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1 The Gaussian assumption in finance

We consider the ‘universal’ financial model. Let (Ω,F ,P) be the
probability space. The asset prices processes S1 (t) and S2 (t) are
given by the SDE representation

{

dS1 (t) = µ1S1 (t) dt + σ1S1 (t) dW1 (t)
dS2 (t) = µ2S2 (t) dt + σ2S2 (t) dW2 (t)

where W1 (t) and W2 (t) are two Ft–brownian motions with

E
[

W1 (t)W2 (t) | Ft0

]

= ρ (t− t0)

It comes that the logarithm return of assets is gaussian (= Gaussian
assumption in finance).

Empirical facts: Asset returns are not gaussian (see the financial
econometric literature on ARCH, long-memory, Lévy processes, etc.).

Problem: Univariate financial models are not gaussian, but
multivariate financial models are gaussian!

Modelling dependence in finance using copulas
The Gaussian assumption in finance 1-1



2 Copulas and multivariate financial models
1. How to define multivariate financial models compatible with

univariate non-Gaussian financial models?

Copula = a powerful tool

2. How to obtain tractable multivariate financial models (in terms of
computational time)?

3. How to specify multivariate financial models which may be
understood/used by the finance industry?

Copula = a promising tool

Copulas have been already incorporated in some software solutions:

• SAS Risk Dimensions

• Palisade @Risk
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2.1 Pearson correlation and dependence
Pearson correlation ρ = linear dependence measure.

For two given asset prices processes S1 (t) and S2 (t) which are GBM,
the range of the correlation is

ρ− ≤ ρ (S1 (t) , S2 (t)) ≤ ρ+

with

ρ± =
exp (±σ1σ2 (t− t0))− 1

√

exp
(

σ2
1 (t− t0)

)

− 1 ·
√

exp
(

σ2
2 (t− t0)

)

− 1

ρ (S1 (t) , S2 (t)) = ρ− (resp. ρ+) ⇔ C 〈S1 (t) , S2 (t)〉 = C− (resp.
C+) ⇔ S2 (t) = f (S1 (t)) with f a decreasing (resp. increasing)
function

Perfect dependence 6= |ρ| = 1
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2.2 Copula: a new tool in finance

• introduced by Embrechts et al. [14].

• Market risk: Bouyé et al. [2], Cherubini et al. [8], Durrleman et
al. [13], Embrechts et al. [15], Luciano et al. [24], Tibiletti [33].

• Credit risk: Coutant et al. [11], Frey et al. [17], Georges et al.
[18], Giesecke [19], Hamilton et al. [20], Lindskog et al. [23],
Maccarinelli et al. [25].

• Operational risk: Ceske et al. [5] [6], Frachot et al. [16].

• Asset prices modelling: Bouyé et al. [4], Malavergne et al. [26],
Patton [27], Rockinger et al. [28], Scaillet [31].

• Credit derivatives pricing: Li [21], Georges et al. [18],
Schönbucher et al. [32].

• Multi-asset options pricing: Bikos [1], Cherubini et al. [7],
Coutant et al. [10], Durrleman [12], Rosenberg [29] [30].
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2.3 Copulas in a nutshell

A copula function C is a multivariate probability distribution with
uniform [0,1] margins.

C (F1 (x1) , . . . ,FN (xN)) defines a multivariate cdf F with margins
F1, . . . ,FN ⇒ F is a probability distribution with given marginals.

The copula function of the random variables (X1, . . . , XN) is
invariant under strictly increasing transformations (∂xhn (x) > 0):

C 〈X1, . . . , XN〉 = C 〈h1 (X1) , . . . , hN (XN)〉

... the copula is invariant while the margins may be changed at will,
it follows that is precisely the copula which captures those properties
of the joint distribution which are invariant under a.s. strickly
increasing transformations (Schweizer and Wolff [1981]).

⇒ Copula = dependence function of r.v. (Deheuvels [1978]).
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2.4 The Normal copula
Two caracteristics in finance: High dimensional problems (e.g. a
portfolio with 1000 securities) and probabilistic properties of the
models (e.g. markovian property).

All the copula functions are not good candidates for financial
application in an industry point of view.

The Normal copula has not yet been extensively studied (see however
Song [2000]). Nevertheless, it may be an ‘industrial’ copula.

Remark 1 The multivariate normal distribution is very tractable. It
is very easy to estimate the parameters and simulation is
straightforward. Moreover, this distribution has nice properties.

Is it also the case for the Normal copula?
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The copula function

C (u; ρ) = Φ
(

Φ−1 (u1) , . . . ,Φ−1 (uN) ; ρ
)

The density is

c (u; ρ) = |ρ|−
1
2 exp

(

−
1
2

ς>
(

ρ−1 − I
)

ς
)

with ς =
(

Φ−1 (u1) , . . . ,Φ−1 (uN)
)

.

The Ψ transform We define the operator Ψ as follows

Ψ [F] : R −→ R
x 7−→ Ψ[F] (x) = Φ−1 (F (x))

We note also Ψ−1 the (left) inverse operator (Ψ−1 ◦Ψ = 1), i.e.
Ψ−1 [F] (x) = F[−1] (Φ (x)).
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Estimation The log-likelihood function is

` (u; ρ) = −
T
2

ln |ρ| −
1
2

T
∑

t=1
ς>t

(

ρ−1 − I
)

ςt

and the ML estimate of ρ is also ρ̂ML = 1
T

T
∑

t=1
ς>t ςt.

Two-stage (Joe and Xu [1996]) and omnibus (Genest, Ghoudi and
Rivest [1995]) estimators can then be obtained with
ςt =

(

Ψ[F1]
(

xt
1

)

, . . . ,Ψ[FN ]
(

xt
N

))

:

1. IFM estimate: Fn = MLE of the nth marginal distribution.

2. Omnibus estimate : Fn = nth empirical distribution.

⇒ The data are mapped to uniforms and transformed with the
inverse gaussian distribution. The correlation parameter ρ of the
Normal copula is then equal to the Pearson product moment of the
transformed data.
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Simulation

• Generate a gaussian vector v of random variables with correlation
ρ.

• To simulate a vector x of random variables with marginals
F1, . . . ,FN and a Normal copula with parameters ρ, we use the
following transformation

x =
(

Ψ−1 [F1] (v1) , . . . ,Ψ−1 [FN ] (vN)
)

Application to marketing Segmentation is a useful tool for
marketing (and scoring). Let Y be a random variable which
corresponds to the target. The main idea is to define classes

Class Definition
1 Y ≤ y1
...

M yM−1 ≤ Y ≤ yM
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For example, let Y be a (potential) rentability index. The bank would
like to capture the most profitable customers. It can define the
targets ym by a quantile rule Pr {Y ≤ ym} = τm. For each class, it will
define a specific customer relationship policy. For example, it will
decide how much to spend on capture customers for a specific class.

One statistical tool which are used is the linear quantile regression

Yn = X>
n β + un

where Xn are the characteristics of the individual n. If we reformulate
the linear regression with only positive terms:

Yn = X>
n β + un =

K
∑

k=1
xn,k

(

β+
n − β−n

)

+ u+
n − u−n
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We can show that the solution of the quantile regression
Pr {Y ≤ ym} = τm may be found using linear programming:

z = argmin c>z

u.c.

{

Az = y
z ≥ 0

where X = (X1, . . . , XN)>, A = (X,−X, IN ,−IN), y = (Y1, . . . , YN)>,

z =
(

β+, β−, u+, u−
)>

∈ R2K+2N and c = (0, 0,τm1, (1− τm) 1)>.

Computational issues (dimA ' N × 2N) = very large-scale problem.
Portnoy and Koenker [1997] suggest then to use an interior-point
method.

Problem: how to proceed when (Y, X) are not gaussian? One
solution is to assume that only the copula of (Y, X) is Normal. In this
case, we can use the Portnoy-Koenker algorithm with the
transformed variables Yi = Ψ[Fi] (Xi).
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Let consider the bivariate case∗. We have ∂1C (u1, u2) = Φ(ς) where

ς =
(

1− ρ2
)−1

2
[

Φ−1 (u2)− ρΦ−1 (u1)
]

. The relationship between u2
and u1 in the expression Pr {U2 ≤ u2 | U1 = u1} = τ is also given by

u2 = Φ
(

ρΦ−1 (u1) +
√

1− ρ2Φ−1 (τ)
)

If the margins are gaussian, we obtain the well-known curve

X2 =

[

µ2 − ρ
σ2

σ1
µ1 +

√

1− ρ2Φ−1 (τ)

]

+ ρ
σ2

σ1
X1

We remark that the relationship is linear. When the margins are not
gaussian, the relationship is linear in the Ψ projection space:

Ψ [F2] (X2) = a + bΨ[F1] (X1)

where a =
√

1− ρ2Φ−1 (τ) and b = ρ.

∗see [9].
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3 An open field for risk management

The bank must compute the capital needed to support the risk
exposure of an operation (market, credit, operational, etc.). In
general, the capital charge is determined so that the estimated
probability of unexpected loss exhausting capital is less than some
target insolvency rate.
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3.1 General framework of capital allocation

Quantile notion of the risk Let F be the (potential) loss
probability distribution (we denote ϑ the corresponding r.v.) and
1− α be the target insolvency rate. The capital charge VaR (or
Capital-at-Risk/Value-at-Risk) is defined by

Pr {ϑ > VaR} = 1− α

or by

VaR = inf {x | F (x)≥ 1−α}

In general, we distinguish Economic Capital (computed with internal
models) and Regulatory Capital (computed according to methods
given by the Basel Commitee on Banking Supervision).
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Let consider an example of equity portfolio with a long position in
the security St. We define the loss variable as follows: ϑ = St+1 − St.
We assume two distributions: ϑ ∼ N (0,1) and ϑ ∼ t4.

Rating Regulatory BBB A AA AAA
α 99% 99.75% 99.9% 99.95% 99.97%

Return time 100 days 400 days 4 years 8 years 13 years
Φ−1 (α) 2.33 2.81 3.09 3.29 3.43
t−1
4 (α) 3.75 5.60 7.17 8.61 9.83

Let consider now a portfolio with different securities. The
Capital-at-Risk will be influenced by

• the assumption on the distributions of individual risk factors;

• and by the assumption on the dependence between the different
risk factors.
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An example (market risk) Three portfolios with five
commodities of the London Metal Exchange (see [3]):

AL AL-15 CU NI PB
P1 1 1 1 1 1
P2 -1 -1 -1 1 1
P3 2 1 -3 4 5

• Gaussian margins and Normal copula

90% 95% 99% 99.5% 99.9%
P1 7.26 9.33 13.14 14.55 17.45
P2 4.04 5.17 7.32 8.09 9.81
P3 13.90 17.82 25.14 27.83 33.43

• Student margins (ν = 4) and Normal copula

90% 95% 99% 99.5% 99.9%
P1 6.51 8.82 14.26 16.94 24.09
P2 3.77 5.00 7.90 9.31 13.56
P3 12.76 17.05 27.51 32.84 49.15
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3.2 Operational risk

Industry definition = “the risk of direct or indirect loss resulting from
inadequate or failed internal processs, people and systems or from
external events” (thefts, desasters, etc.).

Operational risk is now explicitly concerned by the New Basel Capital
Accord (banks have to allocate capital for operational risk since
2005).

Loss Distribution Approach (LDA) Under this approach, the
bank estimates, for each business line/risk type cell, the probability
distributions of the severity (single event impact) and of the one year
event frequency using its internal data. With these two distributions,
the bank then computes the probability distribution of the aggregate
operational loss. The total required capital is the sum of the
Value-at-Risk of each business line and event type combination.
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Let i and j denote a given business line and a given event type.

• ζ (i, j) is the random variable which represents the amount of
one loss event for the business line i and the event type j. The
loss severity distribution of ζ (i, j) is denoted by Fi,j.

• N (i, j) is the random variable which represents the number of
one year events for the business line i and the event type j. The
loss frequency distribution of ζ (i, j) is denoted by Pi,j.

In LDA, the loss for the business line i and the event type j is

ϑ (i, j) =
N(i,j)

∑

n=0
ζn (i, j)

The distribution Gi,j of ϑ (i, j) is then a compound distribution

Gi,j (x) =











∞
∑

n=1
pi,j (n)Fn?

i,j (x) x > 0

pi,j (0) x = 0
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For a given target insolvency rate 1− α, the capital charge
corresponds to

CaR(i, j;α) = G−1
i,j (α)

Computing the total capital charge The total capital charge for
the bank will be then the simple summation of the capital charges
accross each of the business lines and event types:

CaR(α) =
I

∑

i=1

J
∑

j=1
CaR(i, j;α)

Problem: The Basel Commitee on Banking Supervision
assumes implicitely that the different losses are perfectly
dependent.
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Let ϑ1 and ϑ2 be two losses with distributions G1 and G2. We
denote ϑ the total loss with distribution G. We have

CaR(α) = G−1 (α)

= CaR1 (α) + CaR2 (α)

= G−1
1 (α) + G−1

2 (α)

It is equivalent to assume that C 〈ϑ1, ϑ2〉 = C+. In this case, we have
ϑ2 = G(−1)

2 (G1 (ϑ1)). Let us denote $ the function

x 7→ x + G(−1)
2 (G1 (x)). We have

α = Pr {ϑ1 + ϑ2 ≤ CaR(α)}
= E

[

1[$(ϑ1)≤CaR(α)]

]

= G1
(

$−1 (CaR(α))
)

It comes that CaR(α) = $
(

G(−1)
1 (α)

)

and we obtain the relationship

CaR(α) = G(−1)
1 (α) + G(−1)

2

(

G1

(

G(−1)
1 (α)

))

= CaR1 (α) + CaR2 (α)
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Correlated aggregate loss distributions or correlated
frequencies? The total loss distribution ϑ for the bank as whole is
defined by

ϑ =
I

∑

i=1

J
∑

j=1
ϑ (i, j)

In this case, we could introduce the dependence directly between the
aggregate loss distributions.

Or, we could introduce the dependence indirectly between the
frequency distributions:

ϑ =
I

∑

i=1

J
∑

j=1

N(i,j)
∑

n=0
ζn (i, j)

For example, we could use multivarariate Poisson distributions
generated from the Normal copula (Song [2000]).
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3.3 The choice of the copula function

Let consider two markets (for example the equity market and the
bond market). We are interested in the probability that the loss in
one market is greater than its value-at-risk given that the loss in the
second market is already greater than its value-at-risk:

λ (α) = Pr {ϑ2 > VaR2 (α) | ϑ1 > VaR1 (α)}
= Pr

{

ϑ2 > F−1
2 (α) | ϑ1 > F−1

1 (α)
}

=
Pr {F2 (ϑ2) > α,F1 (ϑ1) > α}

Pr {F1 (ϑ1) > α}

=
1− 2α + C (α, α)

1− α
λ (α) depends on the copula, but not on the margins.
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The limit case λ = limα→1 λ (α) is called the tail dependence
coefficient.

Remark 2 The measure λ is the probability that one variable is
extreme given that the other is extreme.

1. Normal copula ⇒ extremes are asymptotically independent for
ρ 6= 1, i.e λ = 0 for ρ < 1.

2. Student copula ⇒ extremes are asymptotically dependent for
ρ 6= −1.

The copula function has then a great influence of the aggregation of
risks (in particular, stress-testing is very sensitive to the choice of the
copula — see [2]).
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4 New pricing methods with copulas

Let consider an European Call option. The payoff is
G (T ) = (S (T )−K)+. Under some conditions, the price P (t0) of this
contingent claim is given by

P (t0) = e−r(T−t0)EQ
[

G (T )| Ft0

]

with Q the martingale probability measure.

For a spread option, we have G (T ) = (S2 (T )− S1 (T )−K)+ and we
obtain a similar expression for the price.

Spread option is a special case of two-asset options. Since some
years, multi-asset options are traded very frequently. The main
difference with option with only one underlying is that the martingale
probability measure is multidimensional.
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4.1 Coherent valuation of multi-asset options

The Black-Scholes model In the BS model, we have

dS (t) = rS (t) dt + σS (t) dW (t)

under Q. The price of an European option is then a function of the
volatility σ. However, when we compute the implied volatility from
the option prices for different values of the strike K, it is not
constant. This is the volatility smile effect.

Option models in banks Banks have then developped
sophisticated models (e.g. stochastic volatility models) to take into
account the smile effect.

To this day, therefore, the BS model continues to be used, out of
analytical and computational convenience, for contingent claims
based on different assets.
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Problem: the margins of the multivariate Risk-Neutral Distribution
(RND) are not the univariate RND.

⇒ In this case, we may show that there exists arbitrage opportunities
inside the same bank (see [10]).

⇒ Moreover, one-asset options could be viewed as limits of
multi-asset options — see e.g. the Basket option
G (T ) = (α1S1 (T ) + α2S2 (T )−K)+.

The copula construction Let Q be the multivariate RND of the
random vector S (T ) | Ft0. In [10], we show that the margins of Q are
necessarily univariate RND∗. Using Sklar’s theorem, it comes that Q
admits the following canonical decomposition

Q (S1 (T ) , . . . , SN (T )) = CQ (Q1 (S1 (T )) , . . . ,QN (SN (T )))

CQ is called the risk-neutral copula (RNC).
∗We prove this by using properties of the Girsanov theorem applied to multivariate
probability measure.
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Relationships between CQ and CP

Let P be the objective (or historical) distribution. We denote by CP

the objective copula. We can prove the following proposition:

Proposition 1 If the drift and the diffusion of the asset prices vector
S (t) are of the form µ (t)� S (t) and σ (t)� S (t) and if risk premiums
are non stochastic, then the risk-neutral copula CQ is equal to the
objective copula CP.

Implication of this proposition: in this case, the univariate RND can
be estimated using the options market whereas the RNC can be
estimated using the spot market. So, the spot market contains useful
information to price multi-asset options.
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The case of the spread option In [12], Valdo Durrleman shows
that the price P (t0) is

P (t0) = S2 (t0)− S1 (t0)−Ke−r(T−t0) +

e−r(T−t0)
∫ K

−∞

∫ +∞

0
f1 (x) · ∂1CQ (F1 (x) ,F2 (x + y)) dxdy

A remark The copula construction implies that we can associate
a risk-neutral copula to a multivariate risk-neutral distribution. But it
does not mean that the combination of univariate RND with a copula
define necessarily a multivariate risk-neutral distribution (see [10] for
further details).
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BS pricing in stochastic volatility environment We assume
that the asset prices Sn (t) are given by the Heston model







dSn (t) = µnSn (t) dt +
√

Vn (t)Sn (t) dW1
n (t)

dVn (t) = κn (Vn (∞)− Vn (t)) dt + σn
√

Vn (t) dW2
n (t)

with E
[

W1
n (t)W2

n (t) | Ft0

]

= ρn (t− t0), κn > 0, Vn (∞) > 0 and
σn > 0. The market prices of risk processes are
λ1

n (t) = (µn − r) /
√

Vn (t) and λ2
n (t) = λnσ−1

n

√

Vn (t).

To compute prices of spread options, we consider that the RNC is the
Normal copula with parameter ρ. We compare then the Heston prices
with these given by the BS model using ATM implied volatilities.

Numerical values (two assets with same characteristics except ρn):
Sn (t0) = 100, τ = 1/12, r = 5%, Vn (t0) = Vn (∞) =

√
20%, κn = 0.5,

σn = 90% and λn = 0.
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How to build ‘forward-looking’ indicators for the dependence
function?

In [1], Aris Bikos suggests the following method:

1. estimate the univariate RND Q̂n using Vanilla options;

2. estimate the copula Ĉ using multi-asset options by imposing that
Qn = Q̂n;

3. derive “forward-looking” indicators directly from Ĉ.
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An example of the computation of the implied parameter ρ̂

• BS model: LN distribution calibrated with ATM options; Pricing
kernel = LN distributions + Normal copula

ρ̂1 = −0.341

• Bahra model: mixture of LN distributions calibrated with eight
European prices; Pricing kernel = MLN distributions + Normal
copula

ρ̂2 = 0.767

Remark 3 ρ̂1 and ρ̂2 are parameters of the Normal Copula. ρ̂1 is a
Pearson correlation, not ρ̂2.

⇒ BS model: negative dependence / Bahra model: positive
dependence.
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4.2 The pricing of credit derivatives
In multi-asset options, the risk is a market risk (because of the
volatility of the asset prices). In credit derivatives, the risk is a credit
risk (because of the default of the counterparties).

A default is generally described by a survival function
S (t) = Pr {T > t}. Let C̆ be a survival copula. A multivariate survival
function S can be defined as follows

S (t1, . . . , tN) = C̆ (S1 (t1) , . . . ,SN (tN))

where (S1, . . . ,SN) are the marginal survival functions. Nelsen [1999]
notices that “C̆ couples the joint survival function to its univariate
margins in a manner completely analogous to the way in which a
copula connects the joint distribution function to its margins”.

⇒ Introducing dependence between defaultable securities can then be
done using the copula framework (see [21] and [25]).
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Some examples∗

The Default Digital Put (DDP) option

The European DDP “pays off 1 at t iff there has been a default at
some time before (or including) t”.

If we assume that the interest rate and the first default τ =
∧N

n=1 Tn
are independent, the price at time t0 of the DDP of maturity t is
then†

DDP (t0, t) = E
[

e
−

∫ t
t0

r(s) ds
1[τ<t]

]

= (1− Sτ (t))P (t0, t)
=

(

1− C̆ (S1 (t) , . . . ,SN (t))
)

P (t0, t)

∗These examples are taken from [18].
†P (t0, t) is the default-free bond price.
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The First-to-Default (FtoD) option – A first-to-default is a contingent
claim that pays at the first of N credit events an amount $ (τ).

FtoD (t0, t) = E
[

$ (τ) e−r(τ)1[τ<t]

]

=
∫ t

t0
$ (s) e−r(s)fτ (s) ds

=
N
∑

n=1

∫ t

t0
$ (s) e−r(s)fn (s) ∂nC̆ (S1 (s) , . . . ,SN (s)) ds

The nth-to-Default (Pn:N) option

Pn:N (t0, t) = E
[

$ (Tn:N) e−r(Tn:N)1[Tn:N<t]

]

=
∫ t

t0
$ (s) e−r(s)fn:N (s) ds

We have of course P1:N = FtoD and PN :N = LtoD (last-to-default).
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Numerical illustrations

$ = 1 — r = 5% — Exponential survival times with hasard rates λn

— the survival copula is a Normal copula with a matrix of parameters
of the form











1 ρ · · · ρ
1 .. . ...

1 ρ
1










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5 Conclusion

The use of copulas in finance is very recent.

However, private communications with professionals of other banks
indicate that copulas are largely studied (and used) in most banks.

And professionals expect a lot from copulas to solve (and
understand) many financial problems.
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[16] Frachot, A., P. Georges and T. Roncalli [2001], Loss Distribution Approach for operational
risk, Groupe de Recherche Opérationnelle, Crédit Lyonnais, Working Paper

[17] Frey, A. and A.J. McNeil [2000], Modelling dependent defaults, ETH Zürich, Working Paper
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