Financial Risk Management

Tutorial Class — Session 5

Professor: Thierry Roncalli Instructor: Amina Cherief

2021 - 2022

6 Copulas and Stochastic Dependence Modeling

6.1 The bivariate Pareto copula

We consider the bivariate Pareto distribution:

$$\mathbf{F}(x_1, x_2) = 1 - \left(\frac{\theta_1 + x_1}{\theta_1}\right)^{-\alpha} - \left(\frac{\theta_2 + x_2}{\theta_2}\right)^{-\alpha} + \left(\frac{\theta_1 + x_1}{\theta_1} + \frac{\theta_2 + x_2}{\theta_2} - 1\right)^{-\alpha}$$

where $x_1 \ge 0, x_2 \ge 0, \theta_1 > 0, \theta_2 > 0$ and $\alpha > 0$.

- 1. Show that the marginal functions of $\mathbf{F}(x_1, x_2)$ correspond to univariate Pareto distributions.
- 2. Find the copula function associated to the bivariate Pareto distribution.
- 3. Deduce the copula density function.
- 4. Show that the bivariate Pareto copula function has no lower tail dependence, but an upper tail dependence.
- 5. Do you think that the bivariate Pareto copula family can reach the copula functions \mathbf{C}^- , \mathbf{C}^{\perp} and \mathbf{C}^+ ? Justify your answer.
- 6. Let X_1 and X_2 be two Pareto-distributed random variables, whose parameters are (α_1, θ_1) and (α_2, θ_2) .
 - (a) Show that the linear correlation between X_1 and X_2 is equal to 1 if and only if the parameters α_1 and α_2 are equal.
 - (b) Show that the linear correlation between X_1 and X_2 can never reached the lower bound -1.
 - (c) Build a new bivariate Pareto distribution by assuming that the marginal distributions are $\mathcal{P}(\alpha_1, \theta_1)$ and $\mathcal{P}(\alpha_2, \theta_2)$ and the dependence is a bivariate Pareto copula function with parameter α . What is the relevance of this approach for building bivariate Pareto distributions?

6.2 Calculation of correlation bounds

1. Give the mathematical definition of the copula functions \mathbf{C}^- , \mathbf{C}^\perp and \mathbf{C}^+ . What is the probabilistic interpretation of these copulas?

- 2. We note τ and LGD the default time and the loss given default of a counterparty. We assume that $\tau \sim \mathcal{E}(\lambda)$ and LGD $\sim \mathcal{U}_{[0,1]}$.
 - (a) Show that the dependence between τ and LGD is maximum when the following equality holds:

$$LGD + e^{-\lambda \tau} - 1 = 0$$

(b) Show that the linear correlation $\rho(\tau, \text{LGD})$ verifies the following inequality:

$$\left| \rho \left\langle \boldsymbol{\tau}, \mathrm{LGD} \right\rangle \right| \leq rac{\sqrt{3}}{2}$$

- (c) Comment on these results.
- 3. We consider two exponential default times τ_1 and τ_2 with parameters λ_1 and λ_2 .
 - (a) We assume that the dependence function between τ_1 and τ_2 is C⁺. Demonstrate that the following relation is true:

$$oldsymbol{ au}_1=rac{\lambda_2}{\lambda_1}oldsymbol{ au}_2$$

- (b) Show that there exists a function f such that $\tau_2 = f(\tau_2)$ when the dependence function is \mathbf{C}^- .
- (c) Show that the lower and upper bounds of the linear correlation satisfy the following relationship:

$$-1 < \rho \langle \boldsymbol{\tau}_1, \boldsymbol{\tau}_2 \rangle \leq 1$$

- (d) In the more general case, show that the linear correlation of a random vector (X_1, X_2) can not be equal to -1 if the support of the random variables X_1 and X_2 is $[0, +\infty]$.
- 4. We assume that (X_1, X_2) is a Gaussian random vector where $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2), X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ and ρ is the linear correlation between X_1 and X_2 . We note $\theta = (\mu_1, \sigma_1, \mu_2, \sigma_2, \rho)$ the set of parameters.
 - (a) Find the probability distribution of $X_1 + X_2$.
 - (b) Then show that the covariance between $Y_1 = e^{X_1}$ and $Y_2 = e^{X_2}$ is equal to:

$$\operatorname{cov}(Y_1, Y_2) = e^{\mu_1 + \frac{1}{2}\sigma_1^2} e^{\mu_2 + \frac{1}{2}\sigma_2^2} \left(e^{\rho\sigma_1\sigma_2} - 1 \right)$$

- (c) Deduce the correlation between Y_1 and Y_2 .
- (d) For which values of θ does the equality $\rho \langle Y_1, Y_2 \rangle = +1$ hold? Same question when $\rho \langle Y_1, Y_2 \rangle = -1$.
- (e) We consider the bivariate Black-Scholes model:

$$\begin{cases} dS_1(t) = \mu_1 S_1(t) dt + \sigma_1 S_1(t) dW_1(t) \\ dS_2(t) = \mu_2 S_2(t) dt + \sigma_2 S_2(t) dW_2(t) \end{cases}$$

with $\mathbb{E}[W_1(t) W_2(t)] = \rho t$. Deduce the linear correlation between $S_1(t)$ and $S_2(t)$. Find the limit case $\lim_{t\to\infty} \rho \langle S_1(t), S_2(t) \rangle$.

(f) Comment on these results.

7 Extreme Value Theory

7.1 Extreme value theory in the bivariate case

- 1. What is an extreme value (EV) copula \mathbf{C} ?
- 2. Show that \mathbf{C}^{\perp} and \mathbf{C}^{+} are EV copulas. Why \mathbf{C}^{-} can not be an EV copula?
- 3. We define the Gumbel-Hougaard copula as follows:

$$\mathbf{C}(u_1, u_2) = \exp\left(-\left[(-\ln u_1)^{\theta} + (-\ln u_2)^{\theta}\right]^{1/\theta}\right)$$

with $\theta \geq 1$. Verify that it is an EV copula.

- 4. What is the definition of the upper tail dependence λ ? What is its usefulness in multivariate extreme value theory?
- 5. Let f(x) and g(x) be two functions such that $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$. If $g'(x_0) \neq 0$, L'Hospital's rule states that:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Deduce that the upper tail dependence λ of the Gumbel-Hougaard copula is $2 - 2^{1/\theta}$. What is the correlation of two extremes when $\theta = 1$?

6. We define the Marshall-Olkin copula as follows:

$$\mathbf{C}(u_1, u_2) = u_1^{1-\theta_1} u_2^{1-\theta_2} \min\left(u_1^{\theta_1}, u_2^{\theta_2}\right)$$

with $\{\theta_1, \theta_2\} \in [0, 1]^2$.

- (a) Verify that it is an EV copula.
- (b) Find the upper tail dependence λ of the Marshall-Olkin copula.
- (c) What is the correlation of two extremes when $\min(\theta_1, \theta_2) = 0$?
- (d) In which case are two extremes perfectly correlated?

7.2 Maximum domain of attraction in the bivariate case

1. We consider the following distributions of probability:

Distribution		$\mathbf{F}\left(x ight)$	
Exponential	$\mathcal{E}\left(\lambda ight)$	$1 - e^{-\lambda x}$	
Uniform	$\mathcal{U}_{[0,1]}$	x	
Pareto	$\mathcal{P}\left(lpha, heta ight)$	$1 - \left(\frac{\theta + x}{\theta}\right)^{-\alpha}$	

For each distribution, we give the normalization parameters a_n and b_n of the Fisher-Tippet theorem and the corresponding limit distribution distribution **G** (x):

Distribution	a_n	b_n	$\mathbf{G}\left(x ight)$
Exponential	λ^{-1}	$\lambda^{-1} \ln n$	$\mathbf{\Lambda}\left(x\right) = e^{-e^{-x}}$
Uniform	n^{-1}	$1 - n^{-1}$	$\Psi_1\left(x-1\right) = e^{x-1}$
Pareto	$\theta \alpha^{-1} n^{1/\alpha}$	$\theta n^{1/\alpha} - \theta$	$\Phi_{\alpha}\left(1+\frac{x}{\alpha}\right) = e^{-\left(1+\frac{x}{\alpha}\right)^{-\alpha}}$

We note **G** (x_1, x_2) the asymptotic distribution of the bivariate random vector $(X_{1,n:n}, X_{2,n:n})$ where $X_{1,i}$ (resp. $X_{2,i}$) are *iid* random variables.

- (a) What is the expression of $\mathbf{G}(x_1, x_2)$ when $X_{1,i}$ and $X_{2,i}$ are independent, $X_{1,i} \sim \mathcal{E}(\lambda)$ and $X_{2,i} \sim \mathcal{U}_{[0,1]}$?
- (b) Same question when $X_{1,i} \sim \mathcal{E}(\lambda)$ and $X_{2,i} \sim \mathcal{P}(\theta, \alpha)$.
- (c) Same question when $X_{1,i} \sim \mathcal{U}_{[0,1]}$ and $X_{2,i} \sim \mathcal{P}(\theta, \alpha)$.
- 2. What becomes the previous results when the dependence function between $X_{1,i}$ and $X_{2,i}$ is the Normal copula with parameter $\rho < 1$?
- 3. Same question when the parameter of the Normal copula is equal to one.
- 4. Find the expression of $\mathbf{G}(x_1, x_2)$ when the dependence function is the Gumbel-Hougaard copula.

8 Monte Carlo Simulation Methods

8.1 Simulation of the bivariate Normal copula

Let $X = (X_1, X_2)$ be a standard Gaussian vector with correlation ρ . We note $U_1 = \Phi(X_1)$ and $U_2 = \Phi(X_2)$.

1. We note Σ the matrix defined as follows:

$$\Sigma = \left(\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array}\right)$$

Calculate the Cholesky decomposition of Σ . Deduce an algorithm to simulate X.

- 2. Show that the copula of (X_1, X_2) is the same that the copula of the random vector (U_1, U_2) .
- 3. Deduce an algorithm to simulate the Normal copula with parameter ρ .
- 4. Calculate the conditional distribution of X_2 knowing that $X_1 = x$. Then show that:

$$\Phi_2(x_1, x_2; \rho) = \int_{-\infty}^{x_1} \Phi\left(\frac{x_2 - \rho x}{\sqrt{1 - \rho^2}}\right) \phi(x) \, \mathrm{d}x$$

- 5. Deduce an expression of the Normal copula.
- 6. Calculate the conditional copula function $\mathbf{C}_{2|1}$. Deduce an algorithm to simulate the Normal copula with parameter ρ .
- 7. Show that this algorithm is equivalent to the Cholesky algorithm found in Question 3.

9 Stress Testing and Scenario Analysis

9.1 Construction of a stress scenario with the GEV distribution

- 1. We note a_n and b_n the normalization constraints and **G** the limit distribution of the Fisher-Tippet theorem.
 - (a) Find the limit distribution **G** when $X \sim \mathcal{E}(\lambda)$, $a_n = \lambda^{-1}$ and $b_n = \lambda^{-1} \ln n$.
 - (b) Same question when $X \sim \mathcal{U}_{[0,1]}$, $a_n = n^{-1}$ and $b_n = 1 n^{-1}$.
 - (c) Same question when X is a Pareto distribution:

$$\mathbf{F}\left(x\right) = 1 - \left(\frac{\theta + x}{\theta}\right)^{-\alpha},$$

 $a_n = \theta \alpha^{-1} n^{1/\alpha}$ and $b_n = \theta n^{1/\alpha} - \theta$.

2. We denote by **G** the GEV probability distribution:

$$\mathbf{G}(x) = \exp\left\{-\left[1 + \xi\left(\frac{x-\mu}{\sigma}\right)\right]^{-1/\xi}\right\}$$

What is the interest of this probability distribution? Write the log-likelihood function associated to the sample $\{x_1, \ldots, x_T\}$.

3. Show that for $\xi \to 0$, the distribution **G** tends toward the Gumbel distribution:

$$\mathbf{\Lambda}(x) = \exp\left(-\exp\left(-\left(\frac{x-\mu}{\sigma}\right)\right)\right)$$

- 4. We consider the minimum value of daily returns of a portfolio for a period of n trading days. We then estimate the GEV parameters associated to the sample of the opposite of the minimum values. We assume that ξ is equal to 1.
 - (a) Show that we can approximate the portfolio loss (in %) associated to the return period \mathcal{T} with the following expression:

$$r(\mathcal{T}) \simeq -\left(\hat{\mu} + \left(\frac{\mathcal{T}}{n} - 1\right)\hat{\sigma}\right)$$

where $\hat{\mu}$ and $\hat{\sigma}$ are the ML estimates of GEV parameters.

(b) We set n equal to 21 trading days. We obtain the following results for two portfolios:

Portfolio	$\hat{\mu}$	$\hat{\sigma}$	ξ
#1	1%	3%	1
#2	10%	2%	1

Calculate the stress scenario for each portfolio when the return period is equal to one year. Comment on these results.