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1 Introduction

Quantile regression turns out to be a very suitable method when usual linear regression comes up against
robustness problems. Moreover, the entire conditional distribution of a response Y given values = of a
predictor X may prove as relevant as the only conditional mean function. That is why we try in this article
to summarize key definitions and practical use of quantile regression models.

First, we detail basic principles of the method and its implementation thanks to linear programming.
We try to solve the following problem: given a response Y to a predictor X, we use a linear model of the
conditional 7-quantile of Y given X = x. Then, using the above-mentioned results, we explain how we can
implement the methods proposed by YU and JONES [8] as regards local linear (or quadratic) regression and
show the advantages of those techniques.

2 Main topic
Given a random variable Y and its distribution function F, we denote by

Q(7) =inf{y | F(y)> 7} (1)

the 7" quantile of Y. The sample analogue g of Q (7) is called the 7t" sample quantile and may be formulated
as the solution of the following optimization problem, given a random sample (yn),_;  x:

min Y Tl —gl+ Y (1-7) |y —dl (2)
{nlyn>q} {nlyn<q}

For any 0 < 7 < 1, we denote p, (u) = u x (T — 1[u<0]), so that the problem may be formulated as follows

min 3" p, (4, — 9) (3)

which yields a natural generalization to the regression context. The linear conditional quantile function can
be estimated by solving, for X € RX and 3 € RX:

i sz o~ 21) (@
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3 Introducing M-estimators

3.1 Background on M-estimators

We use here the results presented in GOURIEROUX and MONFORT [1]. Considering a parametric or semi-
parametric model with parameter 6 € © and observations (X, Y”)nzlw., N+ We have:

Definition 1 A M -estimator of a function g (0) is the solution of an optimization problem in the form

mln U (Y, Xn; 5}
Z 9 o)

The study of M-estimators is very similar to that of maximum likelihood estimators. The original idea is to
replace the above-mentioned problem by the associated limit problem:

min ExEqU (Y, X;9) (6)
9€9(0)

where Eg is the expectation under the “true” conditional distribution of Y given X = z and Eyx is the
expectation under the “true” marginal distribution of X.

The following theorem ensures convergence of M-estimators towards the “true” limit:



Theorem 1 If
1. the pairs (X,,Y,) are i.i.d.,
2. G =g(0O) is a compact (or open) set,

3. U is a continuous function of g, and its expectation under to the “true” distribution of (X,Y) exists
for any g,

4 % 25:1 U (Y, X0; ) is almost surely uniformly convergent on G to ExEo¥ (Yy,, Xn; g),

5. the only solution of the problem (6) is g% = goo (00), where Oy is the parameter of the “true” distribu-
tion,

then, there exists a M-estimator that converges to g (0g) if and only if VO € O, g (0) = g (0).

Thus when regularity conditions are established, we only have to prove that the solution of (6) is the expected
one, whatever the value of the parameter.

3.2 Quantile regression and M-estimators

Let us fix 7 € ]0,1], and study how the program (4) provides us with an estimation of Q, (Y | X = ).
Suppose that Y,, = q(X,, ) + u,, where q is a continuous function of 3 and the random variables w,, are
i.i.d. such that Pr{u, <0} = 7. We then have Q, (Y | X = z;8) = q(X, ). The point is to verify the
hypothesis of Theorem 1 when estimating 5 with U (Y,,, X,,; 8) = p, (Y — q (X, 8)). Suppose now that

e the pairs (X,,Y,,) are independent and identically distributed,

e and Va € R, E[|Y — af] exists.

Following Theorem 1, the sequence of M-estimators B N converges to  if and only if 3, is the only solution
of

min U, (Y, X; 8) = ExEop, (Y — q (X, 3)) (7)
BERK

Proposition 2 If the 7-quantile of Y | X = z is unique and defined by q (X, B,), and if 8 is entirely
determined by the conditional T-quantile ', then B3, is the only solution of mingegpx Voo (Y, X 6).

Proof. Let f and F be the density and distribution functions of the residuals u. Let a be any real
number. We have:

Bpr(u=a) = [ (=)l o + (= 1) (0= 0) Hu-azol] £0) du
= //Tl[u>t>a] dt - f(u) du—!—//(l —7) Lu<i<a) dt - f(u) du

Interchanging symbols / , we get
= [P @)t + (1= DF () L]

= [l FO) 1+ (- DT @) a .

The minimum of this expression is achieved for any a verifying Pr{u < a} = 7. The problem (6) may be
reformulated with w:

ﬁrg& p- (u+a(X,By) —a(X,3))

The solution is then defined by q (X, 5,) —q(X,5) =0, ie. G;,. m
Yie. [V, h(z,B) = h(z,By)] = B = Bo-




4 Estimation of the parameters by linear programming

We suppose here that we have for the conditional quantile function a linear statistical model in the form
q(X,3) = X T 3. In this case, the optimization may be formulated as an usual linear programming problem.

4.1 Reformulation of the problem
Write Y with only positive terms:

K
= Z‘rn,kﬁk + up

k=1
K

= Y wax (B - 8,) +ut —uy (9)
k=1

The optimization program (4) can be written as

z = argmin c'z

Az =y
u.c. { 2> 0 (10)

where

X = (Xla"'vXN)T
(X) _X7IN7_IN)
y = (Yl,...,

Ya)'
ﬁ+
L = ﬁ; ) c R2K+2N

N
|

U
u
0
0
c = 1 (11)
T

(1-7)1

Thus, solving the former optimization problem consists in minimizing a linear function subject to linear
constraints.

When considering the simplex method to solve the program, one is confronted with computational issues:
how to save and manipulate the constraints matrix, when the number of observations becomes important —
dim A ~ N x 2N. Moreover, one has to deal with the well-known slowness of the procedure. That is why
the interior-point method, rather fast when applied to large data sets, is more suitable.

4.2 Interior-point method

Theoretical developments of this method are extensively presented in BONNANS, GILBERT, LEMARECHAL
and SAGASTIZABAL [2]. We refer to PORTNOY and KOENKER [5] for its application to quantile regression.

The original idea of interior-point methods is to replace a linear program with bounded variables, such
as

min ¢’z uc x>0 (12)
x

with a sequence of p-programs
min ¢’z — p E Inz,, (13)
x

m



The logarithmic barrier functions accounts for positivity constraints on z coordinates, becoming infinite
as x approaches the boundary of the feasible set. Starting from a feasible point, we perform a standard
Newton optimization procedure to find the “right” direction and we choose the step that minimizes the
barrier function. For more details, please refer to PORTNOY and KOENKER [5].

4.3 Application to quantile regression

Just know that for reasons of symmetry as well as computability, we introduce the dual program:

a = argmax yTa
XTa=(1-7)XT1
u.c { ac 0, 1]V (14)

Please refer to PORTNOY and KOENKER [5] for further details.

4.4 Implementation

The procedures of the Qreg library are adapted from a program by Roger Koenker. This program may be
found at
http://www.econ.uiuc.edu/ roger/research/rqn

5 Local linear (or quadratic) regression

5.1 Principle

We want to estimate at any point the conditional 7"-quantile of Y given X = z. Our key article is YU
and JONES [8]. The most natural idea for such an estimation is to choose observations of Y such as the
associated X is near x and to calculate the 7t"-quantile on this sample. Denoting h the bandwidth, it implies
calculating the quantile of observations of Y with weight 1 if distance from X to x is at most h and 0 else.

In the same approach, we can consider performing kernel weighted local linear fitting, allowing all ob-
servations to be taken into account. Denoting K the kernel function (Gaussian, Epanechnikov, etc.), we
calculate the quantile of Y thanks to the program (2) in a weighted version. Our quantile ¢ is then obtained
by solving the following problem

N
i n n 15
r;lelﬂgg;w pr (Yn — Q) (15)

wn = K (“’” ‘h%) (16)

h is now a scale parameter controlling the amount of smoothing applied to the data. In practice, this
approach gives questionable results when there is a strong functional dependency between x and the quantile
of Y | X = x — for example, when the dependency is linear with steep gradient. Overcoming this bias implies
performing local linear regression.

with

Let us define a local linear model for the quantile, centered in x:
Q (Y |X=2+6)~a-b+q (17)
We want to estimate the constant g of this regression (6 = 0). The problem to solve is then:

N

min WP, (Yn —a(xp — ) — 18
e 2 pr (y ( ) =) (18)

We may also consider a quadratic model defined by
N

G ST wapy (n—a (e —a) = b —0)* ~q) (19)
@ n=1



5.2 Implementation

The choice of h for the local linear regression is extensively discussed in YU and JONES [8] and RUPPERT,
SHEATHER and WAND [9]. In practice, for thousands of observations, the parameter h does not have a strong
influence. Yu and Jones propose a rule-of-the-thumb method for the estimation of h in quantile regression
given the optimal A for local O.L.S. of Y on X, noted hApean. They refer to RUPPERT, SHEATHER and WAND
[9] for the choice of hmean (This method requires the calculus of the second derivative of E (Y | X = z) in

Our procedures only use the formula in RUPPERT, SHEATHER and WAND [9] for Amean, without calculating
the second derivative, and we follow YU and JONES [8] to choose the optimal bandwidth k. A small correction
is possible via a global variable, but is not often needed.

Results are presented in Figures 1 and 2. We find that the linear regression gives correct results in quasi-
affine zones. But when the second derivative is high enough, results are much more questionable. That is
why in this case quadratic regression seems more suitable.

5.3 Beyond the Normal distribution

When we perform a linear regression, we assume that (Y, X) is a gaussian vector. When Y and X are not
normal-distributed but the copula is Normal, linear regression could be performed with some modifications
(the regression is done in the ¥ projection space). When copula is not Normal, some preliminary tests show
that local regression gives very good results (in particular for the local quadratic regression). For more
details, please refer to COSTINOT, RONCALLI and TEILETCHE [10].
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Figure 2: Linear vs quadratic regression (II)



A The GAUSS Qreg library

A.1 Introduction
A.1.1 Installation

1. The file libQreg.zip is a zipped archive file. Copy this file under the root directory of GAUSS, for
example C:\GAUSS.

2. Unzip it with archive mode. It is automatically recognized by WinZip. With Unzip or PKunzip, use the
-d flag
pkunzip -d libQreg.zip

Directories will then be created and files will be copied over them:

target_path readme. qreg
target_path\examples\qreg examples and tutorial files
target_path\lib library file
target_path\src\qreg source code files

3. Run GAUSS. Log on to the src\greg directory? and add the path to the library file greg.lcg in the
following way:

lib qreg /addpath

A.1.2 Getting started
Gauss 3.2 for OS/2, Windows NT/95 or Unix is required to use the Qreg routines.

A.1.2.1 The file readme.Qreg The file readme.Qreg contains last minute information on the Qreg
procedures. Please read it before using them.

A.1.2.2 Setup In order to use these procedures, the Qreg library must be active. This is done by
including Qreg in the LIBRARY statement at the top of your program:

library Qreg;

To reset global variables in subsequent executions of the program, the following instruction should be used:
setQreg;

If you plan to make any right-hand reference to the global variables, you will also need the statement:
#include target_path\src\qreg\qreg.ext;

The Qreg version number is stored as a global variable:
_Qreg_ver 3 x 1 matrix where the first element indicates the major version number, the

second element the minor version number, and the third element the revision
number

2You may use the commands ChangeDir or chdir. Note that you can verify that you are in the src\greg directory with the
cdir(0) command.



A.1.3 What is Qreg?

Qreg is a GAUSS library for computing quantile regression. Qreg contains the procedures whose list is given
below. See the command reference part for a full description.

e localQreg: Local Quantile Regression.

e Qreg: Linear Quantile Regression.

e setQreg: Resets the global variables.

e _Qreg_solveLP1: Solves the dual program using using interior-point method.

e _Qreg_solveLP2: Solves the dual program using using QP method.

A.1.4 Using Online Help

Qreg library supports Windows Online Help. Before using the browser, you have to verify that the Qreg
library is activated by the library command.

A.2 Command reference

The following global variables and procedures are defined in Qreg. They are the reserved words of Qreg.

localqgreg, _localgreg, qreg, _qreg_algr, _qreg_big, _qreg_eps, _qreg_h, _gregmaxit, _qregmtd,
_greg_printiters, _gqreg_sigma, _greg_solvelpl, _greg_solvelp2, _qreg ver, setqreg

The default global control variables are

_Qreg_algr 1
_Qreg big 10%°
_Qreg_eps 0.0001
_Qreg.h 1
_Qreg maxit 50
_Qreg_mtd 1
_Qreg_PrintIters 0
_Qreg_sigma 0.99995



B Purpose

Local quantile regression.

B Format

localQreg

q = localQreg(Y,X tau,xstar);

B Input
Y
X
tau
xstar

Bl Output
q

B Globals
__altnam

__output

_Qreg_algr

_Qreg_h
_Qreg_mtd

B Remark

N x 1 vector, dependent variable
N x 1 vector, independent variable
M x 1 vector, quantile levels

P x 1 vector, quantile points

P x M matrix, estimated quantile Y | X = o*

P x 1 vector, variable names (default = 0)
scalar, (default = 1)

1 — print the statistics

0 — no printing

scalar, LP algorithm (default = 1)

1 for the interior-point method

2 for the QP method

scalar, multiplicative factor of the default bandwidth (default = 1)
scalar, regression type (default = 1)

1 for linear regression

2 for quadratic regression

See the procedures _Qreg_SolvelP1 and _Qreg_SolveLP2 for the optimization step.

B Source
sre/qreg.src

10



Qreg

B Purpose
Linear quantile regression.
B Format
{beta,u_plus,u_minus} = Qreg(Y,X tau,w);
B Input
Y N x 1 vector, dependent variable
X N x K vector, independent variables
tau M x 1 vector, quantile levels
w N x 1 vector, containing weights (0 for uniform weights)
Bl Output
beta (K + 1) x M matrix, estimated coefficients
u_plus N x M matrix, positive part of residuals
u_minus N x M matrix, negative part of residuals
B Globals
__altnam P x 1 vector, variable names (default = 0)
__output scalar, (default = 1)

1 — print the statistics
0 — no printing
_Qreg_algr scalar, LP algorithm (default = 1)
1 for the interior-point method
2 for the QP method

B Remark

See the procedures _Qreg_SolvelLP1 and _Qreg_SolveLP2 for the optimization step.

The linear regression is

Y=0+08X+u
A aT

and the procedure returns the vector [ 3, 3] .
B Source

sre/qreg.src

11



setQreg

B Purpose
Resets the global variables declared in greg.dec.
B Format
setQreg;
B Remark
The default global control variables are
_Qreg_algr 1
_Qreg_big 1020
_Qreg_eps 0.0001
_Qreg.h 1
_Qreg maxit 50
_Qreg_mtd 1
_Qreg_PrintIters 0
_Qreg_sigma 0.99995

B Source
src/qreg.src

12



_Qreg_solveLP1 « _Qreg_solveLP2

B Purpose
Solves the linear program
rnwincT:v we. Az =band 0<z <z"
B Remark
We do not describe these procedures because they are internally used by Qreg and localQreg. But if
you want to use them, do not forget that they returns the dual solution (not the primal solution).

B Source
sre/qreg.src

13



A.3 Tutorial

e This first example shows the use of the different gloval variables.

new;

library Qreg,pgraph;

setQreg;

cls;

N = 100;

X = rndu(N,2);

Y = 12 + 3*X[.,1] + 5*X[.,2] + .2*rndn(rows(X),1);

tau = 0.05/0.50/0.95/0.75;

output file = gqregl.out reset;

_Qreg_algr = 1; /* Interior-point method */
_Qreg_PrintIters = 0; /* Do not print the iterations */
__output = 2; /* Print the statistics */

{beta,u_plus,u_minus} = Qreg(Y,X,tau,0);

_Qreg_PrintIters = 3; /* Printing every 3 iterations */
{beta,u_plus,u_minus} = Qreg(Y,X,tau,0);

_Qreg_algr = 2; /* QP method */
{beta,u_plus,u_minus} = Qreg(Y,X,tau,0);

__altnam = ’’First’’ | ’’Second’’; /* Use variable names */
{beta,u_plus,u_minus} = Qreg(Y,X,tau,0);

output off;

rndseed 123;

1000;

10*rndu(N,1)-5;

= 5 + 2*X + rndn(rows(X),1)*10;

tau = 0.05/0.5010.95/0.75;

_Qreg_algr = 1;

{beta,u_plus,u_minus} = Qreg(Y,X,tau,0);

< =
"

xstar = seqa(-5,10/200,201);
q = beta[l,.] + beta[2,.] .* xstar;

graphset;
begwind;
makewind(9,6.855,0,0,1);
makewind(9,6.855,0,0,1);

fonts(’’simplex simgrma’’);

setwind(1);
_pdate = 0; _pframe = O; _pnum = 2;
_plctrl = 15; _pltype = 6; _plwidth = 5; _pstype = 8|9/10[11;
xlabel(’’\214X’’); ylabel(’’\214Y’’);
xtics(-5,5,1,1);
ytics(-20,30,10,1);
_plegstr = ’’\202t\201 = 5%\000\202t\201 = 50%\000\202t\201 = 95%\000\202t\201 = 75%°’;

_plegctl = {2 5 6.5 1};
xy (xstar,q) ;

_plegctl = 0;
setwind(2);

_plctrl = -1; _pstype = 3; _psymsiz = 0.4;
xy(X,Y);

14



graphprt(’’-c=1 -cf=qregl.ps’’);

endwind;

Qreg - Linear Quantile Regression Version 1.0.0 4/27/2001 5:35 pm
Total observations: 100

Number of variables: 2

VAR. / tau (in %) 5.000 50.000 95.000 75.000

CONSTANT 11.7837 11.9274 12.2430 12.0341

X01 2.8421 3.0253 3.0264 3.0195

X02 4.8994 5.0403 5.0190 5.0483

iter. / gap / mu 3 1.8637755 0.009758235

iter. / gap / mu: 6 0.01000313 1.3313893e-005

iter. / gap / mu: 9 1.4972544e-005 3.4681612e-008

iter. / gap / mu: 3 0.21025711 0.0001474261

iter. / gap / mu: 6 0.00045417086 3.9935013e-007

iter. / gap / mu: 3 3.0758464 0.012127431

iter. / gap / mu: 6 0.08261169 0.00014484139

iter. / gap / mu: 9 5.9193175e-007 1.0355861e-014

iter. / gap / mu: 3 0.85150539 0.00045107856

iter. / gap / mu 6 0.011686899 7.0206601e-006

Qreg - Linear Quantile Regression Version 1.0.0 4/27/2001  5:35 pm
Total observations: 100

Number of variables: 2

VAR. / tau (in %) 5.000 50.000 95.000 75.000

CONSTANT 11.7837 11.9274 12.2430 12.0341

X01 2.8421 3.0253 3.0264 3.0195

X02 4.8994 5.0403 5.0190 5.0483

Qreg - Linear Quantile Regression Version 1.0.0 4/27/2001  5:35 pm
Total observations: 100

Number of variables: 2
VAR. / tau (in %) 5.000 50.000 95.000 75.000

CONSTANT 11.7837 11.9274 12.2430 12.0340

X01 2.8421 3.0253 3.0264 3.0196

X02 4.8994 5.0403 5.0190 5.0485

Qreg - Linear Quantile Regression Version 1.0.0 4/27/2001 5:35 pm
Total observations: 100

Number of variables: 2
VAR. / tau (in %) 5.000 50.000 95.000 75.000

CONSTANT 11.7837 11.9274 12.2430 12.0340
First 2.8421 3.0253 3.0264 3.0196

Second 4.8994 5.0403 5.0190 5.0485

e We obtain Figure 1 with the following program:

new;

library Qreg,pgraph;

setQreg;

N = 1000;

X = rndu(N,1);

Y = sin(9%X) + (rndu(N,1) - 0.5);
tau = 0.2/0.5|0.95;

P = 50;

xstar = seqa(0,1/(P-1),P);
__output = 2;

_qreg_mtd = 1;
ql = localQreg(Y,X,tau,xstar);
_qreg_mtd = 2;
g2 = localQreg(Y,X,tau,xstar);

15



Figure 3: Linear quantile regression

graphset;
begwind;
makewind(9/2,6.855,0,0,1);
makewind (9/2,6.855,0,0,1);
makewind(9/2,6.855,9/2,0,1);
makewind(9/2,6.855,9/2,0,1);

_pdate = 0; _pframe = O; _pnum = 2;

_paxht = 0.25; _pnumht = 0.25; _ptitlht = 0.25; _plwidth = 5;
xlabel(’’\214X’’); ylabel(’’\214Y’’);

xtics(0,1,0.2,1);

ytics(-1.5,1.5,0.5,1);

fonts(’’simplex simgrma’’);

setwind(1);
title(’’\214Linear local regression’’);
_pltype = 61113; _plctrl = 0;
_plegstr 77\202t\201 = 20%\000\202t\201 = 50%\000\202t\201 = 95J,°’;
_plegctl = {2 6 6 1};
xy(xstar,ql);

_plegctl = 0;

setwind(2);
_plctrl = -1; _pstype = 3; _psymsiz = 0.75;
xy(X,Y);

setwind(3);

title(’’\214Quadratic local regression’’);
_pltype = 61113; _plctrl = 0;
xy(xstar,q2);

setwind(4);
_plctrl = -1; _pstype = 3; _psymsiz = 0.5;

16



xy (X,Y);
graphprt (’’-c=1 -cf=qreg2.ps’’);
endwind;
e We obtain Figure 2 with the following program:
new;
library Qreg,pgraph;

setQreg;

__output = 0;

5000;

= rndu(n, 1);

rndu(rows(x),1) .* (cos(2%pi*X-pi)+1);
tau = 0.95;

P = 50;

xstar = seqa(0,1/(p-1),P);

<=

_Qreg_mtd = 1;
ql = localQreg(Y,X,tau,xstar);

_Qreg_mtd = 2;
g2 = localQreg(Y,X,tau,xstar);
q = ql17q2;
graphset;
begwind;

makewind(9,6.855,0,0,1);
makewind(9,6.855,0,0,1);

setwind(1);
_pdate = 0; _pframe = O; _pnum = 2;
_plctrl = 0|5|5; _pltype = 3|6|6; _plwidth = 5;
_pstype = 818(9;
xlabel(’’\214X°’); ylabel(’’\214Y’’);
ytics(0,2,0.5,1);
xtics(0,1,0.2,1);
_plegstr = ’’True quantiles\0OOLocal linear regression\0OOLocal quadratic regression’’;
_plegctl = {2 4 6 5};
xy (xstar,tau*(cos (2*pi*xstar-pi)+1)7q);

_plegctl = 0;

setwind(2);
_plctrl = -1; _pstype = 3; _psymsiz = 0.2;
xy(X,Y);

graphprt (’’-c=1 -cf=qreg3.ps’’);

endwind;
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