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Abstract

We consider the problem of modelling the dependence between financial markets. In financial economics,
the classical tool is the Pearson (or linear correlation) to compare the dependence structure. We show that
this coefficient does not give a precise information on the dependence structure. Instead, we propose a
conceptual framework based on copulas. Two applications are proposed. The first one concerns the study
of extreme dependence between international equity markets. The second one concerns the analysis of the
East Asian crisis.

1 Introduction

This paper is related to some recurrent concerns in the economic and financial literatures. In the former one, it
is linked to the notion of contagion between international markets, and in particular the propagation of financial
crises between neighbouring countries and their repercussion on economic activity. Such concern has recently
gained increased interest in view of the emerging markets crises in the nineties. In the latter one, it is linked to
the notions of risk and portfolio diversification. In recent years, risk management methods such as VaR or the
enlargement of financial integration to a broader scope of countries have renewed the interest in these topics.

Both literatures meet in their requirement to model the dependence between financial markets. With very
few exceptions, the empirical treatment of this problem rests on standard statistical tools and/or standard
econometric methods (regression methods, time series method, dichotomous models, quantile regressions). A
commonly used tool is the standard (Pearson) correlation coefficient. One of the purpose of this paper is to
argue that the use of this tool can lead to very misleading inference in this context. A well-known reason (see e.g.
Boyer, Gibson, Loretan [1999] or Forbes and Rigobon [1999]) is that it is not robust to heteroskedascity
(i.e. the fact that volatility is time-varying). As we shall below, other reasons can be invoked to be doubtful
about analysis based on the Pearson correlation coefficient.

Recently, Straetmans [1999], Stărică [1999] and Longin and Solnik [2000] have proposed to rely on
extreme value theory (EVT), and especially on multivariate tools associated with this literature, to analyse
dependence between financial markets. As an extension, this paper relies on the notion of copulas which
generalizes their approach and is rather new in this context (see however Embrechts, McNeil and Straumann
[1999] or Bouyé, Durrleman, Nikeghbali, Riboulet and Roncalli [2000]). In broad terms, a copula can
be defined as the dependence function between random variables. More precisely, it can be seen as a function
that links univariate marginals to their full multivariate distribution. While they were introduced in 1959,
the literature on copulas, and especially the study of their statistical properties and their applications, only
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developed in recent years. The main purpose of this paper is to introduce a conceptual framework based on
copulas for the analysis of the dependence between financial markets. Furthermore, we propose two applications.
The first ones concerns the study of extreme dependence between international equity markets. The second one
concerns the analysis of the East-Asian crisis.

The layout of the paper is as follows. Section 2 operates a literature review on the dependence between
financial markets with special emphasis on empirical methods. Section 3 offers introductions to copulas and
multivariate extreme value theory and propose a new statistical framework based on copulas. Furthermore, it
presents illustration of the associated tools with an application to the interactions between three major stock
indexes (CAC 40, Dow Jones and Nikkei). Section 4 presents the application to the analysis of the Asian crisis.
Section 5 concludes the article.

2 Literature review on the dependence between financial markets

The purpose of this section is to review the literature on the dependence between financial markets. As this
literature is very large, it only recalls the main topics and results which emerge from it. The interested reader
is invited to consult cited articles and references therein. Furthermore, we voluntarily ignore articles which rely
on EVT as they are analyzed more fully in the next section.

As described in the introduction, the literature can be separated in two (but not really distinct) parts.
The first one analyses the correlation between financial markets with a regard to the notions of portfolio
diversification and financial integration. The second one is more economic in nature and relies on the notion of
contagion during ”balance of payments crises”.

2.1 Correlation between financial markets

International financial market interactions have been widely studied. This literature is mainly empirical. In-
deed, the foundations of the background theory have been laid down since the sixties and deal with portfolio
diversification and/of international financial markets integration. This way, the empirical literature is origi-
nally concerned wth the long run relationships between markets or assets. Recently, however, empirical work
has evolved towards the analysis of the short term interaction between financial markets on the basis of high
frequency data (daily or intra-daily). Moreover, some studies tend to concentrate on certain periods and, in
this case, on extremely volatile periods. This orientation has been motivated by studies such as Longin and
Solnik [1995] which, on the basis of long term analysis, have noted that interactions between financial markets
tend to be higher in volatile periods or, simply, on the observation that shocks in one market tend to propagate
quicker when they are large (e.g. a stock market krach).

Most of this empirical literature1 relies on standard econometric and statistical methods applied to multi-
variate returns or volatility measures (absolute or squared returns). For instance, the tools used in these studies
fall in one of the following categories: linear regressions and/or lead-lag cross-correlations (Eun and Shim
[1990], King and Wadhwani [1990], Becker et al. [1993], Susmel and Engle [1993], Lee and Kim [1993],
Kofman and Martens [1997], Karolyi and Stulz [1996]), quantile regressions (Granger and Shin [2000]),
Vector Autoregressions (VAR) (von Furstenberg and Jeon [1989]), GARCH or similar framework (Chou et
al. [1994], Hamao et al. [1990], Lin et al. [1994]), cointegration methods (Longin and Solnik [1995], Chou
et al. [1994], Cashin et al. [1995]). Previously cited studies concentrate on stock market interactions as does
most of the literature, notable exceptions being Engle at al. [1990] on foreign exchange markets and Edwards
[1998] on bonds markets. In some cases, special attention is given to crises (especially the 1987 stock market
krach) but most of the times, such empirical work is dedicated to the analysis of relationships between markets
irrespective of whether they are in turmoil or not.

1As we shall see below, two notable exceptions are Straetmans [1999] and Longin and Solnik [2000].
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In this paper, we introduce a conceptual framework which wander from standard methods and allows to
study differences in interactions between markets conditionaly on their state (volatile or not) in a natural way.

2.2 Contagion and “balance of payments” crisis

The recent financial crisis in emerging markets and, above all, the fact that they have hit several countries
almost at the same time has led to an increased interest in the notion of contagion. The purpose of this section
is to give an overview of theoretical and empirical literatures on “balance of payments” crises and contagion.
More detailed descriptions can be found in recent articles (see e.g. Forbes and Rigobon [2000], Masson
[1999, 2000], Claessens, Dornbusch and Park [2000]).

Obviously, this literature is naturally linked to the previous subsection one. However, it does depart from
it as it clearly concentrates on crisis periods (and particularly exchange rate crises and capitals flights, so the
term “balance of payments crises”) and it is motivated by broad economic explanations of the phenomena (not
just international diversification).

2.2.1 Theoretical literature

The notion of contagion shall be a quite precise one. However, in the literature, it is often confused with
the broader term of international propagation of shocks. Forbes and Rigobon introduce an useful distinction
between non-crisis-contingent theories and crisis-contingent theories2.

Non-crisis-contingent theories refer to the international propagation of shocks without assuming that the
transmission mechanisms have changed after the initial shock. In other terms, these theories refer to cases where
the transmission is well founded on economic linkages between affected countries and/or on signal extraction
from investors. This approach highlights four main channels: trade spillovers, financial linkages, common
external factors and learning.

• Trade spillovers come from the fact that when a country faces a significant depreciation of its currency,
other countries can suffer from a lost of competitiveness relative to the crisis country, both in bilateral
trade and in third-country markets. Furthermore, if the exchange rate crash leads to a downturn in
economic activity in the crisis country, the associated income effects further depress the exports of trade
partners. This mechanism is formalized in Gerlach and Smets [1995] and some empirical support for
it is found in Eichengreen, Rose and Wyplosz [1996] and Glick and Rose [1998].

• Financial linkages can induce propagation of shocks when investors are conducted to rebalance their
portfolios after the initial shock. Investors are induced to liquid their position in other countries for risk
management (if assets from both countries/zones are positively correlated) or liquidity (to cover losses or
margin calls suffered in the first country) purposes. This approach has been explored by, inter alia, Baig
and Goldfajn [1999], Bussière and Mulder [1999] or Valdès [1996].

• Common external factors (“moonsonal effects”, Masson [2000]) are mainly defined as major economic
shifts in industrial countries that trigger crises in emerging markets. For instance, such common shocks
include a rise in world (or U.S.) interest rates, changes in bilateral exchange rates between the major world
economics, slowdown in world aggregate demand. While mainly independent of crisis countries’policies,
these shocks can affect asymmetrically these countries, depending on various factors such as exposure
to foreign currency borrowing, size of the government debt or inefficiencies in the banking system. As
examples of such common shocks, the increase of interest rates in the United States in the early eighties
or the appreciation of the U.S. dollar against the yen have frequently be cited as major factors in the debt
crisis or the Asian crisis respectively.

2In some respects, the distinction is based on the traditional opposition in the literature on balance of payments crises between
first generation models (à la Krugman [1979]) which put emphasis on deteriorating fundamentals and second generation models
(à la Obstfeld [1986]) which put emphasis on self-fulfilling expectations.
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• Learning argues that a crisis in one country can serve as a “wake-up call” (Goldstein [1998]) which
induces investors to reevaluate their sentiment and/or risk aversion towards countries with similar macroe-
conomic structures and policies. For example, if a country fails in reason of a weak banking system or
financial vulnerabilities, investors could reevaluate their judgement of the banking and financial systems
in other countries and adjust their expected probabilities of a crisis accordingly. While pre-shock behavior
of investors seems to be irrational as they underestimate weaknesses of the country, the post-shock be-
havior appears rational as it is justified by a signal extraction approach (Kodres and Pritsker [1999]).
Moreover, the pre-shock behavior can be induced by dissimulation of information which precludes realistic
perception of the fundamentals.

Crisis-contingent theories refer to the international propagation of shocks with the assumption that the
transmission mechanisms have changed after the initial shock. In other terms, these theories refer to cases where
the transmission is not justified by economic and financial fundamentals or real linkages between markets. In
this perspective, even countries with sound fundamentals or minor structural problems can be affected, only
because of the self-fulfilling expectations of investors. This approach highlights three main explanations: herd
behavior, multiple equilibria and endogenous liquidity shocks.

• Calvo [1996] presents a model in which global investors are subject to herd behavior, due to a lack
of precise information seeking. Given that it is costly to develop precise monitoring and fundamental
evaluation of each market, it is optimal (given that they are uniformed) to run away simultaneously from
a group of markets when some problems appear in one of them.

• Multiple equilibria occurs when a crisis in one country is used as a sunspot for other countries (see Masson
[2000] for a formalization). Small triggers in a country can act as a precipitating factor which induces
a coordination of investor’s expectations on the bad equilibrium for others countries. The shift from
the good to the bad equilibrium is solely driven by a change in investor beliefs without any change in
underlying fundamentals.

• Finally, Calvo [1999] proposes a model of endogenous liquidity shocks in presence of asymmetric informa-
tion. When informed traders are hit by pure liquidity shocks, uninformed ones cannot distinguish whether
sells come from liquidity shocks or bad signal arriving. In other words, they tend to over-interpret small
(purely technical) price changes.

2.2.2 Empirical literature

The analysis of currency crisis and their propagation has generated a lot of empirical literature. As one of the
primary objective of this paper is to introduce a new statistical framework, we review the empirical literature
from the methodological viewpoint rather than from the results themselves. Moreover, we exclude the empirical
analysis of the Asian crisis which is specifically reviewed in the section 4. Basically we can consider three
classes of methods: time series and regression methods, dichotomous models and standard statistical analysis
of subsamples comparisons.

As noted before, empirical approach grounded on time series and regression methods are very often tests of
market integration in the same time that they are tests of contagion. This approach has been surveyed in the
paragraph 2.1.

Dichotomous models take the form of probit models of the probability of a crisis in one country or regression
involving a discrete value endogenous variable (1 for crisis, 0 elsewhere). This kind of methodology (as also
the standard statistical analysis) need to define a crisis period. This can be done in two main ways. The first
solution is to “let the data speak themselves” and to adopt an algorithm to identify crisis. For example, we
can define the beginning of the crisis as a time window inside which currencies or stock market returns (or a
weighted average of returns and macroeconomic variables such as international reserves) are below a certain
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fractile of their own distribution. Second, we can choose these periods in an informal way, based on newspaper
reports.

In general cases, dichotomous models try to infer the relationship between the evolution of fundamentals
(real exchange appreciation, ratio of broad money to international reserves, ratio of current account deficit to
GDP, etc) and the probability/occurrence of the crises (see e.g. Kaminsky et al. [1997], Berg and Patillo
[1998]). They become more direct analysis of contagion when they integrate the possibility that the occurrence
of the crisis in one country affect the probability of a crisis occurring in other countries (after controlling for
fundamentals). Eichengreen, Rose and Wyplosz [1996] found such interrelationship in the case of the
ERM crisis of 1992-1993. Using a larger panel, Kaminsky and Reinhart [1998] also found evidence of such
interaction3, especially when countries are located in the same geographical region, a phenomenon which is
linked to trade linkages4 by Glick and Rose [1998]. Ahluwalia [2000] shows the relevance for the emerging
markets crises of the nineties (Mexico, Southeast Asia and Russia) of various contagion indicators, including
one for the “wake-up call” hypothesis.

Standard statistical analysis of subsamples comparisons is usually done by comparing cross-correlations
between a subsample defined as a crisis period and another subsample defined either as non-crisis period or
as a total sample (i.e. including the crisis period). The underlying motivation is simple : if cross-correlations
significantly increase in the crisis period, then it is evidence of contagion. However, such an approach can be
misleading as (standard) correlation is not a robust statistics for the identification of dependence. A well-known
reason (see Boyer, Gibson and Loretan [1999], Forbes and Rigobon [1999, 2000]) is that it is not robust to
heteroskedasticity while such a phenomenon is obviously present in the data since a crisis period is by definition
a more volatile one. Hence, Forbes and Rigobon [1999, 2000] propose an adjusted heteroskedastic consistent
correlation formula. In this paper, we argue that there are deeper reasons to be careful with results based on
correlation estimates. In this way, the adjustment proposed by Forbes and Rigobon can only marginally allow
to obtain robust results. This point will be discussed more fully in the next section.

3 A new framework based on copulas

3.1 A brief introduction to copulas

Copulas have been introduced by Sklar [1959] to study probabilistic metric spaces. They have been rediscovered
on several occasions by statisticians in the seventies (see Deheuvels [1978], Galambos [1978] and Kimeldorf
and Sampson [1975]). However, the first statistical applications of copulas appear only in the middle of the
eighties. In this paragraph, we adopt a simplified point of view to present copulas, and we invite the reader
to consult the book of Nelsen [1998] to have a more rigourous presentation. Moreover, we restrict to the
two-dimensional case, but generalization to higher dimensions is straightforward.

Definition 1 A 2-copula C is a bivariate uniform distribution.

C is then a function from [0, 1]2 to [0, 1] with positive probability masses. Because all the margins are uniform,
we have

C (1, u2) = u2 (1)
C (u1, 1) = u1 (2)

By construction, it comes that the function F defined by

F (x1, x2) = C (F1 (x1) ,F2 (x2)) (3)
3See also Caramazza et al. [2000].
4The fact that crises are mainly regional has been challenged by the transmission of the russian “virus” to countries like Brazil

or to the U.S. corporate bonds market.
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where Fn is a univariate distribution is a bivariate probability distribution. By definition, the margins of this
joint distribution are F1 and F2. However, the main interest of copulas is summarized by the fundamental
theorem of Sklar [1959].

Theorem 2 Let F be an 2-dimensional distribution function with margins F1 and F2. Then, there exist almost
one copula such that

F (x1, x2) = C (F1 (x1) ,F2 (x2)) (4)

Moreover, if the margins are continuous, the copula function is unique.

What is the probabilistic interpretation of the function C? During 20 years, Schweizer and Sklar have
explored intensively copulas in the framework of probabilistic metric spaces. They have seen that there are
some connections between copulas and random variables (see Sklar [1973]). During a sabbatical leave in Italy,
Schweizer find a paper of Rényi [1959] on measures of dependence. Schweizer has then the idea to connect
copulas with measures of dependence. The work of his Ph.D. student Wolff is summarized in the article of
Schweizer and Wolff [1981] published in Annals of Statistics. Here is a part of their abstract:

We show that the copula of a pair of random variables X, Y is invariant under a.s. strictly increasing
transformations of X and Y , and that any property of the joint distribution function of X and Y
which is invariant under such transformations is solely a function of their copula.

For example, they show that the Kendall’s tau and the Spearman’s rho can be written in terms of copulas. Let
X1 and X2 two continuous random variables with joint distribution F. Let (Y1, Y2) be a random vector with
the same distribution F independent of the vector (X1, X2). The kendall’s tau is defined as the concordance
probability minus the discordance probability for the two vectors (X1, X2) and (Y1, Y2) (Nelsen, [1998]):

τ = Pr {(X1 − Y1) (X2 − Y2) > 0} − Pr {(X1 − Y1) (X2 − Y2) < 0} (5)

Schweizer and Wolff [1981] show that another expression of the Kendall’s tau is

τ = 4
∫∫

[0,1]2
C (u1, u2) dC (u1, u2)− 1 (6)

with C the associated copula of the joint distribution F. Let (Z1, Z2) be a random vector with distribution
F independent of the vectors (X1, X2) and (Y1, Y2). The Spearman’s rho is proportional to the concordance
probability minus the discordance probability for the two vectors (X1, X2) and (Y1, Z2) (Nelsen [1998]). Like
the Kendall’s tau, the Spearman’s rho admits a copula representation:

% = 12
∫∫

I2
u1u2 dC (u1, u2)− 3 (7)

Nelsen [1998] show that these two measures satisfy the axiomes of a measure of concordance of Scarsini
[1984].

What about the (standard) Pearson correlation measure? It is defined as

ρ (X1, X2) =
E [(X1 − E [X1]) (X2 − E [X2])]√

var [X1] var [X2]
(8)

or
ρ (X1, X2) =

1√
var [X1] var [X2]

∫∫

[0,1]2
[C (u1, u2)− u1u2] dF−1

1 (u1) dF−1
2 (u2) (9)

The Pearson correlation can not be a dependence measure of a vector of random variables. As explained by
Embrechts, McNeil and straumann [1999], it is a natural dependence measure only in the case of the
multivariate normally and elliptically distributions.
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While ancient in the probabilistic domain, the interprtation of copulas in statistical terms appeared later
with Deheuvels [1978] and can be summarized as follows : The copula of random variables is in fact
the dependence function of these random variables.

There are many copula functions (see Joe [1997] and Nelsen [1998]). We present here two copulas which
can be of special interest in financial modelling. The first one is the Normal copula, the normal distribution
being the most current one in finance (for example, in portfolio theory). Let Φ be the N (0, 1) cumulative
density function and Φβ the bivariate gaussian cdf with correlation β. The bivariate Normal copula is defined
by

C (u1, u2) = Φβ

(
Φ−1 (u1) , Φ−1 (u2)

)

=
∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
√

1− β2
exp

(
−1

2

(
x2 − 2βxy + y2

1− β2

))
dx dy (10)

Its corresponding density is5

c (u1, u2) =
1√

1− β2
exp

(
−1

2

(
ς2
1 − 2βς1ς2 + ς2

2

1− β2
− (

ς2
1 + ς2

2

)))
(12)

with ςn = Φ−1 (un). By definition, a bivariate normal distribution corresponds to a Normal copula with gaussian
margins. This copula is useful, because we could define other distributions with the same dependence structure
as the normal distribution with non-gaussian margins. The second simple copula is the Gumbel one, the
univariate Gumbel distribution being one of the three Generalized Extreme Value distribution. Another copula,
which is extensively used in finance, is the Gumbel copula. Let β be a scalar parameter with β ≥ 1. We have

C (u1, u2) = exp
(
−

[
(− ln u1)

β + (− ln u2)
β
] 1

β

)
(13)

and

c (u1, u2) =
(− ln u1 − ln u2)

β−1 exp
(
−

[
(− ln u1)

β + (− ln u2)
β
] 1

β

)([
(− ln u1)

β + (− ln u2)
β
] 1

β

+ β − 1
)

u1u2

[
(− ln u1)

β + (− ln u2)
β
]2− 1

β

(14)
This copula is also known under the name of the logistic dependence function (Tawn [1988]) and it has recently
been used by Longin and Solnik [1999] (while they do not explicitly refer to copulas).

Normality assumption is frequently done in finance, because of tractability aspects. However, copulas permit
easily to leave the Gaussian world. In figure 1, we have plotted the density of the Normal and Gumbel copulas.
The parameters have been choosen such that the Kendall’s tau is equal to 70%. In the same graph, we have
reported the density of the distribution of the random vector (X1, X2) where X1 ∼ N (0, 1) and X2 ∼ N (0, 2).
To see the difference between the two distributions, we have simulated 5000 random numbers of (X1, X2) when
the copula is respectively Normal and Gumbel (see figure 2). We see that the two bivariate series are very
different. Normality assumption could then be wrong because the dependence structure is not Normal. But
it could also be wrong because the margins are not gaussians. In figure 3, we have simulated four bivariate
series (Y1, Y2) with the same means and covariance matrix6. If we fit a bivariate gaussian distribution, we could

5We have

c (u1, u2) =
∂2 C (u1, u2)

∂u2
1 ∂u2

2

(11)

6Let (X1, X2) be a random vector. (Y1, Y2) is defined as follows:

Y1 =
X1 − E [X1]

σ [X1]

Y2 = ρ
X1 − E [X1]

σ [X1]
+
p

1− ρ2
X2 − E [X2]

σ [X2]
(15)
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then consider that the four random vectors have the same joint distribution! To give an idea of the underlying
dependence structure, we have plotted their empirical uniforms.

Figure 1: Plot of the probability density function

We end this paragraph with the comparison problem of copula functions. Three copulas play an important
role

C− (u1, u2) = max (u1 + u2 − 1, 0)
C⊥ (u1, u2) = u1u2

C+ (u1, u2) = min (u1, u2) (16)

We can prove that for any copula C, we have

C− (u1, u2) ≤ C (u1, u2) ≤ C+ (u1, u2) (17)

for all (u1, u2) in [0, 1]2. Moreover, we say that C1 is smaller than C2 and write C1 ≺ C2 if C1 (u1, u2) ≤
C2 (u1, u2) for all (u1, u2) in [0, 1]2 (see section 2.8 of Nelsen [1998]). Let X = (X1, X2) and Y = (Y1, Y2)
be two random vectors. We note CX and CY the corresponding copulas. If CX ≺ CY , we will say that X
is less dependent that Y . ≺ defines a partial ordering relationship, because two copulas can not always be
compared. But what is the interpretation of the three copulas C−, C⊥ and C+? The answer is the following
(see Wang [1999] and Mikusiński, Sherwood and Taylor [1997]):

• Two random variables X1 and X2 are countermonotonic — or C = C− — if there exists a random
variable X such that X1 = f1 (X) and X2 = f2 (X) with f1 non-increasing and f2 non-decreasing;

In this example, ρ is equal to 0.7.
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Figure 2: Random numbers of the joint distribution of the random variables (X1, X2)

Figure 3: Four bivariate series with the same means and the same covariance matrix
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Figure 4: Empirical uniforms of the previous bivariate series

• Two random variables X1 and X2 are independent if the dependence structure is the product copula
C⊥;

• Two random variables X1 and X2 are comonotonic — or C = C+ — if there exists a random variable
X such that X1 = f1 (X) and X2 = f2 (X) where the functions f1 and f2 are non-decreasing;

Suppose that C1 and C2 are such that we verify

C− ≺ C1 ≺ C⊥ ≺ C2 ≺ C+ (18)

We will say that C1 is a negative dependence structure and C2 is a positive dependence structure. For Normal
copulas, we have

Cβ=−1 = C− ≺ Cβ<0 ≺ C⊥ = Cβ=0 ≺ Cβ>0 ≺ C+ = Cβ=1 (19)

In the case of the Gumbel copula, we verify that

C⊥ = Cβ=1 ≺ Cβ>1 ≺ C+ = Cβ=+∞ (20)

Instead of the Normal copula, the Gumbel one does not allow negative dependence. Moreover, it is not possible
to compare a Normal copula with a Gumbel copula (except for the trivial cases).

3.2 A brief introduction to extreme value theory

Because we are interested in crises, and so in the joint behaviour of extreme returns, it seems natural to use
a framework based on extreme value theory. This is for example the point of view adopted by Straetmans
[1999] and Longin and Solnik [1999]. We remind here some results, but we invite the reader to consult Joe
[1997] for a more complete presentation of this theory.
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We restrict to the bivariate case, but generalization to higher dimensions is straightforward (while notation
is ”heavier”). We consider two random variables X1 and X2 with joint distribution F. Denote Xi,1, . . . , Xi,m a
sequence of iid random variables. In extreme value theory, we are interested in the limit distribution G of the
random vector χ+

m defined as follows

χ+
m =

[
max (X1,1, . . . , X1,m)
max (X2,1, . . . , X2,m)

]
(21)

More precisely, G is the limit distribution of the normalized extremes

lim
m−→∞

Pr

{
χ+

1,m − b1,m

a1,m
≤ x1,

χ+
2,m − b2,m

a2,m
≤ x2

}
= G (x1, x2) (22)

with {ai,m} and {bi,m} two appropriates scalars. If these scaling constants and the limit exist, we say that G
is the bivariate extreme value distribution of (X1, X2) and F is said to be in the max domain attraction of G.
Note that the expression (22) is equivalent to verify the following relation (Straetmans [1999])

lim
m−→∞

m [1− F (a1,mx1 + b1,m, a2,mx2 + b2,m)] = − lnG (x1, x2) (23)

However, the previous expression is difficult to exploit and so it is hard to to characterize simply the extreme
value distribution G. Copulas is then a useful tool to do that. Let C be the copula function of F. We have

F (x1, x2) = C (F1 (x1) ,F2 (x2)) (24)

where F1 and F2 are the two margins. If G exists, there is almost one copula function C? such that

G (x1, x2) = C? (G1 (x1) ,G2 (x2)) (25)

where G1 and G2 are the two margins of the distribution G. It is not difficult to show that necessarily Gi is
the extreme value distribution of Xi. So, the margins of G are characterized by the Fisher-Tippet theorem (see
Embrechts, Klüppelberg and Mikosch (1997)). Gi is one of the three univariate extreme value distribution:
Fréchet, Weibull or Gumbel. For the copula C?, Deheuvels [1978] shows that

C? (u1, u2) = lim
m−→∞

Cm
(
u

1
m
1 , u

1
m
2

)
(26)

C? must then be an extreme value copula and satisfy

C?

(
ut

1, u
t
2

)
= Ct

? (u1, u2) (27)

for all t > 0. We can verify that the Normal copula does not satisfy the relation (27). The Normal copula is also
not an extreme value copula, and thus it can not be used for the modelling of extremes. This is not the case of
the Gumbel copula, which is an extreme value copula.

In place of the notation F ∈ MDA(G) — F is in the max domain attraction of G — we use (C,F1,F2) ∈
MDA(C?,G1,G2). We have then the following theorem:

Theorem 3 (C,F1,F2) ∈ MDA(C?,G1,G2) iff

1. Fn ∈ MDA(Gn) for n = 1, 2;

2. C ∈ MDA(C?).
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The characterization of the max domain attraction is a difficult7, but a useful exercice. We give here some
examples. Suppose that the two margins F1 and F2 are gaussians N (m1, σ1) and N (m2, σ2). In this case,
we know that the corresponding univariate extreme value distribution is the Gumbel distribution Λ (x) =
exp (−e−x) (see Embrechts, Klüppelberg and Mikosch [1997]). If the dependence structure is the Normal
copula (with β < 1), the corresponding extreme value copula is C⊥. The bivariate extreme value distribution
is then as follows

G (x1, x2) = C⊥ (Λ (x1) ,Λ (x2))
= exp

(−e−x1
)
exp

(−e−x2
)

= exp
(−e−x1 − e−x2

)
(28)

Suppose now that the dependence structure is the Gumbel copula. We can show that the corresponding extreme
value copula is a Gumbel copula with the same parameter. The bivariate extreme value distribution becomes

G (x1, x2) = exp
(
−

[(
e−x1

)β +
(
e−x2

)β
] 1

β

)
(29)

In figure 5, we have represented the probability density function of the two distributions8 and of the correspond-
ing extreme value distributions. The parameter of the Normal copula is equal to sin

(
7π
20

)
whereas this of the

Gumbel copula is set to 10
3 . These values have been choosen such that the Kendall’s tau is equal to 70%. We

verify that the two extreme value distributions are very different, whereas the original distributions seem very
closed.

Figure 5: Probability density function of a distribution and its extreme value distribution

7see Yun [1997] for the examples of multivariate exponential, student, gamma and normal distributions.
8The Normal margins are centered with a unit standard error.
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3.3 Correlation analysis caveats

As we have recalled before, contagion analysis is based most of the time on standard (Pearson) correlation
coefficient. The purpose of this subsection is to present some of the caveats asociated with this measure.

3.3.1 A definition problem

A general definition of contagion can be the following : Contagion is defined as the fact that the occurrence of
a currency or a financial crisis somewhere in the world increase the probability of a crisis in another country,
independently of the latter’s local economic and financial situation. Does an increase in the correlation of returns
or residual returns (i.e. after controlling for fundamentals) be considered as the sign of such a contagion?

From a general formal point of view, the definition of a contagion (between two countries) can be expressed
as follows: There exists a phenoma of contagion from the market 1 to the market 2 if9

Pr{X2 > x2 | X1 > x1} > Pr{X2 > x2} (30)

for a couple of well-chosen thresholds (x1, x2) and (X1, X2) a 2-dimensional vector of random variables. In broad
terms, the inequality (30) means that given that a crisis has occurred in market 1 (X1 > x1), the probability
of a crisis in market 2 is higher that independently of what happened in market 1. With this definition, we
can naturally compare the probability of a financial random variable to be above a certain threshold during
“normal” period (all-sample) and “hectic” period (the sub-sample is defined as X1 > x1). We will see later that
this definition means that X1 and X2 are positive quadrant dependent above a certain threshold. Moreover, we
can note that this definition of contagion is symmetric in X1 and X2 since

Pr{X2 > x2 | X1 > x1} ≥ Pr{X2 > x2} if and only if Pr{X1 > x1 | X2 > x2} ≥ Pr{X1 > x1} (31)

This means that the measure of contagion is independent of the marginals (i.e., the ground-zero country).
On the contrary, the use of a conditional probability alone leads to a measure of contagion dependent of the
conditioning marginal (see straetmans [1999]).

We can now give an example that shows that measuring correlation during these two periods cannot be a
good indicator of this kind of phenomenas. This example is based on Embrechts, McNeil and straumann
[1999] who advance the theorical property that sustains it:

Marginal distributions and correlation do not determine the joint distribution.

Consider a bivariate distibution (X1, X2) with Gamma marginals (with parameter equal to 3) but with a
dependence structure that can change over time. Namely, if X1 > x1, the dependence function is a Gumbel
copula and if X1 ≤ x1, the dependence function is a Normal copula. The copula parameters are chosen so that
the correlation is equal to 0.75 for the two copulas. As a result, a classical study based on correlations measure
will conclude that there is no contagion and no change in the generating process between “hectic” — X1 > x1

— and “calm” — X1 ≤ x1 — periods. However, if we take a threshold x1 so that Pr {X1 > x1} = 1% and
choose x2 equal to x1, an empirical estimation gives10 Pr{X2 > x2 | X1 > x1} = 67%. Given our definition of
contagion, there is clearly contagion. This result is obtained in a case which is not only a purely matematical
one: as a matter of fact, the idea of a change in the dependence structure during extremly volatile period — and
especially a transformation from a Normal copula into a Gumbel copula — is now sustained by some empirical
studies (see Longin and Solnik [2000]). This change in the dependence sructure can be interpreted as a change
in the channels between the two respective markets of our financial series. Nevertheless, we see that a study of
correlations is unable to detect this kind of change.

9In this definition, we restrict to the distribution of maxima (i.e. positive returns). The analysis of the distribution of minima
(i.e. negative returns) is obviously the same when we restrict to extreme movements (it suffices to replace returns by minus returns).

10In this case, the parameters of the Gumbel and Normal copulas are respectively 2.3 and 0.80.
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This example has used a simple comparison between correlations in “calm” and “hectic” periods wheras,
as we have recalled ealier, one could take into account the selection bias used to define the two sub-samples.
However, we could have imagined an example where the copulas had the same corrected correlation (like the
one used in Boyer, Gibson and Loretan [1999]). It would not have changed our main point: for one stated
parameter (like the corrected correlation) and two given marginals, you can find an infinity of dependence
structure with various impacts on the probability of simultaneous crisis.

One could also argue that our results are, of course, dependent on the definition of contagion we use. As
a matter of fact, if you define contagion as an increase in correlations, there is clearly no contagion in our
example. However, we think that both risk managers and policy makers may be more interested in a contagion
that focuses on the risk of a simultaneous crisis than in a contagion that focuses on changes in correlations in
order to evaluate the modifications of the underlying process — especially when this kind of contagion is not
always able to locate changes in the dependence structure of the process.

Given our definition of contagion — which needs a control of the fundamentals — it seems natural to
think that the second kind of test, which is only based on residual correlations, may work better empirically.
Moreover, with this approach, people do not have problems of selection bias or switching regimes since they
only focus on crisis periods. But, by using again an example based on Normal and Gumbel copulas, we can
show that correlation is not a well-adapted tool In this second example, we consider two random vectors
X = (X1, X2) and Y = (Y1, Y2) both with Gamma marginals (with parameter equal to 3) but the first one
depends on a Normal copula and the second one on a Gumbel copula. In order to test for contagion, we measure
correlations of X and Y during the periods defined as X1 > x1 and y1 > y1. Like in our first example, we
take Pr {X1 > x1} = Pr {Y1 > y1} = 1% and the thresholds x2 and y2 are set to x1 and y1. We choose the
parameters of our copulas so that in the crisis period the Pearson correlation is equal to 15% in both cases11.
As a consequence, in both cases, a study based on correlations will conclude that contagion occurs. Moreover,
because the two correlations are equal, people may think that contagion occurs at the same level. But if
we give a closer look at the conditional probability, we find that Pr{X2 > x2 | X1 > x1} = 3% whereas
Pr{Y2 > y2 | Y1 > y1} = 20%. We see that contagion is clear only in the second case and that the probabilities
of a simultaneous crisis are very different: the probability in the Gumbel case is seven times that of the Normal
case.

3.3.2 Some misinterpretations of the correlation

We note ρ (X1, X2) the Pearson correlation of the two random variables X1 and X2 with margins F1 and F2.
We list here some ”myths” about the correlation which are often used in financial economics:

1. the random variables X1 and X2 are independent if and only if ρ (X1, X2) = 0;

2. for given margins, the permissible range of ρ (X1, X2) is [−1, 1];

3. ρ (X1, X2) > 0 means that X1 and X2 have a positive dependence.

We consider the first evidence. We use the cubic copula introduced by Durrleman, Nikeghbali and
Roncalli [2000] (see [24]) and defined as follows

C (u1, u2) = u1u2 + α [u1(u1 − 1)(2u1 − 1)] [u2(u2 − 1)(2u2 − 1)] (32)

with α ∈ [−1, 2]. We assume that the margins F1 and F2 are continous and symmetric. In this case, the
Person correlation is equal to zero. The proof of this result is straightforward if we remark that C (u1, u2) −
u1u2 is symmetric about

(
F−1

1

(
1
2

)
,F−1

2

(
1
2

))
. Moreover, if α 6= 0, the random variables X1 and X2 are not

independent. So, we have obtained a family of distributions such that ρ (X1, X2) = 0 and X1 and

11In this case, the parameters of the Gumbel and Normal copulas are respectively 1.18 and 0.20.
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X2 are dependent. To illustrate this fact, we have plotted in figure 6 the probability density function of
distributions generated by the cubic copula12. Note that α = 0 corresponds to the independent case, i.e.
C = C⊥.

Figure 6: Probability density function of distributions constructed with the cubic copula

We know that ρ (X1, X2) ∈ [−1, 1]. ρ (X1, X2) takes the value 1 (respectively −1) if and only if there exists a
linear relationship X2 = aX1 + b with a > 0 (respectively a < 0). In the case of non linear relationship between
X1 and X2, ρ (X1, X2) ∈ [ρ−, ρ+] ⊂ [−1, 1]. We illustrate this second point with a simple (but beautiful)
example due to Wang [1999]. We assume that X1 ∼ LN (µ1, σ1) and X2 ∼ LN (µ2, σ2). We can show that the

minimum correlation ρ− is given when X2 = eµ2+
σ2
σ1

µ1X
−σ2

σ1
1 and the maximum correlation ρ+ is given when

X2 = eµ2−σ2
σ1

µ1X
σ2
σ1
1 . In this case, we have (see appendix A.4.2 of Wang [1999])

ρ− =
e−σ1σ2 − 1√

eσ2
1 − 1

√
eσ2

2 − 1
≤ 0

ρ+ =
eσ1σ2 − 1√

eσ2
1 − 1

√
eσ2

2 − 1
≥ 0 (33)

Note that ρ+ is equal to 1 if and only if σ1 = σ2 and ρ− takes the value −1 if and only if

lim
σ1−→0+

σ1 = lim
σ2−→0+

σ2 = 0 (34)

So, in the case where σ1 6= σ2, the permissible range of ρ (X1, X2) is not [−1, 1] because ρ− > −1 and ρ+ < 1.
Moreover, we have

lim
σ1∧σ2−→∞

ρ− = 0 (35)

12The margins are respectively gaussian (X1 ∼ N (0, 1) and X2 ∼ N (0, 1)) and student (X1 ∼ t2 and X2 ∼ t3).
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and
lim

|σ1−σ2|−→∞
ρ+ = 0 (36)

This is in contradiction with the belief in financial economics that

Given marginal distributions F1 and F2 for X1 and X2, all Pearson correlation between −1 and +1 can be
attained through a suitable specification of the joint distribution (Embrechts, McNeil and straumann [1999]).

We have reported the range of [ρ−, ρ+] for different values of σ1 and σ2. In some cases, we remark that ρ− À −1
and ρ+ ¿ 1.

Figure 7: Permissible range of ρ (X1, X2) when X1 and X2 are two log-normal random variables

We consider now the third point. We use the previous example. The linkage between the two random
variables is done with the Gaussian copula. In table 1, we have reported the corresponding Pearson’s correlation,
Kendall’s tau and Spearman’s rho for σ1 = 1 and σ2 = 3. Because the permissible range of ρ (X1, X2) is not
large, we obtain some strange results. For example, in the case of the lower Fréchet bound C−, i.e. when X1

and X2 are countermonotonic and present the most negative dependence, the correlation is close to zero! This
simple example shows us that we can not use the Pearson correlation to measure the intensity of the
dependence. Kendall’s tau and Spearman’s rho are more appropriate.

Kendall’s tau and Spearman’s rho are two concordance measures (Nelsen [1998]). They satisfies different
properties, in particular:

• if X1 and X2 are countermonotonic, the measure of concordance is equal to −1;

• if X1 and X2 are independent, the measure of concordance is equal to 0;
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Copula ρ (X1, X2) τ (X1, X2) % (X1, X2)
C− −0.008 −1 −1

β = −0.7 ' 0 −0.49 −0.68
C⊥ 0 0 0

β = 0.7 ' 0.10 0.49 0.68
C+ 0.16 1 1

Table 1: Value of the dependence measures

• if X1 and X2 are comonotonic, the measure of concordance is equal to 1;

• the measure of concordance between X1 and X2 is invariant under monotonic transformations of X1 and
X2.

Kendall’s tau is interpreted as the probability of concordant pairs minus the probability of discordant pairs
whereas the Spearman’s rho corresponds to the linear correlation coefficient of the ranks. Because of the previous
properties, they can be used to compare dependence in a more coherent way than the Pearson correlation.

3.4 A new statistical framework to analyze contagion episodes and dependence
between financial markets

We have seen in the previous paragraph that correlation is not a good tool for identifying the dependence
function. In this subsection, we review different statistical methods related to copulas, which constitute a more
appropriate tool to define the dependence function.

3.4.1 Modelling the dependence between extreme returns

Correlation is not a good measure for identifying contagion episodes. A more appropriate measure must entirely
characterize the dependence structure.

Definition of the upper tail dependence In the rest of this paper, we will now use a more precise version
of our first definition of contagion. We define contagion as follows:

Definition 4 Consider a two dimensional vector of random variables (X1, X2) with distribution functions F1

and F2 and a copula functions C, there exists a phenoma of contagion if

Pr
{
X2 > F−1

2 (α2) | X1 > F−1
1 (α1)

} ≥ Pr
{
X2 > F−1

2 (α2)
}

(37)

for all α1 ≥ α? and α2 ≥ α?.

From a statistical point of view, this definition may be seen as a restricted property of positive quadrant
dependence (PQD) above the threshold α?. PQD means that the dependence function C is larger than the
product copula C⊥ (see Joe [1997]). Note that the inequality (37) is equivalent to

Pr
{
X2 > F−1

2 (α2) | X1 > F−1
1 (α1)

}

Pr
{
X1 > F−1

1 (α1)
} ≥ Pr

{
X2 > F−1

2 (α2)
}

(38)

It comes that

Pr
{
X2 > F−1

2 (α2) | X1 > F−1
1 (α1)

} ≥ Pr
{
X1 > F−1

1 (α1)
}

Pr
{
X2 > F−1

2 (α2)
}

(39)

When the margins are continous, this inequality is verified for all (α1, α2) ∈ [0, 1]2 if

C Â C⊥ (40)
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One advantage of the previous definition is that it is expressed in terms of quantile. We can then associate
directly α1 and α2 to small events, because they are probabilities. In practice, we will choose α1 = α2 = α.
Within this definition, we give a special attention to the asymptotic case

λ = lim
α−→1−

Pr
{
X2 > F−1

2 (α) | X1 > F−1
1 (α)

}− Pr
{
X2 > F−1

2 (α)
}

= lim
α−→1−

Pr
{
X2 > F−1

2 (α) | X1 > F−1
1 (α)

}
(41)

λ is called the coefficient of upper tail dependence. In this case, a test for dependence between extreme returns
is similar to the test of the null hypothesis λ > 0 against the alternative hypothesis λ = 0. In the Normal copula,
λ takes the value 0. This kind of test has already been used in Longin and Solnik [1999].

In the general case, we have to consider the quantile-dependent measure13 λ (α) defined as follows

λ (α) = Pr
{
X2 > F−1

2 (α) | X1 > F−1
1 (α)

}

=
Pr

{
X2 > F−1

2 (α2) , | X1 > F−1
1 (α1)

}

Pr
{
X1 > F−1

1 (α1)
}

=
1− 2α + C (α, α)

1− α

= 2− 1−C (α, α)
1− α

(43)

Note that the equation (37) is equivalent to verify that λ (α) − (1− α) ≥ 0. Since α ∈ [0, 1], we just have to
study the sign14 of C (α, α)− α2.

There are two problems with the modelisation of the upper tail dependence.

1. The first one is that λ (α) will be estimated from empirical observations, and “estimates of λ (α) may
appear constant and positive, even for asymptotically independent variables” (Coles, Currie and Tawn
[1999]). These authors have then considered a second dependence measure λ̄ (α) defined as

λ̄ (α) =
ln (1− α)2

ln (1− 2α + C (α, α))
− 1 (44)

We can show that the limit case λ̄ = lim
α−→1−

λ̄ (α) verifies −1 < λ̄ ≤ 1. In this case15, extremal dependence

corresponds to λ̄ = 1. In figure 8, we compare the two measures λ (α) and λ̄ (α) when the copula is Normal.
We remark that the convergence of λ (α) to zero can be very slow. As indicated by Coles, Currie and
Tawn [1999], λ̄ is equal to the correlation parameter β of the Normal copula “which provides a useful
benchmark for interpreting the magnitude of λ̄ in general models”.

13Sometimes, another expression is considered (Coles, Currie and Tawn [1999])

λ (α) ' 2− lnC (α, α)

ln α
(42)

14This result may be obtained directly by thinking contagion as a positive quadrant dependence on the diagonal.
15The authors motivate the introduction of this measure, because it is related to the coefficient of tail dependence η of Ledford

and Tawn [1996], which satisfies the condition

Pr {X1 > x, X2 > x} ∝ L (x) [Pr {X1 > x}] 1
η (45)

where the margins of X1 and X2 are two unit Fréchet and L (x) a slowly varying function. We have

λ̄ = 2η − 1 (46)
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2. The second problem concerns the relevance of the asymptotic case. Let us consider the example of the
Normal copula with β equal to 75%. We have λ = 0 but λ (99.99%) = 13.6%. In the case of the Student
copula with 4 degrees of freedom and a parameter β equal to −50%, we have λ = 1.2% and λ (99.99%) ' λ.
This simple example shows us that the asymptotic case is not perhaps the most interesting case to study
the dependence between extreme returns.

Figure 8: Comparison of the measures λ (α) and λ̄ (α) in the case of the Normal copula

Estimation issues As a matter of fact, if we want our definition of contagion to be a useful tool, we must
be able to estimate expression (37). Namely, we must be able to estimate the conditional probability λ (α)
and especially when we are in periods of crisis such as α is closed to one. In this perspective, we will present
two approaches: the first one, which is non-parametric, is given in straetmans [1999] and the second one,
which is parametric, is given in Longin and Solnik [1999]. They are both interested in asymptotic measures
but the first author focuses on a probability of spillover whereas the others estimate a coefficient of “extremal
correlation”. The two approaches can give an estimation of λ (α). In order to present these two approaches, we
will first give the theoretical results that sustain both of them and then, their respective specificities. Finally,
we will propose an extension to these methologies — based on extreme copulas — and apply it in the next
paragraph in order to estimate λ (α) when α is close to one.

These two approaches first use the results given by EVT for the marginals F1 and F2 of two random
variables X1 and X2. Namely, they use the fact that for fat-tailed distributions like those of financial returns,
the distribution of well-normalized maxima tends to be Fréchet with parameter αi. From the properties of the
max-domain of attraction, straetmans deduces that

1− Fi (x) ' ax−αi for x −→∞ (47)
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This representation allows him to estimate αi and then the probability of Xi to be above one given threshold
solely by the use of the Hill estimator (see Embrechts, Klüppelberg and Mikosch [1997]). On the other
hand, Longin and Solnik use the equivalence between belonging to the max-domain of attraction of a Fréchet and
having a distribution of scaled excesses over high thresholds that tends to be a Generalised Pareto Distribution
(GPD) which has the following expression

GPD (x) = 1−
(

1 +
x− µ

ασ

)−α

(48)

(σ is the scaling parameter and µ is the threshold). It is important to note that 1 − GPD (x) is not equal
to Pr {X > x} but to Pr {X > x | X > µ} when µ −→ ∞. In order to estimate the parameters of the GPD,
they use maximum likelihood method whereas Straetmans’s estimation is based on the Hill estimator. In
summary, concerning the marginals, they both use theoretical results linked to the max-domain of attraction of
the Fréchet distribution. However, whereas Straetmans uses semi-parametric method to estimate Pr {X > x}
(when x −→∞), Longin and Solnik focus on a parametric estimation of Pr {X > x | X > µ} (when µ −→∞).

Concerning the dependence structure, we will show that the objects they use are very similar for high
quantiles. However, in order to compare their two dependence structures, we must focus in both cases on
the same probabilities. So, a first problem to solve is that straetmans used unconditional probabilities while
Longin and Solnik focus on conditional probability. We choose to present what becomes Longin and Solnik’s
approach for µ = 0 and x −→ ∞. Moreover, since we can no longer use the results based on the GPD for the
marginals, we will maintain the assumption that the random variables are in the max-domain of attraction of
a Fréchet distribution. Now, give a closer look at the two dependence functions introduced by the authors.
In Straetmans [1999], this dependence structure is called the stable tail dependence function — lF — and
in Longin and Solnik [1999] the dependence function — D. We call G the extreme bivariate distribution
of the two random variables (X1, X2) with Fréchet distributions Υα1 and Υα2 and define u1 and u2 such as
u = 1−Υα (x) ' x−α. The stable tail dependence function is expressed as follows

lF(u1, u2) = − lnG
(

u
− 1

α1
1 , u

− 1
α2

2

)
(49)

whereas, in Longin and Solnik [1999], the dependence function verifies

G (x1, x2) = exp
[
−D

(
− 1

lnΥα1 (x1)
,− 1

lnΥα1 (x1)

)]
(50)

With limited development of order one, it can also be written as

G (x1, x2) ' exp
[
−D

(
1

xα1
1

,
1

xα2
2

)]

' exp [−D (u1, u2)] (51)

For all (u1, u2) close to zero, we finally obtain − lnG
(

u
− 1

α1
1 , u

− 1
α2

2

)
= D (u1, u2) and so lF(u1, u2) = D (u1, u2).

The restriction is not a problem, since we are interested in extremal events. Note that the existence of the two
functions comes from the convergence of the point process NT =

{
T−1Xi : i = 1, 2

}
toward a non-homogeneous

Poisson process whose intensity measure Λ is constrained (Coles and Tawn [1991]). In this paper, the two
authors show that the extreme bivariate distribution of componentwise maxima — with unit Fréchet marginals
— can always be written as G (x1, x2) = exp (−Λ (x1, x2)). It is Pickands representation for multivariate
extreme value distributions16, where the function Λ must be homogeneous of order −1. The link with extreme
value copulas is straightforward:

16The assumption of having unit Fréchet margins is not restrictive since suitable transformations can be applied otherwise.
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If an extreme multivariate distribution G with unit Fréchet margins admits Pickands representation, then
the copula C associated to the distribution is an extreme value copula.

In summary, both of the two approaches uses extreme value theory for obtaining the form of the multivariate
distribution. As a result, their dependence functions are equivalent for high quantiles. Nevertheless, these two
methodologies have completely different point of views concerning the estimation of lF and D. straetmans
[1999] uses the fact that lF is homogeneous of order 1 — which comes from the homogeneity of Λ — so that he
can estimate asymptotic probabilities in two steps. In a first time, he uses the law of large numbers in a well
chosen sample (with a sufficient number of observations) to estimate lF and then consider more extreme levels
thanks to the homogeneity property lF(u1, u2) = a−1lF(au1, au2). Note that the asymptotic case corresponds
to λ = 2− lF(1, 1). The crucial point of this methodology is the choice of the threshold u1 = u2 = a−1. On the
contrary, Longin and Solnik [1999] use a complete parametric method and set D to be the logistic function,
which is in fact the Gumbel copula. After having estimated β by maximum likelihood method, λ is given by
2− 2β (a well-know result for the Gumbel copula).

In our point of view, the difference between the two approaches concerns only the estimation method. We
think that the copula framework is the natural (and the more general) approach for modelling extremes. In the
next paragraph, we use a parametric methodology since we are interested in the dependence between returns in
general not only in the asymptotic case. Our approach is to choose within the space of extreme value copulas
the one which fits the best our data rather than to take arbitrarily one of them. In order to determine which
copula is the right one, we use the methodology presented in Durrleman, Nikeghbali and Roncalli [2000].
This can be divided into three steps:

• we build a set of parametric extreme value copulas families;

• we define the vector of the componentwise maxima and estimate the parameters of the marginals (assuming
they are GEV) and those of the copula functions by maximum likelihood method;

• we estimate the Deheuvels copula (see the paragraph 3.4.2) and compare the distance between the empirical
copula and the different fitted copulas. We then choose the copula which minimizes the discrete `2 norm.

The fitted copula can then be used to compute λ (α) for α close to one, and the asymptotic case λ.

Illustration with the indices CAC40 and DowJones In this paragraph, we give some results of our
methodology with the indices CAC40 and DowJones. The set of extreme value copulas is the following:

Copula β C (u1, u2)
C⊥ u1u2

Gumbel [1,∞) exp
[
−

(
ũβ

1 + ũβ
2

) 1
β

]

Galambos [0,∞) u1u2 exp
[(

ũ−β
1 + ũ−β

2

)− 1
β

]

Hüsler-Reiss [0,∞) exp [−ũ1Φ(z1)− ũ2Φ(z2)]
Marshall-Olkin [0, 1]2 u1−β1

1 u1−β2
2 min

(
uβ1

1 , uβ2
2

)

C+ min (u1, u2)
Normal [−1, 1] Φβ(Φ−1 (u1) , Φ−1 (u2))

with ũ = − ln u, z1 = β−1 + 0.5β ln (ũ1/ũ2) and z2 = β−1 + 0.5β ln (ũ2/ũ1).

It is important to note that the Normal copula is not an extreme value copula. But, it is retained in the set
because of the importance of the gaussian structure in traditional empirical studies. We will see that according
to the results of the last paragraph, the empirical copula is best fitted by extreme copulas than by the gaussian
one. We also choose the Gumbel, Galambos and Hüsler-Reiss copulas because they are all extreme copulas and
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Copula β Normalized `2 norm
C⊥ 5.52 ×10−2

Gumbel 1.57 1.04 ×10−2

Galambos 0.85 1.02 ×10−2

Hüsler-Reiss 1.26 1.06 ×10−2

Marshall-Olkin (0.51, 0.62) 1.30 ×10−2

C+ 5.63 ×10−2

Normal 0.28 3.02 ×10−2

Table 2: Results with 25 trading days

Copula β Normalized `2 norm
C⊥ 5.54 ×10−2

Gumbel 1.53 1.48 ×10−2

Galambos 0.82 1.46 ×10−2

Hüsler-Reiss 1.28 1.43 ×10−2

Marshall-Olkin (0.52, 0.61) 1.79 ×10−2

C+ 5.87 ×10−2

Normal 0.28 3.21 ×10−2

Table 3: Results with 50 trading days

take into account the cases of independence and total dependence. These three copulas are all symmetric in
u1 and u2. Finally, we add the Marshall-Olkin copula which is also extreme but presents the advantage to to be
asymmetric.

To choose the right copula, we apply the Durrleman, Nikeghbali and Roncalli [2000] methodology.
Thus, we must create the vector of the componentwise maxima (here we will focus on bear markets and so
consider only extreme negative returns). We use two sizes of blocks (which corresponds to 25 and 50 trading
days). The results on the CAC40 and DowJones are given in the tables 2 and 3. We see on this example that
the different copulas can be ranked by increasing efficiency into four groups:

1. the product and upper Fréchet copulas,

2. the Normal copula,

3. the Marshall-Olkin copula,

4. and the Gumbel, Galambos and Hüsler-Reiss copulas.

There are no significative differences between these last three copulas. The bad ranks of the product and upper
Fréchet copulas results of course from the non-parametric nature of these two copulas. Finally, according to the
extreme value theory, we can underline that the choice of the Normal copula is not optimal. We then choose
the Galambos copula to estimate λ(α). In figure 9, we have plotted λ(α) for α ≥ 0.8 both with the central
limit theorem (CLT) and the Galambos copula. Our methodology clearly shows that there is a phenomena of
dependence between the two indices during extreme events (when the associated probability is less than 20%).
Until very high quantiles (above 99%) are reached, one can rely on CLT since the number of observations remains
important (always above 30). However, in case of big extremal events (namely, the thirty biggest variations of
the last decade), there are not enough observations and so, we must use the results of extreme value theory.
Here, these results show that dependence was even stronger during extreme periods. Whereas the unconditional
probability tends to be null, the conditional probability λ is around 40%.

One convenient way of visualizing this dependence during extreme crisis (high threshold) is to use failure
areas (see Bouyé, Durrleman, Nikeghbali, Riboulet and Roncalli [2000] for a complete treatment of
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Return time (in years)
Date CAC40 DowJones EVT GD (I) GD (II)

10/19/1987 −10.14% −25.63% 105.79 1.44× 1014 X
10/21/1987 +1.80% +9.67% 18.14 2.88× 1014 X
10/26/1987 −8.45% −8.38% 9.18 1.80× 1013 2.70× 1013

11/09/1987 −11.65% −3.10% 8.12 2.30× 109 2.53× 1010

01/01/1992 +8.28% +5.71% 6.85 1.66× 108 1.69× 108

01/02/1992 −9.18% −5.59% 6.39 2.96× 109 3.09× 109

01/04/1992 +9.87% +4.83% 7.06 2.05× 109 2.06× 109

Table 4: Return time of extreme returns

this topic). A failure area with a return time t is defined as the set (x1, x2) such as Pr{X2 > x2, X1 > x1} < 1
t .

In figure 10, we set t equal to 5 years. It implies that the mean duration of the event (X2 > x2, X1 > x1) is
five years. We have represented the failure areas for both bear and bull markets obtained with the Galambos
copula. To give an idea about the superiority of extreme value theory method on a methododology based on
the multivariate gaussian distribution, we have computed the return time of the most extreme returns of the
database. The results are reported in table 4. We can compare the obtained results (EVT) with these computed
if we assume that the bivariate distribution is normal. Because we have rare events, the probabilities are very
small in the gaussian case. We face some numerical problems about computing so small probabilities. So we we
have reported two values, one based on the gaussian cdf (GD (I)), the other based on the logarithm gaussian
cdf (GD (II))17.

Figure 9: Comparison of λ (α) computed with the Galambos copula and the empirical method

17All the computation have been done with the GAUSS cdfbvn and lncdfbvn procedures.
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Figure 10: Failure area for a five years return time

3.4.2 Comparing the dependence between asset returns

In the previous paragraph, we have concentrated on extreme returns. Sometimes, we have to compare the
dependence structure between two periods or between two bivariate series for all of the distribution. We can
then use two methods based on copulas. The first one is related to the concordance order, whereas the second
one is based on quantile regression. Note that we can use these two methods in a parametric framework (by
estimating a parametric copula) or in a non-parametric framework (using the empirical copula introduced by
Deheuvels [1979]).

The concordance order method Suppose that we want to compare the dependence of a bivariate financial
series between two periods, or the dependence of two bivariate financial series. Let C1 and C2 be the two
underlying dependence functions. The most simple case is when we have

C1 (u1, u2) ≥ C2 (u1, u2) (52)

for all (u1, u2) ∈ [0, 1]. In this case, we can conclude that the dependence in the first period (respectively of
the first bivariate financial series) is stronger than the dependence in the second period (respectively of the
second bivariate financial series). However, as we have said previously, we can not always compare two copula
functions. In figures 11 and 12, we have represented the region where the relation C1 (u1, u2) ≥ C2 (u1, u2)
does not work for different pairs of copulas. It does correspond to dark areas. In general, we remark that the
region is clearly delimited. It could be localized in corners (0, 0), (0, 1), (1, 0) and (1, 1). Or it could be a more
complicated area. This type of analysis indicates us the regions where we have locally a stronger dependence.
It can be completed by a quantile-dependent measure. Previously, we have introduced the quantile-dependent
measure of the upper tail

λ (u) = Pr {U1 > u | U2 > u} =
1− 2u + C (u, u)

1− u
(53)
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But, we can define many other quantile-dependent measures, for example

λ(0,0) (u) = Pr {U1 < 1− u | U2 < 1− u} =
C (1− u, 1− u)

1− u

λ( 1
2 ,0) (u) = Pr

{
U1 <

1
2
| U2 < 1− u

}
=

C
(

1
2 , 1− u

)

1− u

λ(1,0) (u) = Pr {U1 > u | U2 < 1− u} = 1− C (u, 1− u)
1− u

λ(1, 1
2 ) (u) = Pr

{
U1 > u | U2 <

1
2

}
= 1− 2C

(
u,

1
2

)

λ(1,1) (u) = Pr {U1 > u | U2 > u} =
1− 2u + C (u, u)

1− u

λ( 1
2 ,1) (u) = Pr

{
U1 <

1
2
| U2 > u

}
=

1
2 −C

(
1
2 , u

)

1− u

λ(0,1) (u) = Pr {U1 < 1− u | U2 > u} = 1− C (1− u, u)
1− u

λ(0, 1
2 ) (u) = Pr

{
U1 < 1− u | U2 <

1
2

}
= 2C

(
1− u,

1
2

)
(54)

λ(a,b) denotes the quantile-dependent measure when U1 goes towards a given that U2 goes towards b. We have
represented graphically the directions of these quantile dependent measures in figure 13. These measures can
be used to verify the strength of the failure of the assumption (52). For example, we remark that even if the
relationship (52) is not verified by the Normal copula with β = 0.7 and the Frank copula with β = 0.5 (see figure
11), the conditional probabilities of the failure region are very closed (see figure 14). We could then consider
that the Normal copula is a more dependent function than the Frank copula.

The quantile regression method Koenker and Basset [1978] introduce quantile regression as an exten-
sion of the classical median regression. We note x2 = q (x1;α) the quantile regression curve of X2 on X1, which
is defined by

Pr {X2 ≤ x2 | X1 = x1} = α (55)

Using the integral transforms U1 = F1 (X1) and U2 = F2 (X2), we have

Pr
{
X2 ≤ F−1

2 (u2) | X1 = F−1
1 (u1)

}
= α (56)

with x1 = F−1
1 (u1) and x2 = F−1

2 (u2). It comes that the quantile regression curve of X2 on X1 is equivalent
to solve this following problem

Pr {U2 ≤ u2 | U1 = u1} = α (57)

or
∂

∂u1
C (u1, u2) = α (58)

If we note u2 = q? (u1; α) the solution of this equation, we have

x2 = F−1
2 (q? (F1 (x1) ; α)) (59)

and so q (x;α) = F−1
2 (q? (F1 (x) ;α)).

In some cases, we can find the analytical expression of q?. For example, Frees and Valdez [1998] give the
solution for the Frank copula. It is defined as

C (u1, u2) = − 1
β

ln

(
1 +

(
e−βu1 − 1

) (
e−βu2 − 1

)

e−β − 1

)
(60)
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Figure 11: Comparison of dependence functions (I)

Figure 12: Comparison of dependence functions (II)
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Figure 13: Directions of the quantile dependent measures

Figure 14: Exemples of quantile dependent measures
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It comes that
∂

∂u1
C (u1, u2) =

e−βu1
(
e−βu2 − 1

)

(e−β − 1) + (e−βu1 − 1) (e−βu2 − 1)
(61)

The quantile regression function u2 = q? (u1; α) is then

u2 = − 1
β

ln

(
1 +

α
(
e−β − 1

)

α + e−βu1 (1− α)

)
(62)

In the case of the Normal copula, Bouyé, Durrleman, Nikeghbali, Riboulet and Roncalli [2000] show
that

∂

∂u1
C (u1, u2) = Φ (ς) (63)

with

ς =
Φ−1 (u2)− βΦ−1 (u1)√

1− β2
(64)

The expression of the function u2 = q? (u1;α) is also

u2 = Φ
(
βΦ−1 (u1) +

√
1− β2Φ−1 (α)

)
(65)

Note that if the margins are gaussians, we obtain the well-known regression curve

X2 =
[
µ2 − β

σ2

σ1
µ1 +

√
1− β2Φ−1 (α)

]
+ β

σ2

σ1
X1 (66)

We remark that the relationship is linear and could be written as X2 = a + bX1. When the margins are
not gaussians, the relationship is linear in transformed random variables Y1 =

(
Φ−1 ◦ F1

)
(X1) and Y2 =(

Φ−1 ◦ F2

)
(X2).

In figure 15, we have reported the quantile regression curves for different copulas (Frank, Normal and Gumbel)
and different margins (uniform, gaussian and student). For the Gumbel copula, an analytical expression is not
available and so we use a root finding procedure. The parameters of the three copulas have been choosen such
that they have the same Spearman’s rho, which is equal to 75%. We remark the influence of the margins on
the curves. In fact, it appears that the interpretation of q? is more easy than this of q, because the values u1

and u2 are the quantiles of X1 and X2.

We finish this paragraph by some remarks about two methods for estimating quantile regression. The first
one (RQ) is based on the algorithm of Portnoy and Koenker [1997]. This estimating method is well known
in Econometrics. It assumes that the relationship between X1 and X2 is linear. The second one is based on
local regressions of Yu and Jones [1998], which can be linear (LLR) or quadratic (QLR). We consider the case
where the copula is Normal (β = 0.5) and the margins are gaussians. We have reported in figure 16 the results
given by these methods on a simulation with 5000 observations. We remark that the two methods give good
results. In figure 17, the copula is the same, whereas the margins of X1 and X2 are respectively Student with
parameter equal to 2 and Gamma with parameter equal to 1.5. In this case, we remark that the RQ method is
not appropriate, because the relationship between X1 and X2 is not linear. On the contrary, local regressions
give some good results.

Remark 5 If we assume that the dependence function is Normal, we can use the Portnoy-Koenker algorithm
with the transformed variables Yi =

(
Φ−1 ◦ Fi

)
(Xi). Let â and b̂ be the estimates of the linear quantile regression

{
Y2 = a + bY1 + u
Pr {Y2 ≤ bY1} = α

(67)
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Figure 15: Quantile regression with different copula functions

Figure 16: Estimating quantile regressions (I)
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Figure 17: Estimating quantile regressions (II)

The quantile regression curve of X2 on X1 is then obtained as follows

X2 = F−1
2

(
Φ

(
â + b̂Φ−1 (F1 (X1))

))
(68)

If the margins are not known, we can estimate them or we can use the empirical distributions. We have
implemented this transformation with the previous example, and it gives very good result (see figure 18).

The Deheuvels copula Let X = {(xt
1, x

t
2)}T

t=1 be a sample of the random vector (X1, X2). The empirical
(or Deheuvels) copula is given by

Ĉ(T )

(
t1
T

,
t2
T

)
=

1
T

T∑
t=1

1h
xt
1≤x

(t1)
1 ,xt

2≤x
(t2)
2

i (69)

where x
(t)
n is the order statistics. The estimation of the Deheuvels copula is then easy thank to a rank procedure.

Note that the empirical copula is only defined on lattice L =
{(

t1
T , t2

T

)
: tn = 0, . . . , T

}
. Deheuvels [1979] shows

two fundamentals properties:

1. The empirical copula Ĉ defined on L is in distribution independent of the margins F1 and F2.

2. If Ĉ(T ) is any empirical copula of order T , then Ĉ(T ) → C.

The Deheuvels copula is very important, because it can be viewed as the non parametric copula of the data.
We can use it in conjunction with the previous methods. However, we can face some problems. For example, if
we would like to compare the two Deheuvels copula Ĉ1 and Ĉ2, we will check the relationship

Ĉ1 (u1, u2) ≥ Ĉ2 (u1, u2) (70)
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Figure 18: Estimating quantile regressions (III)

for all (u1, u2) ∈ L1

⋂
L2. When L1 = L2 (this is the case when we want to compare two bivariate asset

returns on the same period) or L1 ⊂ L2, we have no difficulty to perform the comparison. In the other
cases, the lattices can not be compatible. We can then use approximation of copulas, like the Bernstein or
Checkerboard methods (Li, Mikusiński, Sherwood and Taylor [1997]). In this case, the approximated
copula is defined for all (u1, u2) ∈ [0, 1]2. Moreover, these approximations are useful in the case of quantile
regressions, because Durrleman, Nikeghbali and T. Roncalli [2000] provide analytical expressions of the
conditional probabilities (see [23]).

Illustration with the indices CAC40, DowJones and NIKKEI We consider the returns of the indices
CAC40, DowJones and NIKKEI from 1/4/1988 to 10/9/2000. In figure 19, we indicate in black the region where
the relationship Ĉ(CAC40,DowJones) Â Ĉ(NIKKEI,DowJones) does not hold. We remark that this region is tiny. We
can then say that the dependence function between the indices CAC40 and DowJones is stronger than the
one between the indices NIKKEI and DowJones. Moreover, we have reported the quantile-dependent measure
λ(0,0) (u) and λ(1,1) (u) to compare the behaviour of the bear and bull markets. It is obvious that extreme
returns are more dependent between the indices CAC40 and DowJones than the indices NIKKEI and DowJones.

We restrict now the study to the period before 1/1/1990. If we estimate the correlation matrix, we obtain

ρ̂ =




1 0.158 0.175
1 0.0589

1


 (71)

If we assume that the random vector of the trivariate asset returns is normal, it means that

C(CAC40,NIKKEI) Â C(CAC40,DowJones) Â C(NIKKEI,DowJones)
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If now, we only suppose that the dependence is Normal (without assumptions on margins), we can estimate the
parameter matrix β of the 3-dimensional Normal copula. We obtain

β̂ =




1 0.207 0.157
1 0.0962

1




In this case, we verify that

C(CAC40,DowJones) Â C(CAC40,NIKKEI) Â C(NIKKEI,DowJones)

The order of the dependence has changed. This little example shows that assuming a normal distribution can
lead to big errors of interpreting the dependence functions. In figure 20,we have represented the region where the
Deheuvels copula is stronger than the dependence function induced from the normal distribution. We remark
that the region is very large. It indicates obviously that the dependence function has been underestimated by
the gaussian assumption.

Figure 19: Comparison of dependence functions Ĉ(CAC40,DowJones) and Ĉ(NIKKEI,DowJones)
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Figure 20: Comparison of dependence functions Ĉ(CAC40,DowJones) and the copula induced by the normal assump-
tion

4 An application: the Asian crisis revisited

4.1 The Asian crisis: previous evidence

In this paragraph, we beginning by a short recall of the chronology of the Asian crisis. More detailed descriptions
can be found in Kaminsky and Schmukler [1999] or Radelet and Sachs [1998] and especially in Roubini [1998].
Then we review existing empirical studies.

4.1.1 A short chronology of the Asian crisis

The beginning of the Asian crisis is generally associated with the devaluation of the Thai bath on July 2, 1997
after successive speculative attacks and the resignation of the Thailand’s Finance Minister Virava — a great
supporter of the peg to the dollar.

In the following days, various neighbouring countries were attacked leading to abandonments of pegs or
devaluations (Malaysian ringitt, Philippine peso, Singapore dollar). On August 14, Indonesia let the rupiah
float. The following day, speculators attack Kong Kong dollar. To defend its currency, the central bank is
obliged to increase its overnight interest rates up by 150 basis points. On October 14, the Taiwan dollar is
devaluated, creating doubts about the sustainability of the Hong Kong dollar peg. The following week, the
Hang Seng Index (Hong Kong) lost around a quarter of its value in four days. On October 27, the crisis spreads
all over the world with, for example, trading suspended in Wall Street and biggest single-day losses in Brazil,
Argentina and Mexico. During the days following the announcement of an agreement between Indonesia and
IMF for a financial support package, Asian stock markets started to recover sharply.
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On November 7 and the days aftermath, attention began to focus on South Korea which heavily intervened
to sustain its currency. Asian and Latin American stock markets suffered from substantial losses. On Novembre
20, the South Korean won lost around 10% of its value, followed by most other regional currencies (albeit in
smallest falls). On December 3, the won, rupiah, baht and ringgit crashed to all-time lows against the dollar. On
December 9, rumors that Indonesia’s President Suharto is gravely ill propagated. The won attained a new record
low. In the end of the year, the announcements of financial support to Korea from leading financial institutions
and speedy disbursements of the IMF aid package permitted to recover. On January, 8, 1998, attention turned
to Indonesia where the currency and stock market fell by 26% and 12% respectively. On the following day, the
announcement of a commitment of President Suharto to implement economic reforms attached to the financial
aid package of the IMF helped the rupiah to recover sharply. By the mid of the month, the investors adopted
more optimistic views about Southeast Asia with the exception of the rupiah. From February to the end of
April, markets alternated periods of falls and periods of recover, but in a context of very volatile markets. May
was marked by political events and riots in Indonesia and associated sharp falls in the rupiah.

The end of the Asian crisis is generally associated with the resignation of President Suharto on May 21 and
the beginning of the Russian crisis.

4.1.2 A (selective) review of empirical work

In this subsection, we offer a selective review of empirical work on the Asian crisis. In particular, we do not
consider the broader literature which has analyzed the Asian crisis in part of a larger sample including other
crises (Mexico, Russia, ERM, 1982 debt crisis) ; see the first section for references. Rather we concentrate on
the literature which have focused on the Asian crisis. There are quite sensible differences with other studies.

First, in this case, the crisis period is always defined on a priori grounds. Baig and Goldfjan [1999]
defines the crisis period as beginning from the day of the bath devaluation and extending up to end May, 1998.
Kaminsky and Schmukler [1999] retain the larger period January 1997 – May 1998. Nagayasu [2000] select
the period 11/15/1996 – 12/31/1998. Quite surprisingly, Forbes and Rigobon [2000] defines the turmoil
period as the month following the Hong Kong stock market crash (October 17, 1997). This choice is motivated
by their impression that occidental newspapers did not pay attention to the Southeast Asia events before this
date18. In this paper, we choose, in line with the previous chronology, to define the crisis period in the same
way as Baig and Goldfjan.

Second, in difference with probit models, these studies do not introduce macroeconomic variables in the
analysis. This choice presents the advantage that it becomes possible to use higher frequency data (daily rather
than monthly). In this way, it is possible to identify more precisely the relationship between different markets
since, in general, information proceeds very fast and contagion operates in hours rather than in quarters. On
the other way round, this choice presents the disadvantage that it can be misleading to analyze stock markets or
exchange rates returns without paying attention to the evolution of fundamentals. Indeed, it becomes difficult
to distinguish if simultaneous price movements come from fundamental reasons or from pure contagion. Faced
with this dilemma, Kaminsky and Schmukler [1998] and Baig and Goldfajn [1999] propose to approximate
movements in fundamentals by constructing dummy variables from news reported in the press or in continuous
time information agencies (such as Reuters or Bloomberg). These dummies are classified in “bad” or “good”
news and distinguished as “local” news or “international” news. In this paper, while our primary objective is
methodological, we apply our methods to raw returns and to “news filtered” returns.

We can now summarize the earlier empirical findings. Kaminsky and Schmukler [1998] show, via regres-
sion methods, that some of the market jitters cannot be explained by any apparent substantial news but seem to
be driven by herd behavior. Moreover investors tend to overreact to “bad” news. The same kind of conclusion
is drawn by Baig and Goldfajn [1999] using cross-country correlations or Cerra and Saxena [2000] using a
Markov switching model. More generally, the fact that comovements in Asian financial markets during the crisis

18However, Forbes and Rigobon [2000] proceeds to sensitivity analysis by modifying periods definitions.
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cannot entirely attributed to “fundamentals” has been underlined by numbers of researchers. For example, some
have noted that trade linkages cannot have a big impact in explaining spillovers effects since the trade linkages
between Southeast Asian countries were only modest19. In the same way, the appreciation of the dollar against
the yen predates the crisis by at least a year (Masson [2000]) and some estimates (see e.g. Chinn [1997])
contradict the idea that the concerned currencies (expect Thailand) were overvaluated. More detailed results
are furnished by Nagaysu [2000] who confirms the evidence that the upward pressure on exchange rates was
essentially caused by sectoral indices (and particularly those of banking and financial sectors) or by Baig and
Goldfajn [1999] who show that contagion operated more sensibly in currency markets than in stock markets.

Nearer to our concerns in this paper, Forbes and Rigobon [2000] challenge the result that cross-country
correlations have significantly increase during the Southeast Asian turmoil and conclude that there was no
contagion. In their opinion, it is a fallacious result which disappear once heteroskedasticity is taken into
account. On the other way round, Baig and Goldfajn [1999] present results favorables to the hypothesis of
contagion based on cross-correlations adjusted in the way recommended by Forbes and Rigobon (see below) .
Clearly, the question that there was pure contagion remains open. In the rest of this paper, we try to offer an
answer on such a question, relying on a robust (and new in this context) statistical framework.

4.2 Empirical results

In this subsection, we propose an application of copulas to the analysis of the Asian crisis. It is based on
a reassessement of Baig and Goldfjan [1998] results, particularly those comparing a crisis period defined
between 07/01/1997 and 05/18/1998 and a normal period defined between 01/01/1995 and 12/31/1996. Their
analysis is based on the daily returns of stock indexes, exchange rates, interest rates and sovereign spreads for
the five countries which were more severely by the crisis: Indonesia, Korea, Malaysia, Philippines and Thailand.
Furthermore, they investigate whether their results are sensible to conditionning on fundamentals which are
measured as bad or good news (on the basis of Bloomberg reports)20.

We begin with a short recall of Baig and Goldfjan results. They present correlation matrices for whole returns
where the correlation coefficient ρ is computed taking into account the change in volatility (i.e. heteroskedastic-
ity). While they refer to the adjustement proposed by Forbes and Rigobon [1999], they do not explicitly use
it. The adjustement proposed by Forbes and Rigobon gives the following estimate of the correlation coefficient

ρ̃ =
ρ√

1 + δ (1− ρ2)
(72)

where ρ is the the standard correlation coefficient and δ is the relative increase in the conditional variance in the
crisis country21. On the contrary, Baig and Goldfjan use a Fisher transformation of their data but it is not clear
why such a transformation allows them to adjust for the heteroskedasticity bias. As we show below, the choice
of the adjustement has sensible consequences for the results. Moreover, their method does not allow to estimate
an adjusted correlation coefficient, only to compute an heteroscedastic consistent t-test. In the following tables,
we also report t-tests but based on the Forbes and Rigobon adjusted coefficients.

The results22 are reported in tables 5 to 10. Three general remarks can be given.
19The same argument can be applied to indirect competition since the Southeast Asian countries do not share very similar

third-country export profiles.
20The database can be downloaded from the IMF website with the article. The news chronology can be found in an appendix of

the working paper version of the article (also downloadable from the IMF website).
21This adjustement needs to pre-determine the crisis country. In the following tables where we compute pairwise correlations, we

assume that the crisis country is the one in which the increase in relative volatility is the greatest. However, the main conclusions
are not sensible to this choice.

22While not reported here to save space, we have done the same exercice for residual correlations (i.e. residuals of a regression of
returns on news dummies, yen/dollar exchange rate returns and US stock exchange returns; see Baig and Goldfjan). The conclusions
are identically the sames.
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Indonesia Korea Malaysia Philippines Thailand
Indonesia 1 −0.033 0.026 0.064 0.066
Korea 1 0.044 0.015 −0.012
Malaysia 1 −0.043 0.116
Philippines 1 −0.026
Thailand 1

Table 5: Exchange rate returns (non-crisis period)

Indonesia Korea Malaysia Philippines Thailand
Indonesia 0.243∗∗∗ 0.326∗∗∗ 0.104 0.292∗∗∗

Korea 0.009 0.049 0.048 0.136∗∗∗

Malaysia 0.013 0.004 0.277∗∗∗ 0.379∗∗∗

Philippines 0.004 0.004 0.032∗∗∗ 0.094∗∗∗

Thailand 0.011 0.008 0.024 0.006
δ 706.5 146.0 80.1 23.9 296.5

Table 6: Exchange rate returns (crisis period)

Indonesia Korea Malaysia Philippines Thailand
Indonesia 1 −0.014 0.338 0.424 0.314
Korea 1 0.049 0.039 0.023
Malaysia 1 0.386 0.403
Philippines 1 0.304
Thailand 1

Table 7: Stock exchange returns (non-crisis period)

Indonesia Korea Malaysia Philippines Thailand
Indonesia 0.108∗∗∗ 0.469∗∗∗ 0.428 0.375∗

Korea 0.035 0.265∗∗∗ 0.134∗∗ 0.208∗∗∗

Malaysia 0.168 0.089 0.426 0.410
Philippines 0.150 0.050 0.151 0.394∗∗∗

Thailand 0.128 0.078∗ 0.145 0.181
δ 8.75 6.34 8.46 4.45 3.32

Table 8: Stock exchange returns (crisis period)

Indonesia Korea Malaysia Philippines Thailand
Indonesia 1 −0.161 −0.166 0.091 −0.071
Korea 1 −0.124 −0.107 0.374
Malaysia 1 0.062 −0.240
Philippines 1 0.135
Thailand 1

Table 9: Interest rates (non-crisis period)
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Indonesia Korea Malaysia Philippines Thailand
Indonesia 0.392 0.089 −0.195 0.350
Korea 0.061 0.452 −0.336 0.421
Malaysia 0.013 0.161 −0.081 0.274
Philippines −0.077 −0.147 −0.031 −0.251
Thailand 0.053 0.190 0.091 −0.263
δ 47.86 4.78 8.68 5.70 −0.10

Table 10: Interest rates (crisis period)

• First, it appears that the increase in correlation coefficients has been more sensible in exchange rate returns
and in stock exchange returns than in interest rates.

• Second, we can observe that the increase in volatility (see δ) is impressive in the case of the exchange rates
(vis-à-vis the USD) where the one day volatility has been multiplied by a factor between 20 (for Philippines)
and 700 (for Indonesia)! This result is not surprising since before the crisis, most of the concerned countries
had adopted a peg based on the dollar. This increase is also sensible for stock exchange returns and interest
rate but in lower proportions.

• Third, taking account the two previous facts, we can deduce that the results with correlation coefficients
really depend whether we adjust for heteroskedasticity or not23. If we don’t adjust as in the upper part of
tables 6, 8 and 10, we deduce that there was a significant increase (at the 10% level) in correlation (and thus
contagion) in 70% of cases for exchange rate and stock exchange returns. If we adjust (lower part of tables),
we conclude there was contagion in only one case among ten for exchange rate (Philippines/Malaysia) and
stock exchange (Korea/Thailand) returns. These results are at variance with those of Baig and Goldfjan
who conclude that contagion significantly occurred for all pairs for currency markets and in 60% of all
pairs for stock exchange markets.

While unadjusted results would seem too optimistic for the contagion hypothesis, we can simultaneously be
quite skeptical with the ajusted results. Indeed, the correction proposed by Forbes and Rigobon seems derived
under too specific hypothesis to be applicable to all problems. In face of this dilemma, it seems interesting to
analyze the Asian crisis on the basis of a more general framework.

If we compare the empirical distributions during the non-crisis period and the crisis period, it is clear that
they are different. For example, we have reported24 these of the exchange rate returns for Indonesia and Korea in
figure 21. It is obvious that the two bivariate distributions can not be compared, and it is then very dangerous
to compare the dependence using the full distributions. Let F(1) (x1, x2) = C(1)

(
F(1)

1 (x1) ,F(1)
2 (x2)

)
and

F(2) (x1, x2) = C(2)
(
F(2)

1 (x1) ,F(2)
2 (x2)

)
be the bivariate distributions for the non-crisis and crisis periods. In

figure 21, we remark that the marginals have changed dramatically between the two periods. So, we can observe
a modification of the correlation without necessarily a modification of the copula.

Figure 22 represents pointwise concordance comparison of the dependence functions of exchange rate returns
for Indonesia and Korea between the two periods. In most cases, we do not observe that one copula is much larger
than the other. We can then use a synthetic measure of concordance, like the Spearman’s rho which is more
appropriate than the Pearson correlation to compare the dependence functions. We recall that its definition is

% = 12
∫∫

I2
u1u2 dC (u1, u2)− 3 (73)

23Unadjusted correlation coefficients are in the upper part of the matrix. Adjusted correlation coefficients (via Forbes and
Rigobon [2000]) are in the lower part of the matrix. ∗, ∗∗ and ∗∗∗ denote rejection of the null hypothesis of no-change (or
decrease) in correlation coefficients at the 10%, 5% and 1% levels respectively. δ is the relative increase in variance of the returns.

24The empirical distributions have been estimated using a Kernel method with an Epanechnikov window.
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Figure 21: Empirical distributions of exchange rate returns

Figure 22: Comparison of empirical dependence of exchange rate returns
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Indonesia Korea Malaysia Philippines Thailand
Indonesia −0.044 0.051 0.009 0.082
Korea 0.219∗∗∗ 0.028 0.066 0.024
Malaysia 0.451∗∗∗ 0.117 −0.058 0.149
Philippines 0.090 0.199∗ 0.185∗∗∗ 0.005
Thailand 0.314∗∗∗ 0.118 0.364∗∗∗ 0.057

Table 11: Exchange rate returns

Indonesia Korea Malaysia Philippines Thailand
Indonesia −0.028 0.345 0.405 0.328
Korea 0.094∗ 0.027 0.026 0.024
Malaysia 0.374 0.219∗∗∗ 0.336 0.337
Philippines 0.394 0.105 0.414 0.275
Thailand 0.331 0.246∗∗∗ 0.329 0.233

Table 12: Stock exchange returns

As explained by Nelsen [1998], Spearman’s rho is identical to the correlation coefficient for the integral trans-
forms U1 = F1 (X1) and U2 = F2 (X2). We have reported the estimates in tables 11 to 13. The upper part
corresponds to the non-crisis period whereas the lower part represents the crisis period. Let us denote %(1)

and %(2) the Spearman’s rho of the non-crisis period and the crisis period. We have tested the null hypothesis
%(1) = %(2) versus the alternative hypothesis %(1) 6= %(2). Results are reported on the lower part of the tables25.
They are very different of these obtained previously with the Pearson correlation. We observe significantly an
increase in 60% of the cases for the exchange rates and in 30% of the cases for the stock exchange. These results
give more evidence for the contagion hypothesis than these of Baig and Goldfjan [1999].

Figure 23 represents the quantile regressions for exchange rate returns for Indonesia and Korea between
the two periods. The bottom graphs give quantile regressions estimated in the usual way which are implicity
taking into account the marginals. On the contrary, the top graphs are only based on the dependence function
(assuming that a Normal copula) and, thus, are not affected by the marginals. We can see that there exists, for
a given quantile, some notable differences between the two methods. However, broadly speaking, both methods
conclude there was an increase in the “dependence” of the exchange rate returns between the two periods (the
slopes of the curves increase), and thus contagion. The case of Indonesia and Malaysia is represented in figure
24. We remark that conclusion is not obvious if we take account into marginals. In this case, the quantile
regressions in the unit square give more evident results. To finish this application, note that we can observe of
course some bias if we assume linearity between random variables. For example, we have reported in figure 25
the results obtained with the RQ algorithm (top graphs correspond to the case Indonesia/Korea whereas bottom
graphs correspond to the case Indonesia/Malaysia). They are very different from the ones of the bottom graphs
in figures 23 and 24.

25∗, ∗∗ and ∗∗∗ denote rejection of the null hypothesis of no-change (or decrease) in correlation coefficients at the 10%, 5% and
1% levels respectively.

Indonesia Korea Malaysia Philippines Thailand
Indonesia −0.179 −0.144 0.007 −0.041
Korea 0.540∗∗∗ −0.133 −0.230 0.413
Malaysia 0.389∗∗∗ 0.737∗∗∗ 0.331 −0.272
Philippines −0.090 −0.377 −0.098 −0.017
Thailand 0.462∗∗∗ 0.376 0.373∗∗∗ −0.259

Table 13: Interest rates
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Figure 23: Quantile regressions of exchange rate returns for Indonesia/Korea

Figure 24: Quantile regressions of exchange rate returns for Indonesia/Malaysia
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Figure 25: Quantile regressions of exchange rate returns with the RQ algorithm

5 Conclusion

In recent years, the interest in dependence has increased in the economic and financial literatures. As we have
recalled, most of the statistical inference in this subject is based on standard (Pearson) correlation coefficients
(or similar measures). However, we have shown that these tools are not reliable in this context as they give
too much importance to the marginal distributions rather than concentrating on the dependence function. As
an alternative, this paper, as a few others before, has proposed to resort on copulas. In this perspective, we
have presented several tools to analyze the dependence between financial markets and we have proposed two
applications.
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