
Chapter 15
Credit Scoring Models

Credit scoring refers to statistical models to measure the creditworthiness of a person or a
company. They have progressively replaced judgemental systems and are now widely used by
financial and banking institutions that check the credit rating and capacity of the borrower
before to approve a loan. Therefore, credit scoring is at the heart of the decision-making
system for granting credit. This is particularly true for consumer credit (mortgage, credit
card, personal loan, etc.). Credit scoring models are also used for commercial firms, but
their final outputs are generally not sufficient for making a decision. For instance, they can
be completed with the knowledge of the relationship manager on the company.

Credit scoring first emerged in the United States. For instance, one of the oldest credit
scores is the FICO score that was introduced in 1989 by Fair Isaac Corporation. The FICO
score is based on consumer credit files of consumer credit reporting agencies such as Ex-
perian, Equifax and TransUnion. It remains today the best-known and most-used external
scoring system in the world. In thirty years, credit scoring models have evolved considerably,
and financial institutions have generally built their own internal credit scoring system. In
particular, the development of credit scoring techniques has speeded up in the 2000s with
the introduction of the IRB formula in the Basel II Accord. For instance, they are now used
for estimating the probability of default or the loss given default, while validation and back-
testing procedures are better defined. The estimation of credit scores has also benefitted
from the massive development of marketing scores, big data and machine learning.

15.1 The method of scoring
15.1.1 The emergence of credit scoring
15.1.1.1 Judgmental credit systems versus credit scoring systems

The underlying idea of credit valuation is to use the experience in order to approve or
deny the credit of a (new) customer. In the case of judgmental credit analysis, the decision
is made by a credit analyst or the relationship manager, and is based on the character,
the capacity and the capital of the borrower. Past experience of the credit analyst is then
fundamental, and two credit analysts may give two different answers. Moreover, it takes
many years to build a track record, because it is not an industrial process. Indeed, the
credit analyst can analyze only a limited number of requests per week. Because of the high
costs, financial institutions have sought to automate credit decisions.

In 1941, Durand presented a statistical analysis of credit valuation. He showed that credit
analysts uses similar factors, and proposed a credit rating formula based on nine factors:
(1) age, (2) sex, (3) stability of residence, (4) occupation, (5) industry, (6) stability of
employment, (7) bank account, (8) real estate and (9) life insurance. The score is additive
and can take values between 0 and 3.46. For instance, 0.40 is added to the score if the
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applicant is a woman, 0.30 if the applicant is 50 years old or more, etc. Durand’s formula is
the first credit scoring model that has been published. Such credit scoring models become
more and more popular in financial institutions in the 1950s and 1960s, but the real turning
point is the development of the credit card business in the 1970s (Thomas, 2000). From an
industrial point of view, a credit scoring system has two main advantages compared to a
judgmental credit system:

1. it is cost efficient, and can treat a huge number of applicants;

2. decision-making process is rapid and consistent across customers.

Generally, financial institutions also consider that credit scoring systems are more efficient
and successful than judgmental credit systems. However, comparing track records is always
a difficult exercise since it depends on many factors. Some credit analysts may have a very
good track record, while the live performance of some statistical credit models may be worse
than their backtest performance. Nevertheless, the case of credit cards has demonstrated
that credit scoring models are far better than judgmental credit systems. The main reason
is the large amount of data that can be analyzed by a statistical model. While experience
is essential for a credit analyst, the efficiency of credit scoring depends on the quality and
amount of data.

15.1.1.2 Scoring models for corporate bankruptcy

These models appear with the research of Tamari (1966), who proposed to combine
several financial ratios for assessing the financial health of corporate firms. Nevertheless,
the weight of each ratio was assumed to be fixed and has been arbitrary calibrated. The
empirical work of Beaver (1966) was more interesting since he estimated the univariate
statistical relationship between financial ratios and the failure. However, the seminal paper
for the evaluation of creditworthiness is the publication of Altman (1968). Using a small
dataset and the statistical method of discriminant analysis, he introduced the concept of
z-score for predicting bankruptcy of commercial firms. The score was equal to:

Z = 1.2 ·X1 + 1.4 ·X2 + 3.3 ·X3 + 0.6 ·X4 + 1.0 ·X5

where the variables Xj represent the following financial ratios:

Xj Ratio
X1 Working capital / Total assets
X2 Retained earnings / Total assets
X3 Earnings before interest and tax / Total assets
X4 Market value of equity / Total liabilities
X5 Sales / Total assets

If we note Zi the score of the firm i, we can calculate the normalized score Z?i =
(Zi −mz) /σz where mz and σz are the mean and standard deviation of the observed
scores. Z?i can then be compared to the quantiles of the Gaussian distribution or the em-
pirical distribution. A low value of Z?i (for instance Z?i < 2.5) indicates that the firm has
a high probability of default. Today, the technique of z-score, which consists of normalizing
a score, is very popular and may be found in many fields of economics, finance, marketing
and statistics.

15.1.1.3 New developments

Since the publication of Durand (1941) and Altman (1968), the research on credit scoring
can be split into three main categories:
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• The first category concerns the default of corporate firms. It appears that the choice
of financial ratios and relevant metrics as explanatory variables are more important
than the model itself (Hand, 2006). Other factors such as the business cycle, economic
conditions or market prices (Hillegeist et al., 2004) may be taken into account. More-
over, the one-size-fits-all approach is not appropriate and credit scoring models are
different for stock-listed companies, medium-sized companies, financial companies or
industrial companies (Altman et al., 2010).

• The second category focuses on consumer credit and retail debt management (credit
cards, mortgages, etc.). Sample sizes are larger than for corporate credit (Thomas,
2000) and may justify the use of more sophisticated techniques that include the be-
havior of the customer (Thomas et al., 2017).

• The third research direction concerns statistical methods. Besides discriminant analy-
sis, new approaches have been proposed, in particular logit or probit models (Ohlson,
1980; Lennox, 1999) and survival models (Shumway, 2001). Moreover, with the avail-
ability of more personal data, machine learning techniques such as neural networks
(West, 2000) are also used and tested in credit scoring and are not reserved for only
marketing scores.

15.1.2 Variable selection
15.1.2.1 Choice of the risk factors

Variables used to determine the creditworthiness of a borrower are generally based on 5
risk factor categories, also called the five Cs:

1. Capacity measures the applicant’s ability to meet the loan payments. For example,
lenders may look at the debt-to-income or the job stability of the applicant. In the
case of corporate firms, the cash flow dynamics is a key element.

2. Capital is the size of assets that are held by the borrower. In the case of consumer
credit, it corresponds to the net wealth of the borrower. For a corporate firm, it can
be machinery, equipment, buildings, investment portfolio, etc.

3. Character measures the willingness to repay the loan. For example, the lender can
investigate the payment history of the applicant. If the applicant has children, the
applicant may have more incentive than if he/she is single.

4. Collateral concerns additional forms of security that the borrower can provide to the
lender. This item is particularly important in the case of corporate credit.

5. Conditions refer to the characteristics of the loan and the economic conditions that
might affect the borrower. For example, the score is generally a decreasing function of
the maturity and the interests paid by the borrower. For corporate firms, some sectors
are more dependent on the economic cycle than others.

In Table 15.1, we report some variables that are used when building a consumer credit score.
This type of score is generally used by banks, since they may include information that is
related to the banking relationship.

Scores are developed by banks and financial institutions, but they can also be developed
by consultancy companies. This is the case of the FICO R© scores, which are the most widely
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TABLE 15.1: An example of risk factors for consumer credit
Character Age of applicant

Marital status
Number of children
Educational background
Time with bank
Time at present address

Capacity Annual income
Current living expenses
Current debts
Time with employer

Capital Purpose of the loan
Home status
Saving account

Condition Maturity of the loan
Paid interests

used credit scoring systems in the world1. They are based on 5 main categories: payment
history (35%), amount of debt (30%), length of credit history (15%), new credit (10%)
and credit mix (10%).They generally range from 300 to 850, while the average score of US
consumers is 695. These scores are generally classified as follows: exceptional (800+), very
good (740-799), good (670-739), fair (580-669) and poor (580−).

Corporate credit scoring systems use financial ratios:

1. Profitability: gross profit margin, operating profit margin, return-on-equity (ROE),
etc.

2. Solvency: debt-to-assets ratio, debt-to-equity ratio, interest coverage ratio, etc.

3. Leverage: liabilities-to-assets ratio (financial leverage ratio), long-term debt/assets,
etc.

4. Liquidity: current assets/current liabilities (current ratio), quick assets/current lia-
bilities (quick or cash ratio), total net working capital, assets with maturities of less
than one year, etc.

Liquidity and solvency ratios measure the company’s ability to satisfy its short-term and
long-term obligations, while profitability ratios measure its ability to generate profits from
its resources. High profitability, high solvency and high liquidity reduces the probability of
default, but a high leverage increases the credit risk of the company. The score may also
include non-financial variables: firm age2, size (number of employees), quality of accounting
information, management quality, etc. For instance, we generally consider that large firms
default less often than small firms. Like retail scores, corporate scores are built by banks but
also by consulting firms and credit agencies. For example, Moody’s proposes the RiskCalc
model (Falkenstein et al., 2000).

1The FICO scores are developed since 1989 by Fair Isaac Corporation, which is a Californian-based
firm. There are more than 20 scores that are commonly used for auto lending, credit card decisioning,
mortgage lending, etc. In the US, FICO scores are used in over 90% of lending decisions (source: https:
//www.myfico.com).

2Recent firms may be penalized.

https://www.myfico.com
https://www.myfico.com
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15.1.2.2 Data preparation

Of course data quality is essential for building a robust credit scoring. However, data
preparation is not limited to check the data and remove outliers or fill missing values.
Indeed, a ‘one-size-fits-all’ approach is generally not appropriate, because a scoring model
is generally more a decision tree system than a parsimonious econometric model. This
is why credit scoring is work-intensive on data mining. Once the data is clean, we can
begin the phase of exploratory data analysis, which encompasses three concurrent steps:
variable transformation, slicing-and-dicing segmentation and potential interaction research.
The first step consists in applying a non-linear transformation, for example by computing
the logarithm, while the second and third steps are the creation of categorical/piecewise
and interaction variables.

Piecewise and dummy variables Let b be a p× 1 vector of bounds. We assume that b
is sorted in ascending order. We note b(1) = (−∞, b), b(2) = (b,+∞), b(3) = (b1, b) and:

b(4) = (0, b2 − b1, b3 − b2, . . . , bp − bp−1, 0)

It follows that b(1), b(2), b(3) and b(4) are four vector of dimension (p+ 1) × 1. From the
vector b, we can then create (p+ 1) piecewise variables which are defined by:

PWj =
(
X − b(3)

j

)
· 1
{
X > b

(1)
j

}
· 1
{
X ≤ b(2)

j

}
+ b

(4)
j · 1

{
X > b

(2)
j

}
The underlying idea is to have an affine function if the original variable takes its values
in the interval ]bj−1, bj ]. For instance, Figure 15.1 represents the fourth piecewise variables
which are obtained from b = (−0.5, 0, 1). In a similar way, we define dummy variables as
follows:

Dj = 1
{
X > b

(1)
j

}
· 1
{
X ≤ b(2)

j

}
In this case, Dj takes a value of 1 if X ∈ ]bj−1, bj ]. Using b = (−0.5, 0, 1), we obtain Figure
15.2.

Optimal slicing An important point is the choice of the bound b = (b1, b2, . . . , bK). It is
obvious that the optimal values depend on the response variable Y . For that, we introduce
the contingency table of the random vector (Y,X), which corresponds to a table of counts
with p rows and q columns:

Y/X X ∈ I(X)
1 · · · X ∈ I(X)

j · · · X ∈ I(X)
q

Y ∈ I(Y )
1 n1,1 n1,j n1,q

...
Y ∈ I(Y )

i ni,1 ni,j ni,q
...

Y ∈ I(Y )
p np,1 np,j np,q

where ni,j is the number of observations such that Y ∈ I(Y )
i and X ∈ I(X)

j . We assume
that the set are disjoints: I(X)

j1
∩ I(X)

j2
= ∅ for j1 6= j2 and I(Y )

i1
∩ I(Y )

i2
= ∅ for i1 6= i2. We

introduce the following notations:
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FIGURE 15.1: Piecewise variables

FIGURE 15.2: Dummy variables
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• ni,· =
∑q
j=1 ni,j is the number of observations such that Y ∈ I(Y )

i ;

• n·,j =
∑p
i=1 ni,j is the number of observations such that X ∈ I(X)

j ;

• n =
∑p
i=1
∑q
j=1 ni,j is the total number of observations3.

If we assume that X and Y are independent (null hypothesis H0), the expected number of
observations such that Y ∈ I(Y )

i and X ∈ I(X)
j must be equal to:

n̄i,j = ni,· × n·,j
n

Under H0, we can prove that the Pearson’s statistic χ has a chi-squared limit distribution:

χ =
p∑
i=1

q∑
j=1

(ni,j − n̄i,j)2

n̄i,j
∼ χ2 (ν)

where ν = (p− 1) (q − 1). If we apply the Pearson’s chi-squared statistic to the previous
scoring problem, the contingency table becomes:

X X ≤ b1 b1 < X ≤ b2 · · · bp−1 < X ≤ bp X > bp
Y = 0 n0,1 n0,2 · · · n0,p n0,p+1
Y = 1 n1,1 n1,2 · · · n1,p n1,p+1

We assume here that Y is a binary random variable: Y = 0 indicates a good credit and
Y = 1 corresponds to a bad credit. We note χ (b) the value of the chi-squared statistic that
depends on the slicing vector b:

χ (b) =
1∑
i=0

p+1∑
j=1

(ni,j − n̄i,j)2

n̄i,j

The optimal value of b is defined by:
b? = arg maxχ (b) (15.1)

Indeed, if X and Y are independent, we have χ (b) = 0. In this case, the variable X does not
help to predict the variable Y . Maximizing the chi-squared statistic is equivalent to finding
the slicing setup that deviates the most from the independent case.

In order to solve the maximization problem (15.1), we may use the dynamic programming
principle, whose objective function is to solve this problem:

{c? (k)}K−1
k=1 = arg max

K−1∑
k=1

f (k, s (k) , c (k)) + f (K, s (K)) (15.2)

s.t.


s (k + 1) = g (k, s (k) , c (k))
s (k) ∈ S (k)
c (k) ∈ C (k)
s (1) = s

The underlying idea is to initialize the algorithm4 with a predetermined slice {b1, b2, . . . , bp},
to aggregate the knots in order to find the optimal slice

{
b?1, b

?
2, . . . , b

?
p?
}
for a given value

3We also have:

n =
p∑
i=1

ni,· =
q∑
j=1

n·,j

4The algorithm is described on page 1049.
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of p?. For that, we note ni,j (bj1 , bj2) = # (Y = i, bj1 < X ≤ bj2). The chi-squared marginal
contribution is defined by:

χ (bj1 , bj2) =
1∑
i=0

(ni,j (bj1 , bj2)− n̄i,j (bj1 , bj2))2

n̄i,j (bj1 , bj2) for j1 < j2

χ (bj1 , bj2) can be viewed as the Pearson’s statistic when we only consider the observations
such that bj1 < X ≤ bj2 . The gain function is equal to:

f (k, s (k) , c (k)) =
{
−∞ if c (k) ≤ s (k)
χ
(
bs(k)+1, bc(k)

)
otherwise

If k = 1, we have:

f (1, s (1) , c (1)) =
{
−∞ if c (1) ≤ s (1)
χ
(
b0, bs(1)

)
+ χ

(
bs(1)+1, bc(1)

)
otherwise

The transfer function is defined as follows:

s (k + 1) = g (k, s (k) , c (k)) = c (k)

The state variable s (k) and the control variable c (k) take their values in the set {1, 2, . . . , p}.
The number K of iterations is exactly equal to p? and we have:

f (K, sj) = χ
(
bsj+1, bp

)
In the case where p? = 1, the dynamic programming algorithm reduces to the brute force
algorithm:

j? = arg max
j∈{b1,b2,...,bp}

χ (−∞, bj) + χ (bj ,∞)

In this case, the optimal slice is composed of two classes: X ≤ bj? and X > bj? .

Example 163 We consider 40 observations of the random vector (Y,X). Below, we indi-
cate the values taken by X when Y = 0 and Y = 1:

• Y = 0: −2.0, −1.1, −1.0, −0.7, −0.5, −0.5, −0.4, −0.3, −0.2, −0.2, 0.0, 0.7, 0.8,
0.9, 1.0, 1.4, 1.9, 2.8, 3.2, 3.7.

• Y = 1: −5.2, −4.3, −3.6, −2.7, −1.8, −1.5, −1.2, −1.0, −0.8, −0.1, 0.0, 0.2, 0.2,
0.3, 0.5, 0.5, 0.5, 0.7, 0.8, 1.9.

If we consider the following grid b = (−5,−4,−3,−2,−1, 0, 1, 2, 3), we obtain the fol-
lowing contingency table:

X I(X)
1 I(X)

2 I(X)
3 I(X)

4 I(X)
5 I(X)

6 I(X)
7 I(X)

8 I(X)
9 I(X)

10
Y = 0 0 0 0 0 2 8 4 3 1 2
Y = 1 1 1 1 1 3 3 9 1 0 0

where I(X)
1 = {X ≤ −5}, I(X)

2 = {−5 < X ≤ −4}, . . . , I(X)
10 = {X > −4}. If we would

like to slice X into two classes, we use the brute force algorithm. If we group the intervals{
I(X)

2 , . . . , I(X)
10

}
, the contingency table becomes:

X X ≤ −5 X > −5 ni,·
Y = 0 0 20 20
Y = 1 1 19 20
n·,j 1 39 n = 40
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We deduce that:

χ = (0− 0.5)2

0.5 + (20− 19.5)2

19.5 + (1− 0.5)2

0.5 + (19− 19.5)2

19.5
= 1.02564

If we now consider the two groups
{
I(X)

1 , I(X)
2

}
and

{
I(X)

3 , . . . , I(X)
10

}
, we obtain the fol-

lowing contingency table:

X X ≤ −4 X > −4 ni,·
Y = 0 0 20 20
Y = 1 2 18 20
n·,j 2 38 n = 40

The associated Pearson’s chi-squared statistic is then equal to:

χ = (0− 1.0)2

1.0 + (20− 19.0)2

19.0 + (2− 1.0)2

1.0 + (18− 19.0)2

19.0
= 2.10526

We can proceed in the same way with the other values of b and we obtain the following
values of χ when the cut-off is bj :

X b1 b2 b3 b4 b5 b6 b7 b8 b9
χ 1.03 2.11 3.24 4.44 3.58 0.00 4.33 3.24 2.11

Since the maximum is reached for b4 (χ = 4.44), the optimal slicing is the following:

X X ≤ −2 X > −2
Y = 0 0 20
Y = 1 4 16

If we prefer to slice X into three classes, the dynamic programming algorithm finds that
the optimal cut-offs are b? = (−2, 1). In the case of four classes, the optimal slicing is:

X X ≤ −1 −1 < X ≤ 0 0 < X ≤ 1 X > 1
Y = 0 2 8 4 6
Y = 1 7 3 9 1

and the optimal value χ? is equal to 10.545. In order to understand how does the dynamic
programming algorithm work, we report the J and C matrices in Table 15.2. We notice that
the optimal value is J (1, s? (1)) = 10.545 where s? (1) is the 5th state. Moreover, the optimal
controls are c? (1) = 6 and c? (2) = 7 implying that s? (2) = c? (1) and s? (3) = c? (2) are
the 6th and 7th states. This is why the optimal cut-offs are b? = (−1, 0, 1), that is the 5th,
6th and 7th elements of the initial vector b.

Remark 178 We notice that the optimal slice b? depends on the initial grid b. This implies
that another grid b will not necessarily give the same optimal slice. For instance, we have
used a step of 1 in the previous example. If we use a step of 0.2, we obtain the optimal
solution b? = (−0.8,−0.2, 0.6). We have reported the corresponding slicing in Figure 15.3. In
this case, the Pearson’s chi-squared statistic is equal to 18.444, which is better than the value
10.545 obtained previously. This is why it is better to use a small step than a large step. The
risk is that the dynamic programming algorithm produces some classes with a low number
of observations. To prevent this possible overfitting, we can impose that χ (bj1 , bj2) = −∞
when the number of observations is below a given threshold (# (bj1 < X ≤ bj2) ≤ nmin).
This ensures that each optimized class has at least nmin observations.
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TABLE 15.2: Dynamic programming matrices J and C
state J (1, s (1)) J (1, s (2)) J (1, s (3)) c (1) c (2)
1 7.6059 4.0714 0.0256 4 7
2 7.7167 3.8618 0.1053 6 7
3 9.0239 3.7048 0.2432 6 7
4 10.4945 3.6059 0.4444 6 7
5 10.5450 3.5714 0.8065 6 7
6 5.9231 5.4945 0.0000 7 7
7 4.7576 4.0000 3.5714 8 8
8 −∞ 3.0000 3.0000 1 9
9 −∞ −∞ 2.0000 1 1

FIGURE 15.3: Optimal slicing with four classes

15.1.2.3 Variable selection

In practice, one may have many candidate variables X = (X1, . . . , Xm) for explaining
the variable Y . The variable selection problem consists in finding the best set of optimal
variables. Let us assume the following statistical model:

Y = f (X) + u
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where u ∼ N
(
0, σ2). We denote the prediction by Ŷ = f̂ (X). By assuming the standard

statistical hypotheses, we obtain:

E
[(
Y − Ŷ

)2
]

= E
[(
f (X) + u− f̂ (X)

)2
]

= E
[(
f (X)− f̂ (X)

)2
]

+ E
[
u2]

=
(
E
[
f̂ (X)

]
− f (X)

)2
+ E

[(
f̂ (X)− E

[
f̂ (X)

])2
]

+ σ2

= Bias2 + Variance + Error

Hastie et al. (2009) decompose the mean squared error of f̂ (X) into three terms: a bias
component, a variance component and an irreducible error. This bias-variance decomposi-
tion depends on the complexity of the model. When the model complexity is low (i.e. when
there is a low number of regressors), the estimator f̂ (X) generally presents a high bias
but a low variance. When the model complexity is high (i.e. when there is a high number
of regressors), the estimator f̂ (X) generally presents a low bias but a high variance. The
underlying idea of variable selection is then to optimize the bias-variance trade-off.

Best subset selection A first approach is to find the best subset of size k for k ∈
{1, . . . ,m} that gives the smallest residual sum of squares. It follows that the search is
performed through 2m possible subsets, meaning that we rapidly face a combinatorial ex-
plosion. Moreover, minimizing the residual sum of squares is equivalent to consider the
largest subset (1, . . . ,m). This is why we prefer to consider an information criterion that
penalizes the degree of freedom of the model. For instance, the Akaike criterion is defined
as follows:

AIC (α) = −2`(k)

(
θ̂
)

+ α · df(model)
(k)

where `(k)

(
θ̂
)

and df(model)
(k) are the log-likelihood and the degree of freedom of the kth

model5. Therefore, the best model corresponds to the model that minimizes the Akaike
criterion. In practice, the penalization parameter is generally set to α = 2. In the case of
the previous model, we deduce that:

AIC (2) = n ln

RSS
(
θ̂
)

n

+ 2 df(model)
(k)

Stepwise approach Another way for selecting variables is to use sequential approaches:
forward selection, backward selection and forward/backward combined selection. In the case
of forward selection, we start with the intercept and include one variable by one variable.
At each step, we select the model of dimension k+ 1 with the most significant F -value with
respect to the previous optimal model of dimension k:

F =
RSS

(
θ̂(k)

)
− RSS

(
θ̂(k+1)

)
RSS

(
θ̂(k+1)

)
/df(residual)

(k+1)

5df(model)
(k) is a complexity measure of the model, and corresponds to the number of estimated parameters.

It is sometimes called the ‘model degree of freedom’ whereas the classical measure used in linear regres-
sion t-statistics df(residual)

(k) is called the ‘residual degree of freedom’. We have the following relationship

df(residual)
(k) = n− df(model)

(k) where n is the number of observations.
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We stop when no model produces a significant F -value at the 95% confidence level. In the
case of backward selection, we start with all the variables and remove one variable by one
variable. At each step, we select the model of dimension k with the smallest significant F -
value with respect to the previous optimal model of dimension k+1. The forward/backward
combined procedure consists in using a forward step followed by a backward step, and to
iterate this loop until the convergence criterion is reached. The convergence criterion can
be expressed as a maximum number of loops6.

Lasso approach The lasso method consists in adding a L1 penalty function to the opti-
mization function in order to obtain a sparse parameter vector θ:

L1 (θ) = ‖θ‖1 =
K∑
k=1
|θk|

For example, the lasso regression model is specified as follows (Tibshirani, 1996):

yi =
K∑
k=1

βkxi,k + ui s.t.
K∑
k=1
|βk| ≤ τ

where τ is a scalar to control the sparsity. Using the notations introduced on page 604, we
have:

β̂ (τ) = arg min (Y−Xβ)> (Y−Xβ) (15.3)
s.t. ‖β‖1 ≤ τ

This problem is equivalent to the Lagrange optimization program β̂ (λ) = arg minL (β;λ)
where7:

L (β;λ) = 1
2 (Y−Xβ)> (Y−Xβ) + λ ‖β‖1

∝ 1
2β
> (X>X

)
β − β>

(
X>Y

)
+ λ ‖β‖1

The solution β̂ (λ) can be found by solving the augmented QP program where β = β+−β−
under the constraints β+ ≥ 0 and β− ≥ 0. We deduce that:

‖β‖1 =
K∑
k=1

∣∣β+
k − β

−
k

∣∣
=

K∑
k=1

∣∣β+
k

∣∣+
K∑
k=1

∣∣β−k ∣∣
= 1>β+ + 1>β−

Since we have:
β =

(
IK −IK

)( β+

β−

)
the augmented QP program is specified as follows:

θ̂ = arg min 1
2θ
>Qθ − θ>R

s.t. θ ≥ 0
6The algorithm also stops when the variable to be added is the same as the last deleted variable.
7τ and λ are related by the relationship τ =

∥∥β̂ (λ)
∥∥

1
.
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where θ = (β+, β−), X̃ =
(

X −X
)
, Q = X̃>X̃ and R = X̃>Y − λ · 1. If we denote

A =
(
IK −IK

)
, we obtain:

β̂ (λ) = Aθ̂

Remark 179 If we consider Problem (15.3), we can also solve it using another augmented
QP program:

θ̂ = arg min 1
2θ
>Qθ − θ>R

s.t.
{
Cθ ≥ D
θ ≥ 0

where Q = X̃>X̃, R = X̃>Y, C = −1> and D = −τ . We again have β̂ (τ) = Aθ̂.

We have:

RSS (β) = (Y−Xβ)> (Y−Xβ)

=
(
Y−X

(
β̂ols + β − β̂ols

))> (
Y−X

(
β̂ols + β − β̂ols

))
=

(
Y−Xβ̂ols

)> (
Y−Xβ̂ols

)
+ 2

(
Y−Xβ̂ols

)>
X
(
β − β̂ols

)
+(

β − β̂ols
)>

X>X
(
β − β̂ols

)
We notice that:

(∗) =
(
Y−Xβ̂ols

)>
X
(
β − β̂ols

)
=

(
Y> −

(
β̂ols

)>
X>
)

X
(
β − β̂ols

)
=

(
Y> −

((
X>X

)−1 X>Y
)>

X>
)

X
(
β − β̂ols

)
=

(
Y>X−

((
X>X

)−1 X>Y
)>

X>X
)(

β − β̂ols
)

=
(
Y>X−Y>X

) (
β − β̂ols

)
= 0

Finally, we obtain:

RSS (β) = RSS
(
β̂ols

)
+
(
β − β̂ols

)>
X>X

(
β − β̂ols

)
If we consider the equation RSS (β) = c, we distinguish three cases:

1. if c < RSS
(
β̂ols

)
, there is no solution;

2. if c = RSS
(
β̂ols

)
, there is one solution β? = β̂ols;

3. if c > RSS
(
β̂ols

)
, we have:

(
β − β̂ols

)>
A
(
β − β̂ols

)
= 1
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where:
A = X>X

c− RSS
(
β̂ols

)
The solution β? is an ellipsoid, whose center is β̂ols and principal axes are the eigen-
vectors of the matrix A.

If we add the lasso constraint
∑K
k=1 |βk| ≤ τ , the lasso estimator β̂ (τ) corresponds to the

tangency between the diamond shaped region and the ellipsoid that corresponds to the
possible maximum value of c. The diamond shape region due to the lasso constraint ensures
that the lasso estimator is sparse:

∃ η > 0 : ∀ τ < η, min
(
β̂1 (τ) , . . . , β̂K (τ)

)
= 0

For example, the two-dimensional case is represented in Figure 15.4. We notice that β̂1 (τ)
is equal to zero if τ < η. This sparsity property is central for understanding the variable
selection procedure.

β̂ols

β̂lasso (τ)

β1

β2 RSS (β1, β2) = constant

lasso path

|β1|+ |β2| ≤ τ

|β1|+ |β2| ≤ η

FIGURE 15.4: Interpretation of the lasso regression

Example 164 Using the data given in Table 15.3, we consider the linear regression model:

yi = β′0 +
5∑
k=1

β′kxi,k + ui (15.4)

The objective is to determine the importance of each variable.

The lasso method can be used for ranking the variables. For that, we consider the
following linear regression:

ỹi =
5∑
k=1

βkx̃i,k + ui
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TABLE 15.3: Data of the lasso regression problem
i y x1 x2 x3 x4 x5
1 3.1 2.8 4.3 0.3 2.2 3.5
2 24.9 5.9 3.6 3.2 0.7 6.4
3 27.3 6.0 9.6 7.6 9.5 0.9
4 25.4 8.4 5.4 1.8 1.0 7.1
5 46.1 5.2 7.6 8.3 0.6 4.5
6 45.7 6.0 7.0 9.6 0.6 0.6
7 47.4 6.1 1.0 8.5 9.6 8.6
8 −1.8 1.2 9.6 2.7 4.8 5.8
9 20.8 3.2 5.0 4.2 2.7 3.6

10 6.8 0.5 9.2 6.9 9.3 0.7
11 12.9 7.9 9.1 1.0 5.9 5.4
12 37.0 1.8 1.3 9.2 6.1 8.3
13 14.7 7.4 5.6 0.9 5.6 3.9
14 −3.2 2.3 6.6 0.0 3.6 6.4
15 44.3 7.7 2.2 6.5 1.3 0.7

where ỹi and x̃i,k are the standardized data8:

yi − ȳ
sy

=
5∑
k=1

βk

(
xi,k − x̄k
sxk

)
+ ui (15.5)

Linear regressions (15.4) and (15.5) are related by the following equation:

yi =
(
ȳ −

5∑
k=1

syβk
sxk

x̄k

)
+

5∑
k=1

syβk
sxk

xi,k + syui

We deduce that β′0 = ȳ−
∑5
k=1 (sy/sxk)βkx̄k and β′k = (sy/sxk)βk. When performing lasso

regression, we always standardize the data in order to obtain comparable beta’s. Otherwise,
the penalty function ‖β‖1 does not make a lot of sense. In Table 15.4, we have estimated the
lasso coefficients βk (λ) for different values of the shrinkage parameter λ. When λ = 0, we
obtain the OLS estimate, and the lasso regression selects all the available variables. When
λ→∞, the solution is β̂ (∞) = 0, and the lasso regression selects no explanatory variables.
In Table 15.4, we verify that the number of selected variables is a decreasing function of
λ. For instance, the lasso regression selects respectively four and three variables when λ is
equal to 0.9 and 2.5. It follows that the most important variable is the third one, followed
by the first, second, fourth and fifth variables.

In Figure 15.5, we have reported the path of the lasso estimate β̂ (λ) with respect to the
scaling factor τ? ∈ [0, 1], which is defined as follows:

τ? = τ

τmax
=

∥∥∥β̂ (λ)
∥∥∥

1∥∥∥β̂ (0)
∥∥∥

1

8The notations x̄k and sxk represent the mean and the standard deviation of the data{
xi,k, i = 1, . . . , n

}
.
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τ? is equal to zero when λ → ∞ (no selected variable) and one when λ = 0, which corre-
sponds to the OLS case. From this path, we verify the lasso ordering:

x3 � x1 � x2 � x4 � x5

TABLE 15.4: Results of the lasso regression
λ 0.0 0.9 2.5 5.5 7.5

β̂1 (λ) 0.4586 0.4022 0.3163 0.1130
β̂2 (λ) −0.1849 −0.2005 −0.1411
β̂3 (λ) 0.8336 0.7265 0.5953 0.3951 0.2462
β̂4 (λ) −0.1893 −0.1102
β̂5 (λ) 0.0931∥∥∥β̂ (λ)

∥∥∥
1

1.7595 1.4395 1.0527 0.5081 0.2462

RSS
(
β̂ (λ)

)
0.0118 0.0304 0.1180 0.4076 0.6306

R2
c 0.9874 0.9674 0.8735 0.5633 0.3244

df(model) 5 4 3 2 1

FIGURE 15.5: Variable selection with the lasso regression

15.1.3 Score modeling, validation and follow-up
15.1.3.1 Cross-validation approach

In order to avoid overfitting, we can also split the dataset into a training set and a
validation set. The training set is used to estimate the model, for example the vector θ in
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the case of a parametric model, while the validation set is used to compute the prediction
error and the residual sum of squares. This approach can be generalized for model selection.
In this case, the training set is used to fit the several models, while the validation set is
used to select the right model (Hastie et al., 2009). We generally distinguish two types of
cross-validation.

1. In exhaustive cross-validation methods, learning and testing are based on all possible
ways to divide the original sample into a training set and a validation set. For example,
leave-p-out cross-validation (LpOCV) assumes that the validation set is composed of p
observations, while the training set corresponds to the remaining observations. Since
the number of training and validation sets is equal to Cnp , this approach may be
computationally intensive. In order to reduce the complexity, we can choose p = 1.
This approach is called the leave-one-out cross-validation (LOOCV).

2. Non-exhaustive cross-validation methods split the original sample into training and
validation sets. For instance, the k-fold approach randomly divides the dataset into k
(almost) equally sized subsamples. At each iteration, one subsample is choosen as a
validation set, while the k−1 remaining subsamples form the training set. This means
that the model is fitted using all but the jth group of data, and the jth group of data
is used for the test set. We repeat the procedure k times, in such a way that each
subsample is tested exactly once. In the case of a linear regression, the k-fold cross
validation error is generally computed as:

Ecv = 1
n

k∑
j=1

∑
i∈Gj

(
yi − x>i β̂ (j)

)2

where i ∈ Gj denotes the observations of the jth subsample and β̂ (j) the estimate
of β obtained by leaving out the jth subsample. Even in simple cases, it cannot be
guaranteed that the function Ecv has a unique minimum. The simple grid search
approach is probably the best approach. The exhaustive leave-one-out cross validation
(LOOCV) is a particular case when k is equal to the size of the dataset. Moreover,
we can show that LOOCV is asymptotically equivalent to the AIC criterion (Stone,
1977).

In order to illustrate the principle of cross-validation, we consider the ridge estimator:

β̂ = arg min 1
2 (Y−Xβ)> (Y−Xβ) + λ

2β
>β

where Y is a n× 1 vector, X is a n×K matrix and β is a K × 1 vector. The ridge model
is then a regularized linear regression model with a L2-norm penalty (Hoerl and Kennard,
1970). It follows that the expression of β̂ is equal to:

β̂ =
(
X>X + λIK

)−1 X>Y

In the case of the leave-one-out cross validation, Allen (1971, 1974) showed that the function
Ecv has an explicit expression known as the predicted residual error sum of squares (or
PRESS) statistic:

Press = 1
n

n∑
i=1

(yi − ŷi,−i)2
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where ŷi,−i is the estimate of yi based on the ridge model when leaving out the ith obser-
vation. Indeed, we have9:

Press = 1
n

n∑
i=1

û2
i

(1− hi)2

where ûi = yi − x>i β̂ and hi = x>i
(
X>X + λIK

)−1
xi. With this formula, we don’t need to

estimate the n estimators β̂−i, where β̂−i is the ridge estimator when leaving out the ith
observation.

TABLE 15.5: Data of the ridge regression problem
i y x1 x2 x3 x4 x5
1 −23.0 −8.0 6.0 −12.7 9.5 −7.5
2 −21.0 −6.5 11.1 5.4 6.6 6.7
3 −5.0 −14.4 −13.3 −3.2 0.8 1.0
4 −39.6 −6.7 26.0 11.5 15.5 6.5
5 5.8 2.3 −7.1 −4.6 7.0 −0.6
6 13.6 2.0 −13.0 −13.3 −0.9 −8.6
7 14.0 10.7 −4.9 −23.1 2.5 19.0
8 −5.2 −8.5 1.0 4.2 −11.5 12.9
9 6.9 3.4 4.9 9.5 −12.8 11.0

10 −5.2 0.0 5.1 −14.3 −3.8 −10.0
11 0.0 1.0 4.0 14.1 −3.5 −23.6
12 3.0 2.4 1.6 −1.2 −4.8 −9.2
13 9.2 −0.1 −10.6 16.0 7.5 5.8
14 26.1 15.2 2.5 5.3 −18.0 10.4
15 −6.3 −19.2 −20.7 −5.1 3.9 −13.8
16 11.5 10.1 1.7 −12.1 −2.7 13.9
17 4.8 3.8 0.8 2.7 1.0 14.4
18 35.2 23.1 1.2 −5.0 −16.1 3.3
19 14.0 13.1 6.6 1.6 −7.4 −3.5
20 −21.4 −19.0 0.7 0.8 −2.7 11.3

Example 165 Using the data given in Table 15.5, we consider the linear regression model:

yi =
5∑
k=1

βkxi,k + ui

The objective is to determine the ridge parameter λ by cross-validation.

In order to estimate the optimal value of λ, we calculate the PRESS function and find
its minimum:

λ? = arg minPress (λ)

In Figure 15.6, we have represented the PRESS function for several values of λ. Using a
bisection, we deduce that the optimal value is λ? = 3.36.

Remark 180 The ridge regression is a good example where we can obtain an analytical
formula for the cross-validation error Ecv. In most of statistical models, this is not the case

9See Exercise 15.4.2 on page 1022.
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and we have to use a grid search for selecting the optimal model. This approach may be
time-consuming. However, since the calibration of credit scoring models is done once per
year, it is not an issue. Nevertheless, the computational time of cross-validation may be
prohibitive with on-the-fly or real time statistical models.

FIGURE 15.6: Selection of the ridge parameter using the PRESS statistic

15.1.3.2 Score modeling

Score modeling is the backbone of credit scoring. This is why it is extensively studied in
the next two sections of this chapter. However, we present here some elements in order to
understand the main challenges. The score is generally a (non-linear) function of exogenous
variablesX and parameters θ: S = f (X; θ). We assume that θ has been already estimated by
a statistical inference method and the model S = f

(
X; θ̂

)
has been validated. For example,

f
(
X; θ̂

)
may be a ridge regression model where θ̂ =

(
β̂, λ̂

)
and λ̂ has been calibrated by

a cross-validation method. The score estimation S = f
(
X; θ̂

)
is the preliminary part of

the decision rule. Indeed, we have now to decide if we select or not the applicant. It can be
done using the following rule:{

S < s =⇒ Y = 0 =⇒ reject
S ≥ s =⇒ Y = 1 =⇒ accept

The difficulty lies in the choice of the cut-off s. For instance, if the model is a logit model,
the score is a probability between 0 and 1:

Pr {Y = 1} = Pr {having a good risk} = f
(
X; θ̂

)
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At first sight, a natural cut-off is s = 50%:{
S < 50% =⇒ Y = 0 =⇒ reject
S ≥ 50% =⇒ Y = 1 =⇒ accept

However, we will see in Section 15.3 on page 1008 that s = 50% is not necessarily the
optimal cut-off, in particular when the population is heterogenous10. Moreover, the decision
rule may be influenced by other factors that are not driven by s statistical point of view.
For example, if the loss associated to the selection of a bad risk is larger than the gain
associated to the selection of a bad risk, the optimal cut-off may be larger than 50%.

15.1.3.3 Score follow-up

Once we have built a scoring system, we begin to collect new information about the
selected applicants. We can then backtest the score in order to check its robustness. Let
us consider a rating system, whose annual probability of default is given by the following
table:

Rating A B C D E F
Probability of default 0.5% 1% 2% 5% 15% 25%

Each year, we can calculate for each grade the default frequency and adjust the decision
rule in order to obtain a coherent scoring system. Below, we have reported two examples of
default frequencies:

Rating A B C D E F
Year 1 0.05% 2.3% 2.8% 7.5% 22.6% 35.1%
Year 2 0.5% 2.7% 1.3% 2.0% 15.1% 25.1%

It is obvious that Year 2 produces closer figures to the expected result than Year 1. How-
ever, Year 2 raises more concerns than Year 1 in terms of coherency. Indeed, the default
frequencies are not increasing between ratings B, C and D. On the contrary, we observe a
coherent ranking for Year 1, which faces an average default rate larger than predicted.

Besides the coherency issue, the stability of the scoring system is another important key
element of the follow-up. Two axes of analysis can be conducted. The first one concerns
the structure of the population with respect to the score. In the table below, we report the
observed frequencies of each class:

Rating A B C D E F
Year 0 25% 20% 20% 20% 10% 5%
Year 1 15% 20% 25% 17% 13% 10%
Year 2 15% 15% 30% 15% 15% 10%

We notice a change in the population distribution, implying that the original scoring system
may be no longer valid. The second axis of analysis concerns the exogenous variables that
compose the score. In this case, the analysis consists in comparing the structure of the
population with respect to each variable.

Another issue is the status of the rejected applicants. Indeed, there is an asymmetry
between applicants that are accepted for credit and the others. We know what accepted
applicants will become in terms of good/bad risk, but we don’t know what the good/bad
status of rejected applicants would have been (Hand and Henley, 1997):

10For example when the number of good risks is larger than the number of bad risks.
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“The behavior of those who have been rejected, if instead they had been ac-
cepted, is unknown. If one estimates a model using data only on accepted appli-
cants, those estimated parameters may be biased when applied to all applicants.
In addition, if cut-off scores are chosen to equalize the actual and predicted num-
ber of defaulting applicants then a sample of accepted applicants is likely to yield
inappropriate cut-offs for the population of all applicants“ (Crook and Banasik,
2004, page 857).

The statistical study of these rejected applicants is called ‘reject inference’ and can be viewed
as a missing data problem11 (Little and Rubin, 2014). Except when selected and rejected
populations are perfectly coherent with the scoring decision rule, the fact that we do not
observe the rejected population introduces a bias. Let us consider the example of a tight
decision rule implying that we never observe a bad risk. It is obvious that the calibrated
statistical model does not reflect the entire population, but only the selected population. The
issue is even high because a credit scoring model does not reduce to a statistical problem,
but it is used from a business point of view. Questions about the market share and the
other competitors are also essential. We have reported below an illustration:

Choice Number of Default Total profit Per-unit profit
selected applicants rate (in $ mn) (in $)

#1 1 000 000 5% 100 100
#2 2 000 000 7% 150 75
#3 5 000 000 10% 180 36

What is the optimal choice? If the goal is to minimize the default rate, the best choice is
#1. If the goal is to maximize the total profit, the third choice is optimal. There are several
statistical approaches to perform reject inference (extrapolation, augmentation, reweighting,
reclassification, etc.). However, they are not satisfactory because they focus on the default
rate and ignore business issues. Nevertheless, they can help to test if the credit scoring
model is biased (Banasik and Crook, 2007).

15.2 Statistical methods
Unsupervised learning is a branch of statistical learning, where test data does not in-

clude a response variable. It is opposed to supervised learning, whose goal is to predict
the value of the response variable Y given a set of explanatory variables X. In the case of
unsupervised learning, we only know the X-values, because the Y -values do not exist or are
not observed. Supervised and unsupervised learning are also called ‘learning with/without
a teacher ’ (Hastie et al., 2009). This metaphor means that we have access to the correct
answer provided by the supervisor (or the teacher) in supervised learning. In the case of
unsupervised learning, we have no feedback on the correct answer. For instance, the linear
regression is a typical supervised learning model, whereas the principal component analysis
is an approach of unsupervised learning.

11We generally distinguish three types of missing value problems: missing completely at random or MCAR,
missing at random or MAR, and missing not at random or MNAR. Credit scoring models generally face
MAR or MNAR situation.
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15.2.1 Unsupervised learning
In the following paragraphs, we focus on cluster analysis and dimension reduction, which

are two unsupervised approaches for detecting commonalities in data.

15.2.1.1 Clustering

Cluster analysis is a method for the assignment of observations into groups or clusters.
It is then an exploratory data analysis which allows to group similar observations together.
As a result, the objective of clustering methods is to maximize the proximity between
observations of a same cluster and to maximize the dissimilarity between observations which
belong to different clusters. In what follows, we consider two popular cluster methods: K-
means and hierarchical clustering.

K-means clustering It is a special case of combinatorial algorithms. This kind of al-
gorithm does not use a probability distribution but works directly on observed data. We
consider n observations with K attributes xi,k (i = 1, . . . , n and k = 1, . . . ,K). We note xi
the K×1 vector (xi,1, . . . , xi,K). We would like to build nC clusters Cj defined by the index
j where j = 1, . . . , nC with the following properties:

1. clusters must be disjoint: Cj ∩ Cj′ = ∅ for j 6= j′;

2. clusters must describe the entire dataset: C1 ∪ C2 ∪ · · · ∪ CnC = {1, . . . , n};

3. observations assigned to a cluster are statistically similar.

Let C be the mapping function which permits to assign an observation to a cluster, meaning
that C (i) = j assigns the ith observation to the jth cluster Cj – j is also called the corre-
sponding label. The principle of combinatorial algorithms is to adjust the mapping function
C in order to minimize the following loss function (Hastie et al., 2009):

L (C) = 1
2

nC∑
j=1

∑
C(i)=j

∑
C(i′)=j

d (xi, xi′)

where d (xi, xi′) is the dissimilarity measure between the observations i and i′. As a result,
the optimal mapping function is denoted C? = arg minL (C).

In the case of theK-means algorithm, the dissimilarity measure is the Frobenius distance
(or Euclidean norm):

d (xi, xi′) =
K∑
k=1

(xi,k − xi′,k)2 = ‖xi − xi′‖2

Therefore, the loss function becomes12:

L (C) =
nC∑
j=1

nj
∑
C(i)=j

‖xi − x̄j‖2

12In Exercise 15.4.3 on page 1023, we show that:∑
C(i)=j

1
2

∑
C(i′)=j

‖xi − xi′‖2 =
∑
C(i)=j

nj ‖xi − x̄j‖2
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where x̄j = (x̄1,j , ..., x̄K,j) is the (K × 1) mean vector associated with the jth cluster and
nj =

∑n
i=1 1 {C (i) = j} is the corresponding number of observations. If we note µ?j =

arg min
∑
C(i)=j ‖xi − µj‖

2, the previous minimization problem is equivalent to:

{
C?, µ?1, . . . , µ?nC

}
= arg min

nC∑
j=1

nj
∑
C(i)=j

‖xi − µj‖2

where µj is called the centroid of cluster Cj . This minimization problem may be solved by
the Lloyd’s iterative algorithm:

1. we initialize cluster centroids µ(0)
1 , . . . , µ

(0)
nC ;

2. at the iteration s, we update the mapping function C(s) using the following rule:

C(s) (i) = arg min
j

∥∥∥xi − µ(s−1)
j

∥∥∥2

3. we then compute the optimal centroids of the clusters
{
µ

(s)
1 , . . . , µ

(s)
nC

}
:

µ
(s)
j = 1

nj

∑
C(s)(i)=j

xi

4. we repeat steps 2 and 3 until convergence, that is when the assignments do not change:
C? = C(s) = C(s−1).

We can show that the algorithm converges to a local minimum, implying that the main issue
is to determine if the solution is also a global minimum. The answer depends on the initial
choice of centroids. Generally, the algorithm is initialized with random centroids. In this
case, we can run the algorithm many times and choose the clusters that give the smallest
value of the function L (C). We also notice that the number of clusters is an hyperparameter
of the clustering model13. This implies that we have to test different values of nC in order
to find the ‘optimal’ partition.

TABLE 15.6: Data of the clustering problem
i X1 X2 X3 X4 X5
1 17.6 19.6 19.8 20.4 28.8
2 13.2 17.5 17.5 17.4 24.2
3 35.9 25.4 32.4 25.0 40.7
4 28.1 24.0 25.1 28.7 26.7
5 23.5 23.6 23.7 14.3 18.1
6 36.5 30.3 29.5 32.0 29.5
7 14.0 23.9 18.3 19.2 17.2
8 36.7 29.0 30.3 21.1 28.7
9 31.2 19.4 29.9 33.3 23.8

10 17.0 20.5 23.8 16.0 19.7

13Originally, the K -means method defines K clusters by their means (or centroids). In this book, K is
the number of explanatory variables. This is why we prefer to use the notation j for cluster labeling, while
nC represents the number of classes.
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TABLE 15.7: Optimal centroids µ?j for 2 and 3 clusters

µ?j X1 X2 X3 X4 X5
nC = 2

µ?1 17.06 21.02 20.62 17.46 21.60
µ?2 33.68 25.62 29.44 28.02 29.88

nC = 3
µ?1 17.06 21.02 20.62 17.46 21.60
µ?2 36.37 28.23 30.73 26.03 32.97
µ?3 29.65 21.70 27.50 31.00 25.25

Example 166 We consider the clustering problem of 10 observations with five variables
X1 to X5. The data are reported in Table 15.6. We would like to know if two clusters are
sufficient or if we need more clusters to analyze the similarity.

By setting nC equal to 2, we obtain the following optimal clustering: C?1 = {1, 2, 5, 7, 10}
and C?2 = {3, 4, 6, 8, 9}. Optimal centroids are reported in Table 15.7. It follows that
L (C?1 , C?2 ) = 3 390.32. In the case nC = 3, the optimal clustering becomes C?1 =
{1, 2, 5, 7, 10}, C?2 = {3, 6, 8} and C?3 = {4, 9} while the loss function L (C?1 , C?2 , C?3 ) is equal
to 1 832.94. We notice that the K-means algorithm has split the second cluster into two
new clusters. The loss function does not help to determine the optimal number of clusters,
because L (C) tends to zero when nC increases. The most popular approach is the Elbow
method, which consists in drawing the percentage of variance explained as a function of
the number of clusters and detecting when the marginal gain is small. However, there is no
good solution to estimate nC , because they generally overestimate the number of clusters14.
This is why it is better to fix the minimum number of observations by cluster. It is obvious
that two clusters are sufficient in our example, because nC = 3 leads to having a cluster
with only two observations.

Hierarchical clustering The K-means clustering method presents several weak points.
First, it requires many iterations when the number of observations and the number of
clusters are large. Second, the solution highly depends on the cluster initialization, implying
that we need to run many times the Lloyd’s algorithm in order to find the optimal clustering.
Third, the number of clusters is definitively an issue.

The idea of hierarchical clustering is to create a tree structure in order to model the
relationships between the different clusters. Unlike the K-means algorithm, this algorithm
does not depend on the number of clusters or the initialization assignment. However, it
depends on the dissimilarity measure between two clusters. In Figure 15.7, we have repre-
sented an example of tree structure (or dendrogram) obtained by hierarchical clustering.
The 1st and 3rd observations are grouped in order to obtain a first cluster. This cluster is
then merged with the 5th observation in order to define a new cluster. In a similar way, the
6th and 7th observations are grouped to obtain a first cluster. This cluster is then merged
with the 10th observation in order to define a new cluster. The tree structure indicates how
two clusters are merged into a new single cluster. The lowest level of the tree corresponds to
the individual observations. In this case, each cluster contains one observation. The highest
level of the tree corresponds to the entire dataset. In this case, there is only one cluster that
contains all the observations.

14For instance, we obtain C?1 = {1, 2}, C?2 = {5, 7, 10}, C?3 = {3, 6, 8} and C?4 = {4, 9} when nC = 4.
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FIGURE 15.7: An example of dendrogram

Remark 181 There is a difference between a basic tree and a dendrogram. Indeed, the x-
axis of the dendrogram corresponds to the dissimilarity measure. Therefore, we can easily
see which merge creates small or large dissimilarity.

We generally distinguish two approaches for hierarchical clustering:

• in the agglomerative method (also called bottom-up clustering), the algorithm starts
with the individual clusters and recursively merge the closest pairs of clusters into one
single cluster;

• in the divisive method (also called the top-down clustering), the algorithm starts with
the single cluster containing all the observations and recursively splits a cluster into
two new clusters, which present the maximum dissimilarity.

Let Cj and Cj′ be two clusters. The objective function of the agglomerative method is to
minimize the dissimilarity measure D (Cj , Cj′) while we maximize the dissimilarity measure
D (Cj , Cj′) in the divisive method. In what follows, we only consider the agglomerative
method, because it is more efficient in terms of computational time and it is more widespread
used.

The dissimilarity measure D (Cj , Cj′) is defined as a linkage function of pairwise dissim-
ilarities d (xi, xi′) where C (i) = j and C (i′) = j′. Therefore, the agglomerative method
requires defining two dissimilarity measures: the linkage function between two clusters
D (Cj , Cj′) and the distance between two observations d (xi, xi′). For this last one, we gen-
erally consider the Mahalanobis distance:

d (xi, xi′) =
√

(xi − xi′)> Σ̂ (xi − xi′)
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where Σ̂ is the sample covariance matrix or the Minkowski distance:

d (xi, xi′) =
(

K∑
k=1
|xi,k − xi′,k|p

)1/p

where p > 1. The case p = 2 corresponds to the Euclidean distance. For the linkage
function, we generally consider three approaches. The single linkage (or nearest neighbor)
is the smallest distance between the clusters:

D (Cj , Cj′) = min
{C(i)=j,C(i′)=j′}

d (xi, xi′)

The complete linkage (or furthest neighbor) is the largest distance between the clusters:

D (Cj , Cj′) = max
{C(i)=j,C(i′)=j′}

d (xi, xi′)

Finally, the average linkage is the average distance between the clusters:

D (Cj , Cj′) = 1
njnj′

∑
C(i)=j

∑
C(i′)=j′

d (xi, xi′)

At each iteration, we search the clusters j and j′ which minimize the dissimilarity measure
and we merge them into one single cluster. When we have merged all the observations
into one single cluster, the algorithm is stopped. It is also easy to perform a segmentation
by considering a particular level of the tree. Indeed, we notice that the algorithm exactly
requires n − 1 iterations. The level L(s) = s is then associated to the sth iteration and we
note D(s) = D (Cj? , Cj′?) the minimum value of D (Cj , Cj′).

In Figure 15.7, the dendrogram was based on simulated data using the single linkage rule
and the Euclidean distance. We have considered 10 observations divided into two groups.
The attributes of the first (resp. second) one correspond to simulated Gaussian variates
with a mean of 20% (resp. 30%) and a standard deviation of 5% (resp. 5%). The intra-
group cross-correlation is set to 80% whereas the inter-group correlation is equal to 0%.
We obtain satisfactory results. Indeed, if we would like to consider two clusters, the first
cluster is composed of the first five observations, whereas the second cluster is composed
of the last five observations. In practice, hierarchical clustering may produce concentrated
segmentation as illustrated in Figure 15.8. We use the same simulated data as previously
except that the standard deviation for the second group is set to 25%. In this case, if we
would like to consider two clusters, we obtain a cluster with 9 elements and another cluster
with only one element (the 6th observation).

Let us consider Example 166 on page 946. By using the Euclidean distance, we obtain
the dendrograms in Figure 15.9. If we would like to split the data into two clusters, we find
for the three methods the solution {1, 2, 5, 7, 10} and {3, 4, 6, 8, 9}, which also corresponds
to the solution given by the K-means analysis. In the case of the single linkage method, we
have reported in Table 15.8 for each level L(s) the distance D(s), the two nearest neighbours
i? and i′? and the created cluster C(s). We notice that the solution for 3 clusters differs
from the K-means solution. Indeed, we find {1, 2, 5, 7, 10}, {4, 6, 8, 9} and {3} for the single
linkage method.

15.2.1.2 Dimension reduction

We now turn to the concept of dimension reduction, which consists in finding some
common patterns in order to better explain the data. For instance, we might want to reduce
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FIGURE 15.8: Unbalanced clustering

TABLE 15.8: Agglomerative hierarchical clustering (single linkage)

L(s) D(s) (i?, i′?) C(s)

1 7.571 (5, 10) {5, 10}
2 7.695 (1, 2) {1, 2}
3 8.204 (5, 7) {5, 7, 10}
4 9.131 (4, 9) {4, 9}
5 9.238 (1, 5) {1, 2, 5, 7, 10}
6 11.037 (6, 8) {6, 8}
7 12.179 (4, 6) {4, 6, 8, 9}
8 13.312 (3, 4) {3, 4, 6, 8, 9}
9 15.199 (1, 3) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
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FIGURE 15.9: Comparison of the three dendrograms

a dataset with 1 000 variables to the two or three most important patterns. In machine
learning, dimension reduction is also known as feature extraction, which is defined as the
process to build new variables or features that are more informative and less redundant
than the original variables.

Principal component analysis Let X be a K × 1 random vector, whose covariance
matrix is equal to Σ. We consider the linear transform Z = B>X where B = (β1, . . . , βK)
is a K ×K matrix and the β’s are K × 1 vectors. The jth element of Z is denoted by Zj
and we have Zj = β>j X =

∑K
k=1 βk,jXk. Zj is also called the jth principal component. The

idea of PCA is to find a first linear function β>1 X such that the variance of Z1 is maximum
and then a jth linear function β>j X such that the variance of Zj is maximum and Zj is
uncorrelated with Z1, . . . , Zj−1 for all j ≥ 2 (Jolliffe, 2002). We can show that B is the
matrix of eigenvectors15 of the covariance matrix Σ:

ΣB = BΛ

where Λ = diag (λ1, . . . , λK) is the diagonal matrix of eigenvalues with λ1 ≥ λ2 ≥ · · · ≥ λK .
Since Σ is a symmetric and positive define matrix, we also have:

Σ = BΛB−1 = BΛB>

15See Exercise 15.4.4 on page 1024 for the derivation of this result.
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and B is an orthonormal matrix. By construction, we have16:

var (Zj) = var
(
β>j X

)
= β>j Σβj
= Λj,j
= λj

and:

cov (Zj , Zj′) = β>j Σβj′
= Λj,j′
= 0

We deduce the spectral decomposition of the covariance matrix:

Σ = BΛB> =
K∑
j=1

λjβjβ
>
j

We note B(1:j) and B(K−j+1:K) the matrices that contains the first and last j columns of
B. We consider the random vector Z̃ =

(
Z̃1, . . . , Z̃j

)
= B̃>X of dimension j. Here are some

properties of the PCA (Jolliffe, 2002):

1. the trace of cov
(
Z̃
)
is maximized if B̃ = B(1:j) corresponds to the j first eigenvectors;

2. the trace of cov
(
Z̃
)
is minimized if B̃ = B(K−j+1:K) corresponds to the j last eigen-

vectors;

3. the covariance of X given Z̃ is:

cov
(
X | Z̃1, . . . , Z̃j

)
= ΣX,X − ΣX,Z̃Σ−1

Z̃,Z̃
ΣZ̃,X

=
K∑

k=j+1
λkβkβ

>
k

4. we consider the following linear regression model:

X = AZ̃ + U

where A is a K × j matrix and U = (U1, . . . , UK) is the vector of residuals; if we
note Ω = diag

(
σ2

1 , . . . , σ
2
K

)
the covariance matrix of U , the trace of Ω is minimized if

B̃ = B(1:j).

Remark 182 The principal component analysis can be performed with correlation matrices
instead of covariance matrices. Jolliffe (2002) presents different arguments for justifying this
choice. Indeed, PCA makes more sense when the variables are comparable. Otherwise, the
principal components are dominated by the variables with the largest variances.

16Because of the following equality:

Λ = B−1ΣB = B>ΣB
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Example 167 We consider the random vector X = (X1, X2, X3, X4), whose individual
variances are equal to 1, 2, 3 and 4. The correlation matrix is:

ρ =


1.00
0.30 1.00
0.50 0.10 1.00
0.20 0.50 −0.50 1.00


We have reported the eigendecomposition of Σ and ρ in Tables 15.9 and 15.10. We

observe some differences. For instance, the first principal component of the covariance matrix
Σ is:

Z1 = 0.18 ·X1 + 0.33 ·X2 + 0.53 ·X3 + 0.76 ·X4

whereas the first principal component of the correlation matrix ρ is:

Z2 = 0.48 ·X1 + 0.44 ·X2 + 0.53 ·X3 + 0.55 ·X4

We verify that the sum of eigenvalues is equal to the sum of variances for the covariance
matrix, and the number of variables for the correlation matrix17.

TABLE 15.9: Eigendecomposition of the covariance matrix
β1 β2 β3 β4

X1 0.18 −0.20 −0.57 0.77
X2 0.33 0.58 −0.63 −0.40
X3 0.53 −0.73 −0.13 −0.41
X4 0.76 0.31 0.50 0.27
λj 5.92 2.31 1.31 0.46

TABLE 15.10: Eigendecomposition of the correlation matrix
β1 β2 β3 β4

X1 0.48 −0.44 −0.65 −0.40
X2 0.44 0.67 −0.40 0.45
X3 0.53 −0.51 0.38 0.57
X4 0.55 0.33 0.53 −0.56
λj 2.06 0.97 0.73 0.23

We now develop the interpretation tools of PCA. The quality of representation is defined
as the percentage of total variance that is explained by the jth principal component (or PC):

Qj = λj∑K
k=1 λk

We have 0 ≤ Qj ≤ 1. The cumulative quality of representation is just the cumulative sum
of the quality values:

Q?j =
j∑

k=1
Qk =

∑j
k=1 λk∑K
k=1 λk

17We have trace (Σ) =
∑K

k=1 σ
2
k and trace

(
BΛB−1

)
= trace

(
ΛB−1B

)
= trace (Λ) =

∑K

j=1 λj . For the

correlation matrix, we deduce that
∑K

j=1 λj = K.
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Q?j is also called the quality of representation of the jth principal plane18. The correlation
between the variable Xk and the factor Zj is given by:

cor (Xk, Zj) = βk,j
√
λj

It follows that the quality of representation of the variable Xk with respect to the jth PC
is19:

Qk,j = cor2 (Xk, Zj) = β2
k,jλj

We can also define the contribution of the variable Xk to the jth PC20:

Ck,j = β2
k,j

In order to the understand the association between variables, we generally plot the cor-
relation circle between two principal components that corresponds to the scatterplot of
cor (Xk, Zj) and cor (Xk, Zj′).

Remark 183 In practice, we estimate the covariance or the correlation matrix using a
sample. Let xi = (xi,1, . . . , xi,K) be the ith observation. We note zi,j = β>j xi the projection
of xi onto the jth principal component. The quality of representation and the contribution
of an observation to a principal component are then equal to:

Qi,j =
z2
i,j∑K

k=1 z
2
i,k

and:
Ci,j =

z2
i,j∑n

i=1 z
2
i,j

We consider again Example 166 on page 946. In Table 15.11, we have reported the results
of the PCA applied to the correlation matrix of data. The first PC explains 68.35% of the
variance, while the quality of representation of the second PC is equal to 14.54%. This means
that we can explain 82.89% with only two factors. For the first factor, each variable has a
positive loading. This is not the case of the second factor, where the factor loadings of X1,
X2 and X3 are negative. We notice that X1 and X3 are well represented by Z1 (95.81% and
86.95%). For the second PC, the second variable X2 is the most represented (41.40%). If we
consider the last PC, the quality of representation is poor (less than 1%). This indicates that
the last PC has a very low explanation power. We notice that the rationale of the fourth
PC is to model X3 because the second and third PCs do not explain this variable. The
contribution values Ck,j are also interesting to confirm the previous results. For instance,
X1 does not contribute to Z2. It follows that the second PC represents the opposition of X2

18That is the plane composed of the first j principal components.
19We verify that the sum of Qk,j is equal to the variance of the jth PC:

K∑
k=1

Qk,j =
K∑
k=1

β2
k,jλj = λj

K∑
k=1

β2
k,j = λj

20We verify that the sum of Ck,j is equal to 100%:

K∑
k=1

Ck,j =
K∑
k=1

β2
k,j = 1
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TABLE 15.11: Principal component analysis of Example 166
Factor Z1 Z2 Z3 Z4 Z5
λj 3.4173 0.7271 0.5548 0.2783 0.0226
Qj 68.35% 14.54% 11.10% 5.57% 0.45%
Q?j 68.35% 82.89% 93.98% 99.55% 100.00%

Matrix B of eigenvectors
X1 0.5295 −0.1015 −0.0567 −0.2554 0.8006
X2 0.3894 −0.7546 −0.0500 0.4855 −0.2019
X3 0.5044 −0.0188 −0.0247 −0.6650 −0.5499
X4 0.3952 0.5318 −0.6238 0.3995 −0.1107
X5 0.3967 0.3702 0.7775 0.3120 −0.0609

Correlation between Xk and Zj
X1 97.88% −8.66% −4.22% −13.47% 12.03%
X2 71.98% −64.35% −3.72% 25.61% −3.03%
X3 93.25% −1.60% −1.84% −35.08% −8.27%
X4 73.06% 45.35% −46.46% 21.07% −1.66%
X5 73.34% 31.57% 57.91% 16.46% −0.92%

Quality of representation of each variable Qk,j
X1 95.81% 0.75% 0.18% 1.82% 1.45%
X2 51.81% 41.40% 0.14% 6.56% 0.09%
X3 86.95% 0.03% 0.03% 12.31% 0.68%
X4 53.38% 20.57% 21.59% 4.44% 0.03%
X5 53.78% 9.96% 33.54% 2.71% 0.01%

Contribution of each variable Ck,j
X1 28.04% 1.03% 0.32% 6.52% 64.09%
X2 15.16% 56.94% 0.25% 23.57% 4.08%
X3 25.44% 0.04% 0.06% 44.22% 30.24%
X4 15.62% 28.29% 38.91% 15.96% 1.23%
X5 15.74% 13.70% 60.46% 9.73% 0.37%

with respect to X4 and X5. Clearly, the third PC mainly concerns X4 and X5. Figure 15.10
represents the scatterplot of the factor values zi,j for the first two principal components.
We notice that the second component classifies the observations in the same way than the
K-means algorithm or the agglomerative hierarchical clustering. Indeed, we retrieve the
two clusters {1, 2, 5, 7, 10} and {3, 4, 6, 8, 9}. This is not the case of the first component,
which operates the following classification {1, 2, 3, 4, 9} and {5, 6, 7, 8, 10}. In Figure 15.11,
we have reported the correlation circle between different PCs. If we consider the first two
PCs, the variables X1 and X2 are clearly opposed to the variables X4 and X5. The second
panel confirms the competition between X4 and X5 due to the third PC.

Non-negative matrix factorization There are several alternative approaches to princi-
pal component analysis. For instance, independent component analysis (ICA) estimates ad-
ditive factors that are maximally independent. Another popular method is the non-negative
matrix factorization (NMF). Let A be a non-negative matrix m × p. We define the NMF
decomposition of A as follows:

A ≈ BC

where B and C are two non-negative matrices with respective dimensions m×n and n× p.
Compared to classic decomposition algorithms, we remark that BC is an approximation
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FIGURE 15.10: Scatterplot of the factor values zi,1 and zi,2

FIGURE 15.11: PCA correlation circle
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of A. There are also different ways to obtain this approximation meaning that B and C
are not necessarily unique21. We also notice that the decomposition A ≈ BC is equivalent
to A> ≈ C>B>. It means that the storage of the data is not important. Rows of A may
represent either the observations or the variables, but the interpretation of the B and C
matrices depend on the choice of the storage. We remark that:

Ai,j =
n∑
k=1

Bi,kCk,j

Suppose that we consider a variable/observation storage. Therefore, Bi,k depends on the
variable i whereas Ck,j depends on the observation j. In this case, we may interpret B as
a matrix of weights. In factor analysis, B is called the loading matrix and C is the factor
matrix. Bi,k is then the weight of factor k for variable i and Ck,j is the value taken by factor
k for observation j. If we use an observation/variable storage which is the common way to
store data in statistics, B and C become the factor matrix and the loading matrix.

Because the dimensions m, n and p may be very large, one of the difficulties with NMF
is to derive a numerical algorithm with a reasonable computational time. Lee and Seung
(1999) developed a simple algorithm with strong performance and applied it to pattern
recognition with success. Since this seminal work, this algorithm has been improved and
there are today several ways to obtain a non-negative matrix factorization. In order to find
the approximate factorization, we need to define the loss function L which measures the
quality of the factorization. The optimization program is then:

{B?, C?} = arg minL (A,BC) (15.6)

u.c.
{
B � 0
C � 0

Lee and Seung (2001) considered two loss functions. The first one is the Frobenious norm:

L (A,BC) =
m∑
i=1

p∑
j=1

(
Ai,j − (BC)i,j

)2

whereas the second one is Kullback-Leibler divergence:

L (A,BC) =
m∑
i=1

p∑
j=1

(
Ai,j ln Ai,j

(BC)i,j
−Ai,j + (BC)i,j

)

To solve Problem (15.6), Lee and Seung (2001) proposed to use the multiplicative update
algorithm. Let B(s) and C(s) be the matrices at iteration s. For the Frobenious norm22, we
have:  B(s+1) = B(s) �

(
AC>(s)

)
�
(
B(s)C(s)C

>
(s)

)
C(s+1) = C(s) �

(
B>(s+1)A

)
�
(
B>(s+1)B(s+1)C(s)

)
21Let D be a nonnegative matrix such that D−1 is nonnegative too. For example, D may be a permutation

of a diagonal matrix. In this case, we have:

A ≈ BD−1DC ≈ B′C′

where B′ = BD−1 and C′ = DC are two nonnegative matrices. This shows that the decomposition is not
unique.

22A similar algorithm may be derived for the Kullback-Leibler divergence.
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where � and � are respectively the element-wise multiplication and division operators.
Under some assumption, we may show that B? = B(∞) and C? = C(∞), meaning that the
multiplicative update algorithm converges to the optimal solution.

For large datasets, the computational time to find the optimal solution may be large
with the previous algorithm. Since the seminal work of Lee and Seung, a lot of methods have
also been proposed to improve the multiplicative update algorithm and speed the converge.
Among these methods, we may mention the algorithm developed by Lin (2007), which is
based on the alternating non-negative least squares:{

B(s+1) = arg minL
(
A,BC(s)

)
C(s+1) = arg minL

(
A,B(s+1)C

) (15.7)

with the constraints B(s+1) � 0 and C(s+1) � 0. We notice that the two optimization
problems (15.7) are symmetric because we may cast the first problem in the form of the
second problem: B>(s+1) = arg minL

(
A>, C>(s)B

>
)
. So, we may only focus on the following

optimization problem:

C? = arg minL (A,BC)
u.c. C � 0

In the case of the Frobenious norm, we have ∂C L (A,BC) = 2B> (BC −A). The projected
gradient method consists in the following iterating scheme:

C ← C − α · ∂ L (A,BC)
∂ C

where α is the descent length. Let (β, γ) be two scalars in ]0, 1[. Instead of finding the
optimal value of α at each iteration, Lin (2007) proposed to update α in a very simple way
depending on the inequality equation:

(1− γ) ∂ L (A,BC)
∂ C

> (
C̃ − C

)
+ 1

2
(
C̃ − C

)> ∂2 L (A,BC)
∂ C ∂ C>

(
C̃ − C

)
≤ 0

where C̃ is the update of C. If this inequality equation is verified, α is increased (α← α/β),
otherwise α is decreased (α← αβ).

Remark 184 The choice of B(0) and C(0) for initializing NMF algorithms is important.
The random method consists in generating matrices with positive random numbers23. An-
other popular approach is the non-negative double singular value decomposition, which is a
modification of the singular value decomposition by considering only the non-negative part
of the singular values (Boutsidis and Gallopoulos, 2008).

In order to understand why NMF is different from other factor methods, we consider a
simulation study. We consider a basket of four financial assets. The asset prices are driven by
a multidimensional geometric Brownian motion. The drift parameter is equal to 5% whereas
the diffusion parameter is 20%. The cross-correlation ρi,j between assets i and j is equal to
20%, but ρ1,2 = 70% and ρ3,4 = 50%. In order to preserve the time homogeneity, the data
correspond to xi,t = lnSi,t where Si,t is the price of the asset i at time t. In Figure 15.12,
we report the time series xi,t for the four assets (panel 1) and, the first factor estimated

23For example, we can use the probability distributions U[0,1] or |N (0, 1)|.
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FIGURE 15.12: Estimating the first factor of a basket of financial assets

by NMF24 (panel 2) and PCA (panel 3). We notice that the NMF factor25 is not scaled in
the same way than the PCA factor. However, the correlation between the first differences
is equal to 98.8%. In the first panel in Figure 15.13, we compare the decomposition of the
variance according to the factors. We notice that PCA explains more variance than NMF
for a given number of factors. We obtain this result because NMF may be viewed as a
constrained principal component analysis with nonnegative matrices. However, it does not
mean that each PCA factor explains more variance than the corresponding NMF factor.
For example, the second NMF factor explains more variance than the second PCA factor
in Figure 15.13. In the other panels, we compare the dynamics of the first asset with the
dynamics given by the NMF factors26. With three risk factors, the reconstructed signal has
a correlation of 93.7% with the original signal.

15.2.2 Parametric supervised methods
15.2.2.1 Discriminant analysis

Discriminant analysis was first developed by Fisher (1936). This approach is close to the
principal component analysis (PCA) and is used to predict class membership for indepen-
dent variables. For that, we assume that we have nC disjoint classes Cj where j = 1, . . . , J .
Discriminant analysis consists then in assigning an observation to one and only one class.

24The NMF decomposition corresponds to:

lnX︸ ︷︷ ︸
nX×nT

≈ B︸ ︷︷ ︸
nX×nF

· C︸ ︷︷ ︸
nF×nT

where nX is the number of time-series, nT is the number of dates and nF is the number of NMF factors.
25In this example, B is the loading matrix while C is the matrix of time-series factors.
26The reconstructed multidimensional signal is just the matrix product BC for different values of nF .
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FIGURE 15.13: Variance decomposition and signal reconstruction

We consider an input vector x and we divide the input space into nC decision regions,
whose boundaries are called decision boundaries (Bishop, 2006). Classification methods can
then be seen as a supervised clustering methods, where the categorical response variable is
directly the class. For example, Figure 15.14 corresponds to a classification problem with
seven classes and two explanatory variables X1 and X2. The goal is then to predict for
each observation its class. For instance, we would like that the model predicts that the first
observation belongs to the first class, the second observation belongs to the fifth class, etc.

The two-dimensional case Using the Bayes theorem, we have:

Pr {A ∩B} = Pr {A | B} · Pr {B}
= Pr {B | A} · Pr {A}

It follows that:
Pr {A | B} = Pr {B | A} · Pr {A}

Pr {B}
If we apply this result to the conditional probability Pr {i ∈ C1 | X = x}, we obtain:

Pr {i ∈ C1 | X = x} = Pr {X = x | i ∈ C1} ·
Pr {i ∈ C1}
Pr {X = x}

The log-probability ratio is then equal to:

ln Pr {i ∈ C1 | X = x}
Pr {i ∈ C2 | X = x}

= ln
(

Pr {X = x | i ∈ C1}
Pr {X = x | i ∈ C2}

· Pr {i ∈ C1}
Pr {i ∈ C2}

)
= ln Pr {X = x | i ∈ C1}

Pr {X = x | i ∈ C2}
+ ln Pr {i ∈ C1}

Pr {i ∈ C2}

= ln f1 (x)
f2 (x) + ln π1

π2
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FIGURE 15.14: Classification statistical problem

where πj = Pr {i ∈ Cj} is the probability of the jth class and fj (x) = Pr {X = x | i ∈ Cj} is
the conditional probability density function of X. By construction, the decision boundary
is defined such that we are indifferent to an assignment rule (i ∈ C1 and i ∈ C2), implying
that:

Pr {i ∈ C1 | X = x} = Pr {i ∈ C2 | X = x} = 1
2

Finally, we deduce that the decision boundary satisfies the following equation:

ln f1 (x)
f2 (x) + ln π1

π2
= 0

If we model each class density as a multivariate normal distribution:

X | i ∈ Cj ∼ N (µj ,Σj)

we have:
fj (x) = 1

(2π)K/2 |Σj |1/2
exp

(
−1

2 (x− µj)>Σ−1
j (x− µj)

)
We deduce that:

ln f1 (x)
f2 (x) = 1

2 ln |Σ2|
|Σ1|

− 1
2 (x− µ1)> Σ−1

1 (x− µ1) +

1
2 (x− µ2)>Σ−1

2 (x− µ2)

The decision boundary is then given by:
1
2 ln |Σ2|
|Σ1|

− 1
2 (x− µ1)> Σ−1

1 (x− µ1) +

1
2 (x− µ2)> Σ−1

2 (x− µ2) + ln π1

π2
= 0 (15.8)
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Since the decision boundary is quadratic in x, such approach is called quadratic discriminant
analysis (QDA).

If we assume that Σ1 = Σ2 = Σ, Equation (15.8) becomes:

1
2 (x− µ2)>Σ−1 (x− µ2)− 1

2 (x− µ1)>Σ−1 (x− µ1) + ln π1

π2
= 0

or:
(µ2 − µ1)>Σ−1x = 1

2
(
µ>2 Σ−1µ2 − µ>1 Σ−1µ1

)
+ ln π2

π1
(15.9)

It follows that the decision boundary is then linear in x. This is why we called this approach
the linear discriminant analysis (LDA).

Example 168 We consider two classes and two explanatory variables X = (X1, X2) where
π1 = 50%, π2 = 1 − π1 = 50%, µ1 = (1, 3), µ2 = (4, 1), Σ1 = I2 and Σ2 = γI2 where
γ = 1.5.

FIGURE 15.15: Boundary decision of discriminant analysis

By solving Equations (15.8) and (15.9), we obtain the QDA and LDA decision bound-
aries27 reported in Figure 15.15. We verify that the LDA decision boundary is linear while
the QDA decision region is convex. For each class, we have also simulated 50 realizations. We
observe that the discriminant analysis performs the right classification most of the times.
However, we notice that two observations from class C1 and one observation from class C2
are not properly classified. In Figure 15.16, we analyze the impact of the parameters on
the decision boundary. The top/left panel corresponds to the previous example, whereas we
only change one parameter for each other panel. For instance, we increase the variance of
the second variable in the top/right panel. We observe that the impact on the LDA decision

27For the linear discriminant analysis, we have used Σ = (Σ1 + Σ2) /2.
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boundary is minor, but this is not the case for the QDA decision boundary. Indeed, the
convexity is stronger because X2 can take more larger values than X1. This is why for the
extreme values, the QDA decision boundary can be approximated by a vertical line when
x1 → −∞ and an horizontal line when x2 → +∞. Let us now introduce a correlation ρ be-
tween X1 and X2. It follows that the QDA decision boundary becomes more and more linear
when we increase ρ (bottom/left panel). Finally, the impact of the probabilities (π1, π2) is
crucial as shown in the bottom/right panel. It is obvious that the boundary decision moves
to the right when π1 increases, because the decision region concerning i ∈ C1 must be larger.
For instance, we must always accept i ∈ C1 at the limit case π1 = 100%.

FIGURE 15.16: Impact of the parameters on LDA/QDA boundary decisions

The general case We can generalize the previous analysis to J classes. In this case, the
Bayes formula gives:

Pr {i ∈ Cj | X = x} = Pr {X = x | i ∈ Cj} ·
Pr {i ∈ Cj}
Pr {X = x}

= c · fj (x) · πj

where c = 1/Pr {X = x} is a normalization constant that does not depend on j. We note
Sj (x) = ln Pr {i ∈ Cj | X = x} the discriminant score function for the jth class. We have:

Sj (x) = ln c+ ln fj (x) + ln πj

If we again assume that X | i ∈ Cj ∼ N (µj ,Σj), we obtain:

Sj (x) = ln c′ + ln πj −
1
2 ln |Σj | −

1
2 (x− µj)>Σ−1

j (x− µj)

∝ ln πj −
1
2 ln |Σj | −

1
2 (x− µj)>Σ−1

j (x− µj) (15.10)
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where ln c′ = ln c−K2 ln 2π. Given an input x, we calculate the scores Sj (x) for j = 1, . . . , J
and we choose the label j? with the highest score value. As in the two-class case, we can
assume an homoscedastic model (Σj = Σ), implying that the discriminant score function
becomes:

Sj (x) = ln c′′ + ln πj −
1
2 (x− µj)>Σ−1

j (x− µj)

∝ ln πj + µ>j Σ−1x− 1
2µ
>
j Σ−1µj (15.11)

where ln c′′ = ln c′− 1
2 ln |Σ| − 1

2x
>Σ−1x. Equation (15.11) defines the LDA score function,

whereas Equation (15.10) defines the QDA score function.

Remark 185 In practice, the parameters πj, µj and Σj are unknown. We replace them
by the corresponding estimates π̂j, µ̂j and Σ̂j. For the linear discriminant analysis, Σ̂ is
estimated by pooling all the classes.

Example 169 We consider the classification problem of 33 observations with two explana-
tory variables X1 and X2, and three classes C1, C2 and C3. The data are reported in Table
15.12.

TABLE 15.12: Data of the classification problem
i Cj X1 X2 i Cj X1 X2 i Cj X1 X2
1 1 1.03 2.85 12 2 3.70 5.08 23 3 3.55 0.58
2 1 0.20 3.30 13 2 2.81 1.99 24 3 3.86 1.83
3 1 1.69 3.73 14 2 3.66 2.61 25 3 5.39 0.47
4 1 0.98 3.52 15 2 5.63 4.19 26 3 3.15 −0.18
5 1 0.98 5.15 16 2 3.35 3.64 27 3 4.93 1.91
6 1 3.47 6.56 17 2 2.97 3.55 28 3 3.87 2.61
7 1 3.94 4.68 18 2 3.16 2.92 29 3 4.09 1.43
8 1 1.55 5.99 19 3 3.00 0.98 30 3 3.80 2.11
9 1 1.15 3.60 20 3 3.09 1.99 31 3 2.79 2.10

10 2 1.20 2.27 21 3 5.45 0.60 32 3 4.49 2.71
11 2 3.66 5.49 22 3 3.59 −0.46 33 3 3.51 1.82

The first step is to estimate the parameters πj , µj and Σj , whose values28 are reported in
Table 15.13. The second step consists in calculating the score function Sj (x) for each class
j using Equations (15.10) and (15.11). Results are given in Table 15.14. Besides the QDA
and LDA methods, we have also considered a third approach LDA2, which corresponds
to a linear discriminant analysis by including the squared values of variables. This means
that the explanatory variables are X1, X2, X2

1 and X2
2 in LDA2. By including polynomials,

the LDA2 method is more convex than the original LDA method, and can be seen as an
approximation of the QDA method.

If we consider the first observation, the maximum score is reached for the first class
(−2.28 for QDA, 0.21 for LDA and 6.93 for LDA2). If we consider the 14th observation,

28For the LDA method, we have:

Σ̂ =
(

1.91355 −0.71720
−0.71720 3.01577

)
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TABLE 15.13: Parameter estimation of the discriminant analysis
Class C1 C2 C3
π̂j 0.273 0.273 0.455
µ̂j 1.666 4.376 3.349 3.527 3.904 1.367

Σ̂j
1.525 0.929 1.326 0.752 0.694 −0.031
0.929 1.663 0.752 1.484 −0.031 0.960

QDA and LDA predict the third class, whereas LDA2 predicts the second class, which is
the true value. In Figure 15.17, we have reported the class assignment performed by the
three approaches, and we have indicated the bad class predictions by a circle. In order
to understand these results, we have also calculated the decision regions in Figure 15.18.
According to QDA, the decision boundary is almost linear between C1 and C2, whereas it
is quadratic between C2 and C3. LDA produces linear decision boundaries, but the decision
surface for C1 has changed. Finally, LDA2 can produce complex decision surfaces, even more
complex than those produced by QDA.

FIGURE 15.17: Comparing QDA, LDA and LDA2 predictions

Class separation maximization In the following, we show that the linear discriminant
analysis is equivalent to maximize class separability and is also related to the principal
component analysis. We note xi = (xi,1, . . . , xi,K) the K × 1 vector of exogenous variables
X for the ith observation. The mean vector and the variance (or scatter) matrix of Class Cj
is equal to:

µ̂j = 1
nj

∑
i∈Cj

xi
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TABLE 15.14: Computation of the discriminant scores Sj (x)

i
QDA LDA LDA2

S1 (x) S2 (x) S3 (x) S1 (x) S2 (x) S3 (x) S1 (x) S2 (x) S3 (x)
1 −2.28 −3.69 −7.49 0.21 −0.96 −0.79 6.93 5.60 5.76
2 −2.28 −6.36 −12.10 −0.26 −2.17 −2.34 1.38 −2.13 −1.89
3 −1.76 −3.13 −6.79 2.84 2.16 1.71 12.13 12.01 11.38
4 −1.80 −4.43 −8.88 1.35 0.09 −0.22 7.73 6.20 5.93
5 −2.36 −7.75 −13.70 4.32 2.93 1.45 8.12 5.54 4.76
6 −3.16 −5.63 −14.68 10.75 11.36 8.95 14.82 13.99 12.96
7 −3.79 −1.92 −6.32 8.06 9.22 8.15 17.36 19.03 17.89
8 −2.85 −8.43 −15.23 6.73 5.76 3.70 10.47 8.09 7.15
9 −1.74 −4.12 −8.37 1.76 0.64 0.27 8.94 7.77 7.39

10 −3.14 −3.21 −6.17 −0.58 −1.56 −0.98 6.59 5.55 6.15
11 −2.87 −3.01 −9.45 9.10 9.96 8.31 16.89 17.65 16.42
12 −3.04 −2.38 −7.77 8.42 9.34 7.98 17.28 18.50 17.28
13 −6.32 −2.29 −1.62 1.41 1.82 2.64 12.48 13.94 14.46
14 −6.91 −2.07 −1.42 3.86 4.94 5.34 15.15 17.41 17.34
15 −9.79 −3.62 −7.12 9.79 12.43 11.75 12.58 14.01 13.50
16 −3.90 −1.47 −3.44 5.25 5.99 5.65 16.84 18.82 18.03
17 −3.31 −1.55 −3.61 4.50 4.92 4.63 16.25 17.95 17.21
18 −4.84 −1.60 −2.19 3.65 4.28 4.45 15.51 17.48 17.14
19 −10.21 −4.12 −1.27 −0.13 0.52 2.06 8.98 9.99 11.70
20 −7.05 −2.41 −1.24 1.85 2.50 3.32 12.99 14.72 15.22
21 −23.11 −11.16 −2.56 2.98 5.75 7.61 3.79 4.57 7.26
22 −19.22 −9.53 −2.42 −1.84 −0.57 2.01 1.81 1.53 5.51
23 −13.86 −5.92 −1.01 −0.01 1.15 2.98 7.65 8.67 10.95
24 −10.01 −3.43 −0.70 2.75 4.07 5.02 12.84 14.95 15.65
25 −23.48 −11.44 −2.54 2.65 5.38 7.33 3.40 4.09 6.95
26 −15.87 −7.59 −2.30 −2.01 −1.14 1.23 3.19 3.02 6.50
27 −14.09 −5.40 −1.52 4.56 6.78 7.70 11.17 13.24 14.08
28 −7.55 −2.27 −1.39 4.18 5.45 5.85 15.10 17.44 17.40
29 −12.40 −4.67 −0.61 2.38 3.92 5.17 11.21 13.14 14.33
30 −8.85 −2.87 −0.88 3.17 4.41 5.17 13.77 15.97 16.37
31 −5.97 −2.17 −1.72 1.58 1.97 2.70 12.78 14.26 14.67
32 −9.40 −2.97 −1.81 5.33 7.11 7.46 14.55 16.95 16.93
33 −8.84 −3.01 −0.80 2.19 3.21 4.16 12.82 14.77 15.45

and29:
Sj = nΣ̂j =

∑
i∈Cj

(xi − µ̂j) (xi − µ̂j)>

where nj is the number of observations in the jth class. If consider the total population, we
also have:

µ̂ = 1
n

n∑
i=1

xi

29The variance matrix is equal to the unscaled covariance matrix and is also called the scatter matrix.
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FIGURE 15.18: QDA, LDA and LDA2 decision regions

and:

S = nΣ̂ =
n∑
i=1

(xi − µ̂) (xi − µ̂)>

We notice that:

µ̂ = 1
n

J∑
j=1

nj µ̂j

We define the between-class variance matrix as:

SB =
J∑
j=1

nj (µ̂j − µ̂) (µ̂j − µ̂)>

and the within-class variance matrix as:

SW =
J∑
j=1

Sj

We can show that the total variance matrix can be decomposed into the sum of the within-
class and between-class variance matrices30:

S = SW + SB
The discriminant analysis defined by Fisher (1936) consists in finding the discrimi-

nant linear combination β>X that has the maximum between-class variance relative to
the within-class variance: β? = arg max J (β) where J (β) is the Fisher criterion:

J (β) = β>SBβ
β>SWβ

30See Exercise 15.4.5 on page 1024.
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Since the objective function is invariant if we rescale the vector β – J (β′) = J (β) if β′ = cβ,
we can impose that β>SWβ = 1. It follows that:

β̂ = arg max β>SBβ (15.12)
s.t. β>SWβ = 1

The Lagrange function is:

L (β;λ) = β>SBβ − λ
(
β>SWβ − 1

)
We deduce that the first-order condition is equal to:

∂ L (β;λ)
∂ β>

= 2SBβ − 2λSWβ = 0 (15.13)

It is remarkable that we obtain a generalized eigenvalue problem31 SBβ = λSWβ or equiv-
alently:

S−1
W SBβ = λβ (15.14)

Even if SW and SB are two symmetric matrices, it is not necessarily the case for the product
S−1
W SB . Using the eigendecomposition SB = V ΛV >, we have S1/2

B = V Λ1/2V >. With the
parametrization α = S1/2

B β, Equation (15.14) becomes:

S1/2
B S−1

W S1/2
B α = λα (15.15)

because β = S−1/2
B α. Equation (15.15) defines a right regular eigenvalue problem. Let λk

and vk be the kth eigenvalue and eigenvector of the symmetric matrix S1/2
B S−1

W S1/2
B . It is

obvious that the optimal solution α? is the first eigenvector v1 corresponding to the largest
eigenvalue λ1. We conclude that the estimator is β̂ = S−1/2

B v1 and the discriminant linear
relationship is Y c = v>1 S−1/2

B X. Moreover, we have32:

λ1 = J
(
β̂
)

= β̂>SBβ̂
β̂>SW β̂

In Exercise 15.4.5 on page 1024, we show that the Fisher discriminant analysis is equiva-
lent to the linear discriminant analysis in the case of two classes. This result can be extended
to multiple classes and explains why this approach is also called Fisher linear discriminant
analysis.

Example 170 We consider a problem with two classes C1 and C2, and two explanatory
variables (X1, X2). Class C1 is composed of 7 observations: (1, 2), (1, 4), (3, 6), (3, 3), (4, 2),
(5, 6), (5, 5), whereas class C2 is composed of 6 observations: (1, 0), (2, 1), (4, 1), (3, 2), (6, 4)
and (6, 5).

In Figure 15.19, we have reported these 13 observations in the plane (x1, x2). The com-
putation of the first generalized eigenvector gives β = (0.7547,−0.9361). We deduce that
the slope of the optimal line direction is β1/β2 = −0.8062. Computing the Fisher score
si = β>xi for the ith observation is then equivalent to perform the orthogonal projection of

31See Appendix A.1.1.2 on page 1034 for the definition of the generalized eigendecomposition.
32Thanks to Equation (15.13), we have SBβ = λSW β and β>SBβ = λβ>SW β.
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the points on this optimal line (Bishop, 2006). Concerning the assignment decision, we can
consider the midpoint rule: {

si < µ̄⇒ i ∈ C1
si > µ̄⇒ i ∈ C2

where µ̄ = (µ̄1 + µ̄2) /2, µ̄1 = β>µ̂1 and µ̄2 = β>µ̂2. However, this rule is not always
optimal because it does not depend on the variance s̄2

1 and s̄2
2 of each class. In Figure 15.20,

we have reported the Gaussian density of the scores for the two classes. Since we observe
that the first class has a larger variance, the previous rule is not adapted. This is why we
can use the tools presented in Section 15.3 in order to calibrate the optimal decision rule.

FIGURE 15.19: Linear projection and the Fisher solution

Remark 186 v>1 S−1/2
B X is called the first canonical or discriminant variable (Hastie et

al., 2009) and we denote it by Y c(1). The previous analysis can be used to find the second
canonical variable Y c(2) = β>(2)X that is not correlated to Y c(1) such that J

(
β(2)

)
is maxi-

mum. The solution is β̂(2) = S−1/2
B v2 where v2 is the eigenvector associated to the second

largest eigenvalue λ2. This method can be extended to the general problem of finding the
kth canonical variable Y c(k) = β>(k)X that is not correlated to

(
Y c(1), . . . , Y

c
(k−1)

)
such that

J
(
β(k)

)
is maximum. Again, we can show that the solution is β̂(k) = S−1/2

B vk where vk is
the eigenvector associated to the kth largest eigenvalue λk. The computation of the K linear
relationships Y c(k) = β>(k)X is called the multiple discriminant analysis (MDA). MDA can
be seen as a generalized PCA method by taking into account a categorical response vari-
able. Indeed, PCA performs an eigendecomposition of S (or Σ̂) whereas MDA performs an
eigendecomposition of S−1

W SB.
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FIGURE 15.20: Class separation and the cut-off criterion

15.2.2.2 Binary choice models

The underlying idea of such models is to estimate the probability of a binary response
based on several explanatory variables. They have been developed in several fields of research
(biology, epidemiology, economy, etc.). In statistics, the two seminal papers are again written
by Fisher (1935) and Cox (1958). Since these publications, these models have been extended
and now represent a major field of study in statistics and econometrics33.

General framework In this section, we assume that Y can take two values 0 and 1. We
consider models that link the outcome to a set of factors X:

Pr {Y = 1 | X = x} = F
(
x>β

)
By construction, F must be a cumulative distribution function in order to ensure that
F (z) ∈ [0, 1]. We also assume that the model is symmetric, implying that F (z)+F (−z) = 1.
Given a sample {(xi, yi) , i = 1, . . . , n}, the log-likelihood function is equal to:

` (θ) =
n∑
i=1

ln Pr {Yi = yi}

where yi takes the values 0 or 1. We have:

Pr {Yi = yi} = pyii · (1− pi)
1−yi

33The materials presented below is based on surveys by Amemiya (1981, 1985) and McFadden (1984).
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where pi = Pr {Yi = 1 | Xi = xi}. We deduce that:

` (θ) =
n∑
i=1

yi ln pi + (1− yi) ln (1− pi)

=
n∑
i=1

yi ln F
(
x>i β

)
+ (1− yi) ln

(
1− F

(
x>i β

))
We notice that the vector θ includes only the parameters β. By noting f (z) the probability
density function, it follows that the associated score vector and Hessian matrix of the log-
likelihood function are:

S (β) = ∂ ` (β)
∂ β

=
n∑
i=1

(
yi
f
(
x>i β

)
F
(
x>i β

) − (1− yi)
f
(
x>i β

)
1− F

(
x>i β

))xi
=

n∑
i=1

f
(
x>i β

)
F
(
x>i β

)
F
(
−x>i β

) (yi − F
(
x>i β

))
xi

and:

H (β) = ∂2 ` (β)
∂ β ∂ β>

= −
n∑
i=1

Hi ·
(
xix
>
i

)
where:

Hi =
f
(
x>i β

)2
F
(
x>i β

)
F
(
−x>i β

) − (yi − F
(
x>i β

))
·(

f ′
(
x>i β

)
F
(
x>i β

)
F
(
−x>i β

) − f
(
x>i β

)2 (1− 2F
(
x>i β

))
F
(
x>i β

)2 F
(
−x>i β

)2
)

Once β̂ is estimated by the method of maximum likelihood, we can calculated the predicted
probability for the ith observation:

p̂i = F
(
x>i β̂

)
Like a linear regression model, we can define the residual as the difference between the
observation yi and the predicted value p̂i. We can also exploit the property that the condi-
tional distribution of Yi is a Bernoulli distribution B (pi). This is why it is better to use the
standardized (or Pearson) residuals:

ûi = yi − p̂i√
p̂i (1− p̂i)

These residuals are related to the Pearson’s chi-squared statistic:

χ2
Pearson =

n∑
i=1

û2
i

=
n∑
i=1

(yi − p̂i)2

p̂i (1− p̂i)
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This statistic may used to measure the goodness-of-fit of the model. Under the assumption
H0 that there is no lack-of-fit, we have χ2

Pearson ∼ χ2
n−K whereK is the number of exogenous

variables. Another goodness-of-fit statistic is the likelihood ratio. For the ‘saturated’ model,
the estimated probability p̂i is exactly equal to yi. We deduce that the likelihood ratio is
equal to:

−2 ln Λ = 2
n∑
i=1

yi ln yi + (1− yi) ln (1− yi)−

2
n∑
i=1

yi ln p̂i + (1− yi) ln (1− p̂i)

= 2
n∑
i=1

yi ln
(
yi
p̂i

)
+ (1− yi) ln

(
1− yi
1− p̂i

)
In binomial choice models, D = −2 ln Λ is also called the deviance and we have D ∼ χ2

n−K .
In a perfect fit p̂i = yi, the likelihood ratio is exactly equal to zero. The forecasting procedure
consists of estimating the probability p̂ = F

(
x>β̂

)
for a given set of variables x and to use

the following decision criterion:
Y = 1⇔ p̂ ≥ 1

2

Remark 187 It could also be interesting to compute the marginal effects. We have:

E [Y | X = x] = F
(
x>β̂

)
and:

∂ E [Y | X = x]
∂ x

= f
(
x>β̂

)
· β̂

The marginal effects depend on the vector x and are then not easy to understand. This
is why we generally compute them by using the mean of the regressors or averaging them
across all the observations of the sample.

Logit analysis The logit model uses the following cumulative distribution function:

F (z) = 1
1 + e−z

= ez

ez + 1

The probability density function is then equal to:

f (z) = e−z

(1 + e−z)2

We verify the property F (z) + F (−z) = 1. The log-likelihood function is equal to:

` (β) =
n∑
i=1

(1− yi) ln
(
1− F

(
x>i β

))
+ yi ln F

(
x>i β

)
=

n∑
i=1

(1− yi) ln
(

e−x
>
i β

1 + e−x
>
i
β

)
− yi ln

(
1 + e−x

>
i β
)

= −
n∑
i=1

ln
(

1 + e−x
>
i β
)

+ (1− yi)
(
x>i β

)
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We also have34:

S (β) =
n∑
i=1

(
yi − F

(
x>i β

))
xi

and35:

H (β) = −
n∑
i=1

f
(
x>i β

)
·
(
xix
>
i

)
Probit analysis The probit model assumes that F (z) is the Gaussian distribution. The
log-likelihood function is then:

` (β) =
n∑
i=1

(1− yi) ln
(
1− Φ

(
x>i β

))
+ yi ln Φ

(
x>i β

)
The probit model can be seen as a latent variable model. Let us consider the linear model
Y ? = β>X+U where U ∼ N

(
0, σ2). We assume that we do not observe Y ? but Y = g (Y ?).

For example, if g (z) = 1 {z > 0}, we obtain:

Pr {Y = 1 | X = x} = Pr
{
β>X + U > 0 | X = x

}
= Φ

(
β>x

σ

)
We notice that only the ratio β/σ is identifiable. Since we can set σ = 1, we obtain the
probit model.

Regularization Let ` (θ) be the log-likelihood function. The regularized log-likelihood
function is equal to:

` (θ;λ) = ` (θ)− λ

p
‖θ‖pp

The case p = 1 is equivalent to consider a lasso penalization, whereas p = 2 corresponds to
the ridge regularization. The optimal value θ? is obtained by maximizing the regularized
log-likelihood function:

θ? (λ) = arg max ` (θ;λ)

In this problem, we consider λ as an hyperparameter, meaning that λ is not directly es-
timated by maximizing the penalized log-likelihood function with respect to (θ;λ). For
instance, in the case of the lasso regularization, λ can be calibrated in order to obtain a
sparse model or using cross-validation techniques.

34We use the property f (z) = F (z) (1− F (z)), implying that:

f (z)
F (z) F (−z)

=
f (z)

F (z) (1− F (z))
= 1

35We use the property f ′ (z) = −f (z) F (z)
(
1− e−z

)
, implying that:

f ′ (z)
f (z)

− (1− 2F (z)) = 0
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Extension to multinomial logistic regression We assume that Y can take J labels
(L1, . . . ,LJ) or belongs to J disjoint classes (C1, . . . , CJ). We define the conditional proba-
bility as follows:

pj (x) = Pr {Y = Lj | X = x}
= Pr {Y ∈ Cj | X = x}

= eβ
>
j x

1 +
∑J−1
j=1 e

β>
j
x

for j = 1, . . . , J − 1. The probability of the last label is then equal to:

pJ (x) = 1−
J−1∑
j=1

pj (x)

= 1
1 +

∑J−1
j=1 e

β>
j
x

We verify that 0 ≤ pj (x) ≤ 1 for all j = 1, . . . , J . The log-likelihood function becomes:

` (θ) =
n∑
i=1

ln

 J∏
j=1

pj (xi)i∈Cj


where θ is the vector of parameters (β1, . . . , βJ−1).
The multinomial logistic model can be formulated as a log-linear model. We note:

ln pj (x) = β0 + β>j x

Since we have
∑J
j=1 pj (x) = 1, we deduce that the constant β0 is given by:

J∑
j=1

eβ0+β>j x = 1⇔ β0 = ln 1∑J
j=1 e

β>
j
x

It follows that:

pj (x) = eβ
>
j x∑J

j=1 e
β>
j
x

This function is known as the softmax function and plays an important role in neural
networks. We also notice that the model is overidentified because the sum of probabilities
is equal to 1. However, if we use the parametrization β̆j = βj − βJ , we obtain the previous
model36, which is just identified.

36Indeed, we have:

pj (x) =
e
β̆>j xe−β

>
J x

e−β
>
J
x
∑J

j=1 e
β̆>
j
x

=
e
β̆>j x

1 +
∑J−1

j=1 e
β̆>
j
x

because eβ̆
>
J x = e(βJ−βJ )>x = 1.
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15.2.3 Non-parametric supervised methods
We have named this section ‘non-parametric supervised methods’ in order to group some

approaches that share some of the same characteristics. First, even if some of them are para-
metric, these models are highly non-linear, meaning that it is extremely difficult to interpret
these models. In this case, ‘forecasting’ is the main motivation and is more important than
‘modeling’. Second, it would be illusory to consider or to do statistical inference. Most of
the time, it is impossible to calculate the variance of the parameters and the associated t-
statistics. Therefore, the term ‘model calibration’ is more appropriate than the term ‘model
estimation’. Finally, the number of parameters or unknowns can be large.

If we consider the linear regression model, we have Y = β>X + u where (Y,X)
forms a random vector. If we consider an observation i, we have yi = f (xi) + ui where
f (xi) =

∑K
k=1 βkxi,k. Let us now consider some non-linear features. We can replace the

linear function by:

f (xi) =
K∑
k=1

βkφk (xi) = β>φ (xi)

For example, we can use quadratic, cubic or piecewise features. We abandon the framework
of Gaussian conditional distribution, which is the basis of linear regression, and the reference
to the random variablesX and Y is not necessary. This means that the calibrated parameters(
β̂1, . . . , β̂K

)
are less relevant. Only the calibrated function f̂ (x) is important. For instance,

if we use radial basis functions:

φk (x) = exp
(
−1

2 ‖x− ck‖
2
)

where ck is the centering parameter, we obtain:

f̂ (xi) =
K∑
k=1

β̂ke
− 1

2‖xi−ck‖
2

Even if f̂ (x) is a parametric function, it can be considered as a non-parametric model.
Indeed, the functional form is the relevant quantity, not the parameters.

15.2.3.1 k-nearest neighbor classifier

The k-NN algorithm is one of the simplest non-parametric models. Let {(xi, yi)} be the
training sample of dimension n. We assume that the labels yi can be assigned to J classes
(C1, . . . , CJ). The goal is to assign a label y for a given unlabeled observation x. For that, we
select the k closest labeled observations in the training sample and we find the label ŷ that
appears most frequently within the k-subset. Said differently, the k-NN classifier uses the
majority vote of the k closest neighbors and the classification rule depends on k, which is the
hyperparameter. It is obvious that a high value of k helps to smooth the decision regions,
but it increases the computational complexity. Moreover, there is a trade-off between bias
and variance. If k = 1, we assign to x the label of the input xi that is the closest. If k = n,
we assign to x the most frequent label of the training sample. In the first case, we see that
ŷ is an unbiased estimator of y, but its variance is large. In the second case, the estimator
is biased but it has a small variance.

The implementation of the k-NN algorithm requires defining the distance between the
points xi and xj . Generally, we use the Euclidean distance, but we can consider the
Minkowski distance. To find the k closest labeled observations, the simplest way is the
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brute-force approach. When the number of observations n is large, we can use more efficient
methods based on tree-based partition37.

FIGURE 15.21: Illustration of the k-NN classifier

We consider the non-linearly separable classification problem, where the classes are dis-
tributed in rings around the point (0,0):

Cj =
{

(xi,1, xi,2) ∈ R2 : r2
j−1 < x2

i,1 + x2
i,2 ≤ r2

j

}
where j = {1, 2, 3} and rj = j is the radius of the ring. In the first panel in Figure 15.21, we
have represented the three rings, and we have reported 100 simulated observations (xi,1, xi,2)
that form the training set. In the second panel, we consider 1 000 observations. Solutions
provided by 1-NN and 10-NN classifiers are given in the third and fourth panels. We notice
that the 10-NN classifier is less efficient than the 1-NN classifier, because the number of
closest neighbors is large compared to the number of observations in the training set.

Remark 188 We can apply the k-NN algorithm to the regression. In this case, the predicted
value ŷ is the (weighted) average of the values yi of the k closest neighbors38.

15.2.3.2 Neural networks

Neural networks as non-linear models We have seen that we can extend the linear
model as follows39:

yi = β0 + β>φ (xi) + εi

In this case, we transform the input data (xi,1, . . . , xi,K) into the auxiliary data
(zi,1, . . . , zi,K) where zi,k = φk (xi,k). Here, the non-linearity property is introduced thanks

37The two most famous methods are the K-D tree and ball tree algorithms.
38The weight is generally inversely proportional to the distance.
39Here, we include a constant in the model.
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to the non-linear function φk. However, there are many other ways to build a non-linear
model. For instance, we can assume that:

yi = φ
(
β0 + β>xi

)
+ εi

We first create the auxiliary data zi = β0 + β>xi from the inputs and then apply the
non-linear function φ (x). If we use several non-linear functions, we obtain:

yi =
J∑
j=1

γjφj
(
β0 + β>xi

)
+ εi

or:

yi = ϕ

γ0 +
J∑
j=1

γjφj
(
β0 + β>xi

)+ εi

= f (xi) + εi

The underlying idea of neural networks is to define a non-linear function f (x), which is
sufficiently flexible to fit complex relationships.

Input x1

Input x2

Input x3

Input x4

Output y

Hidden
layer

Input
layer

Output
layer

FIGURE 15.22: The perceptron

Neural networks as a mathematical representation of biological systems The
term ‘neural network’ makes reference to biological systems, in particular the brain. For
instance, Rosenblatt (1958) proposed a self-organizing and adaptive model called the per-
ceptron. It is no coincidence that the title of this publication is “The Perceptron: A Proba-
bilistic Model for Information Storage and Organization in the Brain”. We have represented
the perceptron in Figure 15.22. The input data are combined in order to produce an hidden
variable z =

∑K
k=1 βkxk. Then, we apply the function f (z) in order to obtain the output y:

y = f (z) =
{

0 if z < 0
1 if z ≥ 0

In the context of neural networks, the function f (z) is called the activation function
and z is the hidden unit. If we generalize the perceptron by considering different hidden
units, we obtain the artificial neural network described in Figure 15.23. In this example,
we have four input units, five hidden units and one output unit. This model is also called
a feed-forward neural network with one hidden layer. It can be extended in two directions.
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Input x1

Input x2

Input x3

Input x4

Output y

Hidden
layer

Input
layer

Output
layer

FIGURE 15.23: Feed-forward neural network with a single hidden layer

Input x1

Input x2

Input x3

Input x4

Output y1

Output y2

Output y3

Hidden
layer #1

Hidden
layer #2

Input
layer

Output
layer

FIGURE 15.24: Feed-forward neural network with two hidden layers and three output
units
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First, we can consider several output units. Second, we can use several hidden layers. In
this case, we speak about multi-layer neural networks (Figure 15.24). For example, deep
learning refers to a neural network with a large number of hidden layers.

The term neural network does not only refer to the structure input layer – hidden layer
– output layer. Activation functions generally map the resulting values into the range [0, 1]
or [−1, 1] and correspond to sigmoidal functions. For example, the perceptron uses the
Heaviside step function f (z) = 1 {z > 0}, because it indicates if the neuron is activated or
not. We can also use the sign function f (z) = sign (z) in order to indicate a ‘positive’ or
‘negative’ potential. However, the most popular activation functions are continuous:

1. the logistic function is equal to:

f (z) = 1
1 + e−z

= ez

1 + ez
(15.16)

we have f (z) ∈ [0, 1], meaning that we can interpret f (z) as a probability function;
moreover, it is symmetric about 0.5;

2. the hyperbolic tangent function is defined by:

f (z) = ez − e−z

ez + e−z
= e2z − 1
e2z + 1 (15.17)

and we have f (z) ∈ [−1, 1];

3. the rectified linear unit (ReLU) function corresponds to:

f (z) = max (0, z) (15.18)

and we have f (z) ∈ [0,∞).

Furthermore, neural networks are also characterized by the concept of learning algorithms.
Neural networks can be seen as non-linear functions with some unknown parameters. The
first idea is then to estimate the parameters by minimizing the residual sum of squares,
meaning that neural networks are just a particulate case of non-linear least squares. How-
ever, neural networks generally use other techniques for identifying the parameters. Sta-
tistical learning implicitly refers to human brains or natural neural networks. The concept
of learning is then central and shall contrast with the concept of optimization. The latter
implies that there is one solution. In an artificial neural network, each node represents a
neuron and each connection can be seen as a synapse. Since these connections transmit a
signal from one neuron to another, the underlying idea is that they learn like in a human
brain. This is why the parameters that control these connections are updated until the ar-
tificial neural network has learnt. In fact, the difference between optimization and learning
is somewhat forced. Indeed, optimization also uses iterative algorithms that can be inter-
preted as learning algorithms. However, the learning algorithms that are used in artificial
neural networks try to imitate the learning process of human brains40. They are also called
adaptive learning rules in order to say that they are adaptive and they try to learn.

Remark 189 According to Bishop (2006), the term neural network “has been used very
broadly to cover a wide range of different models, many of which have been the subject of
exaggerated claims regarding their biological plausibility”. In fact, we use neural networks
as non-linear regression models in the sequel.

40It is particularly true for the first generation of algorithms that were discovered before 1990s.
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Structure of the canonical neural network The notations used in neural networks
and machine learning are generally different than those used in statistics. In this book, we
have tried to use similar homogenous notations in order to make the reading easier:

• the observation (also called the example) is denoted by i;

• the input variable uses the index k and xi,k is the kth input variable of the ith obser-
vation;

• zi,h is the value taken by the hth hidden variable and the ith observation;

• for the output variables (also called the patterns), we introduce the notation yj (xi)
to name the model output taken by the jth output variable and the ith observation;
sometimes, we use the alternative notation ŷi,j , which is more traditional in statistical
inference theory.

The number of input, hidden and output variables are respectively equal nx, nz and ny.
The activation functions fx,z and fz,y links respectively the x’s to the z’s, and the z’s to the
y’s. In order to distinguish them, fz,y is also called the output scaling function. We have41:

zi,h = fx,z (ui,h) = fx,z

(
nx∑
k=1

βh,kxi,k

)

and:

yj (xi) = fz,y (vi,j) = fz,y

(
nz∑
h=1

γj,hzi,h

)
where ui,h and vi,j are the intermediary variables before the activation of the functions fx,z
and fz,y. Finally, we have:

yj (xi) = fz,y

(
nz∑
h=1

γj,hfx,z

(
nx∑
k=1

βh,kxi,k

))
(15.19)

Figure 15.25 summarizes the structure and the notations of this neural network.

Remark 190 Including a constant is equivalent to consider that xi,1 = 1. A variant model
is to define yj (xi) as follows:

yj (xi) = fz,y

(
γj,0 +

nz∑
h=1

γj,hfx,z

(
βh,0 +

nx∑
k=1

βh,kxi,k

))
(15.20)

In this case, we add a constant as an input variable (βh,0) and a constant as a hidden
variable (γj,0). Bishop (2006) shows that this model can be written as:

yj (xi) = fz,y

(
nz∑
h=0

γj,hfx,z

(
nx∑
k=0

βh,kxi,k

))

where xi,0 = 1. The other possibility is to have a direct link between the x’s to the y’s or
skip-layer connections:

yj (xi) = fz,y

(
γj,0 +

nz∑
h=1

γj,hfx,z

(
βh,0 +

nx∑
k=1

βh,kxi,k

)
+

nx∑
k=1

γj,nz+kxi,k

)
(15.21)

41Most of the time, we use the same activation function fx,z (u) = fz,y (u) = f (u).
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xi,1

xi,2

xi,k

zi,1

zi,2

zi,h = fx,z (ui,h)

ui,h =
nx∑∑∑
k=1

βh,kxi,k

y1 (xi)

y2 (xi)

yj (xi) = fz,y (vi,j)

vi,j =
nz∑∑∑
h=1

γj,hzi,h

Input
layer

Hidden
layer

Output
layer

...

...
...

...
...

...

nx nz ny

βh,1

βh,2

βh,k

γj,1

γj,2

γj,h

FIGURE 15.25: Canonical neural network

Loss function If we note yi,j the value of the output variable that is observed42, we would
like to verify:

yj (xi) = yi,j

It follows that a natural loss function is the sum of squared errors:

L (θ) =
n∑
i=1

ny∑
j=1

1
2 (yj (xi)− yi,j)2 (15.22)

where θ is the vector of parameters and n is the number of observations. Minimizing this
loss function is also equivalent to maximize the log-likelihood function associated to the
non-linear regression model:

yi,j = yj (xi) + εi,j

where εi,j ∼ N
(
0, σ2) and εi,j ⊥ εi′,j′ if i 6= i′ or j 6= j′.

The previous loss function is natural when considering a non-linear regression. In the case
of binary classification (yi = 0 or yi = 1) and if the output y (xi) represents a probability,
it is better to use the cross-entropy error loss43:

L (θ) = −
n∑
i=1

(yi ln y (xi) + (1− yi) ln (1− y (xi))) (15.23)

42It is called the target value or the pattern.
43We skip the subscript j because we assume that j = 1. We have then yi = yi,1 and y (xi) = y1 (xi).
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The choice of the loss function depends then on the output variable, but also on the activa-
tion function. For example, the cross-entropy error loss is adapted if fz,y corresponds to the
logistic function, but not to the hyperbolic tangent function. In the case of the multi-class
classification problem, Bishop (2006) proposes to consider the following loss function:

L (θ) = −
n∑
i=1

ny∑
j=1

yi,j ln yj (xi) (15.24)

where ny is equal to the number of classes nC and fz,y corresponds to the softmax function
that was previously defined in the case of the multi-logistic model:

yj (xi) = fz,y (vi,j)

= evi,j∑ny
j′=1 e

vi,j′

The loss function is then the opposite of the log-likelihood function.

Learning rules In order to minimize the loss function, we can use classical optimization
algorithm44 (Newton-Raphson, conjugate gradient, BFGS, DFP, Levenberg-Marquardt,
etc.). As we have already said previously, this is not the philosophy of neural networks,
and we generally prefer to use a statistical learning rule, which corresponds to an iterative
algorithm:

θ(t+1) = θ(t) + ∆θ(t)

where θ(t) is the value of θ at the iteration (or epoch) t, and ∆θ(t) is the adjustment vector.
The learning rule consists in defining how θ(t) is updated, and is mostly based on the
gradient of the loss function:

G (θ) = ∂ L (θ)
∂ θ

Here are the main methods (Smith, 1993):

• The steepest descent method is defined by:

∆θ(t) = −η ·G
(
θ(t)
)

where η > 0 is the learning rate parameter. For minimizing the loss function, ∆θ(t)

should go in the opposite direction of the gradient.

• For the momentum method, we have:

∆θ(t) = − (1− αm) η ·G
(
θ(t)
)

+ αm ·∆θ(t−1)

= −ηm ·G
(
θ(t)
)

+ αm ·∆θ(t−1)

where αm ∈ [0, 1] is the momentum weight and ηm > 0 is the momentum learning
rate parameter. Therefore, the adjustment at iteration t is the weighted average of
the adjustment at iteration t−1 and the steepest descent adjustment. The underlying
idea of the term αm∆θ(t−1) is to keep going in the previous direction. This method
can speed up the algorithm because it may avoid oscillations45.

44See Appendix A.1.3 on Page 1046.
45A better method is to consider the Nesterov approach:

∆θ(t) = −ηm ·G
(
θ(t) + αm∆θ(t−1)

)
+ αm ·∆θ(t−1)
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• The adaptive learning method is given by:

∆θ(t) = −η(t) ·G
(
θ(t)
)

where:
η(t) =

{
η(t−1) + κ if G

(
θ(t)) ·K (θ(t)) ≥ 0

φ · η(t−1) otherwise

κ > 0, 0 < φ < 1 and K
(
θ(t)) = G

(
θ(t−1)). Instead of using a fixed step η, we

consider a variable step η(t) that depends on the previous value η(t−1). The variable
step increases when the gradient does not change between iterations t− 1 and t, and
decreases otherwise. Another rule is to consider a moving average of the gradient:

K
(
θ(t)
)

= (1− %) ·G
(
θ(t)
)

+ % ·K
(
θ(t−1)

)
≈ (1− %)

∑
τ=1

%τ−1G
(
θ(t−τ)

)
where % ∈ [0, 1]. In the case % = 0, we retrieve the previous rule K

(
θ(t)) = G

(
θ(t−1)).

• The adaptive learning with momentum method combines the two previous approaches:

∆θ(t) = − (1− α) η(t) ·G
(
θ(t)
)

+ α ·∆θ(t−1)

= −η(t)
m ·G

(
θ(t)
)

+ αm ·∆θ(t−1)

There are numerous other algorithms46 (adagrad, adam, nadam, rprop, rmsprop, etc.),
and a lot of tricks for accelerating the convergence. First, we distinguish three approaches
for evaluating the gradient of the objective function:

1. the batch gradient descent (BGD) computes the gradient with respect to the entire
training dataset:

G
(
θ(t)
)

=
∂ L

(
θ(t))

∂ θ

2. the stochastic gradient descent (SGD) considers only one different training example
at each iteration:

G
(
θ(t)
)

=
∂ Li

(
θ(t))

∂ θ

where Li (θ) is the loss function for the ith observation;

3. the mini-batch gradient descent (MGD) updates the parameters by using a subset of
the training dataset:

G
(
θ(t)
)

=
∑
i∈S(t)

∂ Li
(
θ(t))

∂ θ

where the subset S(t) changes at each iteration.

The underlying idea is to evaluate the gradient not with respect to the current value θ(t), but with respect
to the prediction of the future value θ(t+1). This prediction is equal to θ̂(t+1) = θ(t) + αm∆θ(t−1) in the
momentum method.

46See Ruder (2016) for a review of recent approaches.



Credit Scoring Models 983

It is obvious that the choice of one approach depends on the size of the training data.
Moreover, we better understand why the momentum approach is important when defining
the learning rule. Indeed, in SGD and MGD approaches, the estimation of the gradient
is more noisy than in the BGD approach. The momentum method helps to smooth the
gradient and to obtain a more consistent direction.

We give here some default values that are used for the learning rules: η = 1, αm = 0.75,
κ = 0.1, φ = 0.9, αm = 0.6 and % = 0.5. However, these parameters can change during the
learning process. For instance, the learning rate parameter η can be greater at the beginning
of the learning process, because of the large gradients. In a similar way, we can use a small
momentum parameter αm and then we can increase it progressively. We can also assume
that the appropriate learning rules can vary between the parameters.

Error backpropagation In order to calculate the gradient G (θ), we consider a method
called error backpropagation (or backward propagation). In the case of the loss function
(15.22), we have L (θ) =

∑n
i=1 Li (θ) and:

Li (θ) =
ny∑
j=1

1
2 (yj (xi)− yi,j)2

It follows that G (θ) =
∑n
i=1Gi (θ) where Gi (θ) is the gradient of Li (θ). In the case of the

previous loss, we can use the decomposition Li (θ) =
∑ny
j=1 Li,j (θ) where:

Li,j (θ) = 1
2 (yj (xi)− yi,j)2

Using chain rule, we obtain47:

∂ Li,j (θ)
∂ γj,h

= ∂ Li,j (θ)
∂ yj (xi)

· ∂ yj (xi)
∂ vi,j

· ∂ vi,j
∂ γj,h

= (yj (xi)− yi,j) f ′z,y (vi,j) zi,h

and ∂γj,h Li,j′ (θ) = 0 when j 6= j′. We also deduce that48:

∂ Li,j (θ)
∂ βh,k

= ∂ Li,j (θ)
∂ zi,h

· ∂ zi,h
∂ ui,h

· ∂ ui,h
∂ βh,k

= ∂ Li,j (θ)
∂ zi,h

f ′x,z (ui,h)xi,k

= (yj (xi)− yi,j) f ′z,y (vi,j) γj,hf ′x,z (ui,h)xi,k

In the case of Model (15.20), there is a constant and we have:

∂ Li,j (θ)
∂ γj,0

= (yj (xi)− yi,j) f ′z,y (vi,j)

47The distinction between j and j′ is important when we consider the softmax function (see Exercise
15.4.7 on page 1025).

48Because we have:
∂ Li,j (θ)
∂ zi,h

=
∂ Li,j (θ)
∂ yj (xi)

·
∂ yj (xi)
∂ vi,j

·
∂ vi,j

∂ zi,h

= (yj (xi)− yi,j) f ′z,y (vi,j) γj,h
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and:
∂ Li,j (θ)
∂ βh,0

= (yj (xi)− yi,j) f ′z,y (vi,j) γj,hf ′x,z (ui,h)

In the case of Model (15.21), we have for the direct links:

∂ Li,j (θ)
∂ γj,nz+k

= (yj (xi)− yi,j) f ′z,y (vi,j)xi,k

It follows that the neural network consists in two steps. The forward propagation computes
ui,h, zi,h, vi,j and yj (xi), meaning that the information comes from left to right. The
backward propagation computes all the derivatives using the chain rule, implying that the
information goes from right to left.

Remark 191 All the previous quantities can be calculated in a matrix form in order to
avoid loop implementation (see Exercise 15.4.7 on page 1025).

Since f ′z,y and f ′x,z are easy to calculate, all the derivatives are calculated in a closed-form
expression. For instance, the derivative of the logistic activation function is equal to:

f ′ (z) = e−z

(1 + e−z)2

= 1
1 + e−z

(
1− 1

1 + e−z

)
= f (z) (1− f (z))

It follows that f ′z,y (vi,j) = fz,y (vi,j) (1− fz,y (vi,j)) = yj (xi) (1− yj (xi)) and f ′x,z (ui,h) =
zi,h (1− zi,h). In Exercise 15.4.7 on page 1025, we consider other activation functions and
loss functions.

Examples Neural networks are sufficiently flexible that they can approximate any con-
tinuous function. Therefore, they are said to be ‘universal approximators’ (Bishop, 2006).
Figure 15.26 illustrates this property when the function is f (x) = 2 cos (x) or f (x) = |x|−2.
For that, we use the network structure (15.20) with two constants and direct links. The ac-
tivation function fx,z is the hyperbolic tangent function, while the output scaling function
fz,y is the identity function. The training step is done with 201 uniform points between
−4 and +4. We notice that the accuracy depends on the number nz of hidden nodes. In
particular, the approximation is very good when we consider three hidden nodes. The uni-
versal approximation property is certainly the main strength of neural networks. It suffices
to increase the number of hidden nodes in order to achieve a given accuracy. However,
this property is also the main weakness of neural networks. Indeed, the distinction between
training and validation steps is not obvious, and overfitting risk is large.

The trade-off between nz and L (θ) is not the only issue with neural networks. Another
problem is the scaling of data. By applying activation functions, the output domain is not
necessarily the set Rny . In Figure 15.27, we have reported the approximation of f (x) = |x|−
2 by considering two hidden nodes and different configurations. The first panel corresponds
to the network structure (15.19) without constant and direct link (β0 = 0, γ0 = 0 and
γx = 0). In the second panel, we include the two constants β0 and γ0, but not the direct
links (γx = 0). We notice that this second structure is better to approximate the function
than the structure of the first panel. The reason is the range of dom f (x), which is better
managed by including a constant γ0. This is confirmed by the third panel. Finally, the fourth
panel assumes that the output scaling function fz,y is the logistic sigmoid function. In this
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FIGURE 15.26: Neural networks as universal approximators

FIGURE 15.27: The scaling issue of neural networks (f (x) = |x| − 2)
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case, it is obvious that the output y (xj) ∈ [0, 1] cannot reach dom f (x) = [−2, 2]. This case
is trivial while the three previous cases are not. This means that the network structure is
crucial, not only the number of hidden units, but also the choice of activation and scaling
functions, adding or not constants and direct links, and the scaling of both input and output
data.

FIGURE 15.28: Convergence of the XOR problem

The XOR (or exclusive or) problem is a classic problem in neural networks. We note
y = x1 ⊕ x2 where x1 and x2 are two binary outputs:

0⊕ 0 = 0
0⊕ 1 = 1
1⊕ 0 = 1
1⊕ 1 = 0

The XOR problem can be viewed as a supervised classification problem. In order to solve
this problem, we use a neural network with three hidden nodes with no constant and no
direct link. The activation and output scaling functions are set to the logistic function. In
Figure 15.28, we have represented the evolution of the loss function L (θ) with respect to
the iterations of the learning rules, which are steepest descent (SD), momentum (MOM),
adaptive learning (AL) and adaptive learning with momentum (AL II) methods. We also
consider a steepest descent with optimal stepsize (SD II) and the BFGS algorithm. More-
over, we have used the two loss criteria: least squares and cross-entropy errors. The results
show the following major lessons. First, we notice that the convergence highly depends on
the learning rule, but also on the loss criterion. Second, a comparison of the optimal pa-
rameters θ̂ shows that they are all different. They differ from one learning rule to another,
but they also differ from one loss criterion to another even if we use the same learning
rule. This result is not surprising, because we observe that the solution θ̂ changes each time
we consider new starting values. This means that neural networks produce models that
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are overidentified. In this context, it is perfectly illusory to analyze and understand the
estimated model. As we have already said, only the predictions ŷi,j are relevant.

TABLE 15.15: Data of program effectiveness
OBS GPA TUCE PSI GRD OBS GPA TUCE PSI GRD

1 2.66 20 0 0 17 2.75 25 0 0
2 2.89 22 0 0 18 2.83 19 0 0
3 3.28 24 0 0 19 3.12 23 1 0
4 2.92 12 0 0 20 3.16 25 1 1
5 4.00 21 0 1 21 2.06 22 1 0
6 2.86 17 0 0 22 3.62 28 1 1
7 2.76 17 0 0 23 2.89 14 1 0
8 2.87 21 0 0 24 3.51 26 1 0
9 3.03 25 0 0 25 3.54 24 1 1

10 3.92 29 0 1 26 2.83 27 1 1
11 2.63 20 0 0 27 3.39 17 1 1
12 3.32 23 0 0 28 2.67 24 1 0
13 3.57 23 0 0 29 3.65 21 1 1
14 3.26 25 0 1 30 4.00 23 1 1
15 3.53 26 0 0 31 3.10 21 1 0
16 2.74 19 0 0 32 2.39 19 1 1

Source: Greene (2017), Table F14.1 and Spector and Mazzeo (1980).

We consider the classification problem described in Greene (2017) based on the study of
Spector and Mazzeo (1980), who examined whether a new method of teaching economics,
the personalized system of instruction (PSI), significantly influenced performance in later
economics courses. The corresponding data are reproduced in Table 15.15. OBS is the
observation, that is the student. The output variable is GRD, which corresponds to the
grade increase (1) or decrease (0) indicator for the student. The explanatory variables are
the constant C, the grade point average GPA, the test score on economics test TUCE,
and the binary variable PSI that indicates the participation to the new teaching method.
Following Greene (2017), we estimate the following logit model:

Pr {GRDi = 1} = F (β0 + β1 GPAi +β2 TUCEi +β3 PSIi)
= F

(
x>i β

)
where F is the cumulative distribution function of the logistic distribution. The results
are reported in Table 15.16, and the value of the optimized log-likelihood function is
`
(
β̂
)

= −12.8896. In order to challenge the logistic regression, we consider a neural network
with three hidden nodes. The logistic function is used for both the activation and output
scaling functions and we consider a direct link between the input variables (C, GPA, TUCE
and PSI) and the output variable GRD. In Table 15.17, we have calculated the estimated
probability p̂i = Pr {GRDi = 1} in the cases of the logit model:

p̂i = F
(
x>i β̂

(logit)
)

and the neural network:

p̂i = F
(
γ̂(nn)
z F

(
β̂(nn)
x xi

)
+ γ̂(nn)

x xi

)
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TABLE 15.16: Results of the logistic regression

Parameter Estimate Standard
t-statistic p-valueerror

β0 −13.0214 4.9313 −2.6405 0.0134
β1 2.8261 1.2629 2.2377 0.0334
β2 0.0952 0.1415 0.6722 0.5069
β3 2.3787 1.0646 2.2344 0.0336

TABLE 15.17: Estimated probability p̂i = Pr {GRDi = 1}

OBS Logit NN OBS Logit NN
1 2.658 2.658 17 5.363 5.363
2 5.950 5.950 18 3.859 3.859
3 18.726 18.726 19 58.987 58.987
4 2.590 2.590 20 66.079 66.079
5 56.989 56.989 21 6.138 6.138
6 3.486 3.486 22 90.485 90.485
7 2.650 2.650 23 24.177 24.177
8 5.156 5.156 24 85.209 85.209
9 11.113 11.113 25 83.829 83.829

10 69.351 69.351 26 48.113 48.113
11 2.447 2.447 27 63.542 63.542
12 19.000 19.000 28 30.722 30.722
13 32.224 32.224 29 84.170 84.170
14 19.321 19.321 30 94.534 94.534
15 36.099 36.099 31 52.912 52.912
16 3.018 3.018 32 11.103 11.103

The results are surprising. The estimated probability calculated with the neural network is
exactly equal to the estimated probability calculated with the logit model. If we inspect the
estimated coefficient, we obtain:

β̂(nn)
x =

 1.0343 0.8482 1.0678 0.5770
0.3856 0.1976 1.4420 0.8744
0.1925 0.8791 2.0427 0.5439


γ̂

(nn)
z = (−2.9240,−2.9538,−3.6783) and γ̂

(nn)
x = (−3.4652, 2.8261, 0.0952, 2.3787). More-

over, the loss error is equal to L
(
θ̂
)

= 12.8896, which is exactly the opposite of the op-
timized log-likelihood function. This result is not surprising because the neural network
encompasses the logit model:

Pr {GRDi = 1} = F

γ(nn)
z F

(
β(nn)
x xi

)
︸ ︷︷ ︸
specific nn effect

+ γ(nn)
x xi︸ ︷︷ ︸

logit effect


We also notice that the logit coefficients are the same than the neural network coefficients for
the direct link units (β̂(logit) = γ̂

(nn)
x ) with the exception of the constant49. Let us estimate

49The constant is equal to −13.0214 for the logit model and −3.4652 for the neural network.
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the neural network by using other starting values for the optimization step. We obtain the
same probability than previously, but the estimated coefficients are not the same. We have:

β̂ =

 0.4230 0.9108 0.5875 0.0882
0.9586 0.2078 0.7862 0.4852
0.7835 2.9180 8.7259 0.4899


γ̂

(nn)
z = (−4.5296,−4.3299,−4.2120) and γ̂(nn)

x = (0.0501, 2.8261, 0.0952, 2.3787). Again, the
neural network coefficients for the direct link units are equal to the logit coefficients with
the exception of the constant. We deduce that the neural network does not differ from the
logit model, because we have:

β̂
(logit)
0 = γ(nn)

z F
(
β(nn)
x xi

)
+ γ

(nn)
1

This result is interesting, because it shows that the neural network did not better than the
logit model, although it presents more flexibility.

Remark 192 The previous results are explained because we optimize the cross-entropy er-
ror loss for estimating the parameters of the neural network. This implies that the logit
framework is perfectly compatible with the neural network framework.

15.2.3.3 Support vector machines

The overidentification of neural networks is an important issue and the optimization step
involves an objective function, which is generally not convex with respect to the parameters.
This implies that there are many local minima. Moreover, the foundation of neural networks
suffers from little theoretical basis of these learning models. Like neural networks, support
vector machines (SVM) can be seen as an extension of the perceptron. However, it presents
nice theoretical properties and a strong geometrical framework. Once SVMs have been first
developed for linear classification, they have been extended for non-linear classification and
regression.

TABLE 15.18: An example of linearly separable observations
i 1 2 3 4 5 6 7
xi,1 0.5 2.7 2.7 1.7 1.5 2.3 4.0
xi,2 2.5 4.2 2.0 4.2 0.7 5.3 6.9
yi +1 +1 +1 +1 +1 +1 +1

i 8 9 10 11 12 13 14 15
xi,1 6.4 7.7 8.8 7.4 6.5 8.3 6.0 5.0
xi,2 4.5 2.2 6.0 6.5 1.7 1.3 1.3 0.5
yi −1 −1 −1 −1 −1 −1 −1 −1

Separating hyperplanes We consider a training set {(xi, yi) , i = 1, . . . , n}, where the
response variable yi can take the values −1 and +1. This training set is said linearly sepa-
rable if there is a hyperplane H =

{
x ∈ RK : f (x) = β0 + x>β = 0

}
such that:

yi = sign f (xi)

This means that the hyperplane divides the affine space in two half-spaces50 such that
{i : yi = +1} ∈ H+ and {i : yi = −1} ∈ H−. Let us consider the example with two ex-
planatory variables given in Table 15.18. We have represented the data (xi,1, xi,2) and the

50The upper half-space H+ is defined by f (x) > 0 while the lower half-space H− corresponds to f (x) < 0.
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corresponding label yi in Figure 15.29. It is obvious that this training set is linearly sep-
arable. For example, we have reported three hyperplanes H1, H2 and H3 that perform a
perfect classification.

x2

x1
0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

H1 H2H3

FIGURE 15.29: Separating hyperplane picking

Since there are many solutions, we may wonder if there exists one solution that dominates
the others. The answer has been proposed by Vladimir Vapnik and Alexey Chervonenkis
in the sixties, who have formulated the concept of support vector machines. Following
Cortes and Vapnik (1995), the optimal hyperplane is the one that maximizes the margin.
In Figure 15.30, we have represented an hyperplane and the two margins M+ and M−,
which corresponds to the Euclidean distance between the hyperplane and the closest positive
and negative points. The underlying idea of Vapnik and Chervonenkis is then to find the
hyperplane H with the largest values of M+ and M−.

We notice that finding a hyperplane with two different margins M+ 6= M− is equivalent
to define a hyperplane with the same positive and negative margins: M+ = M− = M . This
implies that the two separating hyperplanes H+ and H− are equidistant to the hyperplane
H. The estimation of H+ and H− requires identifying the training points that belongs to
H+ and H−. These points are called the support vectors. In the case of Figure 15.30, two
support vectors are necessary to define H+ and H−, or equivalently H and the margin M .
By construction, the number of support points is at least equal to the number of explanatory
variables. Except in degenerate cases, there are much less number of support points than the
number of observations. This implies that not all observations are relevant for defining the
decision boundary of an optimal linear classifier. Only the support vectors are important.

Hard margin classification The maximization problem is:{
β̂0, β̂

}
= arg maxM

s.t.
{
f (xi) ≥M if yi = +1
f (xi) ≤ −M if yi = −1
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FIGURE 15.30: Margins of separation

However, this optimization problem is not well defined, since M depends on β. More pre-
cisely, it is inversely proportional to ‖β‖2. This is why we need to add another constraint,
e.g. β1 = 1 or ‖β‖2 = 1. Another approach is to standardize the problem by setting M = 1.

Let x− and x+ be two (negative and positive) support vectors, we deduce that the
distance between x− and x+ is equal to51:

d (x−, x+) = β> (x+ − x−) = 2M

If we replace β by the corresponding unit vector β̂ = β/ ‖β‖2, we obtain β> (x+ − x−) =
2M̂ ‖β‖2. By setting M = 1, we obtain M̂ = 1/ ‖β‖2. Maximizing the margin is then
equivalent to maximize 1/ ‖β‖2 or minimize ‖β‖2 (or ‖β‖22). Moreover, we notice that the
inequality constraints52 can be compacted as yif (xi) ≥ 1. Finally, we obtain the following
optimization problem:{

β̂0, β̂
}

= arg min 1
2 ‖β‖

2
2 (15.25)

s.t. yi
(
β0 + x>i β

)
≥ 1 for i = 1, . . . , n

We recognize a standard quadratic programming (QP) problem that can be easily solved
from a numerical point of view.

Using the training set given in Table 15.18 on page 989, and solving the QP problem
(15.25), we obtain β̂0 = 2.416, β̂1 = −0.708 and β̂2 = 0.248. It follows that the margin M
is equal to 1.333. Since the equation β0 + β1x1 + β2x2 = c is equivalent to:

x2 = c− β0

β2
− β1

β2
x1

51We have β0 + x>−β = −M and β0 + x>+β = M .
52Because we have set M = 1.
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we deduce that the equations of the three hyperplanes H−, H and H+ are:

H− : x2 = −13.786 + 2.857 · x1 (c = −1)
H : x2 = −9.750 + 2.857 · x1 (c = 0)
H+ : x2 = −5.714 + 2.857 · x1 (c = +1)

We have reported the estimated hyperplanes in Figure 15.31, and have also indicated the
support vectors, which are only three.
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FIGURE 15.31: Optimal hyperplane

The historical approach to estimate a support vector machine is to map the primal QP
problem to the dual QP problem. Using the results provided in Appendix A.1.3.1 on page
1046, we can show that53:

α̂ = arg min 1
2α
>Γα− α>1n (15.26)

s.t.
{
y>α = 0
α ≥ 0n

where α is the vector of Lagrange multipliers associated to the n inequality constraints and
Γi,j = yiyjx

>
i xj . Moreover, we have:

β̂ =
n∑
i=1

α̂iyixi

The optimal value of β̂0 can be deduced from any support vectors. In the case of a positive
support vector x+, we have β̂0 = 1− x>+β̂, while we have β̂0 = −1− x>−β̂ for any negative
support vector x−. Moreover, we can classify new observations by considering the following
rule:

ŷ = sign
(
β̂0 + x>β̂

)
53See Exercise 15.4.8 on page 1027.
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If we consider our example, we observe that α̂i is different from zero for three obser-
vations: i ∈ {3, 8, 15}. They correspond to the three support vectors that we have found
graphically. We obtain α̂3 = 0.2813, α̂8 = 0.0435 and α̂15 = 0.2378. With these values, we
deduce that β̂1 = −0.708 and β̂2 = 0.248. In order to compute β̂0, we consider one of the
support vectors and calculate β̂0 = yi − x>i β̂. For example, in the case of the first support
vector (or the third observation), we have: β̂0 = 1 + 2.7× 0.708− 2× 0.248 = 2.416.

Remark 193 We may wonder what the rational of using the dual problem is. The primal
problem is a QP problem with K + 1 unknowns and n inequality constraints. The dual
problem is a QP problem with n unknowns, one equality constraint and n box constraints.
Since the last constraints are straightforward to manage, the second problem is easier to solve
than the first problem. However, the dimension of the second problem is larger than this of
the first problem, since we have to calculate the Γ matrix of dimension n × n. Therefore,
it is difficult to justify that the dual problem presents less computational issues than the
primal problem. The reason is to be found elsewhere. In fact, the calculation of Γ involves
the calculation of the inner product 〈xi, xj〉 = x>i xj. We will see later that it corresponds
to a covariance kernel, and the dual problem can be used in a more efficient way than the
primal problem with other covariance kernels when we consider non-linear SVM problems.

Soft margin classification The inequality constraints yi
(
β0 + x>i β

)
≥ 1 ensure that

all the training points are well-classified and belongs to the half-spaces H+ and H−. How-
ever, training data are generally not fully linearly separable. Therefore, we can relax these
constraints by introducing slack variables ξi > 0:

yi
(
β0 + x>i β

)
≥ 1− ξi

We then face three situations:

1. if ξi = 0, the observation i is well-classified since we have yi
(
β0 + x>i β

)
≥ 1;

2. if 0 < ξi ≤ 1, the observation i is located in the ‘street’, that is in the area between the
two separating planes H− and H+; in this case, ξi can be interpreted as the margin
error (ξi ≤M);

3. if ξi > 1, the observation i is fully misclassified.

The quality of the classification can be measured by the misclassification error sum, that
we can bound:

n∑
i=1

ξi ≤ ξ+

The parameter ξ+ indicates the tolerance we have with respect to the hard margin classi-
fication. Instead of adding the inequality constraint

∑n
i=1 ξi ≤ ξ+ in Problem (15.25), we

can penalize the objective function:{
β̂0, β̂, ξ̂

}
= arg min 1

2 ‖β‖
2
2 + C

n∑
i=1

ξi (15.27)

s.t. yi
(
β0 + x>i β

)
≥ 1− ξi for i = 1, . . . , n

where the parameter C controls the level of errors. If C is large, the norm ‖β‖2 can be
large. On the contrary, if C is small, the sum

∑n
i=1 ξi can be large, but not the norm ‖β‖2.
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As the margin M is equal to 1/ ‖β‖2, C controls then the trade-off between the size of the
margin and the misclassification error rate. The dual problem is54:

α̂ = arg min 1
2α
>Γα− α>1n (15.28)

s.t.
{
y>α = 0
0n ≤ α ≤ C · 1n

Again, we have β̂ =
∑n
i=1 α̂iyixi. Support vectors corresponds then to training points such

that 0 < αi < C. For computing β̂0, we average over all the support vectors:

β̂0 =

∑n
i=1 1 {0 < α̂i < C} ·

(
yi − x>i β̂

)
∑n
i=1 1 {0 < α̂i < C}

Since we have yi
(
β0 + x>i β

)
≥ 1− ξi and ξi ≥ 0, the Kuhn-Tucker conditions implies that:

ξ̂i = max
(

0, 1− yi
(
β̂0 + x>i β̂

))
(15.29)

The classification rule does not change, and we have ŷ = sign
(
β̂0 + x>β̂

)
.

FIGURE 15.32: Soft margin SVM classifiers

We consider the previous training set given in Table 15.18 and we introduce two points
(6.0, 5.0,+1) (i = 16) and (2.0, 2.0,−1) (i = 17). In this case, the training set is not linearly
separable. Considering different values of C, we have represented the optimal hyperplanes
in Figure 15.32. We verify that the margin decreases when C increases. In the case where
C is equal to 0.05, we obtain β̂0 = 1.533, β̂1 = −0.458, β̂2 = 0.168, and the optimal value
of αi and ξi are reported in Table 15.19.

54See Exercise 15.4.8 on page 1027
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TABLE 15.19: Soft margin classification with C = 0.05

i yi xi,1 xi,2 α̂i ξ̂i
1 +1 0.5 2.5 0.000 0.000
2 +1 2.7 4.2 0.039 0.000
3 +1 2.7 2.0 0.050 0.369
4 +1 1.7 4.2 0.000 0.000
5 +1 1.5 0.7 0.050 0.038
6 +1 2.3 5.3 0.000 0.000
7 +1 4.0 6.9 0.050 0.143
8 −1 6.4 4.5 0.050 0.354
9 −1 7.7 2.2 0.000 0.000

10 −1 8.8 6.0 0.000 0.000
11 −1 7.4 6.5 0.050 0.231
12 −1 6.5 1.7 0.000 0.000
13 −1 8.3 1.3 0.000 0.000
14 −1 6.0 1.3 0.039 0.000
15 −1 5.0 0.5 0.050 0.324
16 +1 6.0 5.0 0.050 1.379
17 −1 2.0 2.0 0.050 1.952

If we combine Equations (15.27) and (15.29), we obtain:

f (β0, β) = 1
2 ‖β‖

2
2 + C

n∑
i=1

max
(
0, 1− yi

(
β0 + x>i β

))
= C ·

(
n∑
i=1

max
(
0, 1− yi

(
β0 + x>i β

))
+ 1

2C ‖β‖
2
2

)
We deduce that the optimization program is:

arg minR (x, y) + 1
2C ‖β‖

2
2 (15.30)

where R (x, y) =
∑n
i=1 L (xi, yi) and L (xi, yi) is the binary hinge loss:

L (xi, yi) = max
(
0, 1− yi

(
β0 + x>i β

))
It follows that the soft margin classification corresponds to a risk minimization problem
with a ridge penalization. The problem is convex but non-smooth because L (xi, yi) is non-
differentiable. More generally, we can use other loss functions, for instance the 0− 1 loss:

L0−1 (xi, yi) =
{

0 if yi
(
β0 + x>i β

)
≥ 1

1 otherwise

However, the associated risk measure is non-convex, and the minimization problem is com-
putationally hard. A better approach is to consider the squared hinge loss:

Lsquared (xi, yi) = Lhinge (xi, yi)2

In this case, the problem is convex and smooth. Another popular loss function is the ramp
loss:

Lramp (xi, yi) = min
(
1,Lhinge (xi, yi)

)
The derivation of the dual problems and the comparison of these different loss functions are
discussed in Exercise 15.4.8 on page 1028.
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SVM regression Support vector machines can be extended to output variables that are
continuous. In this case, we have to define an appropriate loss function. For instance, if we
consider the least squares loss function, we have:

Lls (xi, yi) = (yi − f (xi))2

where f (x) = β0 + x>β. The corresponding SVM regression is then:

{
β̂0, β̂, ξ̂

}
= arg min 1

2 ‖β‖
2
2 + C

n∑
i=1

ξ2
i (15.31)

s.t. yi = β0 + x>i β + ξi for i = 1, . . . , n

It is obvious that ξi plays the role of the residual. This regression problem looks very similar
to the SVM problem for the soft margin classification and the squared hinge loss function.
In particular, we can show that the dual problem is55:

α̂ = arg min 1
2α
>
(
XX> + 1

2C In
)
α− α>Y (15.32)

s.t. 1>nα = 0

Once we have solved this QP problem, we can calculate the prediction for x: ŷ = β̂0 +x>β̂.
Vapnik (1998) proposed another loss function in order to keep the formalism of the

original soft margin problem:

Lls (xi, yi) = 1 {|yi − f (xi)| ≥ ε} · (|yi − f (xi)| − ε)

where ε > 0. It follows that:

Lls (xi, yi) =
{
|yi − f (xi)| − ε if |yi − f (xi)| ≥ ε
0 if |yi − f (xi)| ≤ ε

Therefore, we would like to find a hyperplane such that we don’t care about the errors that
are smaller than ε. We have:

Lls (xi, yi) = 1 {yi − f (xi) ≤ −ε} · (f (xi)− yi − ε) +
1 {yi − f (xi) ≥ ε} · (yi − f (xi)− ε)

= 1
{
ξ−i ≥ 0

}
· ξ−i + 1

{
ξ+
i ≥ 0

}
· ξ+
i

where ξ−i = f (xi)− yi − ε and ξ+
i = yi − f (xi)− ε. We deduce that the ε-SVM regression

problem is: {
β̂0, β̂, ξ̂

−, ξ̂+
}

= arg min 1
2 ‖β‖

2
2 + C

n∑
i=1

(
ξ−i + ξ+

i

)
(15.33)

s.t.


f (xi)− yi ≤ ε+ ξ−i
yi − f (xi) ≤ ε+ ξ+

i

ξ−i ≥ 0
ξ+
i ≥ 0

for i = 1, . . . , n

55See Exercise 15.4.8 on page 1028.
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We can show that the dual problem is56:{
α̂−, α̂+} = arg min 1

2
(
α− − α+)>XX> (α− − α+)+ (15.34)

ε
(
α− + α+)> 1n +

(
α− − α+)> Y

s.t.

 1>n (α− − α+) = 0
0n ≤ α− ≤ C · 1n
0n ≤ α+ ≤ C · 1n

where α− and α+ are the Lagrange multipliers of the inequality constraints. We have β̂ =∑n
i=1
(
α̂+
i − α̂

−
i

)
xi and:

β̂0 = 1
nSV

 ∑
i∈SV−

(
yi + ε− x>i β̂

)
+
∑
i∈SV+

(
yi − ε− x>i β̂

)
where SV− =

{
i : 0 < α̂−i < C

}
and SV+ =

{
i : 0 < α̂+

i < C
}
are the set of negative and

positive support vectors, and nSV is the number of support vectors.

TABLE 15.20: Comparison of OLS, LAD and SVM estimates

β̂k OLS LAD LS-SVM ε-SVM LS-SVM ε-SVM
(C = 1, ε = 1) (C =∞, ε = 0)

β̂0 3.446 2.331 3.389 3.262 3.446 2.331
β̂1 1.544 1.893 1.542 1.631 1.544 1.893
β̂2 −1.645 −1.735 −1.616 −1.526 −1.645 −1.735
β̂3 2.895 2.908 2.885 2.726 2.895 2.908

We consider Example 100 on page 606, which has been used to illustrate the linear re-
gression. In Table 15.20, we report OLS, LAD and SVM estimates for C = 1 and ε = 1. In
the last two columns, we consider the limit cases, when the constant C tends to +∞ and
ε is equal to zero. We notice that the LS-SVM estimator converges to the OLS estimator.
This is quite intuitive since we use a least squares loss function. In some sense, the LS-SVM
regression can be seen as a ridge regression. When C tends to +∞, the ridge penalization
disappears. More curiously, the ε-SVM estimator converges to the LAD estimator. In fact,
the ε-SVM regression is close to a ridge quantile regression. When ε is equal to zero, we ob-
tain a median regression with a L2 penalization. This is why the ε-SVM estimator converges
to the LAD (or median regression) estimator.

Non-linear support vector machines As we have previously seen, we can introduce
non-linearity by replacing the input data x by φ (x), where φ is a map from K-dimension
to m-dimension non-linear feature space. In the case of SVM, we notice that the dual
formulation generally requires the computation of the inner product 〈x, x′〉. This implies
that we can use the same framework by replacing 〈x, x′〉 by 〈φ (x) , φ (x′)〉. Manipulating
φ (x) can be tricky and not always obvious57, because of the high dimension of the non-
linear space. Sometimes, it is better to manipulate the inner product, which is called a kernel
function K (x, x′). For example, let us consider x = (x1, x2) and φ (x) =

(
x2

1, x1x2, x2x1, x
2
2
)
.

The corresponding kernel function is K (x, x′) = 〈x, x′〉2. We also notice that two mapping

56See Exercise 15.4.8 on page 1028.
57The dimension m is generally much larger than the original dimension.
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functions can give the same kernel. For instance, K (x, x′) = 〈x, x′〉2 can be generated by
φ (x) =

(
x2

1,
√

2x1x2, x
2
2
)
.

Since we have K (x, x′) = φ (x)> φ (x′), we see that the kernel function is symmetric
(Bishop, 2006). This is the main property to define kernel functions. Another way to char-
acterize a kernel is to verify that the Kernel (or Gram) matrix K = (Ki,j), whose elements
are Ki,j = K (xi, xj), is positive definite. Therefore, we can directly construct kernels with-
out specifying φ. For instance, ecK, K + c, cK and Kd are also kernel functions when c > 0
and d ∈ N. If K1 and K2 are two kernels, the sum K1 + K2 and the product K1 · K2 are
also kernel functions. The simplest kernel function is obtained by considering the identify
function φ (x) = x. It follows that 〈x, x′〉+c and (〈x, x′〉+ c)d are also kernel functions. This
last one is called the polynomial kernel and is very popular in SVM non-linear classification.
Another popular kernel functions are the Gaussian (or radial basis function) kernel58:

K (x, x′) = exp
(
− 1

2σ2 ‖x− x
′‖22

)
and the neural network (or sigmoid) kernel:

K (x, x′) = tanh (c1 〈x, x′〉+ c2)

FIGURE 15.33: Transforming a non-linearly separable training set into a linearly sepa-
rable training set

In order to understand the interest of kernel, we consider a training set59, which is not
linearly separable. In the left panel in Figure 15.33, we have represented the two input
variables x1 and x2, and the response variable60 y. Let us apply the polynomial mapping

58We can show that dimension of the feature space is infinite: φ (x) = (φ0 (x) , . . . , φs (x) , . . . , φ∞ (x))
where:

φs (x) =
(

1
√
s!σ2s

e
− x2

2σ2 xs

)
59The data are generated as follows: x1,i = c1,i + r1,i cos θi and x2,i = fi (c2,i + r2,i sin θi) where θi ∼
U[0,2π]. In the case y = −1, we have c1,i = c2,i = 0, r1,i = r2,i ∼ U[0,1] and fi (x) = x, otherwise we have
c1,i = 1, c2,i = 0, r1,i ∼ U[8,9], r2,i ∼ U[0,1] and fi (x) = |x| − 0.5.

60y = +1 corresponds to a circle while y = −1 corresponds to a square.
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z = φ (x) =
(
x2

1 − 10,
√

2x1x2, x
2
2
)
. We have reported this transformation in the right panel

in Figure 15.33. We observe that the training sets (x, y) and (z, y) are very different, since
(z, y) is linearly separable.

All the previous SVM algorithms are valid in the non-linear case and we obtain the
following generic framework:

1. the first step consists of defining the mapping function φ. Let zi = φ (xi) be the
transformed data;

2. in the second step, we calculate the estimated parameters β̂0 and β̂ in the feature
space Z;

3. finally, a new observation x is classified by computing ŷ = sign
(
β̂0 + φ (x)> β̂

)
; in

the case of the SVM regression, we have ŷ = β̂0 + φ (x)> β̂.

The previous framework can be simplified by considering the kernel function K instead
of the mapping function φ. Indeed, in the dual problems, the input variables are evaluated
through the inner product 〈φ (xi) , φ (xj)〉, that can be replaced61 by the kernel value Ki,j =
K (xi, xj). The elements of the Γ matrix used in hard and soft margin QP problem becomes:

Γi,j = yiyjφ (xi)> φ (xj)
= yiyjKi,j

and we have Γ = y � y> � K where K = (ki,j) is the Gram matrix. Since we have β̂ =∑n
i=1 α̂iyiφ (xi) and β̂0 =

∑
j∈SV

(
yj − φ (xj)> β̂

)
, we deduce that ŷ = sign f̂ (x) where:

f̂ (x) = β̂0 + φ (x)> β̂

=
∑
j∈SV

(
yj − φ (xj)>

n∑
i=1

α̂iyiφ (xi)
)

+
n∑
i=1

α̂iyiφ (x)> φ (xi)

=
∑
j∈SV

(
yj −

n∑
i=1

α̂iyiK (xj , xi)
)

+
n∑
i=1

α̂iyiK (x, xi)

for a new feature x. The estimation of ŷ involves the computation of K (xj , xi) and K (x, xi).
However, this expression can be reduced because most of the estimates α̂i are equal to zero.

Remark 194 The derivation of the SVM non-linear regression is similar to the framework
above, because the dual problem involves the computation of φ (X)φ (X)>, which is exactly
equal to the Gram matrix K.

In Figure 15.33, we have shown that it was possible to transform the data in order to
obtain separable training sets. For instance, the hyperplane H, which is estimated using the
hard margin classifier, is defined by:

0.884− 0.142 · z1 + 0.268 · z2 − 1.422 · z3 = 0

or equivalently:

0.884− 0.142 ·
(
x2

1 − 10
)

+ 0.268
√

2 · x1x2 − 1.422 · x2
2 = 0

61The fact that we can easily substitute inner products by the Gram matrix in SVM classification and
regression is called the kernel trick.
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Let us now consider a Monte Carlo simulation. We assume that X ∼ N (04, I4) and Y =
sign (N (0, 1)), meaning that there is no relationship between X and Y . We simulate 300
observations for the training set, and we compute the hard margin classifier for several
kernels: linear, quadratic and cubic polynomial with c = 0, and RBF (σ = 50 and σ = 20).
Then, we estimate the predicted value ŷi for all the observations and calculate the error
rate. Since Y is independent from X, the true error rate is equal to 50%, because the score is
purely random. Using 500 replications, we have estimated the density function of the error
rate in Figure 15.34. We notice that the linear kernel classifier is the worst method, while
the RBF kernel with σ = 20 is the best method. On average, the error rate is respectively
equal to 45.0%, 41.5%, 37.7%, 31.8% and 22.3%. Therefore, we have overfitted the model,
and this is particularly true with the kernel approach. Indeed, if we consider a validation
set, we obtain an average error rate of 50% whatever the kernel function we have used.
We conclude that kernel functions are very powerful, but they can lead to large overfitting
problems.

FIGURE 15.34: Probability density function of in-sample error rates

Extension to the multi-class problem We assume that we have nC disjoint classes
Cj where j = 1, . . . , J . SVMs are inherently two-class classifiers, and the extension to the
multi-class problem is not straightforward. However, we distinguish two main approaches.
The first approach uses binary classification. In the case of the ‘one-against-all’ strategy,
we construct J single SVM classifiers in order to separate the training data from every
class to the other classes. For the jth classifier, the response variable is then z(j)

i = +1 if
yi ∈ Cj and z

(j)
i = −1 if yi /∈ Cj . Using this modified training set, we can estimate the

discriminant function f̂ (j) (x) = β̂
(j)
0 +x>β̂(j). In the two-class case, we have ŷ = sign f̂ (x).

In the multi-class problem, the prediction corresponds to the binary classifier that gives the
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largest value f̂ (j) (x) :

ŷ ∈ Cj? where j? = arg max
j
f̂ (j) (x)

Another approach based on the binary classification is called the ‘one-against-one’ strategy.
In this case, we construct J (J − 1) /2 single SVM classifiers in order to separate the training
data from the class Cj to the class Cj′ . Using the estimated discriminant function f̂(j|j′) (x) =

β̂
(j|j′)
0 + x>β̂(j|j′), we can calculate the prediction ŷ(j|j′) = sign f̂(j|j′) (x). The empirical

probability that the observation belongs to the class Cj is then equal to62:

p̂j (x) =
2
∑J
j′=1 1

{
ŷ(j|j′) = +1

}
J (J − 1)

We deduce that the classification rule is defined as follows:

ŷ ∈ Cj? where j? = arg max
j
p̂j (x)

The second approach of multi-classification extends the mathematical framework of SVM
that has been developed for the binary classification. The idea is then to consider a function
y = f (x) : RK → {1, . . . , J} where:

f (x) = arg max
j
β

(j)
0 + x>β(j)

We have now to estimate the J ×1 vector β0 and the K×J matrix β. Crammer and Singer
(2001) developed both hard and soft margin primal and dual problems in an elegant way.
For a review and a comparison of these different methods, the reader can refer to Hsu and
Lin (2002).

15.2.3.4 Model averaging

Model averaging (or ensemble averaging) combines multiple learning algorithms to ob-
tain better predictive performance than could be obtained from the individual models. Two
types of approaches are generally used. The first one constructs a family of ‘random’ models
(bagging/random forests), whereas the second one generates a family of ‘adaptive’ models
(boosting).

The motivation of model averaging is to replace a single expert by a committee of
experts. Sometimes, it is difficult to find a skilled expert, or his search has a large cost.
In this case, we can imagine that the work produced by this high skilled expert can be
done by a committee of less skilled experts. For establishing the committee, we can choose
(randomly) experts with similar skills or we can choose experts that are complementary.
The parallel with model averaging is obvious when we distinguish random and adaptive
models.

Bagging (bootstrap aggregation) Breiman (1996) proposed to use the bootstrap
method to improve the performance of weak learners, in particular to reduce their vari-
ance and the overfitting bias. Given a training set Z = {(xi, yi) , i = 1, . . . , n}, the bagging
method generates nS bootstrapped training sets Z(s) and estimates the output function

62We have ŷ(j|j′) = +1⇔ ŷ(j′|j) = −1.
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f̂(s) (x) for each training set. The sth model is then defined by the pair
(
Z(s), f̂(s)

)
. In the

case of regression, the predicted value is the mean of the predicted values of the different
models:

ŷ = 1
nS

nS∑
s=1

f̂(s) (x)

In the case of classification, we generally implement the majority vote rule:

ŷ = MaxVote
(
f̂(1) (x) , . . . , f̂(nS) (x)

)
In this approach, the predictions of each model are considered as a ‘vote’. The final prediction
corresponds to the class that has the maximum number of votes for multi-classification, or
the majority vote for binary classification. As shown by Breiman (1996), the bagging method
makes only sense when we consider non-linear models.

Job

Score

CLN

1

CLN < 5

0

CLN ≥ 5

Score > 500

0

Score ≤ 500

Job = 1

Loan

Home

0

Home = 0

1

Home = 1

Loan < 100

0

Loan ≥ 100

Job = 0

FIGURE 15.35: An example of decision tree

The bagging method is extensively used when considering decision trees. A tree is repre-
sented by a series of binary splits. Each node represents a query, except the terminal nodes
that correspond to the decision nodes. In the case of a classification tree, the output variable
takes a discrete set of class labels, whereas the output variable takes continuous values when
considering regression trees. In Figure 15.35, we report an example of a classification tree.
We consider an applicant that would like a new credit. If the applicant has not a job, the
credit will be automatically refused if the amount of the loan is too high. If the amount of
the loan is less than 100, the final decision will depend upon whether the applicant owns his
house. In this case, the client can obtain the credit if he applies for a mortgage or a home
equity line of credit. If the applicant has a job, the bank computes his credit score. If the
score is less than 500, the credit is rejected. Otherwise, the final decision will depend on
the number of credits. If the applicant has less than 5 credits, the new credit is accepted,
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otherwise it is refused. Decision trees are very popular in credit scoring for three main
reasons. First, they can handle different types of variables (numeric, continuous, discrete,
qualitative, etc.). Second, the rules and the decision process are very easy to understand.
Third, they can be estimated with statistical models, and adjusted by experts. In practice,
we use greedy approaches based on recursive binary splitting algorithms. One drawback of
classification trees is that their prediction power is generally lower than the ones observed
with logistic models, neural networks or support vector machines. We generally say that
they produce weak classifiers (or learners). However, by combining classification trees and
bagging, we can obtain the same performance than strong classifiers (Hastie et al., 2009).

Remark 195 Bagging is also extensively used when we have a large set of predictors. In-
stead of running one logistic regression with all the input variables, we can estimate many
logit models with a limited number of explanatory variables (e.g. less than 10). In this
approach, the bootstrap procedure concerns the variables, not the observations. By construc-
tion, the bagging model will produce better and more stable predictions than the single logit
model63.

Random forests Let Ŷ(s) = f̂(s) (X) be the output random variable produced by the sth

bootstrapped model. If we assume that Ŷ(1), . . . , Ŷ(nS) are iid random variables with mean
µ and variance σ2, we have:

var
(
Ŷ
)

= var
(

1
nS

nS∑
s=1

Ŷ(s)

)
= σ2

ns

where Ŷ is the bagging estimator. We deduce that var
(
Ŷ
)
→ 0 when nS → ∞. Theo-

retically, the bagging method can highly reduce the variance of the prediction. However,
the hypothesis that Ŷ(1), . . . , Ŷ(nS) are not correlated is too strong. If we assume that the
average correlation between bootstrapped models is equal to ρ, we obtain:

var
(
Ŷ
)

= E

( 1
nS

nS∑
s=1

(
Ŷ(s) − µ

))2


= E

 1
n2
S

nS∑
s=1

(
Ŷ(s) − µ

)2
+ 1
n2
S

∑
r 6=s

(
Ŷ(r) − µ

)(
Ŷ(s) − µ

)
= nSσ

2

n2
S

+ nS (nS − 1) ρσ2

n2
S

= ρσ2 + 1− ρ
ns

σ2

It follows that var
(
Ŷ
)
> ρσ2. For example, if ρ = 90%, the maximum reduction of the vari-

ance is only 10%. It follows that the improvement due to the bagging method can be highly
limited when the correlation is high. Breiman (2001) proposed a modification of bagging by
building de-correlated trees. At each iteration s, we select randomly a subset of predictors
X(s), implying that the model is then defined by the 3-tuple

(
Z(s),X(s), f̂(s)

)
. Generally,

the randomization step is done with a fixed number K? of bootstrapped predictors64.
63For instance, if we consider the degenerate case when the number of observations is lower than the

number of predictors (n < K), the single logit model is highly noisy, which is not the case of the bagging
model.

64The recommended default value is K? =
√
K for classification and K? = K/3 for regression (Hastie et

al., 2009).
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Remark 196 The method of random forests can be viewed as a double bagging method.
Indeed, it mixes observation-based and feature-based bagging methods.

Boosting In this approach, the training set (Z,W) is defined by including the weight of
each observation:

(Z,W) = {(xi, yi, wi) , i = 1, . . . , n}

At each iteration s, boosting computes adaptive weightsW(s) and fits the learning algorithm
f̂(s) with the training set

(
Z,W(s)

)
. Then, it combines the different learning models through

a weighting rule:
ŷ = f̂ (x) = Avg

(
ωs · f̂(s) (x)

)nS
s=1

where ωs is the weight of the sth learning model and Avg is the averaging function. In the
case of a binary classification, we have:

ŷ = f̂ (x) = sign
(
nS∑
s=1

ωsf̂(s) (x)
)

The concept of boosting has been introduced by Schapire (1990), who proved that a ‘weak’
learning algorithm can be ‘boosted’ into a ‘strong’ learning algorithm65. In the 1990s, many
boosting algorithms have been developed, but the high recognition comes with the adaptive
boosting method proposed by Freund and Schapire (1997), and described in Algorithm 2.

The algorithm concerns the classification problem y ∈ {−1,+1}. We begin by initializing
the observation weights wi to 1/n. Then, we fit the classifier f̂(1) using the training set Z,
because the initial weights have no impact. The first step is the usual manner to fit a
classification model. To improve the accuracy, boosting constructs at iteration s another
training set by calculating new observation weights:

wi,s+1 =
{
wi,s if i is well-classified
wi,se

ωs otherwise

If the observation i is well-classified, the weight remain the same, otherwise it increases:
wi,s+1 > wi,s. Indeed, the update makes only sense if the error rate L(s) is smaller than
50%, implying that ωs is strictly positive66. At iteration s + 1, the classifier will be fitted
with the training set

(
Z,W(s+1)

)
, where the misclassified observations at iteration s are

more weighted than the well-classified observations. Therefore, the weighting schemeW(s+1)

forces the new classifier f̂(s+1) to be more focus on the training observations that are difficult
to classify. Finally, we use the majority vote to predict y:

ŷ = sign
(
nS∑
s=1

ωs · f̂(s) (x)
)

We represent the classifier weight ωs with respect to the loss function (or the error rate) in
Figure 15.36. If the error rate is equal to 50%, the weight ωs of the sth classifier is equal
to zero. This classifier does not participate to the final model, because it corresponds to a
random guessing model. On the contrary, if the error rate of one classifier is equal to zero,
its allocation is infinite in the final model. In Figure 15.36, we also show the impact of the

65A training set is said to be strongly learnable if “there exists a polynomial-time algorithm that achieves
low error with high confidence” for all the observations (Schapire, 1990). A weak learning algorithm performs
just slightly better than a random learning algorithm.

66If the classifier has an error rate greater than 50%, it performs worse than random guessing.
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Algorithm 2 AdaBoost.M1 binary classifier
Estimate the AdaBoost.M1 classifier ŷ = f̂ (x)
Initialize the observation weights wi,1 = 1/n for i = 1, . . . , n
for s = 1 : nS do
W(s) ← (w1,s, . . . , wn,s)
Fit the classifier f̂(s) using the training set

(
Z,W(s)

)
Compute the loss function:

L(s) =

∑n
i=1 wi,s · 1

{
yi 6= f̂(s) (xi)

}
∑n
i=1 wi,s

Calculate the classifier weight ωs:

ωs ← ln
(1− L(s)

L(s)

)

Update the observation weights:

wi,s+1 ← wi,se
ωs·1{yi 6=f̂(s)(xi)}

Normalize the observation weights:

wi,s+1 ←
wi,s+1∑n
i′=1 wi′,s+1

end for
return f̂ (x) = sign

(∑nS
s=1 ωsf̂(s) (x)

)

error rate on the weights wi,s+1 when we consider a sample of two observations. We assume
that the first observation is misclassified while the second observation is well-classified at
the step s. This implies that the first observation will have more weight at the step s + 1.
The re-weighting of observations also depends on the error rate. If the error rate of the sth

model is low, the re-weighting is strong, in order to separate well-classified and misclassified
observations. It is not obvious that the error rate is a monotonous function of the iteration
s. At the beginning, the error rate can increase or decrease depending whether the initial
classifier is good or bad. But, at the end, the error rate must reach the upper bound 50%.

In order to illustrate the boosting method, we consider the data given in Table 15.21
and the logit model:

Pr {yi = 1} = F (β0 + β1xi)
where F (x) is the logit function. We have Pr {yi = −1} = 1 − F (β0 + β1xi). Given the
pattern x, the classification rule is then:

ŷ = 2 · 1
{

F
(
β̂0 + β̂1x

)
>

1
2

}
− 1

where β̂0 and β̂1 are the parameters, which have been estimated by the method of maximum
likelihood. Using our data, we obtain β̂0 = 0.4133 and β̂1 = 0.2976, and the error rate is
equal to 45%. In the case of the boosting algorithm, the first iteration is exactly the same
as the previous logit estimation. For the second iteration, we have to calculate the weights
wi,2 of each observation. We have ω1 = 0.2007 because L(1) = 45%. Therefore, we update
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FIGURE 15.36: Weighting schemes of the boosting approach

the weights. In Table 15.21, we have reported the predicted value ŷi,s at the iteration step
s, and also the variable ϑi,s which indicates the misclassified observations. For instance,
observations 3, 4, 5, 7, 9, 10, 12, 16 and 17 are not well-classified at the first iteration by
the logit model. This is why the weight of these observations increase by eω1 . While the
weights wi,1 take the uniform value of 5%, the weights wi,2 are different with respect to
observations. After normalizing, wi,2 is equal to 5.56% for observations that are misclassified
at the first iteration, otherwise it is equal to 4.55%. Using these weights, we estimate the
logit model, and found β̂0,2 = 0.2334 and β̂1,2 = 0.2558 (Table 15.22). The loss function
is then equal to L(2) = 38.89%. We see that the second logit model has improved the
classification for two observations (i = 3 and i = 10). We can continue the algorithm. In
our example, the boosting method stops after 5 iterations, because L(5) = 50.00%. The
fifth estimated classifier is then a pure random guessing model. While the number of well-
classified observations is equal to 11 for the logit model, it is equal to 13 for the boosting
model67. From a general point of view, the boosting is interesting only if we use a large
dataset of observations and variables. When considering small datasets, we face an obvious
overfitting issue.

Remark 197 The boosting method is based on weighted estimation methods. In Chapter
10, we have already defined the weighted least squares estimator68. In Exercise 15.4.10 on
page 1029, we extend the method of maximum likelihood, neural networks and support vector
machines when observations are weighted.

Hastie et al. (2009) showed that boosting is related to additive models:

g (x) =
nS∑
s=1

β(s)B
(
x; γ(s)

)
67The boosting classifier corresponds to the column ŷi in Table 15.21.
68See Section 10.1.1.5 on page 612.
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TABLE 15.21: Illustration of the boosting algorithm (nS = 2)

i yi xi
wi,1 ŷi,1 ϑi,1

wi,2 ŷi,2 ϑi,2 ŷi ϑi(in %) (in %)
1 1 0.597 5.00 1 4.55 1 1
2 1 1.496 5.00 1 4.55 1 1
3 −1 −0.914 5.00 1 X 5.56 −1 −1
4 −1 −0.497 5.00 1 X 5.56 1 X 1 X
5 −1 0.493 5.00 1 X 5.56 1 X 1 X
6 1 0.841 5.00 1 4.55 1 1
7 −1 −0.885 5.00 1 X 5.56 1 X 1 X
8 1 1.418 5.00 1 4.55 1 1
9 −1 −0.183 5.00 1 X 5.56 1 X 1 X

10 −1 −1.298 5.00 1 X 5.56 −1 −1
11 1 −0.324 5.00 1 4.55 1 1
12 1 −1.454 5.00 −1 X 5.56 −1 X −1 X
13 1 −0.270 5.00 1 4.55 1 1
14 1 −0.770 5.00 1 4.55 1 1
15 1 0.232 5.00 1 4.55 1 1
16 −1 0.970 5.00 1 X 5.56 1 X 1 X
17 −1 1.196 5.00 1 X 5.56 1 X 1 X
18 1 0.578 5.00 1 4.55 1 1
19 1 −0.686 5.00 1 4.55 1 1
20 1 −0.590 5.00 1 4.55 1 1

TABLE 15.22: Estimated model at each boosting iteration (nS = 5)

s 1 2 3 4 5
β̂0,s 0.4133 0.2334 −0.0771 0.0009 0.0103
β̂1,s 0.2976 0.2558 0.0278 0.0277 −0.0751
L(s) 0.4500 0.3889 0.4805 0.4741 0.5000
ωs 0.2007 0.4520 0.0780 0.1038 0.0000
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where β(s) is the expansion coefficient and B
(
x; γ(s)

)
is the basis function at iteration s.

Forward stagewise regression consists in finding the optimal values of β̂(s) and γ̂(s):(
β̂(s), γ̂(s)

)
= arg min

n∑
i=1
L
(
yi, ĝ(s−1) (xi) + β(s)B

(
x; γ(s)

))
where ĝ(s) (xi) =

∑s
s′=1 β̂(s′)B

(
x; γ̂(s′)

)
and L is the loss function. In the case of boost-

ing, we can show that B
(
x; γ(s)

)
= f̂(s) (x), β̂(s) = ωs and L (y, f (x)) = e−yf(x). We

recognize an additive logit model with the softmax loss function. Using this framework,
Friedman (2002) proposed gradient boosting models. The idea is to minimize the loss func-
tion

∑n
i=1 L (yi, f (xi)) with respect to the learning algorithm f (x). The steepest descend

algorithm consists in the following iterations:

f̂(s) (xi) = f̂(s−1) (xi)− η(s)

∂ L
(
yi, f̂(s−1) (xi)

)
∂ f (xi)

Instead of finding the optimal classifier f̂(s), gradient boosting estimates the optimal step
η(s) and iterates the previous formula. Finally, the optimal model f̂ (x) is given by the
estimate f̂(nS) (x) at the last iteration.

Remark 198 The table below summarizes the differences between bagging, random forests
and boosting:

Method Model Z(s) X(s) W(s)
Weighted

definition average
Bagging

(
Z(s), f̂(s)

)
X

Random forests
(
Z(s),X(s), f̂(s)

)
X X

Boosting
(
Z,W(s), f̂(s)

)
X X

In the bagging method, the randomization step concerns observations. In the case of random
forests, the models are generated by randomizing both observations and variables. Boosting
is a very different approach, since all the observations and variables are used to construct the
weak learning models. In this method, the perturbations are introduced by using a weighting
scheme for the observations that changes at each iteration. The randomization step is then
replaced by an adaptive step, where the (s+ 1)th model depends on the accuracy of the sth

model. Finally, boosting uses a weighted average of the different weak learning algorithms.

15.3 Performance evaluation criteria and score consistency
This section is dedicated to the performance assessment of a score. Using information

theory, we would like to know if the scoring system is informative or not. The second
paragraph presents the graphical tools in order to measure the classification accuracy of the
score. Finally, we define the different statistical measures to estimate the performance of
the score. We also notice that the tools presented here can be used with both the training
set or the validation set.



Credit Scoring Models 1009

15.3.1 Shannon entropy
15.3.1.1 Definition and properties

The entropy is a measure of unpredictability or uncertainty of a random variable. Let
(X,Y ) be a random vector where pi,j = Pr {X = xi, Y = yj}, pi = Pr {X = xi} and pj =
Pr {Y = yj}. The Shannon entropy of the discrete random variable X is given by69:

H (X) = −
∑n

i=1
pi ln pi

We have the property 0 ≤ H (X) ≤ lnn. H is equal to zero if there is a state i such that
pi = 1 and is equal to lnn in the case of the uniform distribution (pi = 1/n). The Shannon
entropy is a measure of the average information of the system. The lower the Shannon
entropy, the more informative the system. For a random vector (X,Y ), we have:

H (X,Y ) = −
∑n

i=1

∑n

j=1
pi,j ln pi,j

We deduce that the conditional information of Y given X is equal to:

H (Y | X) = EX [H (Y | X = x)]

= −
∑n

i=1

∑n

j=1
pi,j ln pi,j

pi
= H (X,Y )−H (X)

We have the following properties:
• if X and Y are independent, we have H (Y | X) = H (Y ) and H (X,Y ) = H (Y ) +
H (X);

• if X and Y are perfectly dependent, we have H (Y | X) = 0 and H (X,Y ) = H (X).
The amount of information obtained about one random variable, through the other random
variable is measured by the mutual information:

I (X,Y ) = H (Y ) +H (X)−H (X,Y )

=
∑n

i=1

∑n

j=1
pi,j ln pi,j

pipj

Figure 15.37 shows some examples of Shannon entropy calculation. For each example, we
indicate the probabilities pi,j and the values taken by H (X), H (Y ), H (X,Y ) and I (X,Y ).
The top/left panel corresponds to a diffuse system. The value of H (X,Y ) is maximum,
meaning that the system is extremely disordered. The top/right panel represents a highly
ordered system in the bivariate case and a diffuse system in the univariate case. We have
H (X | Y ) = H (Y | X) = 0, implying that the knowledge of X is sufficient to find the state
of Y . Generally, the system is not perfectly ordered or perfectly disordered. For instance,
in the case of the system described in the bottom/left panel, the knowledge of X informs
us about the state of Y . Indeed, if X is in the third state, then we know that Y cannot be
in the first or sixth state. Another example is provided in the bottom/right panel.

Remark 199 If we apply the Shannon entropy to the transition matrix of a Markov chain,
we set X = R (s) and Y = R (t) where R (t) is the state variable at the date t. We obtain:

H (R (t) | R (s)) = −
K∑
i=1

π?i

K∑
j=1

p
(t−s)
i,j ln p(t−s)

i,j

where pi,j = Pr {R (t+ 1) = j | R (t) = i}, S = {1, 2, . . . ,K} is the state space of the
Markov chain and π? is the associated stationary distribution.

69We use the convention pi ln pi = 0 when pi is equal to zero.
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FIGURE 15.37: Examples of Shannon entropy calculation

15.3.1.2 Application to scoring

Let S and Y be the score and the control variable. For instance, Y is a binary random
variable that may indicate a bad credit (Y = 0) or a good credit (Y = 1). Y may also
correspond to classes defined by some quantiles. With Shannon entropy, we can measure
the information of the system (S, Y ). We can also compare two scores S1 and S2 by using
the statistical measures I (S1, Y ) and I (S2, Y ). Let S3 be the aggregated score obtained
from the two individual scores S1 and S2. We can calculate the information contribution
of each score with respect to the global score. Therefore, we can verify that a score really
adds an information.

We consider the following decision rule:{
S ≤ 0⇒ S? = 0
S > 0⇒ S? = 1
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We note ni,j the number of observations such that S? = i and Y = j. We obtain the
following system (S?, Y ):

Y = 0 Y = 1
S? = 0 n0,0 n0,1
S? = 1 n1,0 n1,1

where n = n0,0 + n0,1 + n1,0 + n1,1 is the total number of observations. The hit rate is the
ratio of good bets:

H = n0,0 + n1,1

n

This statistic can be viewed as an information measure of the system (S, Y ). When there
are more states, we can consider the Shannon entropy. In Figure 15.38, we report the
contingency table of two scores S1 and S2 for 100 observations70. We have I (S1, Y ) = 0.763
and I (S2, Y ) = 0.636. We deduce that S1 is more informative than S2.

s1

s2

s3

s4

s5

s6

y1 y2 y3 y4 y5

10 9

7 9

3 7 2

2 10 4 5

10 2

3 4 13

H (S1) = 1.767
H (Y ) = 1.609
H (S1, Y ) = 2.614
I (S1, Y ) = 0.763

s1

s2

s3

s4

s5

s6

y1 y2 y3 y4 y5

7 10

10 8

5 4 3

3 10 6 4

2 5 8

5 5 5

H (S1) = 1.771
H (Y ) = 1.609
H (S1, Y ) = 2.745
I (S1, Y ) = 0.636

FIGURE 15.38: Scorecards S1 and S2

15.3.2 Graphical methods
We assume that the control variable Y can takes two values: Y = 0 corresponds to a bad

risk (or bad signal) while Y = 1 corresponds to a good risk (or good signal). Gouriéroux
(1992) introduced 3 graphical tools for assessing the quality of a score: the performance
curve, the selection curve and the discrimination curve71. In the following, we assume that
the probability Pr {Y = 1 | S ≥ s} is increasing with respect to the level s ∈ [0, 1], which
corresponds to the rate of acceptance. We deduce that the decision rule is the following:

• if the score of the observation is above the threshold s, the observation is selected;

• if the score of the observation is below the threshold s, the observation is not selected.

70Each score is divided into 6 intervals (s1, . . . , s6) while the dependent variable is divided into 5 intervals
(y1, . . . , y5).

71See also Gouriéroux and Jasiak (2007).



1012 Handbook of Financial Risk Management

If s is equal to one, we select no observation. If s is equal to zero, we select all the observa-
tions. In a scoring system, the threshold s is given. Below, we assume that s is varying and
we analyze the relevance of the score with respect to this parameter.

15.3.2.1 Performance curve, selection curve and discriminant curve

The performance curve is the parametric function y = P (x) defined by: x (s) = Pr {S ≥ s}

y (s) = Pr {Y = 0 | S ≥ s}
Pr {Y = 0}

where x (s) corresponds to the proportion of selected observations and y (s) corresponds to
the ratio between the proportion of selected bad risks and the proportion of bad risks in
the population. The score is efficient if the ratio is below one. If y (s) > 1, the score selects
more bad risks than those we can find in the population72. If y (s) = 1, the score is random
and the performance is equal to zero. In this case, the selected population is representative
of the total population.

The selection curve is the parametric curve y = S (x) defined by:{
x (s) = Pr {S ≥ s}
y (s) = Pr {S ≥ s | Y = 0}

where y (s) corresponds to the ratio of observations that are wrongly selected. By construc-
tion, we would like that the curve y = S (x) is located below the bisecting line y = x in
order to verify that Pr {S ≥ s | Y = 0} < Pr {S ≥ s}.

Remark 200 The performance and selection curves are related as follows73:

S (x) = xP (x)

The discriminant curve is the parametric curve y = D (x) defined by:

D (x) = g1
(
g−1

0 (x)
)

where:
gy (s) = Pr {S ≥ s | Y = y}

It represents the proportion of good risks in the selected population with respect to the
proportion of bad risks in the selected population. The score is said to be discriminant if
the curve y = D (x) is located above the bisecting line y = x.

72In this case, we have Pr {Y = 0 | S ≥ s} > Pr {Y = 0}.
73We have:

Pr {S ≥ s | Y = 0} =
Pr {S ≥ s,Y = 0}

Pr {Y = 0}

= Pr {S ≥ s} ·
Pr {S ≥ s,Y = 0}

Pr {S ≥ s}Pr {Y = 0}

= Pr {S ≥ s} ·
Pr {Y = 0 | S ≥ s}

Pr {Y = 0}
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15.3.2.2 Some properties

We first notice that the previous parametric curves do not depend on the probability
distribution of the score S, but only on the ranking of the observations. They are then
invariant if we apply an increasing function to the score. Gouriéroux (1992) also established
the following properties:

1. the performance curve (respectively, the selection curve) is located below the line
y = 1 (respectively, the bisecting line y = x) if and only if cov (f (Y ) , g (S)) ≥ 0 for
any increasing functions f and g;

2. the performance curve is increasing if and only if:

cov (f (Y ) , g (S) | S ≥ s) ≥ 0

for any increasing functions f and g, and any threshold level s;

3. the selection curve is convex if and only if E [f (Y ) | S = s] is increasing with respect
to the threshold level s for any increasing function f .

Remark 201 The first property is the least restrictive. It allows us to verify that the score
S is better than a random score. We can show that (3) ⇒ (2) ⇒ (1). The last property is
then the most restrictive.

A score is perfect or optimal if there is a threshold level s? such that
Pr {Y = 1 | S ≥ s?} = 1 and Pr {Y = 0 | S < s?} = 1. It separates the population between
good and bad risks. Graphically, the selection curve of a perfect score is equal to:

y = 1 {x > Pr {Y = 1}} ·
(

1 + x− 1
Pr {Y = 0}

)
Using the relationship S (x) = xP (x), we deduce that the performance curve of a perfect
score is given by:

y = 1 {x > Pr {Y = 1}} ·
(
x− Pr {Y = 1}
x · Pr {Y = 0}

)
For the discriminant curve, a perfect score satisfies D (x) = 1. When the score is random, we
have S (x) = D (x) = x and P (x) = 1. In Figure 15.39, we have reported the performance,
selection and discriminant curves of a given score S. We also show the curves obtained with
an optimal (or perfect) score and a random score. A score must be located in the area
between the curve computed with a random score and the curve computed with a perfect
score, except if the score ranks the observations in a worst way than a random score.

Gouriéroux (1992) also established two properties for comparing two scores S1 and S2:

• the score S1 is more performing on the population P1 than the score S2 on the pop-
ulation P2 if and only if the performance (or selection) curve of (S1, P1) is below the
performance (or selection) curve of (S2, P2);

• the score S1 is more discriminatory on the population P1 than the score S2 on the
population P2 if and only if the discriminant curve of (S1, P1) is above the discriminant
curve of (S2, P2).

Figure 15.40 illustrates the case where the score S1 is better than the score S2. However,
the order is only partial. Most of the time, the two scores cannot be globally compared. An
example is provided in Figure 15.41. The second score is not very good to distinguish good
and bad risks when it takes small values, but it is close to a perfect score when it takes high
values.
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FIGURE 15.39: Performance, selection and discriminant curves

FIGURE 15.40: The score S1 is better than the score S2
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FIGURE 15.41: Illustration of the partial ordering between two scores

15.3.3 Statistical methods
Since the quantitative tools for comparing two scores are numerous, we focus on two

non-parametric measures: the Kolmogorov-Smirnov test and the Gini coefficient.

15.3.3.1 Kolmogorov-Smirnov test

We consider the cumulative distribution functions:

F0 (s) = Pr {S ≤ s | Y = 0}

and:
F1 (s) = Pr {S ≤ s | Y = 1}

The score S is relevant if we have the stochastic dominance order F0 � F1. In this case,
the score quality is measured by the Kolmogorov-Smirnov statistic:

KS = max
s
|F0 (s)− F1 (s)|

It takes the value 1 if the score is perfect. The KS statistic may be used to verify that the
score is not random. We then test the assumptionH0 : KS = 0 by using the tabulated critical
values74 In Figure 15.42, we give an example with 5 000 observations. The KS statistic is
equal to 36%, which implies that H0 is rejected at the confidence level 1%.

74The critical values at the 5% confidence level are equal to:

n 10 50 100 500 5000
CV 40.9% 18.8% 13.4% 6.0% 1.9%
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FIGURE 15.42: Comparison of the distributions F0 (s) and F1 (s)

15.3.3.2 Gini coefficient

The Lorenz curve The Gini coefficient is the statistic, which is the most used for mea-
suring the performance of a score. It is related to the concept of Lorenz curve, which is a
graphical representation of the concentration. Let X and Y be two random variables. The
Lorenz curve y = L (x) is the parametric curve defined by:{

x = Pr {X ≤ x}
y = Pr {Y ≤ y | X ≤ x}

In economics, x represents the proportion of individuals that are ranked by income while
y represents the proportion of income. In this case, the Lorenz curve is a graphical repre-
sentation of the distribution of income and is used for illustrating inequality of the wealth
distribution between individuals. For example, we observe that 70% of individuals have only
34% of total income in Figure 15.43.

Definition of the Gini coefficient The Lorenz curve has two limit cases. If the wealth
is perfectly concentrated, one individual holds 100% of the total wealth. If the wealth
is perfectly allocated between all the individuals, the corresponding Lorenz curve is the
bisecting line. We define the Gini coefficient by:

Gini (L) = A

A+B

where A is the area between the Lorenz curve and the curve of perfect equality, and B is the
area between the curve of perfect concentration and the Lorenz curve. By construction, we
have 0 ≤ Gini (L) ≤ 1. The Gini coefficient is equal to zero in the case of perfect equality
and one in the case of perfect concentration. We have:

Gini (L) = 1− 2
∫ 1

0
L (x) dx
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FIGURE 15.43: An example of Lorenz curve

Application to credit scoring We can interpret the selection curve as a Lorenz
curve. We recall that F (s) = Pr {S ≤ s}, F0 (s) = Pr {S ≤ s | Y = 0} and F1 (s) =
Pr {S ≤ s | Y = 1}. The selection curve is defined by the following parametric coordinates:{

x (s) = 1− F (s)
y (s) = 1− F0 (s)

The selection curve measures the capacity of the score for not selecting bad risks. We could
also build the Lorenz curve that measures the capacity of the score for selecting good risks:{

x (s) = Pr {S ≥ s} = 1− F (s)
y (s) = Pr {S ≥ s | Y = 1} = 1− F1 (s)

It is called the precision curve. Another popular graphical tool is the receiver operating
characteristic (or ROC) curve (Powers, 2011), which is defined by:{

x (s) = Pr {S ≥ s | Y = 0} = 1− F0 (s)
y (s) = Pr {S ≥ s | Y = 1} = 1− F1 (s)

An example for a given score S is provided in Figure 15.44. For all the three curves, we can
calculate the Gini coefficient. Since the precision and ROC curves are located above the
bisecting line, the Gini coefficient associated to the Lorenz curve L becomes75:

Gini (L) = 2
∫ 1

0
L (x) dx− 1

75An alternative to the Gini coefficient is the AUC measure, which corresponds to the area under the
ROC curve. However, they give the same information since they are related by the equation:

Gini (ROC) = 2×AUC (ROC)− 1
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The Gini coefficient of the score S is then computed as follows:

Gini? (S) = Gini (L)
Gini (L?)

where L? is the Lorenz curve associated to the perfect score.

FIGURE 15.44: Selection, precision and ROC curves

Remark 202 The Gini coefficient is not necessarily the same for the three curves. However,
if the population is homogeneous, we generally obtain very similar figures76.

15.3.3.3 Choice of the optimal cut-off

The choice of the optimal cut-off s? depends on the objective function. For instance, we
can calibrate s? in order to achieve a minimummarket share. We can also fix a given selection
rate. More generally, the objective function can be the profitability of the activity. From a
statistical point of view, we must distinguish the construction of the scoring model and the
decision rule. In statistical learning, we generally consider three datasets: the training set,
the validation set and the test set. The training set is used for calibrating the model and
its parameters whereas the validation set helps to avoid overfitting. But the decision rule is
based on the test set.

76For instance, we obtain the following results with the score S that has been used in Figure 15.44:

Curve Gini (L) Gini (L?) Gini? (S)
Selection 20.41% 40.02% 51.01%
Precision 30.62% 59.98% 51.05%
ROC 51.03% 100.00% 51.03%
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Confusion matrix A confusion matrix is a special case of contingency matrix. Each row
of the matrix represents the frequency in a predicted class while each column represents the
frequency in an actual class. Using the test set, it takes the following form:

Y = 0 Y = 1
S < s n0,0 n0,1
S ≥ s n1,0 n1,1

n0 = n0,0 + n1,0 n1 = n0,1 + n1,1

where ni,j represents the number of observations of the cell (i, j). We notice that each cell
of this table can be interpreted as follows:

Y = 0 Y = 1
It is rejected It is rejected,

S < s and it is a bad risk but it is a good risk
(true negative) (false negative)
It is accepted, It is accepted

S ≥ s but it is a bad risk and it is a good risk
(false positive) (true positive)

(negative) (positive)

The cells (S < s, Y = 0) and (S ≥ s, Y = 1) correspond to observations that are well-
classified: true negative (TN) and true positive (TP). The cells (S ≥ s, Y = 0) and
(S < s, Y = 1) correspond to two types of errors:

1. a false positive (FP) can induce a future loss, because it may default: this is a type I
error;

2. a false negative (FN) potentially corresponds to a loss of a future P&L77: this is a
type II error.

Classification ratios Binary classification defines many metrics for measuring the per-
formance of the classifier78 (Fawcett, 2006):

True Positive Rate TPR = TP
TP + FN

False Negative Rate FNR = FN
FN + TP = 1− TPR

True Negative Rate TNR = TN
TN + FP

False Positive Rate FPR = FP
FP + TN = 1− TNR

The true positive rate (TPR) is also known as the sensitivity or the recall. It measures the
proportion of real good risks that are correctly predicted good risk. Fawcett (2006) also
defines the precision or the positive predictive value (PPV):

PPV = TP
TP + FP

77This is an opportunity cost.
78 We rewrite the confusion matrix as follows:

Y = 0 Y = 1
S < s TN FN
S ≥ s FP TP

N = TN + FP P = FN + TP
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It measures the proportion of predicted good risks that are correctly real good risk. Besides
these metrics, statisticians also use two generic metrics:

1. the accuracy considers the classification of both negatives and positives:

ACC = TP + TN
P + N = TP + TN

TP + FN + TN + FP

2. the F1 score is the harmonic mean of precision and sensitivity:

F1 = 2
1/precision + 1/sensitivity

= 2 · PPV · TPR
PPV + TPR

Example 171 We consider three scoring systems that have been calibrated on a training
set. These systems produce a score between 0 and 1 000. A low value predicts a bad risk
while a high value predicts a good risk. In order to calibrate the cut-off, we consider a test
set, which is composed of 10 000 new observations. In Table 15.23, we report the confusion
matrix of each scoring system for different cut-off values (100, 200 and 500).

TABLE 15.23: Confusion matrix of three scoring systems and three cut-off values s
Score s = 100 s = 200 s = 500

S1
386 616 698 1 304 1 330 3 672

1 614 7 384 1 302 6 696 670 4 328

S2
372 632 700 1 304 1 386 3 616

1 628 7 368 1 300 6 696 614 4 384

S3
382 616 656 1 344 1 378 3 624

1 618 7 384 1 344 6 656 622 4 376

Perfect 1 000 0 2 000 0 2 000 3 000
1 000 8 000 0 8 000 0 5 000

Using confusion matrices given in Table 15.23, we calculate the different classification
ratios and report them in Table 15.24. In addition to the three scoring systems, we have
also considered a perfect score in order to show what the best value is for each classification
ratio. Finally, we indicate the best scoring system in Table 15.25. We notice that it depends
on the ratio and on the value of the cut-off. For instance, if we want to maximize the true
positive ratio or minimize the false negative ratio, S1 is the best scoring system for low
value of s while S2 is better when s is equal to 500. For the other ratios, S1 seems to be the
best system when s = 100, otherwise S2 dominates S1 and S3 when s = 200 or s = 500.

Remark 203 We recall that F0 (s) = Pr {S ≤ s | Y = 0} and F1 (s) = Pr {S ≤ s | Y = 1}.
We deduce that TNR = F0 (s), FNR = F1 (s), FPR = 1 − F0 (s) and TPR = 1 − F1 (s).
Therefore, the ROC curve is the parametric curve, where the x-coordinates are the false
positive rates and the y-coordinates are the true positive rates. Generally, we note α and
β the type I and II errors. We may also interpret the ROC curve as the relationship of
1− β (s) with respect to α (s).
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TABLE 15.24: Binary classification ratios (in %) of the three scoring systems

Score s TPR FNR TNR FPR PPV ACC F1

S1

100 92.3 7.7 19.3 80.7 82.1 77.7 86.9
200 83.7 16.3 34.9 65.1 83.7 73.9 83.7
500 54.1 45.9 66.5 33.5 86.6 56.6 66.6

S2

100 92.1 7.9 18.6 81.4 81.9 77.4 86.7
200 83.7 16.3 35.0 65.0 83.7 74.0 83.7
500 54.8 45.2 69.3 30.7 87.7 57.7 67.5

S3

100 92.3 7.7 19.1 80.9 82.0 77.7 86.9
200 83.2 16.8 32.8 67.2 83.2 73.1 83.2
500 54.7 45.3 68.9 31.1 87.6 57.5 67.3

Perfect
100 100.0 0.0 50.0 50.0 88.9 90.0 94.1
200 100.0 0.0 100.0 0.0 100.0 100.0 100.0
500 62.5 37.5 100.0 0.0 100.0 70.0 76.9

TABLE 15.25: Best scoring system
Cut-off TPR FNR TNR FPR PPV ACC F1

100 S1/S3 S1/S3 S1 S1 S1 S1 S1
200 S1/S2 S1/S2 S2 S2 S2 S2 S2
500 S2 S2 S2 S2 S2 S2 S2

15.4 Exercises
15.4.1 Elastic net regression

We consider the standard linear model:

Y = Xβ + U

where Y is a n×1 vector, X is a n×K matrix and U ∼ N
(
0, σ2In

)
. Let β̂ be the estimator

of β, that is the solution of the following least squares problem:

β̂ = arg min 1
2 (Y−Xβ)> (Y−Xβ) + λ

2

(
α ‖β‖1 + (1− α) ‖β‖22

)
where λ ≥ 0 and α ∈ [0, 1].

1. We consider the case α = 0, which corresponds to the ridge regression.

(a) Find the optimal estimator β̂ridge.
(b) What is the relationship between the ridge estimator β̂ridge and the ordinary

least squares β̂ols?

(c) Deduce the expression of E
[
β̂ridge

]
. Show that β̂ridge is a biased estimator except

if λ = 0.
(d) Demonstrate that the covariance matrix of β̂ridge is equal to:

var
(
β̂ridge

)
= σ2 (X>X +Q

)−1
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where Q is a matrix to determine. Deduce that:

var
(
β̂ols

)
� var

(
β̂ridge

)
where � is the positive definite ordering.

(e) Let Ŷ be the predicted values of Y. If Ŷ = HY, the model degree of freedom is
equal to the trace of H. Show that the degree of freedom of the ridge model is
equal to:

dfmodel =
K∑
k=1

s2
k

s2
k + λ

where (s1, . . . , sK) are the singular values of X (Hastie et al., 2009).
(f) What does the previous results become when X is an orthonormal matrix?

2. We consider the case α > 0, which corresponds to the elastic net regression (Zou and
Hastie, 2005).

(a) Write the corresponding QP program.
(b) Consider the data of Example 164 on page 936. Compare the estimates β̂ when

α is respectively equal to 0, 0.25, 0.5 and 1.0.

15.4.2 Cross-validation of the ridge linear regression
We consider the ridge estimator:

β̂ = arg min 1
2 (Y−Xβ)> (Y−Xβ) + λ

2β
>β

where Y is a n× 1 vector, X is a n×K matrix and β is a K × 1 vector.

1. Compute the ridge estimator β̂.

2. We note β̂−i the ridge estimator when leaving out the ith observation:

β̂−i = arg min 1
2 (Y−i −X−iβ)> (Y−i −X−iβ) + λ

2β
>β

where Y−i and X−i correspond to Y and X with the ith row removed. By using the
relationships X>X = X>−iX−i + xix

>
i and X>Y = X>−iY−i + xiyi, show that:

β̂−i = β̂ −
(
X>X + λIK

)−1
xiûi

1− hi

where ûi = yi − x>i β̂ and hi = x>i
(
X>X + λIK

)−1
xi.

3. We note ŷi,−i = x>i β̂−i and ûi,−i = yi − ŷi,−i. Demonstrate that:

ûi,−i = ûi
1− hi

4. Calculate the predicted residual error sum of squares (PRESS) statistic:

Press = 1
n

n∑
i=1

(yi − ŷi,−i)2

where ŷi,−i is the estimate of yi based on the ridge model when leaving out the ith
observation.
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5. In the OLS regression, we reiterate that df(model) = trace H = K where H is the
hat matrix for the OLS regression. Define the corresponding hat matrix H (λ) for the
ridge regression. Show that:

df(model) (λ) =
K∑
k=1

s2
k

s2
k + λ

where (s1, . . . , sK) are the singular values of X.

6. The generalized cross-validation (GCV) statistic is defined by:

GCV = nK2

(
K∑
k=1

(n−K) s2
k + nλ

s2
k + λ

)−2

RSS
(
β̂ (λ)

)
where h̄ = n−1∑n

i=1 H (λ)i,i and RSS
(
β̂ (λ)

)
is the residual sum of squares calculated

with the ridge estimator β̂ (λ). What is the relationship between GCV and PRESS
statistics? What is the impact of λ?

7. Show that another expression of the GCV statistic is:

GCV = n

(
n−K +

K∑
k=1

λ

s2
k + λ

)−2

RSS
(
β̂ (λ)

)

8. Using the data of Example 165 on page 940, calculate the estimates β̂−i when λ is
equal to 3.0. Compute also ŷi,−i, ûi,−i, ûi and hi. Deduce then the value of PRESS
and GCV statistics.

15.4.3 K-means and the Lloyd’s algorithm
1. We consider n observations with K attributes xi,k (i = 1, . . . , n and k = 1, . . . ,K).

We note xi the K × 1 vector (xi,1, . . . , xi,K). Show that:

1
2

n∑
i=1

n∑
j=1
‖xi − xj‖2 = n

n∑
i=1
‖xi − x̄‖2

where:

x̄ = 1
n

n∑
i=1

xi

2. We recall that the loss function of the K-means clustering method is:

L (C) = 1
2

nC∑
j=1

∑
C(i)=j

∑
C(i′)=j

‖xi − xi′‖2

Deduce that:

L (C) =
nC∑
j=1

nj
∑
C(i)=j

‖xi − x̄j‖2

where x̄j and nj are two quantities to define.
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3. We consider the following optimization function:

{
µ?1, . . . , µ

?
nC

}
= arg min

nC∑
j=1

nj
∑
C(i)=j

‖xi − µj‖2

Show that µ?j = x̄j . Comment on this result.

4. Apply the K-means analysis to Example 169 and compare the results with those
obtained with the discriminant analysis.

15.4.4 Derivation of the principal component analysis
The following exercise is taken from Chapters 1 and 2 of Jolliffe (2002). Let X be a K×1

random vector, whose covariance matrix is equal to Σ. We consider the linear transform
Zj = β>j X where βj is a K × 1 vector.

1. Calculate var (Z1) and define the PCA objective function to estimate β1. Show that
β1 is the eigenvector associated to the largest eigenvalue of Σ.

2. Calculate var (Z2) and cov (Z1, Z2). Define then the PCA objective function to es-
timate β2. Show that β2 is the eigenvector associated to the second eigenvalue of
Σ.

15.4.5 Two-class separation maximization
We note xi the K × 1 vector of exogenous variables X for the ith observation.

1. We consider the case of J classes. We note µ̂j the mean vector for class Cj :

µ̂j = 1
nj

∑
i∈Cj

xi

and µ̂ the mean vector for the entire sample:

µ̂ = 1
n

n∑
i=1

xi = 1
n

J∑
j=1

njµ̂j

Calculate the scatter matrices S, SW and SB . Show that:

S = SW + SB

2. We now consider the two-class problem, and we note yi = β>xi. Show that:

β>SBβ = n1n2

n1 + n2
(µ̃1 − µ̃2)2

where:
µ̃j = 1

nj

∑
i∈Cj

yi

3. Show that:
β>SWβ = s̃2

1 + s̃2
2

where:
s̃2
j =

∑
i∈Cj

(yi − µ̃j)2
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4. Deduce that the Fisher optimization program is:

β? = arg max (µ̃1 − µ̃2)2

s̃2
1 + s̃2

2

What is the interpretation of this statistical problem?

5. Find the optimal value β? and verify that the decision boundary is linear.

6. Using Example 170 on page 967, calculate SW and SB . Find the optimal value β? and
compute the score for each observation. Propose an assignment decision based on the
mid-point rule. Comment on these results.

15.4.6 Maximum likelihood estimation of the probit model
1. Given a sample {(xi, yi) , i = 1, . . . , n}, find the log-likelihood function of the probit

model.

2. Let J (β) be the Jacobian matrix of the log-likelihood vector. Show that:

Ji,k (β) =
(
yi − Φ

(
x>i β

))
φ
(
x>i β

)
Φ
(
x>i β

) (
1− Φ

(
x>i β

)) · xi,k
for i = 1, . . . , n and k = 1, . . . ,K. Define the score vector S (β).

3. Let H (β) be the Hessian matrix of the log-likelihood function. Show that:

H (β) = −
n∑
i=1

Hi ·
(
xix
>
i

)
where:

Hi = yi

(
φ
(
x>i β

)
+ x>i βΦ

(
x>i β

))
Φ
(
x>i β

)2 φ
(
x>i β

)
+

(1− yi)
(
φ
(
x>i β

)
− x>i β

(
1− Φ

(
x>i β

)))(
1− Φ

(
x>i β

))2 φ
(
x>i β

)
4. Propose a Newton-Raphson algorithm to find the ML estimate.

15.4.7 Computation of feed-forward neural networks
We consider the canonical neural network without constant and direct link.

1. We noteX the input matrix of dimension n×nx and Y the output matrix of dimension
n× ny. Let Ŷ be the prediction of Y . Find the matrix relationship between X and Ŷ
with respect to the parameter matrices β and γ of dimension nz × nx and ny × nz.

2. We assume that the activation functions fx,z and fz,y are the identity function.
Demonstrate that the neural network is equivalent to an overidentified linear model
or a constrained linear regression.
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3. We consider the additive loss function:

L (θ) =
n∑
i=1

ny∑
j=1
Li,j (θ)

where:
Li,j (θ) = ξ (yj (xi) , yi,j)

Calculate the matrices ∂γL (θ) and ∂βL (θ) of dimension ny × nz and nz × nx.

4. We assume that the activation functions fx,z and fz,y correspond to the logistic func-
tion and the loss is the least squares error function. Find the matrices ∂γL (θ) and
∂βL (θ).

5. Same question if we consider the cross-entropy error loss:

L (θ) = −
n∑
i=1

(yi ln y (xi) + (1− yi) ln (1− y (xi)))

6. Explain why we cannot use the property of additivity in the case of the softmax
function.

7. Calculate the matrices ∂γL (θ) and ∂βL (θ) when fz,y is the softmax function, fx,z is
the identity function, and the loss function is the multi-class error function:

L (θ) = −
n∑
i=1

nC∑
j=1

yi,j ln yj (xi)

where nC is the number of classes79.

8. Extend the previous results when we consider a constant between the x’s and the z’s,
a constant between the z’s and the y’s and a direct link between the x’s and the y’s.

15.4.8 Primal and dual problems of support vector machines
The goal of this exercise is to determine the primal and dual problems of the differ-

ent SVM models. For each problem, we ask to write the primal problem into a quadratic
programming (QP) format:

θ̂ = arg min 1
2θ
>Qθ − θ>R

s.t.

 Aθ = B
Cθ ≥ D
θ− ≤ θ ≤ θ+

where θ is the vector of parameters. Then, we ask to find the corresponding dual problem
and also the associated QP matrix form.

79Hint: Use the following decomposition L (θ) =
∑n

i=1 Li (θ).
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Hard margin classification

We first begin with the hard margin classifier. We recall that the primal optimization
problem is: {

β̂0, β̂
}

= arg min 1
2 ‖β‖

2
2

s.t. yi
(
β0 + x>i β

)
≥ 1 for i = 1, . . . , n

1. By noting θ the vector of parameters, write the primal problem in the QP form.

2. We note α = (α1, . . . , αn) the vector of Lagrange coefficients associated to the con-
straints yi

(
β0 + x>i β

)
≥ 1. Write the Lagrange function and find the first-order con-

ditions.

3. Deduce that the dual problem is:

α̂ = arg max
n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx
>
i x
>
j

s.t. α ≥ 0

4. Write this dual problem as a QP problem.

5. Determine the dual QP problem directly by applying Equation (A.12) on page 1047.
What do you observe? How to fix this issue?

Soft margin classification with binary hinge loss

We now consider the soft margin classification problem:{
β̂0, β̂, ξ̂

}
= arg min 1

2 ‖β‖
2
2 + C

n∑
i=1

ξi

s.t.
{
yi
(
β0 + x>i β

)
≥ 1− ξi

ξi ≥ 0 for i = 1, . . . , n

1. Write the primal problem as a QP problem.

2. Show that the objective function of the dual problem does not change compared to
the hard margin classifier. What does the dual QP problem become?

3. How can we characterize the support vectors?

4. Find the optimal values of ξi.

5. We consider the training data set given in Table 15.18 on page 989. Represent the
optimal values of β0, β1, β2,

∑n
i=1 ξi and the margin M with respect to C. Compare

the optimal hyperplane when C = 0.07 with the optimal hyperplane obtained with
the hard margin classifier.

Soft margin classification with squared hinge loss

We replace the binary hinge loss by the squared hinge loss:{
β̂0, β̂, ξ̂

}
= arg min 1

2 ‖β‖
2
2 + C

n∑
i=1

ξ2
i

s.t.
{
yi
(
β0 + x>i β

)
≥ 1− ξi

ξi ≥ 0 for i = 1, . . . , n
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1. Write the primal problem as a QP problem.

2. Find the dual problem. What do you observe?

3. We consider the training data set given in Table 15.18 on page 989. Study the con-
vergence of the optimal values of β0, β1, β2,

∑n
i=1 ξi and the margin M with respect

to C. What is the main difference between binary and squared hinge loss functions?

4. We introduce in the training set two new points (6.0, 5.0,+1) (i = 16) and (2.0, 2.0,−1)
(i = 17). Calculate β̂0, β̂, α̂i and ξ̂i when the constant C is equal to 1.

Soft margin classification with ramp loss

1. Compare 0− 1, binary hinge, squared hinge and ramp loss functions.

2. Using the property min (1,max (0, a)) = max (0, a) − max (0, a− 1), show that
Lramp (xi, yi) is the difference of two convex functions. Comment on this result.

LS-SVM regression

We consider the following optimization problem:{
β̂0, β̂, ξ̂

}
= arg min 1

2 ‖β‖
2
2 + C

n∑
i=1

ξ2
i

s.t. yi = β0 + x>i β + ξi for i = 1, . . . , n

1. Write the primal problem as a QP problem.

2. Find the dual QP problem.

3. Deduce the expression of β̂0 and β̂. Show that the residuals are centered.

ε-SVM regression

We consider the following optimization problem:{
β̂0, β̂, ξ̂

−, ξ̂+
}

= arg min 1
2 ‖β‖

2
2 + C

n∑
i=1

(
ξ−i + ξ+

i

)

s.t.


β0 + x>i β − yi ≤ ε+ ξ−i
yi − β0 − x>i β ≤ ε+ ξ+

i

ξ−i ≥ 0
ξ+
i ≥ 0

for i = 1, . . . , n

where ε ≥ 0.

1. Write the primal problem as a QP problem.

2. Find the dual problem.

3. Write the dual problem as a QP problem.

4. Deduce the expression of β̂0 and β̂.

5. Calculate the optimal values ξ̂− and ξ̂+.

6. What does the optimization problem becomes when ε = 0?
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15.4.9 Derivation of the AdaBoost algorithm as the solution of the ad-
ditive logit model

We consider a special case of additive models, where the loss function is specified as
follows:

L
(
β(s), f(s)

)
=

n∑
i=1
L
(
yi, ĝ(s−1) (xi) + β(s)f(s) (xi)

)
ĝ(s) (x) =

∑s
s′=1 β̂(s′)f̂(s′) (x), f̂(s) is the sth optimal classification model and L (y, f (x)) =

e−yf(x).

1. Show that:

L
(
β(s), f(s)

)
=

n∑
i=1

wi,se
−yiβ(s)f(s)(xi)

where wi,s is a quantity to determine.

2. Find an expression of L
(
β(s), f(s)

)
that depends on the error rate:

L(s) =
∑n
i=1 wi,s · 1 {yi 6= yi,s}∑n

i=1 wi,s

where yi,s = f(s) (xi).

3. We assume that f(s) is known. Verify that the optimal value of β̂(s):

β̂(s) = arg minL
(
β(s), f(s)

)
is equal to:

β̂(s) = 1
2 ln

(1− L(s)

L(s)

)
4. Suppose that f̂(s) has been already estimated. Show that the normalized observation

weights are:

wi,s+1 = wi,se
ws·1{yi 6=ŷi,s}∑n

i=1 wi′,se
ws·1{yi′ 6=ŷi′,s}

where ws is a parameter to determine.

5. Conclude on these results.

15.4.10 Weighted estimation
We note w = (w1, . . . , wn) the vector of observation weights.

1. We consider the weighted log-likelihood function:

`w (θ) =
n∑
i=1

wi · `i (θ)

(a) Define the weighted maximum likelihood estimator.
(b) Find the expression of the Jacobian and Hessian matrices.

2. We consider neural networks (Exercise 15.4.7 on page 1025).
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(a) Define the least squares loss function Lw (θ). Give the matrix form of the deriva-
tives ∂γLw (θ) and ∂βLw (θ).

(b) Same question if we consider the cross-entropy loss function.

3. We consider the soft margin SVM classification (Exercise 15.4.8 on page 1027).

(a) Define the optimization problem.
(b) What is the impact of introducing weights on the primal and dual problems.
(c) Why weighted hard margin classification does not make sense?
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