Course 2024–2025 in Sustainable Finance Lecture 12. Climate Risk Measures

Thierry Roncalli*

*Amundi Asset Management¹

*University of Paris-Saclay

November 2024

¹The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

Agenda

- Lecture 1: Introduction
- Lecture 2: ESG Scoring
- Lecture 3: Impact of ESG Investing on Asset Prices and Portfolio Returns
- Lecture 4: Sustainable Financial Products
- Lecture 5: Impact Investing
- Lecture 6: Biodiversity
- Lecture 7: Engagement & Voting Policy
- Lecture 8: Extra-financial Accounting
- Lecture 9: Awareness of Climate Change Impacts
- Lecture 10: The Ecosystem of Climate Change
- Lecture 11: Economic Models & Climate Change
- Lecture 12: Climate Risk Measures
- Lecture 13: Transition Risk Modeling
- Lecture 14: Climate Portfolio Construction
- Lecture 15: Physical Risk Modeling
- Lecture 16: Climate Stress Testing & Risk Management

Definition

How to define the carbon footprint?

Wackernagel and Rees (1996) published the seminal book on the ecological footprint:

"the carbon footprint stands for a certain amount of gaseous emissions that are relevant to climate change and associated with human production or consumption activities"

Wiedmann and Minx (2008) proposed this definition:

"The carbon footprint is a measure of the exclusive total amount of carbon dioxide emissions that is directly and indirectly caused by an activity or is accumulated over the life stages of a product"

Carbon footprint

- The carbon footprint is measured in carbon dioxide equivalent (${\rm CO_2e}$) \Rightarrow a common unit
- We have:

equivalent mass of CO_2 = mass of the gas \times gwp of the gas

- Examples (IPCC, AR5, 2013):
 - 1 kg of methane corresponds to 28 kg of CO₂
 - 1 kg of nitrous oxide corresponds to 265 kg of CO₂
- The carbon footprint is equal to:

$$m = \sum_{i=1}^{n} m_i \cdot \mathrm{gwp}_i$$

 \bullet The units are: kgCO₂e, tCO₂e, ktCO₂e, MtCO₂e and GtCO₂e

Carbon footprint

Example #1

We consider a company A that emits 3017 tonnes of CO_2 , 10 tonnes of CH_4 and 1.8 tonnes of N_2O . For the company B, the GHG emissions are respectively equal to 2302 tonnes of CO_2 , 32 tonnes of CH_4 and 3.0 tonnes of N_2O .

The mass of CO_2 equivalent for companies A and B is equal to:

$$m_A = 3017 \times 1 + 10 \times 28 + 1.8 \times 265 = 3774 \text{ tCO}_2\text{e}$$

and:

$$m_B = 2302 \times 1 + 32 \times 28 + 3.0 \times 265 = 3993 \text{ tCO}_2\text{e}$$

- According to IPCC (2007), GWP is defined as "the cumulative radiative forcing, both direct and indirect effects, over a specified time horizon resulting from the emission of a unit mass of gas related to some reference gas".
- Each gas differs in their capacity to absorb the energy (radiative efficiency) and how long it stays in the atmosphere (lifetime)
- The impact of a gas on global warming depends on the combination of radiative efficiency and lifetime

The mathematics of GWP

• The mathematical definition of the global warming potential is:

$$\operatorname{gwp}_{i}\left(t\right) = \frac{\operatorname{Agwp}_{i}\left(t\right)}{\operatorname{Agwp}_{0}\left(t\right)} = \frac{\int_{0}^{t} RF_{i}\left(s\right) \, \mathrm{d}s}{\int_{0}^{t} RF_{0}\left(s\right) \, \mathrm{d}s} = \frac{\int_{0}^{t} A_{i}\left(s\right) \mathbf{S}_{i}\left(s\right) \, \mathrm{d}s}{\int_{0}^{t} A_{0}\left(s\right) \mathbf{S}_{0}\left(s\right) \, \mathrm{d}s}$$

where $A_i(t)$ is the radiative efficiency value of gas i, $\mathbf{S}_i(t)$ is the decay function and i = 0 is the reference gas (e.g, CO_2)

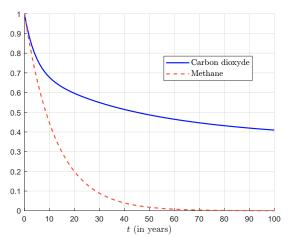
• We assume that:

$$\mathbf{S}_{i}\left(t\right) = \sum\nolimits_{i=1}^{m} a_{i,j} e^{-\lambda_{i,j}t}$$

where $\sum_{j=1}^{m} a_{i,j} = 1$

• We obtain:

$$\operatorname{gwp}_{i}(t) = \frac{A_{i} \sum_{j=1}^{m} a_{i,j} \lambda_{i,j}^{-1} \left(1 - e^{-\lambda_{i,j}t}\right)}{A_{0} \sum_{j=1}^{m} a_{0,j} \lambda_{0,j}^{-1} \left(1 - e^{-\lambda_{0,j}t}\right)}$$


- Carbon dioxide
 - $A_{\text{CO}_2} = 1.76 \times 10^{-18}$
 - The impulse response function is:

$$\mathbf{S}_{\text{CO}_2}(t) = 0.2173 + \\ 0.2240 \cdot \exp\left(-\frac{t}{394.4}\right) + \\ 0.2824 \cdot \exp\left(-\frac{t}{36.54}\right) + \\ 0.2763 \cdot \exp\left(-\frac{t}{4.304}\right)$$

- Methane
 - $A_{\rm CH_A} = 2.11 \times 10^{-16}$
 - The impulse response function is:

$$\mathbf{S}_{\mathrm{CH_4}}\left(t
ight) = \exp\left(-rac{t}{12.4}
ight)$$

Figure 1: Fraction of gas remaining in the atmosphere

Source: Kleinberg(2020) & Author's calculations.

Remark

- The decay function is a survival function
- The density function is equal to $f_i(t) = -\partial_t \mathbf{S}_i(t)$
- Let τ_i be random time that the gas remains in the atmosphere
- In the case of the exponential distribution $\mathcal{E}(\lambda)$, we have

$$\mathbf{S}_{i}(t) = e^{-\lambda t}$$

$$f_{i}(t) = \lambda e^{-\lambda t}$$

$$\mathbb{E}[\tau_{i}] = \frac{1}{\lambda}$$

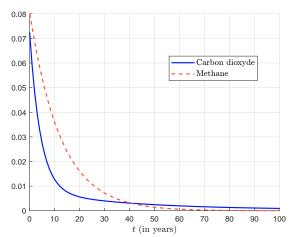
 \Rightarrow The survival function of the CH4 gas is exponential with a mean time equal to 12.4 years ($\lambda=1/12.4)$

• In the general case, the probability density function is equal to:

$$f_i(t) = -\partial_t \mathbf{S}_i(t) = \sum_{j=1}^m a_{i,j} \lambda_{i,j} e^{-\lambda_{i,j} t}$$

• The mean time \mathcal{T}_i is given by:

$$\mathcal{T}_{i} := \mathbb{E}\left[\tau_{i}\right] = \int_{0}^{\infty} s f_{i}\left(s\right) ds$$


$$= \sum_{j=1}^{m} a_{i,j} \int_{0}^{\infty} \lambda_{i,j} s e^{-\lambda_{i,j} s} ds$$

$$= \sum_{j=1}^{m} \frac{a_{i,j}}{\lambda_{i,j}}$$

Remark

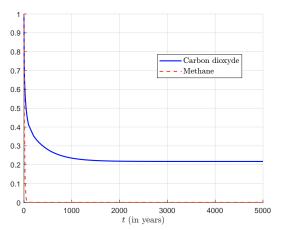
We have $\mathcal{T}_{CH_A}=12.4$ years, but $\mathcal{T}_{CO_2}=\infty$

Figure 2: Probability density function of the random time

Source: Kleinberg (2020) & Author's calculations.

Remark

- f_i (t) is an exponential mixture distribution where m is the number of mixture components
- $\mathcal{E}\left(\lambda_{i,j}\right)$ is the probability distribution associated with the j^{th} component
- $a_{i,j}$ is the mixture weight of the j^{th} component


We have:

$$\mathcal{T}_i = \mathbb{E}\left[\tau_i\right] = \sum_{i=1}^m \mathsf{a}_{i,j} \mathbb{E}\left[\tau_{i,j}\right] = \sum_{i=1}^m \mathsf{a}_{i,j} \mathcal{T}_{i,j}$$

For the CO_2 gas, the exponential mixture distribution is defined by the following parameters:

j	1	2	3	4
$\overline{a_{i,j}}$	0.2173	0.2240	0.2824	0.2763
$\lambda_{i,j}~(\times 10^3)$	0.00	2.535	27.367	232.342
$\mathcal{T}_{i,j}$ (in years)	∞	394.4	36.54	4.304

Figure 3: Survival function

We have $S_{CO_2}(\infty) = 21.73\%!$

Figure 4: Absolute global warming potential

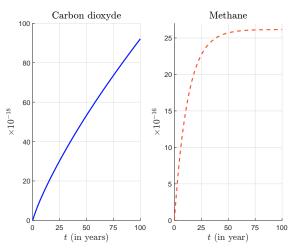
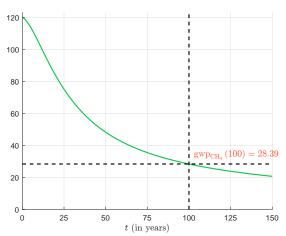



Figure 5: Global warming potential for methane

Source: Kleinberg (2020) & Author's calculations.

We have:

- Agwp_{CO₂} (∞) = ∞
- $Agwp_{CH_4}(\infty) = A_{CH_4} \times \mathcal{T}_{CH_4} \propto 2.11 \times 12.4 = 26.164$
- The instantaneous global warming potential of the methane is equal to:

$$\operatorname{gwp}_{\operatorname{CH}_4}(0) = \frac{A_{\operatorname{CH}_4}}{A_{\operatorname{CO}_2}} = \frac{2.11 \times 10^{-16}}{1.76 \times 10^{-18}} \approx 119.9$$

• After 100 years, we obtain:

$$\mathrm{gwp}_{\mathrm{CH}_4}\,(100) = 28.3853$$

This is the IPCC value!

- Because of the persistant regime of the carbon dioxyde, we have $\mathrm{gwp}_{\mathrm{CH}_{\bullet}}(\infty)=0$
- We have:

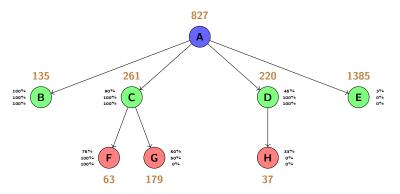
$$\operatorname{gwp}_{\operatorname{CH}_{\bullet}}(t) \leq 1 \Leftrightarrow t \geq 6382 \text{ years}$$

Table 1: GWP values for 100-year time horizon

Name	Formula	AR2	AR4	AR5	AR6
Carbon dioxide	CO ₂	1	1	1	1
Methane	CH_4	21	25	28	27.9
Nitrous oxide	N_2O	310	298	265	273
Sulphur hexafluoride	SF_6	23 900	22800	23 500	25 200
11	CHF ₃	11700	14800	12 400	14 600
Hydrofluorocarbons	CH_2F_2	650	675	677	771
(HFC)	Etc.				
Perfluorocarbons	CF_4	6 500	7 3 9 0	6 6 3 0	7 380
	C_2F_6	9 200	12 200	11 100	12 400
(PFC)	Etc.				

Two approaches:

- Equity share approach
- Control approach
 - Financial control
 - Operational control


Table 2: Percent of reported GHG emissions under each consolidation method

Accounting categories	GHG accouting based on					
	equity share	financial control	operational control			
Wholly owned asset	100%	100%	100%			
Group companies/subsidiaries	OWNR	100%	100%			
Associated/affiliated companies	OWNR	0%	0%/100%			
Joint ventures/partnerships	OWNR	OWNR	0%/100%			
Fixed asset investments	0%	0%	0%			
Franchises	0WNR	100%	100%			

Source: GHG Protocol (2004, Table 1, page 19).

OWNR = Ownership ratio

Figure 6: Defining the organizational boundary of company A

For each company, the brown number corresponds to the carbon emissions in $t{\rm CO}_2{\rm e}$. The three figures at the right or left of the node corresponds respectively to the equity share, the financial control and the operational control

Equity share approach:

$$\begin{array}{lll} \pmb{\mathcal{CE}_A} & = & 827 + 100\% \times 135 + 90\% \times 261 + 45\% \times 220 + 0\% \times 1385 + \\ & & 90\% \times 75\% \times 63 + 90\% \times 50\% \times 179 + 45\% \times 33\% \times 37 \\ & = & 1424.4 \, \mathrm{tCO_2e} \end{array}$$

Financial control approach:

$$\mathcal{CE}_A = 827 + 100\% \times 135 + 100\% \times 261 + 100\% \times 220 + 0\% \times 1385 + 100\% \times 100\% \times 63 + 100\% \times 50\% \times 179 + 100\% \times 0\% \times 37$$

$$= 1595.50 \text{ tCO}_2\text{e}$$

Operational control approach:

$$\mathcal{CE}_A = 827 + 100\% \times 135 + 100\% \times 261 + 100\% \times 220 + 0\% \times 1385 + 100\% \times 100\% \times 63 + 100\% \times 0\% \times 179 + 100\% \times 0\% \times 37$$

$$= 1506.00 \text{ tCO}_{2}\text{e}$$

Scope 1, 2 and 3 of carbon emissions

GHG Protocol (www.ghgprotocol.org/corporate-standard)

- Scope 1 denotes direct GHG emissions occurring from sources that are owned and controlled by the issuer.
- Scope 2 corresponds to the indirect GHG emissions from the consumption of purchased electricity, heat or steam.
- Scope 3 are other indirect emissions (not included in scope 2) of the entire value chain. They can be divided into two main categories^a:
 - Upstream scope 3 emissions are defined as indirect carbon emissions related to purchased goods and services.
 - Downstream scope 3 emissions are defined as indirect carbon emissions related to sold goods and services.

^aThe upstream value chain includes all activities related to the suppliers whereas the downstream value chain refers to post-manufacturing activities.

Scope 1, 2 and 3 of carbon emissions

Table 3: Examples of CDP reporting (\mathcal{CE} in tCO_2e , year 2020)

Scope	Category	Sub-category	Amazon	Danone	ENEL	Pfizer	Netflix	Walmart
1			9 623 138	668 354	45 255 000	654 460	30 883	7 236 499
2	Location-base	d (2a)	9 019 786	864 710	4 990 685	551 577	28 585	11 031 800
2	Market-based	(2b)	5 265 089	479 210	7 855 954	542 521	141	9 190 337
		Purchased goods and services	16 683 423	19 920 918	i	2 5 2 6 5 3 7	765 208	130 200 000
		Capital goods	13 202 065	!	!	191 894	116 366	645 328
		Fuel and energy related activities	1 248 847	283 764	1 061 268	203 093	12 287	3 327 874
	Upstream	Upstream transportation and distribution	8 563 695	321 558	112 358	723 558	64 693	342 577
	Opstream	Waste generated in operations	16 628	152 789	3161	14 940	i	869 927
		Business travel	313 043	!	!	35 128	41 439	37 439
		Employee commuting	306 033		! !	48 414	19116	3 500 000
3		Upstream leased assets	1 223 903	!	!	30 522	131	!
		Downstream transportation and distribution	⁻ 2 7 85 676 ⁻	Ī 627 090 T		7 295	;	5099
		Processing of sold products		!	!	!	!	!
		Use of sold products	1 426 543	1 885 548	46 524 860	i	952	32 211 000
	Downstream	End-of-life treatment of sold products	0	782 649	!	!	l .	130
		Downstream leased assets		! !	! !	i	349	130 000
		Franchises		1	1	1	1	l .
		Investments		! !	! !	36 839	! !	! !
	Scope 1 + 2a		18 642 924	1 533 064	50 245 685	1 206 037	59 468	18 268 299
	Scope 1 + 2b		14888227	1 147 564	53 110 954	1196981	31 024	16 426 836
	Scope 3 upstream		41 557 637	20 679 029	1176787	3774086	1019240	138 923 145
Total	Scope 3 down	stream	4 212 219	4 295 287	46 524 860	44 134	1 301	32 346 229
	Scope 3		45 769 856				1 020 541	171 269 374
	Scope 1 + 2a	+ 3	64 412 780	26 507 380	97 947 332	5 024 257	1 080 009	189 537 673
	Scope 1 + 2b	+ 3	60 658 083	26 121 880	100 812 601	5015201	1051565	187 696 210

Source: CDP database as of 01/07/2022 & Author's computation.

Scope 1, 2 and 3 of carbon emissions

CDP questionnaire for corporates

- www.cdp.net/en/guidance/guidance-for-companies
- HTML, Word and PDF formats
- 129 pages and 16 sections: \mathcal{SC}_1 (§C6.1), \mathcal{SC}_2 (§C6.3) and \mathcal{SC}_3 emissions (§C6.5) emissions intensities (§C6.10)

Computation of scope 1 emissions

- We allocate the activities to the three scopes
- Then, we apply an emission factor to each activity and each gas:

$$E_{g,h} = A_h \cdot \mathcal{EF}_{g,h}$$

where A_h is the $h^{\rm th}$ activity rate (also called activity data) and $\mathcal{EF}_{g,h}$ is the emission factor for the $h^{\rm th}$ activity and the $g^{\rm th}$ gas

- A_h can be measured in volume, weight, distance, duration, surface, etc.
- $E_{g,h}$ is expressed in tonne
- $oldsymbol{\mathcal{E}}_{\mathcal{F}_g,h}$ is measured in tonne per activity unit
- For each gas, we calculate the total emissions:

$$E_{g} = \sum_{h=1}^{n_{A}} E_{g,h} = \sum_{h=1}^{n_{A}} A_{h} \cdot \mathcal{EF}_{g,h}$$

• Finally, we estimate the carbon emissions by applying the right GWP:

$$\mathcal{CE} = \sum_{g=1}^{n_G} \operatorname{gwp}_g \cdot E_g$$

Tier methods

The choice of data inputs is codified by IPCC (2019):

- Tier 1 methods use global default emission factors;
- Tier 2 methods use country-level or region-specific emission factors;
- Tier 3 methods use directly monitored or site-specific emission factors.
- ⇒ IPCC Emission Factor Database, National Inventory Reports (NIRs), country emission factor databases, etc.

France

- The database of emission factors is managed by ADEME (Agence de l'Environnement et de la Maîtrise de l'Energie)
- It contains about 5 300 validated emission factors
- https://bilans-ges.ademe.fr

Reporting of scope 1 emissions

GHG inventory document of Enel (2021)

• Scope 1 emissions expressed in ktCO₂e:

	CO_2	CH₄	N_2O	NF_3	SF_6	HFCs	Total
y power	50 643.54	385.25	98.14	0.014	31.15	10.22	51 168.32
n							
y distri-	208.33	0.24	0.45		111.62		320.64
te	79.87	0.22	1.24				81.30
	50 931.72	385.71	99.83	0.014	142.77	10.22	51 750.26
	y power in y distri- te	y power 50 643.54 y distri- 208.33 te 79.87	y power 50 643.54 385.25 n y distri- 208.33 0.24 te 79.87 0.22	y power 50 643.54 385.25 98.14 n y distri- 208.33 0.24 0.45 te 79.87 0.22 1.24	y power 50 643.54 385.25 98.14 0.014 n y distri- 208.33 0.24 0.45 te 79.87 0.22 1.24	y power 50 643.54 385.25 98.14 0.014 31.15 n y distri- 208.33 0.24 0.45 111.62 te 79.87 0.22 1.24	y power 50 643.54 385.25 98.14 0.014 31.15 10.22 n y distri- 208.33 0.24 0.45 111.62 te 79.87 0.22 1.24

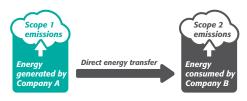
ullet The scope 1 emissions of Enel is equal to 51.75 ${
m MtCO_2e}$

Table 4: Examples of emission factors (EFDB, IPCC)

Category	Description	Gas	Region	Value	Unit
	Integrated facility	CO ₂	Canada	1.6	t/tonne
Iron and steel production	Electrode consumption from steel produced in electric arc furnaces	CO_2	Global	5.0	kg/tonne
	Steel processing (rolling mills)	N_2O	Global	40	g/tonne
Manufacture of solid fuels	Metallurgical coke production	$\overline{CO_2}$	Global	0.56	t/tonne
Manufacture of solid fuels	ivietaliurgical coke production		Global	0.1	g/tonne
	Crude oil	_CO ₂ _	Global	20	tCarbon/TeraJoule
Fuel combustion activities	Natural gas	CO_2	Global	15.3	tCarbon/TeraJoule
	Ethane	CO_2	Global	16.8	tCarbon/TeraJoule
Integrated circuit or semicon-	Semiconductor manufacturing (silicon)	CF ₄	Global	0.9	kg/m ²
ductor					
Cement production	Cement production	_CO ₂ _	Global	0.4985	t/tonne
	Enteric fermentation	CH ₄	Global	18	kg/head/year
Horses	Manure management (annual average temperature is less than	CH ₄	Developed countries	1.4	kg/head/year
	15oC)				
	Manure management (annual average temperature is between	CH_4	Developed countries	2.1	kg/head/year
	15oC and 25oc)				
Buffalo	Enteric fermentation	CH₄	Global	55	kg/head/year
	Manure management (annual average temperature is less than	CH ₄	Developed countries	0.078	kg/head/year
B: It	15oC)				
Poultry	Manure management (annual average temperature is between	CH ₄	Developed countries	0.117	kg/head/year
	15oC and 25oc)				-
	Manure management (annual average temperature is greater than	CH_4	Developed countries	0.157	kg/head/year
	25oC)				
	Manure management (annual average temperature is greater than	CH_4	Developing countries	0.023	kg/head/year
	25oC)		-		

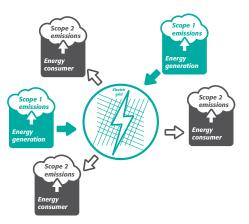
Source: EFDB, www.ipcc-nggip.iges.or.jp/EFDB.

Definition


Scope 2 is "an indirect emission category that includes GHG emissions from the purchased or acquired electricity, steam, heat, or cooling consumed" (GHG Protocol, 2015):

- Electricity
 People use electricity for operating machines, lighting, heating, cooling, electric vehicle charging, computers, electronics, public transportation systems, etc.
- Steam Industries use steam for mechanical work, heating, propulsion, driven turbines in electric power plants, etc.
- Heat
 Buildings use heat to control inside temperature and heat water, while the
 industrial sector uses heat for washing, cooking, sterilizing, drying, etc. Heat
 may be produced from electricity, solar heat processes or thermal combustion.
- Cooling
 It is produced from electricity or though the processes of forced air, conduction, convection, etc.

Figure 7: Energy production and consumption from owned/operated generation


Figure 8: Direct line energy transfer

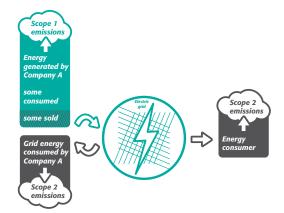

Source: GHG Protocol (2015, Figures 5.1 and 5.2, pages 35-36).

Figure 9: Electricity production on a grid

Source: GHG Protocol (2015, Figure 5.4, page 38).

Figure 10: Facility consuming both energy generated on-site and purchased from the grid

Source: GHG Protocol (2015, Figure 5.3, page 37).

Computation of scope 2 emissions

Scope 2 emissions are calculated using activity data and emission factors expressed in MWh and $t{\rm CO}_2{\rm e}/{\rm MWh}$:

$$CE = \sum_{s} A_{s} \cdot \mathcal{EF}_{s}$$

where:

- $oldsymbol{A}_s$ is the amount of purchased electricity for the energy generation source s
- \mathcal{EF}_s is the emission factor of the source s

Computation of scope 2 emissions

Example #2

We consider a company, whose electricity consumption is equal to 2000 MWh per year. The electricity comes from two sources: 60% from a direct line with an electricity supplier (source S_1) and 40% from the country grid (source S_2). The emission factors are respectively equal to 200 and 350 ${\rm gCO}_2{\rm e}/{\rm kWh}$.

Computation of scope 2 emissions

- The electricity consumption from source S_1 is equal to $60\% \times 2\,000 = 1\,200$ MWh or $1\,200\,000$ kWh
- We deduce that the carbon emissions from this source is:

$$\mathcal{CE}\left(S_{1}\right)=\left(1.2\times10^{6}\right)\times200=240\times10^{6}~\mathrm{gCO_{2}e}=240~\mathrm{tCO_{2}e}$$

• For the second source, we obtain:

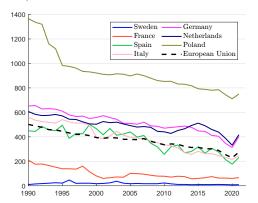
$$\mathcal{CE}\left(S_{2}\right)=\left(0.8\times10^{6}\right)\times350=280\times10^{6}~\mathrm{gCO_{2}e}=280~\mathrm{tCO_{2}e}$$

 \bullet We deduce that the Scope 2 carbon emissions of this company is equal to 520 $\rm tCO_2 e$

Scope 2 emissions accounting

Two main methods:

Location-based method


In this approach, the company uses the average emission factor of the region or the country. For instance, if the electricity consumption is located in France, the company can use the emission intensity of the French energy mix;

Market-based method

This approach reflects the GHG emissions from the electricity that the company has chosen in the market. This means that the scope 2 carbon emissions will depend on the scope 1 carbon intensity of the electricity supplier

Scope 2 emission factors

Figure 11: Emission factor in gCO_2e/kWh of electricity generation (European Union, 1990 – 1992)

Source: European Environment Agency (2022), www.eea.europa.eu/data-and-maps & Author's calculations.

Scope 2 emission factors

Table 5: Emission factor in gCO₂e/kWh of electricity generation in the world

Region	\mathcal{EF} Country	\mathcal{EF} Country	$\mathcal{E}\mathcal{F}$	Country	$\mathcal{E}\mathcal{F}$
Africa	484 Australia	531 Germany	354	Portugal	183
Asia	539 Canada	128 India	637	Russia	360
Europe	280 China	544 Iran	492	Spain	169
North America	352 Costa Rica	33 Italy	226	Switzerland	47
South America	204 Cuba	575 Japan	479	United Kingdom	270
World	442 France	58 Norway	26	United States	380

Source: https://ourworldindata.org/grapher/carbon-intensity-electricity

Example #3

We consider a French bank, whose activities are mainly located in France and the Western Europe. Below, we report the energy consumption (in MWh) by country:

Belgium	125 807	France	1132261
Germany	71 890	Ireland	125 807
Italy	197 696	Luxembourg	33 069
Netherlands	18 152	Portugal	12 581
Spain	61 106	Switzerland	73 148
UK	124 010	World	37 742

- If we consider a Tier 1 approach, we can estimate the scope 2
 emissions of the bank by computing the total activity data and
 multiplying by the global emission factor
- Since we have twelve sources, we obtain:

$$A = \sum_{s=1}^{12} A_s = 125\,807 + 1\,132\,261 + \ldots + 37\,742 = 2\,013\,269$$
 MWh

and:

$$\begin{array}{rcl} {\cal CE} & = & {\it A} \cdot {\it EF}_{\it World} \\ & = & \left(2\,013,269\times10^3\right)\times442 \\ & = & 889\,864\,898\,000~{\rm gCO}_2{\rm e} \\ & = & 889.86~{\rm ktCO}_2{\rm e} \end{array}$$

• Another Tier 1 approach is to consider the emission factor of the European Union, because the rest of the world represents less than 2% of the electricity consumption. Using $\mathcal{EF}_{EU}=275$, we obtain $\mathcal{CE}=553.65~\mathrm{ktCO}_{2}\mathrm{e}$

- The third approach uses a Tier 2 method by considering the emission factor of each country
- We use the previous figures and the following emission factors:
 Belgium (143); Ireland (402); Luxembourg (68) and Netherlands (331)
- We deduce that:

$$C\mathcal{E} = \sum_{s=1}^{12} A_s \cdot \mathcal{EF}_s$$

$$= (125\,807 \times 143 + 1\,132\,261 \times 58 + \dots + 124\,010 \times 270 + 37\,742 \times 442) \times \frac{10^3}{10^9}$$

$$= 278.85 \text{ ktCO}_{2}e$$

 \Rightarrow The estimated scope 2 emissions of this bank are sensitive to the approach

Example #4

We consider a Norwegian company, whose current electricity consumption is equal to 1351 Mwh. 60% of the electricity comes from the Norwegian hydroelectricity and the GO system guarantees that this green electricity emits $1~{\rm gCO_{2}e/kWh}$.

If we assume that the remaining 40% of the electricity consumption comes from the Norwegian grid², the market based scope 2 emissions of this company are equal to:

$$\begin{array}{ll} {\cal CE} & = & \frac{10^6 \times 60\% \times 1 + 10^6 \times 40\% \times 26}{10^6} \\ & = & 11 \; {\rm ktCO_2e} \end{array}$$

²The emission factor for Norway is 26 gCO₂e/kWh.

Table 6: Emission factor in ${\rm gCO_2e/KWh}$ from electricity supply technologies (IPCC, 2014; UNECE, 2022)

Tankanlam	Characteristic		PCC	U	NECE
Technology	Characteristic	Mean	Min-Max	Mean	Min-Max
Wind	Onshore	11	7–56	12	8–16
vviiid	Offshore	12	8-35	13	13-23
Nuclear		12	3–110	6	
Hydro power		24	1-2200	11	6-147
	CSP	27	9–63	32	14–122
Solar power	Rooftop (PV)	41	26-60	22	9–83
	Utility/Ground (PV)	48	18-180	20	8-82
Geothermal		38	6–79		
Biomass	Dedicated	230	130-420		
Gas	CCS	169	90-370	130	92–221
GdS	Combined cycle	490	410-650	430	403-513
Fuel oil			510-1170	i	
Coal	CCS	$16\bar{1}$	70–290	350	190-470
Coai	PC	820	740-650	1 000	912-1095

CSP: concentrated solar power; PV: photovoltaic power; CCS: carbon capture and storage; PC: pulverized coal.

Reporting of scope 2 emissions

GHG inventory document of Enel (2021)

• The scope 2 emissions expressed in ktCO₂e are:

	Electricity purchased from the grid	Losses on the distribution grid	Total
Location-based	1 336.67	2 966.52	4 303.18
Market-based	2 351.00	4763.15	7 114.15

Location-based versus market-based scope 2 emissions

Table 7: Statistics of CDP scope 2 emissions (2020)

	$\mathcal{CE}_{\mathrm{loc}} = 0$	$\mathcal{CE}_{\mathrm{loc}} = \mathcal{CE}_{\mathrm{mkt}} = 0$	$\mathcal{CE}_{\mathrm{mkt}}=0$
Frequency	0.89%	0.39%	8.78%
	$\mathcal{CE}_{\mathrm{loc}} > \mathcal{CE}_{\mathrm{mkt}}$	$\mathcal{CE}_{\mathrm{loc}} = \mathcal{CE}_{\mathit{mkt}}$	${\cal C}{\cal E}_{ m loc} < {\cal C}{\cal E}_{ m mkt}$
Frequency	70.43%	9.48%	20.09%
Mean variation ratio	+43.89%	0.00%	-22.04%

Source: CDP database as of 01/07/2022 & Author's computation.

Scope 3 categories

Upstream

- Purchased goods and services
- Capital goods
- Fuel and energy related activities
- Upstream transportation and distribution
- Waste generated in operations
- Business travel
- Employee commuting
- Upstream leased assets
- Other upstream

Downstream

- Downstream transportation and distribution
- Processing of sold products
- Use of sold products
- End-of-life treatment of sold products
- Downstream leased assets
- Franchises
- Investments
- Other downstream

Scope 3 emissions are all the indirect emissions in the company's value chain, apart from indirect emissions which are reported in scope 2:

- Purchased goods and services (not included in categories 2-8)
 Extraction, production, and transportation of goods and services purchased or acquired by the company
- Capital goods
 Extraction, production, and transportation of capital goods purchased or acquired by the company
- Fuel- and energy-related activities (not included in scopes 1 or 2) Extraction, production, and transportation of fuels and energy purchased or acquired by the company
- Upstream transportation and distribution Transportation and distribution of products purchased by the company between the company's tier 1 suppliers and its own operations; Transportation and distribution services purchased by the company, including inbound logistics, outbound logistics (e.g., sold products), and transportation and distribution between the company's own facilities

- Waste generated in operations
 Disposal and treatment of waste generated in the company's operations
- Business travel
 Transportation of employees for business-related activities
- Employee commuting
 Transportation of employees between their homes and their work sites
- Upstream leased assets
 Operation of assets leased by the company (lessee)

company)

- Ownstream transportation and distribution Transportation and distribution of products sold by the company between the company's operations and the end consumer (if not paid for by the
- Processing of sold products
 Processing of intermediate products sold by downstream companies (e.g., manufacturers)
- Use of sold products
 End use of goods and services sold by the company
- End-of-life treatment of sold products
 Waste disposal and treatment of products sold by the company at the end of their life

- Downstream leased assets Operation of assets owned by the company (lessor) and leased to other entities
- Franchises
 Operation of franchises reported by franchisor
- Investments
 Operation of investments (including equity and debt investments and project finance)

Table 8: Scope 3 emission factors for business travel and employee commuting (United States)

Vehicle type	CO_2	CH ₄	N ₂ O	Unit
venicle type	(kg/unit)	(g/unit)	(g/unit)	Offic
Passenger car	0.332	0.0070	0.0070	vehicle-mile
Light-duty truck	0.454	0.0120	0.0090	vehicle-mile
Motorcycle	0.183	0.0700	0.0070	vehicle-mile
Intercity rail (northeast corridor)	0.058	0.0055	0.0007	passenger-mile
Intercity rail (other routes)	0.150	0.0117	0.0038	passenger-mile
Intercity rail (national average)	0.113	0.0092	0.0026	passenger-mile
Commuter rail	0.139	0.0112	0.0028	passenger-mile
Transit rail (subway, tram)	0.099	0.0084	0.0012	passenger-mile
Bus	0.056	0.0210	0.0009	passenger-mile
Air travel (short haul, < 300 miles)	0.207	0.0064	0.0066	passenger-mile
Air travel (medium haul, 300-2300 miles)	0.129	0.0006	0.0041	passenger-mile
Air travel (long haul, > 2300 miles)	0.163	0.0006	0.0052	passenger-mile

Source: US EPA (2020), Table 10, www.epa.gov, ghg-emission-factors-hub.xlsx.

These factors are intended for use in the distance-based method defined in the Scope 3 Calculation Guidance. If fuel data are available, then the fuel-based method should be used.

Table 9: Examples of monetary scope 3 emission factors

Category	S3E	ADEME	Category	S3E	ADEME
Agriculture	2 500	2 300	Air transport	1 970	1 190
Construction	810	360	Education	310	120
Financial intermediation	140	110	Health and Social Work	300	500
Hotels and restaurants	560	320	Rubber and plastics	1270	800
Telecommunications	300	170	Textiles	1 100	600

Source: Scope 3 Evaluator (S3E), https://quantis-suite.com/Scope-3-Evaluator & ADEME, https://bilans-ges.ademe.fr.

Two methods for measuring the carbon footprint of an investment portfolio:

- Financed emissions approach
- Ownership approach

Financed emissions approach

- The investor calculates the carbon emissions that are financed across both equity and debt
- EVIC is used to estimate the value of the enterprise. It is "the sum
 of the market capitalization of ordinary and preferred shares at fiscal
 year end and the book values of total debt and minorities interests"
 (TEG, 2019)
- Let W be the wealth invested in the company, the financed emissions are equal to:

$$\mathcal{CE}(W) = \frac{W}{\mathrm{EVIC}} \cdot \mathcal{CE}$$

• In the case of a portfolio (W_1, \ldots, W_n) where W_i is the wealth invested in company i, we have:

$$\mathcal{CE}\left(W
ight) = \sum_{i=1}^{n} \mathcal{CE}_{i}\left(W_{i}
ight) = \sum_{i=1}^{n} rac{W_{i}}{\mathrm{EVIC}_{i}} \cdot \mathcal{CE}_{i}$$

• $\mathcal{CE}(W)$ is expressed in tCO_2e

Carbon emissions of investment portfolios Ownership approach

- We break down the carbon emissions between the stockholders of the company
- We have:

$$\mathcal{CE}(W) = \sum_{i=1}^{n} \frac{W_i}{\text{MV}_i} \cdot \mathcal{CE}_i = \sum_{i=1}^{n} \varpi_i \cdot \mathcal{CE}_i$$

where:

- MV_i is the market value of company i
- ϖ_i is the ownership ratio of the investor

Ownership approach

- Let $W = \sum_{i=1}^{n} W_i$ be the portfolio value
- The portfolio weight of asset *i* is given by:

$$w_i = \frac{W_i}{W}$$

• We deduce that:

$$\varpi_i = \frac{W_i}{MV_i} = \frac{w_i \cdot W}{MV_i}$$

It follows that:

$$C\mathcal{E}\left(W\right) = \sum_{i=1}^{n} \frac{w_{i} \cdot W}{MV_{i}} CE_{i} = W\left(\sum_{i=1}^{n} w_{i} \cdot \frac{C\mathcal{E}_{i}}{MV_{i}}\right) = W\left(\sum_{i=1}^{n} w_{i} \cdot C\mathcal{I}_{i}^{MV}\right)$$

where $\mathcal{CI}_i^{\mathrm{MV}}$ is the market value-based carbon intensity:

$$\mathcal{C}\mathcal{I}_{i}^{\mathrm{MV}} = \frac{\mathcal{C}\mathcal{E}_{i}}{\mathrm{MV}_{i}}$$

• $\mathcal{CE}(W)$ is generally computed with W = \$1 mn and is expressed in $tCO_{2}e$ (per \$ mn invested)

Carbon emissions of investment portfolios Ownership approach

Remark

The ownership approach is valid only for equity portfolios. To compute the market value (or the total market capitalization), we use the following approximation:

$$MV = \frac{MC}{\mathcal{FP}}$$

where MC and \mathcal{FP} are the free float market capitalisation and percentage of the company.

Example #5

We consider a \$100 mn investment portfolio with the following composition: \$63.1 mn in company A, \$16.9 mn in company B and \$20.0 mn in company C. The data are the following:

laguar	Market	capitalization (in \$ bn)
Issuer	31/12/2021	31/12/2022	31/01/2023
\overline{A}	12.886	10.356	10.625
В	7.005	6.735	6.823
C	3.271	3.287	3.474

lacuar	Debt	\mathcal{FP}	\mathcal{SC}_{1-2}
Issuer	(in \$ bn)	(in %)	(in ktCO ₂ e)
A	1.112	99.8	756.144
В	0.000	39.3	23.112
С	0.458	96.7	454.460

• As of 31 January 2023, the EVIC value for company A is equal to:

$$\mathrm{EVIC}_A = \frac{10\,356}{0.998} + 1\,112 = \$11489 \; \mathsf{mn}$$

We deduce that the financed emissions are equal to:

$$\mathcal{CE}_A$$
 (\$63.1 mn) = $\frac{63.1}{11489} \times 756.144 = 4.153 \text{ ktCO}_2\text{e}$

• If we assume that the investor has no bond in the portfolio, we can use the ownership approach:

$$arpi_A = rac{63.1}{(10\,625/0.998)} = 59.2695 \; \mathsf{bps}$$

 The carbon emissions of the investment in company A is then equal to:

$$\mathcal{CE}_A$$
 (\$63.1 mn) = 59.2695 × 10⁻⁴ × 756.144 = 4.482 ktCO₂e

Finally, we obtain the following results:

	Financed emissions	Carbon emissions
Company A	4.153	4.482
Company B	0.023	0.022
Company C	2.356	2.530
Portfolio	6.532	7.034

Figure 12: 2019 carbon emissions per GICS sector in $\mathrm{GtCO}_{2}\mathrm{e}$ (scopes 1 & 2)

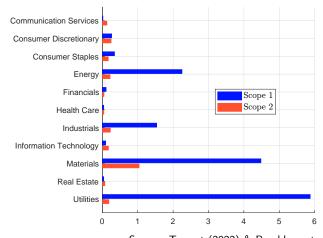


Table 10: Breakdown (in %) of carbon emissions in 2019

Sector	\mathcal{SC}_1	\mathcal{SC}_2	\mathcal{SC}_{1-2}	$\mathcal{SC}_3^{\mathrm{up}}$	$\mathcal{SC}_3^{ ext{down}}$	\mathcal{SC}_3	\mathcal{SC}_{1-3}
Communication Services	0.1	5.1	0.8	1.5	0.2	0.4	0.5
Consumer Discretionary	1.7	9.7	2.9	14.1	10.2	10.8	9.1
Consumer Staples	2.3	6.7	2.9	18.6	1.6	4.4	4.1
Energy	15.0	8.5	14.0	14.1	40.1	36.0	31.2
Financials	0.7	1.8	0.9	2.6	1.8	2.0	1.7
Health Care	0.3	1.7	0.5	2.6	0.2	0.6	0.6
Industrials	10.2	8.9	10.0	15.6	24.2	22.8	20.0
Information Technology	0.6	6.8	1.5	4.9	2.3	2.7	2.5
Materials	29.8	40.7	31.4	20.2	13.5	14.6	18.2
Real Estate	0.3	2.8	0.6	1.1	1.0	1.0	0.9
Utilities	39.0	7.3	34.4	4.7	4.8	4.8	11.2
Total (in GtCO ₂ e)	15.1	2.6	17.6	10.3	53.7	64.0	81.6

Figure 13: 2019 carbon emissions per GICS sector in $GtCO_2e$ (scopes 1, 2 & 3 upstream)

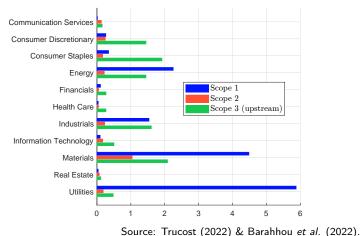


Figure 14: 2019 carbon emissions per GICS sector in GtCO₂e (scopes 1, 2 & 3)

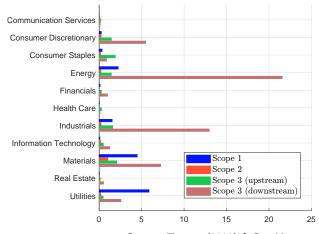


Figure 15: Sector contribution in %

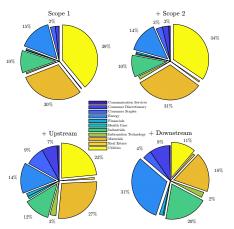



Figure 16: Histogram of 2019 carbon emissions (logarithmic scale, ${\rm tCO_2e}$)

Negative emissions, avoided emissions, and carbon offsetting

Definition

Negative emissions, also known as carbon dioxide removal or CDR, is the process of removing CO_2 from the atmosphere

There are two main categories of negative emissions:

- Natural climate solutions
 Examples include forest restoration and afforestation, reducing soil disturbance, etc.
- Negative emission technologies (NET) Examples are direct air capture with carbon storage (DACCS), bioenergy with carbon capture and storage (BECCS), enhanced weathering, ocean fertilization, etc.

Negative emissions, avoided emissions, and carbon offsetting

- Afforestation is the process of creating a new forest (planting trees in an area where there was no forest in the past), while reforestation is the process of planting trees in areas where there was forest before
- Reducing soil disturbance is the practice of minimizing disturbance to the soil surface and structure, such as using minimum tillage or planting certain crops that protect the soil
- DACCS special filters to capture CO₂ directly from the air, while the captured CO₂ is then stored underground or used in other applications

Negative emissions, avoided emissions, and carbon offsetting

- BECCS involves capturing and storing the CO₂ emissions from burning biomass, such as wood or grasses
- Enhanced weathering involves the application of finely ground minerals, such as olivine or basalt, to land surfaces. When these minerals react with atmospheric CO₂, they form harmless minerals and carbonates, trapping the carbon in a stable mineral form. The goal is to accelerate the natural process of weathering
- Ocean fertilization involves adding nutrients to the ocean, which can stimulate the growth of phytoplankton in the ocean, which then absorbs CO₂ through photosynthesis

Negative emissions, avoided emissions, and carbon offsetting

"[...] (1) Physical greenhouse gases are removed from the atmosphere. (2) The removed gases are stored out of the atmosphere in a manner intended to be permanent. (3) Upstream and downstream greenhouse gas emissions associated with the removal and storage process, such as biomass origin, energy use, gas fate, and co-product fate, are comprehensively estimated and included in the emission balance. (4) The total quantity of atmospheric greenhouse gases removed and permanently stored is greater than the total quantity of greenhouse gases emitted to the atmosphere." (Tanzer and Ramírez, 2019, page 1216).

There are two general types of DAC processes:

- DAC with liquid solvents (L-DAC)
- DAC with solid sorbents (S-DAC)

In an L-DAC process, there are four stages: absorption, regeneration, purification and separation:

$$\begin{array}{cccc} 2 \operatorname{KOH} + \operatorname{CO}_2 & \longrightarrow & \operatorname{H}_2\operatorname{O} + \operatorname{K}_2\operatorname{CO}_3 \\ & \operatorname{CaO} + \operatorname{H}_2\operatorname{O} & \longrightarrow & \operatorname{Ca}\left(\operatorname{OH}\right)_2 \\ \operatorname{K}_2\operatorname{CO}_3 + \operatorname{Ca}\left(\operatorname{OH}\right)_2 & \longrightarrow & 2\operatorname{KOH} + \operatorname{CaCO}_3 \\ & \operatorname{CaCO}_3 & \longrightarrow & \operatorname{CaO} + \operatorname{CO}_2 \end{array}$$

The goal is to use the liquid solvent ${\rm KOH}$ to react with atmospheric carbon dioxide ${\rm CO}_2$ to produce pure ${\rm CO}_2$ and calcium oxide ${\rm CaO}$

In an S-DAC process, solid materials or sorbents, such as porous polymers or metal-organic frameworks, are used to adsorb CO₂

- The costs associated with DAC technology include the initial investment to build the DAC system (e.g., air contractor, causticizer, calciner, and slaker), the price of solvents and sorbents, the electricity needs to perform the chemical reactions, and the cost of storage
- The current price of removing a tonne of CO₂ is around \$1000
- The carbon efficiency of the best DAC plans is less than 70%

An example of DAC companies: Climeworks

Climeworks (https://climeworks.com) is a Swiss company founded in 2009 as a spin-off from ETH Zurich. It specializes in DAC technology and has established itself as a pioneer in this field with two other companies: Carbon Engineering (Canada) and Global Thermostat (USA). In September 2021, Climeworks inaugurates the world's first large-scale direct air capture and storage plant "Orca" in Iceland, with a capacity to capture 4000 tonnes of CO₂ per year. The storage of CO₂ is carried out by the company Carbfix, which injects it deep underground, where it mineralizes and turns into stone. In June 2022. Climeworks announces a second, newest and largest direct air capture and storage facility, "Mammoth", also in Iceland. It will have a nominal CO₂ capture capacity of up to 36 000 tonnes per year when fully operational.

Avoided emissions

- Avoided emissions often incorrectly referred to as Scope 4 emissions
- This is the difference between the total, attributional, life-cycle GHG inventories of a company's product (the assessed product) and an alternative (or reference) product that provides an equivalent function:

$$\mathcal{AE} = \mathcal{CE} \left(\text{reference product} \right) - \mathcal{CE} \left(\text{assessed product} \right)$$

ullet Avoided emissions can be positive $(\mathcal{AE} \geq 0)$ or negative $(\mathcal{AE} < 0)$

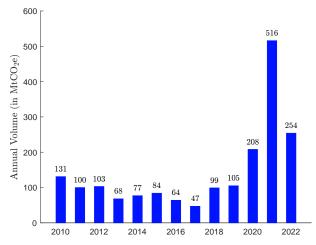
Avoided emissions

Electric car

- An electric car emits CO₂, especially when we consider the life cycle
 of the batteries, but electric cars do not emit greenhouse gases from
 burning gasoline
- The reference product is the gasoline-powered car
- The assessed product is the electric car
- There are two issues in calculating avoided emissions:
 - which car should we choose to represent the gasoline car or the reference product?
 - what is the use of the electric car?
- The avoided emissions depend on many factors, such as the carbon intensity of the electricity, recycling assumptions, etc.

Carbon credits

Cap-and-trade systems


These systems place a limit on the total amount of GHG emissions that can be released from a given region or industry. Companies are allocated a certain number of carbon credits (emission allowances) and can buy or sell credits to meet their emissions targets. These government-regulated schemes make up the compliance carbon market.

Voluntary carbon markets

These markets are not regulated by the government, and companies can voluntarily buy carbon credits to offset their emissions. Voluntary carbon markets are often used to offset emissions from activities not covered by cap-and-trade systems. In this case, the avoided emissions from a carbon offset (e.g., through the use of negative emission technologies) must be counted on the balance sheet of the buyer, not the seller, who is the developer of the project.

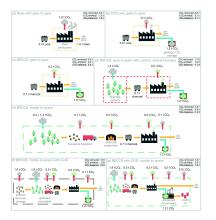
Carbon credits

Figure 17: Voluntary carbon market size by volume of traded carbon credits

Source: Ecosystem Marketplace (2023, Figure 2, page 8).

Efficiency of carbon dioxide removal

$$\eta\left(t
ight) = rac{\mathrm{CO_{2}^{stored}}\left(t
ight) - \mathrm{CO_{2}^{leaked}}\left(t
ight)}{\mathrm{CO_{2}^{stored}}\left(t
ight)}$$


Table 11: Summary of key features for each CDR pathway

CDR	η (100)	η (1000)	Timing	Permanence
Afforestation	63 to 99%	31 to 95%	Decades	Very low
Reforestation	63 to 99%	31 to 95%	Decades	Very low
BECCS	52 to 87%	78 to 87%	Immediate to decades	High/very high
Biochar	20 to 39%	-3 to $5%$	Immediate	Low/very low
DACCS	-5 to $90%$	-5 to $90%$	Immediate	Very high
Enhanced weathering	17 to 92%	51 to 92%	Immediate to decades	High/very high

Source: Chiquier et al. (2022, Table 1, page 4400).

Efficiency of carbon dioxide removal

Figure 18: Perceived CO_2 emissions of a simplified steel production system when viewed from different system boundaries

Source: Tanzer and Ramírez (2019, Figure 2, page 1214).

Carbon intensity

- Carbon emissions = absolute carbon footprint in an absolute value
- Carbon intensity = relative carbon footprint

⇒ we normalize the carbon emissions by a size or activity unit

Carbon intensity

We can measure the carbon footprint of:

- countries by tCO₂e per capita
- watching television by CO₂e emissions per viewer-hour
- washing machines by kgCO2e per wash
- ullet cars by $kgCO_2e$ per kilometer driven
- companies by ktCO2e per \$1 mn revenue
- etc.

Physical intensity ratios

Product carbon footprint (PCF)

- The product carbon footprint measures the relative carbon emissions of a product throughout its life cycle
- Life cycle assessment (LCA), distinguishes two methods:
 - Cradle-to-gate refers to the carbon footprint of a product from the moment it is produced (including the extraction of raw materials) to the moment it enters the store
 - Cradle-to-grave covers the entire life cycle of a product, including the use-phase and recycling

Physical intensity ratios

Table 12: Examples of product carbon footprint (in kgCO₂e per unit)

Product	Category	Cradle-to-gate	Cradle-to-grave
Screen	21.5 inches	222	236
	23.8 inches	248	265
Computer	Laptop	156	169
	Desktop	169	189
	High performance	295	394
Smartphone	Classical	16	16
	5 inches	33	32
Oven	Built-in electric	187	319
	Professional (combi steamer)	734	12 676
Washing machine	Capacity 5kg	248	468
	Capacity 7kg	275	539
Shirt	Coton		₁₃
	Viscose	9	12
Balloon	Football	3.4	5.1
	Basket-ball	3.6	5.9

Source: Lhotellier et al (2018, Annex 4, pages 212-215)

Physical intensity ratios

Corporate carbon footprint (CCF)

- Extension of the PCF to companies
- The CCF of a cement manufacturer is measured by the amount of GHG emissions per tonne of cement
- The CCF of airlines is measured by the amount of GHG emissions per RPK (revenue passenger kilometers, which is calculated by multiplying the number of paying passengers by the distance traveled)

Sector	Unit	Description
Transport sector (aviation)	CO ₂ e/RPK	Revenue passenger kilometers
Transport sector (shipping)	CO ₂ e/RTK	Revenue tonne kilometers
Industry (cement)	CO ₂ e/t cement	Tonne of cement
Industry (steel)	CO ₂ e/t steel	Tonne of steel
Electricity	CO ₂ e/MWh	Megawatt hour
Buildings	CO ₂ e/SQM	Square meter
<u> </u>		

Monetary intensity ratios

Problem

- How to aggregate carbon footprint?
- Portfolio managers use monetary intensity ratios, which are defined as:

$$CI = \frac{CE}{Y}$$

where \mathcal{CE} is the company's carbon emissions and Y is a monetary variable measuring its activity

Monetary intensity ratios

For instance, we can use revenues, sales, etc. to normalize carbon emissions:

Revenue
$$\mathcal{C}\mathcal{I}^{\mathrm{Revenue}} = \frac{\mathcal{C}\mathcal{E}}{\mathrm{Revenue}}$$
 $\mathcal{C}\mathcal{I}^{\mathrm{Sales}} = \frac{\mathcal{C}\mathcal{E}}{\mathrm{Sales}}$ $\mathcal{C}\mathcal{I}^{\mathrm{EVIC}} = \frac{\mathcal{C}\mathcal{E}}{\mathrm{EVIC}}$ $\mathcal{C}\mathcal{I}^{\mathrm{MV}} = \frac{\mathcal{C}\mathcal{E}}{\mathrm{MV}}$

Remark

The previous carbon emission metrics based on EVIC and market value can be viewed as carbon intensity metrics

Additivity property of \mathcal{CI}

 If we consider the EVIC-based approach, the carbon intensity of the portfolio is given by:

$$C\mathcal{I}^{\text{EVIC}}(w) = \frac{C\mathcal{E}^{\text{EVIC}}(W)}{W}$$

$$= \frac{1}{W} \sum_{i=1}^{n} \frac{W_{i}}{\text{EVIC}_{i}} \cdot C\mathcal{E}_{i}$$

$$= \sum_{i=1}^{n} \frac{W_{i}}{W} \cdot \frac{C\mathcal{E}_{i}}{\text{EVIC}_{i}}$$

$$= \sum_{i=1}^{n} w_{i} \cdot C\mathcal{I}_{i}^{\text{EVIC}}$$

where $w = (w_1, \dots, w_n)$ is the vector of portfolio weights

• In a similar way, we obtain:

$$\mathcal{CI}^{ ext{MV}}\left(w
ight) = \sum_{i=1}^{n} w_{i} \cdot \mathcal{CI}_{i}^{ ext{MV}}$$

Non-additivity property of \mathcal{CI}

- We consider the revenue-based carbon intensity (also called the economic carbon intensity)
- The carbon intensity of the portfolio is:

$$\mathcal{CI}^{ ext{Revenue}}\left(w
ight) = rac{\mathcal{CE}\left(w
ight)}{Y\left(w
ight)}$$

where:

• CE(w) measures the carbon emissions of the portfolio:

$$C\mathcal{E}(w) = \sum_{i=1}^{n} W_{i} \cdot \frac{C\mathcal{E}_{i}}{MV_{i}} = W \sum_{i=1}^{n} \frac{w_{i}}{MV_{i}} \cdot C\mathcal{E}_{i}$$

• Y(w) is the total revenue of the portfolio:

$$Y(w) = \sum_{i=1}^{n} W_i \cdot \frac{Y_i}{MV_i} = W \sum_{i=1}^{n} \frac{w_i}{MV_i} \cdot Y_i$$

Non-additivity property of \mathcal{CI}

• We deduce that:

$$\mathcal{CI}^{ ext{Revenue}}\left(w
ight) = rac{\sum_{i=1}^{n} rac{W_{i}}{ ext{MV}_{i}} \cdot \mathcal{CE}_{i}}{\sum_{i=1}^{n} rac{W_{i}}{ ext{MV}_{i}} \cdot Y_{i}} = \sum_{i=1}^{n} w_{i} \cdot \omega_{i} \cdot \mathcal{CI}_{i}^{ ext{Revenue}}$$

where ω_i is the ratio between the revenue per market value of company i and the weighted average revenue per market value of the portfolio:

$$\omega_i = \frac{\frac{Y_i}{\text{MV}_i}}{\sum_{k=1}^n w_k \cdot \frac{Y_k}{\text{MV}_k}}$$

• We conclude that:

$$\mathcal{CI}^{ ext{Revenue}}(w)
eq \sum_{i=1}^{n} w_i \cdot \mathcal{CI}_i^{ ext{Revenue}}$$

WACI

In order to avoid the previous problem, we generally use the weighted average carbon intensity (WACI) of the portfolio:

$$\mathcal{CI}^{ ext{Revenue}}(w) = \sum_{i=1}^{n} w_i \cdot \mathcal{CI}_i^{ ext{Revenue}}$$

This method is the standard approach in portfolio management

Additivity property of \mathcal{CI}

Carbon intensity is always additive when we consider a given issuer:

$$\begin{array}{lcl} \mathcal{CI}_{i}(\mathcal{SC}_{1-3}) & = & \frac{\mathcal{CE}_{i}(\mathcal{SC}_{1}) + \mathcal{CE}_{i}(\mathcal{SC}_{2}) + \mathcal{CE}_{i}(\mathcal{SC}_{3})}{Y_{i}} \\ & = & \mathcal{CI}_{i}(\mathcal{SC}_{1}) + \mathcal{CI}_{i}(\mathcal{SC}_{2}) + \mathcal{CI}_{i}(\mathcal{SC}_{3}) \end{array}$$

Illustration

Example #6

We assume that $\mathcal{CE}_1 = 5 \times 10^6 \ \mathrm{CO}_2\mathrm{e}$, $Y_1 = \$0.2 \times 10^6$, $\mathrm{MV}_1 = \$10 \times 10^6$, $\mathcal{CE}_2 = 50 \times 10^6 \ \mathrm{CO}_2\mathrm{e}$, $Y_2 = \$4 \times 10^6$ and $\mathrm{MV}_2 = \$10 \times 10^6$. We invest W = \$10 mn.

Illustration

• We deduce that:

$$\mathcal{CI}_1 = \frac{5 \times 10^6}{0.2 \times 10^6} = 25.0 \text{ tCO}_2\text{e}/\$ \text{ mn}$$

and

$$\mathcal{CI}_2 = 12.5 \text{ tCO}_2\text{e}/\$ \text{ mn}$$

• We have:

$$\begin{cases} \mathcal{CE}(w) = W\left(w_1 \frac{\mathcal{CE}_1}{\text{MV}_1} + w_2 \frac{\mathcal{CE}_2}{\text{MV}_2}\right) \\ Y(w) = W\left(w_1 \frac{Y_1}{\text{MV}_1} + w_2 \frac{Y_2}{\text{MV}_2}\right) \\ \mathcal{CI}(w) = w_1 \mathcal{CI}_1 + w_2 \mathcal{CI}_2 \end{cases}$$

Illustration

• We obtain the following results:

		CE(w)	Y(w)	CE(w)	CT(w)	
w_1	W_2	$(\times 10^6 \text{ CO}_2\text{e})$	$(\times \$ 10^{6})$	$\overline{Y(w)}$	$\mathcal{CI}(w)$	
0%	100%	50.00	4.00	12.50	12.50	
10%	90%	45.50	3.62	12.57	13.75	
20%	80%	41.00	3.24	12.65	15.00	
30%	70%	36.50	2.86	12.76	16.25	
50%	50%	27.50	2.10	13.10	18.75	
70%	30%	18.50	1.34	13.81	21.25	
80%	20%	14.00	0.96	14.58	22.50	
90%	10%	9.50	0.58	16.38	23.75	
100%	0%	5.00	0.20	25.00	25.00	

 We notice that the weighted average carbon intensity can be very different than the economic carbon intensity

The case of sovereign issuers

Remark

For sovereign issuers, the economic carbon intensity is measured in mega-tonnes of $\mathrm{CO}_{2}\mathrm{e}$ per million dollars of GDP while the physical carbon intensity unit is $\mathrm{tCO}_{2}\mathrm{e}$ per capita

Figure 19: Histogram of 2019 carbon intensities (logarithmic scale, $tCO_2e/$$ mn)

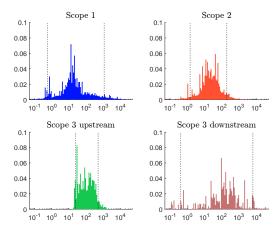


Table 13: Examples of 2019 carbon emissions and intensities

Company	,	Revenue	Inte		n tCO ₂ e/				
Company	SC_1	\mathcal{SC}_2	$\mathcal{SC}_3^{\mathrm{up}}$	$\mathcal{SC}_3^{ ext{down}}$	(in \$ mn)	\mathcal{SC}_1	\mathcal{SC}_2	$\mathcal{SC}_3^{\mathrm{up}}$	$\mathcal{SC}_3^{ ext{down}}$
Airbus	576 705	386 674	12 284 183	23 661 432	78 899	7.3	4.9	155.7	299.9
Allianz	46 745	224 315	3 449 234	3 904 000	135 279	0.3	1.7	25.5	28.9
Alphabet	111 283	5 118 152	7 142 566		161 857	0.7	31.6	44.1	
Amazon	5 760 000	5 500 000	20 054 722	10 438 551	280 522	20.5	19.6	71.5	37.2
Apple	50 549	862 127	27 624 282	5 470 771	260 174	0.2	3.3	106.2	21.0
BNP Paribas	64 829	280 789	1 923 307	1 884	78 244	0.8	3.6	24.6	0.0
Boeing	611 001	871 000	9878431	22 959 719	76 559	8.0	11.4	129.0	299.9
BP	49 199 999	5 200 000	103 840 194	582 639 687	276 850	177.7	18.8	375.1	2 104.5
Caterpillar	905 000	926 000	15 197 607	401 993 744	53 800	16.8	17.2	282.5	7 472.0
Danone	722 122	944877	28 969 780	4 464 773	28 308	25.5	33.4	1 023.4	157.7
Enel	69 981 891	5 365 386	8 726 973	53 774 821	86 610	808.0	61.9	100.8	620.9
Exxon	111 000 000	9 000 000	107 282 831	594 131 943	255 583	434.3	35.2	419.8	2 3 2 4 . 6
JPMorgan Chase	81 655	692 299	3 101 582	15 448 469	115 627	0.7	6.0	26.8	133.6
Juventus	6 665	15 739	35 842	77 114	709	9.4	22.2	50.6	108.8
LVMH	67 613	262 609	11 853 749	942 520	60 083	1.1	4.4	197.3	15.7
Microsoft	113 414	3 556 553	5 977 488	4 003 770	125 843	0.9	28.3	47.5	31.8
Nestle	3 291 303	3 206 495	61 262 078	33 900 606	93 153	35.3	34.4	657.6	363.9
Netflix	38 481	145 443	1 900 283	2 192 255	20 156	1.9	7.2	94.3	108.8
NVIDIA	2767	65 048	2 756 353	1 184 981	11716	0.2	5.6	235.3	101.1
PepsiCo	3 552 415	1 556 523	32 598 029	14 229 956	67 161	52.9	23.2	485.4	211.9
Pfizer	734 638	762 840	4 667 225	133 468	51 750	14.2	14.7	90.2	2.6
Roche	288 157	329 541	5 812 735	347 437	64 154	4.5	5.1	90.6	5.4
Samsung Electronics	5 067 000	10 998 000	33 554 245	60 978 947	197 733	25.6	55.6	169.7	308.4
TotalEnergies	40 909 135	3 596 127	49 817 293	456 993 576	200 316	204.2	18.0	248.7	2 280.0
Toyota	2 522 987	5 227 844	66 148 020	330 714 268	272 608	9.3	19.2	242.6	1 213.2
Volkswagen	4 494 066	5 973 894	65 335 372	354 913 446	282 817	15.9	21.1	231.0	1 254.9
Walmart	6 101 641	13 057 352	40 651 079	32 346 229	514 405	11.9	25.4	79.0	62.9

Table 14: Examples of 2019 carbon intensities

Company	Int	ensity (i	n tCO2e/\$	
Company	\mathcal{SC}_1	\mathcal{SC}_2	$\mathcal{SC}_3^{\mathrm{up}}$	$\mathcal{SC}_3^{ ext{down}}$
Amazon	20.5	19.6	71.5	37.2
Apple	0.2	3.3	106.2	21.0
BNP Paribas	0.8	3.6	24.6	0.0
BP	177.7	18.8	375.1	2 104.5
Caterpillar	16.8	17.2	282.5	7 472.0
Danone	25.5	33.4	1 023.4	157.7
Exxon	434.3	35.2	419.8	2 324.6
JPMorgan Chase	0.7	6.0	26.8	133.6
LVMH	1.1	4.4	197.3	15.7
Microsoft	0.9	28.3	47.5	31.8
Nestle	35.3	34.4	657.6	363.9
Pfizer	14.2	14.7	90.2	2.6
Samsung Electronics	25.6	55.6	169.7	308.4
Volkswagen	15.9	21.1	231.0	1 254.9
Walmart	11.9	25.4	79.0	62.9

Table 15: Carbon intensity in $tCO_2e/\$$ mn per GICS sector and sector contribution in % (MSCI World, June 2022)

Sector	bi		Carbon	intensity			Risk co	ntribution	
Sector	(in %)	\mathcal{SC}_1	\mathcal{SC}_{1-2}	$\mathcal{SC}_{1-3}^{\mathrm{up}}$	\mathcal{SC}_{1-3}	\mathcal{SC}_1	\mathcal{SC}_{1-2}	$\mathcal{SC}_{1-3}^{\mathrm{up}}$	\mathcal{SC}_{1-3}
Communication Services	7.58	2	28	134	172	0.14	1.31	3.30	1.31
Consumer Discretionary	10.56	23	65	206	590	1.87	4.17	6.92	6.21
Consumer Staples	7.80	28	55	401	929	1.68	2.66	10.16	7.38
Energy	4.99	632	698	1 006	6 823	24.49	21.53	16.33	34.37
Financials	13.56	13	19	52	244	1.33	1.58	2.28	3.34
Health Care	14.15	10	22	120	146	1.12	1.92	5.54	2.12
Industrials	9.90	111	130	298	1 662	8.38	7.83	9.43	16.38
Information Technology	21.08	7	23	112	239	1.13	3.03	7.57	5.06
Materials	4.28	478	702	1 1 1 1 3	2 957	15.89	18.57	15.48	12.93
Real Estate	2.90	22	101	167	571	0.48	1.81	1.57	1.65
Utilities	3.21	1744	1794	2 053	2840	43.47	35.59	21.41	9.24
MSCI World		130	163	310	992				
MSCI World EW		168	211	391	1 155				

- Let $b = (b_1, \dots, b_n)$ be the weights of the assets that belong to a benchmark
- Its weighted average carbon intensity is given by:

$$\mathcal{CI}(b) = \sum_{i=1}^{n} b_i \cdot \mathcal{CI}_i$$

where \mathcal{CI}_i is the carbon intensity of asset i

• If we focus on the carbon intensity for a given sector, we use the following formula:

$$\mathcal{CI}\left(\mathcal{S}\mathit{ector}_{j}
ight) = rac{\sum_{i \in \mathcal{S}\mathit{ector}_{j}} b_{i} \cdot \mathcal{CI}_{i}}{\sum_{i \in \mathcal{S}\mathit{ector}_{j}} b_{i}}$$

Carbon budget

Definition

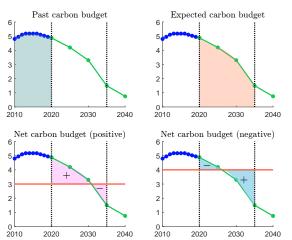
- The carbon budget defines the amount of GHG emissions that a country, a company or an organization produces over the time period $[t_0, t]$
- From a mathematical point of view, it corresponds to the signed area of the region bounded by the function $\mathcal{CE}(t)$:

$$\mathcal{CB}\left(t_{0},t\right)=\int_{t_{0}}^{t}\mathcal{CE}\left(s
ight)\,\mathrm{d}s$$

Carbon budget

Example #7

Below, we report the historical data of carbon emissions from 2010 to 2020. Moreover, the company has announced his carbon targets for the years until 2050


Table 16: Carbon emissions in MtCO₂e

t	2010	2011	2012	2013	2014	2015	2016	2017
							5.175	
t	2018	2019	2020	2025*	2030*	2035*	2040*	2050*
$\mathcal{CE}\left(t ight)$	5.025	4.950	4.875	4.200	3.300	1.500	0.750	0.150

The asterisk \ast indicates that the company has announced a carbon target for this year

Carbon budget

Figure 20: Past, expected and net carbon budgets (Example #7)

Computation of the carbon budget

Numerical solution

- We consider the equally-spaced partition $\{[t_0,t_0+\Delta t],\ldots,[t-\Delta t,t]\}$ of $[t_0,t].$ Let $m=\frac{t-t_0}{\Delta t}$ be the number of intervals
- ullet We set $\mathcal{CE}_k = \mathcal{CE}\left(t_0 + k\Delta t
 ight)$
- The right Riemann approximation is:

$$\mathcal{CB}\left(t_{0},t
ight)=\int_{t_{0}}^{t}\mathcal{CE}\left(s
ight)\,\mathrm{d}spprox\sum_{k=1}^{m}\mathcal{CE}\left(t_{0}+k\Delta t
ight)\Delta t=\Delta t\sum_{k=1}^{m}\mathcal{CE}_{k}$$

• The left Riemann sum is:

$$\mathcal{CB}\left(t_{0},t
ight)pprox\Delta t\sum_{k=0}^{m-1}\mathcal{CE}_{k}$$

• The midpoint rule is:

$$\mathcal{CB}\left(t_{0},t
ight)pprox\Delta t\sum_{t=1}^{m}\mathcal{CE}\left(t_{0}+rac{k}{2}\Delta t
ight)$$

Computation of the carbon budget

Analytical solution: the case of a constant reduction rate

• If we use a constant linear reduction rate $\mathcal{R}(t_0,t) = \mathcal{R}(t-t_0)$, we obtain the following analytical expression:

$$\mathcal{CB}\left(t_{0},t
ight)=\int_{t_{0}}^{t}\left(\mathcal{CE}\left(t_{0}
ight)-\mathcal{R}\left(s-t_{0}
ight)
ight)\,\mathrm{d}s=\left(t-t_{0}
ight)\mathcal{CE}\left(t_{0}
ight)-rac{\left(t-t_{0}
ight)^{2}}{2}\mathcal{R}$$

• In the case of a constant compound reduction rate:

$$\mathcal{CE}\left(t
ight) = \left(1 - \mathcal{R}
ight)^{\left(t - t_{0}
ight)} \mathcal{CE}\left(t_{0}
ight)$$

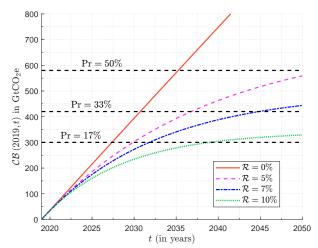
we obtain:

$$\mathcal{CB}\left(t_{0},t\right)=\mathcal{CE}\left(t_{0}\right)\int_{t_{0}}^{t}\left(1-\mathcal{R}\right)^{\left(s-t_{0}\right)}\,\mathrm{d}s=rac{\left(1-\mathcal{R}\right)^{\left(t-t_{0}
ight)}-1}{\ln\left(1-\mathcal{R}\right)}\mathcal{CE}\left(t_{0}
ight)$$

Computation of the carbon budget

Analytical solution: the case of a constant reduction rate

• If we assume that $\mathcal{CE}(t) = e^{-\mathcal{R}(t-t_0)}\mathcal{CE}(t_0)$, we have:


$$\mathcal{CB}\left(t_{0},t
ight)=\mathcal{CE}\left(t_{0}
ight)\left[-rac{\mathrm{e}^{-\mathcal{R}\left(s-t_{0}
ight)}}{\mathcal{R}}
ight]_{t_{0}}^{t}=\mathcal{CE}\left(t_{0}
ight)rac{\left(1-\mathrm{e}^{-\mathcal{R}\left(t-t_{0}
ight)}
ight)}{\mathcal{R}}$$

Remark

If the carbon emissions increase at a positive growth rate g, we set $\mathcal{R}=-g$.

Carbon budget and global warming

Figure 21: Probability to reach 1.5°C

IPCC (2018)

The remaining carbon budget CB (2019, t) is:

- 580 GtCO₂e for a 50% probability of limiting warming to 1.5°C
- 420 GtCO₂e for a 66% probability
- 300 GtCO₂e for a 83% probability

Computation of the carbon budget

Analytical solution: the case of a Linear function

• If we assume that $\mathcal{CE}(t) = \beta_0 + \beta_1 t$, we deduce that:

$$CB(t_{0}, t) = \int_{t_{0}}^{t} (\beta_{0} + \beta_{1}s) ds$$

$$= \left[\beta_{0}s + \frac{1}{2}\beta_{1}s^{2}\right]_{t_{0}}^{t}$$

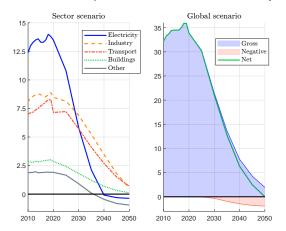
$$= \beta_{0}(t - t_{0}) + \frac{1}{2}\beta_{1}(t^{2} - t_{0}^{2})$$

• We can extend this formula to a piecewise linear function:

$$\mathcal{CB}(t_0,t)=\ldots$$

Net zero emissions scenario (IEA)

Table 17: IEA NZE scenario (in GtCO₂e)


Sector	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Electricity	12.4	13	13.3	13.5	13.6	13.3	13.3	13.5	14	13.8
Buildings	2.89	2.81	2.78	2.9	2.84	2.87	2.91	2.95	2.98	3.01
Transport	7.01	7.13	7.18	7.37	7.5	7.72	7.88	8.08	8.25	8.29
Industry	8.06	8.47	8.57	8.71	8.78	8.71	8.56	8.52	8.72	8.9
Other	1.87	1.89	1.91	1.96	1.87	1.89	1.89	1.92	1.92	1.91
Gross emissions	32.2	33.3	33.7	34.4	34.5	34.5	34.5	35	35.9	35.9
BECCS/DACCS	0	0	0	0	0	0	0	0	0	0
Net emissions	32.2	33.3	33.7	34.4	34.5	34.5	34.5	35	35.9	35.9

Sector	2020	2025	2030	2035	2040	2045	2050
Electricity	13.5	10.8	5.82	2.12	-0.08	-0.31	-0.37
Buildings	2.86	2.43	1.81	1.21	0.69	0.32	0.12
Transport	7.15	7.23	5.72	4.11	2.69	1.5	0.69
Industry	8.48	8.14	6.89	5.25	3.48	1.8	0.52
Other	1.91	1.66	0.91	0.09	-0.46	-0.82	-0.96
Gross emissions	33.9	30.3	21.5	13.7	7.77	4.3	1.94
BECCS/DACCS	0	-0.06	-0.32	-0.96	-1.46	-1.8	-1.94
Net emissions	33.9	30.2	21.1	12.8	6.32	2.5	0.00

Source: IEA (2021, Figure 2.3, page 55)

Net zero emissions scenario (IEA)

Figure 22: CO₂ emissions by sector in the IEA NZE scenario (in GtCO₂e)

Source: IEA (2021) & Author's calculations

Net zero emissions scenario (IEA)

Table 18: Carbon budget in the IEA NZE scenario (in GtCO₂e)

t	Electricity	Buildings	Transport	Industry	Other	Gross emissions
2025	74.4	50.2	43.7	16.2	10.8	195.4
2030	115.9	87.8	76.0	26.8	17.3	324.9
2040	140.9	140.0	117.6	39.1	18.8	466.6
2045	139.9	153.2	128.1	41.6	15.6	496.8
2050	138.2	159.0	133.6	42.7	11.2	512.4

Source: IEA (2021) & Author's calculations

Linear trend model

• The linear trend model is defined by:

$$\mathcal{CE}(t) = \beta_0 + \beta_1 t + u(t)$$

where $u(t) \sim \mathcal{N}(0, \sigma_u^2)$

- OLS estimation
- The projected carbon trajectory is given by:

$$\mathcal{CE}^{\mathcal{T}^{rend}}\left(t
ight)=\widehat{\mathcal{CE}}\left(t
ight)=\hat{eta}_{0}+\hat{eta}_{1}t$$

• We have:

$$\widehat{CE}(0) = \hat{\beta}_0$$

- Base year: t₀
- The linear trend model becomes:

$$\mathcal{CE}(t) = \beta_0' + \beta_1'(t - t_0) + u(t)$$

• We have the following relationships:

$$\begin{cases} \beta_0' = \beta_0 + \beta_1 t_0 \\ \beta_1' = \beta_1 \end{cases}$$

Example #8

Below, we report the evolution of scope 1+2 carbon emissions for company A:

Table 19: Carbon emissions in $MtCO_2e$ (company A)

Year	2007	2008	2009	2010	2011	2012	2013
$\mathcal{CE}\left(t ight)$	57.8	58.4	57.9	55.1	51.6	48.3	47.1
Year	2014	2015	2016	2017	2018	2019	2020
$\mathcal{CE}\left(t ight)$	46.1	44.4	42.7	41.4	40.2	41.9	45.0

Linear trend model

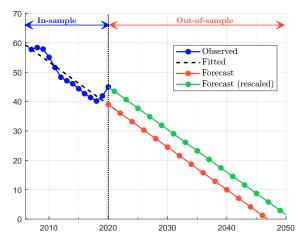
We obtain the following estimates:

- $\hat{\beta}_0 = 2\,970.43$, $\hat{\beta}_1 = -1.4512$ and $\hat{\sigma}_u = 2.5844$
- $t_0 = 2007$, $\hat{eta}_0' = 57.85$, $\hat{eta}_1' = -1.4512$ and $\hat{\sigma}_u = 2.5844$
- $t_0 = 2020$, $\hat{\beta}_0' = 38.99$, $\hat{\beta}_1' = -1.4512$ and $\hat{\sigma}_u = 2.5844$
- The two estimated models are coherent:

$$CE^{Trend}(t) = 38.99 - 1.4512 \times (t - 2020)$$

= 2970.43 - 1.4512 \times t

• We have:


$$\mathcal{CE}^{\mathcal{T}rend}$$
 (2025) = 38.99 - 1.4512 × 5 = 31.73 MtCO₂e

- We have \mathcal{CE} (2020) = 45.0 $\gg \widehat{\mathcal{CE}}$ (2020) = 38.99
- The rescaled model has the following expression:

$$CE^{Trend}(t) = 45 - 1.4512 \times (t - 2020)$$

Carbon trend Linear trend model

Figure 23: Linear carbon trend (Example #8)

Log-linear trend model

• The log-linear trend model is:

$$\ln \mathcal{CE}(t) = \gamma_0 + \gamma_1 (t - t_0) + v(t)$$

- Let $Y(t) = \ln CE(t)$ be the logarithmic transform of the carbon emissions
- OLS estimation using Y(t)

Log-linear trend model

• We have:

$$\widehat{\mathcal{CE}}\left(t
ight) = \exp\left(\widehat{Y}\left(t
ight)
ight) = \exp\left(\widehat{\gamma}_{0} + \widehat{\gamma}_{1}\left(t - t_{0}
ight)
ight) = \widehat{\mathcal{CE}}\left(t_{0}
ight) \exp\left(\widehat{\gamma}_{1}\left(t - t_{0}
ight)
ight)$$

where $\widehat{\mathcal{CE}}\left(t_{0}
ight)=\exp\left(\hat{\gamma}_{0}
ight)$

• The mathematical expectation of $\mathcal{CE}(t)$ is equal to:

$$\mathbb{E}\left[\mathcal{C}\mathcal{E}\left(t\right)\right] = \mathbb{E}\left[e^{Y(t)}\right]$$

$$= \mathbb{E}\left[\mathcal{L}\mathcal{N}\left(\gamma_{0} + \gamma_{1}\left(t - t_{0}\right), \sigma_{v}^{2}\right)\right]$$

$$= \exp\left(\gamma_{0} + \gamma_{1}\left(t - t_{0}\right) + \frac{1}{2}\sigma_{v}^{2}\right)$$

$$= \widehat{\mathcal{C}\mathcal{E}}\left(t_{0}\right) \exp\left(\hat{\gamma}_{1}\left(t - t_{0}\right)\right)$$

where
$$\widehat{\mathcal{CE}}\left(t_{0}\right)=\exp\left(\hat{\gamma}_{0}+rac{1}{2}\hat{\sigma}_{v}^{2}
ight)$$

• The rescaled log-linear trend model is:

$$\mathcal{CE}^{\mathcal{T}rend}\left(t
ight)=\mathcal{CE}\left(t_{0}
ight)\exp\left(\hat{\gamma}_{1}\left(t-t_{0}
ight)
ight)$$

Interpretation of the slope

• β_1 is the absolute variation of carbon emissions:

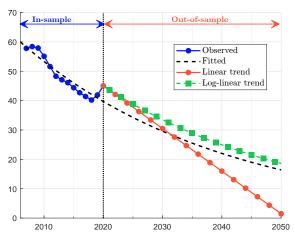
$$\frac{\partial \mathcal{CE}(t)}{\partial t} = \beta_1$$

implying that the relative variation of carbon emissions is:

$$\frac{\frac{\partial C\mathcal{E}(t)}{\partial t}}{C\mathcal{E}(t)} = \frac{\beta_1}{C\mathcal{E}(t)}$$

• γ_1 is the relative variation of carbon emissions:

$$\frac{\partial \mathcal{CE}(t)}{\partial t} = \frac{\partial \ln \mathcal{CE}(t)}{\partial t} = \gamma_1$$


Log-linear trend model

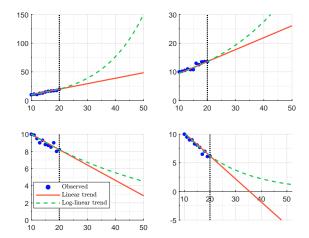
Example #8:

- We obtain the following results: $\hat{\gamma}_0=3.6800,~\hat{\gamma}_1=-2.95\%$ and $\hat{\sigma}_v=0.0520$
- $\widehat{\mathcal{CE}}$ (2020) = 39.65 MtCO₂e without the correction of the variance bias
- $\widehat{\mathcal{CE}}$ (2020) = 39.70 MtCO₂e with the correction of the variance bias

Log-linear trend model

Figure 24: Log-linear carbon trend (Example #8)

Linear vs. log-linear trend model


Example #9

We consider several historical trajectories of scope 1 carbon emissions:

Year	#1	#2	#3	#4
2010	10.0	10.0	10.0	10.0
2011	11.1	10.2	9.9	9.5
2012	10.5	10.5	9.5	9.0
2013	12.5	11.0	9.0	9.0
2014	13.0	10.8	9.3	8.3
2015	14.8	10.8	8.8	8.1
2016	16.0	13.0	8.7	7.7
2017	16.5	12.5	8.5	6.5
2018	17.0	13.5	9.0	7.0
2019	17.5	13.6	8.0	6.1
2020	19.8	13.6	8.2	6.2

Linear vs. log-linear trend model

Figure 25: Log-linear vs. linear carbon trend (Example #9)

Stochastic trend model

• The linear trend model can be written as:

$$\begin{cases} y(t) = \mu(t) + u(t) \\ \mu(t) = \mu(t-1) + \beta_1 \end{cases}$$

where $u(t) \sim \mathcal{N}(0, \sigma_u^2)$

- We have $y(t) = \beta_0 + \beta_1 t + u(t)$ where $\beta_0 = \mu(t_0) \beta_1 t_0$
- The local linear trend model is defined as:

$$\begin{cases} y(t) = \mu(t) + u(t) \\ \mu(t) = \mu(t-1) + \beta_1(t-1) + \eta(t) \\ \beta_1(t) = \beta_1(t-1) + \zeta(t) \end{cases}$$

where $\eta\left(t\right)\sim\mathcal{N}\left(0,\sigma_{\eta}^{2}\right)$ and $\zeta\left(t\right)\sim\mathcal{N}\left(0,\sigma_{\zeta}^{2}\right)$

• The stochastic trend $\mu(t)$ and slope $\beta_1(t)$ are estimated with KF

Carbon trend Stochastic trend model

Example #8

- We estimate the parameters $(\sigma_u, \sigma_\eta, \sigma_\zeta)$ by maximizing the Whittle log-likelihood function
- We obtain $\hat{\sigma}_u = 0.7022, \ \hat{\sigma}_{\eta} = 0.7019 \ \text{and} \ \hat{\sigma}_{\zeta} = 0.8350$
- The standard deviation of the stochastic slope variation $\beta_1(t) \beta_1(t-1)$ is then equal to 0.8350 MtCO₂e

Carbon trend Stochastic trend model

Table 20: Kalman filter estimation of the stochastic trend (Example #8)

t	$\mathcal{CE}\left(t ight)$	$\hat{eta}_1(t)$ (RLS)	$eta_1(t)$ (KF)	$\mu(t)$ KF)
2007	57.80		0.0000	57.80
2008	58.40		0.2168	58.25
2009	57.90	0.0500	-0.0441	58.00
2010	55.10	-0.8600	-1.3941	55.56
2011	51.60	-1.5700	-2.6080	52.01
2012	48.30	-2.0200	-3.1288	48.47
2013	47.10	-2.0929	-2.2977	46.82
2014	46.10	-2.0321	-1.5508	45.85
2015	44.40	-1.9817	-1.5029	44.38
2016	42.70	-1.9406	-1.5887	42.73
2017	41.40	-1.8891	-1.4655	41.36
2018	40.20	-1.8329	-1.3202	40.15
2019	41.90	-1.6824	0.1339	41.41
2020	45.00	-1.4512	1.7701	44.45

Carbon momentum

• We have:

$$\mathcal{CM}^{\mathcal{L}ong}\left(t
ight)=rac{\hat{eta}_{1}\left(t
ight)}{\mathcal{CE}\left(t
ight)}$$

or:

$$\mathcal{CM}^{\mathcal{L}ong}\left(t
ight)=\hat{\gamma}_{1}\left(t
ight)$$

Statistics

Table 21: Statistics (in %) of carbon momentum $\mathcal{CM}^{\mathcal{L}ong}(t)$ (MSCI World index, 1995 – 2021, linear trend)

Statistics	Ca	rbon emis	sions	Carbon intensity		
Statistics	\mathcal{SC}_1	\mathcal{SC}_{1-2}	$\mathcal{SC}_{1-3}^{\mathrm{up}}$	\mathcal{SC}_1	\mathcal{SC}_{1-2}	$\mathcal{SC}_{1-3}^{\mathrm{up}}$
Median	0.0	1.6	2.3	-4.8	-2.4	-1.3
Negative	49.9	41.1	29.4	76.0	69.6	75.6
Positive	50.1	58.9	70.6	24.0	30.4	24.4
< -10%	23.4	15.8	5.8	36.0	25.0	5.7
<-5%	32.1	22.2	10.6	48.6	36.7	13.4
> +5%	22.9	27.5	23.6	6.2	7.3	2.7
> +10%	9.2	9.5	8.0	2.3	2.6	1.0

Source: Trucost database (2022) & Authors' calculations.

Statistics

Table 22: Statistics (in %) of carbon momentum $\mathcal{CM}^{\mathcal{L}ong}(t)$ (MSCI World index, 1995 – 2021, log-linear trend)

Statistics	Carbon emissions			Carbon intensity		
Statistics	\mathcal{SC}_1	\mathcal{SC}_{1-2}	$\mathcal{SC}_{1-3}^{\mathrm{up}}$	\mathcal{SC}_1	\mathcal{SC}_{1-2}	$\mathcal{SC}_{1-3}^{\mathrm{up}}$
Median	-0.1	1.7	2.8	-3.6	-1.9	-1.2
Negative	50.6	40.3	29.0	76.3	69.0	75.8
Positive	49.4	59.7	71.0	23.7	31.0	24.2
< -10%	13.6	8.0	2.8	20.8	12.3	2.1
< -5%	26.6	16.9	7.5	42.3	29.0	8.4
> +5%	29.8	35.9	37.1	9.0	10.1	4.0
> +10%	16.9	19.4	19.2	4.0	4.1	1.6

Source: Trucost database (2022) & Authors' calculations.

The \mathcal{PAC} framework

articipation

mbition

redibility

Carbon target and decarbonization scenario

The \mathcal{PAC} framework requires three time series:

- The historical pathway of carbon emission
- The reduction targets announced by the company

$$\mathbb{CT} = \left\{ oldsymbol{\mathcal{R}}^{\mathcal{T}arget}\left(t_0, t_k
ight), k = 1, \ldots, n_T
ight\}$$

• The market-based sector scenario associated to the company that defines the decarbonization pathway

$$\mathbb{CS} = \left\{ oldsymbol{\mathcal{R}}^{\mathcal{S}cenario}\left(t_0, t_k
ight), k = 1, \ldots, n_S
ight\}$$

The PAC framework

Table 23: Reduction rates of the IEA NZE scenario (base year = 2020)

Year	Electricity	Industry	Transport	Buildings	Other	Global
2025	20.0	4.0	-1.1	15.0	13.1	10.6
2030	56.9	18.8	20.0	36.7	52.4	36.6
2035	84.3	38.1	42.5	57.7	95.3	59.6
2040	100.0	59.0	62.4	75.9	100.0	77.1
2045	100.0	78.8	79.0	88.8	100.0	87.3
2050	100.0	93.9	90.3	95.8	100.0	94.3

Source: IEA (2021) & Author's calculations.

The \mathcal{PAC} framework

The 3 questions of the PAC framework

- Is the trend of the issuer in line with the scenario?
- Is the commitment of the issuer to fight climate change ambitious?
- Is the target setting of the company relevant and robust, or is it a form of greenwashing?

The \mathcal{PAC} framework

Example #10

- We consider Example #8
- Company A has announced the following targets:

```
a \mathcal{R}^{Target} (2020, 2025) = 40%
```

$$\mathcal{R}^{Target}$$
 (2020, 2030) = 50%

3
$$\mathcal{R}^{Target}$$
 (2020, 2035) = 75%

$$\mathfrak{R}^{Target}$$
 (2020, 2040) = 80%

ullet Company A is an utility corporation \Rightarrow we use the IEA NZE scenario for the sector Electricity

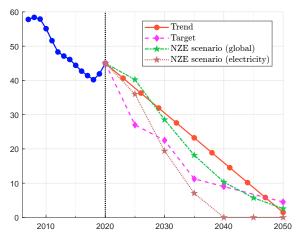
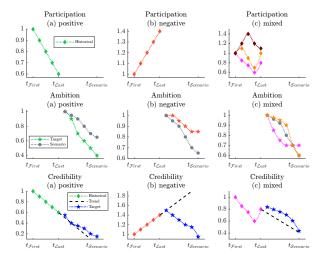

The PAC framework

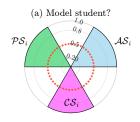
Table 24: Comparison of carbon budgets (Example #10, base year = 2020)

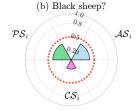
	Trend	Trend	T .	Scenario	Scenario
Year	(linear)	(log-linear)	Target	(global)	(electricity)
2025	207	209	180	213	203
2030	377	390	304	385	341
2035	512	546	388	502	407
2040	610	680	439	573	425
2045	671	796	478	613	425
2050	697	896	506	634	425

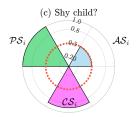
The PAC framework


Figure 26: Carbon trend, targets and NZE scenario of company A

Source: IEA (2021) & Author's calculations.


Assessment of the \mathcal{PAC} pillars


Figure 27: Illustration of the participation, ambition and credibility pillars



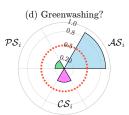
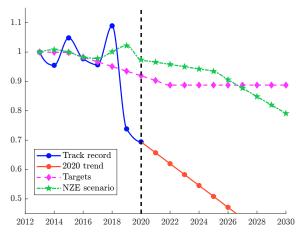
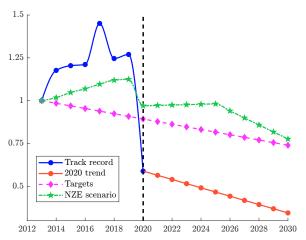

Temperature scoring system

Figure 28: The \mathcal{PAC} scoring system

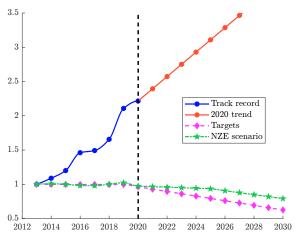


Illustration


Figure 29: Carbon emissions, trend, targets and NZE scenario (Company B)

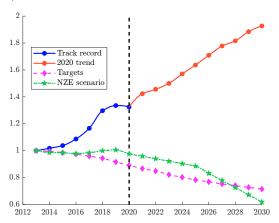
Source: CDP database (2021), IEA (2021) & Leguenedal et al. (2022)

Illustration


Figure 30: Carbon emissions, trend, targets and NZE scenario (Company C)

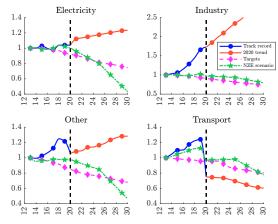
Source: CDP database (2021), IEA (2021) & Leguenedal et al. (2022)

Illustration


Figure 31: Carbon emissions, trend, targets and NZE scenario (Company D)

Source: CDP database (2021), IEA (2021) & Leguenedal et al. (2022)

Illustration


Figure 32: Carbon emissions, trend, targets and NZE scenario (median analysis, global universe)

Source: CDP database (2021), IEA (2021) & Leguenedal et al. (2022)

Illustration

Figure 33: Carbon emissions, trend, targets and NZE scenario (median analysis, sector universe)

Source: CDP database (2021), IEA (2021) & Leguenedal et al. (2022)

Greenness measures

- Brown intensity: BI
- Green intensity: GI
- We have $\mathcal{BI} \in [0,1], \ \mathcal{GI} \in [0,1] \ \text{and} \ 0 \leq \mathcal{BI} + \mathcal{GI} \leq 1$
- Most of the time, we have

$$\mathcal{BI} + \mathcal{GI} \neq 1$$

Brown Neutral

Green

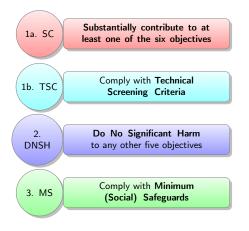
Very green

Greenness measures

Figure 34: Several taxonomies

Definition

The EU taxonomy for sustainable activities is "a classification system, establishing a list of environmentally sustainable economic activities."


These economic activities must have a substantive contribution to at least one of the following six environmental objectives:

- climate change mitigation
- climate change adaptation
- sustainable use and protection of water and marine resources
- transition to a circular economy
- opollution prevention and control
- protection and restoration of biodiversity and ecosystem

A business activity must also meet two other criteria to qualify as sustainable:

- The activity must do no significant harm to the other environmental objectives (DNSH constraint)
- It must comply with minimum social safeguards (MS constraint)

Figure 35: EU taxonomy for sustainable activities

Relationship between the green intensity and the green revenue share

We have:

$$\mathcal{GI} = rac{\mathcal{GR}}{\mathcal{TR}} \cdot (1 - \mathcal{P}) \cdot \mathbb{1} \left\{ \mathcal{S} \geq \mathcal{S}^{\star}
ight\}$$

where:

- \mathcal{GR} is the green revenue deduced from the six environmentally sustainable objectives
- ullet $\mathcal{T}\mathcal{R}$ is the total revenue
- ullet ${\cal P}$ is the penalty coefficient reflecting the DNSH constraint
- $oldsymbol{\circ}$ is the minimum safeguard score
- \mathcal{S}^* is the threshold

 The first term is a proxy of the turnover KPI and corresponds to the green revenue share:

$$\mathcal{GRS} = rac{\mathcal{GR}}{\mathcal{TR}}$$

- By construction, we have $0 \le \mathcal{GRS} \le 1$
- This measure is then impacted by the DNSH coefficient
 - The two extreme cases are:

$$\left\{ \begin{array}{l} \mathcal{P}=1\Rightarrow\mathcal{GI}=\mathcal{GRS}\\ \mathcal{P}=0\Rightarrow\mathcal{GI}=0 \end{array} \right.$$

- We have $0 \leq \mathcal{GI} = \mathcal{GRS} \cdot (1 \mathcal{P}) \leq \mathcal{GRS}$
- The indicator function $\mathbb{1}\left\{s \geq s^{\star}\right\}$ is a binary all-or-nothing variable:

$$\mathcal{S} < \mathcal{S}^{\star} \Rightarrow \mathcal{GI} = 0$$

Example #11

We consider a company in the hydropower sector which has five production sites. Below, we indicate the power density efficiency, the GHG emissions, the DNSH compliance with respect to the biodiversity and the corresponding revenue:

Site	#1	#2	#3	#4	#5
Efficiency (in Watt per m^2)	3.2	3.5	3.3	5.6	4.2
GHG emissions (in gCO ₂ e per kWh)	35	103	45	12	36
Biodiversity DNSH compliance	\checkmark	\checkmark	\checkmark	\checkmark	
Revenue (in \$ mn)	103	256	89	174	218

The total revenue is equal to:

$$TR = 103 + 256 + 89 + 174 + 218 = $840 \text{ mn}$$

- The fourth site does not pass the technical screening, because the power density is above 5 Watt per m^2
- \bullet The second site does not also comply because it has a GHG emissions greater than 100 ${
 m gCO_2e}$ per kWh
- We deduce that the green revenue is equal to:

$$GR = 103 + 89 + 218 = $410 \text{ mn}$$

- We conclude that the green revenue share is equal to 48.8%
- According to the EU green taxonomy, the green intensity is lower because the last site is close to a biodiversity area and has a negative impact:

$$\mathcal{GI} = \frac{103 + 89}{840} = 22.9\%$$

Statistics

Table 25: Statistics in % of green revenue share (MSCI ACWI IMI, June 2022)

Category	Frequency $\mathbf{F}(x)$			Quantile $\mathbf{Q}\left(lpha ight)$				Mean		
	0	25%	50%	75%	75%	90%	95%	Max	Avg	Wgt
(1)	9.82	1.47	0.96	0.75	0.00	0.00	2.85	100.00	1.36	0.77
(2)	14.10	1.45	0.65	0.31	0.00	1.25	6.12	100.00	1.39	3.50
(3)	4.84	1.68	1.02	0.31	0.00	0.00	0.00	100.00	1.16	0.51
(4)	4.79	0.30	0.10	0.06	0.00	0.00	0.00	99.69	0.32	0.22
(5)	1.00	0.39	0.20	0.09	0.00	0.00	0.00	98.47	0.26	0.10
(6)	4.75	0.28	0.11	0.05	0.00	0.00	0.00	99.98	0.29	0.14
Total	27.85	5.82	3.17	1.68	0.42	11.82	30.36	100.00	4.78	5.24

Source: MSCI (2022) & Barahhou (2022)

$$\mathbf{F}(x) = \Pr{\{\mathcal{GRS} > x\}, \mathbf{Q}(\alpha) = \inf{\{x : \Pr{\{\mathcal{GRS} \leq x\} \geq \alpha\}, \text{ arithmetic average } n^{-1} \sum_{i=1}^{n} \mathcal{GRS}_i \text{ and weighted mean } \mathcal{GRS}(b) = \sum_{i=1}^{n} b_i \mathcal{GRS}_i}$$

Statistics

- The green revenue share of the MSCI World index is equal to 5.24%
- The green revenue share of the Bloomberg Global Investment Grade Corporate Bond index is equal to 3.49%
- Alessi and Battiston (2022) estimated "a greenness of about 2.8% for FU financial markets"

Green capex