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1 Introduction

One of the main issues of risk management is the ag-
gregation of individual risks. A powerful concept to
aggregate the risks — the copula function — has been
introduced in finance by Embrechts, McNeil, and
Straumann [1999,2000]. In their papers, the authors
clarify the essential concepts of dependence and cor-
relation and certainly will greatly influence the risk
management industry. The goal of this paper is to pro-
vide simple applications for the practical use of copulas
for risk management from an industrial point of view.
First, we remind some basics about copulas. Then,
some applications of copulas for market risk, credit risk
and operational risk are given. We will not provide a
full mathematical treatment of the subject and we refer
interested readers to Joe [1997] or Nelsen [1999].

2 Copulas definition

A copula is a function that links univariate margins
to the full multivariate distribution. Then, this func-
tion is the joint distribution function of N standard
uniform random variables. Mathematically speaking,
a function C is a copula function if it fulfills the fol-
lowing properties (Nelsen [1999]):

1. DomC = [0, 1]N ;

2. C is grounded and N -increasing1;

3. The margins Cn of C satisfy Cn (u) =
C (1, . . . , 1, u, 1, . . . , 1) = u for all u in [0, 1].

This class of function is very important because it
permits to define the dependence structure between
the margins of a multivariate distribution. Indeed, let
think about N random variables (X1, . . . , XN ) with

1These properties mean that C is a positive probability mea-
sure.

multivariate distribution F and univariate margins
(F1, . . . ,FN ). Then we have the canonical decomposi-
tion

F (x1, . . . , xN ) = C (F1 (x1) , . . . ,FN (xN ))

Moreover, Abe Sklar proved in 1959 that the copula C
is unique for a given distribution F if the margins are
continuous. To illustrate the idea behind the copula
function, we can think about the multivariate gaussian
that is a ‘standard’ assumption in risk management.
To postulate that a vector (X1, . . . , XN ) is gaussian
is equivalent to assume that:

1. the univariate margins F1, . . . ,FN are gaussians;

2. these margins are linked by a unique copula func-
tion C (called Normal copula) such that:

Cρ (u1, . . . , uN ) = Φρ
(
Φ−1 (u1) , . . . , Φ−1 (uN )

)
(1)

with Φρ the multivariate normal cdf with correla-
tion matrix ρ and Φ−1 the inverse of the standard
univariate gaussian distribution.

It appears that the risk can be splitted into two
parts: the individual risks and the dependence struc-
ture between them. Indeed, the assumption of normal-
ity for the margins can be removed and F1, . . . ,FN

may be fat-tailed distributions (e.g. Student, Weibull,
Pareto) and the dependence may still be characterized
by a Normal copula. This leads to a new multivariate
distribution that takes into account, for example, the
leptokurtic property of asset returns. This is illustrated
by Figure 1.

From standard textbooks, we know that the density
f of the distribution F is its N -derivative, if it exists:

f (x1, . . . , xN ) =
∂ F (x1, . . . , xN )

∂ x1 · · · ∂ xN
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Figure 1: Contour of the bivariate density of two ran-
dom variables with the first margin α-stable, the sec-
ond margin Student and a Normal copula with ρ = 0.3.

Let fn be the density function that corresponds to the
n-th margin. The expression of the copula density c is

c (u1, . . . , uN ) =
∂ C (u1, . . . , uN )

∂ u1 · · · ∂ uN

It comes that the canonical decomposition of the den-
sity of F is

f (x1, . . . , xN ) = c (F1 (x1) , . . . ,FN (xN ))×
N∏

n=1

fn (xn)

The formula of the Normal copula density is obtained
by derivating equation (1):

c (u1, . . . , uN ;ρ) =
1

|ρ| 12
exp

(
−1

2
ς>

(
ρ−1 − I) ς

)

with ς = (ς1, . . . , ςN ) where ςn = Φ−1 (un) for n =
1, . . . , N . Other type of dependence could be postu-
lated, for example the Student copula which has the
following density2
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with ςn = t−1
ν (un), Γ the gamma function and ν the

degrees of freedom.
To illustrate the difference between the Normal cop-

ula and the Student copula, we have plotted bivariate
2We refer to Bouyé, Durrleman, Nickeghbali, Riboulet

and Roncalli [2000] for the proof.

simulations (i) with gaussian margins (ii) with normal-
ized Student margins (such that the variances are the
same).

Figure 2: Monte Carlo simulation (5000 simulations)
with respectively a Normal copula (ρ = 0.3) — upper
plots — and a Student copula (ρ = 0.3, ν = 1) — lower
plots. The left plots assume gaussian margins whereas
the right plots assume normalized Student margins.

3 Market risk management

The copula methodology can be applied both to com-
pute Value at Risk (VaR) and to perform stress testing.
The two approaches are explained.

3.1 VaR for portfolios

As noted by Embrechts, McNeil and Straumann
[2000], the correlation is a special case through all mea-
sures that are available to understand the relationships
between all the risks. If we assume a Normal copula, the
empirical correlation is a good measure of the depen-
dence only if the margins are gaussians. To illustrate
this point, we can construct two estimators:

1. The empirical correlation ρ̂;

2. The canonical correlation ρ̂CML obtained as fol-
lows: the data are mapped to empirical uniforms
and transformed with the inverse function of the
gaussian distribution. The correlation is then
computed for the transformed data3.

3�̂CML is also called the ‘omnibus estimator’. It is consistent
and asymptotically normally distributed (Genest, Ghoudi and
Rivest [1995]).
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The advantage of the canonical measure is that no
distribution is assumed for individual risks. In-
deed, it can be shown that a misspecification about the
marginal distributions (for example to assume gaus-
sian margins if they are not) leads to a biased esti-
mator of the correlation matrix. This is illustrated by
the following example for asset returns. The database
of the London Metal Exchange4 is used and the spot
prices of the commodities Aluminium Alloy (AL), Cop-
per (CU), Nickel (NI), Lead (PB) and the 15 months for-
ward prices of Aluminium Alloy (AL-15), dating back
to January 1988, are considered. The two correlation
measures of asset returns are reported below5.

AL AL-15 CU NI PB
AL 1.00 0.82 0.44 0.36 0.33

AL-15 1.00 0.39 0.34 0.30
CU 1.00 0.37 0.31
NI 1.00 0.31
PB 1.00

Table 1: Correlation matrix ρ̂ of the LME data

AL AL-15 CU NI PB
AL 1.00 0.85 0.49 0.39 0.35
AL-15 1.00 0.43 0.35 0.32
CU 1.00 0.41 0.36
NI 1.00 0.33
PB 1.00

Table 2: Correlation matrix ρ̂CML of the LME data

ν = 2 AL AL-15 CU NI PB
AL 1.00 0.82 0.33 0.25 0.19
AL-15 1.00 0.27 0.22 0.16
CU 1.00 0.27 0.22
NI 1.00 0.20
PB 1.00

Table 3: Correlation matrix ρ̂ML with Student copula
(ν = 1) of the LME data

Even if we assume that the margins are gaussians, we
will show that the choice of the dependence structure
has a great impact on the VaR computation of a port-
folio. If we consider that the dependence of the LME

4The database is available on the web site of the LME
http://www.lme.co.uk.

5The standard errors are not reported here. However, the
correlations of Table 2 and Table 3 are in italics if they are
significantly different from Table 1 at 5% confidence level.

data is a Student copula with 1 degree of freedom6, the
obtained parameter matrix (see Table 3) differs from
the Normal one7 of Table 1. Then, let consider a port-
folio a with P (t) the price vector of the assets at time
t. The one period value-at-risk with α confidence level
is defined by V aR = F−1 (1− α) with F the distribu-
tion of the random variate a> (P (t + 1)−P (t)). Let
assume we have three different portfolios (a negative
number corresponds to a short position):

AL AL-15 CU NI PB
P1 1 1 1 1 1
P2 -1 -1 -1 1 1
P3 2 1 -3 4 5

For these three portfolios, we assume that the margins
are gaussians and compare8 the VaRs under the as-
sumption of Normal copula and Student copula with
ν = 1. The higher the quantile9, the more the Stu-
dent dependence leads to a higher VaR (see Tables 4
and 5). An interesting point is that for the three port-
folios and for a low level quantile (for example 90%),
the Student copula leads to lower VaRs. In Table 6,
we have reported the VaR when the copula is Normal
and the margins are Student. If we compare this table
with Table 4, we remark the impact of the choice of fat-
tailed distributions on the VaR computation10. Note
that if no analytical formula is available for the VaR
computation, the results are obtained by simulation.

90% 95% 99% 99.5% 99.9%
P1 7.26 9.33 13.14 14.55 17.45
P2 4.04 5.17 7.32 8.09 9.81
P3 13.90 17.82 25.14 27.83 33.43

Table 4: VaR with Normal copula

90% 95% 99% 99.5% 99.9%
P1 5.69 7.95 13.19 15.38 20.06
P2 3.82 5.55 9.75 11.65 16.41
P3 13.41 19.36 34.16 40.55 54.48

Table 5: VaR with Student copula (ν = 1)

6We use the iterative algorithm described in [2] and [5] to
estimate the parameters matrix �.

7But if ν is equal 2, only three parameters among eleven are
significantly different at 5% confidence level.

8All the parameters are estimated using maximum likelihood
method.

9We have reported the VaR for the 99.9% quantile, which
approximately corresponds to the rating target A.

10For low level quantiles (90% and 95%), we have lower VaRs
whereas higher quantiles produce bigger VaRs.
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90% 95% 99% 99.5% 99.9%
P1 6.51 8.82 14.26 16.94 24.09
P2 3.77 5.00 7.90 9.31 13.56
P3 12.76 17.05 27.51 32.84 49.15

Table 6: VaR with Normal copula and Student margins
(ν = 4)

Finally, we give in Table 7 an idea about the com-
putational time needed to estimate the value-at-risk
based on a Normal copula and Student margins. The
number of simulations is 100000 and the computation
has been done with the GAUSS software and a Pen-
tium III 550 Mhz. These times are given for indication
since the number of simulations is constant and does
not depend on the number of assets (the problem of
dimensionality is not treated).

Number of assets Computational time
2 0.1 sc
10 24.5 sc
100 4 mn 7 sc
500 33 mn 22 sc
1000 1 hr 44 mn 45 sc

Table 7: Computational time for computing VaR

3.2 Stress testing

The extreme value theory is now familiar to practition-
ers. It allows, for example, to apply stress scenarios to
a portfolio. However, the extension to the multivariate
case is a difficult issue. There exists a special class of
copula function that avoids the problem. Indeed, any
copula function C? such that

C?

(
ut

1, . . . , u
t
N

)
= Ct

? (u1, . . . , uN ) ∀ t > 0 (2)

can be used to construct a multivariate extreme value
distribution (Deheuvels [1978]). We just write the
equations for maxima as the problem is identical for
minima. The maxima are defined componentwise

χ+
m =

(
χ+

1,m, . . . , χ+
N,m

)
:=

(
m∨

k=1

X1,k, . . . ,

m∨

k=1

XN,k

)

For each maxima χ+
n,m, its univariate generalized ex-

treme value (GEV) distribution Gn with

Gn

(
χ+

n,m

)
= exp

{
−

[
1 + ξn

(
χ+

n,m − µn

σn

)]− 1
ξn

}

can be estimated for n = 1, . . . , N . Then, the multi-
variate extreme value distribution for maxima G is

G
(
χ+

1 , . . . , χ+
N

)
= C?

(
G1

(
χ+

1

)
, . . . ,GN

(
χ+

N

))

To illustrate how this result can be used for risk man-
agement, we consider an example which focuses on the
extremes of the pair (CAC40,DowJones). First, the
GEV univariate distributions are estimated for maxima
and minima of CAC40 and DowJones respectively (that
makes four estimations). Then, let assume a copula
that fulfills the condition (2), for example the Gumbel
copula:

C? (u1, u2) = exp
(
−

(
(− ln u1)

δ + (− ln u2)
δ
) 1

δ

)

with δ the dependence parameter (δ = 1 for inde-
pendence and δ = ∞ for fully dependent extrema).
It is then possible to construct a failure area that
corresponds to the set of values

(
χ+

1 , χ+
2

)
such that

Pr
{
χ+

1 > χ1, χ
+
2 > χ2

}
= 1 − G1 (χ1) − G2 (χ2) +

C? (G1 (χ1) ,G2 (χ2)) equals a given level of proba-
bility. By applying the same methodology to the
three other pairs (min/max, max/min and min/min),
one can construct the failure area from the estima-
tion of the dependence for the four quadrants of
(CAC40,DowJones)

DowJones

CAC40

(χ+
1 , χ+

2 )
λ = 42%

(χ+
1 , χ−2 )

λ = 33%
(χ−1 , χ−2 )
λ = 44%

(χ−1 , χ+
2 )

λ = 37%

with χ−1 and χ−2 the minima. To characterize the de-
pendence of extremal risks, the upper tail dependence
coefficient λ (see Joe [1997]) is used:

λ = lim
α→1

Pr
{
X1 > F−1

1 (α) | X2 > F−1
2 (α)

}

We can interpret λ as the probability that one random
variable is extreme given that the other is extreme. In
our example, the dependence of minima is not signifi-
cantly different from the dependence of maxima, which
means that bear markets are quite similar to bull mar-
kets from an economic point of view. Figure 3 provides
an example for a probability that is equivalent to a 5
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years waiting time. We remark that some past ex-
tremal events have a waiting time bigger than 5 years.

Figure 3: Failure areas for the pair (CAC40,DowJones)
and a 5 years waiting time. Note that C⊥ and C+

correspond to the cases of independence and perfect
positive dependence between the two asset returns.

4 Credit risk management

One of the main issue concerning credit risk is with-
out doubt the modelling of joint default distribution.
Li [2000] and Maccarinelli and Maggiolini [2000]
suggest that copulas could be a suitable tool for such
a problem. Indeed, a default is generally described by
a survival function S (t) = Pr {T > t}, which indicates
the probability that a security will attain age t. T is
a random variable called the survival time, which is
denoted time-until-default in Li [2000]. Let C̆ be a
survival copula. A multivariate survival distribution S
can be defined as follows

S (t1, . . . , tN ) = C̆ (S1 (t1) , . . . ,SN (tN )) (3)

where (S1, . . . ,SN ) are the marginal survival functions.
Nelsen [1999] notices that “C̆ couples the joint sur-
vival function to its univariate margins in a manner
completely analogous to the way in which a copula con-
nects the joint distribution function to its margins”.
Introducing correlation between defaultable securities
can then be done using the copula framework.

Final rating
Initial rating AAA AA A BBB BB B CCC D

AAA 92.54 6.48 0.86 0.06 0.06 0.00 0.00 0.00
AA 0.63 91.87 6.64 0.65 0.06 0.11 0.04 0.00
A 0.08 2.26 91.66 5.11 0.61 0.23 0.01 0.04

BBB 0.05 0.27 5.84 87.74 4.74 0.98 0.16 0.22
BB 0.04 0.11 0.64 7.85 81.14 8.27 0.89 1.06
B 0.00 0.11 0.30 0.42 6.75 83.07 3.86 5.49

CCC 0.19 0.00 0.38 0.75 2.44 12.03 60.71 23.50

Table 8: S&P one-year transition matrix (in %)

4.1 Computing the risk of a credit
portfolio

Using the previous framework, it is then possible to
compute risk measure (or economic capital) of any
portfolio of risky securities. Thus, one could remark for
instance that the CreditMetrics methodology implicitly
uses the Normal Copula in (3) for their credit risk mea-
sure (Li [2000]). Indeed, in this (structural) approach
the distribution of the joint default is obtained from
the Asset Value Model of Merton where underlyings
are assumed to be gaussian. To show that the depen-
dence function has a great impact on the computation
of the risk of a credit portfolio, we consider the ex-
ample of joint default probability in the CreditMetrics
framework with the one-year transition matrix of Table
8. In Figure 4, we remark that even if the copulas has
the same Kendall’s tau11, we can obtain very different
joint default probabilities, and of course very different
credit risk VaRs.

Figure 4: One-year joint default probabilities (in %).
In order to compare them, we use Kendall’s tau.

In the case of CreditRisk+, Coutant, Martineu,
Messines, Riboulet and Roncalli [2001] show that
the dependence function between defaults is related

11It is one of the most known measure to compare the concor-
dance between copulas.
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to a special class of Archimedean copulas called frailty
models12. For alternative approach, we refer to the
works of survival analysis and multivariate exponential
distributions which provide a starting point for many
extensions (see the survey [9]).

4.2 Pricing credit derivatives

Copulas may also apply to the pricing of credit deriva-
tives. One may for instance consider the case of a con-
tingent claim that depends on the first default among
a list of N credit events (such an option is called a
first-to-default). For simplicity, we assume here that
the default of each credit event is given by the same
Weibull survival function. In Figure 5, we have repre-
sented the hazard rate, the survival function, the mean
residual time-until-default and the density13.

Figure 5: Weibull survival time.

Let us define the first-to-default time τ as follows

τ = min (T1, . . . , TN )

Nelsen [1999] shows that the survival function of τ is
given by the diagonal section of the survival copula14:

S (τ) = C̆ (S1 (τ) , . . . ,SN (τ))

12For example, if the factors are Gamma distributed, the de-
pendence function between defaults is the Cook-Johnson copula.

13We assume that the baseline hazard is constant and equal
to 3% per year and that the Weibull parameter is 2.

14Note that density of τ is then given by

f (� ) =
NX

n=1

∂nC̆ (S1 (� ) , . . . ,SN (� ))× fn (� )

where fn is the density of the survival time Tn.

Figure 6 shows the influence of the correlation param-
eter ρ of the Normal copula and the influence of the
number of securities N on the density of τ . In Fig-
ure 7, we have reported the premium of the first-to-
default option 1[τ≤T ] in the case of deterministic inter-
est rates. In the left plot, the maturity of the option
T is two years. In the right plot, we take two securi-
ties. As noted by Coutant, Martineu, Messines,
Riboulet and Roncalli [2001], we can find an ana-
lytical formula for the density of τ in the case of the
Normal copula and compute easily the option prices
even if the interest rates are stochastic thanks to nu-
merical quadrature integration.

Figure 6: Density of the first-to-default. The solid line
with circles corresponds to the density of one survival
time.

Figure 7: Premium of the first-to-default option.
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5 Operational risk management

One of the standard measurement methodology for op-
erational risk with internal data is the following15:

• Let ζ be the random variable that describes the
severity of loss. We define also ζk (t) as the
random process of ζ for each operational risk k
(k = 1, . . . , K).

• For each risk, we assume that the number of events
at time t is a random variable Nk (t).

• The loss process % (t) is also defined as

% (t) =
K∑

k=1

Nk(t)∑

j=1

ζk
j (t) (4)

• The Economic Capital with an α confidence level
is usually defined as

EC = F−1 (α) (5)

with F−1 the inverse function of the loss distribution
% (t). This methodology can be viewed as the Loss
Distribution Approach proposed by the Basel Com-
mittee on Banking Supervision (see document [1]). In
the New Basel Capital Accord, dependence effects in
operational risk are not considered:

The capital charge is based on the simple sum
of the operational risk VaR for each business
line/risk type cell. Correlation effects across
the cells are not considered in this approach
(annex 6 of [1]).

But, from the point of view of economic capital allo-
cation, “correlation effects” are a keypoint of the op-
erational risk measure. One possibility is then to in-
troduce dependence by using correlations between fre-
quencies of different types of risk. Each individual fre-
quency Nk (t) is generally assumed to be a Poisson vari-
able P with mean λk. However, multivariate Poisson
distributions are relatively complicated for dimensions
higher than two. Song [2000] suggests then an inter-
esting alternative by using copulas. Assuming a Nor-
mal copula, we note P (λ, ρ) the multivariate Poisson
distribution generated by the Normal copula with pa-
rameter ρ and univariate Poisson distribution P (λk).
The next table contains the probability mass function
pi,j = Pr {N1 = i,N2 = j} of the bivariate Poisson dis-
tribution P (λ1 = 1, λ2 = 1, ρ = 0.5).

15We assume that time is discrete — t ∈ N — and that the
period of reference is one.

pi,j 0 1 2 · · · pi,·
0 0.095 0.133 0.089 0.368
1 0.034 0.100 0.113 0.368
2 0.006 0.031 0.052 0.184
...

...
p·,j 0.135 0.271 0.271 · · · 1

If ρ = −0.5, we obtain the following values for pi,j .

pi,j 0 1 2 · · · pi,·
0 0.014 0.062 0.101 0.368
1 0.044 0.112 0.111 0.368
2 0.044 0.068 0.046 0.184
...

...
p·,j 0.135 0.271 0.271 · · · 1

The Economic Capital EC = F−1 (α) with an α confi-
dence level for operational risk could then be calculated
by assuming that N = {N1, . . . , NK} follows a multi-
variate Poisson distribution P (λ, ρ). Moreover, there
are no computational difficulties, because the estima-
tion of the parameters λ and ρ is straightforward and
the quantile can be easily obtained with Monte Carlo
methods. Figure 8 illustrates the simulation of a bi-
variate Poisson distribution.

Figure 8: Random generation of bivariate Poisson vari-
ates P (30) and P (60).

6 Conclusion

In this paper, we show that copula is a very powerful
tool for risk management since it fulfills one of its main
goal: the modelling of dependence between the individ-
ual risks. That is why this approach is an open field for
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risk. Indeed, there is a need to find other ‘industrial’
copula functions such as Normal and Student. Before
going further, copulas have to become more familiar to
practitioners and we believe they will.
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