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Abstract
This paper studies the performance predictability of external fund

rating systems. Most investors use 5 stars rated funds to build their
portfolios. The underlying idea is that funds which were the best during
the last three years will be better performers than the other funds in the
future. It implies that the 5 stars rating is a good persistence measure of
the performance. Using a Markov modelling and the seminal empirical
work of Garnier and Pujol (2007), we show that ratings persistence is
poor. It means that fund selection or a fund picking process may not be
reduced to choose funds in a 5 stars rated universe.

1 Introduction
Fund ratings are generally a measure of past performance. However, they are
often used by investors in a prospective way. We may ask ourselves if such star
rating systems are robust enough to draw some conclusions from an investment
point of view.

The paper is organized as follows. In section two, we compar credit rating
systems and fund rating systems. We observe a large di�erence. Contrary to
credit rating systems which are qualitative criteria oriented, fund rating sys-
tems are generally based on quantitative criteria. In section three, we consider
Markov modelling of fund ratings and propose a new measure of the perfor-
mance persistence. In section four, we explain why the traditional statistical
measure of Hurst is not appropriate to measure the persistence of the funds.
Section �ve concludes and gives some implications for fund picking process.

∗All the authors are from SGAM Alternative Investments, except Thierry Roncalli who
comes both from SGAM Alternative Investments and the University of Evry.
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2 From credit ratings to fund ratings
In the credit market, investors need to have an idea of the issuers' creditworthi-
ness. Since the beginning of the twentieth-century, credit rating agencies such
as Standard & Poor's, Moody's or Fitch are specialized in assessing corpora-
tions and governments. In order to rate these institutions and their speci�c
issues, credit agencies have developed credit scoring techniques. For example,
regarding issuers' credit ratings, �Standard & Poors Ratings Services employs
fundamental credit analysis supplemented by quantitative models �. For
corporate and �nancial institutions, the credit analysis especially deals with
�nancial and business risks and follows RAMP (Rating Methodology Pro�le)
systematic framework. The �nancial analysis consists in evaluating the �rm's
accounting principles and relies on �nancial indicators (pro�tability, leverage,
cash �ow adequacy, liquidity and �nancial �exibility) and ratios (pro�t mar-
gins, return on investment, debt/capital, debt/cash �ow or debt service cover-
age, depending on the industry). So as to take into account the risks linked to
the �rm's environment, the business analysis includes country risk, industry
characteristics, competitive position, cost e�ciency and pro�tability to peers.
After being determinate, the di�erent variables of these analyzes are combined
into a score. But as they are interrelated, their weighting is not �xed and
depends on their value.

Besides the credit analysis, the credit agencies have placed emphasis on the
qualitative aspect. Actually, it's impossible to reduce the credit rating to a �x
and uniform process adapted to each issuer and issue. The factors in�uencing
the credit risk are unique to each industry, issuer and country. That is why
they must be weighted case-by-case. After the analytical team reviews infor-
mation from a variety of sources, the credit rating and the recommendation
are determined by the vote of a rating committee. Then, the rating is pub-
lished and the issuer/issue are placed under surveillance. Depending on the
frequency of the information sources, credit rating agencies schedule periodic
meetings with the management of the rated company. When major changes
occur the analytical team conducts again a comprehensive analysis in order to
determine the new rating. Thus, the frequency of the rating isn't rigid and
depends on each issue/issuer.

This position is shared by other credit rating agencies. For example, here
are some basic principles of Moody's rating system1:

�Quanti�cation is integral to Moody's rating analysis, partic-
ularly since it provides an objective and factual starting point for
each rating committee's analytical discussion. Those who wish fur-
ther information on the numerical tools we use may consult our
written research on industries and speci�c issues.

1source: http://www.moodys.com/moodys/cust/AboutMoodys/AboutMoodys.aspx?topic=rapproach
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However, Moody's ratings are not based on a de�ned set of
�nancial ratios or rigid computer models. Rather, they are the
product of a comprehensive analysis of each individual issue and
issuer by experienced, well-informed, impartial credit analysts.�

It is very important to note that credit rating is a measure of the likelihood of
default. It is then a forward-looking measure.

Given the success of credit rating agencies, other kinds of ratings have
been developed such as fund rating. Actually, people who want to invest in
mutual funds also need information to choose among the many available funds.
The main idea is to distinguish best mutual funds performers from worst. In
order to answer this question, agencies like Morningstar but also S&P have
developed since the end of the 90's funds rating methodologies. For instance,
the Morningstar rating system (whose �rst version was introduced in 1985)
consists in a stars system. Each fund is assigned a rating from one to �ve stars,
based on its risk-adjusted performance versus an assigned risk peer group. In
order to have an e�cient information, funds are only compared to others which
could be valid substitutes in a diversi�ed portfolio. The funds are classi�ed
according to the performance measure : the top 10% funds are �ve stars, the
next 22.5% are four stars, etc.

One problem arising with using fund rating systems is that they are purely
quantitative based on past performance. But as usually mentioned by dis-
claimer, �past performance is no indication of future returns�. Thus
we can ask ourselves about the pertinence of rating systems.

3 Fund ratings and persistence of the performance
3.1 Markov modelling of fund ratings
A rating system is de�ned by a set of notchesR = {R1,R2, . . . ,RK}. Consider
a mutual fund n with ratingRk at time t. We note R(n) (t) = Rk where R(n) (t)
is the random variable which represents the rating of the mutual fund n at time
t. Let us de�ne π(n) (s, k1; t, k2) as the probability that the rating of the mutual
fund goes from Rk1 at time s to Rk2 at time t. We have:

π(n) (s, k1; t, k2) = Pr
{
R(n) (t) = Rk2 | R(n) (s) = Rk1

}

This dynamic system is often modelled using an homogeneous Markov chain.
Let π = (πi,j) be the transition matrix between two consecutive unit periods.
This matrix has the properties πi,j ≥ 0 and

∑K
j=1 πi,j = 1. In this case, we

have:
π(n) (s, k1; t, k2) = e>k1

π(t−s)ek2
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Let us now consider the continuous time t ∈ R+. We note π (s; t) the transition
matrix from time s to time t. The transition matrix at period t corresponds
to π (t) = π (0; t). We call generator of the transition matrix π (t) the matrix
Λ = (λi,j) de�ned by:

π (t) = exp (tΛ)

The interpretation of this matrix is the following. If the transition probability
from the state i to the state j (j 6= i) in a short elapsed time ∆t is approxi-
matively proportional to ∆t, we have π (t, i; t + ∆t, j) = λi,j ∆t. The matrix
form is π (t; t + ∆t) = Λ ∆t. It comes that π (t + ∆t) = π (t) π (t; t + ∆t) =
π (t) Λ ∆t and we have dπ (t) = π (t) Λ dt. Because exp (0) is equal to the
identity matrix, we obtain the solution π (t) = exp (tΛ). We may interpret
λi,j ≥ 0 (j 6= i) as the instantaneous transition rate. Moreover, we may show
that Λ is a Markov generator if it veri�es

∑K
j=1 λi,j = 0. As the discrete case,

we have:
π(n) (s, k1; t, k2) = e>k1

eΛ(t−s)ek2

Table 1: Transition matrix of the one month probabilities (in %) estimated
using the S&P fund ratings

NR ? ?? ? ? ? ? ? ?? ? ? ? ? ?

NR 97.14 0.41 0.62 0.54 0.77 0.52
? 1.26 84.84 13.48 0.40 0.02 0.00
?? 0.78 14.23 67.30 16.96 0.73 0.00

? ? ? 0.70 0.84 22.34 62.30 13.75 0.07
? ? ?? 0.66 0.00 0.88 15.23 76.68 6.55

? ? ? ? ? 0.38 0.00 0.00 0.05 14.70 84.87

Source : Garnier and Pujol (2007).

Garnier and Pujol (2007) have studied the mutual funds of the equity asset
class sold in France from 2000 to 2006. They have estimated the empirical
transition matrix of the ratings by the method of maximum likelihood. NR
indicate that the fund is not rated. The results for S&P ratings are presented
in the Table 1. We read them in the following way: a mutual fund which is
rated 5 stars has a 84.87% probability to stay 5 stars the next month, but it
has also a 14.70% probability to become 4 stars and a 0.05% probability to
become 3 stars the next month. In order to verify the Markov property of
the rating system, we compute the in�nitesimal generator with the following
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formula2:
Λ̂ = 12 ln π̂

(
1
12

)

We obtain:

Λ̂ =




−0.34950 0.04757 0.07788 0.06334 0.09558 0.06512
0.15957 −2.16803 2.21463 −0.22631 0.02186 −0.00171
0.09039 2.33196 −5.55237 3.31681 −0.19758 0.01080
0.08505 −0.26478 4.36752 −6.58153 2.48664 −0.09290
0.08169 0.02765 −0.32000 2.75972 −3.54055 0.99149
0.04340 −0.00415 0.04254 −0.25245 2.22749 −2.05683




We remark that some o�-diagonal elements are negative. It indicates that
the transition matrix of the Table 1 is not Markov. In this case, we may use
one of the methods suggested by Israel et al. (2001) to build a valid Markov
generator. If we use the method [IRW-1] described in Appendix B, the estimate
of the matrix generator is:

Λ̄ =




−0.34950 0.04757 0.07788 0.06334 0.09558 0.06512
0.15957 −2.39605 2.21463 0.00000 0.02186 0.00000
0.09039 2.33196 −5.74995 3.31681 0.00000 0.01080
0.08505 0.00000 4.36752 −6.93921 2.48664 0.00000
0.08169 0.02765 0.00000 2.75972 −3.86054 0.99149
0.04340 0.00000 0.04254 0.00000 2.22749 −2.31343




3.2 A new measure of the performance persistence
Using the previous generator, we may compute all the transition probabilities
for all time periods with the formula:

π(n) (s, k1; t, k2) = e>k1
eΛ(t−s)ek2

Figures 1, 2 et 3 present some results. The �rst �gure indicates the probability
that the mutual fund is rated 5 stars at time t whereas the second �gure indi-
cates the probability that the fund is rated 1 star. We remark that traditional
order relationships are well veri�ed, in particular:

Pr {R (t) = 5? | R (0) = Rk1} ≥ Pr {R (t) = 5? | R (0) = Rk2}

if Rk1 > Rk2 and:

Pr {R (t) = 1? | R (0) = Rk1} ≥ Pr {R (t) = 1? | R (0) = Rk2}

if Rk1 < Rk2 .

2All the matrix functions use algorithms based on the Schur decomposition of Appendix
A.
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Figure 1: Probability Pr
{
R(n) (t) = 5? | R(n) (0) = Rk

}

Figure 2: Probability Pr
{
R(n) (t) = 1? | R(n) (0) = Rk

}
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Figure 3: Probability Pr
{
R(n) (t) ≥ 3? | R(n) (0) = Rk

}

Using the previous generator, we may also compute the two-years transition
matrix (probabilities are expressed in %):

π̂ (2) =




53.72 10.38 11.22 9.38 9.91 5.39
14.88 24.35 22.89 16.99 14.70 6.18
13.77 23.65 22.80 17.33 15.57 6.88
13.13 22.81 22.55 17.55 16.37 7.60
12.33 21.35 22.02 17.82 17.64 8.84
11.08 19.40 21.25 18.15 19.42 10.70




It means that a fund which is rated today 5 stars has a probability of only
10.70% to stay 5 stars two years later and it has a bigger probability to become
one star (this probability is 19.40%). Let us de�ne t̄k such that:

Pr {R (t) = Rk | R (0) = Rk} = Pr {R (t) 6= Rk | R (0) = Rk}
If t ≥ t̄k, a fund rated Rk at time 0 has a bigger probability to have another
rating at time t. t̄k may be viewed as a persistence measure of the
rating Rk. If we exclude the state NR, we obtain the following results: t̄k
takes respectively the values expressed in months: 5.738, 2.031, 1.522, 2.927
et 4.331 for the ratings one to 5 stars. We remark �rst that the persistence
measure is globally small. Indeed, the most persistent rating is one star, and
its persistence does not exceed 6 months. It is interesting to note that the two
most persistent ratings are the extreme ratings (one and �ve stars).
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Figure 4: Persistence probability of the S&P ratings

Figure 5: Persistence probability of the Moringstar ratings
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Figure 6: Comparison of persistence probabilities

Figure 7: Persistence probabilities of the S&P Credit ratings
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If we use the Morningstar ratings, we obtain Figure 5. It is interesting to
compare the persistence measure t̄k of the two rating systems (see Figure 6).
We remark that they don't have the same behavior except for the two extreme
ratings.

If we compare these persistence measures with those computed in credit
ratings systems, they are very di�erent. For S&P credit ratings3, the persis-
tence measure is closed to 9 years for AAA and AA rated companies (see Figure
7).

4 A remark about statistical persistence and Hurst
exponent

4.1 De�nition of long memory processes
In statistics, the notion of persistence (or long memory) is de�ned as follows:
We say that Xt is a long memory process if the associated autocorrelation (pos-
itive) function decay at a hyperbolic rate. We may illustrate this phenomena
by studying the rate Rρ (k):

Rρ (k) =
ρ (k + 1)

ρ (k)

where ρ (k) is the autocorrelation function at horizon k. In the case of long
memory process, this rate grows and tends to one. It means that the loss of
correlation decreases with lags.

4.2 The Hurst exponent
In order to characterize the property of persistence, we use generally the statis-
tical measure H called Hurst exponent. This measure may take values between
0 and 1:

1. statistical persistence corresponds to the case H > 1/2;

2. if H < 1/2, the process is short memory4;

3. if H is equal to 1/2, the process has no memory.

In Figure 8, we have simulated centered processes for several values of H.
When H is close to 0, we remark that a positive value is generally followed by
a negative value. It is not the case when H is close to 1. We suppose that these
values represent daily returns of a fund. By compounding them, we may then
compute the corresponding tracks. We verify that behaviors are very di�erent
(see Figure 9). The higher is H, the more regular is the fund.

3We use the transition matrix estimated by Kavvathas (1999).
4The decay of the autocorrelation function is geometric.
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Figure 8: Simulation of returns for di�erent values of Hurst exponent

Figure 9: Simulation of tracks
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4.3 Using Hurst exponent to measure the persistence of the
performance

Hurst exponent is used by some fund rating systems (Europerformance Edhec
and Lipper). For example, Lipper ranks the funds into three groups (H < 0.45,
0.45 < H < 0.55 and H > 0.55) to characterize the rentability persistence.
One of the big issue is the estimation of H. The most known method is based
on R/S analysis. Another method called GPH is based on the spectral density
of ar�ma process. These methods have good properties when the sampling
size is very large. However, for small size, the variance of these estimates are
huge. It is then di�cult to distinguish the case H > 0.5 for the other cases.
Let us consider a Monte Carlo study. The true value of H is 0.7. We have
represented the density of the estimator for di�erent sampling sizes in Figure
10. If the size is equal to 200, we observe that the estimator has a probability
bigger than 20% to take a value less than 0.5.

Figure 10: Density of spectral and Hurst estimators

5 Implications for fund picking processes
We discuss here some implications when one wants to develop an internal fund
picking process (for example in the case of multi-management, fund of funds
management or structured products on basket of mutual funds). The main
message is that fund ratings are only one part of the fund picking process and
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must be completed by qualitative analysis. Moreover, fund picking process
make sense if we actively manage the basket of funds and if we implement
quick substitution when fund pickers are not comfortable with some funds.

5.1 Fund rating as a screening tool of mutual fund perfor-
mances

As said previously, fund ratings are a measure of risk-adjusted performances
versus an assigned risk peer group. Thus, it enables to reduce the funds uni-
verse to the presumed best ones. Actually the number of funds amounts to
around 64 506 funds at the end of 20065. It's impossible to have a thorough
knowledge of all these funds. By limiting the analysis to rated funds the in-
vestors' work is clearly simpli�ed. But they must not settle for these ranking
and only select funds that are best graded. This article has given rise to the
fact that fund ratings are non-persistent and the ranking is only based on past
performance which doesn't give a good indication of future returns.

That's why fund ratings must be used as a tool to identify potential can-
didate funds, but fund picking process may not only be reduced to choose the
best starred funds.

5.2 The importance of qualitative analysis
Given that fund ratings are only based on quantitative models, qualitative
analysis are necessary to build a fund picking process. It's the only way of
integrating other available information which isn't taken into account by quan-
titative approach. This covers for example:

1. Team expertise and stability

2. Investment universe

3. Investment philosophy and process

4. Investment bias (style, market cap, sector, etc.)

5. Management style (passive/active, Bottom-up/top-bottom)

This qualitative information is necessary in a fund picking process to un-
derstand funds past performances. Actually good rating may be due to biases
or lucky bets taken by the manager. Even if the fund performed well last years,
it may underperform in the near future. That's why a fund picking process
has to assess the adequacy of the management style to the current economic
situation and to detect possible �aws in the management process.

5Investment Company Institute, 2007 Investment Company Fact Book,
http://www.icifactbook.org, 2007.
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5.3 The importance of active management
It is obvious that a �xed basket of 5 stars funds may not be the good underly-
ing of long maturity product. In asset management, strategic allocation is the
core of portfolio construction. Since several years, it is known that strategic
allocation may be completed by tactical allocation in order to manage dynam-
ically asset allocation. In order to have exposure to asset classes, the investor
may choose between two ways: invest in (passively managed) indexes or in (ac-
tively managed) funds. However, as explained before, passive basket of funds
(even if all the funds are 5 stars) are not the good solution. It is important to
actively manage the underlyings of the basket. It means that switching from
one fund to another fund is part of an e�cient fund picking process. Fund
picking process makes sense if the manager of the basket of funds implements
quickly changes decided by fund pickers.

Given that economic situation evolves constantly fund pickers have to regu-
larly update the allocation to optimize the expected risk/return pro�le accord-
ing to the current economic prospects. For instance, as we can see in Figure
11, depending on the period it's more pertinent to invest in growth or value
funds. A comparison between a smid cap index and a large cap one will give
the same result.

Figure 11: One-year performance di�erence between the Russell 1000 Growth
and Value indexes
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A Schur decomposition and matrix functions
Let A be a square matrix. The Schur decomposition is:

A = TST ∗

with T a unitary matrix (T is called the transformation matrix) and S a upper
diagonal matrix (S is called the real Schur form).

Let f be a real function de�ned by:

f : R −→ R
x 7−→ y = f (x)

It is possible to de�ne this function in the space M of square matrices:

f : M −→M
A 7−→ B = f (A)
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Let us consider the case of the square root real function f (x) =
√

x = x1/2. If
the square matrix A is positive, we may de�ne the matrix B such that:

BB∗ = B∗B = A

B is called the square root of A and we note B = A1/2.

Let f be a real function. They are several ways to generalize this function
in the space of matrices. The most used generalization is based on the Taylor
expansion:

f (x) = f (0) + xf ′ (0) +
x2

2!
f ′′ (0) + . . .

We may show that if the series converge for |x| < α, then the matrix function
f (A) de�ned by:

f (A) = f (0) + Af ′ (0) +
A2

2!
f ′′ (0) + . . .

converge to a matrix B if |A| < α and A is a square matrix. We note B = f (A).
Let us consider the case of the exponential function. We have:

f (x) = ex =
∞∑

k=0

xk

k!

We deduce that the matrix exponential is given by the following expression:

B = eA =
∞∑

k=0

Ak

k!

Note that the matrix logarithm of B is then the matrix A and we note A = ln B.

Matrix functions are generally computed using the Schur decomposition.
In most cases, we may compute f (A) with:

f (A) = Tf (S)T ∗

where A = TST ∗ is the complex Schur decomposition of A. In the general
case, we consider the algorithm 11.1.1 of Golub and Van Loan (1989) whereas
in the case of the exponential function, we use their algorithm 11.3.1.

B Finding a valid Markov generator
Let π̂ (t) be a transition matrix between 0 and t. If π̂ (t) is a Markov matrix,
then there exists a generator Λ such that:

π̂ (t) = exp (tΛ)
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An estimate of Λ is also Λ̂ de�ned by:

Λ̂ =
1
t

ln π̂ (t)

Λ̂ is a Markov generator if each o�-diagonal element is positive and all its row-
sums are 0. If some o�-diagonal elements are negative, it means that Λ̂ is not
a Markov generator and π̂ (t) is not a Markov transition matrix. In order to
obtain a valid generator, Israel et al. (2001) suggest two methods by replacing
the negative o�-diagonal entries with 0 and adding the appropriate value back
into other entries to preserve the property of having row-sums 0.

1. In the �rst method [IRW-1], we add the negative values back into the
corresponding diagonal entry:





λ̄i,j = max
(
λ̂i,j , 0

)
i 6= j

λ̄i,i = λ̂i,i +
∑

j 6=i min
(
λ̂i,j , 0

)

2. In the second method [IRW-2], we add the negative values back into all
the entries of the same row which have the correct sign:





Gi =
∣∣∣λ̂i,i

∣∣∣ +
∑

j 6=i max
(
λ̂i,j , 0

)

Bi =
∑

j 6=i max
(
−λ̂i,j , 0

)

λ̄i,j =





0 i 6= j and λ̂i,j < 0
λ̂i,j −Bi

∣∣∣λ̂i,j

∣∣∣ /Gi Gi > 0

λ̂i,j Gi = 0
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