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Abstract

This paper proposes a comprehensive climate stress testing approach to measure the
impact of transition risk on investment portfolios. Unlike most climate stress testing
models, which are designed for the banking industry and follow a top-down approach,
our framework considers a bottom-up approach and is mainly relevant for the asset
management industry. In this paper, we model the distribution function of the car-
bon tax, provide an explicit specification of indirect carbon emissions in the supply
chain, introduce pass-through mechanisms of carbon prices, and compute the probabil-
ity distribution of potential (economic and financial) impacts in a Monte Carlo setting.
Rather than using a single or limited set of scenarios, we use a probabilistic approach
to generate thousands of simulated pathways. We can then examine the impact of
transition risk at the economic level and analyze inflation, growth and earnings risks at
the sector and country level. We also propose a framework for modeling earnings-at-
risk and asset-return shocks at the issuer level. Finally, by combining value-at-risk and
stress testing approaches, we define appropriate risk measures for managing climate
risk in investment portfolios and asset allocation.

Keywords: Climate change, stress testing, value-at-risk, carbon tax, input-output analysis,
cost-push price model, dual Leontief matrix, pass-through, indirect emissions, inflation risk,
risk contribution, substochastic matrix, Neumann series, directed graph, copula, Monte
Carlo simulation.

JEL Classification: C6, G11, Q5.

∗The authors are grateful to Guillaume Coqueret, Yassine Derbel and Frédéric Lepetit for their helpful
comments. The opinions expressed in this research are those of the authors and are not meant to represent
the opinions or official positions of Amundi Asset Management.

1



From Climate Stress Testing to Climate Value-at-Risk

Table of Contents

1 Introduction 4

2 Climate scenarios 7
2.1 Definition of the NGFS scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Severity of the NGFS scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Impact on asset pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Carbon pricing 13
3.1 Emission trading system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Social cost of carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Carbon tax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Impact of a flat carbon tax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Indirect emissions and supply chain modeling 27
4.1 Indirect emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Environmentally extended input-output model . . . . . . . . . . . . . . . . . 28

4.2.1 Input-output analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.2 Application to environmental problems . . . . . . . . . . . . . . . . . 30

4.3 Estimation of indirect emissions . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.1 Mathematical framework . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.2 Application to Exiobase and WIOD input-output tables . . . . . . . . 41
4.3.3 Estimation of the upstream emissions and comparison with the Tru-

cost database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.4 Uncertainty modeling of indirect emissions . . . . . . . . . . . . . . . 57

4.4 Application to the MSCI World index . . . . . . . . . . . . . . . . . . . . . . 60
4.4.1 Estimation of upstream intensities . . . . . . . . . . . . . . . . . . . . 60
4.4.2 Uncertainty of upstream intensities . . . . . . . . . . . . . . . . . . . . 62

5 Taxation, pass-through and price dynamics 63
5.1 Pass-through, tax incidence and downstream diffusion . . . . . . . . . . . . . 63

5.1.1 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.2 Calibration of pass-through rates . . . . . . . . . . . . . . . . . . . . . 67

5.2 Taxation and price dynamics in input-output models . . . . . . . . . . . . . . 70
5.2.1 Value added approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.2 Mark-up pricing approach . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.3 Competitive price approach . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.4 Pass-through integration . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Empirical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.1 The case of a global carbon tax . . . . . . . . . . . . . . . . . . . . . . 81
5.3.2 Regional taxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.3 Stochastic pass-through rates . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.4 Upper and lower bounds of the total economic cost . . . . . . . . . . . 101

6 Climate value-at-risk 102
6.1 Earnings-at-risk modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1.1 Derivation of the value added variation . . . . . . . . . . . . . . . . . 103
6.1.2 Earnings-at-risk definition . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 From climate earnings-at-risk to portfolio value-at-risk . . . . . . . . . . . . . 117

2



From Climate Stress Testing to Climate Value-at-Risk

6.2.1 Asset return modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2.2 Description of the Monte carlo algorithm . . . . . . . . . . . . . . . . 119
6.2.3 Application to the MSCI World index portfolio . . . . . . . . . . . . . 122

6.3 Impact on the market portfolio . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Conclusion 128

A Technical appendix 139
A.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
A.2 Calibration of the log-normal distribution (social cost of carbon) . . . . . . . 139
A.3 Downstream analysis of Example #2 . . . . . . . . . . . . . . . . . . . . . . . 141
A.4 Derivation of the upstreamness index . . . . . . . . . . . . . . . . . . . . . . . 142
A.5 Sector and region aggregation/mapping in input-output matrices . . . . . . . 142
A.6 Product of log-normal random variables . . . . . . . . . . . . . . . . . . . . . 143
A.7 Calibration of the multiplying coefficient (upstream emissions) . . . . . . . . 144

A.7.1 The mean-decreasing case . . . . . . . . . . . . . . . . . . . . . . . . . 144
A.7.2 The mean-increasing case . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.8 Ordering properties of nonnegative matrices . . . . . . . . . . . . . . . . . . . 145
A.9 Proof of the inequality L̃m � L̃ . . . . . . . . . . . . . . . . . . . . . . . . . . 146
A.10 Mathematical expectation of the price elasticity of demand . . . . . . . . . . 146

B Additional results 147
B.1 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
B.2 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

3



From Climate Stress Testing to Climate Value-at-Risk

1 Introduction

In the face of escalating greenhouse gas emissions, countries have adopted climate policies to
facilitate the transition to a low-carbon economy. However, it is widely acknowledged that
these policies, although implemented with the will of limiting climate change, are insufficient
to effectively limit global warming to within the 1.5◦C threshold by the end of this century
(IPCC, 2018). Strengthening existing policies is therefore essential, even though it may entail
some economic and financial risks. In addition, the intersection of transition and physical
risks may lead to consequential spillovers that spread across different countries and sectors
and subtly infiltrate areas of the economy previously thought to be unaffected (Raymond
et al., 2020; Naqvi and Monasterolo, 2021). According to the Financial Stability Board,
“a systemic event is the disruption to the flow of financial services that is (i) caused by an
impairment of all or parts of the financial system and (ii) has the potential to have serious
negative consequences on the real economy” (FSB, 2009, page 6). With this statement, it
becomes incontrovertible that climate-related risk is indeed a systemic risk raising the need
for stress testing methodologies.

In response to this need, the literature on climate stress testing has grown considerably
in recent years. Indeed, significant attention has been given to the development of financial
climate stress tests, particularly in the banking sector. The pioneering work of Battiston
et al. (2017) proposed the first stress test to consider cascading effects within the banking
sector. Roncoroni et al. (2021) extended this approach to include investment funds. In the
same vein, a number of stress testing models have been proposed by central bankers and
academics1. However, most of this research is devoted to the banking industry. In the light
of these developments, ESMA (2022) has underlined the need for innovative operational
stress testing models applicable to the asset management sector.

Several methodological approaches can be distinguished for climate stress testing and,
more generally, for assessing transition risk (Le Guenedal, 2022). In asset management,
systematic risk is generally measured using the capital asset pricing model or a multi-factor
risk model. This approach, adaptable to ESG criteria and transition risk (Bennani et al.,
2018; Drei et al., 2019; Roncalli et al., 2020, 2021), has been used to estimate systemic
climate risk exposure. For example, Jourde and Moreau (2022) constructed both transition
and physical risk factors. However, the factor approach is subject to large variations in
exposure and the estimated betas may be too dynamic (Fama and Stern, 2016). As they
remain mostly backward-looking, they may not efficiently capture transition risk, especially
in the context of a disorderly transition. It is therefore more common to introduce forward-
looking scenarios to conduct climate stress tests.

Transition risk methodologies primarily use scenario analysis based on integrated assess-
ment models that embed climate factors into macroeconomic modeling. Most models take
a cost-benefit approach, balancing future damage costs against current mitigation efforts.
Models vary in technological precision, complexity of macroeconomic feedbacks and market
realism. To provide a standard source of information, the network for greening the financial
system has selected a set of models and variables that best describe the transition to a
greener economy (NGFS, 2022). The six selected scenarios represent all outcomes with their
underlying hypothesis, which adds complexity to asset pricing in the context of scenario
uncertainty. The main variable of interest used to perform the transition stress test is the
carbon price, although it is recognised that other variables should be taken into account.
The carbon price provided by these models is not necessarily comparable to effective prices,

1See, for example, Allen et al. (2020), Alogoskoufis et al. (2021), Dunz et al. (2021), Gourdel and Sydow
(2022), Grippa and Mann (2020), Reinders et al. (2023) and Nguyen et al. (2021).
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and the distinction between the social cost of carbon and the effective carbon pricing mech-
anism needs to be made, which is also a barrier to understanding effective transition risk.
Therefore, we must differentiate implicit costs of carbon, explicit carbon taxes and carbon
market prices.

There are two main ways to consider the impact of these scenarios on investment port-
folios. First, top-down methods directly use economic variables from integrated valuation
models to approximate potential losses at the portfolio level. To illustrate, the study by
Vermeulen et al. (2018) examined the impact of a $100/tCO2 carbon price on sectoral value
added and financial indices. To be relevant in asset management, top-down approaches
need to rely on precise and granular results at the sector × country level. Bottom-up ap-
proaches, on the other hand, assess the impact at the issuer level and aggregate losses to
calculate overall portfolio exposure. For example, the Bank of France’s 2020 stress test was
a bottom-up analysis (Allen et al., 2020; ACPR, 2021).

The design of these methodologies differs in several aspects (time horizon, climate sce-
nario, risk factors, balance sheet assumptions, etc.). Nevertheless, most of them underes-
timate the contagion effects in the real economy and the multi-level uncertainty regarding
how a shock may cascade between issuers (Cartellier, 2022; Acharya et al., 2023). Indeed,
in terms of economic interdependence, most bank stress tests have primarily emphasised
the interconnectedness of the financial system rather than the interdependencies within the
physical supply chain (Battiston et al., 2017; Roncoroni et al., 2021). Adenot et al. (2022)
introduced the use of input-output matrices for portfolio stress testing, taking into account
cascading effects. Their model builds on several contributions and an extensive literature
on price cascading effects measuring the diffusion of carbon and pollutant tax costs across
sectors (Gemechu et al., 2014; Mardones and Mena, 2020; Cahen-Fourot et al., 2021).

However, when conducting climate transition stress tests, it is important to recognise
the limited information available on the proportion of the carbon price that is passed on
to consumers through product prices. To address this, it is necessary to introduce a pass-
through mechanism. This reflects how changes in costs faced by firms are reflected in price
changes for consumers or downstream markets. A pass-through parameter typically ranges
from 0% when the agent bears the full cost burden to 100% when the full amount is passed
on to direct customers (Bouchet and Le Guenedal, 2020; Adenot et al., 2022). One of the
difficulties is that pass-through rate is not homogeneous across sectors and can vary across
industries, markets and firms. Calculating it therefore remains a challenge. There are several
approaches to estimating pass-through parameters. A comprehensive report commissioned
by the Office of Fair Trading discussed the fundamental aspects of pass-through mechanisms
(RBB Economics, 2014). According to this report, pass-through parameters are theoretically
influenced by various factors, including supply and demand elasticities, international trade
exposure and market structures. Nevertheless, estimation methods are still in their infancy
and reveal significant asymmetries at the firm level. Several empirical studies have been
carried out to examine the effects of changes in the tax system. These studies compare
prices before and after the introduction of a tax. The survey of Sautel et al. (2022) showed
that the uncertainty of pass-through rates is large. Therefore, the impact of a carbon tax
in a climate stress test cannot be summarised by a single figure, but requires a probabilistic
approach.

The methodology developed in this paper is based on the various methods listed above.
The starting point is an analysis of the NGFS scenarios. The six economic paths are rep-
resentative of six climate scenarios. Therefore, the uncertainty of a stress test comes from
the uncertainty of the occurrence of the given scenario. To run a stochastic stress test pro-
gram, we could use a probability distribution of the six scenarios. This creates uncertainty
as to which climate scenario will be followed. In this case, the stress test is a between-
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scenario analysis and there is no conditional uncertainty within a scenario2. To perform a
within-scenario exercise, we could use all the models in the NGFS database and not just the
scenario × model selected by NGFS. However, the number of models is limited3. Another
solution is to use the IPCC database, but the results are not standardised and homogeneous
for a given climate scenario (Roncalli, 2023). The real challenge of stress testing is then
to model the economic uncertainty and random consequences of a given climate scenario.
Another issue in conducting a stress testing program is the definition of the stress scenario.
In general, the stress scenario is complex and mixes transition and physical risks. In this
context, it is not always obvious to understand the underlying assumptions: the climate
policy response function, the change in consumer preferences, the severity/frequency risk of
natural disasters, etc. In addition, some variables may be endogenous. For example, the
carbon price is an output of integrated assessment models and not an input. In this research
project, we prefer to use a very simple framework. We consider only the transition risk and
assume that a flat carbon tax is introduced. The stress test scenario is then described by
the level of the carbon tax and its scope. For instance, the implementation by the EU of a
$100/tCO2e carbon tax across all sectors of the economy is a stress scenario.

Our model adopts an environmentally extended input-output framework. Using the value
added approach to describe price dynamics, we are able to diffuse the carbon tax across the
global value chain. We also introduce a pass-through mechanism and show how it modifies
the Leontief multiplier matrix. For a given level of carbon tax, we can then assess the
economic cost, the increase in inflation and the impact on different sectors. Having defined
the downscaling process, we can assess the transition risk at the firm level, measure the loss
distribution of an investment portfolio and propose a risk decomposition. As explained by
Roncalli (2020), the scenario design of the stress test is important, in particular the choice of
risk factors. Our model has two main sources of risk: the carbon tax and the pass-through
rates. We can then introduce several layers of uncertainty. The vector of pass-through
rates is a stochastic risk factor and follows a multivariate distribution with beta-distributed
margins and a Gaussian copula. We can then estimate the probability distribution function
of the output variables given a level of carbon tax. This conditional approach can be
extended to the unconditional approach, where the carbon tax is also random. To do this,
we use a calibrated log-normal distribution. Thus, our model for estimating the impact of
transition risk can be seen as a probabilistic approach with multiple stress scenarios. Our
methodology belongs to the stress testing framework because the introduction of a carbon
tax of 100 or 250 $/tCO2e is indeed a huge economic shock. However, it also belongs to
the value-at-risk framework as we obtain a probability distribution of the loss, but without
specifying a holding period (Schweimayer and Stoyanova, 2022). Given the great uncertainty
of climate change, we believe that the combination of the two frameworks is necessary to
obtain a comprehensive range of possible outcomes.

This research paper is organised as follows. Section Two describes the NGFS climate sce-
narios. Section Three sets the stage for a good understanding of the main source of transition
risk and focuses on the price of carbon, whether explicit (market price and carbon tax) or
implicit (social cost of carbon). Section Four shows how multi-regional input-output (MRIO)
analysis can be used to estimate indirect emissions through the supply chain. Section Five
describes the diffusion of the carbon tax and price dynamics, and defines pass-through mech-
anism and its calibration. Section Six presents the methodology for defining the value-at-risk
of investment portfolios. We consider a probabilistic approach with different uncertainties
and apply this Monte Carlo simulation approach to investment portfolios. Finally, section
Seven draws some conclusions.

2Given a scenario, the economic path is deterministic.
3The three models are GCAM, MESSAGEix-GLOBIOM and REMIND-MAgPIE.
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2 Climate scenarios

As greenhouse gases emissions have been increasing since the industrial revolution, climate
policies have been set by countries in order to organize the transition to a low-carbon econ-
omy. Actually, we know that they are not sufficient to limit global warming to 1.5◦C by the
end of this century (IPCC, 2018). Therefore, there is a high uncertainty about the future
trajectory of the global economy. In this context, a climate stress testing exercise is not
obvious since it depends on many assumptions, and relationships between climate change
and the economy are uncertain and unclear. For instance, the transition risk depends on
future innovations such as the development of carbon dioxide removal (CDR) technologies,
the coordination between countries’ climate policies, green preferences of consumers, etc.
Moreover, the scientific community has stressed that physical risks may materialize sooner
than expected before 2050. Since it is impossible to analyze the different sources of uncer-
tainty, we discuss several major issues for illustrative purpose. The first one concerns the
design of climate scenarios. Indeed, the choice of climate scenarios is an important issue.
For instance, we can use the net zero emissions by 2050 scenario (NZE) provided by the
International Energy Agency (IEA), the 1.5◦C scenarios calculated by IPCC (2018) or the
AR6 scenarios presented in IPCC (2022). These scenarios have the drawback to be non-
homogeneous, meaning that the output variables and the region coverage highly depend on
the integrated assessment model that is used and are not always consistent (Roncalli, 2023).
Therefore, the investment industry prefer to use the NGFS scenarios that have become a
common standard in finance and have been defined for the purpose of stress testing (NGFS,
2020). In particular, the goal of the NGFS scenarios is to help central banks and supervisors
to assess both transition and physical risks, and their possible impacts on the economy and
the financial system (NGFS, 2022).

2.1 Definition of the NGFS scenarios

The NGFS scenarios framework is a set of six alternative scenarios that can be grouped into
three families (Figure 1):

• Orderly scenarios aim at reducing transition and physical risks at a maximum level.
Therefore, they assume that climate policies are introduced early and become gradually
more stringent.

#1 Net zero 2050 (NZ) limits global warming to 1.5◦C.

#2 Below 2◦C (B2D) gradually increases the stringency of climate policies, giving a
67% chance of limiting global warming to below 2◦C.

• Disorderly scenarios assume higher transition risk due to a global delay or divergence
of climate policies to mitigate global warming.

#3 Divergent net zero (DNZ) reaches net zero around 2050.

#4 Delayed transition (DT) assumes annual emissions do not decrease until 2030.

• Hot house world scenarios assume more severe physical risk and low transition risk,
because global efforts are insufficient to halt global warming.

#5 Nationally determined contributions (NDC) includes all pledged targets.

#6 Current policies (CP) assumes that only current policies are implemented.
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Figure 1: NGFS scenarios framework
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2.2 Severity of the NGFS scenarios

Despite being based on the same economic background assumptions, all scenarios reflect
various combinations of assumptions pertaining to technological situations, climate policies,
and the impact of climate change. First, physical risks affect the economy because of event-
driven hazards (acute risk) and life condition changes (chronic risk). For instance, the
increased severity of extreme weather events (cyclones, floods, etc.) induce more insurance
risks and economic losses. In a similar way, chronic impacts on temperature and precipitation
may change the labor and agricultural productivity. Second, managing transition risks
implies to accelerate the transition to a low-carbon economy. According to NGFS (2022),
several factors can then be considered: policy reaction, technology change, carbon dioxide
removal and regional differences. Climate policies can be implemented by introducing a
carbon tax, setting limits on GHG emissions, increasing public investments, facilitating
private investments, etc. This policy dimension of the transition risk must be completed by
the technological dimension. Indeed, the decarbonization pathway of the global economy
strongly depends on future technologies and solutions. There is a high uncertainty on
this second dimension, which also depends on current climate policies and the investment
amount in green capex and R&D. Finally, the third dimension is complex to take into
account, because it depends on geopolitical issues and coordination between countries. For
instance, we know that technology transfer and financial support of developed countries to
poor and vulnerable countries is a key challenge to fight global warming and limit physical
risks everywhere.

We can assess the severity of the NGFS scenarios by using several metrics, which con-
cern both physical and transition risks. Nevertheless, there is a trade-off between the two
dimensions, meaning that a high physical risk is generally associated to a low transition
risk. Therefore, a severity measure based on physical/transition dimensions is not always
relevant and useful when the two dimensions are combined. It would be better to consider an
economic variable that summarizes the stress severity. In Table 2, we report the change (in
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Table 1: Risk severity of the NGFS scenarios

Scenario Physical risk
Transition risk

Policy Technology CO2 Regional
reaction change removal differences

B2D Medium Medium Medium Medium Low
CP High Low Low Low Low

DNZ Low High High Low Medium
DT Medium High High Low High

NDC High Low Low Low Medium
NZ Low Medium High Medium Medium

Source: NGFS (2022, page 8).

%) on the world GDP between the baseline scenario and each NGFS scenario4. We notice
that the severity depends on the time horizon. For instance, if we consider a short-term
horizon (2025), we obtain the following ranking in terms of stress severity:

DNZ � NZ � B2D � NDC � CP � DT

If we prefer a long-term horizon (2050), the ranking becomes:

DT � DNZ � NDC � CP � NZ � B2D

The time horizon is then an important variable when we want to perform a stress testing
exercise. While the Net Zero 2050 scenario induces higher economic costs before 2030, its
impact is very small between 2030 and 2050. This is not the case for the delayed transition
scenario, whose economic costs increase over time.

Table 2: Impact of climate change on GDP (% change wrt baseline)

Year B2D CP DNZ DT NDC NZ
2025 −1.37 −0.76 −8.15 −0.60 −1.12 −4.24
2030 −2.11 −1.43 −9.87 −2.70 −2.14 −4.99
2035 −2.60 −2.27 −10.43 −9.21 −3.17 −4.91
2040 −3.00 −3.24 −10.78 −11.30 −4.26 −4.94
2045 −3.26 −4.17 −10.91 −12.09 −5.15 −4.92
2050 −3.51 −5.26 −11.53 −13.37 −6.16 −4.84

Source: www.ngfs.net & https://data.ene.iiasa.ac.at/ngfs.

We can perform the same analysis by considering other economic variables and/or re-
gions. For instance, we have reported some figures in Table 3 for USA, Europe and China.
The figures measures the impact by 2050. If we consider GDP, the impact highly depends
on the country or the region. For the DT scenario, the GDP loss is about 18% for the USA,
11% for Europe and less than 7% for China. We observe similar patterns for the productiv-
ity. The impact on the inflation is not significant, because most of the effects are located
between 2025 and 2040 while we observe a normalization in the long-run whatever the NGFS
scenario we use (Roncalli, 2023). In a similar way, the impact on the unemployment rate is
relatively low. This is not the case of public investment and the debt, which depend on the
scenario.

4We consider the MESSAGEix-GLOBIOM model because it produces differentiated figures between sce-
narios (Roncalli, 2023).
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Table 3: Impact of climate change on economic variables by 2050 (% change wrt baseline)

Region Variable B2D CP DNZ DT NDC NZ

USA

GDP −2.67 −4.38 −15.37 −17.66 −6.31 −4.36
Inflation −0.02 0.19 −0.50 0.02 0.16 −0.07
Productivity −2.79 −4.41 −15.64 −17.45 −6.32 −4.78
Public investment 9.06 −4.04 −9.93 −10.77 −5.62 8.56
Unemployment −0.12 −0.17 −0.18 0.18 −0.10 −0.29

Europe

GDP −1.02 −2.84 −9.64 −11.02 −4.01 −1.62
Inflation 0.04 0.15 −0.42 0.09 0.13 −0.00
Productivity −0.79 −2.43 −8.66 −9.33 −3.68 −1.25
Public investment 14.20 −2.71 −8.97 −8.53 −3.87 13.62
Unemployment −0.03 −0.09 0.02 0.12 −0.07 −0.07

China

GDP −2.33 −4.97 −5.13 −6.73 −4.67 −2.76
Inflation −0.06 0.25 −0.64 −0.34 0.22 −0.24
Productivity −2.26 −5.02 −5.15 −6.67 −4.69 −2.74
Public investment 3.31 −4.60 −3.37 −4.01 −4.28 3.28
Unemployment −0.04 −0.29 0.01 −0.03 −0.23 −0.02

Source: www.ngfs.net & https://data.ene.iiasa.ac.at/ngfs.

Remark 1. In Appendix B on pages 148–151, we present the heatmaps of GDP impact
by 2030 and 2050. If we focus on the 2030 time horizon, two scenarios are relatively se-
vere (DT and NZ), while three scenarios show very low impact (CP, DNZ and NDC). The
comparison between 2030 and 2050 scenarios show clearly that the cost of climate change
is time-dependent. Moreover, we notice that all regions are not equal. On average, the
economic cost will be higher in Africa and Middle East than in the rest of the world.

2.3 Impact on asset pricing

In the case of an investor, measuring the impact on the economic sphere is not sufficient and
must be complemented by an analysis of the financial markets. With the NGFS scenarios,
we have access to three financial variables: the central bank intervention rate, which is a
proxy for short-term interest rates, the stock price index and the long-term interest rate.
We can therefore analyze the impact of climate change on the equity and sovereign bond
markets.

Results on equity prices are reported in Figures 2 and 3. On average, the highest impacts
are obtained when we consider the DNZ and DT scenarios. The NZ scenario implies negative
returns in the stock market on the short run, but the impact could be close to zero on the
long run. The B2D scenario presents similar patterns. We could expect the CP and NDC
scenarios to have the same behavior, but this is not the case. However, these global results
depends on the country. For instance, we observe that the Japanese stock market may face
more risk than Chinese, European and US stock markets, especially in the case of B2D,
DNZ, DT and NZ scenarios. One explanation is that the Japanese economy may be hurt by
more physical risks than the others (DNZ and DT), and the cost to mitigate them may also
be higher (B2D and NZ). The Chinese equity market is at risk when we consider the CP
and NDC scenarios, but it is more resilient for the other four scenarios. If we consider long-
term interest rates, climate change generally induces higher financing costs (Figure 4) and
a steeper yield curve in the short term (Figure 5). These results question the sustainability
of the private debt, and shows that the impact of climate change on sovereign bond markets
may be large.
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Figure 2: Evolution of equity prices (% change from baseline)

Source: www.ngfs.net & https://data.ene.iiasa.ac.at/ngfs.

Figure 3: Confidence interval of equity prices (% change from baseline)

Source: www.ngfs.net, https://data.ene.iiasa.ac.at/ngfs & Authors’ calculations.
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From Climate Stress Testing to Climate Value-at-Risk

Figure 4: Confidence interval of long-term interest rates (% change from baseline)

Source: www.ngfs.net, https://data.ene.iiasa.ac.at/ngfs & Authors’ calculations.

Figure 5: Confidence interval of the yield curve slope (% change from baseline)

Source: www.ngfs.net, https://data.ene.iiasa.ac.at/ngfs & Authors’ calculations.
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From Climate Stress Testing to Climate Value-at-Risk

3 Carbon pricing

One of the major uncertainties in climate stress testing is the climate policy, which is also
a control variable in most integrated assessment models. Carbon pricing is the main tool to
implement a public policy whose objective is to reduce CO2 emissions:

“Carbon pricing is an instrument that captures the external costs of green-
house gas (GHG) emissions — the costs of emissions that the public pays for,
such as damage to crops, health care costs from heat waves and droughts, and
loss of property from flooding and sea level rise — and ties them to their sources
through a price, usually in the form of a price on the carbon dioxide emitted.”
World Bank (2021), carbonpricingdashboard.worldbank.org.

Carbon pricing takes different forms, e.g., carbon tax, ETS, and carbon credit mechanism.
The underlying idea is that the biggest emitters of greenhouse gases pay higher taxes or
face higher costs. Therefore, they are encouraged to transform their activities, and then
lower their emissions. By increasing the price of brown activities, these mechanisms also
promote the development of green businesses and stimulate market innovations. Carbon
pricing also generates revenues for governments that can be used to finance the transition
to a low-carbon economy. Generally, we distinguish two forms of carbon pricing:

1. External carbon pricing
External pricing is made up of carbon taxes and emissions trading system (ETS).
These methods are managed by governments, in order to quantify the external carbon
costs, i.e. costs related to damages from GHG emissions that people will have to pay.
They reflect the price of a tonne of CO2e emitted.

2. Internal carbon pricing
Internal prices are set at the corporation level, and can take three different forms
(Ahluwalia, 2017; Harpankar, 2019). The first one is an internal carbon fee. It rep-
resents the monetary value of each tonne of carbon emissions that arise from the
company’s business activities. Since the collected amount stays within the company,
it thus creates a revenue that can be used to finance the emissions reduction efforts.
The second form is a shadow price, which is the theoretical price on carbon that aims at
helping long-term business planning and investment strategies. By construction, they
are an estimate of carbon pricing that will arise from future regulations. Therefore,
shadow prices put incentives on prioritizing low-carbon investments and must help
companies to prepare themselves for incoming regulations. The third form of internal
carbon pricing is by setting an implicit price, based on how much money a company
spends to reduce GHG emissions. This implicit price is calculated retroactively based
on the measures implemented to mitigate emissions (e.g., investments in renewable
energy) and costs that arise from the efforts made to comply with climate regulations
and public policies.

In Figure 6, we report the different explicit carbon prices. According to Poupard et al.
(2022), there are 68 explicit carbon pricing mechanisms as of 1st August 2022, with the
following breakdown: 32 emission trading systems and 36 carbon taxes. We notice that
some countries have chosen to implement simultaneously the two carbon pricing tools. For
example, this is the case of the Canada federal mechanism, New Brunswick, Newfoundland
and Labrador, and Switzerland. In some European countries (e.g., Austria and Germany),
a national ETS complements the EU ETS.
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From Climate Stress Testing to Climate Value-at-Risk

3.1 Emission trading system

An emission trading system (ETS) allows corporations (and countries) to trade carbon
emissions to meet their targets. This system is based on a global amount of emissions that
can be traded by the different entities on a carbon market. There are two main types of
ETS. The first one is a cap-and-trade system, which sets an absolute emission cap. Emissions
allowances, which are partly distributed and auctioned, are then traded by the entities in
the emissions allowance market. The second one is a baseline-and-credit system. Baseline
levels of emissions are set for individual entities. Then, emission credits are issued by entities
that have lowered their emissions below the baseline level, and these credits are traded by
entities that have exceeded their baseline level.

Figure 7: Evolution of the EU ETS carbon allowance price
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Source: Factset (2023).

The European Union ETS was created in 2005, with the goal of pricing emissions that can
be accurately estimated5. In Figure 7, we report the carbon price of the EU cap-and-trade
ETS. It is worth noting that for a considerable period of time, the carbon price remained
below e30/tCO2e. In particular, the carbon price saw a sharp decline after the Global
Financial Crisis from e30 in 2008 to a mere e2.75 in April 2013. Phase 4 started in 2021

5Today, EU ETS accounts for:

• Carbon dioxide (CO2) emissions that come from electricity and heat generation, and energy-intensive
industry sectors (oil refineries, steel works, production of iron, aluminum, metals, cement, lime, glass,
ceramics, pulp, paper, cardboard, acids and bulk organic chemicals);

• Nitrous oxide (N2O) from production of nitric, adipic and glyoxylic acids and glyoxal;

• Perfluorocarbons (PFCs) from the production of aluminium.

Even though participation in the EU ETS is mandatory for the companies from theses sectors, some com-
panies below a certain size can be exempted. Concerning the aviation sector, only flights between European
Economic Area airports are concerned.
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with the goal of reducing GHG emissions by 40%, compared to 1990 levels. But the last
review of the EU ETS aims at reducing net emissions by 55%. As a result, the carbon price
went from e34 in January 2021 to nearly e100 in February 2023.

Let us assume that the carbon price CP (t) follows a geometric Brownian motion (GBM):

dCP (t) = µCP (t) dt+ σCP (t) dW (t)

where W (t) is a standard Wiener process. In order to test this assumption, we compute
the empirical volatility σ̂ (h) of the relative variation of CP (t) using the previous EU ETS
data6. We consider different time horizons h and plot the standard deviation σ̂ (h) with
respect to h (Figure 8). We notice that we can easily fit the non-parametric curve with
the square-root-of-time rule: σ̂ (h) ≈ β0 + β1

√
h. We conclude that we can approximate

the carbon price by a GBM process. The ML estimation gives µ̂ ≈ 20% and σ̂ ≈ 50%.
In Figure 9, we report the distribution of CP (t) by assuming an initial carbon price of
$100. We observe the high kurtosis of the carbon price, which is due to the high volatility
of the relative variation. Indeed, an empirical volatility of 50% typically corresponds to the
volatility of commodities, which is higher than that of single stocks. In Table 4, we compute
the exceedance probability7 Pr

{
CP (t) ≥ x | CP (0) = CP0

}
by assuming that CP0 = 100,

µ = 20% and σ = 50%. Based on this model, there is a probability of 27% to observe a
carbon tax greater than $5 000 in 30 years. Even if we set µ = 0, the probability is not equal
to zero. This demonstrates the high uncertainty when modeling the carbon price.

Table 4: Exceedance probability Pr
{
CP (t) ≥ x | CP (0) = 100

}
in % (σ = 50%)

µ x
t (in years)

1 2 5 10 20 30

20%

200 10.82 22.12 38.80 51.43 64.09 71.51
500 0.11 1.95 13.48 29.34 48.05 59.25

1 000 0.00 0.12 4.23 16.31 35.98 49.23
5 000 0.00 0.00 0.08 2.28 14.04 27.20

0%

200 5.09 9.11 11.92 10.95 7.66 5.24
500 0.03 0.43 2.28 3.53 3.30 2.52

1 000 0.00 0.02 0.44 1.23 1.59 1.35
5 000 0.00 0.00 0.00 0.05 0.21 0.26

Remark 2. We generally obtain lower values with other emission trading systems, except
with the UK ETS carbon price (Figure 93 on page 152). In this case, the correlation between
the two systems is equal to 75%.

6We define the relative variation as follows:

R (t, h) =
CP (t)− CP (t− h)

CP (t− h)

and compute the standard deviation σ̂ (h):

σ̂ (h) =
1

n− 1

∑
t

R (t, h)−
1

n

∑
t

R (t, h)

2

where n is the number of non-missing observations.
7It is equal to:

Pr
{
CP (t) ≥ x | CP (0) = CP0

}
= Φ

(
1

2
σ
√
τ −

1

σ
√
τ

ln
x

eµtCP0

)
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Figure 8: Volatility of carbon prices satisfies the square-root-of-time rule
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Figure 9: Probability density function of the carbon price
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3.2 Social cost of carbon

The social cost of carbon (SCC) is defined as the present value of the impact of an additional
tonne of CO2 emitted in the atmosphere. It is a measure of the externality of future carbon
emissions. For instance, a SCC of $100 means that emitting one extra tonne of CO2 today
has the same consequence on the social welfare as a reduction of consumer’s consumption
by $100. In this sense, the social cost of carbon differs from the effective price that reflects
the market trading price. Following Bouchet and Le Guenedal (2020), the SCC can be
computed by two main approaches:

• The cost-benefit approach consists in finding the optimal trajectory of carbon emis-
sions and computing the optimal carbon price, which is obtained by equalizing the
marginal cost of reducing GHG emissions and the marginal benefit of the avoided
damage (Nordhaus, 1991).

• The cost-efficiency approach tends to estimate the optimal price of carbon that will
allow to meet emission reduction targets. For instance, which carbon price a country
must implement to reach a 20% reduction of GHG emissions by 2030?

Cost-benefit analysis are often used by integrated assessments models (IAMs). For instance,
the social cost of carbon in the DICE model is computed as follows:

SCC (t) = −

∂ W

∂ CE(t)
∂ W

∂ C(t)

= − ∂ C(t)

∂ CE(t)

where W denotes the social welfare function, CE(t) is the total GHG emissions at time t

and C(t) is the consumption at time t. The term
∂ W

∂ CE(t)
≤ 0 is the marginal social welfare

with respect to GHG emissions, while
∂ W

∂ C(t)
≥ 0 is the marginal utility of consumption.

Therefore, the social cost of carbon is the opposite of the marginal variation of the consump-
tion with respect to a marginal variation of GHG emissions. In fact, there are several ways
to compute the SCC. For instance, Wang et al. (2019) reviewed the different formulas to
estimate the SCC from the academic literature based on the cost-benefit analysis. Neverthe-
less, as noticed by Clarkson and Deyes (2002), its estimation is subject to deep uncertainties
that can be scientific (current and futures level of GHG emissions, damage function, etc.)
or concerns the economic valuation (economic impact, abatement cost, discount rate, etc.).
The Stern-Nordhaus controversy is one illustration of these uncertainties.

What is the typical level of the social cost of carbon? In fact, there is no obvious answer
since it depends on many parameters. For instance, in Table 5, we report the SCC estimated
for the standard DICE model computed by Nordhaus (2017). Under the baseline scenario
assumption8, the SCC value is $31.2/tCO2 in 2015 and reaches $102.5/tCO2 in 2050, im-
plying a compound annual growth rate of 3.46%. The optimal scenario gives SCC figures
that are similar to the baseline scenario. Nordhaus (2017) also evaluated two alternative
scenarios: the 2.5◦C-max scenario constraints the temperature to be below 2.5◦C, whereas
the 2.5◦C-mean imposes an average temperature of 2.5◦C for the next 100 years. The impact
of these two alternative scenarios is significant. In this case, the social cost of carbon can
reach the value $1 000/tCO2 in 2050.

8The baseline scenario corresponds to the current policy.
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Table 5: Global SCC under different scenario assumptions (in $/tCO2)

Scenario 2015 2020 2025 2030 2050 CAGR
Baseline 31.2 37.3 44.0 51.6 102.5 3.46%
Optimal 30.7 36.7 43.5 51.2 103.6 3.54%
2.5◦C-max 184.4 229.1 284.1 351.0 1 006.2 4.97%
2.5◦C-mean 106.7 133.1 165.1 203.7 543.3 4.76%

Source: Nordhaus (2017, Table 1, page 1520).

The SCC is currently used by the US government to inform climate change policies. In
2009, US President Barack Obama established the interagency working group on social cost
of greenhouse gases, whose objective is the following:

“The interagency working group (IWG) on the social cost of greenhouse gases
is committed to ensuring that the estimates agencies use when monetizing the
value of changes in greenhouse gas emissions resulting from regulations and other
relevant agency actions continue to reflect the best available science and method-
ologies.” (IWG, 2021, page 1).

The first estimates were published in 2010 and were around $30/tCO2 (Wagner, 2021) for
the year 2020. Then, IWG proposed a price of $50/tCO2 in 2013 and made several revisions
in 2015 and 2016. According to Wagner et al. (2021, page 546), “former president Donald
Trump changed the terms for the SCC from 2017. He limited damages to those within
the United States, omitting impacts that will be felt in other countries. And he gave an
unrealistically low estimate of the costs of future damages as counted in today’s dollars.
Together, these changes slashed the SCC to $1-7 per tonne: too low to influence policy”.
In February 2021, IWG published a new analysis with computed SCC values for CO2, CH4

and N2O. Figures are reported in Table 6 for three different values of the discount rate. For
instance, if the discount rate is set to 5%, the social cost of carbon is equal to $19, while the
social cost of methane is equal to $940 for GHG emissions emitted in 2030. Currently, the
Biden administration uses a value of $51/tCO2, which corresponds to a discount rate of 3%
and the 2020 emission year (Rennert et al., 2021). In September 2022, the US Environmental
Protection Agency published a controversial report for two main reasons. First, the EPA is
a member of the IWG and has participated in the works of IWG (2021) one year earlier.
Second, the EPA report presents new and updated results that are highly different from
those we can find in the IWG report. Table 6 gives some figures with respect to the Ramsey
discount rate (1.5%, 2% and 2.5%). For instance, if we consider the 2% case, the social cost
of carbon is equal to $193 instead of $51, implying a multiplication factor of 3.75.

The previous results show the high uncertainty around the computation of the SCC.
Of course, it strongly depends on the modeling of the discount rate. For example, using a
constant Ramsey discount rate is equivalent to use a stochastic discount rate. Nevertheless,
the uncertainty does not only concerns the model parameters. It is also related to the
integrated assessment model. IWG and the EPA uses three models: DICE, FUND and
PAGE (Roncalli, 2023). Generally, the most conservative results are obtained with the
PAGE model followed by the DICE model, while FUND is viewed as the less conservative
model. In Figure 10, we report the histograms of the SCC estimates, which are obtained
by IWG9 in July 2015. Each histogram is based on a Monte Carlo simulation with 10 000
replications and five different climate scenarios (IMAGE, MERGE Optimistic, MESSAGE,

9The data are available at https://obamawhitehouse.archives.gov/omb/oira/social-cost-of-carbon.
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Table 6: Comparison of IWG and EPA SCC values (in 2020 dollars per tonne)

Agency Year CO2 CH4 N2O

IWG
(2021)

5% 3% 2.5% 5% 3% 2.5% 5% 3% 2.5%
2020 14 51 76 670 1 500 20 00 5 800 18 000 27 000
2030 19 62 89 940 2 000 25 00 7 800 23 000 33 000
2040 25 73 103 1 300 2 500 31 00 10 000 28 000 39 000
2050 32 85 116 1 700 3 100 38 00 13 000 33 000 45 000

EPA
(2022)

2.5% 2.0% 1.5% 2.5% 2.0% 1.5% 2.5% 2.0% 1.5%
2020 117 193 337 1 300 1 600 2 300 35 000 54 000 87 000
2030 144 230 384 1 900 2 400 3 200 45 000 66 000 100 000
2040 173 267 431 2 700 3 300 4 200 55 000 79 000 120 000
2050 205 308 482 3 500 4 200 5 300 66 000 93 000 140 000

Source: IWG (2021, Tables 1–3, pages 5–6) & EPA (2022, Table 4.2.1, page 120).

Figure 10: Histogram of the 150 000 US Government SCC estimates for 2020 with a 3%
discount rate

The figure combines the 50 000 2020 3% discount rate estimates from each of the three US Government

models to illustrate their influence on the aggregate histogram that determines the official USG SCC for

2020 at 3%, which is equal to $41.6 (average) and $123.4 (95th percentile).

Source: IWG (2015), Rose et al. (2017, page 3) & Authors’ calculations.
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MiniCAM Base, 5th Scenario). Below, we also report the average and the 95th percentile:

Model Average 95th percentile
DICE 37.8 74.0
FUND 19.3 56.4
PAGE 67.7 289.8
IWG 41.6 123.4

We notice that the probability distribution of SCC values is right-skewed. In fact, we may
consider that the SCC follows a log-normal distribution:

SCC ∼ LN
(
µ, σ2

)
As for the case of the carbon price, we can calibrate the parameters of the probability distri-
bution with the traditional estimators: µ̂ = n−1

S

∑nS
i=1 ln (SCCi) and σ̂2 = n−1

S

∑nS
i=1 ln2 (SCCi)−

µ̂2 where
{

SCC1, . . . ,SCCnS
}

is a sample of nS simulated values of the SCC. Another ap-
proach consists in using the following scaling rule: SCC (α) ≈ kαE [SCC] where SCC (α) is
the quantile at the confidence level α, E [SCC] is the expected value and kα is the scaling
factor. For instance, we observe that:

SCC
(
95%

)
≈ 3× E [SCC]

In Appendix A.2 on page 139, we present another calibration procedure to estimate the
parameters (µ, σ). Using this method with the SCC values generated in IWG (2015), we
obtain Figure 11. We notice the big impact of the discount rate (2.5%, 3% and 5%). We
also observe the “randomness characteristics” of the SCC. Using a constant value for the
SCC is really challenging.

Figure 11: Probability distribution of the SCC
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3.3 Carbon tax

Another approach of carbon pricing is through a carbon tax system. In this case, a specific
amount has to be paid and is a linear function of the carbon emitted. It differs from an
emission trading system since the carbon price is fixed and constant, but not the amount
of saved GHG emissions. Therefore, issuers can still decide to pay and not make efforts to
reduce their emissions.

Table 7: Carbon tax CT in the world (in $/tCO2)

Country 2017 2018 2019 2020 2021 2022 Share
Sweden 139.84 139.11 126.78 119.43 137.24 129.89 40%
Liechtenstein 86.95 100.90 96.46 99.44 101.47 129.86 81%
Switzerland 86.95 100.90 96.46 99.44 101.47 129.86 33%
Norway 56.25 64.29 59.22 52.89 69.33 87.61 63%
Finland 73.23 76.87 69.66 67.80 72.83 85.10 36%
France 36.03 55.30 50.11 48.77 52.39 49.29 35%
Ireland 23.62 24.80 22.47 28.43 39.35 45.31 40%
Canada 15.00 21.10 31.83 39.96 22%
Iceland 22.57 35.71 31.34 29.88 34.83 34.25 55%
Denmark 27.38 28.82 26.39 25.93 28.14 26.62 35%
Portugal 8.09 8.49 14.31 25.83 28.19 26.44 36%
United Kingdom 23.78 25.46 23.59 22.28 24.80 23.65 21%
Slovenia 20.43 21.45 19.44 18.92 20.32 19.12 52%
Latvia 5.32 5.58 5.06 9.84 14.10 16.58 3%
Spain 24.80 16.85 16.40 17.62 16.58 2%
South Africa 7.06 9.15 9.84 80%
Colombia 5.00 5.67 5.17 4.24 5.00 5.01 23%
Chile 5.00 5.00 5.00 5.00 5.00 5.00 29%
Argentina 6.24 5.94 5.54 4.99 20%
Mexico 2.89 3.01 2.99 2.42 3.18 3.72 44%
Singapore 3.69 3.51 3.71 3.69 80%
Japan 2.62 2.74 2.60 2.69 2.61 2.36 75%
Estonia 2.36 2.48 2.25 2.19 2.35 2.21 6%
Ukraine 0.01 0.02 0.37 0.38 0.36 1.03 71%
Poland 0.08 0.09 0.08 0.07 0.08 0.08 4%

Source: World Bank Carbon Pricing Dashboard (2023),

carbonpricingdashboard.worldbank.org/map_data.

Table 7 shows the global carbon tax evolution at the country level10. These figures are
very difficult to compare, because they do not cover the same sectors. In 2022, the carbon
tax was equal to $129.89 in Sweden, $16.58 in Spain and $2.36 in Japan, but the target share
of GHG emissions covered was different: 40% in Sweden, 2% in Spain and 75% in Japan.
Therefore, there is no global homogeneity within countries. For some countries, this is the
main instrument, while it complements other mechanisms such as an ETS in other countries.
For example, the Portugal carbon tax serves as a complementary policy measure to the EU
ETS. It applies to CO2 emissions from mainly the industry, buildings and transport sectors,
and sectors that are covered under the EU ETS. Sectors that do not use fossil fuels are

10We do not consider carbon taxes from regional or federal states, which are mainly implemented in Canada
or Mexico (e.g., Baja California, New Brunswick, Newfoundland and Labrador, Northwest Territories, Prince
Edward Island, Zacatecas)
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exempt from paying the carbon tax. Another big difference is that the carbon tax can be
paid by producers or consumers. In France, the carbon tax11 is paid by individuals and
businesses and added to the final price of petrol, diesel, heating oil or natural gas. In this
context, it is difficult to compare the carbon tax level across countries.

Nevertheless, we can estimate the implied carbon price generated by the government
revenues collected from the carbon tax. If we consider the global level of GHG emissions,
the carbon price is equal to:

CP1 =
R
CE

where R corresponds to the revenues generated by the carbon tax and CE is the GHG
emissions of the country. If we restrict the analysis to the covered GHG emissions, the
formula of the carbon price becomes:

CP2 =
R

s? · CE

where s? is the target share of GHG emissions. In Figure 12 we report the two implied
carbon prices CP1 and CP2. By construction, we have12 CT ≥ CP2 ≥ CP1. We observe
a difference between CT and CP2, because the target share of covered GHG emissions is
different from the effective share of covered GHG emissions13. Carbon prices CP2 greater
than $50/tCO2 are exceptional (Sweden, Switzerland, Finland, Liechtenstein and France). If
we consider the global GHG emissions (and not only the target share), the maximum carbon
price CP2 is observed for Liechtenstein with a price of $54.3/tCO2. These implemented
carbon taxes are far below the last values of the social cost of carbon computed by academics
(Rennert et al., 2021).

3.4 Impact of a flat carbon tax

Let us assume that a flat-rate tax CT is applied on direct carbon emissions. The direct cost
(expressed in $) is equal to:

Cost = CT · CE1

where CE1 is the scope 1 emissions expressed in tCO2e. For instance, if we consider the
universe of corporations in the MSCI World index at the end of December 2021, a carbon
tax of $100/tCO2 generates a direct cost of $373.64 bn. This represents 30.35% of the
dividends distributed by these corporates in 2021, and respectively 10.57% and 1.15% of
their net profit and sales. In Table 8, we report these ratios by sector14. We notice a
high discrepancy between sectors. For instance, a tax of $100 implies a direct cost, which
represent less than 1% of the dividends for Communication Services, while it is greater than
two times the amount of dividends for Utilities. In fact, the three main contributors are
Utilities, Materials and Energy, which represent respectively 35.91%, 26.80% and 19.77% of
the total cost amount. The total contribution of these three sectors is then equal to 82.5%
while their weight in the MSCI World index is less than 10%.

Another way to illustrate the high heterogeneity between sectors is to compute the break-
even price CT ?, which is the solution of the equation Cost = Profit. Since the direct cost

11Known as taxe intérieure de consommation sur les produits énergétiques (TICPE).
12Indeed, if there is no tax exemption, the revenues generated by the carbon tax are equal to R =

CT · (s? · CE), because s? · CE measures the covered GHG emissions.
13The reason is that there are generally many tax exemptions.
14DY is the dividend yield, CT /Dividend is the ratio of the carbon tax and the distributed dividend,

CT /Profit is the ratio between the carbon tax and the net profit, CT /Sales is the ratio between the
carbon tax and the net sales and MC is the market capitalization.
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Table 8: Carbon tax ratios (in %) by sector (MSCI World index, December 2021, CT =
$100/tCO2)

Sector DY Cost/Dividend Cost/Profit Cost/Sales Breakdown
Cost MC

Communication Services 1.22 0.93 0.22 0.03 0.20 8.37
Consumer Discretionary 0.87 8.15 1.80 0.14 1.83 12.28
Consumer Staples 2.54 6.80 3.96 0.25 2.28 6.93
Energy 4.60 81.64 42.38 3.11 19.77 2.98
Financials 2.76 3.02 0.85 0.15 2.07 13.20
Health Care 1.58 1.80 0.71 0.07 0.66 12.65
Industrials 1.64 30.45 10.82 0.85 9.90 10.24
Information Technology 0.73 1.42 0.41 0.07 0.45 23.67
Materials 3.73 94.05 40.36 4.97 26.80 4.17
Real Estate 2.39 0.99 0.57 0.13 0.13 2.79
Utilities 3.10 210.64 153.90 9.71 35.91 2.73

Source: Factset (2023) & Authors’ calculations.

is an increasing function of the carbon tax, CT ? indicates the maximum level of the carbon
tax that can be supported in order to guarantee that the net profit of corporations is not
offset by the direct cost of the carbon tax. On a global basis, CT ? is equal to $946 per
tonne of CO2e. The results of our sector analysis are given in Figure 13. We obtain the
following ranking. The break-even price is minimum for the Utilities sector with a value of
$65. Then, we obtain the Energy and Materials sectors, whose break-even price is about
$250. The fourth sector is Industrials with a price close to $1 000. It is followed by Consumer
staples and Consumer discretionary. Finally, five sectors present a price greater than $10 000:
Financials, Health Care, Real Estate, Information Technology and Communication Services.

Figure 13: Break-even carbon tax in $/tCO2 (MSCI World index, December 2021)
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Figure 14: Boxplot of the Cost/Dividend ratio in % (MSCI World index, December 2021,
CT = $100/tCO2)
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Figure 15: Boxplot of the Cost/Dividend ratio in % (MSCI World index, December 2021,
CT = $100/tCO2)
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Remark 3. We observe the heterogeneity not only between sectors, but also within sectors.
For instance, we report the boxplots of the ratio Cost/Dividend computed at the issuer level
in Figures 14 and 15. For each sector, the boxplot indicates the statistical quantiles 5%,
25%, 50%, 75% and 95% of the ratio. Within a sector, the impact can be different from
one firm to another. This type of heterogeneity can also be found at a higher level of the
GICS classification. For instance, if we consider the level 2, the break-even price is equal
to $2 600 for Capital Goods, $780 for Commercial & Professional Services and $370 for
Transportation, although these three industry groups belong to the same sector (Industrials).

4 Indirect emissions and supply chain modeling

When performing transition stress tests, another major uncertainty concerns the estimation
of upstream and downstream emissions. Since the reporting of indirect emissions is not
mandatory and the models for applying the GHG protocol are not standardized, indirect
emissions are generally estimated using input-output models. In this section, we develop
the mathematical tools for performing such analysis and apply this framework to the MSCI
World index.

4.1 Indirect emissions

We reiterate that there are several gases causing global warming, and regulations target them
differently15. In general, GHG emissions are expressed in CO2e to simplify the accounting
process. The GHG Protocol provides a standardized framework to classify a company’s
greenhouse gas emissions in three scopes16. It also identifies fifteen categories of upstream
and downstream emissions. Generally, upstream scope 3 emissions are indirect emissions
resulting from purchased goods and services, while downstream scope 3 emissions are in-
direct emissions caused by sold goods and services. The diversity of the fifteen sub-scopes
facilitates the reporting process, but also adds complexity to the estimation process, since
indirect emissions are less frequently disclosed. In fact, an increasing number of compa-
nies are required to publicly disclose their scope 1 and 2 emissions. Conversely, scope 3
emissions are disclosed on a voluntary basis. In practice, the quality and coverage of infor-
mation related to direct emissions (scope 1) are continually improving through mandatory
and declarative reporting. The estimation of scope 2 emissions often follows, as it merely
requires the energy mix of the region (location-based) or the GHG emissions of the energy
supplier (market-based). Although several methodological initiatives like the Carbon Dis-
closure Project (CDP) are describing the issues inherent to indirect emissions computation
(Shrimali, 2022) or propose machine learning techniques to estimate the missing information
(Nguyen et al., 2021), there is a clear lack of quantitative framework allowing to provide
a transparent and interpretable estimation of scope 3 emissions. Consequently, multiple
(engineering-based) proprietary methodologies emerged, and many companies develop their
own computational models. This may generate bias in investment portfolio if the assump-
tions used by the different stakeholders differ. In the context of climate stress testing,
modeling the uncertainty of scope 3 emissions is necessary but a also a difficult task.

15We classify greenhouse gases into two types. The first category corresponds to natural greenhouse gases,
such as water vapor, CO2, CH4, N2O, and O3, which existed before humans but can be worsened by human
activity. The second category corresponds to man-made greenhouse gases, created by human industrial
activity. Some of these gases are sulfur hexafluoride (SF6) and chlorofluorocarbons (CFCs).

16Scope 1 emissions are direct GHG emissions from sources owned and controlled by the issuer, while
Scope 2 emissions are indirect GHG emissions from purchased electricity. Scope 3 emissions are all other
indirect emissions of the issuer’s value chain.
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4.2 Environmentally extended input-output model

An input-output model is a mathematical tool that represents the macroeconomic relation-
ships between different entities or industries. It can be used for modeling the supply chain
of a product, the sectoral structure of an economy, the production network of a country or
the foreign exchange between regions. Most of these models are monetary-based. When
applying to the economic transactions between different sectors, they can be used to com-
pute the contribution or the value added of each sector to the final output of an economy.
Environmentally extended input-output (EEIO) analysis is an extension of the input-output
framework when including environmental externalities such as pollution and GHG emissions.
In particular, we can use EEIO models to estimate upstream scope 3 emissions.

4.2.1 Input-output analysis

The input-output model was first introduced by Leontief (1936, 1941). It quantifies the
interdependencies between various sectors in a single or multi-regional economies, based
on the product flows between sectors (Miller and Blair, 2009). The underlying idea is to
model the interconnectedness between sectors and to describe the relations from each of the
producer/seller sectors to each of the purchaser/buyer sectors. Following Miller and Blair
(2009), we consider n different sectors and we note Zi,j the value of transactions from Sector
i to Sector j. We can interpret Zi,j in different ways:

1. It is the production that Sector i sells to Sector j;

2. It is the input of Sector i required by Sector j for its production (or output).

Let yi be the final demand for products sold by Sector i. This final demand is composed of the
external sales to households, government purchases, and demand resulting from investment
capacities and foreign trade. Then, the total production xi of Sector i is equal to:

xi︸ ︷︷ ︸
Supply

=
∑n

j=1
Zi,j + yi︸ ︷︷ ︸

Demand

(1)

In this equation, xi and
∑n
j=1 Zi,j + yi are the supply and demand related to products of

Sector i, and zi =
∑n
j=1 Zi,j represents the intermediary demand. The interdependence

relation between sectors is usually expressed as a ratio between Zi,j and xj :

Ai,j =
Zi,j
xj

We denote by A =
(
Ai,j

)
= Z diag (x)

−1
the input-output matrix of the technical coefficients

Ai,j . In a matrix form, we have x = Z1n + y and Z ≡ Adiag (x) = A� x>, and we deduce
that:

x = Ax+ y

where x = (x1, . . . , xn) and y = (y1, . . . , yn). Assuming that the final demand is exogenous,
technical coefficients are fixed and the output is endogenous, we obtain:

x = (In −A)
−1
y (2)

L = (In −A)
−1

is known as the Leontief inverse (or multiplier) matrix and represents the
amount of total output from Sector i that is needed by Sector j to satisfy its final demand.
Equation (2) describes a demand-pull quantity model.
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Let m be number of primary inputs (e.g., labor, capital, etc.). We note V =
(
Vk,j

)
the

value added matrix where Vk,j represents the amount of primary input k required to produce
the output of Sector j. Since the total input of each sector is equal to its total output, we
have xj =

∑n
i=1 Zi,j +

∑m
k=1 Vk,j . Therefore, vj =

∑m
k=1 Vk,j = xj −

∑n
i=1 Zi,j represents

the other expenditures of Sector j or the total primary inputs used in Sector j. We have
v = (v1, . . . , vn) = V >1m. Let p = (p1, . . . , pn) and ψ = (ψ1, . . . , ψm) be the vector of sector
prices and primary inputs. pj and ψk are then the prices per unit of Sector j and primary
input k. As in the quantity model, the interdependence relationship between primary inputs
and sectors is expressed as a ratio between Vk,j and xj :

Bk,j =
Vk,j
xj

We denote by B =
(
Bk,j

)
≡ V diag (x)

−1
the input-output matrix of the technical coeffi-

cients Bk,j . Following Gutierrez (2008), the value of output must be equal to the value of
its inputs:

pjxj︸ ︷︷ ︸
Value of the output

=
∑n

i=1
Zi,jpi +

∑m

k=1
Vk,jψk︸ ︷︷ ︸

Value of the inputs

We deduce that:

pj =
∑n

i=1

Zi,j
xj

pi +
∑m

k=1

Vk,j
xj

ψk

=
∑n

i=1
Ai,jpi +

∑m

k=1
Bk,jψk

In a matrix form, we obtain p = A>p+B>ψ. υ = B>ψ is the vector of value added ratios.
Finally, the output prices are equal to:

p =
(
In −A>

)−1

υ (3)

L̃ =
(
In −A>

)−1
is known as the dual inverse matrix17 and represents the cost amount

from Sector j that is passed to Sector i. Equation (3) describes a cost-push price model. By
adding the income identity18, Gutierrez (2008) proposed the following complete version of
the full basic input-output model:

x = (In −A)
−1
y

v = V >1m
υ = B>ψ

p =
(
In −A>

)−1
υ

x>υ = y>p

(4)

It mixes both the quantity and price models. In this system, A, B and V are the model
parameters, ψ, υ and y are the exogenous variables, and x and p are the endogenous variables.
By changing the model parameters or the exogenous variables, we can measure the impacts
∆x and ∆p on the quantities and prices of the economy.

17Since we have
(
In −A>

)−1
=
(

(In −A)>
)−1

=
(

(In −A)−1
)>

, we deduce that L̃ = L>.
18Since the input-output analysis assumes an equilibrium model, the total value of the revenues y>p is

equal to the total value of costs x>υ.
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Remark 4. The previous analysis has been derived for physical input-output tables, whose
flows are expressed in product units. However, the analysis remains valid when considering
monetary input-output tables. The only difference is the computation of the vector of primary
costs. In a monetary input-output analysis, ψ is set to 1m by construction, implying that
υ = B>1m =

(
v1/x1, . . . , vn/xn

)
(Miller and Blair, 2009, Section 2.6.3, pages 43-44).

The matrix L admits the following Neumann series19 (Schechter, 1996, chapter 23, pages
627-628):

L = (In −A)
−1

= In +A+A2 +A3 + . . .

=

∞∑
k=0

Ak

Then, we obtain the following decomposition:

x =

∞∑
k=0

Aky

= y +Ay +A2y + . . .

=

∞∑
k=0

y(k)

where y(0) = y is the final demand (or zeroth-tier intermediary demand), y(1) = Ay is the
first-tier intermediary demand, y(2) = A2y is the second-tier intermediary demand, and

y(k) = Aky is the kth-tier intermediary demand. Moreover, we have:

∂ x

∂ y
= (In −A)

−1 ≡ L

We better understand why the matrix L is also called the multiplier matrix because it is
an analogy of the Keynesian consumption theory and the impact of a change in aggregate
demand on the output20.

4.2.2 Application to environmental problems

At the end of the sixties, several authors proposed to connect economic and ecologic systems
by using generalized input-output models. For instance, Daly (1968) proposed to augment
the technical coefficients with additional rows/columns to reflect non-human sectors such as
animals, plants, and bacteria, and non-living sectors such as atmosphere, hydrosphere, and
lithosphere. Leontief (1970) himself explained how externalities such as environmental pol-
lution can be incorporated into a basic input-output model. Since these first contributions,
the input-output analysis has been extended to many environmental problems21.

In order to understand how input-output analyses can be used for measuring carbon
emissions, we consider the mathematical problem of computing the contribution of carbon

19We have In −Ak = (In −A)
(
In +A+A2 + . . .+Ak−1

)
. Since A is a substochastic matrix (Ai,j ≥ 0

and
∑n
i=1 Ai,j ≤ 1), the eigendecomposition of A is A = V ΛV −1 where V is the matrix of eigenvectors,

Λ = diag (λ1, . . . , λn) and |λi| ≤ 1. In the case where |λi| < 1 (this is generally the case, especially when∑n
i=1 Ai,j < 1), we deduce that limk→∞ Ak = V ΛkV −1 = 0n,n.
20Let c be the marginal propensity to consume. The Keynesian multiplier is equal to m = 1+c+c2+ . . . =

(1− c)−1.
21See Chapters 9 and 10 of Miller and Blair (2009).
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emissions per product. Following Miller and Blair (2009), we note C(x) =
(
C

(x)
g,j

)
the matrix

of pollution output where C
(x)
g,j is the total amount of the gth pollutant generated by the

output of the jth sector. In a similar way, we define D(y) = C(x) diag (x)
−1

=
(
D

(y)
g,j

)
the

matrix of direct impact coefficients where D
(y)
g,j = c

(y)
g,j/xj is the amount of the gth pollutant

generated by 1$ of the output of the jth sector. Let $ = ($1, . . . , $m) be the vector of
pollution level. We have:

$ = D(x)x

= D(x) (In −A)
−1
y

= D(y)y

where D(y) = D(x) (In −A)
−1

is the pollutant multiplier matrix with respect to the final
demand y. D(y) also measures the product carbon footprint (PCF). Since we have the

following identity $g =
(
D(y)y

)
g

=
∑n

j=1
D

(y)
g,j yj , we deduce that the total contribution of

Sector j to the gth pollutant is equal to:

C
(x)
g,j =

∂ $g

∂ yj
yj = D

(y)
g,j yj

Again, we can decompose the pollutant level according to the kth tier. We have:

$ = D(y)y

=

∞∑
k=0

D(x)Aky

=

∞∑
k=0

$(k)

where$(0) = D(x)y is the pollutant level due to the final demand (or the zeroth-tier pollutant

level), $(1) = D(x)Ay is the pollutant level due to the first-tier supply chain, and $(k) =

D(x)Aky is the kth-tier pollutant level. The matrix D
(y)
(k) = D(x)Ak is called the kth-tier

multiplier matrix and satisfies the identity D(y) ≡
∑∞
k=0D

(y)
(k).

Table 9: Environmentally extended monetary input-output table (Example #1)

To
Final Total

demand output
S1 S2 S3 y x

S1 100 300 100 500 1 000
From S2 250 150 200 1 600 2 000

S3 25 200 75 200 500
Value added 625 1 350 125
Total outlays 1 000 2 000 500

GHG
CO2 50 20 5 75
CH4 3 1 0 4

We consider the example given in Table 9. This basic economy has three sectors: S1,
S2 and S3. In this example, businesses in Sector S1 purchase $100 goods and services from
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other businesses in Sector S1, $250 goods and services from Sector S2, and $25 goods and
services from Sector S3. The final demand for goods and services produced in Sector S1 is
equal to $500, while their intermediary demand is equal to $500. We deduce that the matrix
of technical coefficients is equal to:

A = Z diag (x)
−1

=

 10.0% 15.0% 20.0%
25.0% 7.5% 40.0%
2.5% 10.0% 15.0%


It follows that the multiplier matrix is equal to:

L = (I3 −A)
−1

=

 1.1871 0.2346 0.3897
0.3539 1.2090 0.6522
0.0766 0.1491 1.2647


The direct impact matrix corresponds to the GHG emissions divided by the output:

D(x) =

(
50/1000 20/2000 5/500
3/1000 1/2000 0/500

)
=

(
0.05 0.01 0.01
0.003 0.0005 0

)
The unit of D(x) is expressed in kilogram of the gas per dollar. For instance, the GHG
intensities of the products manufactured in Sector S1 are equal to 0.05 kgCO2/$ and 0.003
kgCH4/$. Finally, we obtain:

D(y) = D(x)L =

(
0.0637 0.0253 0.0387
0.0037 0.0013 0.0015

)
While D(x) corresponds to the production-based inventory, D(y) measures the carbon foot-
print from the viewpoint of the consumption-based inventory (Kitzes, 2013). Therefore, we
obtain the following decomposition:

C(y) =

(
31.83 35.44 7.73
1.87 1.83 0.30

)
6=
(

50 20 5
3 1 0

)
= C(x)

We notice that the two contribution matrices are different. For instance, while Sector S1 is
responsible of 50 kgCO2, the products manufactured by this sector are responsible of only
31.83 kgCO2, meaning that 18.17 kgCO2 are emitted by Sector S1 for the other sectors. The
difference between C(x) and C(y) depends on the structure of the matrix A. In particular,
we can show that C(x) = C(y) implies that A is a diagonal matrix. We conclude that the
supply chain and the interconnectedness between sectors can give a false perception of the
sectoral carbon footprint.

The previous framework can be applied to many problems that involve the computation
of carbon footprint. Miller and Blair (2009) examined three categories of EEIO analysis: gen-
eralized input-output, economic-ecologic and commodity-by-industry models. An overview
of generalized input-output models can be found in Minx et al. (2009) and Wiedmann (2009).
These models are generally used for computing the carbon footprint of nations, sectors, sup-
ply chains, etc., and analyzing the impact of foreign trade. The use of economic-ecologic
models is less popular since it involves building an input-output table for the ecologic sectors
(species, plants, etc.). Commodity-by-industry models are more studied because it is easier
to collect data for the commodity sector (Jackson, 2006).

The use of environmental extended input-output models requires credible database. Ac-
cording to Han et al. (2022), most of studies are based on four input-output databases22:

22The corresponding websites are www.exiobase.eu, www.worldmrio.com, www.gtap.agecon.purdue.edu

and www.rug.nl/ggdc/valuechain/wiod.
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Eora, Exiobase, GTAP and WIOD. These four multi-regional input-output models have been
developed by academic institutes. In the case of the Eora global supply chain database, the
model uses more than 15 000 sectors across 190 countries, and contains about 2 700 environ-
mental indicators covering GHG emissions, air pollution, energy use, water requirements,
land occupation, etc. Exiobase is a multi-regional environmentally extended supply-use and
input-output model with 44 countries, 163 industries, and 417 emission categories. The
global trade analysis project (GTAP) is a global database describing bilateral trade pat-
terns, production, consumption and intermediate use of commodities and services. Finally,
the world input-output database (WIOD) is another famous multi-regional input-output
model. Although this database is extensively used by academia and professionals, the last
version was released in 2016 and there is no plan to update it.

4.3 Estimation of indirect emissions

4.3.1 Mathematical framework

Basic formula We assume that the carbon footprint is assessed in CO2e, implying that the
input-output analysis will consider only one pollutant, all greenhouse gases being converted
into the carbon based on their warming potential. In this case, D(x) is a row vector of

dimension n, and D
(x)
j measures the direct emission intensity of Sector j. We reiterate that

the total emission intensities are equal to D(y) = D(x)L = D(x) (In −A)
−1

. D(y) is a row

vector of dimension n, and D
(y)
j measures the direct and indirect emission intensity of Sector

j. Using the usual notation CI for the carbon intensity, we have23:

CItotal = CI1−3

= L>CI1

=
(
In −A>

)−1

CI1 (5)

where CI1 = CIdirect is the vector of scope 1 (direct) carbon intensities and CI1−3 = CItotal

is the vector of scope 1 + 2 + 3 (direct plus indirect) carbon intensities. It follows that the
indirect carbon intensities are given by:

CI indirect = CI1−3 − CI1

=

((
In −A>

)−1

− In
)
CIdirect (6)

In particular, we can decompose CI indirect using the Neumann series:

CI indirect = A>CI1︸ ︷︷ ︸
First-tier

+
(
A>
)2

CI1︸ ︷︷ ︸
Second-tier

+ . . .+
(
A>
)k

CI1︸ ︷︷ ︸
kth-tier

+ . . . (7)

and we have:

CItotal = CI1︸ ︷︷ ︸
Scope 1︸ ︷︷ ︸

Direct intensity

+ A>CI1︸ ︷︷ ︸
First-tier

+
(
A>
)2

CI1︸ ︷︷ ︸
Second-tier

+ . . .+
(
A>
)k

CI1︸ ︷︷ ︸
kth-tier

+ . . .

︸ ︷︷ ︸
Indirect intensities

(8)

Equations (5–8) are the core formulas of the consumption-based inventory approach.

23Because D(x) = CI>1 and D(y) = CI>1−3.

33



From Climate Stress Testing to Climate Value-at-Risk

Illustration We consider a toy example with four sectors: S1 is the energy sector, S2 the
materials sector, S3 the industrials sector and S4 the sector of services. The input-output
matrix of the technical coefficients is given in Table 10. The interpretation of A is the
following. To produce $1, the energy sector has to purchased $0.10 of output from other
businesses in the energy sector, $0.10 of materials, $0.05 of output from the industrials sec-
tor and $0.02 of services. If we focus on the sector of services, the output of $1 requires
the purchase of $0.10 from the energy sector, $0.05 of materials, $0.10 of industrials, and
$0.35 from other businesses in the sector of services. The carbon emissions are expressed in
ktCO2e, and the carbon intensities are measured in tCO2e/$ mn. Energy is the most pollut-
ing sector with 500 ktCO2e, followed by materials and industrials with 200 ktCO2e. Energy
and services have respectively the highest and lowest carbon intensity (100 tCO2e/$ mn vs.
10 tCO2e/$ mn).

Table 10: Environmentally extended monetary input-output table (Example #2)

Sector A CE CI
Energy 0.10 0.20 0.20 0.10 500 100

Materials 0.10 0.10 0.20 0.05 200 50
Industrials 0.05 0.20 0.30 0.10 200 25

Services 0.02 0.05 0.10 0.35 125 10

Using the previous figures, we obtain the following dual inverse matrix:

L̃ =
(
I4 −A>

)−1

=


1.1881 0.1678 0.1430 0.0715
0.3894 1.2552 0.4110 0.1718
0.4919 0.4336 1.6303 0.2993
0.2884 0.1891 0.3044 1.6087


Using these multipliers, we obtain the direct and indirect carbon intensities given in Table
11. While the scope 1 carbon intensity of the energy sector is equal to 100 tCO2e/$ mn,
its total carbon intensity is equal to 131.49 tCO2e/$ mn. The difference 31.49 tCO2e/$ mn
corresponds to the indirect emissions. In the case of the energy sector, direct and indirect
emissions represent respectively 76.05% and 23.95% of the total emissions. In fact, this
sector has the lowest ratio of indirect carbon emissions. On the contrary, 83.87% of the
total emissions are indirect for the sector of services.

Table 11: Direct and indirect carbon intensities (Example #2)

Sector
CI1 CItotal CIdirect CI indirect CIdirect CI indirect CItotal

CI1(in tCO2e/$ mn) (in %)
Energy 100.00 131.49 100.00 31.49 76.05% 23.95% 1.31

Materials 50.00 113.69 50.00 63.69 43.98% 56.02% 2.27
Industrials 25.00 114.62 25.00 89.62 21.81% 78.19% 4.58

Services 10.00 61.99 10.00 51.99 16.13% 83.87% 6.20

We note CI(k) =
(
A>
)k CI1 the indirect carbon intensity when we consider the kth

tier, and CI(1−k) =
∑k
h=1

(
A>
)h CI1 the cumulative indirect carbon intensity for the first

k tiers. Results are given in Table 12. For the sector of services, the first- and second-
tier rounds add 18.50 and 13.50 tCO2e/$ mn to the indirect carbon intensity. If we limit
the analysis to the first two tiers, the indirect carbon intensity is equal to 32. The tree
represented in Figure 16 explains this computation. To produce $1 of services, we need to
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Figure 16: Upstream tree of the first- and second-tier rounds for the sector of services
(Example #2)
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Table 12: Tier decomposition of carbon intensities (Example #2)

Sector 1 2 3 4 5 10 15 ∞

CI(k)

Energy 16.45 6.99 3.60 1.97 1.09 0.06 0.00 0.00
Materials 30.50 14.97 8.13 4.47 2.48 0.14 0.01 0.00

Industrials 38.50 22.79 12.58 6.96 3.88 0.21 0.01 0.00
Services 18.50 13.50 8.45 4.98 2.86 0.16 0.01 0.00

CI(1−k)

Energy 16.45 23.44 27.04 29.02 30.11 31.41 31.48 31.49
Materials 30.50 45.47 53.59 58.06 60.55 63.52 63.68 63.69

Industrials 38.50 61.29 73.87 80.83 84.71 89.35 89.61 89.62
Services 18.50 32.00 40.44 45.43 48.29 51.79 51.98 51.99

purchase 0.10$ of energy, $0.05 of materials, etc. It follows that the first-tier indirect carbon
intensities for the sector of services is equal to:

CI(1) (S4) = 0.10× 100 + 0.05× 50 + 0.10× 25 + 0.35× 10

= 10 + 2.5 + 2.5 + 3.5

= 18.50

We can continue the analysis and consider the second tier. Indeed, the businesses involved
in the first-tier round also purchase goods and services that emit new indirect emissions.
We have:

CI(2) (S4) = 0.10× (0.10× 100 + 0.10× 50 + 0.05× 25 + 0.02× 10)︸ ︷︷ ︸
Indirect emissions from businesses of the energy sector

+

0.05× (0.20× 100 + 0.10× 50 + 0.20× 25 + 0.05× 10)︸ ︷︷ ︸
Indirect emissions from businesses of the materials sector

+

0.10× (0.20× 100 + 0.20× 50 + 0.30× 25 + 0.10× 10)︸ ︷︷ ︸
Indirect emissions from businesses of the industrials sector

+

0.35× (0.10× 100 + 0.05× 50 + 0.10× 25 + 0.35× 10)︸ ︷︷ ︸
Indirect emissions from businesses of the services sector

+

= 13.495

We can pursue the analysis, and we verify that CI(3) (S4) = 8.45, CI(4) (S4) = 4.98, etc.
Finally, the cumulative sum converges to CI(1−∞) (S4) = 51.99.

The previous analysis concerns the carbon intensity. To estimate total emissions, we just
multiply by the output and we have the following identities:

CEtotal

CE1
=

CItotal

CI1
⇔ CEtotal = CItotal �

CE1

CI1
= x� CItotal (9)

Therefore, the indirect emissions are given by:

CE indirect = CEtotal − CEdirect

= (CItotal − CI1)� CE1

CI1
(10)

The breakdown of the total carbon emissions is reported in Table 13. We notice that
indirect carbon emissions are subject to double counting. Indeed, the total direct carbon
emissions are equal to 1 025 ktCO2e and indirect emissions add 1 779 ktCO2e. Based on
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direct emissions, we have the following distribution: 49% for energy, 20% for materials, 20%
for industrials and 12% for the sector of services. If we include the indirect emissions, we
obtain another picture. For instance, the sector of services represents more than 25% of
total emissions because the direct emissions have been multiplied by a factor of 6.2, while
energy has now a contribution lower than 25%.

Table 13: Breakdown of carbon emissions (Example #2)

Sector
CEdirect CE indirect CEtotal CEdirect CE indirect CEtotal

(in ktCO2e) (in %)
Energy 500 157.44 657.44 48.78 8.85 23.45

Materials 200 254.76 454.76 19.51 14.32 16.22
Industrials 200 716.97 916.97 19.51 40.30 32.70

Services 125 649.92 774.92 12.20 36.53 27.64
Total 1 025 1 779.10 2 804.10 100.00 100.00 100.00

Remark 5. It would be wrong to diffuse directly the carbon emissions instead of the carbon

intensities: CEtotal =
(
In −A>

)−1 CE1. Indeed, carbon emissions are not comparable from
one sector to another sector, because they are not normalized and monetary input-output
tables give the technical coefficients for $1 output of each sector.

Upstream vs. downstream analysis The previous analysis is an output-based analysis.
This is obvious if we consider Figure 16, which illustrates the requirement impacts to produce
$1 in one sector. Once we have produced $1 in a given sector, we may wonder how it is
used by the value chain. In this case, we obtain an input-based analysis. Indeed, instead
of moving up the supply chain, we move down the value chain (Figure 17). Therefore, this
approach is also called the downstream analysis while the output-based approach is known
as the upstream analysis.

To perform a downstream analysis, we first need to define the technical coefficients for
$1 input (and not output):

Ăi,j =
Zi,j
xi

Ăi,j indicates the proportion of $1 produced by Sector i that is used by Sector j. We denote

by Ă =
(
Ăi,j

)
= diag (x)

−1
Z the matrix of input impacts. We notice that:

Ăi,j =
Zi,j
xj
· xj
xi

= Ai,j · Ti,j

In a matrix form, we have Ă = A�T where T =
(
Ti,j
)

=
(
x−1
i xj

)
. Using the same rationale

as in the previous paragraphs, we can show that:

CIdown
total =

(
In − Ă

)−1

CI1 (11)

where CIdown
total is the vector of scope 1 + 2 + 3 downstream (direct plus downstream indirect)

carbon intensities. It follows that the indirect downstream carbon intensities are given by:

CIdown
indirect = CIdown

total − CI1 =

((
In − Ă

)−1

− In
)
CIdirect (12)
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Figure 17: Downstream tree of the first- and second-tier rounds for the sector of services
(Example #2)
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In particular, we can decompose CIdown
indirect as follows:

CIdown
indirect = ĂCI1︸ ︷︷ ︸

First-tier

+ Ă2CI1︸ ︷︷ ︸
Second-tier

+ . . .+ ĂkCI1︸ ︷︷ ︸
kth-tier

+ . . . (13)

and we have:

CIdown
total = CI1︸ ︷︷ ︸

Scope 1︸ ︷︷ ︸
Direct downstream

+ ĂCI1︸ ︷︷ ︸
First-tier

+ Ă2CI1︸ ︷︷ ︸
Second-tier

+ . . .+ ĂkCI1︸ ︷︷ ︸
kth-tier

+ . . .

︸ ︷︷ ︸
Indirect downstream

(14)

Again, to compute the carbon emissions, we use the proportionality rule. We have:

CEdown
total = CIdown

total �
CE1

CI1
(15)

and:

CEdown
indirect = CEdown

total − CEdown
direct =

(
CIdown

total − CI1

)
� CE1

CI1
(16)

Remark 6. In order to avoid any confusion, we can use the notations CIup
total, CI

up
indirect,

CIup
(k) and CIup

(1−k) to define total, indirect, kth-tier and first k tier intensities when we

consider the upstream analysis described in Equations (5)–(8). The total/indirect upstream
carbon emissions defined in Equations (9) and (10) are denoted by CEup

total and CEup
indirect.

Using our previous example, we obtain the results reported in Appendix A.3 on page 141.
We obtain a downstream indirect emissions of 1 232 ktCO2e, while the upstream indirect
emissions was equal to 1 779 ktCO2e. In order to better understand the difference between
the downstream and the upstream, we represent the downstream tree of the first two tiers
for the sector of services in Figure 17. If we compare this tree with Figure 16, we notice that
downstream trees are growing to the right, while upstream trees are growing to the left.

Equivalence with GHG protocol taxonomy We must be careful with the upstream
and downstream concepts of the input-output analysis, because they do not correspond to
the upstream and downstream concepts of the GHG Protocol. Indeed, it is tempting to
propose the following mapping:

GHG Protocol CE2 + CEup
3 CE1 CE2 + CEdown

3

EEIO CEup
indirect CEdirect CEdown

indirect

but this mapping is wrong. By construction, we have CEdirect = CE1, CEup
indirect 6= CE2 +

CEup
3 and CEdown

indirect 6= CE2 + CEdown
3 . The reason is the following. First, an input-output

analysis does not make the difference between scopes 2 and 3 emissions. They are both
embedded in the indirect emissions. If the mapping is true, we have:

CEdirect + CEup
indirect + CEdown

indirect = CE1 + 2CE2 + CEup
3 + CEdown

3

Therefore, we notice that the location of the scope 2 emissions is not clear, and they may
be counted twice. In fact, an input-output analysis estimates both CEup

2 and CEdown
2 , and

not directly CE2. A second mapping can be proposed:

GHG Protocol CEup
2 + CEup

3 CE1 CEdown
2 + CEdown

3

EEIO CEup
indirect CEdirect CEdown

indirect
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but this mapping is also wrong. The GHG Protocol splits the scope 3 emissions into 8
upstream categories and 7 downstream categories. The downstream of the GHG Protocol
concerns the carbon emissions once goods and services are produced. It includes their use
by other sectors, but also the final demand. In the input-output analysis, the downstream
carbon emissions due to the final demand are not taken into account. The downstream
concept in the input-output analysis is then not consistent with the definition of the GHG
Protocol. Moreover, input-output tables do not capture all the economic activities and their
resolution is low. These issues weaken an input-output analysis. Another problem is the
high correlation between upstreamness and downstreamness of input-output results (Antràs
and Chor, 2018; Bartolucci et al., 2023). In fact, we can notice that there are a lot of double
counting items in the two analyses. Let us assume for instance that the matrix A is diagonal.
In this case, we can show that CEup

indirect = CEdown
indirect. In this particular case, upstream and

downstream analyses refer to the same carbon emissions, and we do not really know whether
these emissions are in the upstream or downstream of the value chain.

Mathematical properties The two main equations of the EEIO analysis are based on

the matrix A: CIup
indirect =

((
In −A>

)−1 − In
)
CI1 and CIup

(k) =
(
A>
)k CI1. In fact, these

two equations are equivalent since we have
∑∞
k=1

(
A>
)k

=
((
In −A>

)−1 − In
)

. Therefore,

we only need to study the mathematical properties of
(
A>
)k

.

First, we notice that the matrix A> is nonnegative: A> � 0n,n. Since the powers of
nonnegative matrices are nonnegative and the elements of the vector CI1 are all positive, we
deduce that CIup

(k) � 0n and CIup
indirect � 0n. Moreover, the cumulative upstream indirect

intensities CIup
(1−k) are non-decreasing with respect to k. We verify that

(
In −A>

)−1−In �
0n, which implies that

(
In −A>

)−1 � In. This is obvious because we have CIup
total � CI1.

We also notice that A> is a row substochastic matrix: Ai,j ≥ 0 and
∑n
i=1Ai,j < 1. If

we assume that A> is irreducible24, the Perron-Frobenius theorem states that the spectral
radius %

(
A>
)

is strictly lower than 1 and corresponds to the largest positive eigenvalue
λ1. This implies that all the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn satisfies |λi| < 1. Using

the eigendecomposition A> = V ΛV −1, we have
(
A>
)k

= V ΛkV −1 and we deduce that

limk→∞
(
A>
)k

= 0n,n. The sum
∑∞
k=1

(
A>
)k

converges then to a finite matrix, which

implies that the multiplier matrix L̃ is nonsingular.

Since CIup
(k) converges to 0n, we may wonder whether this convergence is monotone. In

particular, do we verify that CIup
(k) � CIup

(k+1)? The answer to this question is no. Indeed,

we can easily find counter examples. The reason lies in the fact that
(
A>
)k � (A>)k+1

.

For instance, we have
(
A>
)

4,2
= 0.05 <

(
A>
)2

4,2
= 0.0525 in Example #2. Nevertheless,

we observe empirically that the relationship CIup
(k) � CIup

(k+1) is satisfied for k ≥ k?. This

means that if k is sufficiently large, the kth-tier contribution decreases with respect to k. A

sufficient (but not necessary) condition is that
(
A>
)k � (A>)k+1

for k = k?. Let us assume

that
(
A>
)k � (A>)k+1

holds for k = k?. We note B =
(
A>
)k

, C =
(
A>
)k+1

and D = A>.
Property NN1 (Appendix A.8 on page 145) implies that BD � CD. This means that if(
A>
)k � (

A>
)k+1

, then
(
A>
)k+1 �

(
A>
)k+2

. We conclude that if
(
A>
)k � (

A>
)k+1

for k = k?, then
(
A>
)k � (A>)k+1

for k ≥ k? and the relationship CIup
(k) � CIup

(k+1) is

24This is the case if Ai,j > 0 for all i, j.
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satisfied25 for k ≥ k?.
We recall that:

CIup
total =

(
In −A>

)−1

CI1 =

∞∑
k=0

(
A>
)k

CI1 =

∞∑
k=0

CIup
(k)

Let wup
(k) be the relative contribution vector of the kth tier. We have:

wup
(k),j =

CIup
(k),j∑∞

h=0 CI
up
(k),j

Following Antràs et al. (2012), we define the upstreamness index as the weighted average of
the tiers with respect to their relative contributions:

τ up
j =

∞∑
k=0

k · wup
(k),j

= 0×
CIup

(0),j

CIup
total,j

+ 1×
CIup

(1),j

CIup
total,j

+ 2×
CIup

(2),j

CIup
total,j

+ . . .

=

(∑∞
k=0 k · CI

up
(k)

)
j(∑∞

k=0 CI
up
(k)

)
j

In Appendix A.4 on page 142, we show that26:

τ up
j =

(
A>

(
In −A>

)−2 CI1

)
j((

In −A>
)−1 CI1

)
j

If we consider Example #2, the upstreamness index is respectively equal to 0.49, 1.21, 1.79
and 2.13 for the four sectors. If we consider the downstreamness index:

τ down
j =

(
Ă
(
In − Ă

)−2

CI1

)
j((

In − Ă
)−1

CI1

)
j

the figures become 0.84, 1.20, 1.40 and 1.48.

4.3.2 Application to Exiobase and WIOD input-output tables

Data In order to illustrate the use of input-output models, we estimate the indirect carbon
emissions and compare these figures with those computed by Trucost in the next section.
For that, we consider two input-output databases27: WIOD and Exiobase. WIOD is very

25We assume of course that the scope 1 carbon intensities are not negative.
26This expression is not exactly the formula proposed by Antràs et al. (2012), because they do not weight

the tiers in the same way.
27As said previously, there are several input-output tables and databases available to analyze the eco-

nomic and environmental impacts of production and consumption. Table 14 provides their main features
and differences. Exiobase offers a detailed and highly disaggregated MRIO database, encompassing com-
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famous among economists and extensively used by academics28 (Dietzenbacher et al., 2023;
Timmer et al., 2015). We use the 2016 release, which contains the 2014 input-output table for
44 regions (28 EU countries, 15 other major countries and a global region that corresponds
to a rest-of-the-world aggregate29) and 56 industries. While WIOD is a traditional input-
output table, Exiobase is an environmentally extended input-output table (Tukker et al.,
2013; Stadler et al., 2018). It has been less used by economists and academics, but it has
the advantage to include data for most recent years. Therefore, we use the last table for
the year 2022, and also the 2014 matrix in order to compare with the WIOD matrix. The
version 3 database has 49 regions (44 countries and 5 rest-of-the-world aggregates) and 163
industries. The Exiobase countries are almost the same than those we find in the WIOD
model30.

Table 14: Comparison of input-output databases

Database Coverage Classification Strengths and limitations

Eora
Over 200 countries

Eora input-output

Highly disaggregated, global cov-
erage

15 000 sectors
Some data gaps, inconsistencies
due to harmonization

Exiobase
49 countries

Eora input-output

Detailed environmental, social
and economic data

163 industries
Limited sector coverage, data in-
tegration challenges

GTAP
141 countries

GTAP/ISIC

Comprehensive trade data, trade
policy analysis

65 sectors
Less detailed sector/country cov-
erage, trade focus

OECD
OECD countries

ISIC Rev. 4

Focus on OECD economic trans-
actions, reliable data

34 industries
Limited non-OECD coverage,
less detailed sectors

WIOD
44 countries

NACE Rev. 2

Detailed economic transactions,
globalization effects

56 industries
Limited country coverage, data
until 2014

prehensive environmental, social, and economic data for countries and regions worldwide. It employs the
flexible Eora input-output classification system, which harmonizes industry and product classifications into
a unified framework. In contrast, GTAP is a proprietary global economic model that captures production,
consumption, and trade interactions. It primarily serves as a tool for trade policy analysis, examining the
effects of policy changes on various sectors and regions. Lastly, the OECD provides extensive data and anal-
ysis on diverse topics such as economics, environment, education, and social issues. Its databases encompass
multiple countries and industries, making them widely utilized by policymakers, researchers, and analysts.
Nevertheless, the OECD input-output tables mainly focus on OECD countries and contain few non-OECD
countries.

28After GTAP, WIOD is certainly the second most known input-output table with more than 10 000
citations according to Google Scholar.

29The list of countries and their ISO codes are given in Table 45 on page 170. ROW is the ISO code for
the rest-of-the-world region.

30The differences are the following: South Africa is included in Exiobase, but not in WIOD. Moreover, the
rest-of-the-world aggregate is split into five regions: Africa, Americas, Asia and Pacific, Europe and Middle
East.
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Estimation of the matrix A When dealing with monetary input-output databases, a
direct estimation of the technical coefficient Ai,j = Zi,j/xj may not be robust because the
intermediary demand may be greater than the output for some sectors:

∑n
j=1 Zi,j > xi. This

implies that some values of Ai,j may be greater than one or A may be not substochastic.
The reason lies in the definition of the final demand yi, which includes accounting items
that can take a negative value. In the case of the WIOD table, the final demand yi is split
into 5 items:

1. Final consumption expenditure by households;

2. Final consumption expenditure by non-profit organisations serving households (NPISH);

3. Final consumption expenditure by government;

4. Gross fixed capital formation;

5. Changes in inventories and valuables.

Changes in inventories are defined as the difference between additions to and withdrawals
from inventories. They can take a positive or negative value. A high negative evolution of
stocks can then produce a situation where output is lower than the intermediary demand.
In fact, this type of situation can also be observed for the other items, in particular the gross
fixed capital formation and the final consumption expenditure by households. To obtain a
better estimate of the matrix A, we replace the net output xi by the total intermediary
demand when the condition

∑n
j=1 Zi,j > xi is satisfied31:

xi ←− max

xi, n∑
j=1

Zi,j ,

n∑
j=1

Zj,i


The WIOD input-output matrix A has then 44× 56 = 2 464 rows and columns and requires
46 MB of RAM to be stored. If we consider the Exiobase table, A is a 7 987× 7 987 matrix
and takes 487 MB of RAM. The matrix A is very sparse and is less relevant to perform an
upstream exercise. Moreover, the results obtained with WIOD and Exiobase are difficult
to compare, because the two datasets use different sector classification systems: Eora for
Exiobase and NACE Rev. 2 for WIOD. Therefore, we map the 163 Exiobase industries
into the WIOD classification32, and we aggregate South Africa and the 5 rest-of-the-world
regions33. We then obtain a matrix A, which has exactly the same industries and regions
than WIOD.

To illustrate the mapping process, we consider the Mining and quarrying sector, which
gathers 14 Exiobase sectors34. Performing the aforementioned aggregation thus allows us to
compare the main upstream and downstream relationships depicted by the two databases.

31Another approach would be to consider the accounting identity: xi =
∑n
j=1 Zi,j + yi where yi =∑m

k=1 yi,k is the total final demand and m is the number of items of the final demand. The issue may occur
when some items yi,k are negative. In this case, the idea is to replace xi by

∑n
j=1 Zi,j +

∑n
k=1 max

(
yi,k, 0

)
.

32Some Exiobase sectors can be mapped to two WIOD candidate sectors. For example, the Exiobase sector
Chemicals nec can go in the WIOD sectors Manufacture of chemicals and chemical products or Manufacture
of basic pharmaceutical products and pharmaceutical preparations. The sector Post and telecommunications
can go in Telecommunications or Postal and courier activities in WIOD and Research and development can
be assigned to Scientific research and development or Advertising and market research. Moreover, seven
WIOD sectors do not exist in Exiobase (e.g., Administrative and support service activities).

33Technical details about the aggregation process can be found in Appendix A.5 on page 142.
34Mining of precious metal ores and concentrates, Mining of lead, zinc and tin ores and concentrates,

Mining of other non-ferrous metal ores and concentrates, Quarrying of stone, etc.
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Figures 18 and 19 illustrate the two frames. We center the selected sector, filter the largest
technical coefficients35, and sum the rest to others. On the left of the graph, we can see the
main providers and on the right the main client sectors. We notice that the relationships are
sensibly similar, since the main upstream sectors are Services (mapped differently in WIOD
and Exiobase), Mining and quarrying in Canada and rest-of-the-world, Wholesale trade and
Materials. The main downstream sectors are Manufacture of coke and refined petroleum
products in the USA and Canada, Manufacture of metal and non-metallic minerals, etc. We
note that some differences remain. Interestingly, it appears that the Exiobase 2022 matrix
implies a worldwide diversification (more countries are represented). According to Figure
20, we also have less upstream dependencies abroad (the top are in the USA), but the client
sector involves more countries (Ireland, Korea, Netherlands, UK, etc.).

Remark 7. In Appendix B on pages 155–157, we provide another example with Manufacture
of computer, electronic and optical products in the USA. We obtain similar conclusions.

Sparsity of the matrix A In order to analyze the nonnegative matrix A, we compute
the sparsity ratio of A defined as the number of elements less than or equal to a threshold
ε divided by the total number of elements:

sparsity (A, ε) =
#
{
Ai,j ≤ ε

}
cardA

When ε is set to zero, #
{
Ai,j ≤ 0

}
is equal to the number of zero-valued elements and

sparsity (A, 0) measures the zero-sparsity of A. Using the previous estimates, we obtain the
following ratios for different values of ε:

Database Year
Sparsity ratio

ε = 0 ε = 10−3 ε = 0.01 ε = 0.05
WIOD 2014 16.76% 98.01% 99.61% 99.94%
Exiobase 2014 32.30% 98.50% 99.69% 99.94%
Exiobase 2022 34.47% 98.44% 99.68% 99.94%

The zero-sparsity of the WIOD matrix is equal to 16.76%, which is not so high. For Exiobase,
the figures are higher (32.30% in 2014 and 34.47% in 2018). If we consider the other values
of ε, the sparsity ratios are very close. This means that many entries in WIOD are very
small while they are set to zero in Exiobase.

In Figure 21, we plot the sparsity pattern of the input-output matrix and only the values
of Ai,j greater than 5% are colored. We notice that the density of the matrix is mainly
located within the country submatrices. Outside these intra-country matrices, the input-
output table is sparse except for some countries: China, Germany, Russia, USA and the
rest-of-the-world region. If we compare with the Exiobase matrices, we obtain very similar
profiles (Figures 94 and 95 on pages 152–153). Nevertheless, a deeper analysis shows that
the matrices are highly different. For instance, we have reported the sparsity pattern of the
matrix |Awiod −Aexiobase| in Figure 96 on page 153 and we notice that the magnitude of the
technical coefficients are not comparable in some cases. Even if the Frobenious norm36 of
Awiod − Aexiobase is reduced compared to those of Awiod or Aexiobase, we observe that some
cells of the difference matrix may be greater than 5%.

We introduce several notations. i ∈ C (resp. j ∈ C) means the rows (resp. columns) of

matrix A that belong to country C. A (C) =
{(
Ai,j

)
: i ∈ C ∧ j ∈ C

}
is the submatrix block

35In order to interpret the graph, the threshold has been established at 1.75%.
36For year 2014, we have ‖Awiod‖2 = 8.12, ‖Aexiobase‖2 = 9.05 and ‖Awiod −Aexiobase‖2 = 7.62.
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Figure 21: Sparsity pattern of the input-output matrix A (WIOD 2014)
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of A corresponding to the country C. The set of diagonal elements is DA (C) =
{
Ai,i : i ∈ C

}
while the set of off-diagonal elements correspond to OA (C) =

{
Ai,j : i ∈ C ∧ j ∈ C ∧ i 6= j

}
.

The elements whose rows belong to country C and columns to other countries are denoted by
RA (C) =

{
Ai,j : i ∈ C ∧ j /∈ c

}
. In the same way, we define CA (C) =

{
Ai,j : i /∈ c ∧ j ∈ C

}
as the elements whose columns belong to country C and rows to other countries. In Table 47
on page 172, we have reported two density metrics with respect to the country. maxAi,j (Ω)
measures the maximum technical coefficient for the set Ω, while #

{
Ai,j (Ω) ≥ 10%

}
in-

dicates the number of elements in the set Ω which are greater than 10%. In the case of
Australia, maxAi,j (Ω) is equal to 31% for DA (C), 44% for OA (C), 11% for RA (C), and
22% for CA (C), while we obtain the following results for the statistic #

{
Ai,j (Ω) ≥ 10%

}
:

8 for DA (C), 12 for OA (C), 1 for RA (C), and 2 for CA (C). In total, we have 1 241 technical
coefficients greater than 10%, which correspond to an average of 30 sectors by country37. It
is somewhat lower than the figures obtained with the Exiobase matrices38.

Convergence of the Leontief inverse matrix Let us now analyze the Leontief matrix
L = (I −A)

−1
. In Figure 22, we perform the eigendecomposition A = V ΛV −1 and plot the

spectrum of A. Comparing the magnitude |λi| of the first five hundred eigenvalues confirms
that the WIOD matrix is a little smaller than the Exiobase matrices, even if the difference is
not high. Figure 23 reports the Frobenious norm of the power Ak for k = 0, . . . , 10 and the
Leontief matrix L. We notice that the differences between the three matrices mainly concern
the first and second tiers. Moreover, the convergence of the Leontief matrix is achieved very
quickly since the Frobenious norm of Ak is lower than 1 after the third tier and 0.1 after
the seventh tier.

37544 are located in the diagonal, 602 are in the off-diagonal country matrices and 95 are intra-country
technical coefficients.

38The number of technical coefficients greater than 10% is respectively equal to 1 355 and 1 347 (Tables
48 and 49 on pages 173–174).
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Figure 22: Spectrum of the matrix A
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4.3.3 Estimation of the upstream emissions and comparison with the Trucost
database

We collect greenhouse gas emissions data from three different sources in order to have the
vector of direct emission intensities for the 2 464 sector × country entries. In the case
of WIOD, direct GHG emissions are available in environmental accounts and are computed
from the data provided by the Joint Research Centre of the European Commission (Corsatea
et al., 2019). For Exiobase, we use the consumption-based account table, which contains
the direct GHG emissions (Stadler, 2021). Finally, Trucost provides scope 1 emissions
and intensity, but also scope 2, direct emissions, first-tier indirect, upstream scope 3 and
downstream scope 3 metrics.

We recall that the vectors of total carbon intensity and emission are equal to CItotal =(
In −A>

)−1 CI1 and CEtotal = x�CItotal. For the kth tier, the formulas become CI(k) =(
A>
)k CI1 and CE(k) = x�CI(k). The dimension of all these vectors is n×1, where n is the

number of countries times the number of industries39. For Trucost, carbon emissions and
intensities are directly available. Direct emissions of input-output models can be compared
to scope 1 emissions of Trucost, while the total emissions correspond to scope 1 plus scope
2 plus scope 3 upstream emissions of Trucost. We can also compare the direct plus first-tier
indirect emissions of Trucost with the first-tier cumulative emissions CE(0−1) computed from
input-output models.

We can perform a graph analysis similar to the previous Sankey diagrams, but we have
now new information about the GHG emissions. The interconnectedness between two nodes
depend then on the magnitude of the technical coefficients, but also on the value of the
carbon intensities. The upstream analysis of GHG emissions is then different than the
upstream analysis of intermediary consumptions. For example, the Mining and quarrying
sector in the USA has its main upstream dependencies shown in Figure 24, where the size
of the nodes is proportional to the intensity of the sectors. We can see that the first-tier
emissions (in dark blue) are mostly related to the Energy and Land transport via pipeline
sectors in the USA and to the Mining and quarrying sector in Canada. The second-tier
(light blue) upstream emissions of this sector mostly come from Air transport in both the
USA and Canada and Water transport in Canada. This representation allows us to quickly
visualize the cartography of upstream emissions for a given sector. This approach can also
be applied to downstream emissions in a similar way.

Global analysis To perform a global analysis, we aggregate the carbon emissions as
follows:

CEtotal (Global) =

n∑
j=1

CEtotal,j = 1>nCEtotal

We can then deduce the carbon intensity:

CItotal (Global) =

∑n
j=1 CEtotal,j∑n

j=1 xj
=

1>nCEtotal

1>n x

In this framework, the global carbon intensity is also equal to the weighted average carbon
intensity:

CItotal (Global) =

∑n
j=1 xjCItotal,j∑n

j=1 xj
=

n∑
j=1

xj∑n
i=1 xi

CItotal,j = WACItotal (Global)

39In our case, n is equal to 2 464 (44 countries and 56 industries).
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The total carbon emissions are equal to 32.38 GtCO2e in WIOD 2014, 40.74 GtCO2e
in Exiobase 2014 and 48.34 GtCO2e in Exiobase 2022. Therefore, the carbon intensi-
ties are respectively equal to 200.92, 341.44 and 282.25 tCO2e/$ mn. In Table 15, we

report the multiplying coefficients m(k) = CE(k) (Global)
/
CE1 (Global) and m(0−k) =

CE(0−k) (Global)
/
CE1 (Global), and we also compute the contribution ratio c(0−k) =

CE(0−k) (Global)
/
CEtotal (Global). For the WIOD table, the direct plus indirect emissions

are 3.14 times the scope 1 emissions, meaning that the indirect emissions are more than two
times the direct emissions. In the case of the Exiobase tables, the ratio m(0−∞) is equal to
2.76 in 2014 and 2.75 in 2022. We notice that the convergence is fast since more than 90% of
total emissions are located within the first five tiers. To confirm these results, we compute
the upstreamness index τ up

j for the 56 sectors and 44 regions. If we consider the median
value of τ up

j , we obtain 2.33, 1.90 and 1.88 while the maximum value of τ up
j is 4.30, 4.65

and 4.47. On average, the upstreamness of the WIOD 2014 table is slightly deeper than the
upstreamness of the Exiobase tables.

Table 15: Ratio of upstream carbon emissions (global analysis)

Tier

WIOD Exiobase Exiobase
2014 2014 2022

m(k) m(0−k) c(0−k) m(k) m(0−k) c(0−k) m(k) m(0−k) c(0−k)

0 1.00 1.00 31.8% 1.00 1.00 36.2% 1.00 1.00 36.4%
1 0.77 1.76 56.1% 0.72 1.72 62.5% 0.73 1.73 62.9%
2 0.50 2.26 71.9% 0.43 2.15 78.0% 0.42 2.15 78.3%
3 0.32 2.58 82.1% 0.25 2.40 87.0% 0.25 2.40 87.3%
4 0.20 2.78 88.6% 0.15 2.55 92.3% 0.14 2.54 92.5%
5 0.13 2.91 92.7% 0.09 2.63 95.5% 0.08 2.62 95.5%
6 0.08 3.00 95.4% 0.05 2.69 97.3% 0.05 2.67 97.3%
7 0.05 3.05 97.0% 0.03 2.72 98.4% 0.03 2.70 98.4%
8 0.03 3.08 98.1% 0.02 2.73 99.0% 0.02 2.72 99.0%
9 0.02 3.11 98.8% 0.01 2.74 99.4% 0.01 2.73 99.4%

10 0.01 3.12 99.2% 0.01 2.75 99.7% 0.01 2.74 99.7%
∞ 0.00 3.14 100.0% 0.00 2.76 100.0% 0.00 2.75 100.0%

In the case of Trucost, we can only compute m(0−1) and m(0−∞). Results are given in
Figure 25. We notice that the multiplying coefficients obtained with Trucost are smaller
than those computed with input-output models (1.45–1.54 versus 1.7 for the first tier).
Nevertheless, the multiplying coefficient is very high if we integrate scope 3 emissions since
we obtain a value of 4.78 in 2019 and 6.75 in 2021. Moreover, a time-series analysis shows
that the multiplying coefficients of Trucost tend to increase over time (Table 16).

Table 16: Multiplying coefficient (global analysis, Trucost)

Year 2019 2020 2021
Direct + first-tier indirect 1.45 1.51 1.54
Total (direct + indirect) 1.81 1.89 1.98
SC1−3 4.78 6.42 6.75
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Figure 25: Multiplying coefficient m(0−1) and m(0−∞) (global analysis)

Country analysis Let j ∈ C be the set of sectors (or rows) that correspond to country C
and c the n× 1 vector with cj = 1 if j ∈ C and 0 otherwise. We have:

CEtotal (C) =
∑
j∈C

CEtotal,j = c>CEtotal

and:

CItotal (C) =

∑
j∈C CEtotal,j∑

j∈C xj
=

c>CEtotal

c>x

Again, we can show that the country carbon intensity is also equal to its weighted average
carbon intensity: CItotal (C) = WACItotal (C). In Tables 50–52 on pages 175–177, we report
the decomposition of total carbon emissions by distinguishing direct, first-tier indirect and
indirect emissions. On average, 31.8% and 24.4% of total carbon emissions are explained
by direct and first-tier indirect emissions if we consider the WIOD table. We can observe
some major differences from one country to another. For instance, Figure 26 shows the
multiplying coefficient m(0−∞) of the different countries. The lowest value is obtained for the
USA (m(0−∞) = 2.19), while the largest factor is observed for Switzerland (m(0−∞) = 7.21).
On average, we obtain coherent figures between WIOD and Exiobase since the correlation
is greater than 70%. This is not the case with the Trucost database. Indeed, we report the
multiplying coefficients m(0−1) and multiplying coefficients m(0−∞) in Table 17 and observe
that the Trucost estimates are not correlated with the MRIO estimates40.

40Regardless the correlation analysis (Pearson, Kendall or Spearman analysis), the conclusion is the same
at the 90% confidence level.
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Figure 26: Multiplying coefficient m(0−∞) (WIOD 2014)
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Table 17: Comparison of multiplying coefficients m(0−k) (country analysis)

Data WIOD Exiobase Exiobase Trucost Trucost Trucost
Year 2014 2014 2022 2019 2020 2021
k 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞

AUS 1.74 2.95 1.58 2.25 1.55 2.14 1.57 1.87 1.59 1.91 1.69 2.13
BRA 1.69 2.64 1.68 2.30 1.62 2.12 1.64 2.00 1.92 2.31 3.35 3.88
CAN 1.55 2.43 1.61 2.33 1.61 2.29 1.45 1.80 1.44 1.76 1.52 1.90
CHE 2.54 7.21 2.40 5.64 2.46 5.79 1.80 2.47 1.88 2.65 1.91 2.73
CHN 1.91 3.91 1.97 3.89 1.97 3.84 1.24 1.41 1.27 1.48 1.30 1.52
DEU 1.67 2.77 1.68 2.61 1.74 2.89 1.52 2.26 1.59 2.42 1.73 2.65
ESP 1.74 3.29 1.81 3.02 1.81 2.96 1.45 1.81 1.48 1.84 1.70 2.20
FRA 1.73 3.49 1.78 2.99 1.76 2.96 1.82 2.59 1.89 2.63 2.03 2.97
GBR 1.67 2.96 1.66 2.67 1.66 2.67 2.31 3.13 2.18 2.88 2.31 3.05
IDN 1.63 2.44 1.59 2.07 1.64 2.10 1.30 1.50 1.32 1.54 1.37 1.62
IND 1.74 2.51 1.63 2.23 1.65 2.30 1.22 1.36 1.20 1.33 1.21 1.35
ITA 1.83 3.67 2.04 3.61 2.07 3.76 1.35 1.60 1.33 1.61 1.52 1.91
JPN 1.76 3.12 1.87 3.15 1.85 3.09 1.82 2.75 1.96 3.06 2.01 3.20
KOR 1.83 3.61 2.06 4.04 2.16 4.47 1.54 2.06 1.55 2.09 1.65 2.29
RUS 1.71 2.43 1.43 1.77 1.45 1.78 1.23 1.34 1.21 1.30 1.48 1.72
MEX 1.61 2.28 1.60 2.23 1.57 2.15 1.75 2.34 1.80 2.40 1.80 2.48
NLD 1.47 2.42 2.01 3.20 2.02 3.40 2.62 4.02 2.10 3.24 2.80 6.82
TUR 1.82 3.08 1.81 2.70 1.63 2.26 1.24 1.46 1.29 1.50 1.32 1.55
TWN 1.83 3.42 2.13 4.31 2.02 4.04 1.80 2.48 1.83 2.57 1.78 2.54
USA 1.54 2.19 1.60 2.15 1.59 2.15 1.67 2.27 1.69 2.32 1.80 2.57
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Table 18: Comparison of multiplying coefficients m(0−k) (sector analysis, GICS level 1 clas-
sification)

k
Data WIOD Exiobase Exiobase Trucost Trucost Trucost
Year 2014 2014 2022 2019 2020 2021

1

Communication Services 4.44 4.86 5.63 10.85 14.65 26.93
Consumer Discretionary 2.51 2.87 2.68 3.51 3.98 4.41
Consumer Staples 2.37 3.38 3.35 3.98 4.63 4.64
Energy 1.71 2.75 2.93 1.46 1.62 1.59
Financials 3.64 2.86 2.84 1.88 1.89 1.94
Health Care 2.58 5.31 5.00 3.65 3.58 3.75
Industrials 2.66 2.15 2.19 1.52 1.61 1.67
Information Technology 4.55 4.68 4.47 4.26 4.02 4.55
Materials 1.78 1.50 1.47 1.42 1.40 1.42
Real Estate 7.93 6.73 6.91 3.49 4.53 6.25
Utilities 1.28 1.24 1.23 1.10 1.11 1.14

∞

Communication Services 13.43 12.66 14.02 18.57 24.05 37.79
Consumer Discretionary 5.63 6.46 5.76 8.20 9.75 11.36
Consumer Staples 4.90 6.24 6.09 6.91 8.08 8.28
Energy 2.94 4.09 4.33 1.73 1.84 1.90
Financials 10.21 7.05 7.33 3.67 3.77 3.85
Health Care 6.58 13.97 13.74 8.56 8.27 9.08
Industrials 6.25 4.50 4.52 2.15 2.34 2.49
Information Technology 14.91 15.04 13.44 8.13 7.63 8.95
Materials 3.02 2.21 2.09 1.57 1.54 1.60
Real Estate 13.82 12.80 12.80 5.58 8.38 12.53
Utilities 1.55 1.39 1.35 1.11 1.13 1.16

Sector analysis We proceed as previously to perform a sector analysis by considering
the set of rows j ∈ S that correspond to Sector S. Therefore, we replace c by the n × 1
vector s with sj = 1 if j ∈ S and 0 otherwise. In Figures 27 and 28, we report the values
taken by m(0−1) and m(0−∞) for the 56 WIOD sectors41. For some sectors, the figures are
very close, meaning that the multiplying coefficients are similar for the three databases.
Nevertheless, there are some sectors for which we observe a high discrepancy. In order to
better understand these differences, we compute m(0−1) and m(0−∞) by considering the
GICS level 1 classification (Table 18). In the case of the first-tier emissions, multiplying
coefficients are similar between the three databases for Information technology, Materials
and Utilities. The highest discrepancy is observed for Communication services. The reason
for this is that the sector’s direct emissions are very low. If we consider the full upstream
supply chain, the multiplying coefficient m(0−∞) is very different for Financials and Health
Care. On the contrary, Utilities is the sector with the highest consistency between the three
databases.

Country-sector analysis Finally, we consider the country × sector level, implying that
we compute the multiplying coefficients for the 2 464 rows. Figure 29 shows the histogram of
m(0−1) and m(0−∞). We notice that the distributions are fat-tailed. For instance, we have
16% of rows with a multiplying coefficient m(0−1) greater than 10. In the case of m(0−∞),
this frequency is equal to 40%.

41We have the following matching: a dark blue circle for WIOD 2014, a dark orange plus sign for Exiobase
2014, a dark yellow asterisk for Exiobase 2022, a dark purple square for Trucost 2019, a medium green
diamond for Trucost 2020, and a light blue five-pointed star for Trucost 2021.
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Figure 27: Multiplying coefficient m(0−1) (sector analysis)
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Figure 28: Multiplying coefficient m(0−∞) (sector analysis)
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Figure 29: Histogram of multiplying coefficients (country-sector analysis, all databases)

4.3.4 Uncertainty modeling of indirect emissions

Stochastic modeling of multiplying coefficients Following the previous analysis, we
can assume that CE(0−k) = m̃(0−k)CE1 where m̃(0−k) is a random variable which is greater
than 1 by construction. We have seen that m̃(0−k) depends on several factors such as the
country or the sector. Therefore, we can write m̃(0−k) as follows:

m̃(0−k) = 1 + ϕ̃Cϕ̃S

where ϕ̃C and ϕ̃S are two positive independent random variables that depend on the country
C and the sector S. By assuming that ϕ̃C and ϕ̃S are two log-normal random variables
LN

(
µC , σ

2
C
)

and LN
(
µS , σ

2
S
)
, we can show that42 ϕ̃Cϕ̃S ∼ LN

(
µC + µS , σ

2
C + σ2

S
)
. We

deduce that m̃(0−k) follows a shifted log-normal distribution SLN
(
µC,S , σ

2
C,S , ξ

)
, whose

mean, standard deviation and shift parameters are equal to µC + µS ,
√
σ2
C + σ2

S and 1.

Sometimes, we would like that the mathematical expectation of m̃(0−k) matches a given
value mi. For instance, we would like to introduce uncertainty around the estimation of
Trucost, but we would like that the mean corresponds to the estimate of Trucost. A first
approach is to introduce a scaling factor λ such that m̆(0−k) = 1 + λϕ̃Cϕ̃S . In this case,

the optimal value is equal to λ = (mi − 1)

/(
E
[
m̃(0−k)

]
− 1

)
. We deduce that λ ≤ 1

if E
[
m̃(0−k)

]
≥ mi and, λ > 1 otherwise. We deduce that the scaling approach does not

preserve the variance because var
(
m̆(0−k)

)
= λ2 var

(
m̃(0−k)

)
. Therefore, the variance is

reduced if E
[
m̃(0−k)

]
≥ mi. A second approach consists in introducing a specific random

42The proof is given in Appendix A.6 on page 143.
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variable ϕ̃i ∼ LN
(
µi, σ

2
i

)
. Therefore, we have m̆(0−k) = 1 + ϕ̃Cϕ̃S ϕ̃i. The matching

constraint E
[
m̆(0−k)

]
= mi and the variance preservation var

(
m̃(0−k)

)
= var

(
m̆(0−k)

)
implies the following optimal values43:

σ2
i = max

ln

(
(mi − 1)

2
+
(
eσ

2
C,S − 1

)(
E
[
m̃(0−k)

]
− 1

)2
)
− 2 ln (mi − 1)− σ2

C,S , 0


and:

µi = ln (mi − 1)− ln

(
E
[
m̃(0−k)

]
− 1

)
− 1

2
σ2
i

Figure 30: Probability density function of the multiplying coefficient
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Let us illustrate the calibration problem with an example. We assume that µC = 0.25,
σC = 0.35, µS = 0.50 and σS = 0.60. In Figure 30, we report the probability density
function of m̆(0−k) = 1 + λϕ̃Cϕ̃S when ϕ̃S = 1 (top/left panel) and ϕ̃C = 1 (top/right
panel). Therefore, we can see the impact of each factor. We notice that m̆(0−k) takes its
value between 1 and 4 when considering the country uncertainty, while it can reach values
greater than 6 when capturing the sector effect. The combination of the two factors is
given in the bottom/left panel. The mathematical expectation of m̃(0−k) is 3.69, while its
standard deviation is 2.12. If we target mi = 3, the calibration gives µi = −0.43 and
σi = 0.52. The corresponding probability density function corresponds to the violet line in

the bottom/right panel. We verify that E
[
m̆(0−k)

]
= 3 and σ

(
m̆(0−k)

)
= 2.12. If we target

mi = 5, we obtain µi = 0.40, σi = 0, E
[
m̆(0−k)

]
= 5 and σ

(
m̆(0−k)

)
= 3.15 > σ

(
m̃(0−k)

)
.

In this case, it is not possible to preserve the variance, but it is the minimum bound for the
variance minimization problem.

43See Appendix A.7 on page 144.
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Maximum likelihood estimation The above framework requires to estimate 2nC+ 2nS
parameters, where nC and nS are the number of countries and sectors. In practice, this
approach is not relevant because it is too granular and we prefer to have a small number
of parameters. Therefore, we group countries and sectors in order to obtain mC country
clusters and mS sector clusters. We denote by Cj (resp. Sk) the jth country (resp. kth

sector) cluster. Let
{
m(0−k),1, . . . ,m(0−k),n

}
be a sample of n observations. We estimate

the parameter vector44 θ = (µC1
, σC1

, µC2
, σC2

, . . . , µS1
, σS1

, µS2
, σS2

, . . .) by the method of
maximum likelihood. The expression of the log-likelihood function is:

` (θ) =

n∑
i=1

mC∑
j=1

mS∑
k=1

1
{
i ∈ Cj ∧ i ∈ Sk

}
· `
(
m(0−k),i − 1, µCj , σCj , µSk , σSk

)
where:

` (x, µC , σC , µS , σS) = −1

2
ln (2π)− 1

2
ln
(
σ2
C + σ2

S

)
− lnx− 1

2

(
lnx− (µC + µS)√

σ2
C + σ2

S

)2

In the case where 2 (mC +mS) < mCmS , we face an identification issue. Moreover, the
model cannot be identified when the mC × mS two-dimensional clustering system is fully
separable into two mC and mS uni-dimensional clustering systems.

Table 19: Calibration of the multiplying coefficient (no clustering)

k = 1 k =∞
µ̂C σ̂C µ̂(0−k) σ̂(0−k) µ̂C σ̂C µ̂(0−k) σ̂(0−k)

Country −0.40 0.61 1.81 0.55 0.32 0.75 2.81 1.57
Sector 0.38 1.09 3.66 4.01 1.25 1.28 8.87 15.93

Table 20: Default parameters of the multiplying coefficient (two-sector clustering)

k Parameter Country Sector #1 Sector #2

1
µ̂Cj / µ̂Sk −0.40 0.50 1.50
σ̂Cj / σ̂Sk 0.50 1.00 1.00

∞ µ̂Cj / µ̂Sk 0.00 0.75 2.00
σ̂Cj / σ̂Sk 0.50 1.00 1.00

In what follows, we estimate the model by considering the 2 464 observations and merging
the six databases (WIOD 2014, Exiobase 2014 and 2022, Trucost 2019, 2020 and 2021). In
Table 19, we report the estimated coefficients when we perform no clustering. We also

compute µ̂(0−k) = E
[
m̃(0−k)

]
and σ̂(0−k) = σ

(
m̃(0−k)

)
using the estimated probability

distribution of m̃(0−k). As expected, the sector dimension is more important than the
country dimension. For instance, µ̂(0−1) takes the value 1.81 if we consider the country
dimension, while it is equal to 3.66 for the sector dimension. We now consider the case
with two-country and two-sector clusters. For each dimension, we rank the multiplying
coefficients, compute the median and split the universe below and above the median. Results
are given in Appendix B on page 178. We notice that the differences between the two-country
clusters are very small, while there is a high discrepancy between the two-sector clusters.

44The dimension of θ is now equal to 2mC + 2mS � 2nC + 2nS .
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This is why we propose to use the default parameters given in Table 20 and not to cluster the
countries. Given the high uncertainty of the maximum likelihood estimates, it is better to
simplify the analysis and use stylized figures. For the first-tier emissions, the mean of m̃(0−1)

is equal to 3.1 and 3.3 for the first and second clusters. The difference is not significant, but
there is more dispersion in the second cluster. Indeed, the standard deviation is equal to
6.6 for the first cluster and 8.9 for the second cluster. Concerning m̃(0−∞), the mean and
standard deviation are equal to 5.0 and 14.8 for the first cluster, and 6.2 and 21.8 for the
second cluster. Finally, the corresponding distribution functions are reported in Figure 31.

Figure 31: Probability density function of m̃(0−1) and m̃(0−∞) (two-sector clustering)
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4.4 Application to the MSCI World index

4.4.1 Estimation of upstream intensities

We apply the previous framework to estimate the upstream of the MSCI World index. For
that, we first estimate the total carbon intensity for all the issuers of the portfolio:

CItotal,i = CIreported
1,i + CIestimated

indirect,i

where CIreported
1,i is the scope 1 carbon intensity reported by the issuer i and CIestimated

indirect,i is
the estimated indirect carbon intensity. In the case of Trucost, we use the values estimated
by the data provider. For the input-output databases, we use the formula CIestimated

indirect =((
In −A>

)−1 − In
)
CIdirect and consider the row corresponding to the sector and the coun-

try45 of the issuer i. The scatter plot between Exiobase, Trucost and WIOD estimates is
reported in Figure 32. The correlation is 89.6% between Exiobase and Trucost, 95.7% be-
tween Exiobase and WIOD, and 91.7% between Trucost and WIOD.

45 Four countries (HKG, ISR, NZL and SGP) in the MSCI World index are not in the MRIO databases.
This is why we map them to the rest-of-the-world region (ROW).
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Figure 32: Scatter plot of carbon intensities CItotal (MSCI World index, May 2023)
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Figure 33: Carbon intensity CItotal per GICS sector (MSCI World index, May 2023)

C
om

m
un

ic
at

io
n 

Ser
vi
ce

s

C
on

su
m

er
 D

is
cr

et
io

na
ry

C
on

su
m

er
 S

ta
pl

es

Ene
rg

y

Fin
an

ci
al

s

H
ea

lth
 C

ar
e

In
du

st
ria

ls

In
fo

rm
at

io
n 

Tec
hn

ol
og

y

M
at

er
ia

ls

R
ea

l E
st

at
e

U
til
iti
es

0

500

1000

1500

2000

61



From Climate Stress Testing to Climate Value-at-Risk

Then, we compute the carbon intensity46 of the MSCI World index and the GICS level
1 sectors. Results are given in Table 57 on page 178 and Figure 33. The direct plus
indirect intensity of the MSCI World index is equal to 299 tCO2e/$ mn with Exiobase 2022,
281 tCO2e/$ mn with Trucost 2021 and 278 tCO2e/$ mn with WIOD 2014. The difference
between the lowest and highest values is then equal to 7.5%, which is a low figure. If we
consider the GICS sectors, the differences are more important47, especially for Consumer
Staples, Energy and Materials. For instance, the carbon intensity of the Energy sector is
equal to 757 tCO2e/$ mn with WIOD 2014 and 1 373 tCO2e/$ mn with Exiobase 2022. We
also compute the contribution of each sector to the carbon intensity of the MSCI World
index. We have:

cj (w) =

∑
i∈j wi · CItotal,i∑
i wi · CItotal,i

where w is the vector of weights in the MSCI World index and cj (w) is the contribution
of the jth Sector. In Table 21, we notice some significant differences48. This concerns the
previous mentioned sector (Consumer Staples, Energy and Materials), but also Consumer
Discretionary, Health Care and Information Technology.

Table 21: Breakdown of the portfolio intensity per GICS sector (MSCI World index, May
2023)

Sector Exiobase 2022 Trucost 2021 WIOD 2014
Communication Services 1.5% 1.9% 2.5%
Consumer Discretionary 5.9% 7.8% 8.4%
Consumer Staples 11.6% 10.9% 7.9%
Energy 22.9% 14.1% 13.6%
Financials 4.2% 2.9% 4.5%
Health Care 4.8% 5.7% 8.0%
Industrials 10.2% 10.8% 12.1%
Information Technology 7.5% 10.0% 9.6%
Materials 11.7% 15.3% 11.9%
Real Estate 1.1% 1.2% 1.2%
Utilities 18.6% 19.4% 20.2%

4.4.2 Uncertainty of upstream intensities

Let us assess the uncertainty of the upstream intensity estimation. On average, we have

CItotal (w) = 286 and CI1 (w) = 104 for the portfolio w of the MSCI World index. Using
the framework developed in Section 4.3.4 on page 57, we compute the distribution function of
the multiplying coefficient m̃(0−∞), estimate the rescaled distribution of m̆(0−∞) and finally

deduce the distribution function of the carbon intensity C̃Itotal (w), which is now a random
variable and not a single estimated value. Results are reported in Figure 34. We obtain a very

asymmetric probability distribution since we have Pr
{
C̃Itotal (w) ≤ CItotal (w)

}
≈ 80%

and Pr
{
C̃Itotal (w) ≥ CItotal (w)

}
≈ 20%. This means that there is a high uncertainty on

the estimation of the upstream intensity. Indeed, we may consider that there is a significant

46We have CItotal (w) =
∑
i wi · CItotal,i where wi is the weight of asset i in the portfolio w.

47See Anquetin et al. (2022) for a discussion about the disagreement on indirect emissions.
48See also Figure 104 on page 159.
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probability that the carbon intensity is greater than the computed figure and a high proba-
bility that it is significantly smaller than the observation. This uncertainty can be explained
by different factors: the estimation of the supply chain (or the matrix A) is not precise, the
MRIO supply chain does not accurately reflect the supply chain of issuers, etc.

Figure 34: Distribution function of C̃Itotal (w) (MSCI World index, May 2023)

5 Taxation, pass-through and price dynamics

We have seen that a major uncertainty when performing transition stress tests concerns
the estimation of supply chain emissions. Moreover, we have limited knowledge about the
fraction of regulation costs passed onto the price of products sold by the sector, i.e. the pass-
through mechanism. In what follows, we will see that this topic is related to the estimation
of indirect emissions and can be measured using input-output models.

5.1 Pass-through, tax incidence and downstream diffusion

According to RBB Economics (2014), “cost pass-through describes what happens when a
business changes the price of the production or services it sells following a change in the
cost of producing them”. Therefore, a pass-through rate is closely related to the supply and
demand elasticity. This concept of price adjustment is extremely common in many fields
of economics: exchange rates (Dornbusch, 1987; Campa and Goldberg, 2005), imperfect
competition and Cournot-Bertrand equilibria (Dixit and Stiglitz, 1977; Weyl and Fabinger,
2013), product taxation and retail prices (Shrestha and Markowitz, 2016; Seiler et al., 2021),
inflation regimes (Richards and Pofahl, 2009; Ha et al., 2020), etc.

We reiterate that the pass-through denotes the capacity of a sector or a company to
pass costs through its supply chain. Generally, this parameter ranges from 0% when all
the amount is supported by the agent to 100% when the full amount is transferred to the
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clients49. Since this parameter depends on several factors, such as supply and demand
elasticity, international trade exposure, market concentration, product homogeneity, etc.,
its estimation is not easy, implying a large uncertainty on tax incidence in a transition risk
framework.

Figure 35: Demand curvature
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Source: (RBB Economics, 2014, Figure 2, page 16).

5.1.1 Theoretical framework

Following RBB Economics (2014), the pass-through highly depends on the market structure
and the supply-demand equilibrium. In Figure 35, we represent different demand curves,
whose slope depends on consumer reactions to different price levels. If the curve descends
steeply, it suggests that an increase in price would lead to a marginal reduction in sales.
This scenario represents inelastic demand, where consumer demand is relatively unchanged
when the price moves up or down. Conversely, if the demand curve is flatter, a hike in
price will result in a substantial reduction in the quantity demanded. This situation depicts
elastic demand, where consumers are highly responsive to price changes. Should a demand

49We can occasionally find pass-through rates above 100% when the demand is very convex.
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curve be linear, it lacks any curvature, meaning that the rate of decline in demand as
the price increases remains constant (top/left panel in Figure 35). In situations where
demand decreases more drastically as price elevates, this kind of demand is classified as
concave to the origin, as represented in the second panel. As prices ascend in this scenario,
the demand curve becomes progressively flatter, signifying an increased price sensitivity or
greater elasticity. In this scenario, firms should absorb a portion of the cost, implying a
relatively low pass-through rate. Lastly, if the rate of demand reduction decelerates with
each price increase, this kind of demand curve is termed convex to the origin. In this case,
as prices escalate, the residual demand becomes less sensitive to these price fluctuations
(bottom/left panel in Figure 35). Companies can then pass on the costs and set a relatively
high pass-through rate.

Perfect competition From an economic viewpoint, the specification of the pass-through
depends then on several factors. First, it differs if we consider perfect competition or monop-
olistic situation. Let QS (p) and QD (p) be the supply and demand functions with respect
to the price p. The market price is the solution of the equation QS (p) = QD (p). Let us
introduce a tax τ , which is paid by the suppliers. The new equilibrium is defined by:

QS (p− τ ) = QD (p)

A change in demand induced by a change in the tax implies that:

dQS (p− τ )

d τ
=

dQD (p)

d τ

We deduce that:
dQS (p− τ )

d p

d p

d τ
− dQS (p− τ )

d p
=

dQD (p)

d p

d p

d τ

Since
dQS
d p

≥ 0 is the price sensitivity of supply and
dQD
d p

≤ 0 is the price sensitivity of

demand, the general formula of the pass-through rate φ is50:

φ =
d p

d τ
=

price sensitivity of supply

price sensitivity of supply− price sensitivity of demand

We deduce that φ ∈
[
0, 100%

]
. In perfect competition, RBB Economics (2014) showed that

the industry pass-through rate is given by the following equation:

φj =
1

1− price-demand elasticity of sector j

price-supply elasticity of sector j

while the firm-specific pass-through φi should be equal to zero.

Remark 8. In some specific situations (Giffen effect and Veblen goods), we can have
dQD
d p

≤ 0 and φ > 100%.

50This formula is different from the one obtained by RBB Economics (2014, page 54), because they
assumed that price sensitivity of demand is expressed in absolute value. In this case, we have:

φ =
price sensitivity of supply

price sensitivity of supply + price sensitivity of demand
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Monopoly It is important to note that most intensive sectors, in particular Utilities and
Materials, are in situation of quasi-monopoly. In this case, the pass-through is shown to be
equal to:

φ =
slope of inverse demand

slope of marginal revenue − slope of marginal cost

In the monopolistic context, the pass-through rate depends on the change in demand vs.
change in revenue. In the case where the demand is convex, the pass-through may exceed
100%. With constant marginal cost, the monopolistic pass-through rate becomes (Bulow
and Pfleiderer, 1983):

φ =
1

2 + elasticity of slope of inverse demand

Since the elasticity of slope of inverse demand is negative, we obtain φ ≥ 1/2. Contrary to
the perfect competition case, the lower bound is not zero in the situation of monopoly and
the minimum pass-through rate is 50%.

Oligopoly In the economic theory, we distinguish two main theoretical settings for the
modeling of oligopolistic situations. In the Cournot framework, players choose quantities
as a strategic variable in non-cooperative competition with the other firms, and the market
determines the price of each good. In the Bertrand framework, firms set prices, and the
market determines the demand for each good. In a n-firm Cournot competition environment,
the industry level pass-through rate follows51:

φj =
n

(n+ 1) + elasticity of slope of inverse demand

while the firm-specific pass-through rate is φi = φj/n. We notice that the lower bound of
the Cournot pass-through is n/ (n+ 1) ≥ 50%. For example, φj ≥ 75% if there are 3 firms.
In the Bertrand setting, Anderson et al. (2001) demonstrated that the industry pass-through
is:

φj =
n

2−D +
elasticity of slope of inverse demand

own price elasticity of demand

where D is the aggregate diversion ratio52. We notice that the lower bound53 of the Bertrand
pass-through is 50%.

General formula Weyl and Fabinger (2013) derived a general expression for the absolute
industry pass-through rate, given a change in marginal costs that can represent perfect com-
petition, monopoly, oligopoly with homogeneous goods (Cournot) and differentiated goods
(Bertrand). This expression is based on the curvature of the price/quantity relationship,
which determines whether the demand curve is linear, convex or concave. The nested ex-
pression is:

φ =
1

1− εD +H
εS

+
H
εH

+
H
εcs

(17)

51The proof can be found in RBB Economics (2014, page 69).
52Following RBB Economics (2014, page 77), the aggregate diversion ratio is “the proportion of sales lost

by one firm as its price is increased that are captured by its rivals”.
53Because D ≥ 0 and the elasticity of slope of inverse demand is negative.
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where the parameter H characterizes whether the setting is perfect competition (H = 0),
monopoly (H = 1), symmetric Cournot54 (H = n−1) or Bertrand differentiated oligopoly55

(H = 1−D); εD is the elasticity of demand; εS is the elasticity of competitive supply56; εH
is the elasticity of the conduct parameter57 and εcs is the elasticity of the inverse consumer
surplus58.

To summarize, the pass-through rate can be lower than 50% only in the perfect compe-
tition setting. Otherwise, it is greater than 50% in monopoly and oligopoly settings. It can
also be greater than 100% in these settings, in particular when the demand is highly convex.

5.1.2 Calibration of pass-through rates

Literature review Drawing upon an extensive literature review59, Sautel et al. (2022) at-
tributed pass-through rates to sectors. In particular, they gathered them into four categories.
For the high-emitting sectors (manufacture of metal, manufacture of non-metallic mineral
products, etc.), the pass-through rate ranges from 10% to 100%. The second group corre-
sponds to low-emitting and intermediary demand-oriented sectors, and the pass-through rate
is set at 75%. For the sectors that are directed toward the final demand, Sautel et al. (2022)
distinguished two categories based on elasticity assumptions. When the price elasticity of
demand is high (resp. low), pass-through parameters are set at 40% (resp. 100%). Table 22
summarizes the pass-through rates for intensive sectors used by Sautel et al. (2022).

Table 22: Pass-through rates (in %) for intensive sectors (Sautel et al., 2022, page 35)

Sector Rate
Electricity, gas and steam 100%
Petroleum refining 100%
Base metals 78%
Mining 78%
Waste/wastewater 78%
Land transport 78%
Fishery 75%
Non-metallic minerals 60%
Agriculture 50%
Chemicals 40%
Maritime transport 30%
Aviation 30%
Paper 10%

Econometric modeling The main calibration approach of pass-through rates is gen-
erally to estimate a cost-price model using standard econometric tools (De Bruyn et al.,
2015). The price of a product depends then on the prices of its input components and CO2

54n is the number of competing firms.
55D is the aggregate diversion ratio.

56The second term
εD +H
εS

vanishes in the case of constant marginal cost.

57It allows for changes of the intensity of competition when quantity or price varies.
58We also have:

εcs =
1

1 + elasticity of slope of inverse demand

59See Tables 58 and 59 on page 179.
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emissions. The linear regression model can then be estimated using ordinary least squares
and provides price sensitivities (De Bruyn et al., 2010a). Sometimes, the linear regression
model is replaced by a VaR or VECM process. Again, the price sensitivities are estimated
by the method of least squares or the method of maximum likelihood (Oberndorfer et al.,
2010). We also notice that this framework allows to generate impulse response functions,
which measure the effects of a shock on endogenous variables (Alexeeva-Talebi, 2010, 2011).
Therefore, we can distinguish short-term and long-term pass-through rates. An alternative
approach to the cost-price model is to use a simplified equilibrium model and estimate the
demand function using the reduced form or the structural form of the model (Ganapati et
al., 2020). These different econometric approaches are suitable to obtain the best estimate
given a set of observations. Nevertheless, they are not relevant in our framework when we
deal with the uncertainty of pass-through rates.

Stochastic modeling Since the pass-through coefficient is a parameter between 0 and 1,
it is common to consider a random variable with a beta distribution B (α, β). When α and
β are greater than 1, the distribution has one mode equal to (α− 1) / (α+ β − 2). This
probability distribution is very flexible and allows to obtain various shapes60. To calibrate
the parameters α and β, we can use the method of maximum likelihood. Let {φ1, . . . ,φn}
be a sample of pass-through rates. According to Roncalli (2020, page 619), the log-likelihood
function is:

` (α, β) = (α− 1)

n∑
i=1

lnφi + (b− 1)

n∑
i=1

ln (1− φi)− n lnB (α, β)

An alternative approach is to use the method of moments, whose estimators are61:

α̂ =
µ̂2
φ

(
1− µ̂φ

)
σ̂2
φ

− µ̂φ

and:

β̂ =
µ̂φ

(
1− µ̂φ

)2
σ̂2
φ

−
(
1− µ̂φ

)
where µ̂φ and and σ̂φ are the empirical mean and standard deviation of the sample.

We consider the case of refineries. We collect the different estimates from the studies
listed in Table 59 on page 180. The sample is 36%, 40%, 50%, 50%, 50%, 75%, 90%, 95%,
99%, 99% and 99%. We have µ̂φ = 71.18% and σ̂φ = 26.10%. The ML estimates are

α̂ = 1.60 and β̂ = 0.58, while the MM estimates are α̂ = 1.43 and β̂ = 0.58. We have
reported the probability density function in Figure 36. We notice that the two estimators
give very similar results.

The previous approach requires to have a sample for each sector. Unfortunately, data are
very sparse. Therefore, we follow Sautel et al. (2022) and consider four types of sectors with

60We can distinguish three types of shape:

• if α = 1 and β = 1, we obtain the uniform distribution; if α → ∞ and β → ∞, we obtain the Dirac
distribution at the point x = 0.5; if one parameter goes to zero, we obtain a Bernoulli distribution;

• if α = β, the distribution is symmetric around x = 0.5; we have a bell curve when the two parameters
α and β are higher than 1, and a U-shape curve when the two parameters α and β are lower than 1;

• if α > β, the skewness is negative and the distribution is left-skewed, if α < β, the skewness is positive
and the distribution is right-skewed.

61The derivation of this result is given in Roncalli (2020, page 193).
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Figure 36: Estimated probability density function of the pass-through rate
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Figure 37: Standard probability distribution of pass-through rates
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respect to the price-demand elasticity: highly-elastic, high-elastic, medium-elastic and low-
elastic. For each type, we define the corresponding beta distribution. The expert-opinion
values of the parameters α and β are reported in Table 23. We also give the mean, the
standard deviation and the 95% range. Figure 37 shows the associated probability density
functions. The first type is right-skewed, while the fourth type is left-skewed. The second
and third types are more symmetric. Moreover, we can show that these four distribution
functions are ordered since they verify the first-order stochastic dominance principle62.

Table 23: Probabilistic characterization of the four pass-through types

Statistic Highly-elastic High-elastic Medium-elastic Low-elastic

Parameters
α 3.0 4.0 14.0 12.0
β 12.0 6.0 6.0 0.6

Moments
µφ 20% 40% 70% 95%
σφ 10% 15% 10% 6%

Range
Qφ

(
2.5%

)
5% 14% 49% 79%

Qφ

(
97.5%

)
43% 70% 87% 100%

Remark 9. In Appendix B on page 181, we propose a mapping between the WIOD sectors
and the four types. This classification will be used when we will run the Monte Carlo value-
at-risk engine.

5.2 Taxation and price dynamics in input-output models

We now study the impact of taxation on the production costs. For that, we diffuse the carbon
tax in the input-output economic model in order to take into account the cascading effects
through the value chain. We will see that this topic is related to the computation of the
indirect emissions. Nevertheless, the diffusion of the carbon tax depends on the assumption
about the reaction function of the suppliers. Several approaches can be considered (sticky
price vs. flexible price models), implying that carbon tax costs highly depend on pass-
through mechanisms.

5.2.1 Value added approach

By construction, a carbon tax affects the income of producers, that can have different
reactions. We first consider a flexible price model and assume that they want to maintain
their value added levels.

Remark 10. In what follows, we note p− the price vector before the introduction of the
carbon tax, while p is the price vector that incorporates the taxation effect.

Impact on production prices We recall that the absolute amount of carbon tax for
Sector j is equal to:

Tdirect,j = τ jCE1,j

where τ j is the nominal carbon tax expressed in $/tCO2e and CE1,j is the scope 1 emissions
of the sector. We deduce that the carbon tax rate is equal to:

tdirect,j =
Tdirect,j

xj
=
τ jCE1,j

xj
= τ jCI1,j

62See Figure 105 on page 159.

70



From Climate Stress Testing to Climate Value-at-Risk

We notice that tdirect,j has no unit and is equal to the product of the tax and the scope 1
carbon intensity. The input-output model implies that:

pjxj =

n∑
i=1

Zi,jpi +

m∑
k=1

Vk,jψk + Tdirect,j

We deduce that:

pj =

n∑
i=1

Ai,jpi +

m∑
k=1

Bk,jψk + tdirect,j =

n∑
i=1

Ai,jpi + υj + tdirect,j

It follows that:

p =
(
In −A>

)−1

(υ + tdirect)

where tdirect =
(
tdirect,1, . . . , tdirect,n

)
is the vector of direct tax rates. We retrieve the cost-

push price model where the vector υ of value added ratios is replaced by υ+tdirect. It follows
that the vector of price variations due to the carbon tax is equal to:

∆p =
(
In −A>

)−1

tdirect (18)

This result is obvious since Equation (3) implies that ∆p =
(
In −A>

)−1
∆υ and ∆υ corre-

sponds to the vector tdirect of direct tax rates.

Impact on the price index A price index63 is defined as:

PI =

n∑
i=1

αipi = α>p

where α = (α1, . . . , αn) is the weights of the items basket. We deduce that the inflation rate
is:

π =
∆PI
PI−

=
PI − PI−

PI−
=
α>
(
In −A>

)−1
tdirect

α>
(
In −A>

)−1
υ

We can simplify this formula because p− =
(
In −A>

)−1
υ = 1n and 1>nα = 1. Finally, we

have:

π = α>
(
In −A>

)−1

tdirect (19)

Computation of the total tax amount The total tax cost is equal to:

Ttotal = x�∆p

= x�
(
In −A>

)−1

tdirect (20)

while the direct tax cost is Tdirect = x� tdirect. Since we have x � 0n and
(
In −A>

)−1 � In
and using Hadarmard properties64, we deduce that the total tax cost is greater than the
direct tax cost for all the sectors:

Ttotal,j ≥ Tdirect,j

63We adopt here a general definition. In the sequel, we will make the distinction between producer and
consumer price indices.

64Let A, B and C be three nonnegative matrices. If B � C, then A�B � A� C.
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Since the total cost for the economy is equal to Costtotal =
∑n
j=1 Ttotal,j = x>

(
In −A>

)−1
tdirect,

the tax incidence is then equal to:

T I =
Costtotal

1>n x
=
x>
(
In −A>

)−1
tdirect

1>n x

Some common errors when computing the total tax cost It is tempting to compute
Ttotal as follows:

Ttotal = x�
(
In −A>

)−1

tdirect

=
(
In −A>

)−1

(x� tdirect)

=
(
In −A>

)−1

Tdirect

=
(
In −A>

)−1

(τ � CE1)

= τ �
((

In −A>
)−1

CE1

)
= τ � CEtotal

In some research papers, we can find two formulas that seems to be intuitive:

T ′total =
(
In −A>

)−1

Tdirect (21)

and:
T ′′total = τ � CEtotal (22)

Nevertheless, the two previous equations are generally false because the Hadamard and
matrix products are not associative: A� (BC) 6= (A�B)C.

Equation (21) is valid only if tdirect,j = tdirect,j′ = t and Tdirect,j = Tdirect,j′ . In this case,
we have:

Ttotal = tx�
(
In −A>

)−1

1n

=
(
In −A>

)−1

1n � tx

=
(
In −A>

)−1

1n � Tdirect

=
(
In −A>

)−1

Tdirect

Nevertheless, the assumptions are too strong since they imply that CE1,j = CE1,j′ and
xj = xj′ . All the sectors must then have the same direct carbon intensities. Concerning
Equation (22), it is valid only if the carbon tax is uniform: τ j = τ j′ = τ . Indeed, we verify
that:

Ttotal = x�
(
In −A>

)−1

tdirect

= x�
(
In −A>

)−1

τ CI1

= τ
(
In −A>

)−1

CI1 � x

= τ CEtotal
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Mathematical properties Let us denote by f (τ ) the function f that depends on the
vector τ = (τ 1, . . . , τn) of carbon taxes. Let λ ≥ 0 be a positive scalar. The functions ∆p,
π, Ttotal, Costtotal and T I are homogeneous65 and additive66. For instance, we have:

∆p (λτ ) =
(
In −A>

)−1

tdirect (λτ )

= λ
(
In −A>

)−1

tdirect (τ )

= λ∆p (τ )

If the tax is uniform τ = τ1n, the vector of total tax amount is the product of the tax by
the total emissions:

Ttotal (τ1n) = τ CEtotal

The tax incidence for a given sector is then proportional to the direct + indirect carbon
emissions of the sector. At the global level, the tax incidence is equal to the carbon tax
times the total carbon intensity of the world:

T I (τ1n) =
1>n τ CEtotal

1>n x
= τ CItotal (Global)

Illustration We consider a variant of Example #2. Table 24 gives the values of Zi,j ,
yj , xj and V1,j in $ mn. The carbon emissions are expressed in ktCO2e, while the carbon
intensities are in tCO2e/$ mn. For instance, the intermediary consumption Z1,2 is equal
to $800 mn, the final demand y3 is equal to $3.3 bn, the output x4 is equal to $12.5 bn,
the value added V1,2 is equal to $1 800 mn, the carbon emissions CE1,2 are equal to 20 000
tCO2e and the carbon intensity CI1,4 is equal to 10 tCO2e/$ mn.

Table 24: Environmentally extended monetary input-output table (Example #3)

Sector Z y x CE1 CI1

Energy 500 800 1 600 1 250 850 5 000 500 100
Materials 500 400 1 600 625 875 4 000 200 50
Industrials 250 800 2 400 1 250 3 300 8 000 200 25
Services 100 200 800 4 375 7 025 12 500 125 10
Value added 3 650 1 800 1 600 5 000
Income 5 000 4 000 8 000 12 500

We have:

A = Z diag−1 (x) =


0.10 0.20 0.20 0.10
0.10 0.10 0.20 0.05
0.05 0.20 0.30 0.10
0.02 0.05 0.10 0.35


and:

L̃ =
(
I4 −A>

)−1

=


1.1881 0.1678 0.1430 0.0715
0.3894 1.2552 0.4110 0.1718
0.4919 0.4336 1.6303 0.2993
0.2884 0.1891 0.3044 1.6087


65This means that f (λτ ) = λf (τ ).
66We have f

(
τ + τ ′

)
= f (τ ) + f

(
τ ′
)
.
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Then, we compute the vector υ of value added ratios:

υ =


3 650/5 000
1 800/4 000
1 600/8 000

5 000/12 500

 =


0.73
0.45
0.20
0.40


We verify that p− = L̃υ = 14. By construction, all the prices are standardized and equal to
one in a monetary input-output model. We now introduce a differentiated carbon taxation:
τ 1 = $200/tCO2e and τ 2 = τ 3 = τ 4 = $100/tCO2e. The direct tax cost is respectively
equal to 100, 20, 20 and 12.5 millions of dollars for Energy, Materials, Industrials and
Services. We deduce that the vector of carbon tax rates is:

tdirect =


2.00%
0.50%
0.25%
0.10%


It follows that:

p =
(
In −A>

)−1

(υ + tdirect) =


1.0250
1.0153
1.0164
1.0091


If we assume that the basket of goods and services is α =

(
10%, 20%, 30%, 40%

)
, the price

index PI is 1.0141 whereas the inflation rate π is 1.410%. Finally, we compute the total tax
cost and obtain the results given in Table 25. The direct tax cost is multiplied by a factor of
2.8 when we consider the diffusion of the carbon tax. We verify that Ttotal 6= T ′total 6= T ′′total.
Services is the most impacted sector follows by Industrials, Materials and Energy, since the
impact ratio Ttotal/Tdirect is respectively equal to 9.1, 6.6, 3.1 and 1.3.

Table 25: Total carbon cost (in $ mn) (differentiated taxation, Example #3)

Sector Tdirect Ttotal T ′total T ′′total CEdirect CEtotal

Energy 100.00 125.15 125.92 131.49 500.00 657.44
Materials 20.00 61.05 74.41 45.48 200.00 454.76
Industrials 20.00 131.05 94.21 91.70 200.00 916.97
Services 12.50 113.54 58.82 77.49 125.00 774.92
Sum 152.50 430.79 353.36 346.15 1 025.00 2 804.10

Table 26: Total carbon cost (in $ mn) (uniform taxation, Example #3)

Sector Tdirect Ttotal T ′total T ′′total CEdirect CEtotal

Energy 50.00 65.74 66.51 65.74 500.00 657.44
Materials 20.00 45.48 54.94 45.48 200.00 454.76
Industrials 20.00 91.70 69.62 91.70 200.00 916.97
Services 12.50 77.49 44.40 77.49 125.00 774.92
Sum 102.50 280.41 235.47 280.41 1 025.00 2 804.10

Remark 11. In Table 26, we consider a uniform tax of $100/tCO2e. We verify that Ttotal =
T ′′total but Ttotal 6= T ′total.
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5.2.2 Mark-up pricing approach

Theoretical framework We now consider a second approach that has been proposed by
Gemechu et al. (2014) and Mardones and Mena (2020), but the original idea can be found in
Llop (2008). Mark-up pricing refers to a commercial strategy where the suppliers determine
the selling price by adding a fixed percentage of the production costs. Let p−j be the price
before the introduction of the carbon tax. We define ξj as the price factor induced by the
carbon tax67: tdirect,j = ξjp

−
j . It follows that p−j =

∑n
i=1Ai,jp

−
i + υj and68:

pj =

 n∑
i=1

Ai,jpi + υj

+ tdirect,j

=

 n∑
i=1

Ai,jpi + υj

+ ξjp
−
j

=
(
1 + ξj

) n∑
i=1

Ai,jpi + υj


We deduce that:

pj
1 + ξj

=

n∑
i=1

Ai,jpi + υj

and:

pj

(
1− ξj

1 + ξj

)
=

n∑
i=1

Ai,jpi + υj

It follows that:

pj =

n∑
i=1

Ai,jpi +
ξj

1 + ξj
pj + υj

=

n∑
i=1

Ai,jpi + pj

(
1− 1

1 + ξj

)
+ υj

In a matrix form, we have:

p = A>p+
(
In −Dξ

)
p+ υ

where:

Dξ = diag

(
1

1 + ξ1
, . . . ,

1

1 + ξn

)
Finally, we obtain:

p =
(
In −A>ξ

)−1

υ

where Aξ = A+ In −Dξ. Another expression is:

p = L̃mυ =
(
Dξ −A>

)−1

υ (23)

67Since we have p−j = 1, we obtain ξj = tdirect,j/p
−
j = tdirect,j . Nevertheless, we prefer to use the notation

ξj because it may encompass other indirect costs.
68We assume that pj ≈ p−j .
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where L̃m =
(
Dξ −A>

)−1
is the mark-up inverse matrix. The vector of price variations is

then:
∆p =

(
L̃m − L̃

)
υ (24)

The expression of the price index is PI = α>
(
Dξ −A>

)−1
υ whereas the inflation rate is

equal to π = α>
(
L̃m − L̃

)
υ. From Equation (24), we also deduce the total tax amount:

Ttotal = x�
(
L̃m − L̃

)
υ (25)

We remark that the mark-up approach implies to replace the identity matrix In by the
diagonal matrix Dξ in the cost-push price model. Since we have Dξ � In, we deduce that

D−1
ξ � In. In Appendix A.9 on page 146, we show that L̃m � L̃.

Illustration By considering Example #3, we have:

L̃m =
(
Dξ −A>

)−1

=


1.2170 0.1730 0.1474 0.0735
0.4017 1.2650 0.4165 0.1740
0.5067 0.4398 1.6394 0.3021
0.2965 0.1919 0.3074 1.6121


In the case of the differentiated taxation case, we obtain:

p = L̃mυ =


1.0252
1.0154
1.0165
1.0091


The inflation rate π is equal to 1.421% and the total carbon costs (in $ mn) are 125.82,
61.53, 132.10 and 114.33. The global cost is then $433.78 mn vs $430.79 mn in the value
added approach.

5.2.3 Competitive price approach

Theoretical framework In the competitive price model, prices are equal to the average
cost of production (Llop, 2008). By assuming that the carbon tax impacts the cost of
intermediary consumptions, but not capital and labor costs, the direct cost faced by the jth

sector can be allocated as follows:

tdirect,j =

n∑
i=1

Ai,jp
−
i ζi

where ζi is the increased cost of sector i expressed as a percentage of the current price p−i .
We deduce that69:

pj =

n∑
i=1

Ai,jpi + υj + tdirect,j

=

n∑
i=1

Ai,jpi + υj +

n∑
i=1

Ai,jpiζi

=

n∑
i=1

Ai,jpi (1 + ζi) + υj

69Again, we assume that pj ≈ p−j .
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In a matrix form, we have:

p = A>
(
I +Dζ

)
p+ υ

where Dζ = diag (ζ1, . . . , ζn). We deduce that:

p = L̃cυ =
(
In −A>

(
I +Dζ

))−1

υ (26)

where L̃c =
(
In −A>

(
I +Dζ

))−1

is the competitive inverse matrix. We also notice that

L̃c =
(
In −A>ζ

)−1

where Aζ =
(
I +Dζ

)
A. Since Aζ � A, it is obvious that L̃c � L̃.

Nevertheless, In − A>ζ may be non-invertible and the prices may explode if (ζ1, . . . , ζn) are
too high. Finally, we compute the price index PI, the inflation π and the total cost Ttotal as
previously by replacing the mark-up inverse matrix L̃m by the competitive inverse matrix
L̃c.

Illustration By considering Example #3, we have:

L̃c =
(
I4 −A>ζ

)−1

=


1.2153 0.1948 0.1149 0.0696
0.4277 1.2817 0.3162 0.1593
0.5368 0.4803 1.4855 0.2800
0.3161 0.2082 0.2337 1.5959


In the case of the differentiated taxation case, we obtain:

p = L̃cυ =


1.0256
1.0159
1.0171
1.0095


The inflation rate π is equal to 1.470% and the total carbon costs (in $ mn) are 128.18,
63.65, 137.06 and 119.29. The global cost is then $448.17 mn vs $430.79 mn in the value
added approach.

The previous illustration shows that the competitive model may induce incoherent re-
sults, since we obtain a greater global cost than in the two other cases. The reason lies in
the computation of the vector ζ. In this example, we have computed them by solving the
system of equations A>ζ = tdirect. In practice, ζ is set to tdirect. In this case, the global cost
becomes $280.19 mn. Nevertheless, this figure is not satisfactory, because the total tax cost
of the Energy sector is lower than the direct cost70. In fact, the Energy sector has passed
75% of its direct costs on the other sectors.

5.2.4 Pass-through integration

In the sequel, we focus on the value added model, which is the most used approach in the
academic literature (Perese, 2010; Zhang et al., 2019; Nakano and Washizu, 2022). Moreover,
it is the simplest model to introduce the pass-through mechanism. Indeed, even if the cost-
push price framework is a pure flexible price model, we can slightly modify the equations in
order to take into account some features of price stickiness. Nevertheless, since the input-
output model assumes a linear production function and the final demand is exogenous, the
input-output model is too simple to obtain a realistic sticky price model.

70We have Ttotal,1 = $25.32 mn.
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Analytical formula We have:

∆p = L̃∆υ =

∞∑
k=0

(
A>
)k

∆υ =

∞∑
k=0

∆p(k)

where ∆p(k) =
(
A>
)k

∆υ is the price impact at the kth tier. In fact, ∆p(k) satisfies the
following recurrence relation: {

∆p(k) = A>∆p(k−1)

∆p(0) = ∆υ

If we consider the price pj of sector j, we have ∆p(0),j = ∆υj and:

∆p(k),j =

n∑
i=1

Ai,j∆p(k−1),i

This representation helps to better understand the cascading effect of the carbon tax. In
the zeroth round, it induces an additional cost ∆υj that is fully passed on the price pj of
the sector. The new price is then pj + ∆p(0),j = pj + ∆υj . In the first round, the sector j
faces new additional costs due to the price increase of intermediary consumptions. We have
∆p(1),j =

∑n
i=1Ai,j∆p(0),i =

∑n
i=1Ai,j∆υi. The iteration process continues and we have

∆p(2),j =
∑n
i=1Ai,j∆p(1),i =

∑n
i=1

∑n
k=1Ai,jAk,i∆vk at the second round.

Let us now introduce the pass-through mechanism. By definition, we have ∆p(0),j =
φj∆υj where φj denotes the pass-through rate of sector j. In the first round, we have:

∆p(1),j =

n∑
i=1

Ai,j

(
φi∆p(0),i

)
=

n∑
i=1

Ai,j (φi∆υi)

More generally, the recurrence relation becomes:

∆p(k),j =

n∑
i=1

Ai,jφi∆p(k−1),i

Let φ = (φ1, . . . ,φn) and Φ = diag (φ) be the pass-through vector and matrix. The
recurrence matrix form is: {

∆p(k) = A>Φ∆p(k−1)

∆p(0) = Φ∆υ

We deduce that:

∆p =

∞∑
k=0

(
A>Φ

)k
Φ∆υ

=
(
In −A>Φ

)−1

Φ∆υ

= L̃ (φ) ∆υ (27)

where L̃ (φ) =
(
In −A>Φ

)−1
Φ.

Mathematical properties Because A is a substochastic matrix and Φ is a positive di-
agonal matrix, we verify that φ′ � φ⇒ L̃

(
φ′
)
� L̃ (φ). The lower bound is then obtained

when φ = 0n while the upper bound is reached when φ = 1n.
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Application to the carbon tax By applying the previous analysis to the carbon tax,
we have ∆υ = tdirect. In this case, the concept of the total tax cost must be redefined
because one part of the costs is paid by the producers and another part by the consumers.
By consumer, we must understand the downstream of the value chain. We have:

Tproducer = x� (In − Φ) tdirect

= x� (1n − φ)� tdirect

= (1n − φ)� Tdirect

and:

Tconsumer = Tdownstream = x� L̃ (φ) tdirect

We deduce that:

Ttotal = Tproducer + Tconsumer

= x�
(
In − Φ + L̃ (φ)

)
tdirect

If φj = 100%, we have L̃ (1n) = L̃ and ∆p = L̃ tdirect. This corresponds to the initial

approach. If φj = 0%, we have L̃ (0n) = 0n,n, ∆p = 0n, Tproducer = Tdirect but Tconsumer =
0n. The costs passed on the consumers (or the downstream of the value chain) are equal to
zero because the direct costs are initially absorbed by the producers.

Remark 12. The functions ∆p, π, Ttotal, Costtotal and T I remain homogeneous and addi-
tive with respect to τ . We can also show that71:

φ′ � φ⇒ Ttotal

(
τ ,φ′

)
� Ttotal (τ ,φ)

The impact of the tax is maximum when φ = 1n and minimum when φ = 0n. If we
consider a uniform pass-through, the total cost of the carbon tax is an increasing function of
the pass-through rate.

Illustration We consider again Example #3 and the differentiated taxation. We assume
that the pass-through rates are uniform (φ1 = φ2 = φ3 = φ4). The evolution of the total
cost is shown in Figure 38. When φj = 0%, Ttotal is equal to $152.50 mn and is the lower
bound. The upper bound is reached when φj = 100% and we obtain Ttotal = $430.79
mn. We have also indicated the contribution of each sector by distinguishing the direct and
indirect costs. Figure 39 corresponds to the case where only Energy passes the direct cost
on the other sectors. Finally, we report the inflation rate in Figure 40 by assuming that
φ2 = φ3 = φ4 = 100%. The pass-through rate φ1 depends on the carbon tax. It is low for
small carbon taxes, but it increases with the level of the carbon tax72.

71We have:

(∗) = In − Φ + L̃ (φ)

= In − Φ +

∞∑
k=0

(
A>Φ

)k
Φ

= In +

∞∑
k=1

(
A>Φ

)k
Φ

The proof is straightforward once we apply Properties NN1-NN4 (Appendix A.8 on page 145.).
72We assume that φ1 = 1− e−λτ

η
1 with λ = 7.5× 10−4 and η = 1.5.

79



From Climate Stress Testing to Climate Value-at-Risk

Figure 38: Producer and consumer cost contributions (uniform pass-through rate, Example
#3)

Figure 39: Producer and consumer cost contributions (φ2 = φ3 = φ4 = 0%)
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Figure 40: Relationship between the carbon tax and the inflation rate)
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5.3 Empirical results

We apply the taxation framework to the Exiobase and WIOD tables. We reiterate that the
figures for carbon emissions are the last available data, but not the input-output tables.
Therefore, we can face some issues when comparing the results obtained with the 2014
input-output tables (Exiobase 2014 and WIOD 2014) and the 2022 table (Exiobase 2022).
This is particularly true when we compute the inflation rate, the total cost for the economy
and the tax incidence. Therefore, we focus on the Exiobase 2022 in this section and report
some additional figures about WIOD 2014 and Exiobase 2014 for information.

5.3.1 The case of a global carbon tax

Uniform taxation We first consider a uniform tax τ across all the countries and a uni-
form pass-through rate φ across all the sectors. We compute the direct cost Costdirect =∑n
j=1 Tdirect and the total cost Costtotal =

∑n
j=1 Ttotal, which depends on the pass-through

rate. Results are reported in Figures 41 and 42, and Table 27. For instance, if the carbon
tax is set to $100/tCO2e, the direct cost is equal to $4.8 tn while the total cost is $6.1 tn if
φ = 50% and $13.3 tn if φ = 100%. This represents 2.8%, 3.6% and 7.8% of the world GDP.
In the case where we apply a carbon tax of $500/tCO2e, these costs become respectively
$24.2, $30.4 and $66.4 tn.

In Figure 43, we compute the cost multiplier Costtotal/Costdirect with respect to the pass-
through rate φ. First, we verify that it does not depend on the level of the carbon tax because
we apply a uniform taxation. Second, the cost multiplier is equal to the multiplicative factor
of carbon emissions when the pass-through rate is equal to 100%:

Costtotal (τ ,1n)

Costdirect (τ ,1n)
= m(0−∞)
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Figure 41: World economic cost in $ tn (global analysis, uniform taxation, Exiobase 2022)
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Figure 42: World economic cost in % of GDP (global analysis, uniform taxation, Exiobase
2022)
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Table 27: World economic cost (global analysis, uniform taxation)

τ Database Year
Direct Total

φ = 10% φ = 50% φ = 100%
$ tn in % $ tn in % $ tn in % $ tn in %

50
WIOD 2014 1.62 1.01 1.63 1.01 2.08 1.29 5.09 3.16
Exiobase 2014 2.04 1.71 2.05 1.72 2.56 2.15 5.62 4.71
Exiobase 2022 2.42 1.41 2.44 1.42 3.04 1.77 6.64 3.87

100
WIOD 2014 3.24 2.01 3.26 2.03 4.15 2.58 10.18 6.32
Exiobase 2014 4.07 3.41 4.11 3.44 5.12 4.29 11.24 9.42
Exiobase 2022 4.83 2.82 4.87 2.84 6.07 3.55 13.27 7.75

250
WIOD 2014 8.09 5.03 8.15 5.06 10.38 6.44 25.44 15.80
Exiobase 2014 10.19 8.54 10.26 8.60 12.80 10.73 28.11 23.56
Exiobase 2022 12.09 7.06 12.18 7.11 15.18 8.86 33.18 19.37

500
WIOD 2014 16.19 10.06 16.31 10.13 20.75 12.89 50.88 31.60
Exiobase 2014 20.37 17.07 20.53 17.20 25.60 21.45 56.22 47.12
Exiobase 2022 24.17 14.11 24.36 14.22 30.37 17.73 66.37 38.75

Third, we notice the high convexity of the relationship between the pass-through rate and
the multiplier. Indeed, we can approximate the cost multiplier by this function73:

Costtotal (τ , φ1n)

Costdirect (τ , φ1n)
≈ 1 +m(1−∞)φ

3

Contrary to the common idea, the impact of the pass-through rate is not quadratic, but
cubic! Therefore, a small error in the estimation of the pass-through rate may induce a high
error in the estimation of the costs.

Figure 43: Cost multiplier (global analysis, uniform taxation, Exiobase 2022)
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73This approximation also holds for the WIOD table (see Figure 106 on page 160)
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Remark 13. The cubic power of the approximation 1 +m(1−∞)φ
3 depends on the connec-

tivity of the graph associated to the matrix A. Higher the upstreamness/downstreamness
index, higher the power of the approximation.

We now analyze the impact of the carbon tax on the inflation. For that, we define two
price indices: the producer price index (PPI) wherein the basket weights are proportional
to the output (αj ∝ xj) and the consumer price index (CPI) wherein the basket weights
are proportional to the final demand (αj ∝ yj). Results are given in Figure 44. Again, the
inflation rate depends on the pass-through rate. In the case of a carbon tax of $500/tCO2e
and a pass-through rate of 100%, the PPI inflation rate is close to 40%, while the CPI
inflation rate reaches 30%. These global figures are the results of a high discrepancy between
country inflation rates. For instance, we report the 95% confidence interval of the PPI
inflation rate in Figure 107 on page 160. We also indicate the inflation rate for seven
countries. We notice that the inflation rate is above the median for Russia, China and
Turkey and below the median for Germany, Japan, United Kingdom and USA. In order to
have a global view, Figure 45 show the world map of the country inflation rates for a uniform
tax of $100/tCO2e. There are three factors (composition of the items basket, impact of the
value chain and direct carbon emissions of the country) that explain the dispersion of the
inflation rates:

π = α>︸ ︷︷ ︸
Basket

· L̃ (φ)︸ ︷︷ ︸
Value chain

· tdirect︸ ︷︷ ︸
Scope 1

The direct costs are the main contributor, followed by the impact of the downstream diffusion
of the carbon tax. In Figure 46, we report the contribution of the second factor (see page
161 for the first factor). The low inflation rate in Europe is explained by the low direct
emissions, but Europe is highly penalized by its value chain. China is both impacted by the
two factors, while the high inflation in Russia is mainly due to its indirect emissions because
the impact of its value chain is one of the lowest in the world.

Figure 44: World inflation rate in % (global analysis, uniform taxation, Exiobase 2022)
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Figure 45: Production inflation rate in % (global analysis, uniform taxation, τ =
$100/tCO2e, φ = 100%, Exiobase 2022)

Source: Author’s calculations (created by Datawrapper).

Figure 46: Contribution of the global value chain in % (global analysis, uniform taxation,
τ = $100/tCO2e, φ = 100%, Exiobase 2022)

Source: Author’s calculations (created by Datawrapper).
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Differentiated taxation We now consider a carbon tax applied only to the energy sectors:
Electricity, gas, steam and air conditioning supply (S13), Land transport and transport via
pipelines (S19), Manufacture of coke and refined petroleum products (S24) and Mining and
quarrying (S39). These sectors represent about 10% of the world output, but they are
responsible of 50% of the scope 1 carbon emissions. Results are given in Table 28. On
average, the total cost is divided by a factor of two with respect to the uniform taxation.

Table 28: World economic cost (global analysis, differentiated taxation)

τ Database Year
Direct Total

φ = 10% φ = 50% φ = 100%
$ tn in % $ tn in % $ tn in % $ tn in %

50
WIOD 2014 0.89 0.55 0.90 0.56 1.16 0.72 3.05 1.90
Exiobase 2014 0.98 0.82 0.99 0.83 1.26 1.05 3.03 2.54
Exiobase 2022 1.09 0.64 1.10 0.64 1.40 0.82 3.35 1.96

100
WIOD 2014 1.77 1.10 1.79 1.11 2.32 1.44 6.11 3.79
Exiobase 2014 1.96 1.64 1.97 1.65 2.52 2.11 6.06 5.08
Exiobase 2022 2.18 1.28 2.20 1.29 2.81 1.64 6.70 3.91

250
WIOD 2014 4.44 2.76 4.48 2.78 5.79 3.60 15.27 9.48
Exiobase 2014 4.89 4.10 4.93 4.13 6.29 5.27 15.16 12.70
Exiobase 2022 5.46 3.19 5.51 3.22 7.02 4.10 16.75 9.78

500
WIOD 2014 8.87 5.51 8.95 5.56 11.58 7.19 30.53 18.96
Exiobase 2014 9.78 8.20 9.86 8.27 12.58 10.55 30.31 25.40
Exiobase 2022 10.92 6.38 11.01 6.43 14.04 8.19 33.51 19.56

5.3.2 Regional taxation

Following Chen et al. (2023), we are now conducting an analysis of a regional taxation
scenario wherein carbon tax is singularly imposed within a specific region of the world. This
situation is likely to occur due to the lack of uniformity in carbon pricing, as shown in Figure
6 on page 14.

The case of a European tax We first consider a uniform taxation on EU member
countries, which is certainly the most likely scenario. Figure 47 shows the total cost in
trillions of dollars and the total cost over GDP (in %) for a carbon price ranging from
zero to $500/tCO2e and a pass-through parameter of 50% and 100%. In this scenario, a
$500/tCO2e carbon tax with a 100% pass-through would result in a worldwide cost of $4.5
tn, with a $4 tn cost supported by EU countries and a $0.5 tn cost for non-EU ones. When
EU sectors absorb their increasing costs by passing only 50% through the value chain, non-
EU countries are less affected by carbon tax diffusion, and their cost decreases from $521 bn
to $54 bn. Moreover, the cost over GDP for EU sectors decreases as long as they absorb the
carbon tax, going from 14% when they fully pass the carbon tax to 8% when direct emitters
bear half of the costs incurred by carbon taxation.

Table 29 displays the results for the fifteen largest EU countries with a $100/tCO2e car-
bon tax. In the case where pass-through is fixed at 50%, Germany will have a Cost/GDP
ratio of 1.14% with WIOD 2014, 1.74% with Exiobase 2014, and 1.31% with Exiobase 2022.
Sweden and Poland are respectively the less and most impacted countries. More generally,
we observe three groups of countries with low, medium and high severity74. Furthermore,

74The first group (low severity) is made up of France, Sweden and Ireland. In the third group (high
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Figure 47: Economic cost of the carbon tax (EU, uniform taxation, Exiobase 2022)
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Figure 48: Cost breakdown with respect to the pass-through rate (EU, uniform taxation,
Exiobase 2022)
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Figure 49: Cost breakdown (EU, uniform taxation, φ = 50%, Exiobase 2022)

Figure 50: Cost breakdown (EU, uniform taxation, φ = 100%, Exiobase 2022)
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if we examine the cost breakdown with respect to the pass-through rate in Figure 48, the
higher the pass-through for EU countries, the higher the cost breakdown for non-EU coun-
tries. However, surprisingly, it does not change significantly for EU countries. For instance,
Germany has the highest cost breakdown, ranging from 20% with a 50% pass-through rate
(compared to 2% for non-EU countries) to 18% with a 100% pass-through rate (compared
to 12% for non-EU counties). More details of this breakdown can be found in Figures 49
and 50. With a uniform taxation and a 50% pass-through rate, Germany would support
21% of the overall cost, while Poland would support 11%. Results are comparable75 with
those obtained with the WIOD 2014 database76.

Table 29: Cost/GDP in % of the fifteen largest EU countries (EU, uniform taxation, τ =
$100/tCO2e)

Database WIOD 2014 Exiobase 2014 Exiobase 2022
Pass-through rate 50% 100% 50% 100% 50% 100%
Germany 1.14 2.05 1.74 3.00 1.31 2.35
France 0.55 1.06 1.04 1.83 0.93 1.62
Italy 0.79 1.68 1.26 2.37 1.14 2.23
Spain 0.99 1.96 1.70 3.11 1.37 2.47
Netherlands 1.50 2.25 1.72 2.81 1.30 2.07
Poland 2.94 5.30 5.04 8.44 4.06 6.91
Sweden 0.51 1.02 0.78 1.44 0.72 1.42
Belgium 0.79 1.53 1.26 2.20 1.11 1.94
Ireland 0.72 1.11 1.75 2.74 1.10 1.81
Austria 0.68 1.50 1.41 3.00 1.14 2.52
Denmark 1.15 1.76 1.62 3.16 1.19 2.23
Finland 1.08 2.08 1.98 3.51 1.66 3.18
Romania 2.01 3.78 3.73 6.91 2.70 4.98
Czech Republic 2.00 3.76 3.40 6.77 2.64 5.26
Portugal 1.20 2.32 2.53 4.56 2.50 4.29

The case of an American or Chinese tax We consider a scenario where carbon tax
is only applied to the USA. Results are given in Figure 51. Here again, decreasing pass-
through parameter (and absorbing the tax) leads to a smaller impact for both American
and non-American sectors. For instance, with a $500/tCO2e carbon tax, costs for the USA
sectors would range from $4.4 tn with a 100% pass-through rate to only $2.9 tn with a
50% pass-through rate. Similarly as in the first scenario, impact of cost on GDP would also
decrease, going from almost 12% to less than 8% for American sectors. To a certain extent,
we conclude that the American tax has the same impact than a European tax at the global
level.

Eventually, we consider a scenario where only China sets up a carbon tax. Results are
provided in Figure 52. A $500/tCO2e carbon tax on Chinese sectors would represent a $25
tn worldwide cost, where almost $24 tn would be supported by Chinese sectors. Surprisingly,
sectors outside of China appear to be less affected, as total cost would represent only $1.3
tn. This may seem counter intuitive, when knowing the high dependency of the world to

severity), we find Poland, Finland, Romania, Czech Republic and Portugal.
75We have corrected the carbon emissions for Estonia sectors, because the original Exiobase 2022 database

contains some numerical errors for this country. Otherwise, Estonia would have a contribution of 6%, which
is impossible.

76See Figures 113 and 114 on page 164.
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Figure 51: Economic cost of the carbon tax (USA, uniform taxation, Exiobase 2022)
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Figure 52: Economic cost of the carbon tax (China, uniform taxation, Exiobase 2022)
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Chinese industries. Nevertheless, same conclusions can be drawn, as passing less monetary
amount through the value chain will lead to a decrease in Cost/GDP ratio, going from more
than 50% with a 100% pass-through rate to less than 25% with a 50% pass-through rate for
Chinese sectors.

Table 30: Domestic and foreign impacts (in $ bn) of a regional tax (uniform taxation,
φ = 100%, Exiobase 2022)

Carbon tax
Domestic impact Foreign impact

EU USA China EU USA China
$100/tCO2e 792 886 4 710 104 118 257
$250/tCO2e 1 979 2 215 11 774 261 296 643
$500/tCO2e 3 959 4 430 23 549 521 592 1 287

Table 31: Fifteen largest impacted foreign countries (uniform taxation, τ = $100/tCO2e,
φ = 100%, Exiobase 2022)

Rank EU tax US tax Chinese tax
1 ROW 25.25% CHN 24.74% ROW 36.89%
2 CHN 23.62% ROW 18.60% USA 12.95%
3 USA 11.45% CAN 9.35% KOR 8.87%
4 GBR 8.77% MEX 8.51% IND 6.91%
5 CHE 4.32% KOR 6.89% JPN 6.44%
6 KOR 4.05% JPN 5.05% DEU 3.61%
7 IND 3.67% IND 4.28% MEX 2.19%
8 JPN 3.31% DEU 2.80% FRA 1.88%
9 TUR 2.62% BRA 2.51% GBR 1.83%
10 TWN 2.08% GBR 2.34% BRA 1.75%
11 CAN 2.06% FRA 1.63% IDN 1.74%
12 RUS 1.96% TWN 1.59% CAN 1.62%
13 BRA 1.90% IRL 1.47% ITA 1.59%
14 MEX 1.70% ITA 1.43% AUS 1.31%
15 NOR 1.46% NLD 1.23% TUR 1.11%

Table 30 shows the global foreign impact in the case of a EU, US and Chinese tax for
threes value of the carbon price. China always has the highest impact on foreign countries,
with a cost of $1 287 bn for a $500/tCO2e carbon price, while EU foreign impact is only
$521 bn. In order to better understand the winners and the losers, we report the fifteen
largest countries impacted by a carbon tax in Table 31. In this scenario, taxation is set to
$100/tCO2e and pass-through parameter is set to 100%. When the tax is applied in the
European union, the rest-of-the-world region is the most impacted, representing 25.25% of
the overall cost supported by foreign countries. It is followed by China (23.62%), United
States (11.45%) and Great Britain (8.77%). It would also be the case with a Chinese tax, but
it now represents more than 36% of the foreign costs. It is then followed by United States
(12.95%), South Korea (8.87%) and India (6.91%). In the case of a US tax, China would
be the most impacted country, by representing 24.74% of the overall impact, followed by
the rest-of-the-world region (18.60%), Canada (9.35%) and Mexico (8.51%). It is important
to notice that the USA has strong commercial relations with China, but also with other
American countries (Canada, Mexico, Brazil). These results emphasize the commercial
links between countries, and as a result, a potential exposure to a carbon tax. For instance,
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if we focus on Turkey, it is highly connected with EU, as it would be the 9th most impacted
country by a EU carbon tax. It would also be impacted in the case of a Chinese tax, as it
would be the 15th most impacted country. The impact would be smaller in the case of a
carbon tax in the USA. In a similar way, we notice the importance of Germany (DEU) in
China and USA supply chain.

Markov chain interpretation of tax transmission channels between countries In
order to understand the previous results, we consider the Markov representation of the tax
diffusion: {

∆p(k) = A>Φ∆p(k−1)

∆p(0) = Φtdirect

We consider the following block decomposition of the matrix A:

A =

 ac ac,row

arow,c arow


where c and row indicate the indices of the given country and the rest-of-the-world region.
We apply the same partition to the vectors tdirect := t = (tc, trow), Ttotal := T = (Tc, Trow),
x = (xc, xrow) and φ = (φc,φrow). We first consider the case with one sector. We have:

A>Φ =

(
φcac φrowarow,c

φcac,row φrowarow

)
and:(

A>Φ
)2

=

(
φ2
ca

2
c + φcφrowac,rowarow,c φcφrowacarow,c + φ2

rowarow,carow

φ2
cacac,row + φcφrowac,rowarow φcφrowac,rowarow,c + φ2

rowa
2
row

)
We assume that the country applies a carbon tax. Since we have t = (tc, 0), it follows
that ∆p(0) = (φctc, 0). At the zeroth tier, the producer cost is

(
xc (1− φc) tc, 0

)
while the

consumer cost is (xcφctc, 0). We deduce that:

T(0) =

(
xctc

0

)
At the first tier, we have ∆p(1) = A>Φ∆p(0) or:

∆p(1) =

(
φ2
cac

φ2
cac,row

)
tc

The part of the tax that has been passed by the country on the rest-of-the-world region
depends on the technical coefficient ac,row. If ac,row > 0, the rest-of-the-world region needs
buying some goods to the country. The country exports then inflation to the rest-of-the-
world region. At the first tier, the total cost is then:

T(1) =

(
xcac

xrowac,row

)
φ2
ctc

In particular, T(1),row = 0 if ac,row = 0 and there is no exported inflation. At the second

tier, we have ∆p(2) = A>Φ∆p(1) or:

∆p(2) =

(
φ3
ca

2
c + φ2

cφrowac,rowarow,c

φ3
cacac,row + φ2

cφrowac,rowarow

)
tc
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We deduce that:

T(2) =

(
xcφca

2
c + xcφrowac,rowarow,c

xrowφcacac,row + xrowφrowac,rowarow

)
φ2
ctc

Therefore, the country may face an imported inflation from the rest-of-the-world region. We
distinguish three cases:

1. If ac,row = 0, the imported inflation is equal to zero, because the exported inflation for
the rest-of-the-world was equal to zero at the first tier;

2. If ac,row > 0, the imported inflation may be positive or null;

(a) It is positive if arow,c > 0; this means that the country buy goods to the rest-of-the
world region;

(b) It is equal to zero if arow,c = 0.

The relative magnitude of the exported inflation depends on the following ratio:

Rrow−→c =
φrowac,rowarow,c

φca
2
c

If Rrow−→c � 1, the contribution of the exported inflation is high, otherwise it is low. We
observe this situation when φrow � φc and ac,rowarow,c � a2

c . In a similar way, the imported
inflation continues to be significant in the second tier if ac,row � 0 and φcac+φrowarow � 0.
In this case, the rest-of-the-world region faces two types of inflation: the internal inflation
if φrow > 0 and the exported inflation.

Let us consider an example to illustrate the previous analytical framework. We assume
that Ac = 0.7, Ac,row = 0.3, Arow,c = 0.2, Arow = 0.3 and φc = φrow = 0.9. In Figure 53,
we plot the directed graph associated to the adjacency matrix of the Markov chain. The
color map indicates the magnitude of the edges. Figure 54 shows the evolution of the matrix
(ΦA)

k
with respect to the kth tier. We notice that the directed graph becomes more and

more red, indicating that the transmission becomes weaker. In Figures 115–118 on pages
165–166, we consider two other examples. In the case of matrix #2, we have Ac = 0.2,
Ac,row = 0.2, Arow,c = 0.5, Arow = 0.4. We notice that the largest edge of the directed
graph is from the rest-of-the-world region to the country, but very quickly this transmission
channel vanishes because the magnitude of the other edges is low. This is less the case with
the matrix #3, which is defined by Ac = 0.4, Ac,row = 0.4, Arow,c = 0.5, Arow = 0.5. The
previous analysis can be extend to many sectors and countries. For instance, matrix #4
corresponds to the following example:

A =

 0.5 0.2 0.1
0.3 0.5 0.2
0.1 0.3 0.4


with a uniform pass-through rate of 90%. Results are given in Figures 55 and 56.

In Figure 57, we plot the directed graph of the global value chain using the Exiobase
2022 input-output table. Let C1 and C2 be two countries. We compute the average value77

Ā (C1, C2) of the technical coefficients Ai,j such that i ∈ C1 ∧ j ∈ C2. In order to obtain a
better visualization, we have limited the analysis to 12 countries: Canada, China, Germany,
France, United Kingdom, India, Japan, Republic of Korea, Mexico, Turkey, Taiwan and

77The coefficients are weighted using the following rules wi,j ∝ xixj .
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Figure 53: Directed graph (matrix #1)
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Figure 54: Impact of the kth tier on the directed graph (matrix #1)
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Figure 55: Directed graph (matrix #4)
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Figure 56: Impact of the kth tier on the directed graph (matrix #4)
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Figure 57: Directed graph of the global value chain (Exiobase 2022)
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the United States. The width and color of the edge E (C1, C2) depend on the magnitude
of Ā (C1, C2). Bigger the value of Ā (C1, C2), larger the width of E (C1, C2). We notice that
the largest edges are located within countries. China, followed by Korea and Taiwan, is the
country with the highest density of inter-sector flows. Besides this intra-country dominance,
we find four main inter-country relationships: CHN/KOR, CHN/MEX, USA/CAN and
USA/MEX. Then, we have two blocks of regional relationships. The first block concerns the
Asian supply chain (CHN/JPN/KOR/TWN), while the second block is the European value
chain (DEU/FRA/GBR). We also find some bilateral relationships: CHN/IND, DEU/TWN,
USA/GBR and USA/KOR. Finally, the fourth level mainly concerns the interconnectedness
between Turkey on the one hand, and China, Germany and the United States on the other
hand.

Remark 14. Since Ā (C, C) � Ā
(
C, C′

)
, this is normal that the carbon tax affects mainly

the country C and far less the other countries C′.

5.3.3 Stochastic pass-through rates

We now consider a more realistic framework since we assume that the pass-through rates are
stochastic and follow a beta distribution. We consider the mapping classification between
the sectors and the four types given in Table 60 on page 181.

The case of independent pass-through rates We first assume that pass-through rates
are independent and test four levels of carbon tax: 50, 100, 250 and 500. Since φ is a
random vector, the economic cost is stochastic. We use the Monte Carlo method with 3 000
simulations to estimate the distribution function of the economic cost. Results are reported
on pages 167–168. In fact, we notice that the statistics are proportional to the carbon tax.
Therefore, we focus on the $100/tCO2e level in Figure 58. We notice that the confidence
level is relatively small. The total cost for the economy is between 8 and 9 trillions of dollars,
or between 4.7% and 5.3% of the world GDP. The cost multiplier takes a value around 1.8,
meaning that the diffusion of the carbon tax induces a supplementary cost of 80% in top of
the direct costs. Finally, the tax generates a significant inflation between 3% and 4.5%.

Remark 15. The previous figures correspond to a uniform non-stochastic pass-through rate
between 70% and 80%.

The cost faced by each sector depends on its direct emissions and its interconnectedness
with the supply chain. We report the statistics for the fifteen largest impacted sectors78 in
Table 32 and Figures 59 and 60. The most intensive sector is naturally highly penalized.
Indeed, Electricity, gas, steam and air conditioning supply has a contribution of 20% and its
cost is greater than 50% of its current output. Then, we find a group of eight sectors, whose
contribution is greater than 4%. They concern crop and animal production, manufacture
of goods and construction. We also notice that one half of these fifteen sectors face a cost,
which represents at least 10% of the sector output. Nevertheless, about 70% and 45% of the
sectors have a cost lower than 5% and 2% of their output. These results clearly show that
the risk is located in a few number of sectors.

78They are Electricity, gas, steam and air conditioning supply (S13), Crop and animal production, hunting
and related service activities (S11), Mining and quarrying (S38), Manufacture of basic metals (S21), Man-
ufacture of other non-metallic mineral products (S32), Manufacture of coke and refined petroleum products
(S24), Manufacture of chemicals and chemical products (S23), Sewerage; waste collection, treatment and
disposal activities; materials recovery; remediation activities and other waste management services (S50),
Construction (S10), Manufacture of fabricated metal products, except machinery and equipment (S27) Man-
ufacture of food products, beverages and tobacco products (S28), Manufacture of machinery and equipment
n.e.c. (S30), Land transport and transport via pipelines (S19), Public administration and defence; compul-
sory social security (S44), and Air transport (S7).
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Figure 58: Economic impact (global analysis, τ = $100/tCO2e, stochastic pass-through,
Exiobase 2022)
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Table 32: Fifteen largest impacted sectors (global analysis, τ = $100/tCO2e, stochastic
pass-through, Exiobase 2022)

Cost in $ tn Contribution in % Cost in %
Quantile 5% 50% 95% 5% 50% 95% 5% 50% 95%
S13 1.72 1.77 1.79 20.1 20.4 20.8 52.9 54.6 55.2
S11 0.89 0.90 0.91 10.2 10.4 10.7 16.8 17.0 17.2
S38 0.75 0.77 0.78 8.8 8.9 9.1 20.5 20.9 21.1
S21 0.59 0.63 0.65 7.0 7.3 7.4 13.3 14.2 14.8
S32 0.58 0.60 0.62 6.8 7.0 7.1 25.0 26.2 26.8
S24 0.44 0.48 0.49 5.2 5.5 5.7 13.8 14.9 15.4
S23 0.36 0.39 0.41 4.4 4.5 4.6 7.0 7.5 7.8
S50 0.34 0.35 0.35 3.9 4.0 4.1 28.4 28.6 28.7
S10 0.31 0.34 0.39 3.7 4.0 4.4 2.4 2.7 3.0
S27 0.17 0.19 0.19 2.0 2.1 2.2 5.6 6.0 6.2
S28 0.14 0.15 0.17 1.7 1.8 1.9 2.1 2.2 2.4
S30 0.14 0.15 0.17 1.6 1.8 1.9 2.9 3.4 3.6
S19 0.13 0.14 0.15 1.6 1.6 1.7 3.2 3.3 3.4
S44 0.13 0.14 0.14 1.5 1.6 1.6 1.2 1.3 1.3
S7 0.11 0.12 0.12 1.3 1.3 1.4 10.9 11.1 11.2
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Figure 59: Sector contribution in % (global analysis, τ = $100/tCO2e, stochastic pass-
through, Exiobase 2022)

Figure 60: Sector cost in % (global analysis, τ = $100/tCO2e, stochastic pass-through,
Exiobase 2022)
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The case of correlated pass-through rates We consider that the pass-through rates
are correlated79 and we use the copula representation of the random vector φ = (φ1, . . . ,φn):

F (p1, . . . , pn) = Pr (φ1 ≤ p1, . . . ,φn ≤ pn)

= C
(
F1 (p1) , . . . ,Fn (pn)

)
where C is the copula function and Fj is the margin of φj ∼ B

(
αj , βj

)
. In particular, we

assume that the copula function is Gaussian with a uniform correlation matrix Cn (ρ). The
simulation step of the random vector φ consists in generating uniform random variates80

(u1, . . . , un) ∼ C and applying the inverse of the Beta function:

φj = B−1
(
pj ;αj , βj

)
In Figure 61, we report the probability density function of the economic cost in % of the GDP.
Since E [φ] does not depend on the copula function, we verify that the average economic
cost does not depend on the correlation parameter ρ. Nevertheless, we observe that it has
a big impact on the shape of the distribution function. The case ρ = 0 corresponds to
the minimum standard deviation while increasing the parameter ρ flattens the probability
distribution. This implies that the risk increases with ρ. For instance, we report the 99%
worst-case scenario with respect to ρ in Figure 62. We confirm that the minimum and
maximum risk is reached when ρ = 0 and ρ = 1.

Figure 61: Distribution function of the economic cost (global analysis, τ = $100/tCO2e,
stochastic pass-through, Gaussian copula, Exiobase 2022)
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79In practice, the companies tend to align not only their prices but also their operating parameters such
as pass-through. Therefore, it makes more sense to introduce a high degree of correlation in the context of
competitive markets.

80Following Roncalli (2020, Chapters 11 and 13), we use the transformation method to simulate the
Gaussian copula: u = Φ

(√
ρN (0, 1) +

√
1− ρN (0n, In)

)
.
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Figure 62: 99% worst-case scenario of the economic cost (global analysis, τ = $100/tCO2e,
stochastic pass-through, Gaussian copula, Exiobase 2022)
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5.3.4 Upper and lower bounds of the total economic cost

We have previously seen that the lower and upper bounds of L̃ (φ) are reached when φ = 0n
and φ = 1n. We have also deduced that the functions ∆p, π, Ttotal, Costtotal and T I share
the same bounds. Since Costtotal = x>L̃ (φ) tdirect, it follows that81:

(∗) ⇔ x>L̃ (0n) tdirect ≤ Costtotal ≤ x>L̃ (1n) tdirect

⇔ x>tdirect ≤ Costtotal ≤ x>
(
In −A>

)−1

tdirect

⇔ x> (τ � CI1) ≤ Costtotal ≤ x>
(
In −A>

)−1

(τ � CI1)

⇔ τ>CE1 ≤ Costtotal ≤ x>
(
In −A>

)−1

(τ � CI1)

It is not possible to simplify the expression of the upper bound. If we assume a uniform tax
τ i = τ j = τ , we obtain:

τ CEdirect (Global) ≤ Costtotal ≤ τ CEtotal (Global)

The lower bound is the product of the tax and the direct carbon emissions, while the
upper bound is the product of the tax and the total carbon emissions. Using the relation-
ship CEtotal (Global) = m(0−∞)CEdirect (Global), the previous equation becomes Costdirect ≤
Costtotal ≤ m(0−∞)Costdirect. By assuming that the multiplying coefficient is random, we
finally obtain:

Costdirect ≤ Costtotal ≤ m̃(0−∞)Costdirect

where m̃(0−∞) follows a shifted log-normal distribution SLN
(
µm, σ

2
m, 1

)
. The lower bound

Cost−total is then constant and certain, while the upper bound Cost+total is stochastic. We

81We have x> (τ � CI1) =
∑n
j=1 xjτ jCI1,j = τ>CE1.
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propose to choose the α-quantile value:

Cost+total =
(

1 + eµm+Φ−1(α)σm
)
Costdirect

For instance, Figure 63 shows the upper and lower bounds of the world economic cost when
we implement a uniform tax of $100/tCO2e and use the following country values: µm = 0.32
and σm = 0.75. We have also indicated the value of the total cost we previously found in
Figure 41 and Table 27.

Figure 63: Lower and upper bounds of the world economic cost (global analysis, τ =
$100/tCO2e, Exiobase 2022)

6 Climate value-at-risk

In this last section, we use the different tools developed above to define the climate value-
at-risk of investment portfolios. First, we propose a model of earnings-at-risk based on
the input-output framework. Then, we implement a Monte Carlo value-at-risk where pass-
through rates are stochastic and the scenario for the carbon tax is given. We complement this
conditional value-at-risk by an unconditional value-at-risk by considering that the carbon
tax is also stochastic. Finally, we estimate the impact of carbon tax on the market portfolio.
These different analyses are illustrated with the MSCI World index portfolio.

6.1 Earnings-at-risk modeling

We use the value added model to define an issuer’s earnings-at-risk. To do this, we need
to define the accounting identities to measure the impact of the carbon tax on earnings.
We use a simple model where we do not split value added between labor, capital and other
taxes. We also assume a proportionality rule between income and value added. We can then
derive a formula for the impact ratio at the sector level. Using a substitution trick, we can
then estimate the earnings-at-risk at the issuer level.
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6.1.1 Derivation of the value added variation

Before the implementation of the tax, we have:{
x− = (In −A)

−1
y−

p− =
(
In −A>

)−1
υ−

The accounting identity formula for the income of Sector j is:

x−j p
−
j = x−j

n∑
i=1

Ai,jp
−
i + x−j υ

−
j

We deduce that the value added amount V −j is equal to:

V −j := x−j υ
−
j = x−j p

−
j − x

−
j

n∑
i=1

Ai,jp
−
i (28)

After the introduction of the carbon tax, the accounting identity becomes:

xjpj = xj

n∑
i=1

Ai,jpi + Vj +
(

1− φj
)
Tdirect,j

where
(

1− φj
)
Tdirect,j is the direct cost of the carbon tax that reduces the value added82.

We deduce that the value added Vj is equal to:

Vj = xjpj − xj
n∑
i=1

Ai,jpi −
(

1− φj
)
Tdirect,j (29)

From Equations (28) and (29), we deduce that:

∆Vj = Vj − V −j

=
(
xjpj − x−j p

−
j

)
+

x−j n∑
i=1

Ai,jp
−
i − xj

n∑
i=1

Ai,jpi

− (1− φj
)
Tdirect,j

=

(
xj

(
p−j + ∆pj

)
− x−j p

−
j

)
+

x−j n∑
i=1

Ai,jp
−
i − xj

n∑
i=1

Ai,j

(
p−i + ∆pi

)−
(

1− φj
)
Tdirect,j

Finally, we obtain the following formula for the value added variation:

∆Vj = xj∆pj︸ ︷︷ ︸
Price impact

+
(
xj − x−j

)
p−j︸ ︷︷ ︸

Final demand impact

−
(
xj − x−j

) n∑
i=1

Ai,jp
−
i︸ ︷︷ ︸

Intermediary demand impact

− xj

n∑
i=1

Ai,j∆pi︸ ︷︷ ︸
Production cost impact

−

(
1− φj

)
Tdirect,j︸ ︷︷ ︸

Direct impact

(30)

82We recall that φjTdirect,j is passed on the value chain and impacts the price of goods.

103



From Climate Stress Testing to Climate Value-at-Risk

The variation of the value added has five components. The first component xj∆pj is the price

impact, which is generally a positive factor. The second and third components
(
xj − x−j

)
p−j

and
(
xj − x−j

)∑n
i=1Ai,jp

−
i measure the impact of the final and intermediary demands.

These two terms are generally negative because xj ≤ x−j . The fourth component is the

increase in the production cost xj
∑n
i=1Ai,j∆pi, whereas the last term is the direct impact

on the producers. Using the previous formula, we can define the value added shock as
follows:

Sj =
∆Vj

V −j

where Sj is the relative variation of the value added.

Remark 16. The matrix form of the value added variation is:

∆V = x�∆p+
(
x− x−

)
� p− −

(
x− x−

)
�A>p− − x�A>∆p− (In − Φ)Tdirect (31)

The inelastic case Let us assume that the final demand remains constant: yj = y−j . This

implies that xj = x−j . The second and third components vanish and Equation (30) becomes:

∆Vj = xj∆pj − xj
n∑
i=1

Ai,j∆pi −
(

1− φj
)
Tdirect,j

= xj

∆pj −
n∑
i=1

Ai,j∆pi

− (1− φj
)
Tdirect,j

Let ∆υj =
∆Vj
xj

be the value added variation per output. We deduce that:

∆υ =
(
In −A>

)
∆p− (In − Φ) tdirect

Since we have ∆p =
(
In −A>Φ

)−1
Φ tdirect, we finally obtain:

∆υ =

(
Φ +

(
In −A>

)
L̃ (φ)− In

)
tdirect (32)

We consider two special cases:

• If φ = 0n, we have ∆υ = −tdirect and ∆V = −Tdirect;

• If φ = 1n, we have ∆υ = tdirect and ∆V = Tdirect.

We retrieve two extreme situations when we study the theory of optimal taxation (Farhi and
Gabaix, 2020). In the first case, the tax is perfectly efficient because the entire burden of
the tax falls on producers, we observe a transfer from producers to governments and the tax
reduces producer surplus (Bergstrom, 1982). In the second case, the entire burden of the
tax falls on consumers and there is a transfer from consumers to the government. Moreover,
we observe a negative effect of the carbon tax since the producer surplus has increased
because selling prices have increased and the demand has not decreased. Therefore, we face
a curious situation where producers capture a surplus, which is exactly equal to the carbon
tax revenues. This case obviously contradicts the double dividend assumption (Goulder,
2002).
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We consider Example #3 described on page 73 and the differentiated carbon taxation:
τ 1 = $200/tCO2e and τ 2 = τ 3 = τ 4 = $100/tCO2e. By assuming that φj = 0.5, we obtain

∆p =
(
1.08%, 0.42%, 0.33%, 0.16%

)
and ∆V = (−425,−666.5,−1 664.7,−1 364.7). The

value added shocks are then respectively equal to −0.12%, −0.37%, −1.04% and −0.27%.
In Figure 64, we report the relative variation of the value added in % when we consider
a uniform pass-through. We notice that some shocks are almost linear (e.g., energy) and
others are convex (e.g., industrials).

Figure 64: Relative variation of value added (uniform pass-through, inelastic case, differen-
tiated taxation, Example #3)
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The elastic case We now assume that the final demand depends on the price: yj =
fj
(
pj
)
. We denote by y = f (p) =

(
f1 (p1) , . . . , fn (pn)

)
the vector-valued function of the

price-demand relation. We have:

x = (In −A)
−1
f (p) = Lf (p)

We deduce that:

∆V = Lf (p)�∆p+
(
Lf (p)− x−

)
� p− −

(
Lf (p)− x−

)
�A>p− −

Lf (p)�A>∆p− (In − Φ)Tdirect (33)

where ∆p = L̃ (φ) tdirect and p = p−+ ∆p. Equation (33) is the general formula to compute
the value added variation. It encompasses different special cases. If the demand function is
inelastic, f (p) = y− and x = (In −A)

−1
y− = x− and we retrieve the inelastic case. If the

demand function is linear (yj = aj − bjpj), we deduce that83 ∆yj = yj − y−j = −bj∆pj and:

x− x− = − (In −A)
−1

(b�∆p)

83Because we have y−j = aj − bjp−j .
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Since b � 0n and ∆p � 0n, we deduce that x � x−. All the outputs are reduced. We can
then decompose ∆V as the sum of positive impacts ∆V(+) and negative impacts ∆V(−):

∆V = ∆V(+) −∆V(−)

∆V(+) = x− �∆p+ (In −A)
−1

(b�∆p)�A>p
∆V(−) = x− �A>∆p+ (In −A)

−1
(b�∆p)� p+ (In − Φ)Tdirect

(34)

To use the previous model, we need to calibrate the slope bj of the demand function. We
reiterate that the price elasticity of demand is defined as:

εj =
∆yj/y

−
j

∆pj/p
−
j

It follows that:
∆yj
∆pj

= εj
y−j

p−j

Since we have ∆yj = −bj∆pj , we deduce that:

bj = −∆yj
∆pj

= −εj
y−j

p−j
= −εjy−j

because p−j = 1.

We consider again Example #3. By assuming that ε = (−0.20,−0.40,−0.50,−1.00) and
φj = 0.5, we obtain ∆p =

(
1.08%, 0.42%, 0.33%, 0.16%

)
, ∆x = (−8.69,−6.64,−13.23,−20.02)

and ∆V = (−1 067.2,−965.7,−1 928.1,−2 164.2). The value added shocks are then respec-
tively equal to −0.29%, −0.54%, −1.21% and −0.43%. In Figure 65, we report the relative
variation of value added in % when we consider a uniform pass-through rate and a price elas-
ticity of demand equal to −1. Compared to Figure 64, the shocks are more negative because
the outputs are reduced. Moreover, we observe a negative relationship between the pass-
through rate and the shock for the sector of services. In Figure 66, we draw the relationship
between the price elasticity of demand and the value added shock when the pass-through
rate is set to 100%. If the elasticity is sufficiently high, the value added decreases even if
the pass-though rate is high.

6.1.2 Earnings-at-risk definition

At the sector level We assume that the earnings’ shock is proportional to the value
added variation:

Ebitdaj − Ebitda−j

Ebitda−j
=

∆Vj

V −j
= Sj

If ∆Vj ≤ 0, the shock is negative and the earnings are decreasing. This is the expected
effect of a linear commodity tax.

In Figures 67 and 68, we compute the earnings’ shocks for the 2 464 sectors84 by using
the Exiobase 2022 table and draw the corresponding histogram85. The range of the shocks
is between −15% and +15%. In the inelastic case, we verify that a pass-through of 0%
induces a systematic negative earnings-at-risk whereas a pass-through of 100% leads to a
positive earnings-at-risk. In the elastic case, the distribution of Sj highly depends on the
values taken by the price elasticity of demand.
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Figure 65: Relative variation of value added (uniform pass-through, elastic case, εj = −1,
differentiated taxation, Example #3)
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Figure 66: Relationship between the price elasticity of demand and the value added shock
(φj = 100%, differentiated taxation, Example #3)
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Figure 67: Histogram of earnings’ shocks in % (global analysis, τ = $100/tCO2e, inelastic
case, Exiobase 2022)

Figure 68: Histogram of earnings’ shocks in % (global analysis, τ = $100/tCO2e, elastic
case, Exiobase 2022)
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Figure 69: Relationship between φj , εj and bj
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We have previously seen that:

φ ≈ 1

1− ε

ε′

where ε and ε′ are the price elasticities of demand and supply. By assuming that ε′ = 1,
we deduce that:

εj = 1− 1

φj
(35)

We use this formula to calibrate the slope of the demand function. Therefore, we have:

bj = −

(
1− 1

φj

)
y−j =

1− φj
φj

y−j (36)

In Figure 69, we draw the relationship between pass-through rate, price-demand elasticity
and slope. In order to be more realistic, we use the mapping between the sectors and
the four types given in Table 60 on page 181 and assume that φ is stochastic. Since we
have φ̃j ∼ B

(
αj , βj

)
, we deduce that ε̃j is stochastic and follows the negative beta prime

distribution: −ε̃j ∼ B′
(
βj , αj

)
. In Appendix A.10 on page 146, we show that:

E
[
ε̃j
]

= −βj
αj

Therefore, we can link the demand slope to the pass-through rate by assuming that ε̃j is
stochastic or by replacing ε̃j by its mathematical expectation (see Table 33 below). In
Figure 70, we estimate the probability density function of the earnings’ shock when we
consider that the pass-through rates are stochastic and independent, and the elasticity is

84We recall that we have 44 countries and 56 sectors.
85In order to better read them, the y-axis is in logarithmic scale.
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given by Equation (35). For that, we use 3 000 Monte Carlo simulations and we pool the
shocks of the 2 464 sectors. We notice that the distribution has a negative skewness and
80% of the sectors face a negative shock. We also report the probability density function
when we replace the elasticities by their mathematical expectation. We deduce that the
two approaches give similar results. This statement holds even if we consider dependent
pass-through rates generated with a Gaussian copula86.

Table 33: Probabilistic characterization of the four pass-through types

Highly-elastic High-elastic Medium-elastic Low-elastic
αj 3.00 4.00 14.00 12.00
βj 12.00 6.00 6.00 0.60

E
[
φ̃j

]
0.20 0.40 0.70 0.95

E
[
ε̃j
]

−4.20 −1.50 −0.43 −0.05

Figure 70: Probability density function of earnings’ shocks (global analysis, τ =
$100/tCO2e, stochastic pass-through and elasticity, Exiobase 2022)
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At the issuer level We can decompose the sector earnings-at-risk as follows:

Sj = S(gvc)
j + S(direct)

j

where S(gvc)
j is the earnings’ shock due to the global value chain (GVC) and S(direct)

j is the
specific and direct impact of the carbon tax. We have:

S(gvc)
j =

xj∆pj +
(
xj − x−j

)
p−j −

(
xj − x−j

)∑n
i=1Ai,jp

−
i − xj

∑n
i=1Ai,j∆pi

V −j
86See Figure 123 on page 169.
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and:

S(direct)
j = −

(
1− φj

)
Tdirect,j

V −j

We define the earnings’ shock for issuer i in a similar manner:

Si = S(gvc)
i + S(direct)

i

We assume that S(gvc)
i ≈ S(gvc)

j with i ∈ j. Therefore, we use the shock of the sector due
to the global value chain as a proxy of the shock of the issuer. For the direct and specific
shock, we use the substitution trick by replacing the sector figures by the issuer figures:

S(direct)
i = − (1− φi)Tdirect,i

V −i

= − (1− φi) τ i CE1,i

V −i

= − 1

υ−i
(1− φi) τ i CI1,i

where υ−i is the value added ratio87 of issuer i.

Remark 17. In the case where υ−i is not available, we can use the value added ratio υ−j
of the corresponding sector. Using the Exiobase 2022 database, the 10% and 90% quantiles
of υ−j are equal to 22.4% and 78.0%. At the global level, the value added ratio is equal to
49.6%.

In Table 34, we report the statistics of υ−i per GICS sector88. Utilities and Industrials
have the lowest value added ratio (25.1% and 27.6%), while Financials and Health Care
have the highest value added ratio (66.3% and 56.5%). We find similar results as Exiobase
2022 when looking at the Q10% and Q90% figures. Nevertheless, there is a difference in the
average value added ratio (39.7% vs. 49.6%).

Table 34: Mean and quantiles of the value added ratio in % (MSCI World, May 2023)

Sector Mean Q10% Q25% Q75% Q90%

Communication Services 38.9 16.6 24.1 47.5 70.5
Consumer Discretionary 33.8 13.9 19.6 43.4 60.4
Consumer Staples 36.4 13.9 23.8 49.1 61.6
Energy 33.4 9.4 16.3 47.0 61.0
Financials 66.3 30.1 52.3 85.4 94.0
Health Care 56.5 27.3 44.7 69.7 78.5
Industrials 27.6 11.2 17.1 36.3 46.8
Information Technology 52.5 27.0 37.3 69.5 78.4
Materials 29.0 13.8 19.9 36.8 48.0
Real Estate 48.0 22.6 33.1 67.2 75.5
Utilities 25.1 6.0 16.3 33.1 47.6
MSCI World index 39.7 14.0 22.4 55.5 72.3

Source: Factset (2023) & Authors’ calculations.

87We reiterate that it is defined as the ratio of net value added V −i to the total value of production x−i .
88The value added ratio is computed using the gross margin rate provided by Factset (2023).
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In Tables 35, 36 and 37, we compute the earnings’ shocks for the MSCI World index

portfolio. Using the Exiobase 2022 database, we calculate the GVC shocks S(gvc)
j when

the pass-through rate is uniform and equal to φ. The price-demand elasticity is given by

εj = 1−φ−1
j . We use the same assumptions to calculate the direct shocks S(direct)

i for each
issuer of the portfolio. Let j = Map (i) be the mapping function that returns the WIOD
country × sector of the issuer i. Then, we sum the two shocks in order to obtain the total

shock Si = S(gvc)
Map(i) + S(direct)

i of the issuer. For each GICS sector, we report the quantiles

1%, 5% and 10%, and its average shock89:

Sj (w) =

∑
i∈j wi

(
S(gvc)
Map(i) + S(direct)

i

)
∑
i∈j wi

=

∑
i∈j wi S

(gvc)
Map(i)∑

i∈j wi
+

∑
i∈j wi S

(direct)
i∑

i∈j wi

= S(gvc)
j (w) + S(direct)

j (w)

In the case of a global uniform taxation with a carbon tax of $100/tCO2e, we notice the high
impact of the pass-through rate on the earnings’ shocks at the issuer level and the aggregated
GICS sector level. With a 25% pass-through rate, the earnings’ shock of the MSCI World
index is negative and is equal to −4.41%. The global value chain is responsible for −1.18%
of this shock, while the direct earnings’ shock is responsible for −3.23%. Each sector faces
a negative shock, in particular Utilities, Energy and Materials (−57.82%, −20.35% and
−12.79%). Nevertheless, the impact is very low for two sectors: Communication Services
(−0.41%) and Information Technology (−0.58%). The situation changes as the pass-through
rate increases. Indeed, with a 75% pass-through parameter, the earnings’ shock of the MSCI
World index is close to 0, and high emitting sectors like Utilities, Materials or Industrials
face a positive shock (+9.02%, +6.20% and +0.71%). When the pass-through rate gets
closer to 1, this phenomenon of positive earnings’ shock is spreading to more and more
sectors. With a 95% pass-through rate, the earnings’ shock of the MSCI World index is
positive (+4.69%) because of the major contribution of the global value chain (+4.91%).
Moreover, Energy, Utilities and Materials faces very high positive earnings’ shock (+52.95%,
+38.44% and +15.92%). This means that they earn money after taxation, since they pass
their direct costs through the value chain, and they do not face global value chain costs
from other sectors as they are on top of the value chain. Figure 71 displays the relationship
between the pass-through rate and the earnings’ shock for the MSCI World index. We
observe a quasi linear relation between direct earnings’ shock and pass-through rate, and a
convex relation between total earnings’ shock and pass-through rate. At GICS sector level,
the relation highly differs from one sector to another (Figure 72). Indeed, both Consumer
Staples and Energy sectors face a positive earnings’s shock with a pass-through rate around
80%, but the high convexity of the relation for the Energy sector leads its earnings’ shock
to increase very rapidly and to reach high levels. The relation is more linear for Materials
and Utilities.

89We must not confuse the index j of the WIOD sector with the index j of the GICS sector. We reiterate

that we have 2 464 country × sector rows in the WIOD database. S(gvc)j = S(gvc)Map(i)
refers then to the

GVC component of the earnings’ shock corresponding to the WIOD sector j of the issuer i, whereas Sj (w),

S(gvc)j (w) and S(direct)j (w) refer to the earnings’ shocks corresponding to the GICS sector j. In the first

case, we have 2 464 values of S(gvc)j and 1 485 values of S(gvc)Map(i)
because there were 1 485 issuers in the

MSCI World index at the end of May 2023. In the second case, we have 11 values of Sj (w), S(gvc)j (w) and

S(direct)j (w), because we have 11 GICS level 1 sectors.
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Table 35: Earnings’ shock in % (global uniform taxation, τ = $100/tCO2e, φ = 25%,
Exiobase 2022, MSCI World index, May 2023)

Sector Sj S(gvc)
j S(direct)

j Q1% (Si) Q5% (Si) Q10% (Si)
Communication Services −0.41 −0.37 −0.04 −2.20 −1.68 −0.93
Consumer Discretionary −2.23 −1.01 −1.22 −121.56 −4.76 −2.59
Consumer Staples −3.37 −2.62 −0.74 −18.17 −10.52 −6.63
Energy −20.35 −9.37 −10.98 −59.49 −44.40 −31.90
Financials −1.24 −0.64 −0.60 −3.09 −1.64 −1.49
Health Care −0.76 −0.63 −0.13 −3.11 −1.77 −1.49
Industrials −3.49 −0.59 −2.89 −52.49 −26.57 −8.75
Information Technology −0.58 −0.48 −0.10 −8.92 −1.95 −1.52
Materials −12.79 1.01 −13.80 −97.73 −70.38 −43.20
Real Estate −0.96 −0.51 −0.45 −5.68 −1.88 −1.63
Utilities −57.82 −3.76 −54.06 −319.59 −156.31 −129.59
MSCI World index −4.41 −1.18 −3.23 −111.52 −31.84 −14.46

Table 36: Earnings’ shock in % (global uniform taxation, τ = $100/tCO2e, φ = 75%,
Exiobase 2022, MSCI World index, May 2023)

Sector Sj S(gvc)
j S(direct)

j Q1% (Si) Q5% (Si) Q10% (Si)
Communication Services −0.29 −0.28 −0.01 −2.48 −1.27 −0.74
Consumer Discretionary −1.23 −0.82 −0.41 −40.68 −2.10 −1.89
Consumer Staples −1.73 −1.49 −0.25 −7.80 −5.92 −4.00
Energy −1.93 1.74 −3.66 −40.19 −22.31 −11.58
Financials −0.59 −0.39 −0.20 −1.22 −0.76 −0.58
Health Care −0.71 −0.66 −0.04 −2.12 −1.68 −1.62
Industrials 0.71 1.67 −0.96 −9.36 −3.61 −2.33
Information Technology −0.40 −0.36 −0.03 −3.26 −1.94 −1.83
Materials 6.20 10.80 −4.60 −25.14 −15.82 −12.37
Real Estate −0.55 −0.40 −0.15 −2.07 −0.95 −0.91
Utilities 9.02 27.04 −18.02 −64.81 −19.71 −13.02
MSCI World index −0.06 1.01 −1.08 −16.59 −5.34 −2.74

Table 37: Earnings’ shock in % (global uniform taxation, τ = $100/tCO2e, φ = 95%,
Exiobase 2022, MSCI World index, May 2023)

Sector Sj S(gvc)
j S(direct)

j Q1% (Si) Q5% (Si) Q10% (Si)
Communication Services −0.00 −0.00 −0.00 −0.34 −0.22 −0.17
Consumer Discretionary 0.13 0.21 −0.08 −8.06 −0.52 −0.43
Consumer Staples 1.75 1.80 −0.05 −0.96 −0.45 −0.26
Energy 52.95 53.68 −0.73 −1.26 −0.39 3.73
Financials −0.00 0.04 −0.04 −0.37 −0.13 −0.10
Health Care −0.08 −0.07 −0.01 −0.46 −0.24 −0.19
Industrials 3.44 3.64 −0.19 −1.28 −0.51 −0.45
Information Technology 0.07 0.08 −0.01 −0.49 −0.43 −0.42
Materials 15.92 16.84 −0.92 −2.51 −0.22 0.25
Real Estate −0.01 0.02 −0.03 −0.38 −0.13 −0.12
Utilities 38.44 42.04 −3.60 −0.44 −0.13 11.31
MSCI World index 4.69 4.91 −0.22 −0.89 −0.43 −0.27
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Figure 71: Relationship between the pass-through rate and the earnings’ shock of the MSCI
World index (global uniform taxation, τ = $100/tCO2e, Exiobase 2022, MSCI World index,
May 2023)
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Figure 72: Relationship between the pass-through rate and the earnings’ shock of GICS
sectors (global uniform taxation, τ = $100/tCO2e, Exiobase 2022, MSCI World index, May
2023)

0 20 40 60 80 100

-4

-2

0

2

4

0 20 40 60 80 100

-20

0

20

40

60

0 20 40 60 80 100

-20

-10

0

10

20

0 20 40 60 80 100

-75

-50

-25

0

25

50

114



From Climate Stress Testing to Climate Value-at-Risk

In order to obtain more realistic values of earnings’ shocks, we consider the classification
of sectors into the four pass-through types: highly-elastic, high-elastic, medium-elastic and
low-elastic. We use the average pass-through rate90 of the beta distribution B

(
αj , βj

)
:

E
[
φ̃j

]
= E

[
B
(
αj , βj

)]
=

αj
αj + βj

For the price-demand elasticity, we reiterate that E
[
ε̃j
]

= −α−1
j βj . Results are reported

in Table 38. In this case, we find that there are two winning sectors: Energy and Utilities.
Indeed, they face highly positive earnings’ shock (51.41% and 37.98%) with a high contribu-
tion of the global value chain. With a figure of −3.97%, Consumer Staples is clearly the most
loser sector. Taking into account the different contributions, the impact on the MSCI World
index is then positive. Figures 73 and 74 show the boxplot of earnings’ shocks for each GICS
sector. We observe a high heterogeneity both between and within sectors. Nevertheless, it
seems that most of winner issuers are located in high emitting sectors. This result calls into
question the effectiveness of a carbon tax, as the tax burden is not necessarily borne by
those for whom it was intended.

Table 38: Earnings’ shock in % (global uniform taxation, τ = $100/tCO2e, average pass-
through rate, Exiobase 2022, MSCI World index, May 2023)

Sector Sj S(gvc)
j S(direct)

j Q1% (Si) Q5% (Si) Q10% (Si)
Communication Services −0.33 −0.31 −0.02 −2.76 −1.45 −0.87
Consumer Discretionary −2.21 −1.33 −0.87 −96.99 −4.10 −2.98
Consumer Staples −3.97 −3.34 −0.62 −15.33 −9.21 −6.75
Energy 51.41 52.11 −0.70 −1.56 −0.74 2.76
Financials −0.74 −0.50 −0.24 −1.63 −0.87 −0.77
Health Care −0.49 −0.44 −0.05 −1.93 −1.21 −1.00
Industrials −0.17 0.93 −1.10 −59.97 −11.37 −4.55
Information Technology −0.52 −0.48 −0.04 −4.09 −2.45 −2.32
Materials −0.51 10.03 −10.54 −91.46 −58.51 −43.95
Real Estate −0.19 −0.16 −0.03 −0.81 −0.80 −0.79
Utilities 37.98 41.44 −3.46 −2.58 −0.80 10.82
MSCI World index 2.58 3.44 −0.86 −53.09 −7.78 −4.32

Remark 18. The figures presented in Tables 37 and 38 illustrate the complexity and po-
tential unintended consequences of introducing a global uniform carbon tax. The earnings
shocks underscore the importance of considering the heterogeneous impacts of climate policies
across sectors. For instance, Energy and Utilities show the largest negative shocks under a
limited pass-through rate scenario, whereas they might experience positive earning variations
when considering average pass-through rates as per their elasticity group category. However,
Energy and Utilities are traditionally the most impacted sectors in classical stress testing
exercises. This implies that certain sectors could pass on the costs of the carbon tax to their
consumers and the downstream value chain, thereby lessening their financial strain. At the
same time, other sectors with lower emission intensities could face increased input costs
without being able to pass on a significant portion of the carbon price, thus experiencing
negative shocks. This raises a concern about the fairness of the mechanism since the tax
burden might be indirectly shifted towards sectors or entities with lower emission profiles.

90The values are given in Table 23 on page 70.
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Figure 73: Boxplot of earnings’ shock in % (global uniform taxation, τ = $100/tCO2e,
average pass-through rate, Exiobase 2022, MSCI World, May 2023)
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Figure 74: Boxplot of earnings’ shock in % (global uniform taxation, τ = $100/tCO2e,
average pass-through rate, Exiobase 2022, MSCI World, May 2023)
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The implications of these findings are multifaceted. Policymakers must strike a delicate bal-
ance to mitigate potential systemic effects. Optimizing the pass-through parameters could
help limit these effects, yet regulators have little direct control over these parameters. Hence,
the effectiveness of a carbon tax as a tool for carbon reduction comes into question. While
the carbon tax has its merits, it also has inherent risks. It might cascade through the supply
chain, affecting even those entities with less direct pollution. Furthermore, its regressive na-
ture could exacerbate income inequality, as it impacts households unequally (Semet, 2023).
This concern becomes more pronounced when the concept of a ‘ fair transition’ is introduced,
implying an equitable shift to a low-carbon economy. In conclusion, a comprehensive un-
derstanding of these findings could lead to improved climate policies. While it is clear that
sectoral differences are key to effective policy design, it is equally important to assess the po-
tential cascading effects and equity implications of such policies. Addressing these challenges
is critical for a successful transition to a sustainable low-carbon future.

6.2 From climate earnings-at-risk to portfolio value-at-risk

6.2.1 Asset return modeling

Following Bouchet and Le Guenedal (2020), we define the valuation ratio of the firm i as
the ratio between the enterprise value EVi and the earnings Ebitdai:

Ri =
EVi

Ebitdai

Ri is called the EV to EBIDTA ratio or valuation multiple. If we assume that Ri is con-
stant91, we have:

EVi − EV−i
EV−i

=
Ri · Ebitdai − R−i · Ebitda−i

R−i · Ebitda−i
=

Ebitdai − Ebitda−i
Ebitda−i

= Si

The variation of the enterprise value is then equal to the earnings’ shock. Since the enterprise
value represents the total assets EVi =MCi +Di, where MCi is the market capitalization
(equity) and Di is the total net debt, we deduce that ∆MCi = ∆EVi by assuming that the
debt remains constant. Therefore, the earning shock is fully passed on the equity price:

∆MCi = Si · EV−i
We deduce that the value of the market capitalization after the carbon tax is equal to:

MCi =MC−i + Si · EV−i
The equity return is then equal to:

Ri =
MCi −MC−i
MC−i

= Si ·
EV−i
MC−i

= Si · L−i (37)

The equity return is then the product of the earnings’ shock and the leverage (or EV to
MC) ratio. Since this ratio is greater than 1, we have |Ri| ≥ |Si|. The earnings’s shock
is then amplified by the leverage ratio92. In Figure 75, we compute the portfolio return
R (w) =

∑
i wiRi of the MSCI World index. We verify that the relationship between φ and

R (w) is a leveraged version of the total earnings’ shock given in Figure 71 on page 114.
While we had S (w) ∈

[
−6%, 6%

]
, we obtain R (w) ∈

[
−9%, 9%

]
, implying a global leverage

of 150% for the MSCI World index.
91In practice, this ratio can be subject to significant variations when considering long time periods.
92For instance, if Si = −10% and L−i = 2, we obtain Ri = −20%.
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Figure 75: Relationship between the pass-through rate and the portfolio return of the MSCI
World index (global uniform taxation, τ = $100/tCO2e, Exiobase 2022, MSCI World index,
May 2023)
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Remark 19. Another approach to price the equity is to consider the discounted cash flow
approach:

MCi ∼ DCFi =

∞∑
t=1

CF i (t)

(1 +WACCi)t

where CF i (t) are the cash-flows (or the earnings) and WACCi is the cost of capital of the
company:

WACCi =
MCi

MCi +Di
× CE +

Di

MCi +Di
× CD

where CE and CD are the cost of equity and the cost of debt. We can see that the impact on
equity depends on many factors. The main drivers of the equity valuation remain the future
cash flows, the cost of capital and the capital structure. If there is an earnings’ shock, we
obtain:

DCFi (Si) =

∞∑
t=1

CF i (t) (1 + Si)(
1 +WACCi (Si)

)t
If we assume that WACCi (Si) does not depend on the earnings’ shock, we have:

DCFi (Si) =

∞∑
t=1

CF i (t) (1 + Si)
(1 +WACCi)t

= (1 + Si)DCFi (0)

In this case, we have Ri = Si. If the cash flows are constant (CF i (t) = CF i), it follows
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that:

DCFi (Si) =

∞∑
t=1

CF i (1 + Si)(
1 +WACCi (Si)

)t
=
CF i (1 + Si)
WACCi (Si)

= (1 + Si)
WACCi (0)

WACCi (Si)
DCFi (0)

Therefore, we obtain:

Ri = (1 + Si)
WACCi (0)

WACCi (Si)
− 1

We usually observe a high convexity ofWACCi (Si), implying that |Ri| > |Si|. This convexity
effect will exacerbate even further the current results. More generally, the future cash flows,
the cost of capital and the capital structure are fully interconnected. For instance, the capital
structure also influences the WACC. The companies with high level of debt suffer from higher
cost of capital everything else being equal. However, some specific activities might require
refining the equity return model given in Equation (37). In particular, perpetual annuity
activities, such as telecommunication or heath care (which require a lot of initial investment
and then lower operating costs), could be considered independently. Indeed, the impact on
their equity value should be less sensitive to their leverage level (which is naturally high). In
this reserach paper, we assume that the shock are fully transmitted to the equity valuation
and amplified by corporate leverage ratio and leave business specific consideration for further
research.

6.2.2 Description of the Monte carlo algorithm

We can now describe the algorithm to compute the value-at-risk of the portfolio w. In
what follows, n and m are respectively the number of sectors of the MRIO database and the
number of issuers of the portfolio w. The index j refers to the jth sector, while the index i
corresponds to the ith issuer93. The inputs of the VaR algorithm are:

• The matrices x, A and y of the MRIO database that describe the relationships between
the sectors;

• The carbon intensity CI1,j of the sectors;

• The carbon intensity CI issuer
1,i , the value added ratio υissuer

i and the leverage ratio

Lissuer
i of the issuers;

• The mapping function j =Map (i) between the issuers and the sectors;

• The portfolio weights w = (w1, . . . , wm).

Algorithm 1 describes the computation of the conditional value-at-risk (and the expected
shortfall) of the portfolio w at the confidence level α. The parameters of the algorithm are:

• The coefficients αj and βj of the beta distribution B
(
αj , βj

)
for the different sectors

to simulate the stochastic pass-through rates;

• The correlation ρ of the Gaussian copula;

93Moreover, we use the superscript “issuer” when the variable concerns the issuers and not the sectors.
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Algorithm 1 Compute the conditional value-at-risk at the confidence level α

1: Initialize tdirect ← 0n, V ← 0n, τ issuer ← 0m, tissuer
direct ← 0m, φ← 0n, b← 0n, Φ← 0n,n,

p ← 0n, ∆y ← 0n, ∆V (gvc) ← 0n, S(gvc) ← 0n, S(gvc,issuer) ← 0m, S(direct,issuer) ← 0m,
Sissuer ← 0m, Rissuer ← 0m and L (w)← 0nS

2: Compute L← (In −A)
−1

3: for j = 1 : n do
4: tdirect,j ← τ j CI1,j

5: Vj ← xj
(
1−

∑n
i=1Ai,j

)
6: end for
7: for i = 1 : m do
8: j ←Map (i)
9: τ issuer

i ← τ j
10: tissuer

direct,i ← τ i CI issuer
1,i

11: end for
12: for s = 1 : nS do
13: u1 ← N (0, 1)
14: for j = 1 : n do
15: u2 ← N (0, 1)

16: φj ← B−1
(

Φ
(√
ρ u1 +

√
1− ρ u2

)
;αj , βj

)
17: bj ← −

(
1− φ−1

j

)
yj

18: φj ← min
(
φj ,φ

+
)

19: Φj,j ← φj
20: end for
21: ∆p←

(
In −A>Φ

)−1
Φ tdirect

22: for j = 1 : n do
23: pj ← 1 + ∆pj
24: ∆yj ← −bj∆pj
25: end for
26: x← L

(
y + ∆y

)
27: for j = 1 : n do

28: ∆V
(gvc)
j ← xj

(
pj −

∑n
i=1Ai,jpi

)
− Vj

29: S(gvc)
j ← ∆V

(gvc)
j /Vj

30: end for
31: for i = 1 : m do
32: j ←Map (i)

33: S(gvc,issuer)
i ← S(gvc)

j

34: φissuer
i ← φj

35: S(direct,issuer)
i ← −

(
1− φissuer

i

)
tissuer
direct,i/υ

issuer
i

36: Sissuer
i ← S(gvc,issuer)

i + S(direct,issuer)
i

37: Rissuer
i ← Sissuer

i · Lissuer
i

38: end for
39: Ls (w)← −

∑m
i=1 wiR

issuer
i

40: end for
41: VaRα (w)← Qα

(
L (w)

)
42: ESα (w) ←

(∑nS
s=1 1

{
Ls (w) ≥ VaRα (w)

}
· Ls (w)

)/(∑nS
s=1 1

{
Ls (w) ≥ VaRα (w)

})
43: return VaRα (w) and ESα (w)
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Algorithm 2 Compute the unconditional value-at-risk at the confidence level α

1: Initialize tdirect ← 0n, V ← 0n, τ issuer ← 0m, tissuer
direct ← 0m, φ← 0n, b← 0n, Φ← 0n,n,

p ← 0n, ∆y ← 0n, ∆V (gvc) ← 0n, S(gvc) ← 0n, S(gvc,issuer) ← 0m, S(direct,issuer) ← 0m,
Sissuer ← 0m, Rissuer ← 0m and L (w)← 0nS

2: Compute L← (In −A)
−1

3: for j = 1 : n do
4: Vj ← xj

(
1−

∑n
i=1Ai,j

)
5: end for
6: for s = 1 : nS do
7: τ ← exp

(
µ+ σN (0, 1)

)
8: u1 ← N (0, 1)
9: for j = 1 : n do

10: τ j ← τ
11: tdirect,j ← τ CI1,j

12: u2 ← N (0, 1)

13: φj ← B−1
(

Φ
(√
ρ u1 +

√
1− ρ u2

)
;αj , βj

)
14: bj ← −

(
1− φ−1

j

)
yj

15: φj ← min
(
φj ,φ

+
)

16: Φj,j ← φj
17: end for
18: ∆p←

(
In −A>Φ

)−1
Φ tdirect

19: for j = 1 : n do
20: pj ← 1 + ∆pj
21: ∆yj ← −bj∆pj
22: end for
23: x← L

(
y + ∆y

)
24: for j = 1 : n do

25: ∆V
(gvc)
j ← xj

(
pj −

∑n
i=1Ai,jpi

)
− Vj

26: S(gvc)
j ← ∆V

(gvc)
j /Vj

27: end for
28: for i = 1 : m do
29: j ←Map (i)
30: τ issuer

i ← τ j
31: tissuer

direct,i ← τ i CI issuer
1,i

32: S(gvc,issuer)
i ← S(gvc)

j

33: φissuer
i ← φj

34: S(direct,issuer)
i ← −

(
1− φissuer

i

)
tissuer
direct,i/υ

issuer
i

35: Sissuer
i ← S(gvc,issuer)

i + S(direct,issuer)
i

36: Rissuer
i ← Sissuer

i · Lissuer
i

37: end for
38: Ls (w)← −

∑m
i=1 wiR

issuer
i

39: end for
40: VaRα (w)← Qα

(
L (w)

)
41: ESα (w) ←

(∑nS
s=1 1

{
Ls (w) ≥ VaRα (w)

}
· Ls (w)

)/(∑nS
s=1 1

{
Ls (w) ≥ VaRα (w)

})
42: return VaRα (w) and ESα (w)

121



From Climate Stress Testing to Climate Value-at-Risk

• The values τ j of the carbon tax for the different sectors;

• The number nS of simulations.

There are different steps in the algorithm. Lines 3–6 compute the direct tax rate and the
value added of the sectors, while Lines 7–10 compute the direct tax rate of issuers. Lines
13–20 simulate the random vector of pass-though rates and define the demand slope of the
sectors. The GVC shock at the sector level and the total shock at the issuer level are
respectively calculated in Lines 21–30 and Lines 31–38. We can then deduce the loss of the
portfolio for the sth simulation:

Ls (w) = −
m∑
i=1

wiR
issuer
i

Finally, we compute the value-at-risk and the expected shortfall in Lines 41 and 42. Since the
carbon tax may be different from one sector to another, Algorithm 1 can be used to simulate
the impact of a differentiated tax, and not only a uniform tax. For the unconditional value-
at-risk, the carbon tax is stochastic. By assuming that τ follows a log-normal distribution
LN

(
µ, σ2

)
, we obtain Algorithm 2. We only describe the case of the uniform tax, but

implementing a differentiated taxation is straightforward. Indeed, we have to change Lines
7 and 10 of the algorithm. Line 7 simulates the uniform tax, while Line 10 assigns the
simulated tax to all the sectors. If we would like to apply the tax to a subset Ω of sectors
(or a region), we have to replace τ j ← τ by if j ∈ Ω then τ j ← τ else τ j ← 0 end if.

Remark 20. We introduce a cap φ+, which indicates the maximum value taken by the pass-
through rates. This allows to consider a binding policy that could control the pass-through
mechanisms, especially the price increase. An example is the so-called tariff shield imposed
in France in 2022.

6.2.3 Application to the MSCI World index portfolio

The term climate value-at-risk has been coined by Dietz et al. (2016). Nevertheless, there are
very few studies that have estimated the value-at-risk of investment portfolios. Generally,
they focus on the loss distribution of an asset class at the global level without making
reference to the returns of individual securities. Our approach is different and closer to
market practices of risk management (Roncalli, 2020) when we manage the risk of an equity
portfolio. Therefore, we can use the traditional tools associated to risk measures, especially
those of risk allocation.

To estimate the value-at-risk, we consider 3 000 Monte Carlo simulations. Figure 76
shows the results with respect to the parameter ρ of the Gaussian copula94. We notice that
the value-at-risk is negative if the correlation between the pass-through rates is low. This
case is not realistic, because the pass-through decisions of firms are not independent of each
other. This is why we generally consider that the correlation between pass-through rates is
between 70% and 100%. We deduce that the 99% value-at-risk is about 2% and 4% if φ+ is
respectively equal to 100% and 50%. These figures are not so high for a $100/tCO2e carbon
tax.

We also estimate the unconditional value-at-risk by assuming that the carbon tax follows
a log-normal distribution. Using an initial price of $100/tCO2e, a drift of 20% and a volatility
of 50%, the parameters of the probability distribution are µ = 4.68 and σ = 0.50. This
corresponds to an average carbon tax of $122/tCO2e and a standard deviation of $65/tCO2e.

94See Figure 124 on page 169 for the expected shortfall risk measure.
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Figure 76: Value-at-risk at the 99% confidence level (global uniform taxation, τ =
$100/tCO2e, stochastic pass-through rate, Gaussian copula, Exiobase 2022, MSCI World,
May 2023)

Since we have two sources of uncertainty (pass-though rates and the carbon tax), the number
of Monte Carlo simulations is increased and equal to 10 000. Results are given in Table 39.
We only report the estimates when the parameter of the Gaussian copula is between 70%
and 100%. Again, the unconditional value-at-risk is relatively low when φ+ is equal to 100%.
It begins to be significant when φ+ is set to 50% since VaR99% (w) is around 11%.

Table 39: Unconditional Value-at-risk at the 99% confidence level (global uniform taxation,
stochastic pass-through rate, Gaussian copula, Exiobase 2022, MSCI World, May 2023)

ρ 70% 80% 90% 100%

φ+ = 100%
VaRα (w) 2.02 2.07 2.91 3.59
ESα (w) 3.86 3.95 4.23 4.31

φ+ = 50%
VaRα (w) 10.38 10.77 11.25 11.33
ESα (w) 13.31 13.34 13.32 13.39

As said previously, we can use the traditional tools to manage the risk of the portfolio.
In particular, we can perform a risk decomposition of the Monte Carlo value-at-risk. Fol-
lowing Roncalli (2020, Section 2.3, pages 104-116), we apply the Euler allocation principle
to estimate the risk contribution of each issuer (or asset). We recall that the portfolio loss
is defined as:

L =

m∑
i=1

Li = −
m∑
i=1

wiRi

By assuming that asset returns are elliptically distributed, the risk contribution of asset i is
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equal to:

RCi = E
[
Li | L = VaRα (L)

]
= E [Li] +

cov (L,Li)

σ2 (L)

(
VaRα (L)− E [L]

)
Estimating the risk contributions with simulated Monte Carlo scenarios is then straightfor-
ward. It suffices to replace the statistical moments by their sample statistics:

RCi = L̄i +

∑nS
s=1

(
Ls − L̄

) (
Li,s − L̄i

)∑nS
s=1

(
Ls − L̄

)2 (
VaRα (L)− L̄

)
where Li,s = −wiRi,s and Ls =

∑m
i=1 Li,s are the losses of asset i and portfolio w for the

sth simulated scenario, and L̄i = n−1
S

∑nS
s=1 Li,s and L̄ = n−1

S

∑nS
s=1 Ls is the average losses

of asset i and portfolio w by considering all the Monte Carlo scenarios. By definition of
the Euler allocation principle, we have

∑m
i=1RCi = VaRα (L) and we can compute the risk

contribution of any sub-portfolio $ by using the additivity property: RC ($) =
∑
i∈$RCi.

Table 40: Risk decomposition of the unconditional Value-at-risk at the 99% confidence level
(global uniform taxation, stochastic pass-through rate, Gaussian copula, ρ = 80%, Exiobase
2022, MSCI World, May 2023)

Sector wj
φ+ = 100% φ+ = 50%
RCj RC?j RCj RC?j

Communication Services 7.3 0.03 1.7 0.08 0.8
Consumer Discretionary 10.7 0.31 14.8 1.11 10.3
Consumer Staples 7.3 0.24 11.4 0.89 8.2
Energy 4.6 0.53 25.4 2.32 21.6
Financials 12.7 0.14 6.9 0.50 4.6
Health Care 13.2 0.07 3.3 0.33 3.0
Industrials 10.4 0.25 12.2 0.99 9.2
Information Technology 24.4 0.13 6.4 0.28 2.6
Materials 4.1 0.29 14.1 1.22 11.4
Real Estate 2.4 0.02 0.8 0.08 0.7
Utilities 2.9 0.06 3.0 2.98 27.6
Sum 100.0 2.07 100.0 10.77 100.0

In Table 40 and Figure 77, we report the risk allocation when we allocate the value-at-
risk between the GICS level 1 sectors, assuming that a maximum pass-through rate level of
100% and 50% is imposed. wj is the weight of sector j, RCj is its absolute risk contribution
while RC?j = RCj/VaRα (L) corresponds to its relative risk contribution. Each sector
carries a different risk profile, which fluctuates based on the pass-through rate. For instance,
Information Technology constitutes a significant portion of the total market capitalization
with a weight of 24.4%. However, its risk contribution is relatively low at 6.4% when φ+ is
set to 100% and 2.6% when φ+ set to 50%. Energy, despite its lower weight of 4.6% in the
MSCI World index, demonstrates a notably higher risk contribution. When φ+ = 100%,
its risk contribution is equal to 25.4%. This suggests that the Energy sector carries a
substantial amount of risk relative to its weight. More intriguingly, although the relative
value slightly decreases due to the steep increase in the risk contribution of Utilities, the
risk contribution share of Energy does not significantly depend on φ+. It remains above
20% whether the pass-through is capped at 50% or 100%. Utilities exhibits the highest
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risk contribution at a 50% pass-through cap, accounting for 27.6% of the total risk. If the
parameter φ+ is set to 100%, the risk contribution would steeply decrease to 3%, reflecting
the low input costs of this sector. This indicates that Utilities might be a highly volatile
sector, possibly subject to more significant equity price fluctuations. In summary, the risk
contributions across sectors vary widely, and the pass-through rate significantly influences
these contributions. Therefore, when creating a balanced portfolio, it is essential to carefully
consider the potential returns from each sector and the associated risks.

Figure 77: Risk allocation (global uniform taxation, stochastic pass-through rate, Gaussian
copula, ρ = 80%, Exiobase 2022, MSCI World, May 2023)

Remark 21. Another popular approach to perform the risk allocation of the value-at-risk is
based on the Kernel method. In this case, we use the Nadaraya-Watson estimator to compute
the conditional expectation E

[
Li | L = VaRα (L)

]
. We can also extend the two approaches

when the risk measure is the expected shortfall (Roncalli, 2023).
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6.3 Impact on the market portfolio

The previous framework can be used to analyze the allocation distortion of the market
portfolio. Let w−i be the current weight of asset i. The weight after the implementation of
the carbon tax is equal to95:

wi =
MCi∑m
k=1MCk

=

(
1 +Ri

1 +
∑m
k=1 w

−
k Rk

)
w−i (38)

In Figure 78, we report the sectoral evolution of the MSCI World index. We use the same
color code and ordering as those applied in Figure 77 on page 125. We notice the big impact
of the carbon tax and the pass-though on the market portfolio composition. Again, we
notice that the most impacted sectors are Utilities and Energy (see also Table 61 on page
182).

In the case where we use stochastic pass-through rates and a random carbon tax, Equa-
tion (38) becomes:

w̃i =

(
1 + R̃i

1 +
∑m
k=1 w

−
k R̃k

)
w−i

The weights are random and can be simulated using our framework. Then, we can estimate
the probability distribution of w̃i. To illustrate, we plot the probability density function of
the portfolio weights using the simulated returns of the unconditional value-at-risk in Figure
79. Again, we notice the big impact of the pass-through cap φ+. Depending of its value,
sectors are winners or losers.

Remark 22. In this section, we have illustrated the methodology using a uniform carbon
tax. However, we can also consider a regional carbon tax and analyze the impact on country
allocations.

Remark 23. This type of analysis is important in the context of net zero investing (Barah-
hou et al., 2022; Ben Slimane et al., 2023) or climate hedging Roncalli et al. (2020, 2021).
In the first case, a carbon tax has an impact on market risk premia, which is an important
element in the strategic asset allocation of the core/satellite portfolio. In the second case, it
complements the carbon beta estimation by introducing forward-looking features.

Remark 24. All the results that have been obtained in this section are based on the as-
sumption: ε′ = 1. This means that the price elasticity of the supply is equal to one. When

ε′ 6= 1, the relationship between ε and φ is ε =
(

1− φ−1
)
ε′. For some sectors, we know

that ε′ ≈ 0, which means that the slope of the demand in our study may be overestimated.
Furthermore, we do not take into account the substitution effects between products within a
given sector. This is a drawback of our analysis, especially in the Utilties sector. Indeed,
the previous results may change if consumers have the choice between green and brown elec-
tricity. Nevertheless, the present study shows that the carbon tax may not be efficient if the
supply of green electricity is not sufficiently elastic.

95Because we have:

wi =
MC−i + Si · EV−i∑m

k=1

(
MC−k + Sk · EV−k

)
and:

1 +
Si · EV−i
MC−i

1 +

∑m
k=1 Sk · EV

−
k∑m

k=1MC
−
k

=
1 +Ri

1 +

∑m
k=1MC

−
k Rk∑m

k=1MC
−
k

=
1 +Ri

1 +
∑m
k=1 w

−
k Rk
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Figure 78: Sector allocation in % of the market portfolio (global uniform taxation, Exiobase
2022, MSCI World, May 2023)
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Figure 79: Probability density function of sector allocation (global uniform taxation, stochas-
tic pass-through rate, Gaussian copula, ρ = 80%, Exiobase 2022, MSCI World, May 2023)
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7 Conclusion

This paper aims to identify uncertainties in climate stress testing, estimate an issuer’s total
carbon emissions and consider the cascading effects of carbon pricing throughout the supply
chain. It recognises that each sector will pass some of its rising costs through the supply
chain, known as the pass-through effect. To achieve this, we propose a methodology that
incorporates uncertainty at each stage of the stress test, from the carbon pricing scenario to
the diffusion of the carbon tax through the economy at the issuer, sector and country level.
This highlights the complexity of the supply chain and the interconnectedness of global
economic actors.

The severity of NGFS scenarios is a critical factor in the uncertainty of climate scenarios,
as it varies and has different implications for transition and physical risks, ultimately affect-
ing both assets and carbon pricing. In practice, carbon pricing mechanisms are a critical
tool for implementing public policy and reducing emissions. This can be through external
carbon pricing (such as ETS or carbon taxes) or internal methods (such as shadow pricing
or internal carbon fees). At present, there is a lack of homogeneity and global coordination
in carbon pricing around the world. In terms of carbon taxes, there is considerable variation
at the country level, with rates ranging from 0 to $130/tCO2e. The impact of a carbon
tax on the MSCI World index in terms of cost over dividend or cost over profit also varies
widely across sectors. For a carbon tax of $100/tCO2e, the cost over dividend for Utilities is
more than 200, while for Communication Services it is less than 1. In the NGFS scenarios,
the carbon tax is an implicit price and is determined endogenously by the integrated assess-
ment model. This is both a strength and a weakness of the NGFS scenarios. An implicit
carbon price has some advantages because it is an optimal solution. From a public policy
perspective, it indicates the level at which governments need to set the carbon tax. It also
has some drawbacks because we do not know whether the optimal policy response function
will be effectively implemented by governments. In addition, the NGFS scenarios have been
designed primarily for climate stress testing and are presented as inputs for “central banks
considering how best to integrate climate scenarios into stress testing exercises”. Neverthe-
less, we may wonder whether the NGFS scenarios are stress scenarios or a macroeconomic
forecasting exercise that depends on six alternative climate change pathways. In the latter
case, only the divergent net-zero and delayed transition scenarios can claim to be transition
risk scenarios for stress testing programs. These two ambiguities (implicit carbon tax and
stress severity) do not help investors to stress test their investment portfolios. Therefore,
instead of using shadow carbon prices, which are implicit and endogenous outputs, we think
it is easier to consider flat carbon taxes, which are explicit and exogenous inputs. This
solution also has the great advantage of resolving the second ambiguity. Indeed, the severity
of the stress is measured by the absolute level of the carbon tax. In this approach, a stress
scenario is then fully described by the amount of the carbon tax. The higher the carbon tax,
the higher the severity of the stress scenario. This approach is equivalent to a conditional
stress test. We propose to complement this approach by considering an unconditional stress
test exercise. This is possible because we show that both explicit and implicit carbon prices
can be fitted by a log-normal probability distribution. This implies fat-tail risk, which is an
important statistical property of climate change and global warming.

In this paper we show that the total economic cost of carbon taxation is bounded. The
lower bound is the sum of carbon taxes times direct emissions, while the upper bound is
the sum of carbon taxes times direct plus indirect emissions. Although the measurement
of carbon footprints can be improved, we believe that current Scope 1 measures are good
estimates of direct emissions. Unfortunately, the estimation of indirect emissions is not
standardised and the confidence level of upstream and downstream Scope 3 emissions pro-
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vided by data providers is poor. Therefore, the next level of uncertainty is the estimation
of indirect carbon emissions from the supply chain. With this in mind, we are developing
a formula based on environmentally extended input-output models to estimate indirect and
total carbon intensities, as well as indirect and total carbon emissions. This methodology
takes into account each level of the supply chain. We then test this approach using three
different databases: WIOD 2014, Exiobase 2014 and Exiobase 2022. Our research provides
a transparent measure of carbon intensity that can be compared with carbon footprints
calculated by data providers. In addition, we have derived the multiplier between total
and direct emissions and provided a stochastic modelling of the multiplier. Using the three
MRIO databases, we find that for each tonne of CO2 emitted, we can expect a multiplier
of between 2.75 and 3.14 to cover all induced upstream emissions. We have also estimated
the total carbon intensity of the MSCI World index. We compare these figures with Trucost
2021 data and find similar results. For example, in the utilities sector, the estimated carbon
intensity is 1 872tCO2e/$ mn for Exiobase 2022, 1 833tCO2e/$ mn for Trucost 2021 and
1 889tCO2e/$ mn for WIOD 2014. As for the carbon tax, we propose a stochastic modelling
of the multiplying coefficient. We assume that it depends on country and sector factors
and that each factor is log-normally distributed. By exploiting the mathematical properties
of this probability distribution, we obtain that the multiplying coefficient follows a shifted
log-normal distribution. We can then estimate the probability distribution of the upper
bound of the total economic cost. For example, a $100/tCO2e global carbon tax implies a
cost between $4.83 and $21.80 tn at the 90% confidence interval.

The final level of uncertainty is the estimation of the cost passed through the supply
chain following a carbon tax. We therefore calibrate the pass-through rate using stochastic
modelling based on sector elasticity. We distinguish four classes of sectors: highly-elastic,
high-elastic, medium-elastic and low-elastic sectors. For each class, we calibrate a beta
distribution. We then analyse the impact of carbon taxation on price dynamics. We have a
choice of three pricing approaches: value added protection, mark-up pricing and competitive
equilibrium. We find that the value added method is the most appropriate approach to
incorporate pass-through mechanisms. Under this assumption, producers want to maintain
their level of value added by changing their prices. This is equivalent to the cost-push
price model, where the dual inverse matrix is replaced by a Leontief multiplier matrix,
which depends on both the input-output matrix A of technical coefficients and the diagonal
matrix Φ of pass-through rates. We then derive a formula to calculate the total cost and
the inflation rate. We propose a decomposition of costs into two elements: a producer-based
cost and a consumer-based (or downstream) cost. By testing the sensitivity of total costs
to the pass-through parameter, we find a high convexity of the relationship. In particular,
the function between the pass-through rate and the multiplier coefficient is cubic, which
implies that small errors in the pass-through estimate can lead to large errors in the cost
estimate. We also explore the effect of carbon taxation by playing with two key elements: the
aforementioned pass-through parameter and the level of coordination (playing with regional
taxes only). We propose different scenarios: a global tax (uniform and differentiated) and
a regional tax applied in the EU, the US or China. In the case of a global tax, we find that
each $100/tCO2e incremental tax induces a total cost of 5% of GDP and a CPI inflation
rate of 3.5%. In the case of a regional tax, we observe rising inflation and significant costs
within the region, but moderate inflation and low costs outside the region. On average,
90% of the total cost is borne by the countries implementing the tax, while the impact on
the rest of the world is only 10%. These breakdown figures raise the issue of distortions
of competitiveness when taxation is not coordinated across countries. For example, in the
case of an EU tax system with a carbon tax of $500/tCO2e and a pass-through rate of
100%, EU countries would have to bear a cost of $4 tn, while non-EU countries would have

129



From Climate Stress Testing to Climate Value-at-Risk

to bear only 521 bn. Moreover, the cost as a percentage of GDP would be almost 15%
for EU countries and less than 0.5% for non-EU countries. These results depend on the
pass-through rate. For example, if EU sectors pass on only half of their direct costs, the
costs for non-EU countries fall from $521 to $54 bn. Another result is that the economic
costs do not depend only on the level of the carbon tax and the pass-through rate. They
also depend on the structure of the value chain within the country and between the country
and the rest of the world. For example, we find that a Chinese tax is five times more
costly than a European or American tax. Part of the explanation is the highest carbon
intensity of Chinese sectors, but the main explanation is that the density of the supply
chain within the Chinese economy is higher than the density of the European or American
value chain. In addition, we confirm that the collateral risks of foreign countries are strongly
related to the upstream supply chain. We explain this asymmetry between upstream and
downstream effects by the fact that we observe higher concentration in the upstream than in
the downstream. In other words, the upstream network is generally undiversified, while the
downstream network is well diversified. This explains why Canada, Mexico and Korea will
be the three most affected foreign countries if a carbon tax is implemented in the US. To
better understand the mechanisms behind the diffusion of the carbon tax across countries,
we propose a visual representation of the value chain thanks to graph theory.

Using the value added model, we also define the earnings-at-risk due to a carbon tax.
We provide a general formula of the value added shock and notice that it again depends on
the pass-through rate and the price elasticity of the demand. In the inelastic case, the tax
can be perfectly efficient if the pass-though rate is equal to zero. Nevertheless, it becomes
less efficient when we include pass-through mechanism. In particular, in the case of perfect
pass-through, the carbon tax is inefficient and is captured by producers, which increase their
earnings. If we turn to the elastic case, the earnings’ shocks depend on the price-demand
function. For instance, we show that if we calibrate the price elasticity of demand with
respect to the pass-through rate, 20% of sectors face a positive shock of their earnings and
not a negative shock. These results question the efficiency of the carbon tax. Moreover, this
means there are losers, but also winners.

A global uniform carbon tax of $100/tCO2e has various impacts on earnings’ shocks,
significantly influenced by the pass-through rate. When this latter is set at 25%, sectors
such as Utilities, Energy, and Materials face considerable negative shocks, while Information
Technology and Communication Services are only slightly affected. However, as the pass-
through rate increases, high emitting sectors like Utilities and Materials start to experience
positive shocks, essentially earning money post-taxation by passing direct costs along the
value chain. This phenomenon becomes even more pronounced with a 95% pass-through
rate, leading to a positive earnings’ shock for the MSCI World index. These findings suggest
a nuanced interaction between the pass-through rate and the effectiveness of the carbon tax
as a tool for carbon reduction. While a high pass-through rate might result in financial gains
for traditionally high emitting sectors, it also raises questions about the equity and systemic
effects of such a policy. Specifically, lower emitting sectors or entities may bear a larger
burden as they face increased costs without the ability to pass on a significant portion of the
carbon price. Moreover, the regressive nature of the carbon tax could potentially exacerbate
income inequality, affecting households unequally. It is therefore crucial for policymakers to
consider these potential cascading effects and the differential impacts across sectors when
designing climate policies. A comprehensive understanding of these dynamics is essential
for ensuring a successful and equitable transition to a sustainable low-carbon future.

In our model, we calculate the earnings shock by taking into account changes in input
prices and direct costs. This approach highlights the dual contribution of risk related to the
pass-through rate. In the Monte Carlo exercise, we observe minimal, or even positive, average

130



From Climate Stress Testing to Climate Value-at-Risk

shocks, indicating an increase in earnings when a carbon tax is introduced in scenarios where
pass-through rates are high or calibrated based on literature and empirical observations. By
introducing correlation into the pass-through mechanism, we derive a 99% value-at-risk of
4% for the MSCI World index. This value represents the expected baseline loss in a scenario
with a global carbon price of $100/tCO2e. Using an unconditional framework, we estimate
that the 99% value-at-risk for the MSCI World index can be as high as 11%. The main
contributing sectors are “the usual suspects’ (Utilities, Energy, Industrials and materials),
but also Consumer Discretionary and Consumer Staples.

The results of this study need to be interpreted with caution. This research focuses
primarily on examining a single transmission channel: the resulting changes in prices and
trading volumes in response to carbon regulation, and their impact on equity distortions
and hence portfolio value-at-risk. However, it is important to recognise a number of mecha-
nisms that potentially generate financial losses in the context of the transition to a greener
economy. These mechanisms include technological risk, where companies fail to innovate
and maintain their competitive edge, and market or reputational risk, where capital may
not flow to companies perceived as too risky. Taken together, these mechanisms could ex-
acerbate the results. The role of pass-through is also crucial. Our value-at-risk results are
substantially attenuated by the pass-through effect (eliminating it could result in a value-
at-risk three times as high). In the context of this paper, which is primarily concerned with
the impact of a carbon price shock, we show that the impact on investment indices may
not depend exclusively on carbon intensity and leverage. A comprehensive consideration of
demand elasticity across all sectors is essential. Finally, we suggest that the more intensive
sectors positioned at the top of the supply chain could benefit by shifting costs to other
activities. These empirical results are interesting, but this research is first and foremost a
methodological paper. It lays the groundwork for performing bottom-up stress testing at
the issuer level with a carbon tax and calculating a climate value-at-risk of an investment
portfolio. Future work could include alternative transition mechanisms to study their direct
and indirect effects and assess their impact on financial assets.

Uncertainty is at the heart of our stress test model. Uncertainty relates to pass-through
rates, price-demand elasticities, carbon prices, indirect emissions, etc. However, the concept
of uncertainty is not homogeneous and falls into two categories. Using the risk management
terminology (Roncalli, 2020), we need to distinguish between model variables (or inputs) and
model parameters. Model variables are risk factors. For example, the carbon tax and direct
emissions are two risk factors in our model, while the pass-through rate and price-demand
elasticity are two model parameters. In this framework, the conditional value-at-risk exercise
that we have performed can be related to model risk, while the unconditional value-at-risk
exercise mixes both model risk and risk factor valuation. We note that our assessment of
model risk is partial because we assume that the structure of the supply chain is known. In
practice, it is estimated and is subject to large uncertainties, especially when we perform the
bottom-up approach at the issuer level. An extension of this research is then to consider that
the matrix of technical coefficients is estimated with errors. This is equivalent to assuming
that the adjacency matrix of the graph associated with the value chain is stochastic. We
can then use graph theory to incorporate the model risk of the supply chain into our stress
testing framework. This is a topic for future research.
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Antràs, P., and Chor, D. (2018). On the Measurement of Upstreamness and Downstream-
ness in Global Value Chains. In Ing, L. Y., and Yu, M. (Eds), World Trade Evolution:
Growth, Productivity and Employment, Routledge-ERIA Studies in Development Eco-
nomics, pp. 126-194.

Barahhou, I., Ben Slimane, M., Oulid Azouz, N., and Roncalli, T. (2022). Net
Zero Investment Portfolios — Part 1. The Comprehensive Integrated Approach. SSRN,
4283998.

Bartolucci, S., Caccioli, F., Caravelli, F., and Vivo, P. (2023). Correlation between
Upstreamness and Downstreamness in Random Global Value Chains. arXiv, 2303.06603.

Battiston, S., Mandel, A., Monasterolo, I., Schütze, F., and Visentin, G. (2017).
A Climate Stress-test of the Financial System. Nature Climate Change, 7(4), pp. 283-288.

Ben Slimane, M., Lucius, D., Roncalli, T., and Xu, J. (2023). Net Zero Investment
Portfolios — Part 2. The Core-Satellite Approach. forthcoming.

132



From Climate Stress Testing to Climate Value-at-Risk

Bennani, L., Le Guenedal, T., Lepetit, F., Ly, L., Mortier, V., Roncalli, T., and
Sekine, T. (2018). How ESG Investing Has Impacted the Asset Pricing in the Equity
Market. SSRN, 3316862.

Bergstrom, T. C. (1982). On Capturing Oil Rents with a National Excise Tax. American
Economic Review, 72(1), pp. 194-201.

Bouchet, V., and Le Guenedal, T. (2020). Credit Risk Sensitivity to Carbon Price.
SSRN, 3574486.

Bulow, J. I., and Pfleiderer, P. (1983). A Note on the Effect of Cost Changes on Prices.
Journal of Political Economy, 91(1), pp. 182-185.

Cahen-Fourot, L., Campiglio, E., Godin, A., Kemp-Benedict, E., and Trsek, S.
(2021). Capital Stranding Cascades: The Impact of Decarbonisation on Productive Asset
Utilisation. Energy Economics, 103, 105581.

Campa, J. M., and Goldberg, L. S. (2005). Exchange Rate Pass-Through into Import
Prices. Review of Economics and Statistics, 87(4), pp. 679-690.

Cartellier, F. (2022). Climate Stress Testing, an Answer to the Challenge of Assessing
Climate-related Risks to the Financial System?. SSRN, 4179311.

Chen, H., Jebeli, H., Johnston, C., Paltsev, S., and Tremblay, M-C. (2023). An
Investigation into the Effects of Border Carbon Adjustments on the Canadian Economy.
Bank of Canada Staff Working paper, 2023-27.

Clarkson, R., and Deyes, K. (2002). Estimating the Social Cost of Carbon Emissions.
Government Economic Service Working Paper, 140.

Cludius, J., De Bruyn, S., Schumacher, K., and Vergeer, R. (2020). Ex-post Inves-
tigation of Cost Pass-through in the EU ETS — An Analysis for Six Industry Sectors.
Energy Economics, 91, 104883.

Corsatea, T. D., Lindner, S., Arto, I., ..., and Neuwahl, F. (2019). World Input-output
Database Environmental Accounts — Update 2000-2016. JRC Technical Report, 29727.

Daly, H. E. (1968). On Economics as a Life Science. Journal of Political Economy, 76(3),
pp. 392-406.

De Bruyn, S., Markowska, A., De Jong, F., and Bles, M. (2010a). Does the Energy In-
tensive Industry Obtain Windfall Profits through the EU ETS? An Econometric Analysis
for Products from the Refineries, Iron and Steel and Chemical Sectors. CE Delft Report,
April.

De Bruyn, S., Markowska, A., and Nelissen, D. (2010b). Will the Energy-intensive
Industry Profit from EU ETS under Phase 3?. CE Delft Report, October.

De Bruyn, S. M., Vergeer, R., Schep, E., ..., and Healy, S. (2015). Ex-post Investigation
of Cost Pass-through in the EU ETS — An Analysis for Six Sectors. CE Delft Report,
November.

Demailly, D., and Quirion, P. (2006). CO2 Abatement, Competitiveness and Leakage in
the European Cement Industry under the EU ETS: Grandfathering versus Output-based
Allocation. Climate Policy, 6(1), pp. 93-113.

133



From Climate Stress Testing to Climate Value-at-Risk

Dietz, S., Bowen, A., Dixon, C., and Gradwell, P. (2016). Climate Value at Risk of
Global Financial Assets. Nature Climate Change, 6(7), pp. 676-679.

Dietzenbacher, E., Los, B., Stehrer, R., Timmer, M., and De Vries, G. (2013). The
Construction of World Input-output Tables in the WIOD Project. Economic Systems
Research, 25(1), pp. 71-98.

Dixit, A. K., and Stiglitz, J. E. (1977). Monopolistic Competition and Optimum Product
Diversity. American Economic Review, 67(3), pp. 297-308.

Dornbusch, R. (1987). Exchange Rates and Prices. American Economic Review, 77(1), pp.
93-106.

Drei, A., Le Guenedal, T., Lepetit, F., Mortier, V., Roncalli, T., and Sekine,
T. (2019). ESG Investing in Recent Years: New Insights from Old Challenges. SSRN,
3683469.

Dunz, N., Emambakhsh, T., Hennig, T., ..., and Salleo, C. (2021). ECB’s Economy-
Wide Climate Stress Test. ECB Occasional Paper, 281.

Environmental Protection Agency (2022). Report on the Social Cost of Greenhouse Gases:
Estimates Incorporating Recent Scientific Advances. United States Government, Septem-
ber 2022.

ESMA (2022). Sustainable Finance Roadmap (2022-2024). Report, 30-379-1051, 10 February
2022.

Fama, E. F. and Stern, J. M. (2016). A Look Back at Modern Finance: Accomplishments
and Limitations. Journal of Applied Corporate Finance, 28(4), pp. 10-16.

Farhi, E., and Gabaix, X. (2020). Optimal Taxation with Behavioral Agents. American
Economic Review, 110(1), pp. 298-336.

Financial Stability Board (2009). Guidance to Assess the Systemic Importance of Financial
Institutions, Markets and Instruments: Initial Considerations. Report to the G-20 Finance
Ministers and Central Bank Governors, October 2009.

Ganapati, S., Shapiro, J. S., and Walker, R. (2020). Energy Cost Pass-through in
US Manufacturing: Estimates and Implications for Carbon Taxes. American Economic
Journal: Applied Economics, 12(2), pp. 303-42.

Gemechu, E. D., Butnar, I., Llop, M., and Castells, F. (2014). Economic and En-
vironmental effects of CO2 Taxation: An Input-output Analysis for Spain. Journal of
Environmental Planning and Management, 57(5), pp. 751-768.

Goulder, L. H. (2002). Environmental Taxation and the Double Dividend: A Reader’s
Guide. In Gouler, L. (Ed), Environmental Policy Making in Economies with Prior Tax
Distortions, Edward Elgar Publishing, pp. 46-72.

Gourdel, R., and Sydow, M. (2021). Non-banks Contagion and the Uneven Mitigation of
Climate Risk. ECB Working Paper, 2757.

Grippa, P., and Mann, S. (2018). Climate-Related Stress Testing: Transition Risks in
Norway. IMF Working Paper, 232.

Gutierrez, M. S. (2008). Economic Activity and Atmospheric Pollution in Spain: An
Input-output Approach. PhD Thesis, Universitat de Barcelona.

134



From Climate Stress Testing to Climate Value-at-Risk

Ha, J., Stocker, M. M., and Yilmazkuday, H. (2020). Inflation and Exchange Rate
Pass-through. Journal of International Money and Finance, 105, 102187.

Han, J., Tan, Z., Chen, M., Zhao, L., Yang, L., and Chen, S. (2022). Carbon Footprint
Research Based on Input-Output Model — A Global Scientometric Visualization Analysis.
International Journal of Environmental Research and Public Health, 19(18), 11343.

Harpankar, K. (2019). Internal Carbon Pricing: Rationale, Promise and Limitations.
Carbon Management, 10(2), pp. 219-225.

Interagency Working Group on Social Cost of Greenhouse Gases (2015). Technical Support
Document: Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis
Under Executive Order 12866. United States Government, July 2015.

Interagency Working Group on Social Cost of Greenhouse Gases (2021). Technical Support
Document: Social Cost of Carbon, Methane, and Nitrous Oxide, Interim Estimates under
Executive Order 13990. United States Government, February 2021.

Intergovernmental Panel on Climate Change (2018). Global Warming of 1.5◦C. Special Re-
port.

Intergovernmental Panel on Climate Change (2022). Climate Change 2022: Mitigation of
Climate Change — Contribution of Working Group III to the Sixth Assessment Report
of the IPCC. Report.

Jackson, R. W., Schwarm, W. R., Okuyama, Y., and Islam, S. (2006). A Method for
Constructing Commodity by Industry Flow Matrices. Annals of Regional Science, 40, pp.
909-920.

Jourde, T., and Moreau, Q. (2022). Systemic Climate Risk. SSRN, 4300469.

Kitzes, J. (2013). An Introduction to Environmentally-extended Input-output Analysis.
Resources, 2(4), pp. 489-503.

Le Guenedal, T. (2022). Financial Modeling of Climate-related Risks. PhD thesis, Institut
Polytechnique de Paris.

Leontief, W. W. (1936). Quantitative Input and Output Relations in the Economic Sys-
tems of the United States. Review of Economics and Statistics, 18(3), pp. 105-125.

Leontief, W. W. (1941). Structure of American Economy, 1919-1929: An Empirical Ap-
plication of Equilibrium Analysis. Harvard University Press.

Leontief, W. (1970). Environmental Repercussions and the Economic Structure: An Input-
output Approach. Review of Economics and Statistics, 52(3), pp. 262-271.

Llop, M. (2008). Economic Impact of Alternative Water Policy Scenarios in the Spanish
Production System: An Input-output Analysis. Ecological Economics, 68(1-2), pp. 288-
294.

McKinsey & Company, and Ecofys (2006). EU ETS Review: Report on International Com-
petitiveness. European Commission Directorate General for Environment, December.

Mardones, C., and Mena, C. (2020). Economic, Environmental and Distributive Analysis
of the Taxes to Global and Local Air Pollutants in Chile. Journal of Cleaner Production,
259, 120893.

135



From Climate Stress Testing to Climate Value-at-Risk

Miller, R. E., and Blair, P. D. (2009). Input-output Analysis: Foundations and Exten-
sions. Second edition, Cambridge University Press.

Minx, J. C., Wiedmann, T., Wood, R., ..., and Ackerman, F. (2009). Input-output Anal-
ysis and Carbon Footprinting: An Overview of Applications. Economic Systems Research,
21(3), pp. 187-216.

Nakano, S., and Washizu, A. (2022). A Study on Energy Tax Reform for Carbon Pric-
ing Using an Input-Output Table for the Analysis of a Next-Generation Energy System.
Energies, 15(6), 2162.

Naqvi, A., and Monasterolo, I. (2021). Assessing the Cascading Impacts of Natural
Disasters in a Multi-layer Behavioral Network Framework. Scientific Reports, 11, 20146.

NGFS (2020). Guide to Climate Scenario Analysis for Central Banks and Supervisors. Re-
port, June.

NGFS (2022). NGFS Scenarios for Central Banks and Supervisors. Report, September.

Nguyen, Q., Diaz-Rainey, I., and Kuruppuarachchi, D. (2021). Predicting Corporate
Carbon Footprints for Climate Finance Risk Analyses: A Machine Learning Approach.
Energy Economics, 95, 105129.

Nordhaus, W. D. (1991). To Slow or Not to Slow: The Economics of the Greenhouse
Effect. Economic Journal, 101(407), pp. 920-937.

Nordhaus, W. D. (2017). Revisiting the Social Cost of Carbon. Proceedings of the National
Academy of Sciences, 114(7), pp. 1518-1523.

Oberndorfer, U., Alexeeva-Talebi, V., and Löschel, A. (2010). Understanding the
Competitiveness Implications of Future Phases of EU ETS on the Industrial Sectors. ZEW
Discussion Paper, 10-044.

Perese, K. (2010). Input-Output Model Analysis: Pricing Carbon Dioxide Emissions. Tax
Analysis Division, Congressional Budget Office Working Paper Series, Washington, DC.

Ponssard, J. P., and Walker, N. (2008). EU Emissions Trading and the Cement Sector:
A Spatial Competition Analysis. Climate Policy, 8(5), pp. 467-493.

Poupard, A., Fetet, M., and Postic, S. (2022). Global Carbon Accounts in 2022. Climate
Brief, Institute for Climate Economics, September, 11 pages.

Raymond, C., Horton, R. M., Zscheischler, J., ..., and White, K. (2020). Under-
standing and Managing Connected Extreme Events. Nature climate change, 10(7), pp.
611-621.

RBB Economics (2014). Cost Pass-through: Theory, Measurement, and Potential Policy
Implications. A Report prepared for the Office of Fair Trading, February.

Reinders, H. J., Schoenmaker, D., and van Dijk, M. (2023). A Finance Approach to
Climate Stress Testing. Journal of International Money and Finance, 131, 102797.

Rennert, K., Prest, B. C., Pizer, W. A., ..., and Errickson, F. (2022). The Social
Cost of Carbon: Advances in Long-term Probabilistic Projections of Population, GDP,
Emissions, and Discount Rates. Brookings Papers on Economic Activity, Fall, pp. 223-305.

136



From Climate Stress Testing to Climate Value-at-Risk

Richards, T. J., and Pofahl, G. M. (2009). Commodity Prices and Food Inflation. Amer-
ican Journal of Agricultural Economics, 91(5), pp. 1450-1455.

Richters, O., Bertram, C., Kriegler, E., ..., and Zwerling, M. (2022). NGFS Climate
Scenario Database. Technical Documentation, V3.1, November.

Roncalli, T. (2020). Handbook of Financial Risk Management. Chapman and Hall/CRC
Financial Mathematics Series.

Roncalli, T. (2023). Handbook of Sustainable Finance. SSRN, 4277875.

Roncalli, T., Le Guenedal, T., Lepetit, F., Roncalli, T., and Sekine, T. (2020).
Measuring and Managing Carbon Risk in Investment Portfolios. SSRN, 3681266.

Roncalli, T., Le Guenedal, T., Lepetit, F., Roncalli, T., and Sekine, T. (2021).
The Market Measure of Carbon Risk and its Impact on the Minimum Variance Portfolio.
Journal of Portfolio Management, 47(9), pp. 54-68.

Roncoroni, A., Battiston, S., Escobar-Farfán, L. O., and Martinez-Jaramillo,
S. (2021). Climate Risk and Financial Stability in the Network of Banks and Investment
Funds. Journal of Financial Stability, 54, 100870.

Rose, S. K., Diaz, D. B., and Blanford, G. J. (2017). Understanding the Social Cost of
Carbon: A Model Diagnostic and Inter-comparison Study. Climate Change Economics,
8(02), 1750009.

Sautel, O., Mini, C., Bailly, H., and Dieye, R. (2022). La tarification du carbone et
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A Technical appendix

A.1 Notations

Table 41: Notations

Symbol Description

Carbon footprint
(GHG Protocol)

CE Carbon emissions
CI Carbon intensity
SC1 Scope 1
SC2 Scope 2
SCup

3 Upstream scope 3

SCdown
3 Downstream scope 3

SC3 Scope 3 (= SCup
3 + SCdown

3 )
SC1−2 Scope 1 + 2
SCup

1−3 Upstream scope 1 + 2 + 3 (= SC1 + SC2 + SCup
3 )

SC1−3 Scope 1 + 2 + 3

Leontief
analysis

xi Sector i production
Zi,j Sector i to sector j transaction
yi Sector i final demand
A Direct output matrix

Ă Direct input matrix
L Leontief inverse matrix

L̃ Dual inverse (or upstream) matrix

L̆ Downstream multiplier matrix
Φ Pass-through matrix

Carbon footprint
(EEIO analysis)

CIup
total Total upstream intensity

CIdown
total Total downstream intensity

CIup
indirect Indirect upstream intensity

CIdown
indirect Indirect downstream intensity

CIup
(k) kth-tier upstream intensity

CIup
(1−k) First k tier upstream intensity

CIdown
(k) kth-tier downstream intensity

CIdown
(1−k) First k tier downstream intensity

A.2 Calibration of the log-normal distribution (social cost of car-
bon)

We assume that SCC ∼ LN
(
µ, σ2

)
and SCC (α) = kαE [SCC]. Moreover, we consider that

mSCC = E [SCC] and kα are given. We deduce that µ and σ satisfy the following system of
non-linear equations:  E [SCC] = exp

(
µ+

1

2
σ2

)
= mSCC

SCC (α) = exp
(
µ+ Φ−1 (α)σ

)
= kαmSCC
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It follows that lnmSCC = µ +
1

2
σ2 and ln kα + lnmSCC = µ + Φ−1 (α)σ. We obtain a

second-order polynomial equation:

1

2
σ2 − Φ−1 (α)σ + ln kα = 0

Since the discriminant is equal to ∆ = Φ−1 (α)
2 − 2 ln kα, we obtain a solution if and only

if kα ≤ k?α = exp

(
1

2
Φ−1 (α)

2

)
. Below, we give the value of the threshold k?α for typical

values of α:
α 0.75 0.85 0.90 0.95 0.99
k?α 1.26 1.71 2.27 3.87 14.97

We notice that we have two positive roots σ′ and σ′′. One solution produces a bell-shape
distribution, while the other solution exhibits a high kurtosis and corresponds to a L-shape
distribution with a near-zero mode. Therefore, it is better to select the solution with the
lowest value of σ. Finally, the solution are:

µ′ = ln kα + lnmSCC − Φ−1 (α)
2

+ Φ−1 (α)

√
Φ−1 (α)

2 − 2 ln kα

and:

σ′ = Φ−1 (α)−
√

Φ−1 (α)
2 − 2 ln kα

To illustrate the previous calibration approach, we assume that mSCC = $50/tCO2

and k95% = 3. The solution is then µ′ = 3.48 and σ′ = 0.93, and we report the corre-
sponding probability density function in Figure 80. We notice that the second solution(
µ′ = 1.13, σ′ = 2.36

)
produces a L-shape distribution.

Figure 80: Calibrated probability distribution of the SCC (mSCC = $50/tCO2 and k95% = 3)
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A.3 Downstream analysis of Example #2

Using the data given in Table 10 on page 34, we compute the downstream matrix Ă:

Ă = diag (x)
−1
Z

= diag (x)
−1
Adiag (x)

=


0.10000 0.16000 0.32000 0.25000
0.12500 0.10000 0.40000 0.15625
0.03125 0.10000 0.30000 0.15625
0.00800 0.01600 0.06400 0.35000


where the output vector x is equal to the ratio between scope 1 carbon emissions and
intensities. We deduce the downstream multiplier matrix:

L̆ =


1.18811 0.31149 0.78705 0.72104
0.20970 1.25525 0.86717 0.59085
0.08938 0.20550 1.63035 0.47568
0.02859 0.05497 0.19156 1.60872


In Tables 42, 43 and 44, we report the downstream carbon intensities and emissions. These
figures can be compared to those obtained in the case of the upstream analysis (Tables 11,
12 and 13 on pages 34–37).

Table 42: Direct and indirect downstream carbon intensities (Example #2)

Sector
CI1 CIdown

total CIdown
direct CIdown

indirect CIdown
direct CIdown

indirect CIdown
total

CI1
(in tCO2e/$ mn) (in %)

Energy 100.00 161.27 100.00 61.27 62.01% 37.99% 1.61
Materials 50.00 111.32 50.00 61.32 44.92% 55.08% 2.23

Industrials 25.00 64.73 25.00 39.73 38.62% 61.38% 2.59
Services 10.00 26.48 10.00 16.48 37.76% 62.24% 2.65

Table 43: Tier decomposition of downstream carbon intensities (Example #2)

Sector 1 2 3 4 5 10 15 ∞

CIdown
(k)

Energy 28.50 14.68 8.00 4.45 2.48 0.14 0.00 0.00
Materials 29.06 14.39 7.92 4.39 2.45 0.13 0.01 0.00

Industrials 17.19 10.00 5.54 3.09 1.72 0.09 0.01 0.00
Services 6.70 4.14 2.44 1.40 0.79 0.04 0.00 0.00

CIdown
(1−k)

Energy 28.50 43.17 51.18 55.63 58.11 61.10 61.26 61.27
Materials 29.06 43.45 51.37 55.76 58.21 61.15 61.31 61.32

Industrials 17.19 27.19 32.73 35.82 37.54 39.61 39.72 39.73
Services 6.70 10.84 13.27 14.67 15.46 16.43 16.48 16.48

We notice that the results of the downstream analysis are different. While the energy
and materials sectors have the lowest upstream indirect emissions, they have the highest
downstream emissions. The reason lies in the structure of the supply chain. Most of output
from energy and materials sectors are destined to be used by the value chain to produce goods
and services. On the contrary, industrials and services sectors requires a lot of output from
the value chain to directly produce goods and services. In this context, carbon emissions
generally move down for energy and materials sectors, while they move up for industrials
and services sectors.
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Table 44: Breakdown of downstream carbon emissions (Example #2)

Sector
CEdown

direct CEdown
indirect CEdown

total CEdown
direct CEdown

indirect CEdown
total

(in ktCO2e) (in %)
Energy 500 267.30 767.30 48.78 21.70 34.00

Materials 200 169.08 369.08 19.51 13.72 16.35
Industrials 200 429.23 629.23 19.51 34.84 27.88

Services 125 366.31 491.31 12.20 29.73 21.77
Total 1 025 1 231.91 2 256.91 100.00 100.00 100.00

A.4 Derivation of the upstreamness index

We notice that:
∂
(
In −A>

)−1

∂ A>
=
(
In −A>

)−1 (
In −A>

)−1

and:
∂
∑∞
k=0

(
A>
)k

∂ A>
=

∞∑
k=0

k
(
A>
)k−1

It follows that:

∞∑
k=0

k
(
A>
)k

= A>
∞∑
k=0

k
(
A>
)k−1

= A>
∂
∑∞
k=0

(
A>
)k

∂ A>

= A>
∂
(
In −A>

)−1

∂ A>

= A>
(
In −A>

)−1 (
In −A>

)−1

Finally, we deduce that:

∞∑
k=0

k · CIup
(k) =

 ∞∑
k=0

k
(
A>
)kCI1

= A>
(
In −A>

)−1 (
In −A>

)−1

CI1

and:

τ up
j =

(
A>

(
In −A>

)−1 (
In −A>

)−1 CI1

)
j((

In −A>
)−1 CI1

)
j

A.5 Sector and region aggregation/mapping in input-output ma-
trices

We consider a multi-regional input-output table (Z, x) with nS sectors (or industries) and
nC countries (or regions) defined by Z =

(
Zi,j

)
and x = (xi). We note Z (C1, C2) ={(

Zi,j
)

: i ∈ C1 ∧ j ∈ C2
}

the submatrix of Z, whose rows belong to country C1 and columns
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belong to country C2. In a similar way, we define x (C) =
{

(xi) : i ∈ C
}

the country subvec-
tor of x corresponding to country C. We assume that the sectors are arranged in the same
order whatever the given country. Let S be the original sector classification. We would like
to map S to a new sector classification S∗ with nS∗ sectors. This is equivalent to apply the
nS ×nS∗ mapping matrix M =

(
Mi,j

)
with Mi,j =Map (i, j), where the mapping function

is defined as:

Map (i, j) =

{
1 if {i ∈ S} ∈ {j ∈ S?}
0 otherwise

We have:

Z∗ (C1, C2) = M>Z (C1, C2)M

and:

x∗ (C) = M>x (C)

We can collect the different matrices Z∗ (C1, C2) and x∗ (C) in order to form the new multi-
regional input-output table (Z∗, x∗). Another solution is to apply the augmented mapping
matrix InC ⊗M . We obtain Z∗ =

(
InC ⊗M>

)
Z
(
InC ⊗M

)
and x∗ =

(
InC ⊗M>

)
x. We

can then compute the matrix A∗ =
(
A∗i,j

)
for the new sector classification since the technical

coefficients are equal to A∗i,j = Z∗i,j/xj .

To perform an aggregating by region, we use the same technique. Let (Z, x) be the
original input-output table. We would like to map the region classification C to a new
region classification C∗ with nC∗ sectors. The dimension of the mapping matrix M becomes
nC × nC∗ while the mapping function is defined as Map (i, j) = 1 if {i ∈ C} ∈ {j ∈ C?}
and Map (i, j) = 0 otherwise. Finally, we have Z∗ =

(
M> ⊗ InS

)
Z
(
M ⊗ InS

)
and x∗ =(

M> ⊗ InS
)
x.

A.6 Product of log-normal random variables

Let X = (X1, . . . , Xn) ∼ LN (µ,Σ) be a log-normal random vector. We consider the
following transformation: Xi = eZi where Z = (Z1, . . . , Zn) ∼ N (µ,Σ) is a Gaussian
random vector. It follows that µ = (µ1, . . . , µn) is the mean vector of Z, Σ =

(
Σi,j

)
is the

covariance matrix of Z and Σi,j = ρi,jσiσj is the covariance between Zi and Zj . We denote
by Y =

∏n
i=1Xi the product of Xi’s. We deduce that:

Y =

n∏
i=1

Xi =

n∏
i=1

eZi = e
∑n
i=1 Zi = eZ

?

where Z? ∼ N
(
µz, σ

2
z

)
, µz = E [Z?] =

∑n
i=1 µi = 1>nµ and σ2

z = var (Z?) =
∑n
i=1 σ

2
i +

2
∑
i>j ρi,jσiσj = 1>nΣ1n. Finally, we conclude that Y is a log-normal random variable:

Y =

n∏
i=1

Xi ∼ LN
(
1>nµ,1

>
nΣ1n

)
In the case of two independent log-normal random variables, we have:

X1X2 ∼ LN
(
µ1 + µ2, σ

2
1 + σ2

2

)
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A.7 Calibration of the multiplying coefficient (upstream emissions)

A.7.1 The mean-decreasing case

We assume that m̃(0−k) ∼ SLN
(
µC,S , σC,S , ξ

)
and m̆(0−k) − ξ =

(
m̃(0−k) − ξ

)
ϕ̃i where

ϕ̃i ∼ LN
(
µi, σ

2
i

)
. We deduce that:

E
[
m̆(0−k) − ξ

]
= E

[
m̃(0−k) − ξ

]
eµi+0.5σ2

i

If we assume that E
[
m̃(0−k)

]
= mi, it follows that:

µi +
1

2
σ2
i = ln

mi − ξ

E
[
m̃(0−k)

]
− ξ

= lnRi (39)

where Ri is the ratio between mi − ξ and E
[
m̃(0−k)

]
− ξ. The variance of m̆(0−k) has the

following expression:

var
(
m̆(0−k)

)
=
(
eσ

2
C,S+σ2

i − 1
)
e2(µC,S+µi)+(σ2

C,S+σ2
i )

The equation var
(
m̆(0−k)

)
= var

(
m̃(0−k)

)
implies that:

(∗) ⇔
(
eσ

2
C,S+σ2

i − 1
)
e2(µC,S+µi)+(σ2

C,S+σ2
i ) =

(
eσ

2
C,S − 1

)
e2µC,S+σ2

C,S

⇔
(
eσ

2
C,S+σ2

i − 1
)
e2µi+σ

2
i =

(
eσ

2
C,S − 1

)
Using Equation (39), it comes that:

(
eσ

2
C,S+σ2

i − 1
)

=

(
eσ

2
C,S − 1

)
R2
i

If the solution exists, it is equal to:

σ2
i = ln

1 +

(
eσ

2
C,S − 1

)
R2
i

− σ2
C,S

and:

µi = ln
mi − ξ

E
[
m̃(0−k)

]
− ξ
− 1

2
σ2
i

The solution exists if and only if the following condition is satisfied:

(∗) ⇔ 1 +
eσ

2
C,S − 1

R2
i

≥ eσ
2
C,S

⇔ eσ
2
C,S − 1 ≥ R2

i

(
eσ

2
C,S − 1

)
⇔ R2

i ≤ 1

We deduce that the condition is Ri ∈ [0, 1] because E
[
m̃(0−k)

]
> ξ and mi > ξ. This means

that we can decrease the mean by preserving the variance, but not the contrary. The reason
is the following. The variance of a log-normal random variable LN

(
µ, σ2

)
is an increasing

function of the mean parameter µ. Since Ri > 1 increases µ, it also increases the variance.
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A.7.2 The mean-increasing case

In the case Ri > 1, we would like to find the optimal values of (µi, σi) such that we minimize

the variance of m̆(0−k) subject to the constraints E
[
m̃(0−k)

]
= mi and σ2

i ≥ 0. The Lagrange

function associated to this problem is:

f
(
µi, σ

2
i , λm, λσ

)
=

(
eσ

2
C,S+σ2

i − 1
)
e2(µC,S+µi)+(σ2

C,S+σ2
i ) −

λm

(
ξ + e(µC,S+µi)+0.5(σ2

C,S+σ2
i ) −mi

)
− λσσ2

i

Since we have e(µC,S+µi)+0.5(σ2
C,S+σ2

i ) = mi − ξ, the first-order conditions are:

∂ f
(
µi, σ

2
i , λm, λσ

)
∂ µi

= 2
(
eσ

2
C,S+σ2

i − 1
)

(mi − ξ)2 − λm (mi − ξ) = 0

and:
∂ f
(
µi, σ

2
i , λm, λσ

)
∂ σ2

i

=
(

2eσ
2
C,S+σ2

i − 1
)

(mi − ξ)2 − λm
2

(mi − ξ)− λσ = 0

while the Kuhn-Tucker condition is min
(
λσ, σ

2
i

)
= 0. We deduce that:

2eσ
2
C,S+σ2

i (mi − ξ)2 − 2λσ = 0

Let us assume that λσ = 0. The Kuhn–Tucker condition implies that σ2
i > 0. The previous

equation becomes then 2eσ
2
C,S+σ2

i (mi − ξ)2
= 0, but it has no solution since mi − ξ > 0.

Therefore, the only solution is reached when λσ > 0 and σ2
i = 0. We deduce that the

optimal values are: 
µi = ln (mi − ξ)−

(
µC,S +

1

2
σ2
C,S

)
σi = 0

λm = 2
(
eσ

2
C,S − 1

)
(mi − ξ)

λσ = eσ
2
C,S (mi − ξ)2

This solution is equivalent to using the scaling factor:

λ = exp

(
ln (mi − ξ)−

(
µC,S +

1

2
σ2
C,S

))

=
mi − ξ

eµC,S+ 1
2σ

2
C,S

=
mi − ξ

E
[
m̃(0−k)

]
− ξ

The minimum standard deviation of m̆(0−k) is then equal to λσ
(
m̃(0−k)

)
.

A.8 Ordering properties of nonnegative matrices

Let A, B, C and D be nonnegative square matrices. We can show that:

(NN1) A � B ⇒ AC � BC;

(NN2) A � B ∧ C � D ⇒ AC � BD;
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(NN3) A � B ∧ C � D ⇒ A+ C � B +D;

(NN4) A � B ∧ k ≥ 1⇒ Ak � Bk;

The proof of the first property NN1 is the following. We have (AC)i,j =
∑n
k=1Ai,kCk,j

and (BC)i,j =
∑n
k=1Bi,kCk,j . Since we have Ai,k ≥ Bi,k and Ck,j ≥ 0, we deduce that

Ai,kCk,j ≥ Bi,kCk,j and (AC)i,j ≥ (BC)i,j . This implies that AC � BC. For the second

property NN2, we have (AC)i,j =
∑n
k=1Ai,kCk,j , (BD)i,j =

∑n
k=1Bi,kDk,j , Ai,kCk,j ≥

Bi,kDk,j , (AC)i,j ≥ (BD)i,j and AC � BD. Property NN3 holds because Ai,j ≥ Bi,j and
Ci,j ≥ Di,j implies Ai,j + Ci,j ≥ Bi,j + Di,j . The fourth property NN4 is a consequence
of the second property. Let us assume that A � B ⇒ Ak � Bk. We deduce that A �
B ∧ Ak � Bk ⇒ AAk � BBk or A � B ∧ Ak � Bk ⇒ Ak+1 � Bk+1. Moreover, we have
A � B ∧ A � B ⇒ AA � BB or A � B ⇒ A2 � B2. The induction hypothesis is then
proved for k = 1, 2, . . . ,∞.

A.9 Proof of the inequality L̃m � L̃

We have: L̃m =
(
Dξ −A>

)−1
=
(
DξIn −DξD

−1
ξ A>

)−1

=
(
In −D−1

ξ A>
)−1

D−1
ξ . Since

A is a nonnegative matrix and D−1
ξ � In, D−1

ξ A> is also a nonnegative matrix. Let us

assume that D−1
ξ A> remains substochastic. We have L̃m =

∑∞
k=0

(
D−1
ξ A>

)k
D−1
ξ . Us-

ing Properties NN2 and NN4 of Appendix A.8, we have D−1
ξ A> � A>,

(
D−1
ξ A>

)k
�(

A>
)k

and
(
D−1
ξ A>

)k
D−1
ξ �

(
A>
)k

. Finally, we apply Property NN3 and deduce that∑∞
k=0

(
D−1
ξ A>

)k
D−1
ξ �

∑∞
k=0

(
A>
)k

and L̃m � L̃.

This proof highlights the fact that Dξ − A> may be non-invertible. A sufficient (but
not necessary) condition is that D−1

ξ A> is a substochastic matrix. This implies that∑n
j=1

(
1 + ξj

)
Ai,j ≤ 1 or

∑n
j=1 ξjAi,j ≤ 1 −

∑n
j=1Ai,j . This means that if the tax is

too high, we can observe exploding prices.

A.10 Mathematical expectation of the price elasticity of demand

We assume that φ̃ ∼ B (α, β). Since we have ε̃ = 1− φ̃−1, we deduce that:

E [ε̃] = 1− E

[
1

φ̃

]

= 1−
∫ 1

0

1

x

xα−1 (1− x)
β−1

B (α, β)
dx

= 1−
∫ 1

0

xα−2 (1− x)
β−1

B (α, β)
dx

= 1− B (α− 1, β)

B (α, β)

∫ 1

0

xα−2 (1− x)
β−1

B (α− 1, β)
dx

= 1− B (α− 1, β)

B (α, β)
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From Climate Stress Testing to Climate Value-at-Risk

Using the relationship between the beta and gamma functions, we obtain:

E [ε̃] = 1− Γ (α− 1) Γ (β) Γ (α+ β)

Γ (α+ β − 1) Γ (α) Γ (β)

= 1− Γ (α− 1) Γ (α+ β)

Γ (α+ β − 1) Γ (α)

= 1− α+ β

α

= −β
α

B Additional results

B.1 Figures
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From Climate Stress Testing to Climate Value-at-Risk

Figure 81: GDP impact by 2030 (% change from baseline) — B2D scenario

Source: https://data.ene.iiasa.ac.at/ngfs & Author’s calculations (created by Datawrapper).

Figure 82: GDP impact by 2030 (% change from baseline) — CP scenario

Source: https://data.ene.iiasa.ac.at/ngfs & Author’s calculations (created by Datawrapper).

Figure 83: GDP impact by 2030 (% change from baseline) — DNZ scenario

Source: https://data.ene.iiasa.ac.at/ngfs & Author’s calculations (created by Datawrapper).
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From Climate Stress Testing to Climate Value-at-Risk

Figure 84: GDP impact by 2030 (% change from baseline) — DT scenario

Source: https://data.ene.iiasa.ac.at/ngfs & Author’s calculations (created by Datawrapper).

Figure 85: GDP impact by 2030 (% change from baseline) — NDC scenario

Source: https://data.ene.iiasa.ac.at/ngfs & Author’s calculations (created by Datawrapper).

Figure 86: GDP impact by 2030 (% change from baseline) — NZ scenario

Source: https://data.ene.iiasa.ac.at/ngfs & Author’s calculations (created by Datawrapper).
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From Climate Stress Testing to Climate Value-at-Risk

Figure 87: GDP impact by 2050 (% change from baseline) — B2D scenario

Source: https://data.ene.iiasa.ac.at/ngfs & Author’s calculations (created by Datawrapper).

Figure 88: GDP impact by 2050 (% change from baseline) — CP scenario

Source: https://data.ene.iiasa.ac.at/ngfs & Author’s calculations (created by Datawrapper).

Figure 89: GDP impact by 2050 (% change from baseline) — DNZ scenario

Source: https://data.ene.iiasa.ac.at/ngfs & Author’s calculations (created by Datawrapper).
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From Climate Stress Testing to Climate Value-at-Risk

Figure 90: GDP impact by 2050 (% change from baseline) — DT scenario

Source: https://data.ene.iiasa.ac.at/ngfs & Author’s calculations (created by Datawrapper).

Figure 91: GDP impact by 2050 (% change from baseline) — NDC scenario

Source: https://data.ene.iiasa.ac.at/ngfs & Author’s calculations (created by Datawrapper).

Figure 92: GDP impact by 2050 (% change from baseline) — NZ scenario

Source: https://data.ene.iiasa.ac.at/ngfs & Author’s calculations (created by Datawrapper).
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From Climate Stress Testing to Climate Value-at-Risk

Figure 93: Comparison of EU and UK ETS carbon prices
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Source: Bloomberg (2023), Factset (2023).

Figure 94: Sparsity pattern of the input-output matrix A (Exiobase 2014)
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From Climate Stress Testing to Climate Value-at-Risk

Figure 95: Sparsity pattern of the input-output matrix A (Exiobase 2022)
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Figure 96: Sparsity pattern of |Awiod −Aexiobase| (2014)
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From Climate Stress Testing to Climate Value-at-Risk

Figure 97: Multiplying coefficient m(0−∞) (Exiobase 2014)
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Figure 98: Multiplying coefficient m(0−∞) (Exiobase 2022)
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From Climate Stress Testing to Climate Value-at-Risk

Figure 102: Multiplying coefficients (country-sector analysis, WIOD 2014)

Figure 103: Multiplying coefficients (country-sector analysis, Trucost 2021)
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Figure 104: Breakdown of the portfolio intensity per GICS sector (MSCI World index, May
2023)
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Figure 105: Cumulative distribution function of pass-through rates
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Figure 106: Cost multiplier (global analysis, uniform taxation, WIOD 2014)
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Figure 107: Distribution of country inflation rates in % (global analysis, uniform taxation,
Exiobase 2022)
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Figure 108: Distribution of country inflation rates in % (global analysis, uniform taxation,
WIOD 2014)

Figure 109: Contribution of the direct emissions in % (global analysis, uniform taxation,
τ = $100/tCO2e, φ = 100%, Exiobase 2022)

Source: Author’s calculations (created by Datawrapper).
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From Climate Stress Testing to Climate Value-at-Risk

Figure 110: Production inflation rate in % explained by the direct emissions (global analysis,
uniform taxation, τ = $100/tCO2e, φ = 100%, Exiobase 2022)

Source: Author’s calculations (created by Datawrapper).

Figure 111: Production inflation rate in % explained by the global value chain (global
analysis, uniform taxation, τ = $100/tCO2e, φ = 100%, Exiobase 2022)

Source: Author’s calculations (created by Datawrapper).
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Figure 112: Cost multiplier (global analysis, differentiated taxation, Exiobase 2022)
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Figure 113: Cost breakdown (EU, uniform taxation, φ = 50%, Wiod 2014)

Figure 114: Cost breakdown (EU, uniform taxation, φ = 100%, Wiod 2014)
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Figure 115: Directed graph (matrix #2)
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Figure 116: Impact of the kth tier on the directed graph (matrix #2)
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Figure 117: Directed graph (matrix #3)
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Figure 118: Impact of the kth tier on the directed graph (matrix #3)
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Figure 119: World economic cost in $ tn (global analysis, stochastic pass-through, Exiobase
2022)
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Figure 120: World economic cost in % of GDP (global analysis, stochastic pass-through,
Exiobase 2022)
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Figure 121: World PPI inflation rate in % (global analysis, stochastic pass-through, Exiobase
2022)
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Figure 122: World CPI inflation rate in % (global analysis, stochastic pass-through, Exiobase
2022)
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Figure 123: Probability density function of earnings’ shocks (global analysis, τ =
$100/tCO2e, stochastic pass-through and elasticity, Gaussian copula, ρ = 70%, Exiobase
2022)
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Figure 124: Expected shortfall at the 99% confidence level (global uniform taxation, τ =
$100/tCO2e, stochastic pass-through rate, Gaussian copula, Exiobase 2022, MSCI World,
May 2023)
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B.2 Tables

Table 45: List of countries/regions (WIOD 2014)

No. ISO Name No. ISO Name
C1 AUS Australia C2 AUT Austria
C3 BEL Belgium C4 BGR Bulgaria
C5 BRA Brazil C6 CAN Canada
C7 CHE Switzerland C8 CHN China
C9 CYP Cyprus C10 CZE Czech Republic
C11 DEU Germany C12 DNK Denmark
C13 ESP Spain C14 EST Estonia
C15 FIN Finland C16 FRA France
C17 GBR United Kingdom C18 GRC Greece
C19 HRV Croatia C20 HUN Hungary
C21 IDN Indonesia C22 IND India
C23 IRL Ireland C24 ITA Italy
C25 JPN Japan C26 KOR Republic of Korea
C27 LTU Lithuania C28 LUX Luxembourg
C29 LVA Latvia C30 MEX Mexico
C31 MLT Malta C32 NLD Netherlands
C33 NOR Norway C34 POL Poland
C35 PRT Portugal C36 ROU Romania
C37 RUS Russian Federation C38 SVK Slovakia
C39 SVN Slovenia C40 SWE Sweden
C41 TUR Turkey C42 TWN Taiwan
C43 USA United States of America C44 ROW Rest-of-the-world
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Table 46: List of industries/sectors (WIOD 2014)

No. Name
S1 Accommodation and food service activities
S2 Activities auxiliary to financial services and insurance activities
S3 Activities of extraterritorial organizations and bodies
S4 Activities of households as employers; undifferentiated goods- and services-producing activities of

households for own use
S5 Administrative and support service activities
S6 Advertising and market research
S7 Air transport
S8 Architectural and engineering activities; technical testing and analysis
S9 Computer programming, consultancy and related activities; information service activities
S10 Construction
S11 Crop and animal production, hunting and related service activities
S12 Education
S13 Electricity, gas, steam and air conditioning supply
S14 Financial service activities, except insurance and pension funding
S15 Fishing and aquaculture
S16 Forestry and logging
S17 Human health and social work activities
S18 Insurance, reinsurance and pension funding, except compulsory social security
S19 Land transport and transport via pipelines
S20 Legal and accounting activities; activities of head offices; management consultancy activities
S21 Manufacture of basic metals
S22 Manufacture of basic pharmaceutical products and pharmaceutical preparations
S23 Manufacture of chemicals and chemical products
S24 Manufacture of coke and refined petroleum products
S25 Manufacture of computer, electronic and optical products
S26 Manufacture of electrical equipment
S27 Manufacture of fabricated metal products, except machinery and equipment
S28 Manufacture of food products, beverages and tobacco products
S29 Manufacture of furniture; other manufacturing
S30 Manufacture of machinery and equipment n.e.c.
S31 Manufacture of motor vehicles, trailers and semi-trailers
S32 Manufacture of other non-metallic mineral products
S33 Manufacture of other transport equipment
S34 Manufacture of paper and paper products
S35 Manufacture of rubber and plastic products
S36 Manufacture of textiles, wearing apparel and leather products
S37 Manufacture of wood and of products of wood and cork, except furniture; manufacture of articles

of straw and plaiting materials
S38 Mining and quarrying
S39 Motion picture, video and television programme production, sound recording and music publishing

activities; programming and broadcasting activities
S40 Other professional, scientific and technical activities; veterinary activities
S41 Other service activities
S42 Postal and courier activities
S43 Printing and reproduction of recorded media
S44 Public administration and defence; compulsory social security
S45 Publishing activities
S46 Real estate activities
S47 Repair and installation of machinery and equipment
S48 Retail trade, except of motor vehicles and motorcycles
S49 Scientific research and development
S50 Sewerage; waste collection, treatment and disposal activities; materials recovery; remediation ac-

tivities and other waste management services
S51 Telecommunications
S52 Warehousing and support activities for transportation
S53 Water collection, treatment and supply
S54 Water transport
S55 Wholesale and retail trade and repair of motor vehicles and motorcycles
S56 Wholesale trade, except of motor vehicles and motorcycles
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Table 47: Density metrics of the matrix A (WIOD 2014)

Country
maxAi,j (Ω) #

{
Ai,j (Ω) ≥ 10%

}
DA (C) OA (C) RA (C) CA (C) DA (C) OA (C) RA (C) CA (C)

AUS 0.31 0.44 0.11 0.22 8 12 1 2
AUT 0.37 0.25 0.07 0.34 18 9 0 4
BEL 0.24 0.26 0.20 0.09 11 10 2 0
BGR 0.31 0.19 0.08 0.34 12 12 0 6
BRA 0.30 0.36 0.03 0.09 16 12 0 0
CAN 0.34 0.38 0.09 0.23 9 10 0 5
CHE 0.49 0.18 0.07 0.08 20 16 0 0
CHN 0.44 0.47 0.15 0.09 20 30 2 0
CYP 0.17 0.44 0.12 0.30 6 18 2 5
CZE 0.32 0.33 0.05 0.18 24 12 0 3
DEU 0.23 0.34 0.20 0.10 15 15 7 0
DNK 0.30 0.48 0.06 0.18 10 12 0 3
ESP 0.38 0.22 0.21 0.40 18 16 2 1
EST 0.25 0.25 0.09 0.09 9 14 0 0
FIN 0.28 0.29 0.08 0.13 12 12 0 1
FRA 0.38 0.33 0.08 0.22 17 6 0 1
GBR 0.37 0.29 0.14 0.14 18 9 2 2
GRC 0.20 0.39 0.09 0.44 4 32 0 1
HRV 0.25 0.33 0.02 0.14 7 28 0 2
HUN 0.21 0.38 0.04 0.27 8 7 0 3
IDN 0.46 0.38 0.07 0.09 9 20 0 0
IND 0.26 0.32 0.06 0.44 13 17 0 2
IRL 0.40 0.12 0.06 0.23 6 2 0 4
ITA 0.33 0.22 0.10 0.22 17 14 1 1
JPN 0.40 0.36 0.06 0.34 16 17 0 4
KOR 0.35 0.29 0.12 0.44 16 19 1 2
LTU 0.20 0.18 0.07 0.30 11 6 0 2
LUX 0.33 0.28 0.24 0.20 5 2 1 13
LVA 0.38 0.30 0.04 0.13 11 16 0 1
MEX 0.23 0.45 0.06 0.14 7 23 0 4
MLT 0.35 0.17 0.01 0.24 9 10 0 6
NLD 0.21 0.29 0.10 0.13 11 10 0 1
NOR 0.29 0.46 0.18 0.07 7 13 3 0
POL 0.26 0.35 0.08 0.19 15 9 0 1
PRT 0.49 0.21 0.01 0.51 20 15 0 2
ROU 0.18 0.21 0.03 0.26 3 9 0 2
RUS 0.23 0.18 0.30 0.07 9 15 9 0
SVK 0.38 0.39 0.04 0.23 15 13 0 3
SVN 0.31 0.21 0.03 0.11 13 7 0 1
SWE 0.18 0.24 0.06 0.15 9 11 0 2
TUR 0.46 0.29 0.15 0.12 12 10 1 1
TWN 0.40 0.28 0.03 0.36 19 24 0 4
USA 0.28 0.38 0.23 0.09 12 10 16 0
ROW 0.40 0.63 0.51 0.10 18 22 45 0
Total 0.49 0.63 0.51 0.51 544 602 95 95
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Table 48: Density metrics of the matrix A (Exiobase 2014)

Country
maxAi,j (Ω) #

{
Ai,j (Ω) ≥ 10%

}
DA (C) OA (C) RA (C) CA (C) DA (C) OA (C) RA (C) CA (C)

AUS 0.27 0.44 0.06 0.49 10 25 0 1
AUT 0.61 0.22 0.08 0.64 16 9 0 2
BEL 0.27 0.31 0.05 0.15 14 14 0 2
BGR 0.22 0.28 0.11 0.31 9 12 1 4
BRA 0.25 0.56 0.05 0.17 12 16 0 1
CAN 0.25 0.91 0.13 0.19 12 17 2 3
CHE 0.39 0.62 0.03 0.34 18 17 0 3
CHN 0.48 0.36 0.12 0.22 18 27 1 1
CYP 0.33 0.31 0.01 0.16 9 14 0 2
CZE 0.36 0.34 0.05 0.33 21 16 0 3
DEU 0.27 0.37 0.12 0.14 16 13 3 2
DNK 0.38 0.75 0.05 0.14 8 21 0 1
ESP 0.34 0.27 0.13 0.47 17 16 1 2
EST 0.37 0.40 0.02 0.18 15 14 0 5
FIN 0.27 0.32 0.04 0.42 13 12 0 1
FRA 0.34 0.40 0.09 0.42 14 12 0 2
GBR 0.37 0.35 0.15 0.19 13 13 3 2
GRC 0.31 0.33 0.10 0.58 10 19 0 4
HRV 0.45 0.28 0.01 0.29 6 9 0 2
HUN 0.21 0.41 0.07 0.39 5 10 0 4
IDN 0.29 0.49 0.04 0.11 10 19 0 3
IND 0.33 0.32 0.03 0.56 16 20 0 1
IRL 0.35 0.28 0.03 0.14 12 16 0 5
ITA 0.27 0.37 0.09 0.53 16 18 0 2
JPN 0.50 0.42 0.05 0.53 16 18 0 1
KOR 0.46 0.56 0.11 0.58 22 27 1 2
LTU 0.24 0.23 0.23 0.30 10 10 1 3
LUX 0.33 0.59 0.01 0.37 6 15 0 17
LVA 0.51 0.50 0.03 0.28 11 13 0 7
MEX 0.26 0.49 0.10 0.22 6 20 1 6
MLT 0.49 0.64 0.01 0.75 15 8 0 12
NLD 0.33 0.39 0.15 0.27 13 10 1 3
NOR 0.48 0.90 0.37 0.07 9 8 6 0
POL 0.32 0.29 0.06 0.46 14 10 0 1
PRT 0.43 0.27 0.01 0.49 16 14 0 3
ROU 0.34 0.32 0.04 0.42 11 11 0 1
RUS 0.31 0.99 0.56 0.14 14 14 30 1
SVK 0.39 0.36 0.03 0.56 14 11 0 1
SVN 0.34 0.17 0.03 0.05 12 9 0 0
SWE 0.20 0.27 0.03 0.30 5 15 0 4
TUR 0.42 0.45 0.09 0.17 11 22 0 1
TWN 0.57 0.36 0.02 0.45 22 21 0 4
USA 0.31 0.63 0.22 0.17 15 23 12 2
ROW 0.23 0.47 0.75 0.08 10 8 64 0
Total 0.61 0.99 0.75 0.75 562 666 127 127
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Table 49: Density metrics of the matrix A (Exiobase 2022)

Country
maxAi,j (Ω) #

{
Ai,j (Ω) ≥ 10%

}
DA (C) OA (C) RA (C) CA (C) DA (C) OA (C) RA (C) CA (C)

AUS 0.29 0.54 0.05 0.34 11 23 0 1
AUT 0.63 0.26 0.06 0.63 16 10 0 1
BEL 0.26 0.31 0.23 0.13 12 14 1 1
BGR 0.21 0.30 0.03 0.12 9 11 0 3
BRA 0.25 0.44 0.05 0.12 12 17 0 1
CAN 0.23 0.92 0.09 0.18 10 15 0 5
CHE 0.37 0.63 0.09 0.25 13 12 0 1
CHN 0.46 0.37 0.12 0.14 19 28 4 1
CYP 0.42 0.39 0.00 0.21 14 21 0 6
CZE 0.35 0.34 0.03 0.31 19 17 0 3
DEU 0.28 0.38 0.11 0.13 16 12 1 2
DNK 0.33 0.66 0.05 0.18 6 18 0 1
ESP 0.44 0.45 0.13 0.42 14 16 1 1
EST 0.31 0.43 0.05 0.15 11 15 0 1
FIN 0.29 0.36 0.03 0.35 15 11 0 1
FRA 0.38 0.40 0.09 0.48 14 11 0 3
GBR 0.32 0.30 0.17 0.18 14 13 4 3
GRC 0.29 0.30 0.03 0.53 11 19 0 2
HRV 0.48 0.28 0.02 0.32 6 16 0 1
HUN 0.21 0.38 0.06 0.18 6 9 0 4
IDN 0.31 0.54 0.02 0.13 9 21 0 2
IND 0.33 0.33 0.07 0.34 16 16 0 1
IRL 0.38 0.32 0.21 0.17 9 12 5 6
ITA 0.27 0.30 0.07 0.63 17 16 0 1
JPN 0.54 0.43 0.05 0.31 17 19 0 2
KOR 0.43 0.68 0.04 0.42 20 26 0 1
LTU 0.30 0.23 0.05 0.17 10 11 0 1
LUX 0.30 0.57 0.16 0.36 7 10 1 9
LVA 0.58 0.49 0.01 0.17 10 17 0 5
MEX 0.30 0.51 0.05 0.24 6 24 0 7
MLT 0.58 0.46 0.01 0.75 15 12 0 18
NLD 0.26 0.37 0.10 0.24 12 11 0 4
NOR 0.54 0.88 0.18 0.08 10 14 3 0
POL 0.41 0.27 0.03 0.26 12 9 0 2
PRT 0.42 0.29 0.02 0.40 15 13 0 2
ROU 0.22 0.42 0.02 0.33 11 10 0 2
RUS 0.43 0.99 0.35 0.14 16 18 12 1
SVK 0.36 0.28 0.03 0.29 12 14 0 2
SVN 0.28 0.17 0.05 0.08 12 9 0 0
SWE 0.19 0.29 0.04 0.21 4 16 0 4
TUR 0.41 0.35 0.05 0.10 9 21 0 0
TWN 0.47 0.33 0.01 0.28 22 23 0 4
USA 0.33 0.68 0.24 0.15 14 27 16 1
ROW 0.21 0.44 0.75 0.10 12 7 70 1
Total 0.63 0.99 0.75 0.75 545 684 118 118
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Table 50: Decomposition of the direct + indirect carbon emissions (WIOD 2014)

Country
Direct First-tier Indirect Total

MtCO2e % MtCO2e % MtCO2e % MtCO2e
AUS 365 33.9 270 25.1 711 66.1 1 076
AUT 44 24.9 40 22.8 131 75.1 175
BEL 72 22.4 83 25.9 249 77.6 321
BGR 43 41.0 29 27.4 62 59.0 105
BRA 494 37.9 341 26.1 809 62.1 1 304
CAN 467 41.1 257 22.7 667 58.9 1 134
CHE 26 13.9 40 21.4 161 86.1 187
CHN 9 946 25.6 9 076 23.4 28 896 74.4 38 842
CYP 5 36.6 4 27.5 9 63.4 15
CZE 82 34.5 55 23.3 155 65.5 237
DEU 676 36.1 453 24.2 1 196 63.9 1 872
DNK 63 40.3 31 20.0 94 59.7 157
ESP 207 30.4 153 22.4 475 69.6 682
EST 19 43.9 11 26.5 24 56.1 42
FIN 45 29.9 38 25.5 105 70.1 150
FRA 230 28.7 169 21.0 574 71.3 804
GBR 364 33.7 243 22.6 714 66.3 1 078
GRC 64 44.1 36 24.8 82 55.9 146
HRV 13 40.0 8 23.5 20 60.0 33
HUN 35 31.5 26 23.3 75 68.5 110
IDN 470 40.9 295 25.7 678 59.1 1 148
IND 2 041 39.8 1 517 29.6 3 092 60.2 5 134
IRL 32 31.2 25 24.4 71 68.8 104
ITA 259 27.2 215 22.5 693 72.8 952
JPN 1 122 32.1 848 24.2 2 379 67.9 3 502
KOR 618 27.7 515 23.1 1 611 72.3 2 229
LTU 15 39.6 9 22.3 23 60.4 38
LUX 7 20.4 7 20.9 26 79.6 33
LVA 7 26.8 6 23.3 19 73.2 25
MEX 399 44.0 243 26.7 509 56.0 908
MLT 3 33.2 2 23.2 7 66.8 10
NLD 224 41.3 106 19.5 319 58.7 543
NOR 46 37.5 24 19.5 77 62.5 123
POL 270 39.1 185 26.7 421 60.9 691
PRT 41 32.6 29 22.7 85 67.4 126
ROU 66 35.1 48 25.4 122 64.9 187
RUS 1 525 41.2 1 088 29.4 2 175 58.8 3 700
SVK 28 31.7 18 20.0 61 68.3 90
SVN 11 33.1 9 24.9 23 66.9 35
SWE 42 25.7 37 22.6 122 74.3 164
TUR 271 32.5 221 26.5 564 67.5 834
TWN 294 29.3 243 24.2 711 70.7 1 006
USA 4 343 45.7 2 334 24.6 5 156 54.3 9 499
ROW 6 977 31.4 5 396 24.3 15 231 68.6 22 208
Total 32 377 31.8 24 781 24.4 69 385 68.2 101 762
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Table 51: Decomposition of the direct + indirect carbon emissions (Exiobase 2014)

Country
Direct First-tier Indirect Total

MtCO2e % MtCO2e % MtCO2e % MtCO2e
AUS 635 44.5 366 25.7 791 55.5 1 426
AUT 72 29.3 61 24.8 173 70.7 245
BEL 89 26.1 87 25.6 252 73.9 340
BGR 51 40.3 40 32.3 75 59.7 126
BRA 1 065 43.5 723 29.5 1 386 56.5 2 451
CAN 651 43.0 397 26.2 864 57.0 1 514
CHE 37 17.7 51 24.8 171 82.3 207
CHN 11 462 25.7 11 160 25.1 33 088 74.3 44 550
CYP 12 51.8 6 24.2 11 48.2 23
CZE 111 31.8 93 26.6 238 68.2 349
DEU 814 38.3 557 26.2 1 313 61.7 2 127
DNK 63 28.4 58 26.2 160 71.6 223
ESP 272 33.1 221 26.9 549 66.9 821
EST 23 41.9 16 29.5 31 58.1 54
FIN 67 32.4 63 30.3 140 67.6 207
FRA 349 33.5 271 26.0 693 66.5 1 042
GBR 478 37.4 315 24.7 800 62.6 1 277
GRC 150 52.3 78 27.2 136 47.7 286
HRV 19 42.5 13 29.8 26 57.5 45
HUN 47 32.7 44 30.2 98 67.3 145
IDN 800 48.2 473 28.5 858 51.8 1 658
IND 2 895 44.9 1 833 28.5 3 548 55.1 6 443
IRL 65 39.9 41 25.2 98 60.1 163
ITA 331 27.7 343 28.7 865 72.3 1 196
JPN 1 239 31.8 1 080 27.7 2 659 68.2 3 899
KOR 615 24.8 653 26.3 1 868 75.2 2 484
LTU 19 39.1 17 33.8 30 60.9 49
LUX 9 19.5 11 23.7 37 80.5 46
LVA 14 35.9 10 27.3 24 64.1 38
MEX 558 44.9 334 26.8 686 55.1 1 244
MLT 3 22.7 3 25.6 10 77.3 13
NLD 185 31.2 187 31.7 407 68.8 592
NOR 79 42.8 43 22.9 106 57.2 186
POL 342 42.4 231 28.6 465 57.6 807
PRT 68 36.9 51 27.6 116 63.1 184
ROU 80 36.4 66 30.1 140 63.6 220
RUS 1 827 56.5 792 24.5 1 405 43.5 3 233
SVK 33 30.2 30 27.4 77 69.8 111
SVN 13 33.6 10 25.3 26 66.4 40
SWE 51 27.5 53 28.7 134 72.5 184
TUR 427 37.0 346 30.0 727 63.0 1 154
TWN 252 23.2 286 26.3 835 76.8 1 088
USA 4 933 46.4 2 966 27.9 5 688 53.6 10 621
ROW 9 436 48.8 5 044 26.1 9 898 51.2 19 334
Total 40 740 36.2 29 522 26.3 71 704 63.8 112 444
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Table 52: Decomposition of the direct + indirect carbon emissions (Exiobase 2022)

Country
Direct First-tier Indirect Total

MtCO2e % MtCO2e % MtCO2e % MtCO2e
AUS 731 46.8 402 25.8 830 53.2 1 560
AUT 74 28.3 65 24.6 188 71.7 262
BEL 98 27.3 91 25.4 260 72.7 358
BGR 55 42.0 42 32.0 75 58.0 130
BRA 1 136 47.1 699 29.0 1 274 52.9 2 410
CAN 682 43.7 419 26.9 878 56.3 1 560
CHE 41 17.3 61 25.2 199 82.7 240
CHN 13 908 26.1 13 553 25.4 39 463 73.9 53 371
CYP 15 58.8 5 21.8 10 41.2 25
CZE 130 32.1 109 27.0 275 67.9 405
DEU 747 34.6 553 25.6 1 415 65.4 2 162
DNK 58 29.8 53 27.5 137 70.2 194
ESP 284 33.7 229 27.2 558 66.3 841
EST 229 40.0 201 35.0 344 60.0 573
FIN 67 31.4 63 29.4 147 68.6 214
FRA 361 33.8 276 25.8 708 66.2 1 069
GBR 411 37.5 270 24.6 685 62.5 1 097
GRC 157 54.2 75 25.8 132 45.8 289
HRV 22 42.9 16 30.7 29 57.1 51
HUN 61 35.2 48 27.8 113 64.8 174
IDN 1 145 47.6 730 30.3 1 261 52.4 2 406
IND 4 222 43.5 2 733 28.1 5 488 56.5 9 709
IRL 91 32.1 70 24.6 192 67.9 283
ITA 343 26.6 366 28.4 945 73.4 1 288
JPN 1 242 32.3 1 053 27.4 2 600 67.7 3 842
KOR 690 22.4 799 25.9 2 392 77.6 3 083
LTU 21 43.0 16 31.8 28 57.0 50
LUX 12 17.7 17 25.4 54 82.3 66
LVA 14 37.7 9 24.1 23 62.3 37
MEX 746 46.5 427 26.6 860 53.5 1 605
MLT 2 20.1 3 27.8 8 79.9 10
NLD 184 29.4 188 30.1 442 70.6 626
NOR 82 45.7 42 23.5 98 54.3 181
POL 395 41.4 266 27.9 559 58.6 954
PRT 89 39.8 61 27.1 135 60.2 224
ROU 87 35.2 77 30.9 161 64.8 248
RUS 2 334 56.3 1 051 25.3 1 813 43.7 4 147
SVK 38 31.7 32 27.2 81 68.3 118
SVN 16 34.5 13 27.5 30 65.5 46
SWE 53 27.8 52 27.0 139 72.2 192
TUR 547 44.2 345 27.8 691 55.8 1 238
TWN 302 24.7 309 25.4 918 75.3 1 220
USA 5 027 46.4 2 988 27.6 5 804 53.6 10 832
ROW 11 394 48.8 6 259 26.8 11 949 51.2 23 343
Total 48 343 36.4 35 134 26.5 84 391 63.6 132 734
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Table 53: Estimated parameters of the multiplying coefficient (k = 1)

Country Sector
Cluster #1 Cluster #2 Cluster #1 Cluster #2

µ̂Cj / µ̂Sk −0.55 −0.49 0.48 1.76
σ̂Cj / σ̂Sk 0.47 0.48 1.05 1.07

Table 54: Estimated Mean and standard deviation of the multiplying coefficient (k = 1)

µ̂(0−k) σ̂(0−k)

Country Cluster #1 Cluster #2 Cluster #1 Cluster #2

Sector
Cluster #1 2.81 2.94 3.02 3.23
Cluster #2 7.48 7.93 10.83 11.57

Table 55: Estimated parameters of the multiplying coefficient (k =∞)

Country Sector
Cluster #1 Cluster #2 Cluster #1 Cluster #2

µ̂Cj / µ̂Sk −0.17 −0.04 0.83 2.40
σ̂Cj / σ̂Sk 0.67 0.69 1.11 1.09

Table 56: Estimated Mean and standard deviation of the multiplying coefficient (k =∞)

µ̂(0−k) σ̂(0−k)

Country Cluster #1 Cluster #2 Cluster #1 Cluster #2

Sector
Cluster #1 5.53 6.14 9.52 10.80
Cluster #2 22.75 25.66 45.73 51.85

Table 57: Direct + indirect carbon intensities of GICS sectors (MSCI World index, May
2023)

Sector Exiobase 2022 Trucost 2021 WIOD 2014
Communication Services 66 78 102
Consumer Discretionary 168 209 219
Consumer Staples 437 387 277
Energy 1 373 796 757
Financials 83 55 83
Health Care 108 120 167
Industrials 276 277 307
Information Technology 110 138 131
Materials 791 973 747
Real Estate 128 134 138
Utilities 1 872 1 833 1 889
MSCI World 299 281 278
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Table 60: Classification of sectors into pass-through types

No. Type Sector

1 highly-elastic

Air transport (S7); Crop and animal production, hunting and related service
activities (S11); Manufacture of chemicals and chemical products (S23); Man-
ufacture of other non-metallic mineral products (S32); Manufacture of paper
and paper products (S34); Water transport (S54)

2 high-elastic

Accommodation and food service activities (S1); Manufacture of basic phar-
maceutical products and pharmaceutical preparations (S22); Manufacture of
food products, beverages and tobacco products (S28); Manufacture of furni-
ture; other manufacturing (S29); Manufacture of textiles, wearing apparel and
leather products (S36); Retail trade, except of motor vehicles and motorcycles
(S48)

3 medium-elastic

Activities auxiliary to financial services and insurance activities (S2); Admin-
istrative and support service activities (S5); Advertising and market research
(S6); Architectural and engineering activities; technical testing and analysis
(S8); Computer programming, consultancy and related activities; information
service activities (S9); Construction (S10); Financial service activities, except
insurance and pension funding (S14); Forestry and logging (S16); Legal and ac-
counting activities; activities of head offices; management consultancy activities
(S20); Manufacture of computer, electronic and optical products (S25); Manu-
facture of electrical equipment (S26); Manufacture of fabricated metal products,
except machinery and equipment (S27); Manufacture of machinery and equip-
ment n.e.c. (S30); Manufacture of motor vehicles, trailers and semi-trailers
(S31); Manufacture of other transport equipment (S33); Manufacture of rubber
and plastic products (S35); Manufacture of wood and of products of wood and
cork, except furniture; manufacture of articles of straw and plaiting materi-
als (S37); Motion picture, video and television programme production, sound
recording and music publishing activities; programming and broadcasting ac-
tivities (S39); Other professional, scientific and technical activities; veterinary
activities (S40); Postal and courier activities (S42); Printing and reproduction
of recorded media (S43); Publishing activities (S45); Repair and installation
of machinery and equipment (S47); Scientific research and development (S49);
Telecommunications (S51); Warehousing and support activities for transporta-
tion (S52); Water collection, treatment and supply (S53); Wholesale trade,
except of motor vehicles and motorcycles (S56)

4 low-elastic

Activities of extraterritorial organizations and bodies (S3); Activities of house-
holds as employers; undifferentiated goods- and services-producing activities of
households for own use (S4); Education (S12); Electricity, gas, steam and air
conditioning supply (S13); Fishing and aquaculture (S15); Human health and
social work activities (S17); Insurance, reinsurance and pension funding, except
compulsory social security (S18); Land transport and transport via pipelines
(S19); Manufacture of basic metals (S21); Manufacture of coke and refined
petroleum products (S24); Mining and quarrying (S38); Other service activi-
ties (S41); Public administration and defence; compulsory social security (S44);
Real estate activities (S46); Sewerage; waste collection, treatment and disposal
activities; materials recovery; remediation activities and other waste manage-
ment services (S50); Wholesale and retail trade and repair of motor vehicles
and motorcycles (S55)
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Table 61: Sector allocation in % of the market portfolio (global uniform taxation, Exiobase
2022, MSCI World, May 2023)

Sector w−i
φ = 0% φ = 100%

τ = 100 τ = 500 τ = 100 τ = 500
Communication Services 7.3 7.68 8.3 6.89 5.6
Consumer Discretionary 10.7 11.09 11.6 10.04 8.1
Consumer Staples 7.3 7.58 7.8 6.99 6.0
Energy 4.6 3.94 1.4 6.94 13.8
Financials 12.7 13.12 13.5 11.89 9.5
Health Care 13.2 13.76 14.7 12.68 11.3
Industrials 10.4 10.35 10.1 10.09 9.3
Information Technology 24.4 25.53 27.4 22.87 18.4
Materials 4.1 3.35 2.0 4.76 6.8
Real Estate 2.4 2.48 2.6 2.24 1.8
Utilities 2.9 1.11 0.6 4.60 9.4
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