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1 Introduction

When dealing with basket credit derivatives,
one is quickly compelled to cope with the joint
default probability for some counterparties. Until
a quite recent time, the structural approach could
be considered as the predominant methodology.
Within this framework, the default occurs at the
first crossing time of the value process through a
barrier. Thus, it looks quite legitimate to model
the joint default of two firms as KMV and Cred-
itMetrics assume, that is when both value process
cross their own default barrier. As a consequence
of such an approach, A Gaussian (or log-normal)
assumption on the value processes induces a
Gaussian dependence between the defaults.

The main alternative to this structural approach
tries to take into account the unpredictability of
the default random time. Then, when dealing with
a single reference credit, one has to pay attention
to the way one is going to model the instantaneous
default probability. In that approach, which is
commonly called the intensity based approach (or
reduced-form), a default event is said to occur
when an intensity process exceeds an unobserved
threshold random variable. For one-firm deriva-
tives, it provides a quite flexible framework and
can be easily fitted to actual term structure of
credit spreads.

This paper tackles the problem of modelling
correlated default events within the intensity frame-
work. The problem is trivial when default times
are assumed to be (conditionally) independent.
But it is well known among market practitioners
that such an hypothesis does not allow to fit

the observed default correlations. We will recall
on a toy example this idea that correlating even
perfectly the firms’ spreads will not guarantee an
implied high dependence between default times.
But when one wants to weaken this assumption
the problem becomes much more involved. Our
method is first to estimate the marginal probability
distribution of each individual default and then
to use copulae to model the joint distribution,
following the recent works of Giesecke [2001] and
Schönbucher & Schubert [2001].

The copula approach has the advantage of
splitting the distribution of each single intensity
process and the joint law of default times, in such
a way that the calibration of individual intensities
to term structures remains easy. More intricate
will be the calibration of the parameter of the
copula which models the dependence between all
triggers. A natural way to estimate this parameter
would be to use correlation products, such as
first-to-defaults. Yet these products are still not
liquid enough in the market to perform such a
calibration. We thus turn to a technique commonly
used among securitization market practitioners:
Moody’s diversity score. It enables us to discuss
about the choice of the copula function.

2 Conditionally independent de-
faults

We begin to recall the basic ideas on (one then
two firms) intensity models. A huge literature is
available on this subject. Not to give a too long
list of references, we send the reader to Bielecki
& Rutkowski [2001], where a very thorough ac-
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count of the intensity framework can be found (and
also some elements about the case of dependent
defaults). In the case of conditionally indepen-
dent defaults, once the intensity processes are fixed
(those are the latent variables of the model), the
residual sources of randomness which may affect
the firms’ default times are assumed independent.
Thus, all possible dependence between defaults will
result from the correlation between intensities. But
we show that high default correlations cannot be
achieved this way. In particular, it is worthless to
compute historical spread correlations to derive an
accurate value of default correlations.

2.1 the intensity framework

We first recall the well-known result for the pric-
ing of a derivative security, when there is only one
defaultable firm. We denote by (Ft) the filtration,
i.e the information generated by all state variables
(economic variables, interest rates, currencies, etc.).
Along the whole paper, we assume the existence of a
risk-neutral probability measure P. Then, the basic
elements of the intensity model are an (Ft)-adapted,
non-negative and continuous process (λ1

t ) (firm 1’s
intensity), and θ1 (the threshold), an exponential
random variable of parameter 1 independent from
F∞. For example, when using a (multi-) factor in-
terest rate model, we can use the factor(s) for also
driving the intensity process λ in order to provide
correlations between interest rates and the default
process. Then firm 1’s default time is defined by
(provided the firm has not defaulted yet)

τ1 := inf
{

t :
∫ t

0

λ1
s ds ≥ θ1

}
(1)

Then the defaultable zero-coupon price of firm 1 is
given by

B1(t, T ) = 1{τ1>t}E
[
e−

∫ T
t

(rs + λ1
s) ds|Ft

]
, (2)

which allows to identify the intensity process as firm
1’s spread. Lando Lando [1998] derived similar
formulae for firm 1 derivatives.

2.2 Drawbacks: low default correla-
tions

The preceding framework is readily generalized to
the case of I defaultable firms. For the sake of
simplicity, we consider only the case of two firms.
Therefore, the default times of two firms 1 and 2
are defined through (1) where we have this time

two intensity processes λi, and two random thresh-
olds θi which are still assumed to be independent
from F∞ and mutually independent. This last
assumption is usually made in practice for its
tractability.

We choose quadratic intensities λi
t = σi(W i

t )
2

where W =
(
W 1,W 2

)
is a vector of 2 correlated

(Ft) Brownian motions — we shall note ρ for the
correlation. The parameters σi are fixed such as we
match the cumulated default probabilities using

P (τi > t) =
1√

cosh
(
σit
√

2
)

In the following numerical application, we take
σi = 0.04 which induces cumulated default prob-
abilities quite close to historical data relative to
BBB rated firms.

Since an explicit form of the joint distribution
of the default times τ = (τ1, τ2) can be explic-
itly derived1, one may be able to compute effi-
ciently any correlation measures. The first one is
the discrete default correlation which corresponds
to cor

(
1{τ1<t},1{τ2<t}

)
whereas the second one is

the correlation between the two random survival
times cor (τ1, τ2), called the survival time correla-
tion by Li [2000]. We remark in the Figure 1 that
this simple model does not suffice to produce signif-
icant correlations between defaults (moreover, the
correlations are only positive). We shall try other
ways to incorporate more dependency in these mod-
els, in the next section.

3 How to get more dependence ?

We no longer assume that the random thresholds
are independent variables. By coupling the depen-
dence of the thresholds together with the corre-
lation between the intensity processes, we achieve
to produce more realistic correlations between de-
faults. As the triggers are not market data, we shed
light on the relationship between the input distribu-
tion on the thresholds and the output distribution
of the defaults. But, we have first to give some use-
ful definitions about copulae, which are an efficient
tool to model dependence for non-Gaussian vari-
ables. Many ideas developed in this section were
first explored by Li [2000], Giesecke [2001], and
Schönbucher & Schubert [2001].

1For an explicit form of P (τ1 > t1, τ2 > t2) we send the
reader to [4] Jouanin et al. [2001].
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Figure 1: Influence of the correlation parameter on
the first default time

3.1 basic ideas about copulae

Copulae are user-friendly tools for modelling
dependence and turn to be widespread in finance.
We just give here a quick definition, refering the
interested reader to Nelsen [1999], which provides
a more rigorous account.

First, we introduce some notations that will re-
main along the paper: for any two-dimensional ran-
dom variable X = (X1, X2), we denote for the
marginal and joint survival probabilities:

SX(x1, x2) := P(X1 > x1, X2 > x2),

SX
1 (x1) := P(X1 > x1), SX

2 (x2) := P(X2 > x2).

Now, a survival copula is almost the joint sur-
vival probability of any two-dimensional uniform
random variables (U1, U2),

C̆U (u1, u2) := SU (1− u1, 1− u2).

For any two-dimensional random variables X =
(X1, X2), it is obvious for any user of Monte Carlo
simulation methods that SX

1 (X1) and SX
2 (X2) are

uniform random variates. They have therefore a
survival copula, which we call the survival copula
of X and write C̆X and we get Sklar’s lemma

SX(x1, x2) = C̆X(SX
1 (x1), SX

2 (x2)). (3)

From a practical viewpoint, Sklar’s lemma shows
how copulae can be used to split the margins and
the dependence of the joint distribution. From a
theoretical angle, it also provides an easy way to
derive copulae from well-known joint distributions.
We give here two examples, with the Normal and
Cook-Johnson families:

C̆G
ρ (u1, u2) = Φρ(φ−1(u1), φ−1(u2))

C̆CJ
α (u1, u2) =

(
u−α

1 + u−α
2 − 1

)−α−1

with Φρ the bi-variate normal distribution of pa-
rameter ρ, and φ the standard Gaussian cdf. We fi-
nally remark that the Cook-Johnson family enables
to correlate univariate rare events.

3.2 the threshold approach

In this section, we still consider two defaultable
firms, the default times of which are modelled as
in (1). Here, we propose to model the dependence
between default process in a two-step algorithm.
As is the case with conditionally independent
defaults, the first step consists in correlating the
intensity processes. Then the second step deals
with the choice of the copula C̆θ of the thresholds
(θ1, θ2) which are assumed to be independent from
F∞.

Within the threshold framework, we can derive a
new pricing formula for firm 1’s zero-coupon alter-
native to (2) on {τ1 > t, τ2 > t}:

B1(t, T ) = E

e−
∫ T
t rs ds

C̆θ
(
e−

∫ T
0 λ1

s ds, e−
∫ t
0 λ2

s ds
)

C̆θ
(
e−

∫ t
0 λ1

s ds, e−
∫ t
0 λ2

s ds
) | Ft

 .

What is striking in this formula is the role of firm
2’s intensity in the valuation of a claim depending
a priori on firm 1’s default only. In the case of the
independent copula C̆(u1, u2) = u1u2, we retrieve
the usual formula (2) (corresponding to the case of
conditionally independent defaults). Of course, a
similar valuation formula still holds for more general
contingent claims depending on both firms defaults.

3.3 linking threshold and default
copulae

As the random triggers are not observable vari-
ables, it may be useful to derive a relationship
between their copula and the implied dependence
of default times. This will enable us to measure the
spectrum of dependence between defaults allowed
by our method and thus what we gained compared
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to the assumption of conditionally independent
defaults.

Denoting C̆τ for defaults’ survival copula, we get
from Giesecke [2001]

C̆τ (Sτ
1 (t1), S

τ
2 (t2)) = E

[
C̆θ

(
e−

∫ t1
0 λ1

s ds, e−
∫ t2
0 λ2

s ds
)]

.

A special case of this formula is worth noticing: if
intensities are deterministic, both survival copulae
are equal. In particular, this shows that we can
achieve high dependence between defaults, as
we announced. This also suggests an alternative
computational method, which consists in directly
imposing the copula C̆τ of default times. This
technique is Li’s original survival method, which
we do not develop here because it requires heavy
Monte-Carlo simulations for computing the price
of contingent claims.

Having a look at the figure 2, we see that the
threshold approach enables to reach a wide range
of correlation for the multivariate default times dis-
tribution. So, one could be optimistic when cali-
brating the parameters. That means we can hope
that the real correlation must be attainable within
the above described framework.

Figure 2: Influence of the correlation parameter on
the first default time

4 Calibration issues

We end this paper with a discussion of the cal-
ibration procedure. We will only discuss the
calibration of the thresholds’ copula. Indeed the
calibration of the intensity process can be carried
out with available market data, such as CDS or
risky bonds prices (we remark that at time 0 the
zero-coupon price of firm 1 is still given by formula
(2)). For the copula, a natural idea is to rely on
correlation products, such as first-to-defaults. But
as the market lacks liquidity, the information on
correlations is still too much scarce to be useful.

As in Davis and Lo [2001], we will assume
that more reliable information can be drawn from
Moody’s diversity score. Practitioners assume a
pre-specified contagion mechanism which enables
them to cope with joint default probability issue.
Those a priori models may rely either on economic
intuition or statistical arguments. Of course, the
quality of this calibration procedure will remain
highly questionable.

4.1 using Moody’s binomial tech-
nique

Recent waves of securitization on credit market may
look like an efficient source of information. Indeed,
returns of the different tranches of CDO are relevant
to the default contagion in a pool of credits. Each
tranche is noted following the Moody’s Binomial
Expansion Technique. That approach is based on
the assumption that the distribution of the number
of defaults among I risky issuers of the same sector
before the maturity T could be summarized using
only D independent issuers, i.e.

I∑
i=1

1{τi≤T}
law=

I

D

D∑
d=1

1{τ̄i≤T} (4)

where
(
1{τ1≤T}, . . . ,1{τI≤T}

)
are dependent

Bernoulli random variables with parameters pi

(i ∈ {1, . . . , I}) and
(
1{τ̄1≤T}, . . . ,1{τ̄D≤T}

)
are

i.i.d. Bernoulli random variables with parameter
p̄. This technique is quite analogous to a classi-
cal Principal Component Analysis for Gaussian
variables and D can be seen as a measure of
the concentration of the defaults. According to
Moody’s, D is computed in order to match the two
first moments on both sides of (4) on empirical
observations.
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Thus, in a first step, it occurred to us to try to
calibrate the thresholds’ copula to that market con-
sensus. First we have to compute each firm’s default
conditional probability before T . Then we have to
choose some a priori copula family (C̆θ

α)α∈A, the
parameter α of which we want to estimate. Since
Moody’s technique is based on the knowledge of the
default probability one has to condition the expec-
tations by F∞ during calibration procedure so that

pi = 1− exp

(
−
∫ T

0

λi
s ds

)
.

The two first moments procedure induce the follow-
ing equalities2

I∑
i=1

pi = p̄I

∑
i<j

C̆θ
α (1, pi, . . . , pj , 1) =

p̄I(p̄I − 1)

2
+

p̄(1− p̄)I2

2D
(5)

First equation gives the common default proba-
bility p̄ then an implied value for the parameter α
stems from the second equation.

4.2 Discussion of the Calibration

Three factors are likely to vary in (5): the choice
of the copula family C̆θ, the default probabilities
pi and the number of firms I.

Since we aim at matching the diversity score of
Moody’s given by

DMoody’s =
−1 +

√
1 + 8I

2

we are going to optimize α so that one meets (5) as
best as possible for all I ≤ 10. Moody’s diversity
score holds for all p̄ so that a quite legitimate
property the copula should satisfy is to be robust
with respect to the average default probability p̄
(especially for small p̄). In particular, the copula
should be able to correlate rare events.

Let us define the the lower tail dependence
function λθ

L(u) = Cθ(u,u)
u . When u tends to

zero, λθ
L(u) represents the probability that one

variable is very small given that the other is very
small, so that in our context it may be linked to
the probability of default of an issuer given that

2The left hand sides follow from the expansion of

E
[∑I

i=1 1{τi≤t} | F∞
]

and E
[(∑I

i=1 1{τi≤t}

)2
| F∞

]

another issuer has already defaulted. If λθ
L(u) has

limit zero, then the chosen copula does not enable
to correlate the default processes in a better way
than the conditionally independent approach does.

Another view of the same problem is to look at
the relation between the diversity score and lower
tail dependence function, assuming that each issuer
gets the same default probability p, we get from (5):

D =
(1− p)I

(1− pI) + (I − 1)λθ
L(p)

.

Once again, if λθ
L(p) tends to zero (e.g. for the

Normal copula) then D tends to I, which is not
relevant with Moody’s diversity score.

Finally, as far as the choice of the copula is con-
cerned, we first acknowledge a possible non negli-
gible model risk in the choice of the copula fam-
ily. In KMV or CreditMetrics methodologies, it is
usually assumed that latent variables are correlated
through a Normal copula. As we mentioned before,
the calibration will not succeed for this family, since
this copula behaves like the independent copula in
the range of very low probabilities. A more realistic
family may be the Cook-Johnson family. In the fig-
ure 3, we can notice that the Cook-Johnson copula
is more robust with respect to default probability
than the Normal copula. Indeed, the calibration
procedure leads to a quite steady optimal parame-
ter when p ranges from 1 to 500 bps, whereas the
implied correlation of the Normal copula tends to 1
when p tends to 0.
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