
Facts and Fantasies About Factor Investing
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Abstract

The capital asset pricing model (CAPM) developed by Sharpe (1964) is the starting
point for the arbitrage pricing theory (APT). It uses a single risk factor to model the
risk premium of an asset class. However, the CAPM has been the subject of impor-
tant research, which has highlighted numerous empirical contradictions. Based on the
APT theory proposed by Ross (1976), Fama and French (1992) and Carhart (1997)
introduce other common factors models to capture new risk premia. For instance, they
consequently define equity risk factors, such as market, value, size and momentum. In
recent years, a new framework based on this literature has emerged to define strategic
asset allocation. Similarly, index providers and asset managers now offer the oppor-
tunity to invest in these risk factors through factor indexes and mutual funds. These
two approaches led to a new paradigm called ‘factor investing’ (Ang, 2014). Factor
investing seems to solve some of the portfolio management issues that emerged in the
past, in particular for long-term investors. However, some questions arise, especially
with the number of risk factors growing over the last few years (Cochrane, 2011). What
is a risk factor? Are all risk factors well-rewarded? What is their level of stability and
robustness? How should we allocate between them? The main purpose of this paper
is to understand and analyze the factor investing approach in order to answer these
questions.

Keywords: Factor investing, risk premium, CAPM, risk factor model, anomaly, size, value,
momentum, volatility, idiosyncratic risk, liquidity, carry, quality, mutual funds, hedge funds,
alternative beta, strategic asset allocation.

JEL classification: C50, C60, G11.

1 Introduction

Risk factor investing has grown in popularity in recent years and has become an important
concept within investment portfolios. It is best defined as an attempt to capture systematic
risk premia. In the CAPM theory, there is a single market risk premium, which can be
obtained by investing in market-capitalization indexes. But since CAPM was introduced,
academic researchers have put forward convincing evidence that there are other systematic
sources of return. These alternative risk premia include, for example, risk factors related to
a stock’s size or valuation. The idea of factor investing is then to enlarge the asset universe
by adding these risk factors to the existing market risk factors, which are simply asset classes
such as equities and bonds. The goal is then to generate more returns in the long run. As
explained by Ang (2014), “it is precisely because factors episodically lose money in bad
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times that there is a long-run reward for being exposed to factor risk. Factor premiums are
rewards for investors enduring losses during bad times.”

One of the issues with factor investing is to define which factors really matter. For a
long time, the standard model was the four factor model of Carhart (1997). Based on the
model developed by Fama and French (1992), which is based on the size and value factors,
Carhart (1997) proposed to add the momentum factor found by Jegadeesh and Titman
(1993). More recently, other factors have emerged such as the volatility, low beta, quality
or liquidity factors, to name just a few. However, the existence of more and more factors
does not help. In fact, Cochrane (2011) has recently referred to a “zoo of new factors”.
For instance, Harvey et al. (2014) counted over 300 in various academic papers, and their
number has been increasing exponentially (see Figure 1). In such situations, the investor
may be lost in front of the factor proliferation.

Figure 1: Factors and publications (Harvey et al., 2014)

In this context, the pertinence of risk factors is an open issue. In fact, the literature on
risk factors generally focuses on ‘the cross-section of expected returns’. The underlying idea
is to discover independent patterns that can help to explain the dispersion of asset returns.
For that, academics use a standard method based on the pioneer research of Chan et al.
(1991) and Fama and French (1993). The procedure consists in forming sorted portfolios
based on some characteristics and to test whether portfolio returns are sensitive to a given
pattern. One of the issues is the alpha puzzle of the cross-section. Indeed, if one factor
model is valid, this implies that portfolio returns adjusted by risk factors have no alpha. For
instance, if the Carhart model is appropriate, this implies that there is alpha in diversified
portfolios if we only use the Fama-French risk factors. If we now consider that the relevant
model is a five factor model composed of the previous Carhart risk factors and the low
volatility anomaly, this implies that alpha is present in diversified portfolios if we consider
the Carhart risk factors. And the story is repeating itself with the discovery of new factors
like quality or liquidity. Here is the mystery. How can alpha always come back?
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Another issue with factors concerns the nature of these patterns. Are they risk factors or
anomalies? The notion of risk factor refers to a natural risk premium, which rewards the risk
taken by investors. For instance, we can think that the size factor is a risk factor, because
small stocks are more risky than large stocks. But we can also think that the momentum
factor is more an anomaly. In this case, the abnormal return posted by this factor is not
a risk premium, but can only be explained by investment behaviors. The question of the
value factor is more complicated. On the one hand, some portfolio managers consider that
the goal of value strategies is to build aggressive portfolio by selecting distressed stocks. For
instance, this point of view is supported by Fama and French (1998). On the other hand,
other portfolio managers consider that the goal of value strategies is to build defensive
portfolio by selecting quality stocks (Piotroski, 2000). The value factor encompasses two
different realities: one is clearly a risk premium and the other is clearly an anomaly. And
each of these realities may be illustrated by the behaviorial difference of the value strategy
during the 2008 financial crisis and the dot-com bubble in 2000.

Over the last few years, factor investing has rapidly attracted the asset managers and
also large institutional investors. It is now a hot topic in the investment industry. However,
most of the time it is presented as a very simple investment approach that gives superior
results compared to traditional approaches, such as strategic asset allocation based on asset
classes. But as noted by Ang (2014), “each factor defines a different set of bad times”. This
means that factor returns are time-varying and factors may highly underperform for a long
time. In this context, a constant mix allocation based on risk factors makes sense only for
long-term investors and the question of the horizon time is decisive. Are investors ready
to wait ten years if small caps or value stocks underperform large caps or growth stocks?
The answer has to be no. This is why factor investing raises the question of multi-factor
allocation. It is true that diversifying across factors is a way to diversify across all these bad
times. Unfortunately, these bad times are not always uncorrelated.

Implementation is another aspect of factor investing. Until recently, these factors were
available by investing in mutual funds. Now, both active management and passive man-
agement propose investment vehicles and give access to these factors. The development of
factor indexes will certainly help to rationalize the asset management industry. However, one
question remains. How to transform these academic risk factors into investible portfolios?
This implies studying the capacity, turnover and transaction costs of these factor portfolios
and also the impact of the constraints on such investments such as long-only restrictions.

Behind the marketing operation where factors are everywhere and everything is a factor,
it is tempting to reject this approach by saying that it is just the latest fashion. However,
factor investing is a necessary tool to understand where the performance comes from and
a powerful concept to challenge and enhance long-term investment strategies. Thus, factor
benchmarks proposed by Ang (2014) are a new step to help long-term investors to assess
the performance of their investments. However, there is a gap between ex-post analysis (or
performance measurement) and ex-ante capital budgeting (or portfolio allocation). The goal
of this paper is then to provide an overview of the two sides of factor investing (risk factors
and long-run allocation) and to show that it is not as simple as it is often presented. In the
real world, factor investing is complex, but remains powerful when it is properly understood
and used.

This article is organized as follows. In section two, we introduce the risk factor frame-
work. In section three, we review the universe of risk factors and anomalies that can explain
the cross-section of expected returns. The conversion of academic risk factors into factor
benchmarks and indexes is explained in the fourth section. Section 5 treats the allocation
process with risk factors. Section five offers some concluding remarks.
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2 The risk factor framework

2.1 Back to the CAPM

The capital asset pricing model (CAPM) was introduced by Sharpe in 1964, and may be
viewed as an equilibrium model based on the framework defined by Markowitz (1952). In
his paper, Markowitz developed the efficient frontier concept, i.e. the set of optimal mean-
variance portfolios. Later, Tobin (1958) showed that the efficient frontier becomes a straight
line in the presence of a risk-free asset. Contrary to Markowitz’ results, it can then be shown
that there is only one optimal portfolio of risky assets, which is called the tangency portfolio.
One of the issues is that the tangency portfolio depends on the parameter values1 of each
investor. This was partially solved by Sharpe (1964). Under some assumptions2, he showed
that the tangency portfolio corresponds to the market-capitalization portfolio (or market
portfolio). He then deduced the now familiar relationship between the risk premium of asset
i and the risk premium of the market portfolio:

E [Ri]−Rf = βmi (E [Rm]−Rf ) (1)

where Ri and Rm are the asset and market returns, Rf is the risk-free rate and the coefficient
βmi is the beta of the asset i with respect to the market portfolio:

βmi =
cov (Ri, Rm)

σ2 (Rm)

The capital asset pricing model highlights the role of beta, which represents the asset’s
systematic risk. Contrary to idiosyncratic risks, systematic risk cannot be diversified, and
investors are compensated for taking this risk. However, Black et al. (1972) verified empir-
ically that the expected excess return on an asset is not proportional to its beta. A large
number of studies were to follow, and confirmed the non-empirical evidence of the CAPM3.

2.2 Arbitrage pricing theory and factor models

Ross (1976) proposed an alternative model to the CAPM, which he called the arbitrage
pricing theory (APT). In this model, the return of asset i is driven by a standard linear
factor model:

Ri = αi +

m∑
j=1

βjiFj + εi (2)

where αi is the intercept, βji is the sensitivity of asset i to factor j and Fj is the (random)
value of factor j. εi is the idiosyncratic risk of asset i, implying that:

1. E [εi] = 0;

2. cov (εi, εk) = 0 for i 6= j;

3. cov (εi,Fj) = 0.

1These are the expected returns and the covariance matrix of the assets.
2For instance, investors have homogeneous beliefs and the market is efficient.
3We should point out that testing the CAPM is nevertheless difficult, because it requires the exact

composition of the market portfolio to be known (Roll, 1977).
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Using arbitrage theory, we can show that the risk premium of asset i is a linear function of
the risk premia of the factors:

πi = E [Ri]−Rf =

m∑
j=1

βji π (Fj)

where π (Fj) = µ (Fj)−Rf and µ (Fj) = E [Fj ]. The proof is given in Appendix A.1.

The underlying idea of APT is that systematic risks are not captured by one market
risk. Contrary to CAPM, which requires that the Markowitz model is valid4, APT does
not assume a specific utility function. However, it assumes that there are a large number of
assets to build a portfolio which is sufficiently diversified with no specific risk in respect of
individual assets.

A number of implementations have been proposed. We generally distinguish three ap-
proaches to define the risk factors:

• The first approach uses factor analysis (e.g. principal component analysis) to build
statistical factors. SunGard’s APT risk solution is the best-known example of this
approach.

• The second approach requires specification of macroeconomic factors.

• The third approach uses market factors, such as the Fama-French factors.

2.3 Algebra of multi-factor models

2.3.1 Computing some basic statistics

We consider a set of n assets {A1, . . . , An} and a set of m risk factors {F1, . . . , Fm}. We
denote by R the (n× 1) vector of asset returns at time t, while µ is its mean vector and
Σ is its associated covariance matrix. We also denote by F the (m× 1) vector of factor
returns at time t and Ω its associated covariance matrix. We assume the following linear
factor model:

R = α+BF + ε (3)

where α is a (n× 1) vector, B is a (n×m) matrix and ε is a (n × 1) centered random
vector of covariance D. This relationship is the matrix form of Equation (2), meaning that
(B)i,j = βji is the sensitivity of asset return i with respect to factor j. We have:

µ = E [R]

= α+BE [F ]

= α+Bµ (F)

and:

Σ = E
[
(R− µ) (R− µ)

>
]

= E
[
(B (F − µ (F) + ε)) (B (F − µ (F) + ε))

>
]

= BE
[
(F − µ (F)) (F − µ (F))

>
]
B> + E

[
εε>

]
= BΩB> +D

4This implies that investors adopt a mean-variance analysis.

5



Facts and Fantasies About Factor Investing

Let us now consider a portfolio x. Its return is equal to:

R (x) = x>R

= x>α+ β (x)
> F + x>εt

where β (x) = B>x is the sensitivity vector of portfolio x to the risk factors. One im-
portant property is that we can easily aggregate the betas. Indeed, we have β (x) =(
β1 (x) , . . . , βm (x)

)
with:

βj (x) =

n∑
i=1

xiβ
j
i

In a similar way, we can deduce that the expected return of the portfolio is:

µ (x) = x>α+ β (x)
>
µ (F)

whereas its volatility has the following expression:

σ (x) =

√
β (x)

>
Ωβ (x) + x>Dx

=
√
σ2
F (x) + σ2

ε (x)

where σF (x) =

√
β (x)

>
Ωβ (x) is the systematic (or factor) portfolio volatility and σε (x) =√

x>Dx is the specific (or idiosyncratic) volatility.

Remark 1 To compute the beta β (x | b) of portfolio x with respect to benchmark b, we use
the following formula:

β (x | b) =
cov (R (x) , R (b))

σ2 (R (b))

=
β (x)

>
Ωβ (b) + x>Db

β (b)
>

Ωβ (b) + b>Db

2.3.2 Risk allocation

Let R (x) be a risk measure applied to portfolio x. We assume that the risk measure is
convex. In this case, the risk measure satisfies the Euler decomposition:

R (x) =

n∑
i=1

RCi =

n∑
i=1

xi
∂R (x)

∂ xi

With this relationship, we can allocate risk to the assets in a straightforward way. Risk
allocation with respect to factors is more difficult. However, Meucci (2007) proposes de-
composing the portfolio’s asset exposures x by the portfolio’s risk factors exposures y as
follows:

x = A+y + Ã+ỹ

where A+ is the Moore-Penrose inverse of B> and Ã+ is any n× (n−m) matrix that spans
the left nullspace of A+. ỹ is the exposure corresponding to n−m residual (or additional)
factors that have no economic interpretation5. It follows that:{

y = B>x

ỹ = Ãx

5The residual factors are not determined in a unique way. They are only defined in order to calculate the
risk contributions of the factors y. Therefore, interpreting the risk contributions of these residual factors is
not meaningful.
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where Ã = ker
(
B>
)>

. In this case, the marginal risk of assets is related to the marginal
risk of factors in the following way:

∂R (x)

∂ x
=
∂R (x)

∂ y
A+

∂R (x)

∂ ỹ
Ã

We deduce that the marginal risk of the jth factor exposure is given by:

∂R (x)

∂ yj
=

(
B+ ∂R (x)

∂ x>

)
j

For the residual factors, we have:

∂R (x)

∂ ỹj
=

(
Ã
∂R (x)

∂ x>

)
j

Let us note RC (Fj) = yj · ∂yj R (x) the risk contribution of factor j with respect to risk
measure R. We obtain:

RC (Fj) =
(
B>x

)
j
·
(
B+ ∂R (x)

∂ x>

)
j

and:

RC
(
F̃j
)

=
(
Ãx
)
j
·
(
Ã
∂R (x)

∂ x>

)
j

Following Meucci (2007), Roncalli and Weisang (2012) show that these risk contributions
satisfy the allocation principle:

R (x) =

m∑
j=1

RC (Fj) +

n−m∑
j=1

RC
(
F̃j
)

We also obtain a risk decomposition by factors similar to the Euler decomposition by assets.

Remark 2 When the risk measure R (x) is the volatility of the portfolio σ (x) =
√
x>Σx,

the risk contribution of the jth factor is:

RC (Fj) =

(
B>x

)
j
· (B+Σx)j

σ (x)

For the residual risk factors F̃t, the results become:

RC
(
F̃j
)

=

(
Ãx
)
j
·
(
ÃΣx

)
j

σ (x)

2.3.3 Beta exposures versus risk contributions

We notice that the factor exposures y are in fact the beta exposures β (x) of the portfolio.
These exposures are difficult to interpret because they do not depend on the specification
of the covariance matrix Ω. From a financial point of view, the risk contributions contain
more useful information, but one drawback is that they depend on the parametrization of
the model. In order to illustrate these problems, we consider some examples.
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Table 1: Volatility decomposition with respect to the factors (in %)

βj MR (Fj) RC (Fj) RC? (Fj)
F1 96.00 20.10 19.30 97.28
F2 19.00 2.29 0.44 2.22
F3 62.50 0.03 0.02 0.10

F̃ 0.08 0.42
σ (x) 19.84

Table 2: Comparison of risk decompositions

Case #0 #1 #2
βj RC? (Fj) βj RC? (Fj) βj RC? (Fj)

F1 96.00 97.28 96.00 45.65 96.00 87.82
F2 19.00 2.20 19.00 40.37 19.00 11.76
F3 62.50 0.10 62.50 11.94 62.50 0.08

F̃ 0.42 2.04 0.34

Example 1 We consider n = 6 assets and m = 3 factors. The loadings matrix is:

B =


0.9 0.3 2.5
1.1 0.5 −1.5
1.2 0.6 3.4
0.8 −0.8 −1.2
0.8 −0.2 2.1
0.7 −0.4 −5.2


The three factors are uncorrelated and their volatilities are equal to 20%, 15% and 1%. We
consider a diagonal matrix D with specific volatilities 10%, 13%, 5%, 8%, 18% and 8%.

If we consider the portfolio x = (30%, 10%, 30%, 5%, 5%, 20%), the betas are equal to
96%, 19% and 62.5%. With these figures, we have the impression that the portfolio is
exposed firstly to the factor F1, then to the factor F3 and finally to the factor F2. The
problem is that the volatilities of these factors are not comparable. If we perform a risk
allocation using the volatility risk measure, it appears that the second factor is in fact more
important than the third factor (see Table 1). Of course, this risk decomposition depends
greatly on the specification of the covariance matrix Ω. Let us consider for instance the
following two other cases:

• The volatilities of the factors become 5%, 30% and 5%.

• The correlation between F1 and F2 is equal to 90%.

In Table 2, we report the beta and risk contribution of each factor. We verify that the rela-
tionship between the exposures βj and the risk contribution RC? (Fj) is not straightforward.

Remark 3 If we want the risk contributions to be proportional to the betas, the following
conditions must be satisfied:

1. the volatility of the factors is equal to one and the factors are perfectly correlated
(Ω = 11>);
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Table 3: Volatility decomposition with respect to the factors (in %)

βj MR (Fj) RC (Fj) RC? (Fj)
F1 96.00 16.88 16.20 81.67
F2 19.00 1.69 0.32 1.61
F3 62.50 0.19 0.12 0.59

F̃4 / F̃9 3.20 16.12
σ (x) 19.84

Table 4: Volatility decomposition with respect to the factors (in %)

βj MR (Fj) RC (Fj) RC? (Fj)
F2 19.00 7.72 1.47 7.39
F3 62.50 0.22 0.14 0.70

F̃ ′ 18.23 91.91
σ (x) 19.84

2. the idiosyncratic contribution is negligible.

As explained above, the shortcoming is that the risk decomposition depends on the
parametrization model. For instance, we can write Equation (2) as follows:

Rt = α+
(
B I

)( Ft
εt

)
= α+B′F ′t

By considering specific risks as common risks, we will change the risk allocation. With
Example 1, we obtain the risk allocation given in Table 3. We observe that the risk con-
tributions of the specific risks6 now explain 16.12% of the volatility, whereas this was only
0.34% previously.

We can also treat some common risks as specific risks. If we split the common risks as
follows: BFt = B1F1

t +B2F2
t , we obtain:

Rt = α+B1F1
t + ε′t

with7 ε′t = εt + B2F2
t . If we incorporate the first factors in the specific risk, we obtain the

results in Table 4. We observe that the risk contribution of the second factor has increased
considerably.

3 Empirical evidence of risk factors

There is extensive literature on this topic. Some risk factors are long established, such as
the size factor (Banz, 1981; Basu, 1983) and the value factor (Basu, 1977; Rosenberg et al.,
1985; Chan et al., 1991), whereas others are more recent, such as the quality factor.

6They are now treated as common risks
(
F̃4, . . . , F̃9

)
.

7In this case, ε′t is independent from the factors F1
t if cov

(
F1
j ,F2

j

)
= 0.
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3.1 Fama-French risk factors

In 1992, Fama and French studied several factors to explain average returns (size, E/P,
leverage and book-to-market equity). Fama and French (1993) subsequently extended their
empirical work and proposed a three factor-model:

E [Ri]−Rf = βmi (E [Rm]−Rf ) + βsmbi E [Rsmb] + βhmli E [Rhml] (4)

where Rsmb is the return of small stocks minus the return of large stocks, and Rhml is
the return of stocks with high book-to-market values minus the return of stocks with low
book-to-market values. Since its publication, this model has become standard in the asset
management industry.

3.1.1 Fama-French methodology

Fama and French (1993) looked at the US market using stocks listed on the NYSE, AMEX
and NASDAQ. The breakpoint for the size factor is the median NYSE market value (or
market equity, ME) at the end of June, and is used to rebalance the portfolio in July. For
the book-to-market (B/M) ratio, the breakpoints correspond to the 30th and 70th percentiles
measured in December. In this case, the portfolio is rebalanced in January. This gives us 6
portfolios8:

Value Neutral Growth
Small SV SN SG
Big BV BN BG

For instance, the SV portfolio corresponds to stocks, such that9 MEi <M (ME) and B/Mi <
Q30% (B/M). For the SN portfolio, we have MEi <M (ME) and Q30% (B/M) ≤ B/Mi <
Q70% (B/M). The Fama-French factors are the difference between portfolio returns:

SMBt =
1

3
(Rt (SV) +Rt (SN) +Rt (SG))− 1

3
(Rt (BV) +Rt (BN) +Rt (BG))

and:

HMLt =
1

2
(Rt (SV) +Rt (BV))− 1

2
(Rt (SG) +Rt (BG))

To test their model, Fama and French consider two linear regressions. The first corre-
sponds to the CAPM:

Ri −Rf = αCAPM
i + βmi (Rm −Rf ) + εCAPM

i (5)

whereas the second regression uses the three-factor model:

Ri −Rf = αFF
i + βmi (Rm −Rf ) + βsmbi Rsmb + βhmli Rhml + εFF

i (6)

If the Fama-French model is valid, we must reject the assumption H0 : αCAPM
i = 0 and

accept the assumption H1 : αFF
i = 0. Moreover, the estimates β̂smbi and β̂hmli must be

significant, and we should notice an improvement in the power explanation, meaning that
R2

FF � R2
CAPM.

8Fama and French (1993) justify the sorting procedure into three groups based on the B/M ratio and
only two groups based on size, because they consider that “book-to-market equity has a stronger role in
average stock returns than size”.

9M (X) and Qα (X) correspond to the median and the percentile α of the statistic X.

10



Facts and Fantasies About Factor Investing

It is important to note that Fama and French performed regressions on portfolios and
not on individual stocks to explain the cross-section of expected stock returns. To do this,
they adopted the sorting procedure of Chan et al. (1991) and consider a two-way grouping
based on size and B/M (see Figure 2). To estimate the risk premium of each factors, they
used the two-stage approach of Fama and MacBeth (1973).

Figure 2: The testing procedure'
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3.1.2 Results for the US market

The Fama-French risk factors are available on the website10 of Kenneth French. Since
1993, the data have been updated and now include the value of factors and portfolios for
different regions11. In Figure 3, we report the cumulative performance of the risk factors
for the US market. In their original paper, Fama and French found that the market factor
captures a large part of the common variation in stock returns, but that adding the two
other factors SMB and HML significantly improves the coefficient of determination R2. In
Table 5, we report some statistics they obtained for different portfolios. On average, the
R-squared increases by 15%. Using the data published by Kenneth French on his website,

Table 5: Statistics of R2 (in %)

Minimum Average Maximum
CAPM 61.0 77.9 92.0
Fama-French 83.0 93.1 97.0

we can update this study. To do this, we consider the 25 value-weighted portfolios, which
are built from independent sorts into five size groups and five B/M groups12. For each

10http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
11The Fama-French methodology differs slightly in this case
12Kenneth French explains the construction of the 5x5 Size-B/M portfolios as follows:

“The portfolios, which are constructed at the end of each June, are the intersections of 5
portfolios formed on size (market equity, ME) and 5 portfolios formed on the ratio of book
equity to market equity (B/M). The size breakpoints for year t are the NYSE market equity
quintiles at the end of June of t. B/M for June of year t is the book equity for the last fiscal
year end in t − 1 divided by ME for December of t − 1. The B/M breakpoints are NYSE
quintiles.”

11

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Figure 3: Fama-French US risk factors (1930 - 2013)

portfolio, we estimate the factor model using a rolling window of five years. We report
some statistics relating to the R2 coefficient for the one-factor (CAPM) and three-factor
(Fama-French) models in Figure 4. At each date t, these statistics are the minimum and
maximum, the first and third quartiles, and the median of the R2 coefficient estimated for
the 100 portfolios. The use of the three-factor model greatly increases the explanatory part
and significantly reduces the dispersion of the R2 coefficient. For instance, we report the
difference ∆R2 = R2

FF − R2
CAPM in the third panel. In some cases, this difference can be

larger than 50%. However, the improvement of the R2 coefficient is not uniform and we
distinguish four periods:

• From 1995 to 1999, the size and B/M factors significantly improve the R2 coefficient,
implying that ∆R2 ranges from 18% to 23%.

• This improvement increases considerably during the period 2000-2004. On average,
the difference ∆R2 is larger than 30%, and the peak is reached in 200113.

• The difference R2
FF−R2

CAPM then decreases during the period 2005-2008, and is about
11% during the financial crisis.

• Finally, ∆R2 stabilizes at around 7% on average between 2009 and 2013.

3.1.3 Extension to other developed markets

The original paper by Fama and French concerns the US market. Fama and French (1998)
tested whether there is a value premium in markets outside the United States and found
strong evidence, confirming the results of Chan et al. (1991) in the case of Japanese stocks.

13The mean of R2
FF −R

2
CAPM is 36.1% in 2001 (see Table 6).
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Figure 4: Dynamics of the R2 coefficient (in %)

One issue was raised at the beginning of the 2000s: are the Fama and French factors global
or country specific? This question is the title of an article by Griffin (2002), who concluded
that “practical applications of the three-factor model [...] are best performed on a country-
specific basis”. This approach has now been adopted by many practitioners and academics.
For instance, Fama and French (2012) estimate the risk factors for four regions (Asia Pacific,
Europe, Japan and North America). Results are reported in Appendix B.2 on Page 102.
The SMB and HML factors are given in Figures 35 and 34, whereas the dynamics of the
R2 coefficient correspond to Figures 36–39. In Table 6, we summarize these results by
computing the average of ∆R2 per year14. We obtain similar conclusions as previously. In
particular, we observe that the three-factor model significantly improves the CAPM model.
However, we also notice some differences. For instance, the behavior of ∆R2 is similar for
European and American stocks, but this is not the case for Asian and Japanese stocks. In
Asia Pacific, the value of ∆R2 is not very high, even during the internet bubble. In Japan,
the average of ∆R2 has been larger than 10% in recent years.

The previous analysis looked at both the size and value factors. However, the contri-
bution of these two factors is not the same. In Appendix B.1 on Page 90, we report the
difference ∆R2 by considering two other linear regressions. In Table 37, we consider a variant
of the model (4) using the market and SMB factors:

Ri (t)−Rf (t) = αi + βmi (Rm (t)−Rf (t)) + βsmbi Rsmb (t) + εi (t) (7)

In Table 38, we replace the SMB factor with the HML factor:

Ri (t)−Rf (t) = αi + βmi (Rm (t)−Rf (t)) + βhmli Rhml (t) + εi (t) (8)

14∆R2 does not measure the difference in R2 for a given year t, but for a given period of five years ending
at year t.
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Table 6: Average of ∆R2 (in %)

Year Asia Pacific Europe Japan North America US
1995 12.1 13.7 10.0 17.9 18.0
1996 11.7 14.4 9.8 22.5 23.0
1997 12.7 17.6 11.1 22.4 20.2
1998 13.0 19.1 14.0 21.1 18.4
1999 12.8 19.9 15.2 19.2 19.2
2000 13.1 27.2 20.4 29.5 31.6
2001 13.0 26.4 21.1 30.3 36.1
2002 12.3 23.4 20.9 28.6 35.0
2003 13.3 20.3 19.4 27.3 34.4
2004 13.5 17.5 19.3 27.1 33.2
2005 11.5 11.6 13.9 17.7 23.7
2006 11.3 8.8 14.2 13.0 15.7
2007 12.5 7.5 15.4 11.3 13.6
2008 9.6 6.3 15.8 10.0 11.4
2009 6.1 5.0 15.5 7.1 7.8
2010 5.9 5.7 15.0 6.8 7.9
2011 5.4 5.1 14.1 5.9 6.9
2012 4.8 4.9 13.7 5.3 6.3
2013 5.3 5.1 12.1 5.3 6.3

We notice that the improvement of the R2 coefficient is principally due to the size factor,
particularly in these last few years. These results are confirmed by considering the linear
regression in specific periods (see Table 7). For instance, ∆R2 is equal on average to 1.7%,
1.4% and 1.5% for the Asia Pacific, Europe and North America regions if we consider
the HML factor. For Japanese stocks, it is higher, but significantly smaller than the R2

improvement due to the SMB factor.

Table 7: Average of ∆R2 (in %) for different periods

Model Asia Pacific Europe Japan North America US
1995 / 2013

SMB 7.1 7.8 13.3 11.8 11.0
HML 2.7 3.4 4.0 6.4 8.0
FF 9.9 11.2 16.9 17.5 19.8

2004 / 2013
SMB 4.9 4.5 12.2 5.0 5.3
HML 1.5 1.1 2.9 1.8 2.4
FF 6.4 5.6 14.7 6.7 7.6

2009 / 2013
SMB 5.1 4.3 9.4 4.5 4.7
HML 1.7 1.4 3.0 1.5 2.1
FF 6.7 5.7 12.3 5.8 6.8
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3.1.4 Robustness of the Fama-French risk model

There is extensive literature on the evidence for the Fama-French risk factors. It covers
the US market (Jensen et al., 1997; Davis et al., 2000), as well as other developed markets
(Chan et al. (1991) for Japanese stocks; Gaunt (2004) for Australian stocks; Bauer et al.
(2010) for European stocks) and emerging markets (Drew et al. (2003) for Chinese stocks;
Lischewski and Voronkova (2012) for Polish stocks). The Fama-French model has since
become a benchmark framework for the asset management industry, used in particular to
analyze the performance of active managers. For instance, the equity style box reported in
Figure 5, which was created by Morningstar and is intensively used by investors, is a visual
representation used to classify mutual funds in terms of Fama-French risk factors.

Figure 5: The Morningstar style box

Value Core Growth

Large

Mid

Small

However, while accepted in the professional community, the empirical findings of the
Fama-French model have been a source of debate among academics, and there is still no
consensus. These criticisms concern both the model itself and the interpretation of the
results.

Spurious regression and data snooping One of the main criticisms is the data mining
approach used to obtain these empirical results. Black (1993) was one of the first and the
most virulent opponent of the Fama-French results15. In his view, the empirical results
obtained by Fama and French may be explained by data mining16. This conclusion had
previously been reached by Lo and MacKinlay (1990), who showed that statistical tests

15Although it concerns the article published by Fama and French in 1992, his criticisms may also be
applied to the article published in 1993.

16Here are some quotes extracted from Black [1993]:

• “I think, Fama and French, in the text of that article, misinterpret their own data (and the findings
of others).”

• “[...] they find no size effect at all, whether or not they control for beta. Yet they claim in their paper
that size is one of the variables that captures the cross-sectional variation in average stock returns.
Fama and French also give no reasons for a relation between size and expected return. [...] Lack of
theory is a tipoff: watch out for data mining!”

• “I think it is quite possible that even the book-to-market effect results from data mining and will
vanish in the future.”

• “I especially attribute their results to data mining when they attribute them to unexplained priced
factors or give no reasons at all for the effects they find.”
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based on size-sorted portfolios are examples of data snooping17 (White, 2000). It is therefore
difficult to know if the estimated model will work in the future (MacKinlay, 1995; Ferson
et al., 2003). For instance, Kothari et al. (1995) conjectured that the relationship between
average return and the B/M factor are affected by survivor bias in COMPUSTAT data18.
Jagannathan and McGrattan (1995) also noticed that the results for the market factor
obtained by Fama and French (1992) were completely different from those obtained by
Fama and MacBeth (1973), even though they used the same statistical procedure. They
suggested that the Fama-French results have a high level of sensitivity with respect to the
sample period. Another criticism concerns the way Fama and French build their portfolios.
By considering portfolios instead of individual stocks, the results are more convincing. For
instance, we report in Figure 6 the frequency of the R2 coefficient in the case of S&P
500 stocks for the period 1995-2013. On average, the improvement in R2 is about 7%.
Nevertheless, the large amount of empirical evidence published in the last twenty years does
not prove that the Fama-French model is a data-driven model although, we will see that
some of the empirical results found in the original papers are less significant today.

Figure 6: Frequency of the R2 coefficient with S&P 500 stocks

Another problem with empirical evidence of asset pricing models is that the results may
be based on spurious regressions. Suppose that the true model is:

Ri (t) = αi + βiF (t) + εi (t) (9)

where F (t) is an autocorrelated process. This implies that the ex-ante expected return is

17Data snooping generally refers to statistical inference performed by the researcher after looking at the
data.

18Breen and Korajczyk (1993) showed that this problem is not important for NYSE/AMEX stocks, but
may be more relevant for NASDAQ stocks.
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also autocorrelated. We then consider the following regression:

Ri (t) = α?i + β?i F? (t) + ε?i (t) (10)

where F? (t) is another autocorrelated process. In this case, we will find that the estimated

coefficient β̂?i is significant because Ri (t) and F? (t) are autocorrelated. In Table 8, we
report the estimated values of the first-order correlation ρ for the different Fama-French risk
factors. Even if the null hypothesis H0 : ρ = 0 is not always accepted at the 95% confidence
level, the estimated values are relatively low, except for the HML factor for Asia Pacific.
We cannot therefore conclude that Fama-French regressions are spurious.

Table 8: First-order autocorrelation (in %) of the risk factors

Factor Asia Pacific Europe Japan North America US
MKT− RF 13.77 14.81 16.82 12.25 11.62
SMB 16.26 −1.65 1.36 −8.72 −7.50
HML 6.36 37.51 16.18 10.41 11.31

The first-order autocorrelation is computed for the period 1995-2013.

The associated t-statistic is equal to 6.17%.

Interpretation of the Fama-French results One of the issues with the SMB and HML
factors concerns their interpretation as risk factors. If we assume that the market is efficient,
this implies that the equity risk cannot be reduced to the market risk and idiosyncratic risks.
In this case, common risk is multidimensional and includes other risks, which are related to
size and B/M effects. The difficulty is then to determine which economic risks are rewarded.
Fama and French (1995) argued that they correspond to relative distress. For instance, they
showed that weak firms with poor earnings tend to have high B/M values, whereas strong
firms with high earnings tend to have low B/M values. They then concluded that there
is a compensation in terms of average returns to hold stocks with a positive slope on the
HML factor. Similarly, they showed that small stocks tend to have lower earnings than large
stocks, and they concluded that there is a compensation in terms of average returns to hold
stocks with a positive slope on the SMB factor. They then suggest that the relationship (4)
is an equilibrium pricing model and a special case of an ICAPM or APT model (Merton,
1973; Ross, 1976).

This interpretation as risk factors caused a lot of controversy. Contrary to Fama and
French (1995), Haugen (1994) thinks that the market is not efficient. In this perspective,
the value premium is not a compensation for distress risk, but an asset pricing anomaly.
For instance, Lakonishok et al. (1994) and La Porta et al. (1997) suggest that the B/M
effect is due to investor overreaction. Haugen and Baker (1996) show that stocks with higher
expected and realized returns have lower volatility risk. The debate has continued since the
publication of these pioneer studies, and it is difficult to conclude that the B/M effect is a
compensation for distress risk or a pricing anomaly19.

19On the one hand, Petkova and Zhang (2005), Zhang (2005) and Kapadia (2011) presented some research
in favor of the distress risk explanation. On the other hand, Berk (1995), Daniel and Titman (1997), Griffin
and Lemmon (2002), Ali et al. (2003), Gomes et al. (2003), Campbell et al. (2008) and Phalippou (2008)
concluded that the B/M effect is not a compensation for distress risk.
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3.1.5 Performance of the SMB and HML risk factors

One of the challenges is to estimate the risk premium associated with different risk factors.
Using the French data, we computed the performance of the different factors by considering
three periods:

#1 January 1995 – March 2000

#2 April 2000 – March 2009

#3 April 2009 – December 2013

The results are reported in Tables 9, 10 and 11. For each period and each region, we
indicate the annual return µ (x) and the volatility σ (x) expressed in %. We also compute
the corresponding Sharpe ratio SR (x | r). We notice that the risk premia vary considerably
from one country to another, as well as from one period to another. For instance, the size
factor posts a negative return before the year 2000 and a positive return thereafter, except
for Asia Pacific. Moreover, we notice that the performance is stronger in the United States
and Japan than in Europe. As regards the HML factor, its performance is high during the
period April 2000 – March 2009, particularly in Europe and Japan. From April 2009, the
value factor has a smaller return. If we consider statistics year by year, we observe very
mixed results (see Tables 39, 40 and 41 on Page 91). For instance, the performance is low
in Europe and high in the United States for 2012, whereas the reverse is true for 2013.

Table 9: Performance of the MKT− RF factor

Statistic Period Asia Pacific Europe Japan North America US
#1 1.9 14.4 −2.5 20.6 21.0

µ (x) #2 1.4 −4.1 −9.1 −6.7 −7.5
#3 21.2 18.8 12.7 22.3 22.7
#1 22.6 12.2 22.0 14.3 14.5

σ (x) #2 20.7 18.8 18.4 16.4 16.4
#3 22.1 21.4 14.2 15.0 14.6
#1 0.08 1.18 −0.11 1.44 1.45

SR (x | r) #2 0.07 −0.22 −0.50 −0.41 −0.45
#3 0.96 0.88 0.90 1.49 1.55

Table 10: Performance of the SMB factor

Statistic Period Asia Pacific Europe Japan North America US
#1 −2.0 −4.2 −8.8 −4.3 −2.9

µ (x) #2 −6.2 0.8 2.3 2.6 3.7
#3 1.0 1.9 2.0 4.1 4.6
#1 12.5 9.6 14.5 16.3 16.8

σ (x) #2 10.3 7.9 9.9 9.7 10.9
#3 8.9 6.4 7.5 7.1 7.8
#1 −0.16 −0.44 −0.60 −0.26 −0.17

SR (x | r) #2 −0.60 0.11 0.23 0.27 0.34
#3 0.11 0.31 0.26 0.58 0.60
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Table 11: Performance of the HML factor

Statistic Period Asia Pacific Europe Japan North America US
#1 5.2 −4.3 −7.9 −6.6 −6.7

µ (x) #2 9.9 14.5 15.8 9.2 8.0
#3 4.0 −0.6 0.1 2.3 2.3
#1 15.7 8.4 11.3 11.8 12.2

σ (x) #2 10.5 8.2 10.1 14.0 12.6
#3 7.1 9.9 7.8 6.7 7.8
#1 0.33 −0.51 −0.70 −0.56 −0.55

SR (x | r) #2 0.93 1.75 1.57 0.66 0.64
#3 0.55 −0.06 0.02 0.35 0.30

One of the issues with the risk factors computed by Fama and French is the value
premium. In their 2012 article, they recognized that the value premium is larger for small
stocks, except in the case of Japan. Some authors go further and consider that a value
premium exists only for small stocks and not for large stocks. By studying the performance
evaluation, Cremers et al. (2012) found a “disproportional weight that the Fama-French
factors place on small value stocks”. Similarly, Lambert and Hübner (2014) showed that the
original Fama-French sorting procedure “creates a theoretical bias in the premium definition
that underestimates the size effect while overestimating the value-growth one”. They also
proposed building the factors in a more robust way and concluded that there is a strong size
effect, but a small value effect.

To understand the issue, we can rewrite the HML factor as the sum of two components:

HMLt =
1

2
(Rt (SV) +Rt (BV))− 1

2
(Rt (SG) +Rt (BG))

=
1

2
(Rt (SV)−Rt (SG)) +

1

2
(Rt (BV)−Rt (BG))

=
1

2
SHMLt +

1

2
BHMLt

The first component SHML is the HML factor for small stocks, whereas the second compo-
nent BHML is the HML factor for big stocks. In this case, the HML factor may be biased
toward a size factor because of two effects:

• the SHML factor contributes more than the BHML factor;

• the BHML factor is itself biased by a size effect.

In Figure 7, we report the performance of the SHML and BHML factors. It is obvious that
the SHML factor produces a better performance than the BHML factor. In the case of
the US market, the performance of the BHML factor is negative (see Table 12). The only
exception is the Japanese market, where the contribution of the factors is almost the same.
In Asia Pacific and Europe, the BHML factor explains less than 25% of the performance
of the HML factor. We also notice that the volatility of the HML factor is not higher for
small stocks than for big stocks. If we consider the yearly return given in Tables 42 and 43
on Page 93, we observe that the BHML factor is significantly impacted between 2007 and
2011, especially in Europe and the United States. This is not the case for the SHML factor,
except in Europe.
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Figure 7: Fama-French SHML, BHML and HML factors (1995 – 2013)

Table 12: Performance of the SHML, BHML and HML factors (1995 – 2013)

Statistic Factor Asia Pacific Europe Japan North America US
SHML 12.0 7.4 4.2 5.4 5.1

µ (x) BHML 1.8 2.6 5.0 0.2 −0.6
HML 7.1 5.2 4.8 2.9 2.4
SHML 11.7 10.0 11.0 15.2 13.4

σ (x) BHML 15.2 11.0 13.3 11.2 11.9
HML 11.5 9.0 10.3 12.1 11.5
SHML 1.03 0.74 0.38 0.35 0.38

SR (x | r) BHML 0.12 0.24 0.38 0.02 −0.05
HML 0.61 0.57 0.47 0.24 0.20
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Let us now investigate the second point related to the BHML factor. Note that this
factor is the difference between the return of the big value and the big growth portfolios. Let
MEt (BV) and MEt (BG) be the average market value of the stocks in these two portfolios.
We then define the size ratio between the big value and the big growth portfolios as follows:

Rt (BV /BG) = 1
{

MEt (BG) ≥ MEt (BV)
}
·
(

MEt (BV)

MEt (BG)
− 1

)
−

1
{

MEt (BG) < MEt (BV)
}
·
(

MEt (BG)

MEt (BV)
− 1

)
If the two portfolios present the same pattern of stock size, Rt (BV /BG) is close to zero.
If the BHML factor is tilted toward a small size factor, Rt (BV /BG) is negative. This
means that the value stocks of the big portfolio are smaller than the growth stocks of the
big portfolio. We report this ratio in Figure 8. We notice that it is highly negative except
in Europe during the period July 2006 – October 2008. In the case of the Japanese or US
markets, this ratio may even reach −80% in some periods, implying that value stocks are
five times smaller than growth stocks. We can therefore conclude that the BHML factor is
explained by a size factor and is not a pure value factor.

Figure 8: The size bias of the BHML factor

3.1.6 Stock-based or fund-based risk factors

Huij and Verbeek (2009) argue that factor proxies based on mutual fund returns rather than
stock returns are more reliable, because academic factors “are based on hypothetical stock
portfolios and do not incorporate transaction costs, trade impact, and trading restrictions”.
This implies that the factor premia may be different.
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In what follows, we build SMB and HML factors for the period 2000-2014 from the Morn-
ingstar database. We retrieve monthly returns and assets under management for mutual
funds invested in the US, Europe and Japan. For each universe, we differentiate the style
of the different funds in order to obtain the traditional categories: small value (SV), small
blend (SB), small growth (SG), large value (LV), large blend (LB) and large growth (LG).
Consequently, we obtain six portfolios of mutual funds equivalent to the six portfolios of
stocks defined by Fama and French (1993). Using the assets under management, we com-
pute the return of the value-weighted portfolios, which are rebalanced on a monthly basis20.
Finally, we obtain the same SMB and HML risk factors with mutual funds as those based
on stocks21:

SMB
(MF)
t =

1

3
(Rt (SV) +Rt (SB) +Rt (SG))− 1

3
(Rt (LV) +Rt (LB) +Rt (LG))

and:

HML
(MF)
t =

1

2
(Rt (SV) +Rt (LV))− 1

2
(Rt (SG) +Rt (LG))

In Figures 9 and 10, we report on Fama-French (FF) and mutual fund (MF) US risk
factors. Where we observe a high coherency for the SMB risk factor, there are significant
differences in the case of the HML risk factor. Indeed, the magnitude of the MF HML risk
premium is much smaller than for the FF HML risk premium, even if the correlation between
FF and MF HML risk factors is equal to 84.8% (see Table 13). In the case of Europe and
Japan22, we find that the MF SMB risk premium is higher than the FF SMB risk premium.
For the HML risk premium, results are reversed.

Table 13: Correlation between FF and MF risk factors (1999 – 2013)

Factor Europe Japan US
SMB 79.8 86.0 93.9
HML 55.5 54.3 84.8

Remark 4 We can show that risk factors based on mutual funds are more pertinent to
style analysis and performance measurement than the Fama-French risk factors (Huij and
Verbeek, 2009; Cazalet and Roncalli, 2014).

3.2 The momentum factor

At the end of the eighties, several studies showed that stock returns are predictable based
on past returns. For instance, De Bondt and Thaler (1985) found that long-horizon23 past
loser stocks outperform long-horizon past winner stocks. Jegadeesh (1990) and Lehman
(1990) report other evidence of return reversals, but with a short-term horizon. Stocks that

20This frequency differs from the traditional Fama-French methodology, which considers an annual re-
balancing. The objective is to obtain portfolios which try to be as accurate as possible to represent style
strategies.

21Contrary to the initial Fama-French factors, the European and Japanese risk factors are expressed in
EUR and JPY respectively. The last step consists in hedging these factors to compare them to the Fama-
French risk factors expressed in USD.

22See Figures 41 – 44 on Page 105.
23The term long-horizon is used here to designate time periods from three to five years.
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Figure 9: Comparison between FF and MF SMB risk factors (US, 1999-2014))

Figure 10: Comparison between FF and MF HML risk factors (US, 1999-2014))
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have poorly performed in the previous week or month perform better in the next month.
These two contrarian strategies have generated extensive literature to explain these reversal
anomalies24. Although the contrarian investment style is very popular among mutual fund
and hedge fund managers, it is difficult to implement, for two reasons:

• Short-run reversal strategies can be tricky to manage in a systematic way and imply
a high turnover and significant transaction costs (Lesmond et al., 2004);

• It may be difficult to reconcile the holding period of a long-run reversal strategy
(typically between three to five years) and the evaluation horizon of investors, who
measure the performance of their portfolios over a shorter run (Benartzi and Thaler,
1995);

Another evidence of return predictability based on past returns is the momentum strategy
of Jegadeesh and Titman (1993). They found that buying stocks that have performed well
over the past three to twelve months and selling stocks that have performed poorly produces
abnormal positive returns. This anomaly has been confirmed by a number of papers25. In
a key paper, Carhart (1997) uses a four-factor model to evaluate the performance of equity
mutual funds, adding the one-year momentum factor to the Fama-French three factor model.
Thus, the model (4) becomes:

E [Ri]−Rf = βmi (E [Rm]−Rf ) + βsmbi E [Rsmb] + βhmli E [Rhml] + βwmli E [Rwml] (11)

where Rwml is the return difference of winner and loser stocks of the past twelve months.
Over the years, this has become a standard model in most studies on equity funds and is
known as the Fama-French-Carhart risk factor model. In his paper, Carhart shows that
these four common factors almost entirely explain persistence in the performance of equity
mutual funds found by Hendricks et al. (1993).

In Table 14, we report some statistics for the WML factor computed by Fama and French
(2012), which are also available on the website of Kenneth French26. As with the SMB and
HML factors, we consider three periods: #1 (January 1995 – March 2000), #2 (April 2000
– March 2009) and #3 (April 2009 – December 2013). We notice that the WML factor
produces strong positive returns in Asia Pacific and Europe for all three periods. In the
case of Japan and the United States, the WML portfolio performed well during the dot-com
bubble, but has posted negative returns since 2009. We also notice that the WML factor
has a higher volatility than the SMB or HML factors. This figure is confirmed by the yearly
returns reported in Table 44 on Page 94. In fact, momentum strategies exhibit high negative
skewness (Daniel et al., 2012). This can be illustrated by computing a histogram of monthly

24See for example Lo and MacKinlay (1990), Chopra et al. (1992), Jegadeesh and Titman (1995), Balvers
and Wu (2006), Khandani and Lo (2011).

25See for example Chan et al. (1996), Haugen and Baker (1996), Rouwenhorst (1998), Lewellen (2002),
Griffin et al. (2003), Chui et al. (2010), Asness et al. (2013).

26The construction of the WML factor follows the methodology used to define the HML factor. Using the
same sorting approach, Fama and French (2012) considered six portfolios:

Loser Average Winner
Small SL SA SW
Big BL BA BW

They then defined the WML factor as follows:

WMLt =
1

2
(Rt (SW) +Rt (BW))−

1

2
(Rt (SL) +Rt (BL))
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Table 14: Performance of the WML factor

Statistic Period Asia Pacific Europe Japan North America US
#1 3.8 19.9 8.7 22.6 17.6

µ (x) #2 11.9 11.5 −0.3 1.4 3.7
#3 5.6 2.9 −2.0 −4.5 −9.3
#1 24.7 12.8 22.1 18.7 14.5

σ (x) #2 12.7 15.9 14.1 20.0 20.1
#3 15.2 17.3 14.0 15.3 19.9
#1 0.15 1.56 0.40 1.21 1.22

SR (x | r) #2 0.93 0.72 −0.02 0.07 0.19
#3 0.37 0.17 −0.14 −0.30 −0.47

returns. In Figure 11, we observe some significant monthly losses of more than 20%. This
tail risk has been called “momentum crashes” by Daniel and Moskowitz (2013), and occurs
when a quick crash market is followed by a strong rebound27. Daniel and Moskowitz (2013)
deduced that the momentum strategy presents a short option-like profile. This result seems
to be contradictory to those obtained by Fung and Hsieh (2001), Potters and Bouchaud
(2005) and Bruder and Gaussel (2011). These authors show that momentum strategies
exhibit a straddle convex profile, because trend followers face frequent small losses and rare
large gains. In fact, it appears that momentum strategies on individual stocks are different
from momentum strategies on asset classes. In particular, Daniel and Moskowitz (2013)
found that the option profile of loser stocks is more important than the option profile of
winner stocks28.

Contrary to the HML factor, there is less academic debate on the WML factor, certainly
because Jegadeesh and Titman (1993) do not consider the WML factor as a risk premium,
i.e. a compensation for risk29. Generally, momentum returns are explained by the theory of
behavioral finance (Hirshleifer, 2001; Barberis and Thaler, 2003). In this case, this anomaly
may be explained by either an under reaction to earnings announcements and news or a
delayed reaction30.

As with the value premium, it is possible to investigate the link between the momentum
premium and the size effect. In Table 15, we report the statistics of the WML factor for
small and big stocks, which are built as follows:

SWMLt = Rt (SW)−Rt (SL)

BWMLt = Rt (BW)−Rt (BL)

We observe that the WML factor is stronger for small stocks than for big stocks. But,
contrary to the BHML factor, the BWML factor posts a positive performance for all regions.
Moreover, the momentum factor does not seem to present a size bias in the same way as the
value factor. For instance, we have computed the size ratio between the big winners and the

27Using a longer period, Daniel and Moskowitz (2013) reported nine monthly losses larger than 30%. The
maximum was reached in August 1932 with a performance of −79%.

28See Appendix A.2 for more details.
29There are a few articles that support this assumption (Johnson, 2002; Sagi and Seasholes, 2007).
30See, for instance, Bernard and Thomas (1989), De Long et al. (1990), Barberis et al. (1998), Hong and

Stein (1999), Hong et al. (2000), Jegadeesh and Titman (2001), Frazzini (2006), Chui et al. (2010).
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Figure 11: Distribution of WML monthly returns

big losers as follows:

Rt (BW /BL) = 1
{

MEt (BL) ≥ MEt (BW)
}
·
(

MEt (BW)

MEt (BL)
− 1

)
−

1
{

MEt (BL) < MEt (BW)
}
·
(

MEt (BL)

MEt (BW)
− 1

)
This ratio is close to zero on average (see Figure 13), implying that the BWML is not biased
by a size effect.

Table 15: Performance of the SWML, BWML and WML factors (1995 – 2013)

Statistic Factor Asia Pacific Europe Japan North America US
SWML 12.7 17.7 0.4 7.4 4.9

µ (x) BWML 2.9 5.3 2.4 3.0 2.5
WML 8.0 11.5 1.7 5.3 3.8
SWML 16.2 14.1 15.3 19.0 19.4

σ (x) BWML 20.9 18.3 20.4 19.8 19.7
WML 17.3 15.5 16.6 18.7 18.8
SWML 0.78 1.25 0.03 0.39 0.25

SR (x | r) BWML 0.14 0.29 0.12 0.15 0.13
WML 0.46 0.74 0.10 0.28 0.20

Remark 5 Value and momentum are two investment styles (Barberis and Schleifer, 2003),
that are very popular among asset managers. However, it is difficult to find momentum
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Figure 12: The SWML, BWML and WML factors (1995 – 2013)

Figure 13: The size neutrality of the BWML factor
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investors, whereas it is easy to find many value investors in the mutual funds industry31. In
the minds of asset managers, value investing is considered worthy because it is a hard task
to find the fundamental value of stocks, whereas momentum investing is thought to be lazy.
In fact, the reality of asset management is more complex. Many asset managers are trend
followers without even recognizing it (Grinblatt and Titman, 1989). For instance, Grinblatt
et al. (1995) found that 77% of mutual funds were momentum investors. This explains
that the four-factor model of Carhart (1997) has replaced the three-factor version of Fama
and French (1993) to evaluate the performance of mutual funds from an academic point of
view32. But despite all this evidence33, some professionals continue to be sceptical about
momentum investing (Asness et al., 2014).

Figure 14: Comparison between the BWML and BHML factors

3.3 Other risk factors

The previous factors have been extensively documented in the equity market, but they
may also be present in other asset classes. For instance, momentum investing is frequent
in currencies (Okunev and White, 2003; Menkhoff et al., 2012) and commodities (Erb and
Harvey, 2005; Gorton et al., 2013). Asness et al. (2013) define value strategies for currencies
and bonds. Lin et al. (2011) and De Jong and Driessen (2012) estimate that a significant
portion of corporate bond returns can be attributed to liquidity risk (Pastor and Stambaugh,
2003), which explains the size effect in equities.

31This is not the case in the hedge funds industry, where the trend following strategy is one of the main
pillars of CTA funds.

32See, for instance, Cuthbertson et al. (2008), Bebchuk et al. (2009), Barras et al. (2010) and Fama and
French (2010).

33In particular, the previous results show that momentum is more robust than value for large stocks,
except in relation to Japan (see also Figure 14).
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These factors can be supplemented by others (Ilmanen, 2011). We document some of
them below. However, we have to be careful. In general, these factors have been recently
discovered and/or have not been extensively studied. Therefore, they may be true risk
premia, anomalies or stylized facts. For instance, Rozeff and Kinney (1976) described some
seasonal effects, and in particular the January effect. They showed that stock returns for
this month are higher than for other months. Other studies have confirmed the January
effect. Nevertheless, Zhang and Jacobsen (2012) found that well-known monthly effects are
in fact sample specific. This example is of particular interest because it illustrates a stylized
fact, and can be an investment strategy (or an anomaly). But it is not a risk factor, which
may explain the cross-section of asset returns and is a compensation for taking an economic
risk.

More generally, it is a hard task to distinguish what is a stylized fact and what is a
factor. Therefore, Harvey et al. (2014) show that statistical tests are insufficiently robust
to distinguish between them:

“Hundreds of papers and hundreds of factors attempt to explain the cross-section
of expected returns. Given this extensive data mining, it does not make any
economic or statistical sense to use the usual significance criteria for a newly
discovered factor, e.g., a t-ratio greater than 2. [...] Echoing a recent disturbing
conclusion in the medical literature, we argue that most claimed research findings
in financial economics are likely false. ”

In addition to this in-sample statistical bias, McLean and Pontiff (2014) also observe that
stock return predictability declines considerably after the publication of the research, which
can be attributed to both statistical bias and informed trading.

3.3.1 Volatility

There are different ways to look at volatility as a risk factor. The first approach is to consider
that low volatility stocks outperform high volatility stocks. This low volatility anomaly
has been intensively documented over a long period, even before the phenomenal success
of minimum variance portfolios (Haugen and Baker, 1991). Ang et al. (2006) found more
recently that the cross-section of stock returns can be explained by volatility. More precisely,
they show that stocks with a high sensitivity to innovation in aggregate volatility and with
high idiosyncratic volatility have low average returns. Finally, Frazzini and Pedersen (2014)
extend the CAPM model by introducing leverage and margin constraints. In this framework,
high beta assets have negative alpha, whereas low beta assets are associated with positive
alpha. This finding led them to build a betting-against-beta risk factor. Even these three
approaches to define a volatility risk factor are connected; they present some significant
differences in terms of theoretical arguments and implementation.

Low volatility anomaly The roots of the low risk anomaly are well established. In the
CAPM, there is a linear relationship between the expected return of asset i and the expected
return of the market portfolio34:

E [Ri] = Rf + βmi (E [Rm]−Rf )

The return of asset i can then be written as follows:

Ri = Rf + βmi (Rm −Rf ) + εi

34Note that Ri and Rm are the asset and market returns, Rf is the risk-free rate and the coefficient βmi
is the beta of asset i with respect to the market portfolio.
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where εi is the idiosyncratic risk. If we now consider a portfolio x = (x1, . . . , xn), we have:

R (x) =

n∑
i=1

xiRi

= Rf + β (x | xm) (Rm −Rf ) + x>ε

where the beta of the portfolio x is the weighted sum of asset betas:

β (x | xm) =
x>Σxm
x>mΣxm

=

n∑
i=1

xiβ
m
i

Finally, we obtain:
µ (x) = Rf + β (x | xm) (µ (xm)−Rf )

and:
σ2 (x) = β2 (x | xm)σ2 (xm) + x>Dx

where D is the covariance matrix of idiosyncratic risks. If the portfolio is well-diversified, we
have x>Dx ' 0, meaning that35 σ (x) = β (x | xm)σ (xm). Let x1 and x2 be two diversified
portfolios. It follows that:

σ (x2) > σ (x1)⇒ µ (x2) > µ (x1)

This implies that the expected return is an increasing function of the volatility of the portfo-
lio. However, using the Wilshire 5000 universe, Haugen and Baker (1991) build a minimum
variance portfolio that performs better than the market-cap portfolio. This result is con-
firmed by Clarke et al. (2006), who use a more recent and longer period. Nevertheless, they
also found that minimum variance portfolios have both a size and value bias, and the excess
return is reduced by imposing factor neutrality. This result was not shared by Blitz and van
Vliet (2007). They create decile portfolios by ranking stocks by three-year volatility. They
observed that the excess return of these portfolios is a decreasing function of their portfolio,
but they found that it cannot be explained by the Fama-French factors. Using European
stocks, Demey et al. were unable to confirm the result of Haugen and Baker. The minimum
variance portfolio has a lower performance than the market-cap portfolio. Nevertheless, it
has the highest Sharpe ratio36. One of the difficulties with the low volatility anomaly is
that there is no benchmark consensus to calibrate this factor. One of the main advantages
of Fama-French factors is the existence of a standardized approach and the availability of
the data. This is not the case with the low volatility factor, because the weighting scheme
depends significantly on the design of the minimum variance portfolio37. For instance, we
know that its composition greatly depends on the covariance matrix estimator, the weight
constraints and the rebalancing frequency (Jagannathan and Ma, 2003).

Idiosyncratic volatility anomaly Ang et al. (2006) define two volatility factors AVOL
and IVOL, which explain the cross-section of stock returns. The first corresponds to the
variation in aggregate volatility:

AVOLt = ∆ VIXt

where VIXt is the value of the VIX index from the CBOE. They show that differences be-
tween portfolios sorted by exposure to AVOL are significant. In particular, the first quintile

35Without loss of generality, we assume that β (x | xm) > 0.
36See also Blitz and van Vliet (2011) and Carvalho et al. (2012)
37A ranking-based approach can be viewed as a minimum variance approach with diagonal covariance

matrix and weight constraints.
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portfolio outperforms the last quintile portfolio. However, the estimated risk premium of
this factor is low at −1% per year in the United States. Moreover, it is sensitive to the sam-
ple. The second factor, IVOL, is the volatility of the idiosyncratic risk εi (t) corresponding
to the residual of the Fama-French regression38:

Ri (t) = αi + βmi Rm (t) + βsmbi Rsmb (t) + βhmli Rhml (t) + εi (t) (12)

By sorting stocks by exposure to IVOL, Ang et al. (2006) observed that the return difference
between the first quintile portfolio and the last quintile portfolio was 1.06% per month in the
United States. Later, Ang et al. (2009) extended their study to the G7 countries and found
similar results, which cannot be attributed to size, value, momentum or liquidity factors39.
On the contrary, Bali and Cakini (2008) reported that these results are very sensitive to
the measure of idiosyncratic volatility, the weighting scheme and the stock universe. They
concluded that there is no robust significant relationship between idiosyncratic volatility
and expected returns40.

Low beta anomaly The last version of the volatility premium is called the low beta
anomaly, whereby low beta stocks outperform high beta stocks (Baker et al., 2014). This
anomaly can be linked to the empirical evidence of Black et al. (1972), which found that
the slope of the security market line is lower than the theoretical slope given by the CAPM.
Black (1972) explains this puzzle by the borrowing constraints of many investors. If the
investor cannot leverage and targets an expected return higher than the expected return of
the tangency portfolio, he will prefer high beta assets. This preference for high risky assets
implies a higher risk-adjusted return for low risky assets. Building on this assumption,
Frazzini and Pedersen (2014) proposed an elegant framework for understanding the low
beta anomaly.

These authors considered an equilibrium model with two periods, n risky assets whose
prices and dividends are denoted by Pi and Di, and m investors, who have a given amount
of wealth Wj . Let xj and φj be the portfolio and the risk aversion of the investor j. At
time t, investors maximize their utility function:

x?j = arg maxx>j E
[
P̃ + D̃ − (1 +Rf )P

]
− φj

2
x>j Σxj

with P the vector of actual prices, P̃ the vector of future prices, D̃ the vector of future
dividends, Σ the covariance matrix of P̃+D̃ and Rf the risk-free rate. Frazzini and Pedersen
(2014) assume that investors face some borrowing constraints:

mj

(
x>j P

)
≤Wj (13)

They consider three cases:

1. If mj < 1, the investor must hold some of his wealth in cash.

2. If mj = 1, the investor cannot use leverage because of regulatory constraints or bor-
rowing capacity.

3. If mj > 1, the investor is able to leverage his exposure to risky assets.

38This factor was previously proposed by Merton (1987), who developed an extension of the CAPM where
expected returns of assets are an increasing function of their beta risk, size and idiosyncratic risk.

39See also Jiang et al. (2009).
40Fu (2009) also suggests that the findings of Ang et al. (2006) were due to the poor performance of some

small stocks with high idiosyncratic volatility.
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The equilibrium between demand and supply implies that:

m∑
j=1

xj = xm

where xm,i is the number of shares outstanding of asset i and xm = (xm,1, . . . , xm,n). In other
words, xm is also the market capitalization portfolio. The existence of investor constraints
will modify the traditional relationship between the risk premium and the beta of asset i:

E [Ri]−Rf = βmi (E [R (xm)]−Rf ) (14)

where Rm is the return R (xm) of the market portfolio. Using the previous framework,
Frazzini and Pedersen (2014) deduced that:

xm =
1

φ
Σ−1

(
E
[
P̃ + D̃

]
− (1 +Rf + ψ)P

)
with φ =

(∑m
j=1 φ

−1
j

)−1

, ψ =
∑m
j=1 φφ

−1
j λjmj and λj the Lagrange multiplier associated

with the constraint (13). Let βmi = β (ei | xm) be the beta of asset i with respect to the
market portfolio. Frazzini and Pedersen (2014) show that:

E [Ri]−Rf = αi + βmi (E [Rm]−Rf ) (15)

where αi = ψ (1− βmi ). If we compare this relationship with Equation (14), we notice the
presence of a new term αi, which is Jensen’s alpha. Finally, Frazzini and Pedersen (2010)
concluded that “the alpha decreases in the beta” and “the Sharpe ratio is highest for an
efficient portfolio with a beta less than 1 and decreases in βmi for higher betas and increases
with lower betas”.

Example 2 We consider four assets where µ1 = 5%, µ2 = 6%, µ3 = 8%, µ4 = 6%,
σ1 = 15%, σ2 = 20%, σ3 = 25% and σ4 = 20%. The correlation matrix C is equal to:

C =


1.00
0.10 1.00
0.20 0.60 1.00
0.40 0.50 0.50 1.00


The risk-free rate is set to 2%.

This example is taken from Cazalet et al. (2014). Using the previous parameters, we
computed the tangency portfolio x? without any constraints and obtained the results given
in Table 16. In this case, the expected return and the volatility of the tangency portfolio
are µ (x?) = 6.07% and σ (x?) = 13.77%. Let βi (x) and πi (x) be the beta of asset i and
its implied risk premium41 with respect to market portfolio x. These two statistics are also
reported in Table 16. We found that the implied risk premium πi (x?) is equal to the true risk
premium µi − r. Let us suppose that the market includes two investors. The first investor
cannot leverage his risky portfolio, whereas the second investor must hold 50% of his wealth

41We have:
πi (x) = βi (x) ·

(
µ (x)−Rf

)
where µ (x) is the expected return of the portfolio x.
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in cash. The market portfolio42 xm is therefore different from the tangency portfolio x? (see
Table 17). It is more heavily weighted in high risk assets and less heavily weighted in low
risk assets. This is why the implied risk premium is underestimated for low beta assets and
overestimated for high beta assets. For instance, the implied risk premium of the first asset
is 2.68%. We can also compute the alpha. We found that it is positive for low beta assets
(βi (xm) < 1) and negative for high beta assets (βi (xm) > 1). If we add the alpha return to
the implied risk premium, we obtain the true risk premium.

Table 16: Tangency portfolio x? without any constraints

Asset x?i βi (x?) πi (x?)
1 47.50% 0.74 3.00%
2 19.83% 0.98 4.00%
3 27.37% 1.47 6.00%
4 5.30% 0.98 4.00%

Table 17: Market portfolio xm with two investors

Asset xm,i αi βi (xm) πi (xm) αi + πi (xm)
1 42.21% 0.32% 0.62 2.68% 3.00%
2 15.70% 0.07% 0.91 3.93% 4.00%
3 36.31% −0.41% 1.49 6.41% 6.00%
4 5.78% 0.07% 0.91 3.93% 4.00%

Frazzini and Pedersen (2014) consider normalized-beta and cash-neutral assets such that
their beta is equal to one43 and their performance is the excess return over the risk-free rate.
The return of these new assets is then equal to:

R̃i =
Ri −Rf
βi (xm)

We obtain:

E
[
R̃i

]
=

E [Ri]−Rf
βi (xm)

=
αi

βi (xm)
+ π (xm)

Let us now consider a zero-beta portfolio x̃ with previous normalized assets, such that∑n
i=1 x̃i = 0. The return of the portfolio is R (x̃) =

∑n
i=1 x̃iR̃i and we deduce that:

E [R (x̃)] =

n∑
i=1

x̃i
αi

βi (xm)
+ π (xm)

n∑
i=1

x̃i

=

n∑
i=1

x̃i
αi

βi (xm)

Therefore, we can build betting-against-beta (or BAB) portfolios, i.e. zero-beta portfolios
with positive alphas. It suffices to have positive weights on stocks with a beta lower than

42We have µ (xm) = 6.30% and σ (xm) = 14.66%.
43We leverage assets with a beta lower than one and de-leverage assets with a beta higher than one.
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one and negative weights on stocks with a beta higher than one. In Table 18, we report the
composition x̃, the expected return E [R (x̃)] and the volatility of four BAB portfolios. For
instance, the first portfolio goes long on the first asset and short on the third asset44. Its
expected return is 79 bps, while its volatility is 26.45%.

Table 18: Betting-against-beta portfolios

Portfolio #1 #2 #3 #4
x̃1 1 0 1 5
x̃2 0 1 1 0
x̃3 −1 0 −3 −5
x̃4 0 −1 1 0

E [R (x̃)] 0.79% 0.00% 1.51% 3.94%
σ (R (x̃)) 26.45% 21.93% 46.59% 132.24%

Frazzini and Pedersen (2014) defined the betting-against-beta (or BAB) factor as the
return difference between the low beta and high beta portfolios:

BABt =
Rt (xlow−beta)−Rf

βi (xlow−beta)
− Rt (xhigh−beta)−Rf

βi (xhigh−beta)

To this end, they considered a universe of n assets, which are sorted according to their
estimated beta. The low beta (or high beta) portfolio is comprised entirely of assets with a
beta below (above) the median value. The portfolios are rebalanced every month. Results45

for the different asset classes are reported in Figure 15 and Table 19. The excess return of
these factors is positive, except for the French equities and the commodities. The median
Sharpe ratio for the 30 asset classes used by Frazzini and Pedersen (2014) is close to 0.50.

Table 19: Performance of the BAB factor (1995-2013)

Asset class µ (x) σ (x) SR (x | r)
USD Equities 9.04% 14.96% 0.60
JPY Equities 2.65% 13.12% 0.20
DEM Equities 6.38% 17.98% 0.36
FRF Equities −3.03% 26.26% −0.12
GBP Equities 5.31% 14.41% 0.37

International Equities 7.73% 8.20% 0.94
US Treasury Bonds 1.73% 2.95% 0.59

US Corporate Bonds 5.43% 10.81% 0.50
Currencies 1.12% 8.64% 0.13

Commodities −4.78% 17.76% −0.27
All assets 5.36% 4.34% 1.24

Links between low volatility, idiosyncratic volatility and low beta anomalies At
first sight, these three anomalies seems to be different, but they are strongly related. Indeed,

44The weights are respectively 160.5% and −67.1%.
45Data for the BAB factor are available on the website of Lasse H. Pedersen: http://www.lhpedersen.

com/data.
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Figure 15: Frazzini-Pedersen BAB factor (1995 - 2013)

in the CAPM, the volatility σi of asset i can be decomposed into two components:

σ2
i = (βmi )

2
σ2
m + σ̃2

i

The first component is the systematic risk and depends on the beta βi of the asset, while
the second component is the idiosyncratic volatility σ̃i. All other things being equal, the
total volatility is an increasing function of the beta and the idiosyncratic volatility46. In
this case, the low volatility anomaly, the idiosyncratic volatility anomaly and the low beta
anomaly seem to be the same thing. For instance, in Table VI on Page 285 reported by Ang
et al. (2006), the results obtained with portfolios sorted by total volatility are very close to
those based on portfolios sorted by idiosyncratic volatility47. Similarly, Clarke et al. (2010)
and Scherer (2011) showed that the performance of minimum variance portfolios is linked
to the low beta anomaly. In the CAPM, the covariance matrix Σ of asset returns can be
decomposed as:

Σ = ββ>σ2
m +D

where β = (β1, . . . , βn) is the vector of betas, σ2
m is the variance of the market portfolio

and D = diag
(
σ̃2

1 , . . . , σ̃
2
n

)
is the diagonal matrix of idiosyncratic variances. Using this

expression, Clarke et al. (2010) and Scherer (2011) showed that the weights of the minimum

46Moreover, we observe empirically that the idiosyncratic volatility is also an increasing function of beta.
In Figure 45 on Page 107, we consider all the stocks in the S&P 500 Index for at least three years from 1995
to 2013 and report the empirical relationship between the beta and the idiosyncratic volatility obtained with
the CAPM regression:

Ri (t) = αi + βmi Rm (t) + εi (t)

We verified the positive relation between β̂mi and σ̂ (εi (t)). The same conclusion holds if we use the three-
factor Fama-French regression (12) instead of the previous one-factor regression (see Figure 46).

47However, Ang et al. (2006) define idiosyncratic volatility with respect to the Fama-French model and
not relative to the CAPM.
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variance portfolio are:

x?i =
σ2 (x?)

σ̃2
i

(
1− βi

β?

)
(16)

where β? is a threshold, which depends on the vector of betas and the idiosyncratic variances.
If we consider this formula, we note that the minimum variance portfolio is exposed to assets
with low idiosyncratic volatility and low beta. More precisely, if asset i has a beta βi smaller
than β?, the weight of this asset is positive (x?i > 0). If βi > β?, then x?i < 0. For the
long-only minimum variance portfolio, Clarke et al. (2010) showed that the previous formula
(16) remains valid, but with another threshold value β?. In this case, if βi > β?, x?i = 0.
This analysis highlights the results obtained by Hsu and Li (2013), who found that the
performance of low volatility portfolios is mainly explained by MKT and BAB factors48.

Figure 16: Difference between the low beta and low volatility anomalies

Remark 6 There is a big difference between the low beta anomaly and the low volatility
anomaly. The low beta anomaly tells us that the risk premium of low beta stocks (or high
beta stocks) is underestimated (or overestimated) in the CAPM model. In the asset man-
agement industry, the low volatility anomaly means that low volatility stocks perform better
than high volatility stocks. These statements are illustrated in the first panel of Figure 16.
Given the low beta anomaly, it is therefore possible to improve the risk-return profile of the
market portfolio. However, the low beta anomaly does not assume that the minimum vari-
ance portfolio outperforms the tangency portfolio (see the second panel of Figure 16). In
the case of the low volatility anomaly, the minimum variance portfolio is very close to the
tangency portfolio, and outperforms the market portfolio. The two anomalies can only be
reconciled when we use leveraged portfolios or when we consider that the market portfolio
has no risk premium or a negative risk premium.

48Using the Carhart model, Hsu and Li (2013) note that low volatility portfolios are sensitive to the SMB
and HML factors, but this effect disappears if we include the BAB factor.
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3.3.2 Liquidity

Amihud and Mendelson (1986) found that the return on an asset is an increasing and concave
function of its bid-ask spread. Pàstor and Stambaugh (2003) then suggested including a
liquidity premium in the Fama-French-Carhart model:

E [Ri]−Rf = βmi (E [Rm]−Rf ) + βsmbi E [Rsmb] + βhmli E [Rhml] +

βwmli E [Rwml] + βliqi E [Rliq] (17)

To do this, they build an aggregate liquidity factor LIQ based on order flows or volume. More
precisely, LIQt measures the shock or innovation of the aggregate liquidity49. This liquidity
measure is consistent with the analysis of Amihud (2002), who found that “stock returns are
negatively related over time to contemporaneous unexpected liquidity”. To illustrate the
relevance of this liquidity measure, Pàstor and Stambaugh (2003) estimated the liquidity

beta βliqi by using the three-factor or four-factor model, and by including the liquidity factor
LIQt. At the end of each year, they then sort stocks by their (predicted) liquidity betas in
order to form 10 portfolios and compute the alpha for each of the decile portfolios50. Their
results are reported in Figure 17. We observe that the alpha is an increasing function of the
sensitivity to liquidity. For instance, the expected return difference between the last decile
portfolio51 and the first decile portfolio is 7.5% according to the Carhart four-factor model.
Another interesting finding of Pàstor and Stambaugh (2003) concerns momentum strategies.
They found that a significant part of the performance of these strategies is explained by the
liquidity factor.

The liquidity risk measure described above is different from the traditional liquidity
measure, which defines the liquidity characteristic (or level) of the asset. On the one hand,
the asset liquidity level is generally measured by its bid-ask spread or trading volume. In
this case, the literature amply documents that less liquid assets outperform more liquid
assets (Amihud and Mendelson, 1986; Ibbotson et al., 2013). On the other hand, the asset
liquidity risk is a measure of the unexpected variation in total liquidity. This new way to
measure liquidity is now commonly accepted (Acharya and Pedersen, 2005; Sadka, 2006;
Hou and Sadka, 2011), and the empirical finding of Pàstor and Stambaugh (2003) has been
confirmed by other studies (Lee 2011). The liquidity risk premium is also found in other
asset classes. For instance, Lin et al. (2011) and Sadka (2010) showed that liquidity risk is
priced into corporate bonds and hedge funds.

49Pàstor and Stambaugh (2003) define the liquidity measure for asset i and period t as the OLS estimate
γ̂i (t) in the regression:

Ri (τ + 1) = θi (t) + φi (t)Ri (τ) + γi (t) sgn (πi (τ)) · Vi (τ) + εi (τ) for τ ∈ t

where Ri (τ) is the daily return, πi (τ) = Ri (τ) − Rm (τ) is the daily excess return and Vi (τ) is the daily
dollar volume for asset i and time τ . The linear regression is performed for all trading days belonging to
period t, which is typically a month. The innovations in liquidity are the fitted residual v̂ (t) of the following
autoregressive regression:

∆γ̂ (t) = a+ b∆γ̂ (t− 1) + cγ̂ (t− 1) + v (t)

where γ̂ (t) = s (t) ·
(
n−1

∑n
i=1 γ̂i (t)

)
is the scaled aggregate liquidity measure and s (t) is a scaling factor

proportional to the market value of stocks.
50Their study period is from August 1966 to December 1999 and concerns US Stocks traded on NYSE

and AMEX.
51This corresponds to stocks with a high sensitivity to liquidity.
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Figure 17: Alphas of decile portfolios sorted on predicted liquidity betas

3.3.3 Carry

At the end of the 1970s, a number of academic papers concluded that the uncovered interest
rate parity (UIP) is not verified52. This theory, formulated by Irving Fisher, states that
the difference in interest rates between two countries is equal to the expected variation in
exchange rates between the two countries. This theory is related to two other theories:
covered interest rate parity (CIP) and the efficient market hypothesis (EMH). CIP implies
that the forward premium is equal to the nominal interest rate differential, otherwise there
will be arbitrage opportunities between the two currencies. Let St be the spot exchange
rate53. We note Ft, it and i∗t the forward exchange rate, the domestic interest rate and the
foreign interest rate for the period [t, t+ 1]. We have54:

Ft =
1 + it
1 + i∗t

St (18)

Moreover, if the market is efficient, the forward exchange rate is equal to the expected value
of the spot rate:

Et [St+1] = Ft

The UIP theory derives directly from these two statements. It follows that:

lnSt+1 − lnSt = (it − i∗t ) + εt (19)

52See, for instance, Cumby and Obstfeld (1981).
53It is measured in terms of the number of domestic currency units per unit of foreign currency.
54The forward premium ft is generally defined as the difference between the forward and spot exchange

rates (expressed in log):
lnFt − lnSt ' it − i∗t
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where εt is a white noise process. This means that an investment that is long on currencies
with high interest rates and short on currencies with short interest rates will face a negative
return on average, which offsets the interest rate differential. This style of investment is
called a currency carry trade. But, in practice, the relationship (19) is not verified. Meese
and Rogoff (1983) found that the random walk model lnSt+1−lnSt = εt performs better. In
this case, a currency carry trade generates a positive performance. In Figure 18, we report
the excess return of currency carry indices sponsored by Deutsche Bank55. The G10 Carry
Index systematically invests in the three highest yielding G10 currencies through funding in
the three lowest yielding G10 currencies. The portfolio is equally-weighted and the frequency
of rebalancing is quarterly. The Balanced and Global Carry indices use the same rules with
a universe of high liquid currencies (G10 and EM currencies) and five currencies instead of
three currencies for building the long and short legs of the portfolio. The Balanced Carry
Index is a constrained version of the Global Carry Index created by imposing at least two
G10 currencies for the long and short legs. Some statistics are reported in Table 20. We
observe that the long-run Sharpe ratio of this strategy is around 0.50. These results are in
line with those reported by Brunnermeier et al. (2009) or Jurek (2014).

Figure 18: Performance of currency carry indices

There are multiple interpretations of this forward premium puzzle (Fama, 1984). Lustig
and Verdelhan (2007, 2011) considered that consumption risk explains a large part of carry
trade performance, because “high interest rate currencies depreciate when US consumption
growth is low and US investors want to be compensated for this risk”. Bhansali (2007)
interpreted the carry trade as another form of short volatility trade and Brunnermeier et al.
(2009) showed that the strategy is related to funding liquidity constraints and crash risk. In
a similar manner, Burnside et al. (2011) suggested that the currency carry strategy reflects

55The Bloomberg tickers are DBHTG10U Index (G10), DBHVBUSI Index (Balanced) and DBHVGUSI
Index (Global). They have been live since December 2005.
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Table 20: Performance of currency carry strategies (1995-2013)

Universe µ (x) σ (x) SR (x | r)
G10 4.31% 10.48% 0.41

Balanced 7.44% 10.87% 0.68
Global 5.02% 11.68% 0.43

a Peso problem56. However, Jurek (2014) found that excess returns on currency carry trades
remain significant after hedging the tail risk, indicating that negative skewness is not the
only risk factor priced in the carry premium. For instance, if we consider the previous G10
carry strategy, we observe two large drawdowns (−31.4% between September 1992 and April
1995, and −37.1% between July 2007 and January 2009). The loss during the 2008 financial
crisis represents 3.5 times the long-run volatility of the carry strategy. It is comparable to
results obtained with the equity asset class57.

Koijen et al. (2013) extended the carry strategy to other asset classes. They defined the
carry of a futures (or forward) contract as the expected return if the spot price remains the
same. Let Xt be the capital allocated at time t to finance a futures position on asset St. At
time t+ 1, the excess return of this investment is58:

Rt+1 (X)−Rf = Ct +
Et [∆St+1]

Xt
+ εt+1

where εt+1 = (St+1 − Et [St+1]) /Xt is the unexpected price change and Ct is the carry:

Ct =
St − Ft
Xt

It follows that the expected excess return is the sum of the carry and the expected price
change:

Et [Rt+1 (X)]−Rf = Ct +
Et [∆St+1]

Xt

The nature of these two components is different. The carry is an ex-ante observable quantity
whereas the expected price change depends on the dynamic model of St. If we assume that
the spot price does not change (H), the expected excess return is equal to the carry. Under
assumption (H), a profitable strategy would be long on high carry assets and short on low
carry assets. In the case of currencies, it follows from Equation (18):

Ct =
i∗t − i
1 + it

' i∗t − i

56See also Gabaix (2012).
57If we consider the maximum drawdown for the S&P 500 during the same period, the ratio is 3.0.
58Under the assumption that the futures price expires at the future spot price (Ft+1 = St+1), Koijen et

al. (2013) showed that:

Rt+1 (X)−Rf =
Ft+1 − Ft

Xt

=
St+1 − Ft

Xt

=
St − Ft
Xt

+
Et [St+1]− St

Xt
+
St+1 − Et [St+1]

Xt
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We verify that the currency carry is equal to the interest rate differential. For equities,
Koijen et al. (2013) show that:

Ct '
Et [Dt+1]

St
−Rf

where Et [Dt+1] is the risk-neutral expected dividend for time t + 1. If we assume that
dividends are constant, the carry is the difference between the dividend yield and the risk-
free rate:

Ct ' DYt −Rf

In this case, the equity carry factor is long on stocks with high dividends and short on stocks
with low dividends. Therefore, the equity carry strategy can be viewed as another form of
a value strategy.

Carry strategies are present in lot of asset classes. For instance, Koijen et al. (2013)
define them for bonds, credit, commodities and options. In the case of bonds, we generally
distinguish two forms of carry trades. The first corresponds to the roll-down strategy. Given
an investment horizon δ, the carry of a bond with maturity T is the return on buying this
bond at time t and selling it at time t + δ, assuming that the yield curve has not change.
In this case, the carry strategy consists of buying bonds with high carry for the investment
horizon δ. The second form of carry trade is the slope carry, which is defined as the difference
between the ten-year and two-year yield-to-maturity rates:

Ct ' R10Y
t −R2Y

t

The empirical results of Koijen et al. (2013) suggest that the performance found in currencies
is similar for other asset classes. They also conclude that “carry is a novel predictor of returns
in these asset classes”.

3.3.4 Quality

Benjamin Graham was known to be a value investor. Novy-Marx (2014) reported that
Graham was also a quality investor, meaning that he believed in buying not only cheap
stocks, but high quality cheap stocks. By making the difference between weak value stocks
(or distressed stocks) and strong value stocks (or quality stocks), Piotroski (2000) argues that
the success of the value strategy is explained by the strong performance of quality stocks.
For instance, he shows that the annual return of a value strategy can be increased by 7.5%
by using some filters based on accounting information. Although the figures produced by
Piotroski may be overestimated (Guay, 2000), similar results were previously arrived at by
Sloan (1996), who showed that exceptional components of earnings have a negative impact
on market performance. Similarly, Novy-Marx (2013) showed that profitable firms earn
significantly higher average returns than unprofitable firms. Because the returns of this
strategy are negatively correlated to those of value strategies, combining the two strategies
thus produces a higher risk-return profile. However, we notice that these various strategies
can be viewed as different versions of the GARP59 investment style.

Contrary to other risk factors, the construction of a quality score is less straightforward,
because it encompasses several dimensions. For instance, Piotroski (2000) considers three

59Growth at a reasonable price.
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dimensions: profitability, leverage/liquidity and operating efficiency. More precisely, he
combines nine fundamental binary signals into a composite score60:

F SCORE = F ROA+ F CFO + F ∆ROA+ F ACCRUAL︸ ︷︷ ︸
Profitability

+

F ∆LEV ER+ F ∆LIQUID + F CEQ︸ ︷︷ ︸
Leverage/liquidity

+

F ∆MARGIN + F ∆TURN︸ ︷︷ ︸
Operating efficiency

In this case, quality stocks correspond to firms that are profitable without managing earnings
though exceptional accruals, have a strong balance sheet61, and are efficient in terms of
operating performance. Novy-Marx (2013) used a simple quality screen based on gross
profitability as measured by the ratio of a firm’s gross profits62 to its assets (or GPA).
Although profitable firms today tend to be profitable firms tomorrow, he shows that this
factor is underestimated by the market today. Novy-Marx (2014) extended his work by
comparing several quality scores based on investment styles of stock-picking gurus (Graham,
Grantham and Greenblatt) or academic research (Sloan’s accruals, Piotroski’s F-score, GPA
score). He shows that combining a quality score with a value or a momentum strategy does
a good job. In a recent study, Asness et al. (2013) proposed a more comprehensive quality
score. They defined a quality security as “one that has characteristics that, all-else-equal, an
investor should be willing to pay a higher price for: stocks that are safe, profitable, growing,
and well managed”. To identify these characteristics, they adopted the dividend discount
model (DDM) used to compute the fair price of a stock:

P =
D

r − g

where D is the dividend, r is the required return and g is the growth rate expected for
dividends. Let Π be the profit of the firm. The authors can then express the price-to-book
value as follows:

P

B
=

D/B

r − g

=
(Π/B)× (D/Π)

r − g

=
Profitability× Payout ratio

Required Return−Growth

As with Piotroski’s approach, they used four dimensions to compute the composite score63.
The first two dimensions are very close to the analysis of Piotroski (2000) and Novy-Marx
(2013), whereas the last two dimensions are novel concepts. The profitability dimension

60ROA and CFO are defined as net income before extraordinary items and cash flows from operations
divided by total assets. LEVER and LIQUID are the ratios of total long-term debt to total assets and current
assets to current liabilities. CEQ is the common equity issued by the firm. MARGIN and TURN are the gross
margin divided by total sales and total sales divided by total assets. The binary signals are then computed as
follows: F ROA = 1 {ROA > 0}, F CFO = 1 {CFO > 0}, F ∆ROA = 1 {∆ROA > 0}, F ACCRUAL =
1 {CFO > ROA}, F ∆LEV ER = 1 {∆LEV ER < 0}, F ∆LIQUID = 1 {∆LIQUID > 0}, F CEQ =
1 {CEQ = 0}, F ∆MARGIN = 1 {∆MARGIN > 0} and F ∆TURN = 1 {∆TURN > 0}.

61They decrease their financial leverage, increase their liquidity and do not raise external capital.
62Gross profits is revenue minus cost of goods sold.
63They used the Z-score technique to build it.
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is based on GPA, ROA, ROE, CFO, gross margin and low ACCRUAL, while the growth
dimension is based on the five-year difference of these six profitability factors. The safety
(or required return) dimension is built using six other factors: low beta (BAB), low IVOL,
low leverage, low bankruptcy risk and low ROE volatility. Finally, the payout dimension is
defined using equity and debt net issuance and total net payout over profits. By using the
quality score, Asness et al. (2013) showed that the price of quality is positive but limited.
Based on this empirical result, they built a new risk factor, called quality minus junk (or
QMJ), which is long on high quality stocks and short on low quality stocks. Its construction
follows the same methodology as Fama and French (1993). Asness et al. (2013) considered
six portfolios:

Junk Median Quality
Small SJ SM SQ
Big BJ BM BQ

They then defined the QMJ factor as follows:

QMJt =
1

2
(Rt (SQ) +Rt (BQ))− 1

2
(Rt (SJ) +Rt (BJ))

As in the case of the HML and WML factors, we can also define a QMJ factor for small and
big stocks:

SQMJt = Rt (SQ)−Rt (SJ)

BQMJt = Rt (BQ)−Rt (BJ)

In Table 21 and Figure 19, we report the statistics and cumulative performance of the QMJ
factors64. As with the HML factor, we notice that the cumulative returns are higher for
small stocks, but are still significant for big stocks. Why are quality stocks better rewarded
than junk stocks? According to Asness et al. (2013), this puzzling question has yet to be
answered. By definition, the premium of the QMJ factor is not a compensation for taking
more risk. In particular, Asness et al. (2013) showed that quality stocks protect investors
from severe market downturns. A potential explanation remains market inefficiency and
mispricing. In particular, Novy-Marx (2013) showed that a four-factor model based on the
HML, WML and quality factors significantly captures the alpha of a wide range of anomalies.

Table 21: Statistics for the SQMJ, BQMJ and QMJ factors (1995 – 2013)

Statistic
US Global

SQMJ BQMJ QMJ SQMJ BQMJ QMJ
µ (x) 5.9 2.7 4.4 7.2 3.0 5.2
σ (x) 13.5 10.4 10.8 10.0 8.6 8.5

SR (x | r) 0.44 0.26 0.41 0.73 0.35 0.60

3.3.5 Slope of the yield curve

In the case of fixed-income instruments, several risk factors have been documented. The
cross-section and time-variation of bond returns can thus be explained by statistical factors
(Litterman and Scheinkman, 1991), market factors (Fama and Bliss, 1987; Cochrane and
Piazzesi, 2005) or economic factors (Ludvigson and Ng, 2009). Litterman and Scheinkman

64Data for the QMJ factor are available on the website of Andrea Frazzini: http://www.econ.yale.edu/

~af227/data_library.htm.
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Figure 19: Performance of the QMJ, SQMJ and BQMJ factors

(1991) found that three factors explain a large part of the variation in bond prices. These
factors are the level, slope and curvature of the yield curve and can be estimated using
principal component analysis of bond yields. In Figure 20, we report the factor loadings
computed by Roncalli (2013) for the US yield curve.

The first factor is a weighted average of the different zero-coupon rates with different
maturities. In fact, this factor is highly correlated to the risk-free rate (or the instantaneous
zero-coupon rate). The first factor can then be assimilated to the interest rate Rf , a term
which is already present in the CAPM or Fama-French equations (1) and (4). The second
factor is a long/short portfolio whose weights increase with respect to the maturity. There-
fore, we can interpret this factor as the steepness or the slope of the yield curve. Generally,
this factor is approximated by the difference between the yield of long-term government
bonds (generally 10 years) and the one-month interest rate, and is denoted by TERM. This
factor is largely used to explain bond returns, but also stock returns (Chen et al., 1986; Fama
and French, 1993; Petkova, 2006). The third PCA factor, which is a proxy of the curvature
or convexity of the yield curve, is less significant and stable than the other two risk factors.
It is rarely used nowadays to explain the cross-section of stock and bond returns.

3.3.6 Other risk factors

As mentioned previously, there are a lot of other risk factors. Among this zoo of factors
and new variables (Cochrane, 2011), we consider the following to merit our attention: the
default risk factor, the coskewness factor and macroeconomic factors.

The default risk factor is used by Chan et al. (1985), Chen et al. (1986) and Fama and
French (1993). It corresponds to the spread between the return on a portfolio of long-term
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Figure 20: PCA factors of the US yield curve (Jan. 2003 – Jun. 2012)

corporate bonds and the yield of long-term government bonds65. These papers found that
the coefficient associated with default risk is generally significant in risk factor models66.
These results are confirmed by more recent studies (Avramov et al., 2007).

Coskewness risk67 has been extensively documented by Harvey and Siddique (2000).
They found that stocks with lower coskewness have higher expected returns. This result is
confirmed by many other studies68. Moreover, this risk factor can be related to the downside
risk of Ang et al. (2006).

The impact of macroeconomic factors on asset returns has a long history, dating back
to Merton (1973) and Lucas (1978), who identified the link between consumption risks and
expected returns. The relationship with real activity and inflation (expected and unex-
pected) was also studied by Fama (1981) and Chen et al. (1986). More recently, many
papers have attempted to explain the time variation in expected asset returns in relation to
macroeconomic risks. For instance, Lettau and Ludvigson (2001) suggested considering the
aggregate consumption-wealth ratio (or CAY69), while Bansal and Yaron (2004) presented

65The link between corporate spreads and default risk is not straightforward however. For instance, Elton
et al. (2001) found that expected defaults explain a small part of corporate spreads. On the contrary, using
credit default swaps, Longstaff et al. (2005) concluded that a large part of corporate spreads is due to default
risk.

66However, the concept of default risk is close to the concept of distress risk, meaning that there may be
some connections with the SMB and HML factors (Vassalou and Xing, 2004).

67It is measured as the covariance between the stock return and the square of the market portfolio return.
68See, for instance, Bakshi at al. (2003), Barone Adesi et al. (2004), Chung et al. (2006), Moreno and

Rodŕıguez (2009) and Lambert and Hübner (2013).
69The authors present a general framework linking consumption (C), asset holdings (A), and labor income

(Y) with expected returns. Based on the theory, these three variables should share a common trend over the
long term, but may deviate substantially from one another in the short run. The deviations from the share
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a model that links consumption volatility and asset returns. However, as noted by Flannery
and Protopapadakis (2002): “the hypothesis that macroeconomic developments exert im-
portant effects on equity returns has strong intuitive appeal but little empirical evidence”.
As a consequence, results differ from one paper to another. Moreover, academics consider
macroeconomic risks to explain the time variation of expected returns, but there is little
research available on the cross-section of expected returns, except for the works of Bansal
et al. (2005).

4 From risk factors to factor indexing

Institutional investors have been looking at risk factors for quite some time when analyzing
their portfolios in terms of factor bets. Today, some of these investors go even further and
use risk factors as investment vehicles. In some ways, they consider their asset allocation
to be a factor allocation process. For instance, one investor may prefer to allocate 30% to
value and 20% to momentum factors instead of allocating 50% to equities directly. This new
form of asset allocation is called factor investing.

Factor investing requires the availability of factor-based products like factor-based mu-
tual funds and factor-based indexes. Factor-based mutual funds have long existed for SMB
and HML factors, but not for the other factors. This led index providers to develop a large
range of factor-based indexes, which have been largely and rapidly adopted by institutional
investors. This success may be explained by the transparency of indexes, which use system-
atic rules to define the portfolio. However, transforming a non-investable risk factor into
an investable risk-based index is not straightforward. The choice of implementation (asset
universe, weighting scheme, rebalancing frequency) has an impact and accounts for why two
indexes based on the same factor may behave differently.

Two other issues arise with factor indexes. In the academic literature, risk factors are
designed as long/short portfolios. When these risk factors are transformed into investable
products, the corresponding portfolio is generally long-only. This constraint is imposed
because the cost of short selling may be high or because it is not possible to have a short
position on some stocks (in particular small stocks). Another issue concerns the investment
capacity of the factor-based products. Because they are used by large institutional investors,
capacity constraints may be taken into account. We will see how these two issues may affect
the original risk factor.

4.1 How to transform risk factors into factor indexes?

4.1.1 Asset universe

To produce risk factors, academics generally use a large asset universe provided by the Center
for Research in Security Prices (CRSP) or Standard and Poor’s (Compustat and Xpressfeed).
This means that the universe contains a significant number of small-caps, which are not easy
to trade, even for large institutional investors. For instance, NBIM70 had about 1900 and
1300 American and Japanese stocks in its portfolio at the end of December 2013. We can

trend should outline agents’ expectations of future returns on the market portfolio. Lettau and Ludvigson
(2001) then estimated the long-term relationship between C, A and Y, focusing on the difference between
the observed and estimated C, which they call CAY.

70NBIM, also known as the Government Pension Fund Global (GPFG) and formerly the Government
Petroleum Fund, is the Norwegian sovereign wealth fund. According to the SWF institute, it is the world’s
largest sovereign fund with about $890 billion in assets under management in July 2004
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compare these figures with the number of stocks used by Fama and French to compute their
HML factor71:

Asia Pacific Europe Japan North America US
Big 326 615 591 888 846
Small 2646 4093 1840 2982 2385
Total 2972 4708 2431 3870 3231

The difference is substantial. Indeed, it is not realistic to think that an institutional investor
will manage its small-cap (and micro-cap) exposure according to a systematic and quanti-
tative investment approach, because the liquidity risk is too high. In Table 49 on Page 97,
we have shown the number of stocks in the MSCI World Index, which is a more realistic
universe in which to perform systematic strategies. In this case, it is obvious that there will
be a gap between risk factors exhibited by academics and risk factors built by professionals.

In Figure 21, we compare the performance of the risk factors MKT, SMB, HML and
WML obtained by Fama and French (blue line) and those computed with the universe of
the S&P 500 Index (red line). Because we use the same methodology to build the factors as
Fama and French (2013), the differences are due entirely to the stock universe selected. We
observe that including small and micro-cap stocks has little impact on the MKT factor, but
also curiously on the SMB factor. This is not the case with the HML and WML factors,
confirming that they depend on the stock universe72.

Figure 21: Performance of risk factors with the S&P 500 Index (1995 – 2013)

71These statistics are those of Kenneth French available on his website for the end of December 2013.
72We observe the same patterns if we compare the results of Fama and French and those obtained with

the MSCI Europe Index (see Figure 47 on Page 108). Of course, if we consider a universe with more stocks,
the differences are reduced. For instance, results with the Topix Index are shown in Figure 48 on Page 108.
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4.1.2 Weighting scheme

In this paragraph, we focus on two problems. The first one concerns the construction of
the factor itself, in other words, how portfolio allocation is defined. In this case, the choice
depends on several criteria: return maximization, investment capacity, etc. The second
problem concerns the replication of the factor when a factor model is given.

Defining weightings Let Ri be the rank of stock i according to the factor characteristic.
Fama and French define the weightings as follows:

wi ∝
{
−MEi if Ri < Q1

+MEi if Ri > Q2

where Q1 and Q2 are two numbers such that Q1 < R̄ < Q2. It consists in deleting the stocks
around the median and selecting the stocks in the bottom and top quantiles. Instead of the
value-weighted portfolio, we can opt to use the equally-weighted portfolio:

wi ∝
{
−1 if Ri < Q1

+1 if Ri > Q2

Asness et al. (2013) consider a rank-weighted scheme:

wi ∝
{
−
∣∣Ri − R̄∣∣ if Ri < Q1

+
∣∣Ri − R̄∣∣ if Ri > Q2

More complex schemes are also considered by index providers.

In Figure 22, we compare value-weighted (VW) and equally-weighted (EW) US factors
obtained by Kenneth French73. In Table 22, we observe that they are highly correlated,
especially for WML and HML factors. However, the global performance may differ consid-
erably, as is the case for the SMB factor in Asia Pacific and Europe and the HML factor
in Asia Pacific and the US. In addition to the weighting scheme, the behavior of the risk
factors may also depend on the quantile values Q1 and Q2 of the selection process. To
illustrate, let us consider two sets for parameters Q1 and Q2 for the S&P 500 universe:
(Q1 = 30%, Q2 = 70%), which is the default parameter set used by Fama and French and
(Q1 = 20%, Q2 = 80%). Results are given in Figure 23. The parameter set has little impact
on the VW and EW factors, but the performance of the rank-weighted (or RW) factor is
sensitive to Q1 and Q2.

Table 22: Correlation (in %) between VW and EW risk factors (1995 – 2013)

Factor Asia Pacific Europe Japan North America US
SMBL 76 74 88 78 75
HML 89 90 86 92 89
WML 94 97 96 98 97

Factor replication Suppose now that we have access to a risk factor model or that risk
factors are given. Replicating the factor Fj is equivalent to estimating the weights x of the
portfolio under some objective function. For instance, it can involve minimizing the tracking

73See Figures 53, 54, 55 and 56 on Page 111 for the other regions.
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Figure 22: Comparison of VW and EW risk factors (US, 1995 – 2013)

Figure 23: Impact of (Q1, Q2) on HML and WML factors (S&P 500, 1995 – 2013)
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Table 23: Minimizing tracking error volatility

Portfolio #1 #2
Factor 1 2 3 1 2 3
x1 8.4 1.2 0.7 8.5 1.3 1.3
x2 6.3 10.8 −1.5 6.4 12.0 −2.6
x3 39.9 39.6 2.0 40.5 44.0 3.6
x4 23.2 −56.3 1.5 23.6 −62.5 2.6
x5 3.2 −5.7 0.5 3.2 −6.4 0.9
x6 19.2 −13.3 −4.2 19.5 −14.8 −7.5
β1 97.0 1.5 0.1 98.5 1.7 0.1
β2 2.7 81.0 1.1 2.8 90.0 1.9
β3 26.3 246.1 32.4 26.7 273.4 56.9

RC?1 100.0 0.0 0.0 100.0 0.0 0.0
RC?2 0.0 100.0 0.0 0.0 100.0 0.0
RC?3 0.0 0.0 100.0 0.0 0.0 100.0

σ
(
F?j | Fj

)
3.5 6.5 0.8 3.5 6.7 0.9

σ
(
F?j
)

19.7 13.5 0.6 20.0 15.0 1.0

error between the true factor Fj and the replicated factor F?j =
∑n
i=1 xiRi. If we do not

impose other constraints, we obtain an analytical solution74. For instance, if we consider
Example 1 on Page 8, we obtain the results (expressed in %) given in Table 23 (Portfolio #1).
If we impose the constraint that the replicating factors have the same volatility as the true
factors, we obtain Portfolio #2. For each portfolio, we report the asset weights, the betas
and risk contributions with respect to the factors, the tracking error volatility σ

(
F?j | Fj

)
and also the volatility σ

(
F?j
)

of the replicating factor. We notice that the weights are not
necessarily in line with the sensitivities. Moreover, it appears that the first two replicated
factors present a significant beta compared to the third factor. This result can easily be
explained, because the volatility of the third factor is very low compared to the volatility of
the first and second factors. One consequence is that it is better to define risk factors with
comparable volatilities.

We can compare the tracking error method to other approaches used to estimate repli-
cated risk factors. These approaches are generally classified them into three categories:

1. The sensitivity approach.
In this case, the portfolio weightings are related to the sensitivities: xi = f (Bi,j).

2. The beta approach.
The idea is to maximize the beta βj of the jth factor and to minimize the beta of the
other factors.

3. The risk contribution approach.
This is similar to the previous approach, except that we consider risk contributions
instead of betas.

Results75 with these three approaches are shown in Table 24. We notice that the portfolios
vary greatly from one approach to another and may present higher tracking error volatilities
than those obtained using the approach based on minimizing tracking error.

74See Appendix A.3 on Page 84.
75The portfolios are scaled in order to match the volatility of the original risk factors.
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Table 24: Comparison of the three approaches

Approach #1 #2 #3
Factor 1 2 3 1 2 3 1 2 3
x1 16.7 16.3 2.2 17.4 4.2 2.7 15.2 13.9 2.1
x2 20.4 27.1 −1.3 17.9 40.4 −3.7 18.6 42.9 −2.9
x3 22.3 32.6 2.9 17.7 16.0 1.0 19.3 2.3 2.5
x4 14.9 −43.4 −1.0 17.8 −55.7 0.5 19.6 −68.5 −0.1
x5 14.9 −10.9 1.8 17.4 −29.9 3.6 16.0 −15.3 2.6
x6 13.0 −21.7 −4.5 17.7 1.6 −3.9 16.4 5.5 −5.4
β1 97.1 25.0 1.5 97.1 0.0 0.0 97.3 −0.7 −0.1
β2 8.5 83.6 4.0 0.0 81.0 0.0 0.0 82.7 2.4
β3 32.7 252.8 45.6 0.0 0.0 42.7 0.4 0.0 51.7

RC?1 99.6 11.0 9.8 99.8 0.0 0.0 100.0 0.0 0.0
RC?2 0.3 91.2 25.3 0.0 100.5 0.0 0.0 100.0 0.0
RC?3 0.1 −2.2 64.8 0.0 0.0 89.5 0.0 0.0 100.0

σ
(
F?j | Fj

)
4.8 8.6 1.0 4.8 9.2 1.1 4.7 8.8 1.0

σ
(
F?j
)

20.0 15.0 1.0 20.0 15.0 1.0 20.0 15.0 1.0

Remark 7 There is an issue concerning the dependence between risk factors. Indeed, there
is no reason for the correlation matrix between the original risk factors to be preserved when
we build replicated factors. For instance, if we consider the tracking error approach, the
correlation matrix becomes:

C =

 1.00
0.02 1.00
0.02 0.32 1.00


whereas the original factors are independent76. This is a serious drawback, in particular
when considering strategic asset allocation.

4.1.3 Rebalancing frequency

The choice of rebalancing frequency is another important topic when it comes to the design
of factor indexes. The question is this: is it better to rebalance the portfolio every month,
every quarter, every six months or every year? It is not an easy question to answer, because
it depends on different parameters. For instance, increasing the frequency may have a
considerable impact on the portfolio turnover and also on trading costs. This trade-off is
particularly important for the WML factor. The rebalancing frequency also depends on the
definition of risk factors. Some risk factors are structurally low-frequency. For example, this
is the case of the HML factor, because the B/M statistic is not frequently revised.

76For the other approaches, the correlations are:

1. ρ
(
F?1 ,F?2

)
= 39%, ρ

(
F?1 ,F?3

)
= 36% and ρ

(
F?2 ,F?3

)
= 70% for the sensitivity approach;

2. ρ
(
F?1 ,F?2

)
= −3%, ρ

(
F?1 ,F?3

)
= 5% and ρ

(
F?2 ,F?3

)
= −40% for the beta approach;

3. ρ
(
F?1 ,F?2

)
= −1%, ρ

(
F?1 ,F?3

)
= 0% and ρ

(
F?2 ,F?3

)
= 9% for the risk contribution approach.
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Table 25: Impact of the long-only constraint

Approach Tracking error Sensitivity Beta
Factor 1 2 3 1 2 3 1 2 3
x1 8.5 0.0 0.8 16.7 13.4 1.4 17.4 0.0 0.0
x2 6.4 0.0 0.0 20.4 22.4 0.0 17.9 40.3 0.0
x3 40.5 57.0 2.9 22.3 26.9 2.0 17.7 18.2 1.7
x4 23.6 0.0 0.0 14.9 0.0 0.0 17.8 0.0 0.0
x5 3.2 0.0 0.5 14.9 0.0 1.2 17.4 0.0 2.8
x6 19.5 0.0 0.0 13.0 0.0 0.0 17.7 0.0 0.0
β1 98.5 68.3 4.7 97.1 68.9 4.6 97.1 66.2 4.2
β2 2.8 34.2 1.9 8.5 31.3 1.4 0.0 31.1 0.4
β3 26.7 193.7 13.1 32.7 91.3 12.9 0.0 1.5 11.6

RC?1 100.0 83.9 89.2 99.6 87.7 90.7 99.8 81.9 78.7
RC?2 0.0 12.1 7.0 0.3 12.7 2.4 0.0 14.6 −1.1
RC?3 0.0 2.1 4.1 0.1 −0.5 6.1 0.0 0.0 8.7

σ
(
F?j | Fj

)
3.5 17.2 1.3 4.8 17.6 1.3 4.8 17.6 1.3

σ
(
F?j
)

20.0 15.0 1.0 20.0 15.0 1.0 20.0 15.0 1.0

4.2 From long/short to long-only solutions

Most products based on risk factors generally use a long-only portfolio, for three main
reasons:

• The first reason is that factor investing primarily interests institutional investors, who
distinguish between core and alternative investments. For their core investments, they
use mainly long-only portfolios. In this perspective, factor investing is considered to
be a new way to allocate their equity and bond portfolios77. This explains why the
demand for long-only factor indexes is higher than that for long/short factor products78

• The second reason is the feasibility of factor indexes. A short portfolio is more com-
plicated and costly to manage. It requires the use of derivatives and OTC products.
Moreover, managing short sales in a systematic way can be dangerous.

• Some investors believe that a portfolio with a beta exposure and long/short strategies
may be equivalent to a portfolio with long-only exposures.

However, by imposing long-only exposures, the nature of the risk factors may be significantly
modified. To illustrate this problem, let us consider our previous example and replicate the
factors in a long-only framework. The results are shown in Table 25 for three approaches:
tracking error, sensitivity and beta. For the first factor, we obtain the same portfolio, because
the long-only constraint is not restrictive. For the second and third factors, solutions are very
different. They present a significant residual risk, they are concentrated and their tracking
error volatility increases substantially. But the main drawback concerns the dependence
between the replicated factors. For instance, we obtain the following correlation matrix in
the case of the tracking error approach:

C =

 1.00
0.93 1.00
0.95 0.99 1.00


77Even if factor investing is also one important aspect of hedge fund strategies.
78In this case, investors prefer to consider active management.
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Table 26: Correlation matrix of risk factors (US, 1995 – 2013)

Factor MKT SMB HML WML SMB+ HML+ WML+

Volatility 15.9 12.1 11.5 18.8 20.4 17.7 18.4
MKT 100
SMB 25 100
HML −23 −36 100
WML −28 8 −15 100

SMB+ 87 66 −18 −22 100
HML+ 87 33 19 −34 90 100
WML+ 89 53 −29 7 92 81 100

The replicated factors are now highly correlated79. Therefore, the long-only constraint
introduces a new structure between the factors and imposes a solution, which is very different
from the original risk model.

The other possibility for dealing with the problem is to notice that most risk factors
found by academics are obtained by defining a long/short portfolio:

Fj = F+
j −F

−
j

In this case, we can just consider the long-only counterpart component F+
j . For instance,

using the previous notations, we define the following three risk factors in the case of the
Fama-French-Carhart model:

SMB+
t =

1

3
(Rt (SV) +Rt (SN) +Rt (SG))

HML+
t =

1

2
(Rt (SV) +Rt (BV))

WML+
t =

1

2
(Rt (SW) +Rt (BW))

In Figure 24, we compare the performance of long/short risk factors to that of corresponding
long-only risk factors using the data of Kenneth French80. The impact of the short portfolio
is high, implying that the first component of these long-only risk factors is a beta or market
component (see Figure 25). These results are not specific to the US market, but we observe
the same conclusions for the other markets81.

The fact that the first risk factor F1 is the market factor for equities has an impact on
the behavior of long-only portfolios compared with long/short portfolios. Let us consider
a portfolio composed by 100% of market risk and α% of long/short risk factors. We can
compare this portfolio to a pure long-only portfolio composed by (100− α) % of market risk
and α% of long-only risk factors. Whereas there is a large gap between long/short and
long-only portfolios from a theoretical point of view, empirical results show that the two

79For the other approaches, the correlations are:

1. ρ
(
F?1 ,F?2

)
= 95%, ρ

(
F?1 ,F?3

)
96% and ρ

(
F?2 ,F?3

)
= 95% for the sensitivity approach;

2. ρ
(
F?1 ,F?2

)
= 90%, ρ

(
F?1 ,F?3

)
= 91% and ρ

(
F?2 ,F?3

)
= 77% for the beta approach.

80In order to facilitate the comparison, we use a logarithmic scale.
81See Pages 109–110.
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Figure 24: Performance of long/short and long-only risk factors (US, 1995 – 2013)

Figure 25: Performance of long-only risk factors (US, 1995 – 2013)
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Table 27: Statistics (in %) of long/short and long-only portfolios (US, 1995 – 2013)

Portfolio #0 #1 #2 #3 #4 #5 #6 #7 #8
SMB 0.0 10.0 20.0 0.0 20.0 30.0 0.0 50.0 100.0
HML 0.0 10.0 20.0 20.0 20.0 30.0 0.0 50.0 100.0
WML 0.0 10.0 0.0 20.0 20.0 30.0 60.0 50.0 100.0
µ (x±) 9.9 11.2 11.1 12.0 12.5 13.7 13.5 16.0 21.0
µ (x+) 11.0 11.2 11.5 12.1 13.2 12.8 13.5 13.5

µ (x+ | x±) −0.2 0.0 −0.5 −0.4 −0.5 −0.8 −2.5 −7.5
σ (x±) 15.9 15.6 16.2 14.8 15.5 15.9 16.7 17.3 24.5
σ (x+) 16.2 16.5 16.1 16.9 17.7 17.0 18.1 18.1

σ (x+ | x±) 1.7 1.0 3.5 3.5 5.2 8.6 8.0 18.1
ρ (x+, x±) 99.5 99.8 97.8 98.0 95.8 86.9 89.8 67.8

portfolios may be highly correlated. In Table 27, we consider different portfolios based on the
risk factors MKT, SMB, HML and WML. For instance, the composition of the long/short
portfolio #1 is 100% of the MKT factor, 10% of the SMB factor, 10% of the HML factor and
10% of the WML factor, whereas the composition of the long-only portfolio #1 is 70% of
the MKT factor, 10% of the SMB+ factor, 10% of the HML+ factor and 10% of the WML+

factor. In each case, we report the composition in SMB, HML and WML risk factors, the
annual returns µ (x±) and µ (x+) of the long/short x± and long-only x+ portfolios, the
excess return µ (x+ | x±) of the long-only portfolio compared to the long/short portfolio,
the annual volatilities µ (x±) and µ (x+) of the long/short and long-only portfolios, the
tracking error volatility σ (x+ | x±) and the correlation ρ (x+, x±) between the long/short
and long-only portfolios. When risk factor exposure is lower, the tracking error volatility
between the long/short and long-only portfolios is relatively low and the correlation is high
(over 95%). This is not the case when the portfolio is highly exposed to the risk factors or
when the long/short portfolio is leveraged82. For instance, the tracking error volatility is
greater than 8% in the cases #6, #7 and #8. For the other regions, results are similar83.
However, these figures should be interpreted with caution. The role of shorting depends
on the nature of the risk factor. For instance, shorting increases the profit of momentum
strategies, but long portfolios continue to capture significant profits (Israel and Moskowitz,
2012). Moreover, with long-only momentum portfolios, investors avoid momentum crashes
described by Daniel and Moskowitz (2013). However, the nature of some risk factors or
anomalies changes in a long-only format. This is the case of the Betting-Against-Beta (or
BAB) risk factor, because it is difficult to reconcile the theory with a long-only format84.

4.3 Capacity constraints of long-term investors

The empirical works on risk factors generally assume that the investor has no transaction
costs or capacity constraints. However, the profitability of the risk factors may be influenced
by these trading frictions, in particular when the turnover is high. For instance, Lesmond
et al. (2004) find that momentum profits are eroded by trading costs due to turnover costs,

82These results suggest that some risk factors can be used in two different ways: long-only risk factors
can be considered in core portfolios, whereas long/short risk factors are more appropriate to define alpha or
alternative portfolios.

83See Tables 54, 55, 56 and 57 on Page 98.
84The expected return of an asset remains an increasing function of the asset’s beta.
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but also by the illiquidity of the assets traded85. Korajczyk and Sadka (2004) estimate that
break-even fund sizes that lead long-only momentum strategies to zero abnormal returns,
are between $2 and $5 billion (relative to December 1999 market capitalization). These
results contrast with those recently found by Frazzini et al. (2012):

“Assessing standard long/short strategies commonly used in the literature we
find that size, value, and momentum survive transactions costs at fairly substan-
tial sizes, but that short-term reversals do not. Break-even fund sizes for the
Fama and French long/short factors of size, value, and momentum are 103, 83,
and 52 billion dollars among U.S. securities, respectively, and 156, 190, and 89
billion dollars globally. Short-term reversal strategies, on the other hand, do not
survive transactions costs at sizes greater than $9 billion in the U.S. or $13 bil-
lion globally. Moreover, a combination of value and momentum has even higher
capacity ($100 billion U.S., $177 billion globally) due to netting of trades across
negatively correlated positions.”

Novy-Marx and Velikov (2014) confirm that most anomalies with low turnover continue
to generate statistically significant alpha. They also observe that the asset universe and
weighting scheme have an impact on profitability. For instance, they estimate that trans-
action costs for equally-weighted risk factors are two to three times higher than those for
value-weighted risk factors.

The previous results help us to understand the possible magnitude of transaction costs
and market impact. However, the issue for long-term investors is not really the break-even
size. Indeed, these attempt to estimate transaction costs in a relative manner. The questions
are therefore: do trading costs eliminate the alpha of the strategy and what proportion of
alpha disappears by taking into account transaction costs? For instance, a strategy which
has a gross annual return of 5% remains profitable if transaction costs are 1%. This first
strategy is dominated by a second strategy which has a gross annual return of 10% and
remains profitable if transaction costs are 5%. Indeed, the net return is respectively 4% and
5%. However, a long-term investor does not reason like that, but instead will look at why
the costs in absolute way terms, and not with respect to the gross expected return. This
explains why institutional investors have been shifting a large portion of their investment
from active to passive management over the last 20 years. They do not want to pay high
fees or costs even if the (promised) expected return is attractive. Therefore, it is unlikely
that they will invest in the two previous strategies, because transaction costs are too high.
Generally, institutional investors have implicit annual transaction cost thresholds. Beyond
this limit, they do not consider the strategy, even if expected returns are much higher than
transaction costs. This is particularly true for core investments. In Figure 26, we show the
relationship between turnover and transaction costs. We assume that they include brokerage
fees (BF) and possibly tax fees (TF). In a liquid universe (S&P 500, MSCI Europe), investors
generally assume that brokerage fees are equal to 1 bp for long-only portfolios, and between
5 and 10 bps for long/short portfolios. In the case of MSCI Europe, we have to add tax fees
due to financial transaction tax (FTT) on buy-side orders86. These transaction costs do not
include market impacts, which may be substantial in the case of a large universe of stocks
or when the managed assets are high.

85They found that the momentum strategy is “heavily weighted toward high cost stocks”.
86We estimate that it costs between 15 and 20 bps in average.
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Figure 26: Relationship between turnover and transaction costs

5 Portfolio allocation with risk factors

One of the big challenges with factor investing is portfolio construction. Generally, we oppose
allocation based on asset classes and allocation based on risk factors. This is particularly
true for strategic asset allocation (or long-term investing). Supporters of factor investing
think that strategic asset allocation based on asset classes is an issue, because:

1. It is difficult to estimate their risk premia;

2. Correlations between asset classes vary over time and are not stable;

3. We don’t know if it is the right level of aggregation.

The first point concerns the relationship between economic risks and the return on financial
assets (Eychenne et al., 2011). From a theoretical point of view, it is recognized that
monetary policy has a big impact on the return on the risk-free assets, but not on the
return on other assets. The experience of the last few years shows that this is no longer the
case. The second point concerns the time-dependency between asset returns, in particular
within and between equities and bonds. For instance, the decoupling theory, which stated
that emerging economies would continue to grow, has been largely invalidated. The 2008
financial crisis illustrated that diversified assets, which presented a low correlation with
equities during normal periods, may be highly correlated with them during a crisis. The
third point questions the top-down approach of the allocation. Because asset classes are
exposed to independent risk premia, supporters of factor investing think that strategic asset
allocation based on risk factors is easier and more robust. In what follows, we will show
that it is not straightforward and some difficulties appear in practice.
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5.1 A magical world

The main benefit of factor investing is the diversification effect. By their very nature, risk
factors are mutually independent. This implies that the Sharpe ratio of an equally-weighted
portfolio of m risk factors is equal to the square root of the number of factors times the
average Sharpe ratio of risk factors:

SR (x) =
√
m× SR (F)

This relationship is shown in Figure 27. In this context, we can obtain a very high Sharpe
ratio by combining a large number of risk factors. For instance, if m is equal to 9, the
average Sharpe ratio is multiplied by a factor of three!

Figure 27: The arithmetic of the Sharpe ratio

To illustrate the strength of this result, we consider a universe of five factors: SMB,
HML, WML, BAB and QMJ. For each region, we consider an equally-weighted portfolio of
these 5 long/short risk factors. The leverage of the portfolio is calibrated in order to obtain
an ex-ante volatility equal to 10% and the portfolio is rebalanced every month87. Results
are reported in Table 28. If we compare these figures with those obtained by the market
portfolio, we notice that the risk/return profile is highly improved (more return and less
volatility). Moreover, the maximum drawdown is divided by a factor of three with respect
to the maximum drawdown of the MKT factor. We also notice that the diversification
across the regions is higher for the 5F portfolio than for the MKT portfolio. For instance,

87We can express the monthly return of the 5F portfolio as follows:

R (x) = Rf + ` ·R± (x)

where R± (x) is the return of the unfunded long/short 5F portfolio and ` is the level of leverage in order to
achieve a 10% volatility target. ` is respectively equal to 1.8 for Asia Pacific, 1.6 for Europe, 1.6 for Japan,
1.5 for North America and 1.4 for US.
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Table 28: Performance of the 5F and MKT portfolios (1995 – 2013)

Statistic Asia Pacific Europe Japan North America US
5F MKT 5F MKT 5F MKT 5F MKT 5F MKT

µ (x) 13.2 9.2 14.3 9.2 6.8 0.6 11.2 10.2 10.0 9.9
σ (x) 10.0 21.6 10.0 18.1 10.0 18.6 10.0 15.9 10.0 15.9

SR (x | r) 1.04 0.29 1.14 0.35 0.40 −0.12 0.83 0.47 0.71 0.45
MDD (x) 21.6 60.2 19.9 58.9 21.4 58.1 17.7 50.9 21.4 50.4

the empirical correlation matrix between MKT factors is as follows:

C =


1.00
0.78 1.00
0.56 0.51 1.00
0.77 0.84 0.50 1.00
0.76 0.83 0.49 1.00 1.00


We verify that these correlations are higher than those obtained with 5F portfolios:

C =


1.00
0.48 1.00
0.56 0.38 1.00
0.43 0.74 0.34 1.00
0.43 0.74 0.38 0.98 1.00


For example, the cross-correlation between the Europe and US MKT factors is 83%, whereas
it is 74% between the Europe and US 5F portfolios. This implies that if we consider a bal-
anced allocation between the four regions (Asia Pacific, Europe, Japan and North America),
the diversification benefit88 is higher for the 5F portfolio than for the MKT portfolio (see
Table 29 and Figure 29).

Table 29: Performance of equally-weighted 5F and MKT global portfolios (1995 – 2013)

Statistic 5F MKT
µ (x) 13.8 7.7
σ (x) 10.0 16.0

SR (x | r) 1.10 0.31
MDD (x) 23.3 53.4

Remark 8 The cash of the previous 5F portfolios is invested in the risk-free asset. We can
also assume that it is invested in the market risk factor. In this case, the monthly returns
are equal to:

R (x) = Rm + ` ·R± (x)

Results are given in Table 30. We observe that the Sharpe ratio is improved in comparison
to the previous 5F portfolio, except for Asia Pacific and Japan. Moreover, the drawdown of
the MKT risk factor is reduced by 10% on average. Long/short risk factors can then be used
in two different ways:

88In Figure 28, we report the eigenvalues of the risk factors for the global portfolios. We verify that the
first eigenvalue is low and close to 20%. We also observe that the explained variance decreases slowly with
the number of principal components, meaning that the diversification gain may be high.
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Figure 28: Eigenvalues of the risk factors

Figure 29: Performance of equally-weighted 5F and MKT global portfolios
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1. They can be considered to build an absolute return portfolio with a limited drawdown;

2. They can also be used to complement a market exposure in order to significantly im-
prove the Sharpe ratio of the market portfolio89.

Table 30: Performance of the MKT + 5F portfolios (1995 – 2013)

Statistic Asia Pacific Europe Japan North America US Global
µ (x) 20.9 22.2 5.2 19.9 18.5 20.1
σ (x) 21.1 16.8 17.8 14.6 14.0 14.2

SR (x | r) 0.85 1.16 0.13 1.18 1.12 1.22
MDD (x) 55.3 53.6 55.9 49.6 46.1 45.5

The implementation of long/short strategies are not obvious for institutional investors,
because they require the use of leverage. Let us now consider the constrained case with no
short or leveraged exposures. In table 31, we report the performance of the equally-weighted
long-only 5F portfolio. This portfolio improves the risk/return profile in comparison to a
long exposure to market risk factors. For instance, the Sharpe ratio is increased by 66% and
114% for Asia Pacific and Europe. For North America and US, the level of the Sharpe ratio
is equivalent to this, obtained by the long/short 5F portfolio. Nevertheless, we notice that
the long-only 5F does not reduce the drawdown observed for the market portfolio. Despite
this drawback, a diversified long-only strategy based on risk factors remains attractive as
shown by the backtest of the global portfolio in Figure 30.

Table 31: Performance of the long-only 5F portfolios (1995 – 2013)

Statistic Asia Pacific Europe Japan North America US Global
µ (x) 13.4 15.5 3.1 15.8 14.3 11.3
σ (x) 21.9 16.9 18.1 15.2 16.3 15.6

SR (x | r) 0.48 0.75 0.02 0.86 0.71 0.54
MDD (x) 60.5 58.1 58.1 52.5 55.3 54.5

5.2 Optimal allocation

In this paragraph, we will develop the optimal solution of risk factor portfolios. For this, we
will consider the Markowitz framework for strategic asset allocation. We will show that the
optimal portfolio differ if we consider long/short or long-only risk factors.

5.2.1 Long/short portfolios

Following Roncalli (2013), we can write the Markowitz approach as a quadratic utility
optimization problem:

x? (φ) = arg maxx>µ (F)− φ

2
x>Ωx

89In this case, the main benefit is to increase the performance, but not to reduce the volatility or the risk
of the long portfolio. Contrary to some accepted ideas, a long/short exposure on risk factors can then not
be used to hedge an exposure on the market.
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Figure 30: Performance of long-only 5F and MKT global portfolios

where x = (x1, . . . , xm) are the weights of long/short risk factors in the portfolio, µ (F)
is the expected return on risk factors and Ω is the associated covariance matrix. φ can
be interpreted as a risk-aversion parameter. We deduce that the solution satisfying the
first-order condition is90:

x? (φ) =
1

φ
Ω−1µ (F) (20)

We assume that the nature of the long/short risk factors implies that they are indepen-
dent, meaning that Ω = diag

(
σ2 (F1) , . . . , σ2 (Fm)

)
. Moreover, in the case of a long/short

portfolio, φ is a free parameter to scale the leverage of the portfolio. This implies that the
optimal solution has the following form:

x?j ∝
µ (Fj)
σ2 (Fj)

(21)

The optimal weight for the jth factor is therefore proportional to its expected return divided
by its variance. In Figure 31, we have reported the level curves κ = σ−2µ. Along a given
curve, we have no preference for one point over another. For instance, a risk factor with
µ (Fj) = 1% and σ = 10% has the same allocation as another risk factor with µ (Fj) = 4%
and σ = 20%. If we consider two risk factors belonging to two distinct level curves κ1 and κ2,
the ratio of their weights is κ1/κ2. For example, the weight of a risk factor with µ (Fj) = 4%
and σ = 9% is approximately 5 times the weight of a risk factor with µ (Fj) = 1% and
σ = 10%.

Remark 9 Portfolio (21) may be different than portfolio (20), because the cross-correlations
may not be equal to zero. It is particularly true from an ex-post analysis. However, we have

90In fact, the optimal weights correspond to the positive part of the expression, because a short exposure
on a risk factor does not make sense. This constraint is equivalent to select risk factors with a positive risk
premium.
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to be careful by considering a correlated matrix of risk factors, because these risk factors are
generally built in order to be independent.

Figure 31: Level curves of optimal portfolios

There are two special cases which are very interesting:

1. If we assume that expected returns and volatilities are the same for all the factors, the
optimal allocation corresponds to the equally-weighted (or EW) portfolio:

x?j =
1

m
(22)

2. If we assume that the risk factors have the same Sharpe ratio, the optimal allocation is
then the equal risk contribution (or ERC) portfolio defined by Maillard et al. (2010):

x?j ∝
1

σ (Fj)
(23)

In Table 32, we compare the EW, ERC and MVO global portfolios91. We notice that the
Sharpe ratio increases if we relax an extra assumption, but there is no relationship between
the drawdown and the set of assumptions. On page 100, we have reported other results
regarding the different regions. We show that they are heterogeneous, and it is difficult to
conclude that one method dominates largely the others.

91We have the following correspondence: EW corresponds to Equation (22), ERC corresponds to Equation
(23), MVO? corresponds to Equation (21) and MVO corresponds to Equation (20).
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Table 32: Performance and weights of long/short 5F global portfolios (1995 – 2013)

EW ERC MVO? MVO

Statistic

µ (x) 13.8 14.0 14.7 15.3
σ (x) 10.0 10.0 10.0 10.0

SR (x | r) 1.10 1.11 1.19 1.24
MDD (x) 23.3 19.8 19.7 21.9

Weight

SMB 20.0 25.1 0.0 0.0
HML 20.0 22.6 31.1 46.3
WML 20.0 12.8 13.7 20.6
BAB 20.0 18.2 31.9 26.6
QMJ 20.0 21.4 23.4 6.5

5.2.2 Long-only portfolios

In the case of long-only risk factors, the optimization problem becomes:

x? = arg maxx>
(
µ
(
F+
)
− r1

)
− φ

2
x>Ω+x

u.c.

{
1>x = 1
x ≥ 0

where µ (F+) and Ω+ are the vector of expected returns and the covariance matrix of long-
only risk factors F+. In Appendix A.6.2 on Page 87, we show that the tangency portfolio
has the following form:

x?j ∝
max

(
µ
(
F+
j

)
− r − βjλ?, 0

)(
σ̃+
j

)2
where βj is the beta of the long-only risk factor F+

j with respect to the market factor and

σ̃+
j =

√
σ2
(
F+
j

)
− β2

jσ
2 (Rm) is the idiosyncratic volatility of the long-only risk factor F+

j .

λ? is a constant parameter, which corresponds to a weighted average of risk premia. This
implies that βjλ

? is a risk premium penalization for the long-only risk factor F+
j . Because we

have µ
(
F+
j

)
−r = α+

j +βj (µm − r) where α+
j is the alpha of the long-only risk factor F+

j , we
deduce that the risk premium component coming from alpha is better than the risk premium
component coming from beta. Another important parameter is the idiosyncratic volatility.
Finally, we deduce that optimal long-only risk factors share the following characteristics:

• High alpha;

• Low beta if the market risk premium is low, but high beta if the market risk premium
is high;

• Low idiosyncratic volatility.

In practice, optimal solutions are concentrated. For instance, if we consider the global
portfolio, the optimal solution is composed only by WML and BAB long-only risk factors.
This is why we have to consider some weight constraints in order to diversify the portfolio.

Remark 10 In the previous analysis, we assumed that the objective of the investor is to
maximize the Sharpe ratio of its risk factor portfolio. However, the investor may pursue
another objective. For instance, the investor may have an objective in terms of tracking
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error if he would like to replace or complement a passive market portfolio by an allocation
between risk factors. In this case, we show that the optimal portfolio has the following form92:

x?j ∝
α+
j + (1− βj) r + λ̃?j(

σ̃+
j

)2
where λ̃?j is the gain or cost on the risk factor F+

k due to long-only constraints. The allocation
in the market risk factor is the complementary allocation of the other risk factors.

5.3 Robustness

One of the main arguments in favor of factor investing concerns long-term allocation. We
know that strategic asset allocation based on asset classes is not easy, because it is difficult to
estimate their risk premia, and correlations between asset classes are time-varying and not
stable. Supporters of factor investing argue that asset classes are exposed to independent
risk factors, which are rewarded on the long-run, meaning that strategic asset allocation
based on risk factors is more easy and robust. We will see that these arguments should be
interpreted with caution.

Figure 32: Comparison of long/short and long-only solutions

Long/short solution

x?j ∝
max (RPj , 0)

VOL2
j

Long-only solution (SR)

x?j ∝
max (RPj −βjλ?, 0)

IVOL2
j

Long-only solution (TE)

x?j ∝
RPj −βj RPm +λ̃?j

IVOL2
j

The comparison of long/short and long-only solutions shows that they present some
similarities. The weight of the jth factor is an increasing function of its risk premium RPj
and a decreasing function of its risk. In the case of the long/short portfolio, the risk of the
factor is measured by its volatility VOLj whereas it is equal to its idiosyncratic volatility
IVOLj in the case of the long-only portfolio. Moreover, we see that the long-only risk
premium is penalized with respect to the beta βj of the risk factor. If we compare the two
long-only solutions93, we also observe that the TE solution is more sensitive to the alpha
and less sensitive to the beta premium than the SR solution.

Example 3 We consider a universe of three long/short risk factors F1, F2 and F3 plus the
market risk factor. The alpha of long-only risk factors is respectively equal to 2%, 3% and
3% whereas the idiosyncratic volatility is equal to 7%, 10% and 12%. The beta of long-only
risk factors with respect to the market risk factor takes the following values: 1.10, 0.90 and
1.00. We assume that the short leg of the risk factors present the same characteristics than
the long leg of risk factors (same alpha, same beta and same idiosyncratic volatility). The

92See Appendix A.6.3 on Page 88.
93The solution which maximizes the Sharpe ratio is noted SR whereas the solution which controls the

tracking error is noted TE.
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other parameters are the volatility of the market risk factor, the market risk premium and
the risk-free rate. We assume that they are equal to 20%, 6% and 2%.

We report the results94 for the previous example in column #0 of the following tables.
For instance, the long/short solution is given in Table 33. The optimal weights are 44.54%
for the risk factor F1, 32.73% for the risk factor F2 and 22.73% for the risk factor F3. The
Sharpe ratio of this portfolio is then equal to 0.68. In Table 34, the long-only solution
corresponds to the portfolio which maximizes the Sharpe ratio. In this case, the optimal
solution becomes (0%, 64.39%, 35.61%). The weight of the long-only risk factor F+

1 is equal
to zero, because it has a lower alpha than the two other long-only risk factors F+

2 and F+
3 .

We also notice that this optimal portfolio has an alpha and a tracking error volatility with
respect to the market risk factor equal to 2.74% and 7.83%, implying that the information
ratio is equal to 0.35. In Tables 35 and 36, we assume that the benchmark is the market
risk factor, and we consider the tracking error optimization problem with two values for the
parameter φ. φ = 1 corresponds to the case where we target a tracking error volatility higher
than 6%, and φ = 20 constraints the optimal solution to have a tracking error volatility
lower than 3%. We observe that optimal TE solutions are more diversified compared to the
maximum Sharpe ratio solution. For instance, if φ is equal to 1, the optimal solution is
(21.44%, 29.83%, 48.73%) implying a tracking error volatility equal to 6.74%. If φ is equal
to 20, the optimal solution becomes (23.65%, 13.41%, 10.42%) meaning that the optimal
portfolio is composed by 52.52% of the market risk.

Table 33: Long/short solution

Set #0 #1 #2 #3 #4 #5 #6
x?1 44.54 40.15 34.68 44.54 44.54 44.54 66.21
x?2 32.73 39.35 25.49 32.73 32.73 32.73 0.00
x?3 22.73 20.50 39.83 22.73 22.73 22.73 33.79

SR (x? | r) 0.68 0.78 0.79 0.68 0.68 0.68 0.54

Table 34: Long-only solution (SR)

Set #0 #1 #2 #3 #4 #5 #6
x?1 0.00 0.00 0.00 0.00 33.40 0.00 30.50
x?2 64.39 87.44 47.81 72.74 40.16 74.19 0.00
x?3 35.61 12.56 52.19 27.26 26.44 25.81 69.50

SR (x? | r) 0.33 0.37 0.34 0.35 0.58 0.15 0.31
µ (x? | b) 2.74 3.52 2.81 2.13 2.64 3.00 2.82
σ (x? | b) 7.83 9.04 6.42 9.09 5.63 8.18 8.63
IR (x? | b) 0.35 0.39 0.44 0.23 0.47 0.37 0.33

To illustrate the sensitivity of optimal solutions to the parameters, we consider some
changes to their initial values. For each parameter set, we only change the value of one

94The optimal weights of the jth risk factor is denoted x?j . In the case of the TE optimization problem,

the benchmark is the market risk factor and its weight is equal to x?b . SR (x? | r) is the Sharpe ratio of
the optimal portfolio x? with respect to the risk-free asset. µ (x? | b), σ (x? | b) and IR (x? | b) represent
respectively the excess return, the tracking error volatility and the information ratio of the optimal portfolio
x? when the benchmark b is the market risk factor. All these statistics are expressed as % except the Sharpe
ratio and the information ratio, which are expressed as decimals.
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parameter with respect to the initial parameter set #0:

Set #0 #1 #2 #3 #4 #5 #6

α+
2 4% 0%
σ̃+

3 8%
β2 0.70
σm 10%
µm 2%

For instance, the parameter set #1 corresponds to the initial parameter set #0 except that
the alpha of the second long-only risk factor is equal to 4%. For the parameter set #2, we
change the value of the idiosyncratic volatility of the third risk factor. Then, we change the
values of the beta β2 of the second risk factor, the volatility σm of the market risk factor and
the market risk premium µm. Finally, we set the alpha of the second long-only risk factor
to zero in the parameter set #6. We notice that the optimal long/short solution does not
change very much except in the case of the last parameter set. The long-only SR solution
is more sensitive. In particular, we notice that it depends on the parameter of the market
risk factor. Indeed, the volatility of the market risk premium has an impact on the level of
the risk premia weighted average λ?. An increase of λ? favors more the alpha component
than the beta component of the risk premia. In a similar way, a change in the market risk
premium has an impact on the individual risk premia, because the risk factors don’t have the
same beta. Curiously, the long-only TE solution is even more sensitive than the long-only
SR solution when φ is low (see Table 35).

Table 35: Long-only solution (TE, φ = 1)

Set #0 #1 #2 #3 #4 #5 #6
x?1 21.44 0.00 0.00 42.64 21.08 0.00 42.64
x?2 29.83 82.26 14.29 0.00 30.15 58.06 0.00
x?3 48.73 17.74 85.71 57.36 48.78 41.94 57.36
x?b 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SR (x? | r) 0.32 0.37 0.33 0.30 0.56 0.15 0.30
µ (x? | b) 2.75 3.49 2.94 2.74 2.75 3.00 2.74
σ (x? | b) 6.74 8.65 7.01 7.55 6.75 7.77 7.55
IR (x? | b) 0.41 0.40 0.42 0.36 0.41 0.39 0.36

Table 36: Long-only solution (TE, φ = 20)

Set #0 #1 #2 #3 #4 #5 #6
x?1 23.65 24.02 23.65 24.63 24.26 20.01 22.64
x?2 13.41 18.23 13.41 8.79 13.11 15.19 0.00
x?3 10.42 10.42 23.44 10.42 10.42 10.42 10.42
x?b 52.52 47.33 39.50 56.16 52.21 54.38 66.94

SR (x? | r) 0.26 0.27 0.28 0.25 0.50 0.06 0.24
µ (x? | b) 1.23 1.55 1.62 1.06 1.24 1.17 0.86
σ (x? | b) 2.48 2.78 2.85 2.30 2.49 2.42 2.07
IR (x? | b) 0.50 0.56 0.57 0.46 0.50 0.48 0.41

These results show that factor investing does not completely solve the problem of the
strategic asset allocation based on asset classes. In this last case, the difficulties concern
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the estimation and the stability of the risk premium of each asset class and the cross-
correlations between asset classes. In the case of the strategic asset allocation based on risk
factors, the difficulties are transferred to the estimation and the stability of the alpha, beta
and idiosyncratic volatility of each risk factors. This is particularly true when we consider
long-only solutions. In these last cases, the allocation also depends on the characteristic
of the market risk factor. Another issue concerns the dependence of the solution to the
universe of risk factors. It is easy to show that the inclusion or the deletion of a risk factor
may highly impact the solution. In summary, the superiority of risk factors on asset classes
can not be demonstrated in terms of optimal allocation. This explains why practitioners
consider heuristic allocation approaches when they want to build a multi-factor portfolio.
These methods have the advantage to average the ‘bad times’ induced by each risk factor
(Ang, 2014).

6 Conclusion

In this article, we have shown that factor investing is not as simple as it is sometimes
presented by practitioners. Because there are many risk factors and anomalies published
in academic journals, the investor may have the feeling to be lost in this “zoo of factors”,
to borrow an expression of John Cochrane. Some actual research challenges the increased
number of risk factors. For instance, Harvey et al. (2014) propose to adapt the usual
t-statistic for testing the significance of a newly discovered risk factor. In a similar way,
Novy-Marx (2014) warns about the standard approach to define factors and anomalies:

“Standard predictive regressions fail to reject the hypothesis that the party of the
U.S. President, the weather in Manhattan, global warming, El Niño, sunspots,
or the conjunctions of the planets, are significantly related to anomaly perfor-
mance. These results are striking, and quite surprising. In fact, some readers
may be inclined to reject some of this paper’s conclusions solely on the grounds of
plausibility. I urge readers to consider this option carefully, however, as doing do
so entails rejecting the standard methodology on which the return predictability
literature is built.”

From a professional point of view, only a few number of risk factors and anomalies are
reliable. Among these relevant factors, we find for example SMB, HML or WML. But, even
with a reduced set of less than 10 factors, there are again a lot of questions to answer in order
to understand what the nature, the behavior and the risk of these factors are. Academics
have done extensive studies on these questions and their work can help to find the answers,
but some questions still remain open, in particular the level of the risk premia.

The concept of factor investing is based on risk factors, but not exclusively. The first
dimension is to transform these academic findings into investible products. However, there
are different issues to take into account in order to obtain a factor-mimicking portfolio.
They concern the definition of the asset universe, the weighting scheme and the transaction
costs. In this paper, we have shown that these choices have a big impact on the design of
factor indexes. Another important issue concerns the long/short or long-only characteristic
to give for these products. While academic studies are exclusively based on long/short
portfolios, long-only products are more frequent in the investment industry. This leads to a
gap between the theory and the practice of investment, and this gap is more important for
certain factors, like BAB or WML. The second dimension of factor investing concerns the
allocation between the risk factors. At first sight, factor allocation seems to be easy, at least
less difficult than the allocation between asset classes, because risk factors are uncorrelated.
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In fact, the allocation process is simplified in the case of long/short solutions, but remains a
difficult exercise when we consider long-only risk factors. In this case, the optimal solution
depends on the alpha, beta and idiosyncratic volatility of each risk factor, and also on the
risk and the return of the market portfolio. The robustness of factor allocation depends
then on the stability of these estimated parameters.

The objective of our paper was to provide an answer to the different issues that we have
previously listed. Most of the time, the answers are partial because factor investing is a
complex topic. Another goal of the paper was to show that academic research may help to
verify or contradict some accepted ideas on the subject of factor investing. We have listed
some of them below:

Some facts Some fantasies

• Common risk factors explain more
variance than idiosyncratic risks in
diversified portfolios.

• Some risk factors are more rele-
vant than others, for instance SMB,
HML and WML.

• Risk premia are time-varying and
low-frequency mean-reverting. The
length of a cycle is between 3 and
10 years.

• The explanatory power of risk fac-
tors other than the market risk fac-
tor has declined over the last few
years, because Beta has been back
since 2003.

• Long-only and long/short risk fac-
tors have not the same behavior.
This is for example the case of BAB
and WML factors.

• Risk factors are local, not global. It
means that risk factors are not ho-
mogeneous. For instance, the value
factors in US and Japan cannot be
compared (distressed stocks versus
quality stocks).

• Factor investing is not a new invest-
ment style. It has been largely used
by asset managers and hedge fund
managers for a long time.

• Risk factors are not dependent on size.
It is a fantasy. Some risk factors present
a size bias, like the HML risk factor.

• HML is much more rewarded than
WML.

• WML exhibits a CTA option profile.
This is wrong. The option profile of a
CTA is a long straddle whereas WML
presents some similarities to a short call
exposure.

• Long-only risk factors are more risky
than long/short risk factors. This is not
always the case. For instance, the risk of
the long/short WML factor is very high.

• HML is riskier than WML. It is gener-
ally admitted in finance that contrar-
ian strategies are riskier than trend-
following strategies. However, this is not
always the case, such as with the WML
factor, which is exposed to momentum
crashes.

• Strategic asset allocation with risk fac-
tors is easier than strategic asset alloca-
tion with asset classes. This is not easy,
in particular in a long-only framework.
Estimating the alpha, beta and idiosyn-
cratic volatility of a long-only risk factor
remains an issue, implying that portfolio
allocation is not straightforward.

In fact, like other recent hot topics in asset management (smart beta, risk parity or liability-
driven investment), understanding the facts and the commonly held fictions is the primary
pillar to handle the complexity of factor investing.
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A Mathematical results

A.1 Derivation of the arbitrage pricing theory

We recall that:

Ri − E [Ri] =

m∑
j=1

βji (Fj − E [Fj ]) + εi

We consider an arbitrage portfolio x 6= 0n such as
∑n
i=1 xiβ

j
i = 0 and

∑n
i=1 xi = 0. We

obtain:

R (x) =

n∑
i=1

xiRi

=

n∑
i=1

xi

E [Ri] +

m∑
j=1

βji (Fj − E [Fj ]) + εi


=

n∑
i=1

xiE [Ri] +

n∑
i=1

m∑
j=1

xiβ
j
i (Fj − E [Fj ]) +

n∑
i=1

xiεi

If the portfolio is well-diversified, it follows that
∑n
i=1 xiεi → 0 and

∑n
i=1 xiβ

j
i (Fj − E [Fj ])→

0, meaning that:

R (x) =

n∑
i=1

xiE [Ri] = µ (x)

We deduce that the return of the portfolio is certain which implies that σ (x) = 0. Arbitrage
theory tells us that the return of the portfolio is then the risk-free rate:

R (x) = Rf

Finally, we obtain the following set of constraints:
∑n
i=1 xiβ

j
i = 0∑n

i=1 xi = 0∑n
i=1 xi (E [Ri]−Rf ) = 0

This set of equations has a solution if there exists a vector (π1, . . . , πm) such as95:

E [Ri] = Rf +

m∑
j=1

βji πj

95We have Ax = 0 and Bx = 0m+1 with:

A =
(

E [R1]−Rf · · · E [Rn]−Rf
)

and:

B =


1 · · · 1
β1
1 β1

n

. . .

βm1 βmn


Using linear algebra, we can show that A belongs to the subspace of B. We deduce that:

A = π>B

where π = (π0, π1, . . . , πm). It is easy to show that π0 = 0.
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For a fully-invested portfolio x, this relationship becomes:

µ (x) = E

[
n∑
i=1

xiRi

]

= Rf +

m∑
j=1

(
n∑
i=1

xiβ
j
i

)
πj

= Rf +

m∑
j=1

βj (x)πj

where βj (x) =
∑n
i=1 xiβ

j
i is the sensitivity of the portfolio x with respect to the factor j.

Let us now consider a portfolio which is only sensitive to the factor j:{
βk (x) = 0 if k 6= j
βj (x) = 1

It follows that:

µ (Fj) = E [Fj ] = Rf + πk

We can interpret πk = µ (Fj)−Rf as the risk premium of the factor j. We conclude that:

πi = E [Ri]−Rf =

m∑
j=1

βji (µ (Fj)− r)

A.2 Option profile of momentum strategies

Potters and Bouchaud (2005) show that losses are more frequent than gains in a trend-
following strategy on indexes. The explanation is simple. In most cases, a trend-following
strategy loses money, because there are a lot of bad signals, but these losses are limited.
Sometimes, asset classes exhibit a big trend. In this case, the trend-following strategy gains a
lot of money. Because this situation is less frequent, it follows that trend-following strategies
loses frequently a limited amount of money, but gains occasionally a large amount of money.
This means that the option profile of a CTA strategy is a long exposure on a straddle payoff.

The trend-following strategy described above is different than the momentum strategy
of the WML factor. Indeed, a CTA strategy exhibits a zero-beta correlation with respect to
the market risk factor in the long run. However, it is not true in the short run, because a
CTA strategy presents locally a high positive or negative beta. The behavior of the WML
factor is completely different. By construction, it has a zero-beta correlation with the market
all of the time. Empirical results show that the WML factor exhibits a gain most of the
time. However, it may suffer a lot when the market rebounds after a serious crash. In this
case, past loser stocks post much better returns than past winner stocks. This situation is
called a ‘momentum crash’ by Daniel and Moskowitz (2013). The option profile of WML
is therefore very different than the option profile of CTA. Investors in the WML strategy
generally receive a premium and sometimes pay the payoff whereas investors in the CTA
strategy generally pay a premium and sometimes receive the payoff. Figure 33 summarizes
these two option profiles.

83



Facts and Fantasies About Factor Investing

Figure 33: Option profile of CTA and WML strategies

A.3 Optimal solution of the factor replication problem

Let F?j = x>R be the replicating factor. We have:

F?j = x>α+ x>BF + x>ε

It follows that:

σ2
(
F?j
)

= x>BΩB>x+ x>Dx

= β (x)
>

Ωβ (x) + x>Dx

and:
σ2 (Fj) = e>j Ωej

We also deduce that:

cov
(
F?j ,Fj

)
= E

[(
x>B (F − µ (F)) + x>ε

)
(F − µ (F))

>
ej

]
= β (x)

>
Ωej

The expression of the tracking error variance is then:

σ2
(
F?j −Fj

)
= β (x)

>
Ωβ (x) + x>Dx+ e>j Ωej − 2β (x)

>
Ωej

The first-order condition of the minimization program is:

BΩB>x+Dx−BΩej = 0

We deduce that the optimal solution is:

x? =
(
BΩB> +D

)−1
BΩej
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A.4 Parameterization of the risk model with long-only factors

If we assume that each factor is the result of a long/short portfolio for m ≥ 2, we have:

Fj = F+
j −F

−
j

In this case, we obtain:

Ri = αi + β1
i F1 +

m∑
j=2

βji
(
F+
j −F

−
j

)
+ εi

= αi + β1
i F1 +

m∑
j=2

βjiF
+
j −

m∑
j=2

βjiF
−
j + εi

We can rewrite the previous model as follows:

Ri = αi + β1
i F1 +

m∑
j=2

βjiF
+
j + ηi

where the residual risk is equal to:

ηi = εi −
m∑
j=2

βjiF
−
j

It is obvious that imposing the long-only constraint has a big impact on residual risks ηi.

Another approach consists in reformulating the first factor:

Ri = αi + β1
i

F1 −
m∑
j=2

βji
β1
i

F−j

+

m∑
j=2

βjiF
+
j + εi

= αi + β1
i F̃1 +

m∑
j=2

βjiF
+
j + εi

In this case, we observe that the original risk factors are transformed into new risk factors.
The long/short risk factors are replaced by their long-only counterpart components, whereas
the first factor is replaced by a synthetic factor.

A.5 Sharpe ratio of portfolios invested in long/short risk factors

We recall that F ∼ N (µ (F) ,Ω). Let x be a portfolio of risk factors. The portfolio return
is:

R (x) = x>F

We deduce that R (x) ∼ N
(
x>µ (F) , x>Ωx

)
. Because the risk factors are long/short, the

Sharpe ratio of the factor portfolio is:

SR (x) =
x>µ (F)√
x>Ωx
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If we assume that the long/short risk factors are uncorrelated (H1), we obtain:

SR (x) =

m∑
j=1

xjµ (Fj)√∑m
k=1 x

2
kσ

2 (Fk)

=

m∑
j=1

xjσ (Fj)µ (Fj)√∑m
k=1 x

2
kσ

2 (Fk)σ (Fj)

=

m∑
j=1

wj SR (Fj)

with:

wj =
xjσ (Fj)√∑m
k=1 x

2
kσ

2 (Fk)

We notice that
∑m
j=1 wj > 1. For some special cases of portfolios, we can find an explicit

expression of the Sharpe ratio:

1. In the case of the equally-weighted portfolios, the weights becomes:

wj =
σ (Fj)√∑m
k=1 σ

2 (Fk)

Moreover, if we assume that the factors have the same volatility, we obtain wj = 1/
√
m

and:
SR (x) =

√
m · SR (F)

where SR (F) is the average Sharpe ratio.

2. In the case of the ERC portfolio, the weights becomes96:

wj =
1√
m

Moreover, if we assume that the factors have the same volatility, we retrieve the formula
for the EW portfolio:

SR (x) =
√
m · SR (F)

A.6 Portfolio optimization with long-only risk factors

A.6.1 The framework

We assume that the long/short risk factor is expressed as:

Fj = F+
j −F

−
j

and:

F+
j − r = α+

j + βj (Rm − r) + ε+
j

F−j − r = α−j + βj (Rm − r) + ε−j

96We have:

xj =
σ−1 (Fj)∑m
k=1 σ

−1 (Fk)
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We generally assume that α+
j > α−j . This implies that:

Fj =
(
α+
j − α

−
j

)
+
(
ε+
j − ε

−
j

)
We notice that:

µ
(
F+
j

)
= r + α+

j + βj (µm − r)
and:

σ
(
F+
j

)
=

√
β2
jσ

2
m +

(
σ̃+
j

)2
The Sharpe ratio of the long-only risk factor is:

SR
(
F+
j | r

)
=
α+
j + βj (µm − r)√
β2
jσ

2
m +

(
σ̃+
j

)2
It is the sum of two components: one coming from the alpha and one coming from the
market risk premium.

A.6.2 The maximum Sharpe ratio portfolio

We assume that the investor optimizes the Sharpe ratio of its portfolio:

x? = arg max
x> (µ (F+)− r1)√

x>Ω+x

u.c.

{
1>x = 1
x ≥ 0

The constraint x ≥ 0 is not an issue for the optimization problem, because it is only used
to determine the risk factors which are present in the long-only portfolio. Indeed, we can
always delete a risk factor to reduce the universe and obtain a solution with all selected risk
factors. The solution of the MSR portfolio is97:

x? =
Ω−1

+ (µ (F+)− r1)

1>Ω−1
+ (µ (F+)− r1)

We know that98:

Ω−1
+ = D−1 − σ2

m

1 + σ2
mκ

β̃β̃>

with β̃j = βj/
(
σ̃+
j

)2
and κ = β̃>β. It follows that:

x? ∝
(
D−1 − σ2

m

1 + σ2
mκ

β̃β̃>
)(

α+ + β (µm − r)
)

We deduce that:

x?j ∝
α+
j + βj (µm − r)(

σ̃+
j

)2 − σ2
m

1 + σ2
mκ

m∑
k=1

β̃j β̃k
(
α+
k + βk (µm − r)

)
=

α+
j + βj (µm − r)(

σ̃+
j

)2 −
(

σ2
m

1 + σ2
mκ

)
βj(
σ̃+
j

)2 m∑
k=1

βk

(
α+
k + βk (µm − r)

)(
σ̃+
k

)2
=

1(
σ̃+
j

)2 (α+
j + βj (µm − r − λ)

)
(24)

97See Roncalli (2013) on Page 14.
98See Roncalli (2013) on Page 167.
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with:

λ =

(
σ2
m

1 + σ2
mκ

) m∑
k=1

βk

(
α+
k + βk (µm − r)

)(
σ̃+
k

)2
We can interpret λ as a weighted average of risk premia.

In the case of the long-only portfolio, we can show that:

x?j ∝
1(
σ̃+
j

)2 max
(
α+
j + βj (µm − r − λ?) , 0

)
(25)

with:

λ? =

(
σ2
m

1 + σ2
mκ

?

) ∑
k∈LO

βk

(
α+
k + βk (µm − r)

)(
σ̃+
k

)2
κ? =

∑
α+

k +βk(µm−r)>βkλ?

β̃kβk

LO =

{
k ∈ {1, . . . ,m} :

µ
(
F+
k

)
− r

βk
> λ?

}

Contrary to Solution (24), Solution (25) is endogenous because λ? can be computed only if
we know the set of positive weights.

A.6.3 The tracking error optimized portfolio

We now consider that the risk factors are composed by the m long-only risk factors and the
market risk factor. The optimization problem becomes:

x? = arg max (x− b)>
[
µ (F+)
µm

]
− φ

2
(x− b)>

[
Ω̃+ βσ2

m

β>σ2
m σ2

m

]
(x− b)

By its very nature, b = em+1 because the MKT factor corresponds to the last risk factor.
Without any constraints, we know that the optimal solution is99:

x? =
1

φ

[
Ω̃+ βσ2

m

β>σ2
m σ2

m

]−1 [
µ (F+)
µm

]
+ em+1

Using blockwise inversion, it follows that:[
Ω̃+ βσ2

m

β>σ2
m σ2

m

]−1

=

[
D−1 −D−1β

−β>D−1 σ−2
m + β>D−1β

]
We deduce that:

x?j =
µ
(
F+
j

)
− βjµm

φ
(
σ̃+
j

)2
= φ−1

α+
j + (1− βj) r(

σ̃+
j

)2
99See Roncalli (2013) on Page 19.
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for j = 1, . . . ,m and:

x?m+1 =

(
σ−2
m + β>D−1β

)
µm − β>D−1µ (F+) + φ

φ

= 1− φ−1

(
m∑
k=1

β̃kµ
(
F+
k

)
−
(

1 + σ2
mκ

σ2
m

)
µm

)

If we impose the constraint that the optimal portfolio is long-only, meaning that
∑m+1
j=1 xj =

1 and xj ≥ 0, the solution becomes:

x?j = φ−1

(
µ
(
F+
j

)
− βjµm + λ?j − βjλ?m+1

)(
σ̃+
j

)2
for j = 1, . . . ,m and:

x?m+1 = 1− φ−1

(
m∑
k=1

β̃k
(
µ
(
F+
k

)
+ λ?k

)
−
(

1 + σ2
mκ

σ2
m

)(
µm + λ?m+1

))

where λ?j is the sum of the Lagrange coefficient λ0 associated to the equality constraint∑m+1
j=1 xj = 1 and the Lagrange coefficient λj associated to the positivity constraint xj ≥ 0.

Remark 11 By definition of the Kuhn-Tucker conditions, λj is positive whereas λ0 can be
either negative or positive.
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B Additional results

B.1 Tables

Table 37: Average of ∆R2 (in %) with the SMB factor

Year Asia Pacific Europe Japan North America US
1995 10.6 12.1 9.2 13.5 12.7
1996 10.2 12.4 8.9 17.3 16.0
1997 10.8 15.3 10.3 18.2 14.4
1998 10.6 17.3 13.2 18.1 14.1
1999 9.8 17.6 13.9 15.3 13.1
2000 10.0 18.9 16.7 22.8 20.9
2001 9.4 16.7 16.2 20.3 20.3
2002 8.7 14.4 15.5 18.4 18.6
2003 9.4 12.1 12.6 17.1 17.5
2004 9.7 10.5 13.0 17.4 17.8
2005 7.5 8.1 10.0 9.3 11.2
2006 7.6 7.2 11.7 9.5 11.3
2007 8.5 6.7 13.4 8.7 9.9
2008 6.9 5.8 13.8 7.6 8.5
2009 4.6 4.4 13.7 5.0 5.1
2010 4.4 4.8 12.2 4.9 5.5
2011 4.0 4.2 11.1 4.2 4.8
2012 3.7 3.9 10.6 3.7 4.4
2013 4.0 3.9 9.1 4.0 4.3
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Table 38: Average of ∆R2 (in %) with the HML factor

Year Asia Pacific Europe Japan North America US
1995 1.8 3.5 1.0 4.2 4.9
1996 2.1 3.7 1.0 5.4 6.4
1997 2.5 3.3 1.1 7.4 6.5
1998 3.1 2.3 2.5 5.5 4.6
1999 3.7 2.3 2.6 3.8 4.7
2000 3.6 9.1 7.8 13.3 15.3
2001 3.9 10.3 8.6 13.6 18.2
2002 3.7 8.8 9.2 12.3 16.8
2003 3.9 7.6 8.8 12.0 16.7
2004 3.9 6.6 8.6 12.8 17.2
2005 4.1 3.3 3.7 8.4 11.4
2006 3.8 2.0 2.5 3.8 4.3
2007 4.2 1.6 2.6 3.0 3.9
2008 3.0 1.0 3.0 2.4 3.0
2009 1.5 0.7 2.8 2.2 2.7
2010 1.5 0.9 3.4 2.0 2.8
2011 1.4 1.0 2.9 1.7 2.6
2012 1.2 1.1 2.9 1.6 2.4
2013 1.4 1.2 3.0 1.4 2.1

Table 39: Yearly return of the MKT− RF factor (in %)

Year Asia Pacific Europe Japan North America US
1995 14.9 19.3 −2.5 35.7 36.8
1996 22.9 21.9 −16.1 22.3 21.1
1997 −20.6 19.9 −28.7 30.8 31.2
1998 −6.7 25.5 7.5 22.9 24.3
1999 46.6 19.7 81.7 23.3 25.2
2000 −15.6 −9.9 −32.9 −7.8 −11.6
2001 −8.1 −20.0 −28.9 −10.7 −11.4
2002 −7.0 −14.0 −7.8 −21.3 −21.1
2003 50.5 42.7 41.0 32.5 31.8
2004 28.6 23.6 17.3 13.1 11.9
2005 13.4 11.9 27.2 7.9 6.1
2006 33.8 37.0 1.0 15.6 15.4
2007 36.5 14.1 −4.9 7.8 5.7
2008 −51.1 −45.7 −26.0 −37.9 −36.7
2009 77.4 35.5 5.2 31.9 28.3
2010 22.4 6.1 16.2 18.3 17.5
2011 −15.2 −13.0 −10.3 −0.7 0.5
2012 24.6 21.1 6.5 15.6 16.4
2013 6.2 28.5 26.7 32.3 35.2
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Table 40: Yearly return of the SMB factor (in %)

Year Asia Pacific Europe Japan North America US
1995 −10.3 −8.3 −3.5 −3.1 −5.7
1996 4.0 −1.9 −8.6 −3.1 −2.0
1997 −9.3 −12.3 −33.1 −8.8 −4.8
1998 −15.8 −13.6 8.9 −19.6 −19.3
1999 12.9 11.7 −8.9 9.8 13.4
2000 −20.1 −7.0 1.1 −3.1 −4.8
2001 −3.6 −0.7 5.1 16.3 20.4
2002 1.4 6.5 2.1 0.6 3.9
2003 13.5 8.8 14.3 17.6 22.2
2004 −6.2 7.5 17.0 5.7 5.0
2005 −9.6 5.0 10.7 0.0 −1.8
2006 7.1 6.1 −20.4 0.6 0.5
2007 −0.3 −8.0 −7.3 −5.8 −7.8
2008 −22.4 −10.2 6.3 −0.7 7.0
2009 20.4 8.6 0.3 9.6 7.9
2010 9.4 9.7 4.5 15.7 12.9
2011 −10.6 −8.7 9.3 −6.1 −5.0
2012 −9.1 1.0 1.3 −0.6 0.5
2013 −1.0 6.2 −3.1 2.0 6.0

Table 41: Yearly return of the HML factor (in %)

Year Asia Pacific Europe Japan North America US
1995 1.0 −5.0 −3.5 −2.0 0.8
1996 7.1 1.6 9.0 5.2 1.4
1997 −2.4 12.2 −12.8 11.4 9.6
1998 11.3 0.6 1.7 −13.6 −10.2
1999 11.5 −17.0 −32.5 −25.3 −26.7
2000 23.7 33.0 60.1 48.9 37.3
2001 18.0 33.0 20.2 11.7 14.8
2002 18.3 26.9 14.4 18.2 12.6
2003 13.7 15.6 9.2 4.6 3.2
2004 8.3 9.2 8.6 9.0 8.7
2005 1.5 8.0 −0.3 7.0 8.6
2006 2.1 7.9 14.5 11.6 12.7
2007 4.5 −0.6 5.9 −12.4 −11.6
2008 9.0 −3.1 21.3 0.2 2.0
2009 −5.1 1.7 −3.8 −1.7 −1.8
2010 −1.1 −5.3 −0.3 −1.1 −2.1
2011 −1.9 −14.1 5.5 −4.5 −6.8
2012 14.9 1.4 −1.6 5.6 6.8
2013 5.0 7.9 2.3 0.7 0.4
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Table 42: Yearly return of the SHML factor (in %)

Year Asia Pacific Europe Japan North America US
1995 2.9 −3.1 −0.7 −3.6 2.4
1996 −3.3 2.4 3.9 8.6 10.6
1997 11.0 14.3 −1.6 19.4 22.7
1998 8.1 4.2 −3.5 −7.2 −3.1
1999 16.5 −22.8 −39.0 −28.6 −29.8
2000 30.4 33.4 49.3 57.5 40.0
2001 29.6 50.1 21.3 14.1 15.6
2002 34.6 45.2 19.4 31.3 29.4
2003 23.2 13.1 −6.5 0.9 6.1
2004 12.1 10.3 2.6 6.5 5.8
2005 10.4 11.0 1.7 5.2 9.7
2006 0.2 4.4 19.5 11.8 12.2
2007 22.7 6.6 11.7 −9.6 −15.5
2008 19.4 8.3 20.9 16.9 11.4
2009 −6.8 −2.9 −3.7 −0.1 1.0
2010 −7.8 −4.4 4.7 −0.7 0.1
2011 1.9 −10.3 9.6 0.5 −3.4
2012 18.8 −1.4 −1.6 4.5 5.5
2013 15.8 7.3 −1.3 −0.9 −2.5

Table 43: Yearly return of the BHML factor (in %)

Year Asia Pacific Europe Japan North America US
1995 −1.2 −6.9 −6.3 −0.5 −0.8
1996 18.1 0.8 14.2 1.7 −7.2
1997 −14.7 10.1 −23.4 3.6 −2.7
1998 13.5 −3.4 6.8 −19.9 −17.0
1999 6.5 −11.0 −27.0 −22.3 −23.9
2000 14.7 31.7 70.9 38.9 34.0
2001 6.9 16.7 18.5 8.6 13.6
2002 3.6 9.7 9.2 5.5 −3.1
2003 4.6 18.0 26.2 8.3 0.3
2004 4.2 8.0 14.3 11.4 11.8
2005 −7.0 5.0 −2.6 8.6 7.5
2006 3.8 11.4 9.7 11.3 13.0
2007 −11.7 −7.5 0.1 −15.1 −7.5
2008 −1.2 −13.6 21.4 −14.6 −7.0
2009 −3.8 5.8 −4.2 −3.5 −5.0
2010 5.7 −6.5 −5.3 −1.5 −4.4
2011 −5.8 −17.9 1.5 −9.3 −10.2
2012 10.9 4.0 −1.8 6.6 8.0
2013 −5.1 8.4 5.9 2.3 3.2
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Table 44: Yearly return of the WML factor (in %)

Year Asia Pacific Europe Japan North America US
1995 2.3 24.9 −15.4 13.1 14.6
1996 20.2 19.2 −6.5 4.5 5.5
1997 25.9 11.4 53.9 11.6 9.5
1998 −30.2 17.4 −16.6 24.1 22.2
1999 2.6 30.9 66.8 51.3 29.0
2000 −15.9 −23.5 −30.8 −9.7 16.9
2001 27.8 22.2 16.0 −8.3 −10.4
2002 40.7 53.1 −6.2 29.5 28.1
2003 11.8 −11.5 −15.1 −10.7 −17.8
2004 18.1 7.7 7.3 2.2 −0.3
2005 9.7 17.8 21.3 19.7 15.3
2006 26.3 13.1 −3.8 −4.0 −6.5
2007 13.6 20.2 10.0 22.0 22.8
2008 3.4 27.5 15.3 5.9 18.3
2009 −39.5 −37.6 −33.0 −42.0 −52.7
2010 4.8 30.3 −3.3 6.6 5.7
2011 14.3 9.5 3.5 5.1 8.4
2012 19.6 3.6 2.3 0.9 −1.1
2013 38.0 20.7 16.1 12.9 6.2

Table 45: Yearly return of the equity BAB factors (in %)

Year USD JPY DEM FRF GBP INT
1995 21.2 −10.6 8.1 −3.7 −1.2 0.8
1996 25.6 1.2 −0.9 1.9 10.0 8.2
1997 49.7 3.9 −13.0 −16.6 −7.5 −2.2
1998 −13.6 −9.9 3.5 7.9 −6.3 −5.4
1999 −33.3 11.9 −5.7 −16.0 7.2 1.2
2000 19.3 −3.7 −13.6 −78.8 4.5 6.6
2001 20.0 9.8 4.9 14.1 13.6 15.7
2002 43.3 10.8 73.5 47.6 34.4 41.5
2003 13.6 −9.5 7.1 22.7 30.3 14.1
2004 33.9 16.4 51.0 49.8 38.6 31.7
2005 13.5 14.5 8.0 −10.0 5.7 5.5
2006 9.5 −4.0 27.5 14.1 28.3 16.7
2007 −2.7 −1.6 7.8 27.2 −7.0 8.7
2008 −30.4 22.3 −7.9 −10.7 −51.2 −14.3
2009 5.0 −15.8 −14.5 −16.1 12.7 −1.0
2010 4.1 4.3 2.8 2.0 6.7 6.4
2011 8.8 21.1 10.3 26.1 7.3 13.2
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Table 46: Yearly return of the other BAB factors (in %)

Year US TB US CB Cur. Com. All
1995 0.1 14.5 3.1 0.7 2.6
1996 2.6 −5.2 30.2 −27.8 9.3
1997 0.8 14.8 −19.3 −4.3 1.7
1998 2.9 14.2 −20.9 −8.8 −1.6
1999 2.4 −4.3 10.0 −25.8 2.5
2000 0.6 29.5 −5.6 −21.4 4.2
2001 11.8 10.8 0.7 0.1 12.6
2002 1.6 34.3 2.0 −15.7 21.4
2003 2.0 −15.8 25.7 10.6 8.4
2004 −2.7 −4.7 −0.5 17.1 11.6
2005 −3.5 1.2 6.2 −8.5 2.4
2006 −1.3 −9.5 1.1 17.4 9.3
2007 4.4 6.6 5.7 5.7 8.7
2008 −2.6 30.1 −5.7 19.3 −7.2
2009 8.0 −21.6 −3.8 −23.9 0.1
2010 3.5 4.0 5.3 21.3 4.2
2011 0.0 15.5 1.7 −9.7 5.6

Table 47: Yearly return of the currency carry strategy (in %)

Year G10 Balanced Global
1995 4.0
1996 28.1
1997 3.1
1998 −6.2 8.0
1999 9.5 1.5
2000 3.0 13.5
2001 9.2 11.3 12.2
2002 12.1 16.8 11.0
2003 14.7 30.4 21.2
2004 3.7 12.6 12.4
2005 7.7 18.2 15.3
2006 −0.2 2.6 0.8
2007 4.8 13.1 12.4
2008 −28.8 −23.3 −21.7
2009 22.8 24.1 18.2
2010 1.2 1.7 1.0
2011 −0.4 −6.4 −9.1
2012 9.3 6.0 6.7
2013 −1.8 −3.4 −4.6
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Table 48: Yearly return of the QMJ factor (in %)

Year
US Global

SQMJ BQMJ QMJ SQMJ BQMJ QMJ
1995 0.5 6.0 3.3 0.4 5.5 2.9
1996 10.0 7.9 9.0 7.1 5.9 6.6
1997 16.0 0.3 8.0 11.0 3.3 7.1
1998 11.2 15.6 13.5 9.1 10.4 9.8
1999 −8.6 −7.4 −7.8 −6.7 −5.1 −5.8
2000 40.4 8.0 24.0 28.7 8.3 18.5
2001 14.9 16.3 16.1 20.0 12.5 16.4
2002 36.6 9.5 22.7 33.5 8.4 20.4
2003 −22.4 −13.9 −18.2 −19.1 −13.9 −16.5
2004 6.1 −5.9 0.0 6.3 −4.3 0.9
2005 3.7 −4.4 −0.4 1.4 −5.4 −2.0
2006 −3.3 −6.4 −4.8 1.8 −2.4 −0.3
2007 5.7 8.1 6.9 9.4 8.9 9.2
2008 37.4 38.5 38.1 33.0 34.8 34.0
2009 −19.7 −9.1 −14.4 −11.5 −8.3 −9.8
2010 −6.6 −8.6 −7.6 −0.2 −4.8 −2.5
2011 22.0 21.4 21.8 22.8 20.7 21.8
2012 −5.7 −6.1 −5.8 2.1 −4.5 −1.2
2013 0.0 −3.9 −1.9 5.0 −2.5 1.2
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Table 49: Number of stocks

Country AFP NBIM AP4 MSCI World
Australia 660 270 0 69
Austria 56 35 8 8
Belgium 91 57 11 11
Canada 541 285 92 95
Denmark 85 40 15 13
Finland 83 64 19 12
France 397 212 69 70
Germany 596 202 54 52
Greece 132 29 0 0
Hong Kong 516 164 39 39
Ireland 38 22 5 3
Israel 97 61 0 9
Italy 129 129 27 25
Japan 1988 1284 303 311
Luxembourg 0 11 0 4
Netherlands 109 65 25 28
New Zealand 69 24 6 6
Norway 120 0 11 10
Portugal 38 24 5 5
Singapore 353 106 25 29
Spain 82 73 22 21
Sweden 203 126 146 29
Switzerland 135 130 28 37
United Kingdom 1103 440 104 109
United States 3594 1910 463 617
Total 11215 5752 1477 1612

The second column AFP corresponds to the average number of stocks used

by Asness et al. (2014) to build their QMJ factor. The third column NBIM

reports the number of stocks hold by NBIM at the end of December 2013.

The fourth column AP4 reports the number of direct listed participations of

AP4 at the end of June 2014. The last column gives the repartition of stocks

by country at the end of June 2014.

Table 50: Correlation matrix of risk factors (Asia Pacific, 1995 – 2013)

Factor MKT SMB HML WML SMB+ HML+ WML+

Volatility 21.5 10.6 11.5 17.3 24.9 24.9 23.3
MKT 100
SMB 11 100
HML 8 − 4 100
WML −28 6 −36 100

SMB+ 93 47 11 −25 100
HML+ 94 25 38 −36 94 100
WML+ 92 34 2 4 94 88 100
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Table 51: Correlation matrix of risk factors (Europe, 1995 – 2013)

Factor MKT SMB HML WML SMB+ HML+ WML+

Volatility 18.1 8.0 9.0 15.5 18.4 19.5 17.9
MKT 100
SMB −18 100
HML 19 −12 100
WML −34 10 −28 100

SMB+ 92 21 16 −31 100
HML+ 96 − 4 40 −39 95 100
WML+ 91 5 8 4 91 87 100

Table 52: Correlation matrix of risk factors (Japan, 1995 – 2013)

Factor MKT SMB HML WML SMB+ HML+ WML+

Volatility 18.5 10.9 10.3 16.6 21.8 20.2 20.3
MKT 100
SMB 6 100
HML −20 5 100
WML −11 −15 −27 100

SMB+ 87 54 − 8 −19 100
HML+ 90 34 15 −23 95 100
WML+ 91 24 −21 22 88 86 100

Table 53: Correlation matrix of risk factors (North America, 1995 – 2013)

Factor MKT SMB HML WML SMB+ HML+ WML+

Volatility 15.8 11.3 12.1 18.7 20.6 17.2 20.3
MKT 100
SMB 24 100
HML −23 −38 100
WML −16 23 −24 100

SMB+ 88 66 −30 − 5 100
HML+ 92 33 8 −22 89 100
WML+ 84 56 −37 34 90 78 100

Table 54: Statistics (in %) of long/short and long-only portfolios (Asia Pacific, 1995 – 2013)

Portfolio #0 #1 #2 #3 #4 #5 #6 #7 #8
SMB 0.0 10.0 20.0 0.0 20.0 30.0 0.0 50.0 100.0
HML 0.0 10.0 20.0 20.0 20.0 30.0 0.0 50.0 100.0
WML 0.0 10.0 0.0 20.0 20.0 30.0 60.0 50.0 100.0
µ (x±) 9.1 10.7 10.0 13.0 12.3 13.8 15.5 16.7 23.5
µ (x+) 9.7 9.1 10.7 10.1 10.5 12.1 10.7 10.7

µ (x+ | x±) −1.1 −0.9 −2.3 −2.1 −3.2 −3.4 −6.1 −12.8
σ (x±) 21.6 21.4 22.2 21.1 21.4 21.6 21.2 22.6 27.6
σ (x+) 22.0 22.5 22.1 22.6 23.4 22.2 23.7 23.7

σ (x+ | x±) 1.4 1.0 2.8 2.8 4.1 7.2 6.4 15.3
ρ (x+, x±) 99.8 99.9 99.3 99.4 98.6 94.6 96.3 83.2
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Table 55: Statistics (in %) of long/short and long-only portfolios (Europe, 1995 – 2013)

Portfolio #0 #1 #2 #3 #4 #5 #6 #7 #8
SMB 0.0 10.0 20.0 0.0 20.0 30.0 0.0 50.0 100.0
HML 0.0 10.0 20.0 20.0 20.0 30.0 0.0 50.0 100.0
WML 0.0 10.0 0.0 20.0 20.0 30.0 60.0 50.0 100.0
µ (x±) 9.2 11.2 10.3 13.1 13.2 15.2 17.5 19.2 29.0
µ (x+) 10.3 9.8 11.3 11.3 12.4 13.7 12.8 12.8

µ (x+ | x±) −0.9 −0.5 −1.9 −1.8 −2.8 −3.8 −6.4 −16.3
σ (x±) 18.1 17.7 18.3 17.7 17.5 17.4 17.4 17.8 21.6
σ (x+) 17.9 18.2 18.0 17.9 18.0 17.6 18.0 18.1

σ (x+ | x±) 1.1 1.0 2.2 2.2 3.3 5.6 5.8 14.1
ρ (x+, x±) 99.8 99.9 99.2 99.3 98.3 94.8 94.8 76.2

Table 56: Statistics (in %) of long/short and long-only portfolios (Japan, 1995 – 2013)

Portfolio #0 #1 #2 #3 #4 #5 #6 #7 #8
SMB 0.0 10.0 20.0 0.0 20.0 30.0 0.0 50.0 100.0
HML 0.0 10.0 20.0 20.0 20.0 30.0 0.0 50.0 100.0
WML 0.0 10.0 0.0 20.0 20.0 30.0 60.0 50.0 100.0
µ (x±) 0.5 1.4 1.5 2.3 2.2 3.0 2.1 4.5 7.6
µ (x+) 1.2 1.2 1.7 1.7 2.2 2.0 2.4 2.4

µ (x+ | x±) −0.2 −0.3 −0.6 −0.5 −0.8 −0.1 −2.1 −5.2
σ (x±) 18.6 18.4 18.6 18.1 18.3 18.5 20.1 19.4 24.4
σ (x+) 18.7 19.0 18.7 19.2 19.8 19.3 20.1 20.1

σ (x+ | x±) 1.5 1.2 2.9 2.9 4.4 6.8 6.2 14.3
ρ (x+, x±) 99.7 99.8 98.8 98.9 97.6 94.0 95.1 81.0

Table 57: Statistics (in %) of long/short and long-only portfolios (North America, 1995 –
2013)

Portfolio #0 #1 #2 #3 #4 #5 #6 #7 #8
SMB 0.0 10.0 20.0 0.0 20.0 30.0 0.0 50.0 100.0
HML 0.0 10.0 20.0 20.0 20.0 30.0 0.0 50.0 100.0
WML 0.0 10.0 0.0 20.0 20.0 30.0 60.0 50.0 100.0
µ (x±) 10.2 11.5 11.3 12.6 12.9 14.1 14.5 16.6 21.8
µ (x+) 11.1 10.9 11.8 11.9 12.8 13.4 13.0 13.0

µ (x+ | x±) −0.5 −0.4 −0.9 −0.9 −1.4 −1.1 −3.6 −8.8
σ (x±) 15.9 15.7 16.1 15.2 15.9 16.4 17.9 18.2 25.8
σ (x+) 16.4 16.6 16.3 17.1 18.1 17.9 18.5 18.5

σ (x+ | x±) 1.4 1.3 3.0 2.9 4.3 6.6 7.1 17.4
ρ (x+, x±) 99.7 99.7 98.4 98.8 97.4 93.2 92.5 73.6
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Table 58: Performance of EW long/short 5F portfolios (1995 – 2013)

Asia Pacific Europe Japan North America US Global

Statistic

µ (x) 13.2 14.3 6.8 11.2 10.0 13.8
σ (x) 10.0 10.0 10.0 10.0 10.0 10.0

SR (x | r) 1.04 1.14 0.40 0.83 0.71 1.10
MDD (x) 21.6 19.9 21.4 17.7 21.4 23.3

Table 59: Performance and weights of ERC long/short 5F portfolios (1995 – 2013)

Asia Pacific Europe Japan North America US Global

Statistic

µ (x) 13.1 13.8 7.2 11.5 10.4 14.0
σ (x) 10.0 10.0 10.0 10.0 10.0 10.0

SR (x | r) 1.03 1.10 0.44 0.86 0.75 1.11
MDD (x) 22.6 16.5 20.0 16.5 18.1 19.8

Weights

SMB 21.6 25.1 22.6 22.7 21.4 25.1
HML 20.0 22.5 24.0 21.3 22.6 22.6
WML 13.3 13.1 14.8 13.8 13.9 12.8
BAB 21.1 16.1 17.2 18.2 18.0 18.2
QMJ 24.1 23.2 21.5 24.0 24.1 21.4

Table 60: Performance and weights of MVO? long/short 5F portfolios (1995 – 2013)

Asia Pacific Europe Japan North America US Global

Statistic

µ (x) 15.4 15.7 9.0 10.8 10.0 14.7
σ (x) 10.0 10.0 10.0 10.0 10.0 10.0

SR (x | r) 1.26 1.28 0.61 0.80 0.71 1.19
MDD (x) 21.5 20.3 18.6 22.0 24.9 19.7

Weights

SMB 0.0 0.0 0.0 5.8 11.8 0.0
HML 26.3 25.4 57.7 14.9 14.8 31.1
WML 13.1 19.2 7.6 11.3 9.2 13.7
BAB 34.0 32.0 10.2 35.1 32.1 31.9
QMJ 26.5 23.3 24.4 32.9 32.0 23.4

Table 61: Performance and weights of MVO long/short 5F portfolios (1995 – 2013)

Asia Pacific Europe Japan North America US Global

Statistic

µ (x) 16.2 16.2 9.1 12.3 11.8 15.3
σ (x) 10.0 10.0 10.0 10.0 10.0 10.0

SR (x | r) 1.33 1.33 0.63 0.95 0.89 1.24
MDD (x) 23.8 25.2 18.1 22.1 21.8 21.9

Weights

SMB 0.0 0.0 0.0 33.0 36.9 0.0
HML 38.7 35.3 64.6 0.0 0.8 46.3
WML 20.5 23.8 13.5 0.2 0.0 20.6
BAB 29.5 40.9 1.3 29.8 24.2 26.6
QMJ 11.4 0.0 20.6 37.0 38.1 6.5
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B.2 Figures

Figure 34: Fama-French SMB factor (1995 – 2013)
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Figure 35: Fama-French HML factor (1995 – 2013)

Figure 36: Dynamics of the R2 coefficient in Asia Pacific (in %)
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Figure 37: Dynamics of the R2 coefficient in Europe (in %)

Figure 38: Dynamics of the R2 coefficient in Japan (in %)

103



Facts and Fantasies About Factor Investing

Figure 39: Dynamics of the R2 coefficient in North America (in %)

Figure 40: Comparison between WML and HML factors
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Figure 41: Comparison between FF and MF SMB risk factors (Europe, 2002-2014)

Figure 42: Comparison between FF and MF HML risk factors (Europe, 1999-2014)
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Figure 43: Comparison between FF and MF SMB risk factors (Japan, 2002-2014)

Figure 44: Comparison between FF and MF HML risk factors (Japan, 1999-2014)
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Figure 45: Relation between βmi and IVOLi (CAPM)

Figure 46: Relation between βmi and IVOLi (Fama-French)
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Figure 47: Performance of risk factors with the MSCI Europe Index (2004 – 2013)

Figure 48: Performance of risk factors with the Topix Index (2004 – 2013)
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Figure 49: Performance of long-only risk factors (Asia Pacific, 1995 – 2013)

Figure 50: Performance of long-only risk factors (Europe, 1995 – 2013)
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Figure 51: Performance of long-only risk factors (Japan, 1995 – 2013)

Figure 52: Performance of long-only risk factors (North America, 1995 – 2013)
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Figure 53: Comparison of VW and EW risk factors (Asia Pacific, 1995 – 2013)

Figure 54: Comparison of VW and EW risk factors (Europe, 1995 – 2013)
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Figure 55: Comparison of VW and EW risk factors (Japan, 1995 – 2013)

Figure 56: Comparison of VW and EW risk factors (North America, 1995 – 2013)
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