# Course 2022-2023 in Sustainable Finance Lecture 11. Exercise - Equity and Bond Portfolio Optimization with Green Preferences 

Thierry Roncalli*

*Amundi Asset Management ${ }^{1}$
*University of Paris-Saclay

March 2023

[^0]We consider an investment universe of 8 issuers. In the table below, we report the carbon emissions $\mathcal{C} \mathcal{E}_{i, j}$ (in $\mathrm{ktCO}_{2} \mathrm{e}$ ) of these companies and their revenues $Y_{i}$ (in $\$ \mathrm{bn}$ ), and we indicate in the last row whether the company belongs to sector $\mathcal{S e c t o r}_{1}$ or $\mathcal{S e c t o r}_{2}$ :

| Issuer | \#1 | \#2 | \#3 | \#4 | \#5 | \#6 | \#7 | \#8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathcal{C E} \mathcal{E}_{i, 1}$ | 75 | 5000 | 720 | 50 | 2500 | 25 | 30000 | 5 |
| $\mathcal{C} \mathcal{E}_{i, 2}$ | 75 | 5000 | 1030 | 350 | 4500 | 5 | 2000 | 64 |
| $\mathcal{C} \mathcal{E}_{i, 3}$ | 24000 | 15000 | 1210 | 550 | 500 | 187 | 30000 | 199 |
| $\bar{Y}{ }_{i}^{-}$ | 300 | $32 \overline{8}$ | $12 \overline{5}$ | $\overline{100}$ | 200 | $1 \overline{0} 2$ | 107 | $2 \overline{5}$ |
| $\overline{\mathcal{S}}$ - $\overline{\text { ctor }}$ | - $\overline{1}$ | 2 | $\overline{1}$ | $\overline{1}$ | 2 | $\overline{1}$ | 2 | 2 |

The benchmark $b$ of this investment universe is defined as:

$$
b=(22 \%, 19 \%, 17 \%, 13 \%, 11 \%, 8 \%, 6 \%, 4 \%)
$$

In what follows, we consider long-only portfolios.

## Question 1

We want to compute the carbon intensity of the benchmark.

## Question (a)

Compute the carbon intensities $\mathcal{C I}_{i, j}$ of each company $i$ for the scopes 1 , 2 and 3.

We have:

$$
\mathcal{C} \mathcal{I}_{i, j}=\frac{\mathcal{C} \mathcal{E}_{i, j}}{Y_{i}}
$$

For instance, if we consider the $8^{\text {th }}$ issuer, we have ${ }^{2}$ :

$$
\begin{aligned}
\mathcal{C I}_{8,1} & =\frac{\mathcal{C} \mathcal{E}_{8,1}}{Y_{8}}=\frac{5}{25}=0.20 \mathrm{tCO}_{2} \mathrm{e} / \$ \mathrm{mn} \\
\mathcal{C I}_{8,2} & =\frac{\mathcal{C} \mathcal{E}_{8,2}}{Y_{8}}=\frac{64}{25}=2.56 \mathrm{tCO}_{2} \mathrm{e} / \$ \mathrm{mn} \\
\mathcal{C} \mathcal{I}_{8,3} & =\frac{\mathcal{C} \mathcal{E}_{8,3}}{Y_{8}}=\frac{199}{25}=7.96 \mathrm{tCO}_{2} \mathrm{e} / \$ \mathrm{mn}
\end{aligned}
$$

[^1]Since we have:

| Issuer | \#1 | \#2 | \#3 | \#4 | \#5 | \#6 | \#7 | \#8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathcal{C E} \mathcal{E}_{i, 1}$ | 75 | 5000 | 720 | 50 | 2500 | 25 | 30000 | 5 |
| $\mathcal{C} \mathcal{E}_{i, 2}$ | 75 | 5000 | 1030 | 350 | 4500 | 5 | 2000 | 64 |
| $\mathcal{C} \mathcal{E}_{i, 3}$ | 24000 | 15000 | 1210 | 550 | 500 | 187 | 30000 | 199 |
| $\bar{Y}{ }_{i}$ | $\overline{3} 0 \overline{0}$ | $32 \overline{8}$ | $\overline{12} \overline{5}$ | 100 | 200 | $1 \overline{1}^{1} \overline{2}$ | $10 \overline{7}$ | $2 \overline{5}$ |

we obtain:

| Issuer | $\# 1$ | $\# 2$ | $\# 3$ | $\# 4$ | $\# 5$ | $\# 6$ | $\# 7$ | $\# 8$ |
| :--- | ---: | ---: | :---: | :---: | ---: | :---: | ---: | :---: |
| $\mathcal{C I}_{i, 1}$ | 0.25 | 15.24 | 5.76 | 0.50 | 12.50 | 0.25 | 280.37 | 0.20 |
| $\mathcal{C I}_{i, 2}$ | 0.25 | 15.24 | 8.24 | 3.50 | 22.50 | 0.05 | 18.69 | 2.56 |
| $\mathcal{C I}_{i, 3}$ | 80.00 | 45.73 | 9.68 | 5.50 | 2.50 | 1.83 | 280.37 | 7.96 |

## Question (b)

Deduce the carbon intensities $\mathcal{C} \mathcal{I}_{i, j}$ of each company $i$ for the scopes $1+2$ and $1+2+3$.

We have:

$$
\mathcal{C} \mathcal{I}_{i, 1-2}=\frac{\mathcal{C} \mathcal{E}_{i, 1}+\mathcal{C} \mathcal{E}_{i, 2}}{Y_{i}}=\mathcal{C} \mathcal{I}_{i, 1}+\mathcal{C} \mathcal{I}_{i, 2}
$$

and:

$$
\mathcal{C} \mathcal{I}_{i, 1-3}=\mathcal{C} \mathcal{I}_{i, 1}+\mathcal{C} \mathcal{I}_{i, 2}+\mathcal{C} \mathcal{I}_{i, 3}
$$

We deduce that:

| Issuer | $\# 1$ | $\# 2$ | $\# 3$ | $\# 4$ | $\# 5$ | $\# 6$ | $\# 7$ | $\# 8$ |
| :--- | ---: | ---: | ---: | :---: | :---: | :---: | :---: | ---: |
| $\mathcal{C I}_{i, 1}$ | 0.25 | 15.24 | 5.76 | 0.50 | 12.50 | 0.25 | 280.37 | 0.20 |
| $\mathcal{C I}_{i, 1-2}$ | 0.50 | 30.49 | 14.00 | 4.00 | 35.00 | 0.29 | 299.07 | 2.76 |
| $\mathcal{C I}_{i, 1-3}$ | 80.50 | 76.22 | 23.68 | 9.50 | 37.50 | 2.12 | 579.44 | 10.72 |

## Question (c)

Deduce the weighted average carbon intensity (WACI) of the benchmark if we consider the scope $1+2+3$.

We have:

$$
\begin{aligned}
\mathcal{C I}(b) & =\sum_{i=1}^{8} b_{i} \mathcal{C} \mathcal{I}_{i} \\
& =0.22 \times 80.50+0.19 \times 76.2195+0.17 \times 23.68+0.13 \times 9.50+ \\
& 0.11 \times 37.50+0.08 \times 2.1275+0.06 \times 579.4393+0.04 \times 10.72 \\
& 76.9427 \mathrm{tCO}_{2} \mathrm{e} / \$ \mathrm{mn}
\end{aligned}
$$

## Question (d)

We assume that the market capitalization of the benchmark portfolio is equal to $\$ 10$ tn and we invest $\$ 1 \mathrm{bn}$.

## Question (d).i

## Deduce the market capitalization of each company (expressed in \$ bn).

We have:

$$
b_{i}=\frac{M C_{i}}{\sum_{k=1}^{8} \mathrm{MC}_{k}}
$$

and $\sum_{k=1}^{8} \mathrm{MC}_{k}=\$ 10 \mathrm{tn}$. We deduce that:

$$
\mathrm{MC}_{i}=10 \times b_{i}
$$

We obtain the following values of market capitalization expressed in \$ bn:

| Issuer | $\# 1$ | $\# 2$ | $\# 3$ | $\# 4$ | $\# 5$ | $\# 6$ | $\# 7$ | $\# 8$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{MC}_{i}$ | 2200 | 1900 | 1700 | 1300 | 1100 | 800 | 600 | 400 |

## Question (d).ii

Compute the ownership ratio for each asset (expressed in bps).

Let $W$ be the wealth invested in the benchmark portfolio $b$. The wealth invested in asset $i$ is equal to $b_{i} W$. We deduce that the ownership ratio is equal to:

$$
\varpi_{i}=\frac{b_{i} W}{\mathrm{MC}_{i}}=\frac{b_{i} W}{b_{i} \sum_{k=1}^{n} \mathrm{MC}_{k}}=\frac{W}{\sum_{k=1}^{n} \mathrm{MC}_{k}}
$$

When we invest in a capitalization-weighted portfolio, the ownership ratio is the same for all the assets. In our case, we have:

$$
\varpi_{i}=\frac{1}{10 \times 1000}=0.01 \%
$$

The ownership ratio is equal to 1 basis point.

## Question (d).iii

Compute the carbon emissions of the benchmark portfolio ${ }^{a}$ if we invest $\$ 1$ bn and we consider the scope $1+2+3$.
${ }^{a}$ We assume that the float percentage is equal to $100 \%$ for all the 8 companies.

Using the financed emissions approach, the carbon emissions of our investment is equal to:

$$
\begin{aligned}
\mathcal{C E}(\$ 1 \mathrm{bn})= & 0.01 \% \times(75+75+24000)+ \\
& 0.01 \% \times(5000+5000+15000)+ \\
& \ldots+ \\
& 0.01 \% \times(5+64+199) \\
= & 12.3045 \mathrm{ktCO}_{2} \mathrm{e}
\end{aligned}
$$

## Question (d).iv

Compare the (exact) carbon intensity of the benchmark portfolio with the WACI value obtained in Question 1.(c).

We compute the revenues of our investment:

$$
Y(\$ 1 \mathrm{bn})=0.01 \% \sum_{i=1}^{8} Y_{i}=\$ 0.1287 \mathrm{bn}
$$

We deduce that the exact carbon intensity is equal to:

$$
\mathcal{C I}(\$ 1 \mathrm{bn})=\frac{\mathcal{C} \mathcal{E}(\$ 1 \mathrm{bn})}{Y(\$ 1 \mathrm{bn})}=\frac{12.3045}{0.1287}=95.6061 \mathrm{tCO}_{2} \mathrm{e} / \$ \mathrm{mn}
$$

We notice that the WACI of the benchmark underestimates the exact carbon intensity of our investment by 19.5\%:

$$
76.9427<95.6061
$$

## Question 2

We want to manage an equity portfolio with respect to the previous investment universe and reduce the weighted average carbon intensity of the benchmark by the rate $\mathcal{R}$. We assume that the volatility of the stocks is respectively equal to $22 \%, 20 \%, 25 \%, 18 \%, 40 \%, 23 \%, 13 \%$ and $29 \%$. The correlation matrix between these stocks is given by:

$$
\rho=\left(\begin{array}{rrrrrrrr}
100 \% & & & & & & & \\
80 \% & 100 \% & & & & & & \\
70 \% & 75 \% & 100 \% & & & & & \\
60 \% & 65 \% & 80 \% & 100 \% & & & & \\
70 \% & 50 \% & 70 \% & 85 \% & 100 \% & & & \\
50 \% & 60 \% & 70 \% & 80 \% & 60 \% & 100 \% & & \\
70 \% & 50 \% & 70 \% & 75 \% & 80 \% & 50 \% & 100 \% & \\
60 \% & 65 \% & 70 \% & 75 \% & 65 \% & 70 \% & 60 \% & 100 \%
\end{array}\right)
$$

## Question (a)

Compute the covariance matrix $\Sigma$.

The covariance matrix $\Sigma=\left(\Sigma_{i, j}\right)$ is defined by:

$$
\Sigma_{i, j}=\rho_{i, j} \sigma_{i} \sigma_{j}
$$

We obtain the following numerical values (expressed in bps):

$$
\Sigma=\left(\begin{array}{rrrrrrrr}
484.0 & 352.0 & 385.0 & 237.6 & 616.0 & 253.0 & 200.2 & 382.8 \\
352.0 & 400.0 & 375.0 & 234.0 & 400.0 & 276.0 & 130.0 & 377.0 \\
385.0 & 375.0 & 625.0 & 360.0 & 700.0 & 402.5 & 227.5 & 507.5 \\
237.6 & 234.0 & 360.0 & 324.0 & 612.0 & 331.2 & 175.5 & 391.5 \\
616.0 & 400.0 & 700.0 & 612.0 & 1600.0 & 552.0 & 416.0 & 754.0 \\
253.0 & 276.0 & 402.5 & 331.2 & 552.0 & 529.0 & 149.5 & 466.9 \\
200.2 & 130.0 & 227.5 & 175.5 & 416.0 & 149.5 & 169.0 & 226.2 \\
382.8 & 377.0 & 507.5 & 391.5 & 754.0 & 466.9 & 226.2 & 841.0
\end{array}\right)
$$

## Question (b)

Write the optimization problem if the objective function is to minimize the tracking error risk under the constraint of carbon intensity reduction.

The tracking error variance of portfolio $w$ with respect to benchmark $b$ is equal to:

$$
\sigma^{2}(w \mid b)=(w-b)^{\top} \Sigma(w-b)
$$

The carbon intensity constraint has the following expression:

$$
\sum_{i=1}^{8} w_{i} \mathcal{C} \mathcal{I}_{i} \leq(1-\mathcal{R}) \mathcal{C} \mathcal{I}(b)
$$

where $\mathcal{R}$ is the reduction rate and $\mathcal{C I}(b)$ is the carbon intensity of the benchmark. Let $\mathcal{C} \mathcal{I}^{\star}=(1-\mathcal{R}) \mathcal{C I}(b)$ be the target value of the carbon footprint. The optimization problem is then:

$$
\begin{aligned}
w^{\star}= & \arg \min \frac{1}{2} \sigma^{2}(w \mid b) \\
\text { s.t. } & \left\{\begin{array}{l}
\sum_{i=1}^{8} w_{i} \mathcal{C} \mathcal{I}_{i} \leq \mathcal{C I}^{\star} \\
\sum_{i=1}^{8} w_{i}=1 \\
0 \leq w_{i} \leq 1
\end{array}\right.
\end{aligned}
$$

We add the second and third constraints in order to obtain a long-only portfolio.

## Question (c)

Give the QP formulation of the optimization problem.

The objective function is equal to:

$$
f(w)=\frac{1}{2} \sigma^{2}(w \mid b)=\frac{1}{2}(w-b)^{\top} \Sigma(w-b)=\frac{1}{2} w^{\top} \Sigma w-w^{\top} \Sigma b+\frac{1}{2} b^{\top} \Sigma b
$$

while the matrix form of the carbon intensity constraint is:

$$
\mathcal{C I}^{\top} w \leq \mathcal{C I}^{\star}
$$

where $\mathcal{C I}=\left(\mathcal{C I}_{1}, \ldots, \mathcal{C I}_{8}\right)$ is the column vector of carbon intensities. Since $b^{\top} \Sigma b$ is a constant and does not depend on $w$, we can cast the previous optimization problem into a QP problem:

$$
\begin{aligned}
& w^{\star}= \arg \min \frac{1}{2} w^{\top} Q w-w^{\top} R \\
& \text { s.t. } \quad\left\{\begin{array}{l}
A w=B \\
C w \leq D \\
w^{-} \leq w \leq w^{+}
\end{array}\right.
\end{aligned}
$$

We have $Q=\Sigma, R=\Sigma b, A=\mathbf{1}_{8}^{\top}, B=1, C=\mathcal{C I}^{\top}, D=\mathcal{C} \mathcal{I}^{\star}$, $w^{-}=\mathbf{0}_{8}$ and $w^{+}=\mathbf{1}_{8}$.

## Question (d)

$\mathcal{R}$ is equal to $20 \%$. Find the optimal portfolio if we target scope $1+2$. What is the value of the tracking error volatility?

We have:

$$
\begin{aligned}
\mathcal{C} \mathcal{I}(b) & =0.22 \times 0.50+0.19 \times 30.4878+\ldots+0.04 \times 2.76 \\
& =30.7305 \mathrm{tCO}_{2} \mathrm{e} / \$ \mathrm{mn}
\end{aligned}
$$

We deduce that:

$$
\mathcal{C} \mathcal{I}^{\star}=(1-\mathcal{R}) \mathcal{C} \mathcal{I}(b)=0.80 \times 30.7305=24.5844 \mathrm{tCO}_{2} \mathrm{e} / \$ \mathrm{mn}
$$

Therefore, the inequality constraint of the QP problem is:
$\left(\begin{array}{llllllll}0.50 & 30.49 & 14.00 & 4.00 & 35.00 & 0.29 & 299.07 & 2.76\end{array}\right)\left(\begin{array}{c}w_{1} \\ w_{2} \\ \vdots \\ w_{7} \\ w_{8}\end{array}\right) \leq 24.5844$

We obtain the following optimal solution:

$$
w^{\star}=\left(\begin{array}{r}
23.4961 \% \\
17.8129 \% \\
17.1278 \% \\
15.4643 \% \\
10.4037 \% \\
7.5903 \% \\
4.0946 \% \\
4.0104 \%
\end{array}\right)
$$

The minimum tracking error volatility $\sigma\left(w^{\star} \mid b\right)$ is equal to 15.37 bps .

## Question (e)

Same question if $\mathcal{R}$ is equal to $30 \%, 50 \%$, and $70 \%$.

Table 1: Solution of the equity optimization problem (scope $\mathcal{S C}_{1-2}$ )

| $\mathcal{R}$ | 0\% | 20\% | 30\% | 50\% | 70\% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $w_{1}$ | 22.0000 | 23.4961 | 24.2441 | 25.7402 | 30.4117 |
| $w_{2}$ | 19.0000 | 17.8129 | 17.2194 | 16.0323 | 9.8310 |
| $w_{3}$ | 17.0000 | 17.1278 | 17.1917 | 17.3194 | 17.8348 |
| $w_{4}$ | 13.0000 | 15.4643 | 16.6964 | 19.1606 | 23.3934 |
| $w_{5}$ | 11.0000 | 10.4037 | 10.1055 | 9.5091 | 7.1088 |
| $w_{6}$ | 8.0000 | 7.5903 | 7.3854 | 6.9757 | 6.7329 |
| $w_{7}$ | 6.0000 | 4.0946 | 3.1418 | 1.2364 | 0.0000 |
| $W_{8}$ | 4.0000 | 4.0104 | 4.0157 | 4.0261 | 4.6874 |
| $\overline{\mathcal{C}} \overline{\mathcal{I}}(\bar{w})$ | $\overline{3} \overline{0} . \overline{7} 3 \overline{0} 5$ | $24.5 \overline{8} 44$ | $2 \overline{1} \cdot 511 \overline{4}$ | 15. $3 \overline{6} 53$ | $\overline{9} . \overline{2} \overline{9} \overline{2}$ |
| $\bar{\sigma} \overline{(w}\lceil\bar{b})$ | $\overline{0}$. 0 - | $15 . \overline{3} 7$ | $2 \overline{3} .05$ | $3 \overline{8} . \overline{4} 2$ | 72.45 |

In Table 1, we report the optimal solution $w^{\star}$ (expressed in \%) of the optimization problem for different values of $\boldsymbol{\mathcal { R }}$. We also indicate the carbon intensity of the portfolio (in $\mathrm{tCO}_{2} \mathrm{e} / \$ \mathrm{mn}$ ) and the tracking error volatility (in bps). For instance, if $\mathcal{R}$ is set to $50 \%$, the weights of assets $\# 1, \# 3, \# 4$ and \#8 increase whereas the weights of assets \#2, \#5, \#6 and $\# 7$ decrease. The carbon intensity of this portfolio is equal to $15.3653 \mathrm{tCO}_{2} \mathrm{e} / \$ \mathrm{mn}$. The tracking error volatility is below 40 bps , which is relatively low.

## Question (f)

We target scope $1+2+3$. Find the optimal portfolio if $\boldsymbol{\mathcal { R }}$ is equal to $20 \%, 30 \%, 50 \%$ and $70 \%$. Give the value of the tracking error volatility for each optimized portfolio.

In this case, the inequality constraint $C w \leq D$ is defined by:

$$
C=\mathcal{C I}_{1-3}^{\top}=\left(\begin{array}{r}
80.5000 \\
76.2195 \\
23.6800 \\
9.5000 \\
37.5000 \\
2.1275 \\
579.4393 \\
10.7200
\end{array}\right)^{\top}
$$

and:

$$
D=(1-\mathcal{R}) \times 76.9427
$$

We obtain the results given in Table 2.

Table 2: Solution of the equity optimization problem (scope $\mathcal{S C}_{1-3}$ )

| $\mathcal{R}$ | 0\% | 20\% | 30\% | 50\% | 70\% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $w_{1}$ | 22.0000 | 23.9666 | 24.9499 | 26.4870 | 13.6749 |
| $w_{2}$ | 19.0000 | 17.4410 | 16.6615 | 8.8001 | 0.0000 |
| w3 | 17.0000 | 17.1988 | 17.2981 | 19.4253 | 24.1464 |
| $w_{4}$ | 13.0000 | 16.5034 | 18.2552 | 25.8926 | 41.0535 |
| $w_{5}$ | 11.0000 | 10.2049 | 9.8073 | 7.1330 | 3.5676 |
| $w_{6}$ | 8.0000 | 7.4169 | 7.1254 | 7.0659 | 8.8851 |
| $w_{7}$ | 6.0000 | 3.2641 | 1.8961 | 0.0000 | 0.0000 |
| $w_{8}$ | 4.0000 | 4.0043 | 4.0065 | 5.1961 | 8.6725 |
| $\overline{\mathcal{C} \mathcal{I}}(\bar{w})$ | $\overline{7} \overline{6} \cdot \overline{94} \overline{2} 7$ | 61.5541 | 5 $\overline{3} \overline{8} \overline{8} 5 \overline{9} 9$ | $38.4 \overline{7} \overline{13}$ | $2 \overline{3} .0 \overline{8} 2 \overline{8}$ |
| $\bar{\sigma} \overline{( } \bar{w}\lceil\bar{b})$ | $\overline{0} . \overline{0} 0^{\circ}$ | 21. $\mathrm{g}^{9}$ | $32.99{ }^{-}$ | $\overline{1} 04.8 \overline{1}$ | $\overline{4} 1 \overline{4} . \overline{4} 8^{-}$ |

## Question (g)

Compare the optimal solutions obtained in Questions 2.(e) and 2.(f).

Figure 1: Impact of the scope on the tracking error volatility


Figure 2: Impact of the scope on the portfolio allocation (in \%)


In Figure 1, we report the relationship between the reduction rate $\boldsymbol{\mathcal { R }}$ and the tracking error volatility $\sigma(w \mid b)$. The choice of the scope has little impact when $\mathcal{R} \leq 45 \%$. Then, we notice a high increase when we consider the scope $1+2+3$. The portfolio's weights are given in Figure 2. For assets $\# 1$ and $\# 3$, the behavior is divergent when we compare scopes $1+2$ and $1+2+3$.

## Question 3

We want to manage a bond portfolio with respect to the previous investment universe and reduce the weighted average carbon intensity of the benchmark by the rate $\boldsymbol{\mathcal { R }}$. We use the scope $1+2+3$. In the table below, we report the modified duration $\mathrm{MD}_{i}$ and the duration-times-spread factor $\mathrm{DTS}_{;}$of each corporate bond $i$ :

| Asset | \#1 | \#2 | \#3 | \#4 | \#5 | \#6 | \#7 | \#8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{MD}_{i}$ (in years) | 3.56 | 7.48 | 6.54 | 10.23 | 2.40 | 2.30 | 9.12 | 7.96 |
| $\mathrm{DTS}_{i}$ (in bps) | 103 | 155 | 75 | 796 | 89 | 45 | 320 | 245 |
| $\overline{\mathcal{S}}$ ector | 1 | 2 | $\overline{1}$ | 1 | $\overline{2}$ | 1 | 2 | 2 |

## Question 3 (Cont'd)

We remind that the active risk can be calculated using three functions.
For the active share, we have:

$$
\mathcal{R}_{\mathrm{AS}}(w \mid b)=\sigma_{\mathrm{AS}}^{2}(w \mid b)=\sum_{i=1}^{n}\left(w_{i}-b_{i}\right)^{2}
$$

We also consider the MD-based tracking error risk:

$$
\mathcal{R}_{\mathrm{MD}}(w \mid b)=\sigma_{\mathrm{MD}}^{2}(w \mid b)=\sum_{j=1}^{n_{\text {Sector }}}\left(\sum_{i \in \mathcal{S}_{\text {ector }}^{j}}\left(w_{i}-b_{i}\right) \mathrm{MD}_{i}\right)^{2}
$$

and the DTS-based tracking error risk:

$$
\left.\mathcal{R}_{\mathrm{DTS}}(w \mid b)=\sigma_{\mathrm{DTS}}^{2}(w \mid b)=\sum_{j=1}^{n_{\mathcal{S e c t o r}}\left(\sum_{i \in \mathcal{S}_{\text {ector }}^{j}}\right.}\left(w_{i}-b_{i}\right) \mathrm{DTS}_{i}\right)^{2}
$$

## Question 3 (Cont'd)

Finally, we define the synthetic risk measure as a combination of AS, MD and DTS active risks:

$$
\mathcal{R}(w \mid b)=\varphi_{\mathrm{AS}} \mathcal{R}_{\mathrm{AS}}(w \mid b)+\varphi_{\mathrm{MD}} \mathcal{R}_{\mathrm{MD}}(w \mid b)+\varphi_{\mathrm{DTS}} \mathcal{R}_{\mathrm{DTS}}(w \mid b)
$$

where $\varphi_{\mathrm{AS}} \geq 0, \varphi_{\mathrm{MD}} \geq 0$ and $\varphi_{\mathrm{DTS}} \geq 0$ indicate the weight of each risk. In what follows, we use the following numerical values: $\varphi_{\mathrm{AS}}=100$, $\varphi_{\mathrm{MD}}=25$ and $\varphi_{\mathrm{DTS}}=1$. The reduction rate $\mathcal{R}$ of the weighted average carbon intensity is set to $50 \%$ for the scope $1+2+3$.

## Question (a)

Compute the modified duration $\mathrm{MD}(b)$ and the duration-times-spread factor DTS (b) of the benchmark.

We have:

$$
\begin{aligned}
\operatorname{MD}(b) & =\sum_{i=1}^{n} b_{i} \mathrm{MD}_{i} \\
& =0.22 \times 3.56+0.19 \times 7.48+\ldots+0.04 \times 7.96 \\
& =5.96 \text { years }
\end{aligned}
$$

and:

$$
\begin{aligned}
\operatorname{DTS}(b) & =\sum_{i=1}^{n} b_{i} \mathrm{DTS}_{i} \\
& =0.22 \times 103+0.19 \times 155+\ldots+0.04 \times 155 \\
& =210.73 \mathrm{bps}
\end{aligned}
$$

## Question (b)

Let $w_{\text {ew }}$ be the equally-weighted portfolio. Compute ${ }^{a} \mathrm{MD}\left(w_{\mathrm{ew}}\right)$, $\operatorname{DTS}\left(w_{\mathrm{ew}}\right), \sigma_{\mathrm{AS}}\left(w_{\mathrm{ew}} \mid b\right), \sigma_{\mathrm{MD}}\left(w_{\mathrm{ew}} \mid b\right)$ and $\sigma_{\mathrm{DTS}}\left(w_{\mathrm{ew}} \mid b\right)$.

[^2]We have:

$$
\left\{\begin{array}{l}
\operatorname{MD}\left(w_{\text {ew }}\right)=6.20 \text { years } \\
\operatorname{DTS}\left(w_{\text {ew }}\right) 228.50 \mathrm{bps} \\
\sigma_{\mathrm{AS}}\left(w_{\text {ew }} \mid b\right)=17.03 \% \\
\sigma_{\mathrm{MD}}\left(w_{\text {ew }} \mid b\right)=1.00 \text { years } \\
\sigma_{\mathrm{DTS}}\left(w_{\mathrm{ew}} \mid b\right)=36.19 \mathrm{bps}
\end{array}\right.
$$

## Question (c)

We consider the following optimization problem:

$$
\begin{aligned}
& w^{\star}= \arg \min \frac{1}{2} \mathcal{R}_{\mathrm{AS}}(w \mid b) \\
& \text { s.t. } \quad\left\{\begin{array}{l}
\sum_{i=1}^{n} w_{i}=1 \\
\operatorname{MD}(w)=\operatorname{MD}(b) \\
\operatorname{DTS}(w)=\operatorname{DTS}(b) \\
\mathcal{C} \mathcal{I}(w) \leq(1-\mathcal{R}) \mathcal{C} \mathcal{I}(b) \\
0 \leq w_{i} \leq 1
\end{array}\right.
\end{aligned}
$$

Give the analytical value of the objective function. Find the optimal portfolio $w^{\star}$. Compute $\operatorname{MD}\left(w^{\star}\right), \operatorname{DTS}\left(w^{\star}\right), \sigma_{\mathrm{AS}}\left(w^{\star} \mid b\right), \sigma_{\mathrm{MD}}\left(w^{\star} \mid b\right)$ and $\sigma_{\mathrm{DTS}}\left(w^{\star} \mid b\right)$.

We have:

$$
\begin{aligned}
\mathcal{R}_{\mathrm{AS}}(w \mid b)= & \left(w_{1}-0.22\right)^{2}+\left(w_{2}-0.19\right)^{2}+\left(w_{3}-0.17\right)^{2}+\left(w_{4}-0.13\right)^{2}+ \\
& \left(w_{5}-0.11\right)^{2}+\left(w_{6}-0.08\right)^{2}+\left(w_{7}-0.06\right)^{2}+\left(w_{8}-0.04\right)^{2}
\end{aligned}
$$

The objective function is then:

$$
f(w)=\frac{1}{2} \mathcal{R}_{\mathrm{AS}}(w \mid b)
$$

The optimal solution is equal to:

$$
w^{\star}=(17.30 \%, 17.41 \%, 20.95 \%, 14.41 \%, 10.02 \%, 11.09 \%, 0 \%, 8.81 \%)
$$

The risk metrics are:

$$
\left\{\begin{array}{l}
\operatorname{MD}\left(w^{\star}\right)=5.96 \text { years } \\
\operatorname{DTS}\left(w^{\star}\right)=210.73 \mathrm{bps} \\
\sigma_{\mathrm{AS}}\left(w^{\star} \mid b\right)=10.57 \% \\
\sigma_{\mathrm{MD}}\left(w^{\star} \mid b\right)=0.43 \text { years } \\
\sigma_{\mathrm{DTS}}\left(w^{\star} \mid b\right)=15.21 \mathrm{bps}
\end{array}\right.
$$

## Question (d)

We consider the following optimization problem:

$$
\begin{aligned}
& w^{\star}= \arg \min \frac{\varphi_{\mathrm{AS}}}{2} \mathcal{R}_{\mathrm{AS}}(w \mid b)+\frac{\varphi_{\mathrm{MD}}}{2} \mathcal{R}_{\mathrm{MD}}(w \mid b) \\
& \text { s.t. }\left\{\begin{array}{l}
\sum_{i=1}^{n} w_{i}=1 \\
\operatorname{DTS}(w)=\operatorname{DTS}(b) \\
\mathcal{C} \mathcal{I}(w) \leq(1-\mathcal{R}) \mathcal{C} \mathcal{I}(b) \\
0 \leq w_{i} \leq 1
\end{array}\right.
\end{aligned}
$$

Give the analytical value of the objective function. Find the optimal portfolio $w^{\star}$. Compute $\operatorname{MD}\left(w^{\star}\right), \operatorname{DTS}\left(w^{\star}\right), \sigma_{\mathrm{AS}}\left(w^{\star} \mid b\right), \sigma_{\mathrm{MD}}\left(w^{\star} \mid b\right)$ and $\sigma_{\mathrm{DTS}}\left(w^{\star} \mid b\right)$.

We have ${ }^{3}$ :

$$
\begin{aligned}
\mathcal{R}_{\mathrm{MD}}(w \mid b)= & \left(\sum_{i=1,3,4,6}\left(w_{i}-b_{i}\right) \mathrm{MD}_{i}\right)^{2}+\left(\sum_{i=2,5,7,8}\left(w_{i}-b_{i}\right) \mathrm{MD}_{i}\right)^{2} \\
= & \left(\sum_{i=1,3,4,6} w_{i} \mathrm{MD}_{i}-\sum_{i=1,3,4,6} b_{i} \mathrm{MD}_{i}\right)^{2}+ \\
& \left(\sum_{i=2,5,7,8} w_{i} \mathrm{MD}_{i}-\sum_{i=2,5,7,8} b_{i} \mathrm{MD}_{i}\right)^{2} \\
= & \left(3.56 w_{1}+6.54 w_{3}+10.23 w_{4}+2.30 w_{6}-3.4089\right)^{2}+ \\
& \left(7.48 w_{2}+2.40 w_{5}+9.12 w_{7}+7.96 w_{8}-2.5508\right)^{2}
\end{aligned}
$$

The objective function is then:

$$
f(w)=\frac{\varphi_{\mathrm{AS}}}{2} \mathcal{R}_{\mathrm{AS}}(w \mid b)+\frac{\varphi_{\mathrm{MD}}}{2} \mathcal{R}_{\mathrm{MD}}(w \mid b)
$$

${ }^{3}$ We verify that $3.4089+2.5508=5.9597$ years.

The optimal solution is equal to:

$$
w^{\star}=(16.31 \%, 18.44 \%, 17.70 \%, 13.82 \%, 11.67 \%, 11.18 \%, 0 \%, 10.88 \%)
$$

The risk metrics are:

$$
\left\{\begin{array}{l}
\operatorname{MD}\left(w^{\star}\right)=5.93 \text { years } \\
\operatorname{DTS}\left(w^{\star}\right)=210.73 \mathrm{bps} \\
\sigma_{\mathrm{AS}}\left(w^{\star} \mid b\right)=11.30 \% \\
\sigma_{\mathrm{MD}}\left(w^{\star} \mid b\right)=0.03 \text { years } \\
\sigma_{\mathrm{DTS}}\left(w^{\star} \mid b\right)=3.70 \mathrm{bps}
\end{array}\right.
$$

## Question (e)

We consider the following optimization problem:

$$
\begin{aligned}
& w^{\star}= \arg \min \frac{1}{2} \mathcal{R}(w \mid b) \\
& \text { s.t. } \quad\left\{\begin{array}{l}
\sum_{i=1}^{n} w_{i}=1 \\
\mathcal{C} \mathcal{I}(w) \leq(1-\mathcal{R}) \mathcal{C} \mathcal{I}(b) \\
0 \leq w_{i} \leq 1
\end{array}\right.
\end{aligned}
$$

Give the analytical value of the objective function. Find the optimal portfolio $w^{\star}$. Compute $\operatorname{MD}\left(w^{\star}\right), \operatorname{DTS}\left(w^{\star}\right), \sigma_{\mathrm{AS}}\left(w^{\star} \mid b\right), \sigma_{\mathrm{MD}}\left(w^{\star} \mid b\right)$ and $\sigma_{\mathrm{DTS}}\left(w^{\star} \mid b\right)$.

We have ${ }^{4}$ :

$$
\begin{aligned}
\mathcal{R}_{\mathrm{DTS}}(w \mid b)= & \left(\sum_{i=1,3,4,6}\left(w_{i}-b_{i}\right) \mathrm{DTS}_{i}\right)^{2}+\left(\sum_{i=2,5,7,8}\left(w_{i}-b_{i}\right) \mathrm{DTS}_{i}\right)^{2} \\
= & \left(103 w_{1}+75 w_{3}+796 w_{4}+45 w_{6}-142.49\right)^{2}+ \\
& \left(155 w_{2}+89 w_{5}+320 w_{7}+245 w_{8}-68.24\right)^{2}
\end{aligned}
$$

The objective function is then:

$$
f(w)=\frac{\varphi_{\mathrm{AS}}}{2} \mathcal{R}_{\mathrm{AS}}(w \mid b)+\frac{\varphi_{\mathrm{MD}}}{2} \mathcal{R}_{\mathrm{MD}}(w \mid b)+\frac{\varphi_{\mathrm{DTS}}}{2} \mathcal{R}_{\mathrm{DTS}}(w \mid b)
$$

[^3]The optimal solution is equal to:

$$
w^{\star}=(16.98 \%, 17.21 \%, 18.26 \%, 13.45 \%, 12.10 \%, 9.46 \%, 0 \%, 12.55 \%)
$$

The risk metrics are:

$$
\left\{\begin{array}{l}
\operatorname{MD}\left(w^{\star}\right)=5.97 \text { years } \\
\operatorname{DTS}\left(w^{\star}\right)=210.68 \mathrm{bps} \\
\sigma_{\mathrm{AS}}\left(w^{\star} \mid b\right)=11.94 \% \\
\sigma_{\mathrm{MD}}\left(w^{\star} \mid b\right)=0.03 \text { years } \\
\sigma_{\mathrm{DTS}}\left(w^{\star} \mid b\right)=0.06 \mathrm{bps}
\end{array}\right.
$$

## Question (f)

Comment on the results obtained in Questions 3.(c), 3.(d) and 3.(e).

Table 3: Solution of the bond optimization problem (scope $\mathcal{S C}_{1-3}$ )

| Problem | Benchmark | 3.(c) | 3.(d) | 3.(e) |
| :---: | :---: | :---: | :---: | :---: |
| $w_{1}$ | 22.0000 | 17.3049 | 16.3102 | 16.9797 |
| $w_{2}$ | 19.0000 | 17.4119 | 18.4420 | 17.2101 |
| $w_{3}$ | 17.0000 | 20.9523 | 17.6993 | 18.2582 |
| $w_{4}$ | 13.0000 | 14.4113 | 13.8195 | 13.4494 |
| $w_{5}$ | 11.0000 | 10.0239 | 11.6729 | 12.1008 |
| $w_{6}$ | 8.0000 | 11.0881 | 11.1792 | 9.4553 |
| $w_{7}$ | 6.0000 | 0.0000 | 0.0000 | 0.0000 |
| $\mathrm{w}_{8}$ | 4.0000 | 8.8075 | 10.8769 | 12.5464 |
| $\overline{\mathrm{MD}}{ }^{( }(\underline{w})$ | $5.959 \overline{7}$ | $5.959 \overline{7}$ | $5.93 \overline{4} \overline{4}$ | $5.9 \overline{6} 8 \overline{3}$ |
| DTS (w) | 210.7300 | 210.7300 | 210.7300 | 210.6791 |
| $\sigma_{\text {AS }}(w \mid b)$ | 0.0000 | 10.5726 | 11.3004 | 11.9400 |
| $\sigma_{\text {MD }}(w \mid b)$ | 0.0000 | 0.4338 | 0.0254 | 0.0308 |
| $\sigma_{\text {DTS }}(w \mid b)$ | 0.0000 | 15.2056 | 3.7018 | 0.0561 |
| $\mathcal{C I}(w)$ | 76.9427 | 38.4713 | 38.4713 | 38.4713 |

## Question (g)

How to find the previous solution of Question 3.(e) using a QP solver?

The goal is to write the objective function into a quadratic function:

$$
\begin{aligned}
f(w) & =\frac{\varphi_{\mathrm{AS}}}{2} \mathcal{R}_{\mathrm{AS}}(w \mid b)+\frac{\varphi_{\mathrm{MD}}}{2} \mathcal{R}_{\mathrm{MD}}(w \mid b)+\frac{\varphi_{\mathrm{DTS}}}{2} \mathcal{R}_{\mathrm{DTS}}(w \mid b) \\
& =\frac{1}{2} w^{\top} Q(b) w-w^{\top} R(b)+c(b)
\end{aligned}
$$

where:

$$
\begin{aligned}
\mathcal{R}_{\mathrm{AS}}(w \mid b)= & \left(w_{1}-0.22\right)^{2}+\left(w_{2}-0.19\right)^{2}+\left(w_{3}-0.17\right)^{2}+\left(w_{4}-0.13\right)^{2}+ \\
& \left(w_{5}-0.11\right)^{2}+\left(w_{6}-0.08\right)^{2}+\left(w_{7}-0.06\right)^{2}+\left(w_{8}-0.04\right)^{2} \\
\mathcal{R}_{\mathrm{MD}}(w \mid b)= & \left(3.56 w_{1}+6.54 w_{3}+10.23 w_{4}+2.30 w_{6}-3.4089\right)^{2}+ \\
& \left(7.48 w_{2}+2.40 w_{5}+9.12 w_{7}+7.96 w_{8}-2.5508\right)^{2} \\
\mathcal{R}_{\mathrm{DTS}}(w \mid b)= & \left(103 w_{1}+75 w_{3}+796 w_{4}+45 w_{6}-142.49\right)^{2}+ \\
& \left(155 w_{2}+89 w_{5}+320 w_{7}+245 w_{8}-68.24\right)^{2}
\end{aligned}
$$

We use the analytical approach which is described in Section 11.1.2 on pages 332-339. Moreover, we rearrange the universe such that the first fourth assets belong to the first sector and the last fourth assets belong to the second sector. In this case, we have:

$$
w=(\underbrace{w_{1}, w_{3}, w_{4}, w_{6}}_{\text {Sector }_{1}}, \underbrace{w_{2}, w_{5}, w_{7}, w_{8}}_{\text {Sector }_{2}})
$$

The matrix $Q(b)$ is block-diagonal:

$$
Q(b)=\left(\begin{array}{cc}
Q_{1} & \mathbf{0}_{4,4} \\
\mathbf{0}_{4,4} & Q_{2}
\end{array}\right)
$$

where the matrices $Q_{1}$ and $Q_{2}$ are equal to:

$$
Q_{1}=\left(\begin{array}{rrrr}
11025.8400 & 8307.0600 & 82898.4700 & 4839.7000 \\
8307.0600 & 6794.2900 & 61372.6050 & 3751.0500 \\
82898.4700 & 61372.6050 & 636332.3225 & 36408.2250 \\
4839.7000 & 3751.0500 & 36408.2250 & 2257.2500
\end{array}\right)
$$

and:

$$
Q_{2}=\left(\begin{array}{rrrr}
25523.7600 & 14243.8000 & 51305.4400 & 39463.5200 \\
14243.8000 & 8165.0000 & 29027.2000 & 22282.6000 \\
51305.4400 & 29027.2000 & 104579.3600 & 80214.8800 \\
39463.5200 & 22282.6000 & 80214.8800 & 61709.0400
\end{array}\right)
$$

The vector $R(b)$ is defined as follows:

$$
R(b)=\left(\begin{array}{r}
15001.8621 \\
11261.1051 \\
114306.8662 \\
6616.0617 \\
11073.1996 \\
6237.4080 \\
22424.3824 \\
17230.4092
\end{array}\right)
$$

Finally, the value of $c(b)$ is equal to:

$$
c(b)=12714.3386
$$

Using a QP solver, we obtain the following numerical solution:

$$
\left(\begin{array}{l}
w_{1} \\
w_{3} \\
w_{4} \\
w_{6} \\
w_{2} \\
w_{5} \\
w_{7} \\
w_{8}
\end{array}\right)=\left(\begin{array}{r}
16.9796 \\
18.2582 \\
13.4494 \\
9.4553 \\
17.2102 \\
12.1009 \\
0.0000 \\
12.5464
\end{array}\right) \times 10^{-2}
$$

We observe some small differences (after the fifth digit) because the QP solver is more efficient than a traditional nonlinear solver.

## Question 4

We consider a variant of Question 3 and assume that the synthetic risk measure is:

$$
\mathcal{D}(w \mid b)=\varphi_{\mathrm{AS}} \mathcal{D}_{\mathrm{AS}}(w \mid b)+\varphi_{\mathrm{MD}} \mathcal{D}_{\mathrm{MD}}(w \mid b)+\varphi_{\mathrm{DTS}} \mathcal{D}_{\mathrm{DTS}}(w \mid b)
$$

where:

$$
\begin{aligned}
\mathcal{D}_{\mathrm{AS}}(w \mid b) & =\frac{1}{2} \sum_{i=1}^{n}\left|w_{i}-b_{i}\right| \\
\mathcal{D}_{\mathrm{MD}}(w \mid b) & =\sum_{j=1}^{n_{\text {Sector }}}\left|\sum_{i \in \mathcal{S}_{\text {ector }}^{j}}\left(w_{i}-b_{i}\right) \mathrm{MD}_{i}\right| \\
\mathcal{D}_{\mathrm{DTS}}(w \mid b) & =\sum_{j=1}^{n_{\text {Sector }}}\left|\sum_{i \in \mathcal{S}_{\text {ector }}^{j}}\left(w_{i}-b_{i}\right) \mathrm{DTS}_{i}\right|
\end{aligned}
$$

## Question (a)

Define the corresponding optimization problem when the objective is to minimize the active risk and reduce the carbon intensity of the benchmark by $\boldsymbol{\mathcal { R }}$.

The optimization problem is:

$$
\begin{aligned}
& w^{\star}= \arg \min \mathcal{D}(w \mid b) \\
& \text { s.t. } \quad\left\{\begin{array}{l}
\mathbf{1}_{8}^{\top} w=1 \\
\mathcal{C}^{\top} w \leq(1-\mathcal{R}) \mathcal{C} \mathcal{I}(b) \\
\mathbf{0}_{8} \leq w \leq \mathbf{1}_{8}
\end{array}\right.
\end{aligned}
$$

## Question (b)

Give the LP formulation of the optimization problem.

We use the absolute value trick and obtain the following optimization problem:

$$
\begin{aligned}
w^{\star} \quad=\quad \arg \min \frac{1}{2} \varphi_{\mathrm{AS}} \sum_{i=1}^{8} \tau_{i, w}+\varphi_{\mathrm{MD}} \sum_{j=1}^{2} \tau_{j, \mathrm{MD}}+\varphi_{\mathrm{DTS}} \sum_{j=1}^{2} \tau_{j, \mathrm{DTS}} \\
\text { s.t. }\left\{\begin{array}{l}
\mathbf{1}_{8}^{\top} w=1 \\
\mathbf{0}_{8} \leq w \leq \mathbf{1}_{8} \\
\mathcal{C}^{\top} w \leq(1-\mathcal{R}) \mathcal{C} \mathcal{I}(b) \\
\left|w_{i}-b_{i}\right| \leq \tau_{i, w} \\
\left\lvert\, \begin{array}{l}
\sum_{i \in \mathcal{S e c t o r}_{j}}\left(w_{i}-b_{i}\right) \mathrm{MD}_{i} \mid \leq \tau_{j, \mathrm{MD}} \\
\sum_{i \in \mathcal{S e c t o r}_{j}}\left(w_{i}-b_{i}\right) \mathrm{DTS}_{i} \mid \leq \tau_{j, \mathrm{DTS}} \\
\tau_{i, w} \geq 0, \tau_{j, \mathrm{MD}} \geq 0, \tau_{j, \mathrm{DTS}} \geq 0
\end{array}\right.
\end{array}\right.
\end{aligned}
$$

We can now formulate this problem as a standard LP problem:

$$
\begin{aligned}
x^{\star} & =\arg \min c^{\top} x \\
\text { s.t. } & \left\{\begin{array}{l}
A x=B \\
C x \leq D \\
x^{-} \leq x \leq x^{+}
\end{array}\right.
\end{aligned}
$$

where $x$ is the $20 \times 1$ vector defined as follows:

$$
x=\left(\begin{array}{c}
w \\
\tau_{w} \\
\tau_{\mathrm{MD}} \\
\tau_{\mathrm{DTS}}
\end{array}\right)
$$

The $20 \times 1$ vector $c$ is equal to:

$$
c=\left(\begin{array}{c}
\mathbf{0}_{8} \\
\frac{1}{2} \varphi_{\mathrm{AS}} \mathbf{1}_{8} \\
\varphi_{\mathrm{MD}} \mathbf{1}_{2} \\
\varphi_{\mathrm{DTS}} \mathbf{1}_{2}
\end{array}\right)
$$

The equality constraint is defined by $A=\left(\begin{array}{cccc}\mathbf{1}_{8}^{\top} & \mathbf{0}_{8}^{\top} & \mathbf{0}_{2}^{\top} & \mathbf{0}_{2}^{\top}\end{array}\right)$ and $B=1$. The bounds are $x^{-}=\mathbf{0}_{20}$ and $x^{+}=\infty \cdot \mathbf{1}_{20}$.

For the inequality constraint, we have ${ }^{5}$ :

$$
C x \leq D \Leftrightarrow\left(\begin{array}{cccc}
I_{8} & -I_{8} & \mathbf{0}_{8,2} & \mathbf{0}_{8,2} \\
-I_{8} & -I_{8} & \mathbf{0}_{8,2} & \mathbf{0}_{8,2} \\
C_{\mathrm{MD}} & \mathbf{0}_{2,8} & -I_{2} & \mathbf{0}_{2,2} \\
-C_{\mathrm{MD}} & \mathbf{0}_{2,8} & -I_{2} & \mathbf{0}_{2,2} \\
C_{\mathrm{DTS}} & \mathbf{0}_{2,8} & \mathbf{0}_{2,2} & -I_{2} \\
-C_{\mathrm{DTS}} & \mathbf{0}_{2,8} & \mathbf{0}_{2,2} & -I_{2} \\
\mathcal{C I}^{\top} & \mathbf{0}_{1,8} & 0 & 0
\end{array}\right) \times\left(\begin{array}{c}
b \\
-b \\
\mathrm{MD}^{\star} \\
-\mathrm{MD}^{\star} \\
\mathrm{DTS}^{\star} \\
-\mathrm{DTS}^{\star} \\
(1-\boldsymbol{R}) \mathcal{C I}(b)
\end{array}\right)
$$

where:

$$
C_{\mathrm{MD}}=\left(\begin{array}{rrrrrrrr}
3.56 & 0.00 & 6.54 & 10.23 & 0.00 & 2.30 & 0.00 & 0.00 \\
0.00 & 7.48 & 0.00 & 0.00 & 2.40 & 0.00 & 9.12 & 7.96
\end{array}\right)
$$

and:

$$
C_{\mathrm{DTS}}=\left(\begin{array}{rrrrrrrr}
103 & 0 & 75 & 796 & 0 & 45 & 0 & 0 \\
0 & 155 & 0 & 0 & 89 & 0 & 320 & 245
\end{array}\right)
$$

The $2 \times 1$ vectors $\mathrm{MD}^{\star}$ and $\mathrm{DTS}^{\star}$ are respectively equal to $(3.4089,2.5508)$ and ( $142.49,68.24$ ).
${ }^{5} \mathrm{C}$ is a $25 \times 8$ matrix and $D$ is a $25 \times 1$ vector.

## Question (c)

Find the optimal portfolio when $\mathcal{R}$ is set to $50 \%$. Compare the solution with this obtained in Question 3.(e).

We obtain the following solution:

$$
\begin{aligned}
w^{\star} & =(18.7360,15.8657,17.8575,13.2589,11,9.4622,0,13.8196) \times 10^{-2} \\
\tau_{w}^{\star} & =(3.2640,3.1343,0.8575,0.2589,0,1.4622,6,9.8196) \times 10^{-2} \\
\tau_{\mathrm{MD}} & =(0,0) \\
\tau_{\mathrm{DTS}} & =(0,0)
\end{aligned}
$$

Table 4: Solution of the bond optimization problem (scope $\mathcal{S C}_{1-3}$ )

| Problem | Benchmark | 3.(e) | 4.(c) |
| :---: | :---: | :---: | :---: |
| $w_{1}$ | 22.0000 | 16.9796 | 18.7360 |
| $w_{2}$ | 19.0000 | 17.2102 | 15.8657 |
| $w_{3}$ | 17.0000 | 18.2582 | 17.8575 |
| $W_{4}$ | 13.0000 | 13.4494 | 13.2589 |
| $w_{5}$ | 11.0000 | 12.1009 | 11.0000 |
| $w_{6}$ | 8.0000 | 9.4553 | 9.4622 |
| $W_{7}$ | 6.0000 | 0.0000 | 0.0000 |
| $w_{8}$ | 4.0000 | 12.5464 | 13.8196 |
| $\bar{M} \bar{D}(\bar{w})$ | $5.95 \overline{9} 7$ | $5.9 \overline{9} \overline{8} \overline{3}$ | 5.9597 |
| DTS (w) | 210.7300 | 210.6791 | 210.7300 |
| $\left.\overline{\sigma_{\text {AS }}} \overline{(w} \mid \bar{b}\right)^{\prime}$ | 0.000 $0^{-}$ | $1 \overline{1} .94 \overline{0} 0$ | $1 \overline{2} . \overline{4} \overline{8} 3 \overline{7}$ |
| $\sigma_{\mathrm{MD}}(w \mid b)$ | 0.0000 | 0.0308 | 0.0000 |
| $\sigma_{\text {DTS }}(w \mid b)$ | 0.0000 | 0.0561 | 0.0000 |
| $\left.{ }^{-} \mathcal{D}_{\text {AS }} \overline{(w \mid}{ }^{-} \mid b\right)$ | 0.0000 | $2 \overline{5} . \overline{6} 2 \overline{0} 3$ | $2 \overline{4} .7 \overline{9} \overline{6} \overline{4}$ |
| $\mathcal{D}_{\text {MD }}(w \mid b)$ | 0.0000 | 0.0426 | 0.0000 |
| $\mathcal{D}_{\text {DTS }}(w \mid b)$ | 0.0000 | 0.0608 | 0.0000 |
| $\overline{\mathcal{C}} \overline{\mathcal{I}}(\bar{w})$ | $\overline{7} \overline{6} .94 \overline{2} 7$ | $3 \overline{8} . \overline{4} 7 \overline{1} \overline{3}$ | $3 \overline{8} . \overline{4} \overline{7} \overline{1} \overline{3}$ |

In Table 4, we compare the two solutions ${ }^{6}$. They are very close. In fact, we notice that the LP solution matches perfectly the MD and DTS constraints, but has a higher AS risk $\sigma_{\mathrm{AS}}(w \mid b)$. If we note the two solutions $w^{\star}\left(\mathcal{L}_{1}\right)$ and $w^{\star}\left(\mathcal{L}_{2}\right)$, we have:

$$
\left\{\begin{array}{c}
\mathcal{R}\left(w^{\star}\left(\mathcal{L}_{2}\right) \mid b\right)=1.4524<\mathcal{R}\left(w^{\star}\left(\mathcal{L}_{1}\right) \mid b\right)=1.5584 \\
\mathcal{D}\left(w^{\star}\left(\mathcal{L}_{2}\right) \mid b\right)=13.9366>\mathcal{D}\left(w^{\star}\left(\mathcal{L}_{1}\right) \mid b\right)=12.3982
\end{array}\right.
$$

There is a trade-off between the $\mathcal{L}_{1}$ - and $\mathcal{L}_{2}$-norm risk measures. This is why we cannot say that one solution dominates the other.

[^4]
[^0]:    ${ }^{1}$ The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

[^1]:    ${ }^{2}$ Because $1 \mathrm{ktCO} \mathrm{kt}_{2} \mathrm{e} / \$ \mathrm{bn}=1 \mathrm{tCO}_{2} \mathrm{e} / \$ \mathrm{mn}$.

[^2]:    ${ }^{a}$ Precise the corresponding unit (years, bps or \%) for each metric.

[^3]:    ${ }^{4}$ We verify that $142.49+68.24=210.73$ bps.

[^4]:    ${ }^{6}$ The units are the following: $\%$ for the weights $w_{i}$, and the active share metrics $\sigma_{\mathrm{AS}}(w \mid b)$ and $\mathcal{D}_{\mathrm{AS}}(w \mid b)$; years for the modified duration metrics MD (w), $\sigma_{\mathrm{MD}}(w \mid b)$ and $\mathcal{D}_{\mathrm{MD}}(w \mid b)$; bps for the duration-times-spread metrics DTS $(w)$, $\sigma_{\text {DTS }}(w \mid b)$ and $\mathcal{D}_{\text {DTS }}(w \mid b) ; \mathrm{tCO}_{2} \mathrm{e} / \$ \mathrm{mn}$ for the carbon intensity DTS $(w)$.

