtained with

µm =
µ0

m

1 + 1
2

αm
α0

m
1[αm>α0

m]
(37)

If α0
m is equal to zero, we have

µm =
µ0

m

1 + 200αm
(38)

5The path (2) have been obtained with
σm = σ0

m

�
1 + 10

��αm − α0
m

��� (39)

6The path (3) has been obtained with

Ct
�
α,Ξt

�
=

α>µ− rC− ct

kβ ·
√

α>Σα
(40)

where

ct =
1

5

t−1X

i=1

��αi − αi−1
�� (41)
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portfolio does not include this business line, developping this activity implies very huge costs of entry. That's
why its proportion becomes very small.

We must point out that we use the ML estimates of expected returns and risks. In an internal approach,
it is clear that, for business lines that are not present in the bank, we have to use external data (for example,
we could use data provided from benchmarks). These data should be adjusted to take into account the
bank's speci�city or the bank's strategy. In particular, if the activity m is not represented in the bank,
maybe the bank had better leave this activity aside, which means that the bank will set µm = 0.

5 Concluding remarks
This paper presents some ideas about bank capital allocation in a top-down approach. The problem is to
�nd out the way a manager must allocate the capital of a bank among di�erent activities. A related issue lies
in determining the activities he must enhance and the activities he must reduce, given a current allocation.
Such an exercise requires an accurate de�nition and estimate of the data needed as inputs of the model, In
particular we develop a market factor model to estimate the correlation matrix of the di�erent business lines.
The allocation problem can be treated as an asset allocation problem with speci�c constraints. Firstly, the
bank's objective has to be clearly de�ned, which amounts to take into account the shareholder's wealth (for
example, RAROC or EVA7). Secondly the di�erent constraints have to be modelled and �nally, the path to
reach the solution must be determined.

With allocation models in an Economic Capital framework, we abandon the concept of risk as a volatility
measure. Nevertheless, there exist some links between the volatility and the economic capital in a gaussian
analysis. In this case, the economic capital can be easily measured with an Earnings-at-Risk method and a
kβ rule. Yet, some problems may occur to reconciliate a top-down approach with a bottom-up one. In the
case of our RAROC example, the economic capital of the business line m is αm or km

β σm. Implicitely, we use
di�erent kβ values to de�ne the solution. That's why we can be confronted with some problems during the
capital consumption step (or with a bottom-up approach).

Research into bank capital allocation is heavily developped. At the time, it extensively deals with market
risk or credit risk measures (see e.g. [1], [3], [9], [18] and [20]). Two problems are mostly investigated: the
measurement problem (see e.g. [5], [6] and [10]) and the estimation method. Research has just begun to cope
with two other problems: aggregation (see e.g. [13] and [34]) and allocation programming (see e.g. [11], [27]
and [31]). In our top-down approach, we don't face these problems because of the EaR oriented approach
and the gaussian analysis we adopted. But it is possible to extend our study and relax these assumptions
by using stochastic programming8.

References
[1] Amendment to the capital accord to incorporate market risks, Basle Committee on Banking Supervision,

January 1996, N◦ 24

[2] Credit Risk Models at Major U.S. Banking Institutions: Current State of the Art and Implications for
Assessments of Capital Adequacy, Federal Reserve System Task Force on Internal Credit Risk Models,
may 1998

[3] A new capital adequacy framework, Basle Committee on Banking Supervision, June 1999, N◦ 50

[4] Andersson, F. and S. Uryasev [1999], Credit risk optimisation with conditionnal value-at-risk crite-
rion, Dept. of Industrial and Systems Engineering, University of Florida, Research Report, 99-9

7In a mathematical point of viewed, the two concepts are closed (see for example Longley-Cook [1998] or Stoughton
and Zechner [1999a]). The reader will �nd an introduction on EVA in Uyemura, Kantor and Pettit [1996].

8in the spirit of the works of Uryasev ([4], [32]).

19



[5] Artzner, A., F. Delbaen, J-M. Eber and D. Heath [1997], Thinking coherently, Risk magazine, 10,
November, 68-71

[6] Artzner, A., F. Delbaen, J-M. Eber and D. Heath [1999], Coherent measures of risk, Mathematical
Finance, 9, 203-228

[7] Baud, N., A. Frachot, P. Martineu and T. Roncalli [1999], Stability of a top-down correlation
matrix, Crédit Lyonnais, internal document, 09/29/1999

[8] Belkin, B., L. Forest and S.J. Suchower [1997], Measures of credit risk and loan value in KPMG's
LASSM, Financial Services Consulting-Risk Solutions, KPMG Peat Marwick LLP, october

[9] Credit Suisse Financial Products, CreditRisk+: A Credit Risk Management Framework, Credit Suisse
Financial Products, London

[10] Delbaen, F. [1998], Coherent risk measures on general probability spaces, Departement Mathematik,
ETH Zürich, Working Paper

[11] Denault, M. [1999], Coherent allocation of risk capital, Swiss Federal Institute of Technology, Working
Paper, October

[12] Embrechts, P., Klüppelberg, C. and T. Mikosch [1997], Modelling Extremal Events for Insurance
and Finance, Springer-Verlag, Berlin

[13] Embrechts, P., McNeil, A.J. and D. Straumann [1999], Correlation and dependency in risk man-
agement : properties and pitfalls, Departement Mathematik, ETH Zürich, Working Paper

[14] Fishburn, P.C. [1977], Mean-risk analysis with risk associated with below-target returns, American
Economic Review, 67, 116-126

[15] Frachot, A., P. Igigabel, P. Martineu and T. Roncalli [1999], Implémentation d'une méthodolo-
gie top-down � Estimation d'une matrice de corrélation des rendements d'activités bancaires, Crédit
Lyonnais, internal document, 05/15/1999

[16] Froot, K.A. and J.C. Stein [1998a], Risk management, caputal budgeting, and capital structure policy
for �nancial institutions: an integrated approach, Journal of Financial Economics, 47, 55-82

[17] Froot, K.A. and J.C. Stein [1998b], A new approach to capital budgeting for �nancial institutions,
Harvard Business School, Working Paper, July

[18] Gordy, M.B. [1998], A comparative anatomy of credit risk models, Board og Governors of the Federal
Reserve System, Working Paper, December

[19] Gouriéroux, C., A.Monfort and A. Trognon [1984], Pseudo maximum likelihood methods: theory,
Econometrica, 52, 681-700

[20] Gupton, G.M., C.C. Finger and M. Bhatia [1997], CreditMetrics-Technical Document, J.P. Morgan
& Co. Incorporated, New York

[21] James, C. [1996], RAROC based capital budgeting and performance evaluation: A case study of bank
capital allocation, Wharton School, Financial Institutions Center Working Paper, 96-40

[22] Longley-Cook, A.G. [1998], Risk-adjusted economic value analysis, North American Actuarial Jour-
nal, 2-1, 87-100

[23] Markowitz, H.M. [1987], Mean-Variance Analyses in Portfolio Choice and Capital Markets, Basil
Blackwell, Oxford

[24] Merton, R.C. [1974], On the pricing of corporate debt: the risk structure of interest rates, Journal of
Finance, 29, 449-470

20



[25] Punjabi, S. [1998], Many happy returns, Risk, June, 71-76

[26] Ross, S.A. [1976], The arbitrage theory of capital asset pricing, Journal of Economic Theory, 13,
341-360

[27] Schmock, U. and D. Straumann [1999], Allocation of risk capital, RiskLab, Department of Mathe-
matics, ETH Züruch, Working Paper

[28] Sharpe, W.F. [1992], Asset allocation: management style and performance measurement � An asset
class factor model can help make order out of chaos, Journal of Portfolio Management, Winter, 7-19

[29] Stoughton, N.M. and J. Zechner [1999a], Optimal capital allocation using RAROCTM and EVAr,
University of California Irvine, Working Paper, March

[30] Stoughton, N.M. and J. Zechner [1999b], The dynamics of capital allocation, University of California
Irvine, Working Paper, March

[31] Tasche, D. [1999], Risk contributions and performance measurement, Zentrum Mathematik, TU
München, Working Paper, July

[32] Uryasev, S. and R.T. Rockafellar [1999], Optimization of conditionnal value-at-risk, Dept. of In-
dustrial and Systems Engineering, University of Florida, Research Report, 99-4

[33] Uyemura, D., C. Kantor and J. Pettit [1996], EVA for banks: Value creation, risk management
and pro�tability measurement, Journal of Applied Corporate Finance, 9, 94-133

[34] Wang, S.S. [1999], Aggegation of correlated risk portfolios: Models & algorithms, CAS Committee on
Theory of Risk, preprint

[35] Zaik, E., J. Walter, G. Kelling and C. James [1996], RAROC at Bank of America: From theory
to practice, Journal of Applied Corporate Finance, 9, 83-93

21


