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Abstract

This article is part of a comprehensive research project on liquidity risk in asset
management, which can be divided into three dimensions. The first dimension covers
liability liquidity risk (or funding liquidity) modeling, the second dimension focuses on
asset liquidity risk (or market liquidity) modeling, and the third dimension considers
asset-liability liquidity risk management (or asset-liability matching). The purpose of
this research is to propose a methodological and practical framework in order to perform
liquidity stress testing programs, which comply with regulatory guidelines (ESMA,
2019) and are useful for fund managers. The review of the academic literature and
professional research studies shows that there is a lack of standardized and analytical
models. The aim of this research project is then to fill the gap with the goal to develop
mathematical and statistical approaches, and provide appropriate answers.

In this first part that focuses on liability liquidity risk modeling, we propose several
statistical models for estimating redemption shocks. The historical approach must
be complemented by an analytical approach based on zero-inflated models if we want
to understand the true parameters that influence the redemption shocks. Moreover,
we must also distinguish aggregate population models and individual-based models
if we want to develop behavioral approaches. Once these different statistical models
are calibrated, the second big issue is the risk measure to assess normal and stressed
redemption shocks. Finally, the last issue is to develop a factor model that can translate
stress scenarios on market risk factors into stress scenarios on fund liabilities.

Keywords: liquidity, stress testing, liability, redemption rate, redemption frequency, re-
demption severity, zero-inflated beta model, copula.
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1 Introduction

Liquidity stress testing in asset management is a complex topic because it is related to three
dimensions — liquidity risk, asset management and stress testing, whose linkages have been
little studied and are hard to capture. First, liquidity is certainly the risk that is the most
difficult to model with the systemic risk. If we consider market, credit, operational and
counterparty risks, there is a huge amount of academic literature on these topics in terms of
models, statistical inference and analysis. In terms of liquidity risk, the number of practical
studies and applied approaches is limited. Even though a great deal of research has been
completed on this subject, much of it is overly focused on descriptive analyses of liquidity, or
its impact on systemic risk, or policy rules for financial regulation. Moreover, this research
generally focuses on the banking sector (Grillet-Aubert, 2018). For instance, the liquidity
coverage ratio (LCR) and the net stable funding ratio (NSFR) of the Basel III regulatory
framework are of no help when measuring the liquidity risk in asset management. In fact,
the concept of liquidity risk in asset management is not well defined. More generally, it is
a recent subject and we must admit that the tools and models used in asset management
are very much lagging those developed in the banking sector. This is why the culture of
asset-liability management (ALM) is poor in investment management, both on the side of
asset managers and asset owners. Therefore, if we add the third dimension, stress testing,
we obtain an unknown and obscure topic, because the combination of liquidity risk and
stress testing applied to asset management is a new and difficult task.

This is not the first time that the regulatory environment has sped up the development
of a risk management framework. Previous occurrences include the case of market risk with
the Amendment of the first Basel Accord (BCBS, 1996), credit risk with the second con-
sultative paper on Basel II (BCBS, 2001), credit valuation adjustment with the publication
of the Basel III Accord (BCBS, 2010), interest rate risk in the banking book with the IR-
RBB guidelines (BCBS, 2016), etc. However, the measurement of these risks had already
benefited from the existence of analytical models developed by academics and professionals.
One exception was operational risk, since banks started from a blank page when asked to
measure it (BCBS, 1999). Asset managers now face a similar situation at this moment.
Between 2015 and 2018, the US Securities and Exchange Commission established several
rules governing liquidity management (SEC, 2015, 2016, 2018a,b). In particular, Rule 22e-4
requires investment funds to classify their positions in one of four liquidity buckets (highly
liquid investments, moderately liquid investments, less liquid investments and illiquid in-
vestments), establish a liquid investment minimum, and develop policies and procedures on
redemptions in kind. From September 2020, European asset managers must also comply
with new guidelines on liquidity stress testing (LST) published by the European Securi-
ties and Markets Authority (ESMA, 2019). These different regulations are rooted in the
agenda proposed by the Financial Stability Board to monitor and manage systemic risk of
non-bank non-insurer systemically important financial institutions (FSB, 2010). Even if the
original works of the FSB were biased, the idea that the asset management industry can
contribute to systemic risk has gained ground and is now widely accepted. Indeed, FSB
(2015) confused systemic risk and systematic market risk (Roncalli and Weisang, 2015a).
However, Roncalli and Weisang (2015b) showed that “the liquidation channel is the main
component of systemic risk to which the asset management industry contributes”. In this
context, liquidity is the major risk posed by the asset management industry that regulators
must control. But liquidity risk is not only a concern for regulators. It must also be a
priority for asset managers. The crisis of money market funds in the fourth quarter of 2008
demonstrated the fragility of some fund managers (Schmidt et al., 2016). Market liquidity
deteriorated in March and April 2020, triggering a liquidity shock on some investment funds
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and strategies. However, aside from the 2008 Global Financial Crisis and 2020 coronavirus
pandemic, which have put all asset managers under pressure, the last ten years have demon-
strated that liquidity is also an individual risk for fund managers. It was especially true
during episodes of flash crash1, where fund managers reacted differently. In a similar way,
idiosyncratic liquidity events may affect asset managers at the individual level (Thompson,
2019). Following some high-profile fund suspensions in mid-2019, asset managers received
requests from asset owners to describe their liquidity policies and conduct a liquidity review
of their portfolios. Therefore, we notice that liquidity is increasingly becoming a priority for
asset managers for three main reasons, because it is a reputational risk, they are challenged
by asset owners and it can be a vulnerability factor for financial performance.

However, even though liquidity stress testing in asset management has become one of
the hot topics in finance, it has attracted few academics and professionals, implying that the
research on this subject is not as dynamic as one might expect. In fact, it is at the same stage
as operational risk was in the early 2000s, when there was no academic research on this topic.
And it is also at the stage of ALM banking risk, where the most significant contributions
have come from professionals. Since liquidity stress testing in asset management is an asset-
liability management exercise, modeling progress mainly comes from professionals, because
the subject is so specific, requires business expertise and must be underpinned by industry-
level data. This is obviously an enormous hurdle for academics, and this explains the lack of
modeling and scientific approach that asset managers encounter when they want to develop
a liquidity stress testing framework. Therefore, the objective of this research is twofold.
First, the idea is to provide a mathematical and statistical formalization to professionals in
order to go beyond expert qualitative judgement. Second, the aim is to assist academics
in understanding this topic. This is important, because academic research generally boosts
the development of analytical models, which are essential for implementing liquidity stress
testing programs in asset management.

Liquidity stress testing in asset management involves so many dimensions that we have
decided to split this research into three parts:

1. liability liquidity risk modeling;

2. asset liquidity risk modeling;

3. asset-liability liquidity risk management.

Indeed, managing liquidity risk consists of three steps. First, we have to model the liability
liquidity of the investment fund, especially the redemption shocks. By construction, this
step must incorporate client behavior. Second, we have to develop a liquidity model for
assets. For that, we must specify a transaction cost model beyond the traditional bid-ask
spread measure. In particular, the model must incorporate two dimensions: price impact
and trading limits. These first two steps make the distinction between funding liquidity
and market liquidity. As noticed by Brunnermeier and Pedersen (2009), these two types of
liquidity may be correlated. However, we suppose that they are independent at this level
of analysis. While the first step gives the liquidity amount of the investment fund that can
be required by the investors, the second step gives the liquidity amount of the investment
fund that can be available in the market. Therefore, the third step corresponds to the asset-
liability management in terms of liquidity, that is the matching process between required
liquidity and available liquidity. This implies defining the part of the redemption shock
that can be managed by asset liquidation and the associated liquidity costs. It also implies

1For instance, during the US stock market flash crash (May 6, 2010), the US Treasury flash crash (October
15, 2014), the US ETF flash crash (August 24, 2015), etc.
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defining the liquidity tools that can be put in place in order to manage the non-covered
part of the redemption shock or the liquidation shortfall. For instance, a liquidity buffer is
an example of one of these tools, but this is not the only solution. Redemption gates, side
pockets and redemptions in kind are alternative methods, but they are extreme solutions
that may break the fiduciary duties and liquidity promises of asset managers. Swing pricing
is also an important ALM tool, and is a challenging question when we consider the fair
calibration of swing prices.

Figure 1: The sequential approach of liquidity stress testing

Asset-liability management

(liquidity matching)

Asset (or market) liquidity

Liability (or funding) liquidity

The three-stage process has many advantages in terms of modeling. First, it splits a
complex question into three independent and more manageable problems. This is partic-
ularly the case of liability and asset modeling. Second, managing liquidity risk becomes
a sequential process, where the starting point is clearly identified. As shown in Figure 1,
we should begin with the liability risk. Indeed, if we observe no inflows or outflows, the
process stops here. As such, the first stage determines the amount to sell in the market and
it is measured with respect to the investor behavior. The liquidity risk has its roots in the
severity of the redemption shock. Market liquidity is part of the second phase. Depending
on the redemption size and the liquidity of the market, the fund manager will decide the
best solution to adopt. And the sequential process will conclude with the action of the fund
manager2. Finally, the third advantage concerns the feasibility of stress testing programs.
In this approach, stress testing concerns the two independent dimensions. We can stress the
liquidity on the liability side, or we can stress the liquidity on the asset side, or both, but
the rule is simple.

In the sequential approach, the liability of the investment fund is the central node of the
liquidity risk, and the vertex of the liquidity network. However, it is not so simple, because
the three nodes can be interconnected (Figure 2). If market liquidity deteriorates sharply,
investors may be incited to redeem in order to avoid a liquidity trap. In this case, funding
liquidity is impacted by market liquidity, reinforcing the feedback loop between funding
and market liquidity, which is described by Brunnermeier and Pedersen (2009). But this is
not the only loop. For instance, the choice of an ALM decision may also influence funding
liquidity. If one asset manager decides to suspend redemptions, it may be a signal for
the investors of the other asset managers if they continue to meet redemptions. Again,
we may observe a feedback loop between funding liquidity and asset-liability management.

2Of course, the fund manager’s action is not uniquely determined, because it depends on several pa-
rameters. This means that two fund managers can take two different decisions even if they face the same
situation in terms of redemption and market liquidity.
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Finally, it is also obvious that market liquidity is related to ALM decisions, because of many
factors such as trading policies, the first-mover advantage and crowding effects (Roncalli
and Weisang, 2015a). It follows that the liquidity risk given in Figure 1 is best described
by the dense and fully connected network given in Figure 2. Nevertheless, developing a
statistical model that takes into account the three reinforcing loops is not straightforward
and certainly too complex for professional use. Therefore, it is more realistic to adjust and
update the sequential models with second-round effects than to have an integrated dynamic
model.

Figure 2: The network risk of liquidity

Asset-liability
management

Market
liquidity

risk

Funding
liquidity

risk

Liquidity is a long-standing issue and also an elusive concept. This is particularly true
in asset management, where liquidity covers several interpretations. For example, some
asset classes are considered as highly liquid whereas other asset classes are illiquid. In the
first category, we generally find government bonds and large cap stocks. The last category
includes real estate and private equities. However, categorizing liquidity of a security is not
easy and there is no consensus. Let us consider for example Rule 22e-4(b) that is applied in
the US. The proposed rule was based on the ability to convert the security to cash within
a given period and distinguished six buckets: (a) convertible to cash within 1 business day,
(b) convertible to cash within 2-3 business days, (c) convertible to cash within 4-7 calendar
days, (d) convertible to cash within 8-15 calendar days, (e) convertible to cash within 16-30
calendar days (f) convertible to cash in more than one month. Finally, the adopted rule is
the following:

1. highly liquid investments (convertible to cash within three business days);

2. moderately liquid investments (convertible to cash within four to seven calendar days);

3. less liquid investments (expected to be sold in more than seven calendar days);

4. illiquid investments (cannot be sold in seven calendar days or less without significant
price impact).

Classifying a security into a bucket may be different from one fund manager to another.
Moreover, the previous categories depend on the market conditions. Nevertheless, even
if the current market liquidity is abundant, securities that can be categorized in the first
bucket must also face episodes of liquidity shortage (Blanqué and Mortier, 2019a). A typical
example concerns government bonds facing idiosyncratic risks. Blanqué and Mortier (2019a)
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gave the case of Italian bonds in 2018 during the discussion on the budget deficit. However,
most of the time, when we consider the liquidity of an asset class, we assume that it is static.
Certainly, this way of thinking reflects the practice of portfolio management. Indeed, it is
common to include a constant illiquidity premium when estimating the expected returns
of illiquid assets. But investors should stick to their investments without rebalancing and
trading if they want to capture this illiquidity premium. The split between liquid and illiquid
investments does not help, because it is related to the absolute level of asset illiquidity, and
not liquidity dynamics. However, the issue is more complex:

“[...] there is also broad belief among users of financial liquidity – traders, in-
vestors and central bankers – that the principal challenge is not the average level
of financial liquidity... but its variability and uncertainty” (Persaud, 2003).

This observation is important because it is related to the liquidity question from a regulatory
point of view. The liquidity risk of private equities or real assets is not a big concern for
regulators, because one knows that these asset classes are illiquid. Even if they become more
illiquid at some point, this should not dramatically influence investors (asset managers and
owners). Regulators and investors are more concerned by securities that are liquid under
some market conditions and illiquid under other market conditions. At first sight, it is
therefore a paradox that liquidity stress testing programs must mainly focus on highly or
moderately liquid instruments than on illiquid instruments. In fact, liquidity does not like
surprises and changes. This is why the liquidity issue is related to the cross-section of the
expected illiquidity premium for illiquid assets, but to the time-series illiquidity variance for
liquid assets.

This is all the more important that the liquidity risk must be measured and managed in
a stress testing framework, which adds another layer of complexity. Indeed, stress scenarios
are always difficult to interpret, and calibrating them is a balancing act, because they must
correspond to extreme but also plausible events (Roncalli, 2020). This is why the historical
method is the most used approach when performing stress testing. However, it is very poor
and not flexible in terms of risk management. Parametric approaches must be preferred since
stress periods are very heterogenous and outcomes are uncertain. Therefore, it makes more
sense to estimate and use stressed liquidity parameters than directly estimate a stressed
liquidity outcome. In this approach, the normal model is the baseline model on which we
could apply scenario analysis on the different parameters that define the liquidity model.
This is certainly the best way to proceed if we want to develop a factor-based liquidity stress
testing program, which is an important issue for fund management. Otherwise, liquidity
stress testing would be likely to remain a regulatory constraint or a pure exercise of risk
measurement, but certainly not a risk management process supporting investment policies
and fund management.

This paper is organized as follows. Section Two introduces the concept of redemption
rates and defines the historical approach of liquidity stress testing. In Section Three, we
consider parametric models that can be used to estimate redemption shocks. This implies
making the distinction between the redemption event and the redemption amount. From a
statistical point of view, this is equivalent to modeling the redemption frequency and the
redemption severity. After having developed an aggregate population model, we consider
an individual-based model. It can be considered as a first attempt to develop a behavioral
model, which is the central theme of Section Four. We analyze the simple case where re-
demptions between investors are independent and then extend the model where redemptions
are correlated to take into account spillover effects and contagion risk. Then, we develop
factor-based models of liquidity stress testing in Section Five. Finally, Section Six offers
some concluding remarks.
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2 Understanding the liability side of liquidity risk

In order to assess the liquidity risk of an investment fund, we must model its ‘funding ’
liquidity. Therefore, managing the liquidity in asset management looks like a banking asset-
liability management process (Roncalli, 2020). However, there is a major difference since
banking ALM concerns both balance sheet and income statement. This is not the case of an
investment fund, because we only focus on its balance sheet and the objective is to model
the redemption flows.

2.1 Balance sheet of an investment fund

In order to define the liability risk, we first have to understand the balance sheet of a
collective investment fund. A simplified illustration is given in Figure 3 for a mutual fund.
The total (gross) assets A (t) correspond to the market value of the investment portfolio.
They include stocks, bonds and all financial instruments that are invested. On the liability
side, we have two main balance sheet items. The first one corresponds to the debits D (t),
which are also called current or accrued liabilities. They are all the expenses incurred by
the mutual fund. For instance, the current liabilities include money owed to lending banks,
fees owed to the fund manager and the custodian, etc. The second liability item is the unit
capital C (t), which is owned by the investors. Each investor owns a number of units (or
shares) and is referred to as a ‘unitholder ’. This unit capital is equivalent to the equity
concept of a financial institution. A unitholder is then also called a shareholder in reference
to capital markets.

Figure 3: Balance sheet of mutual funds

A (t)

C (t)

D (t)

Unit capital

Debits

Total

Assets

Assets Liabilities

2.1.1 Definition of net asset value

The total net assets (TNA) equal the total value of assets less the current or accrued liabil-
ities:

TNA (t) = A (t)−D (t)

The net asset value (NAV) represents the share price or the unit price. It is equal to:

NAV (t) =
TNA (t)

N (t)
(1)

where the total number N (t) of shares or units in issue is the sum of all units owned by
all unitholders. The previous accounting rules show that the capital is exactly equal to the
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total net assets, which is also called the assets under management (AUM). The investment
fund’s capital is therefore an endogenous variable and depends on the performance of the
total net assets:

C (t) = N (t) ·NAV (t)

= TNA (t)

At time t+1, we assume that the portfolio’s return is equal to R (t+ 1). Since D (t)� A (t),
it follows that:

TNA (t+ 1) = A (t+ 1)−D (t+ 1)

= (1 +R (t+ 1))A (t)−D (t+ 1)

≈ (1 +R (t+ 1)) · TNA (t)

meaning that:
NAV (t+ 1) ≈ (1 +R (t+ 1)) ·NAV (t)

The investment fund’s capital is therefore time-varying. It increases when the performance
of the asset is positive, and it decreases otherwise.

Remark 1 In the sequel, we assume that the mutual fund is priced daily, meaning that the
NAV of the mutual fund is calculated at the end of the market day. Therefore, the time t
represents the current market day, whereas the time t + 1 corresponds to the next market
day.

2.1.2 The effect of subscriptions and redemptions

Let us now introduce the impact of subscriptions and redemptions. In this case, new and
current investors may purchase new mutual fund units, while existing investors may redeem
all or part of their shares. Subscription and redemption orders must be known by the fund
manager before t+ 1 in order to be executed. In this case, the number of units becomes:

N (t+ 1) = N (t) +N+ (t+ 1)−N− (t+ 1)

where N+ (t+ 1) is the number of units to be created and N− (t+ 1) is the number of units
to be redeemed. At time t+ 1, we have:

NAV (t+ 1) =
TNA (t+ 1)

N (t+ 1)

=
TNA (t+ 1)

N (t) +N+ (t+ 1)−N− (t+ 1)

We deduce that:

TNA (t+ 1) = N (t) ·NAV (t+ 1) + F+ (t+ 1)−F− (t+ 1) (2)

where F+ (t+ 1) = N+ (t+ 1) · NAV (t+ 1) and F− (t+ 1) = N− (t+ 1) · NAV (t+ 1) are
the investment inflows and outflows. Again, we notice that the investment fund’s capital is
time-varying and depends on the fund flows.

From Equation (2), we deduce that:

TNA (t+ 1) = N (t) ·NAV (t+ 1) + F+ (t+ 1)−F− (t+ 1)

≈ N (t) · (1 +R (t+ 1)) ·NAV (t) + F+ (t+ 1)−F− (t+ 1)

= (1 +R (t+ 1)) · TNA (t) + F+ (t+ 1)−F− (t+ 1)
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The current net assets are approximatively equal to the previous net assets plus the perfor-
mance value plus the net flow. We retrieve the famous formula of Sirri and Tufano (1998)
when we want to estimate the net flow from the NAV and TNA of the fund:

F (t+ 1) = F+ (t+ 1)−F− (t+ 1)

= TNA (t+ 1)− (1 +R (t+ 1)) · TNA (t)

= TNA (t+ 1)−
(

NAV (t+ 1)

NAV (t)

)
TNA (t) (3)

2.1.3 Liability risks

Since the capital is a residual, we face three liability risks. The first one deals with the ac-
crued liabilities D (t). Generally, the debits are a very small part of the liabilities. However,
we can potentially face some situations where the debits are larger than the assets, implying
that the net asset value becomes negative. In particular, this type of situation occurs when
the fund is highly leveraged. The second risk concerns the inflows. If the investment fund
has a big subscription, it may have some difficulties buying the financial instruments. For
instance, this type of situation may occur when the fund must buy fixed-income securities
in a bond bull market and it is difficult to find investors who are looking to sell bonds.
The third liability risk is produced by the outflows. In this case, the fund manager must
sell assets, which could be difficult in illiquid and stressed market conditions. The last two
situations are produced when supply and demand dynamics are totally unbalanced (higher
supply for buying assets or higher demand for selling assets). In this article, we focus on
the third liability risk, which is also called redemption risk.

2.2 Measuring redemption risk

In order to assess an investment fund’s redemption risk, we need an objective measurement
system, which is well scaled. For instance, the outflows F− (t) are not very interesting,
because they depend on the investment fund’s assets under management. In fact, they must
be scaled in order to be a homogeneous measure that can be used to compare the redemption
behavior across time, across funds and across investors.

2.2.1 Gross redemption rate

The (gross) redemption rate is defined as the ratio between the fund’s redemption flows and
total net assets:

R (t) =
F− (t)

TNA (t)
(4)

We verify the property that R (t) ∈ [0, 1]. For example, if we observe an outflow of $100 mn
for a fund of $5 bn, we have R (t) = 100/5 000 = 2%. In the case where the outflow is $10
mn and the fund size is $100 mn, the redemption rate is equal to 10%. The redemption is
more severe for the small fund than for the large fund.

We notice that Equation (4) is used to calculate the ex-post redemption rate, meaning
that the value of outflows is known. Therefore, Equation (4) corresponds to the definition
of the redemption rate, but it can also be used to estimate or predict the redemption flows.
Indeed, we have:

F̂− (t+ 1) = R (t+ 1) · TNA (t) (5)

In this case, R (t+ 1) is a random variable and is not known at the current time t. By
assuming that redemption rates are stationary, the challenge is then to model the associated
probability distribution F.
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2.2.2 Net redemption rate

The guidelines on the liquidity stress testing published by ESMA (2019) refer to both gross
and net redemptions:

“LST should be adapted appropriately to each fund, including by adapting:
[...] the assumptions regarding investor behaviour (gross and net redemptions)”
(ESMA, 2019, page 36).

Following this remark, we can also define the net flow rate by considering both inflows and
outflows:

R ± (t) =
F (t)

TNA (t)
(6)

This quantity is more complex than the previous one, because it cannot be used from an
ex-ante point of view:

F̂ (t+ 1) 6= R ± (t+ 1) · TNA (t)

The reason is that the outflows are bounded and cannot exceed the current assets under
management. This is not the case for the inflows. For example, we consider a fund with
a size of $100 mn. By construction, we have3 F̂− (t+ 1) ≤ 100, but we can imagine that
F̂+ (t+ 1) > 100. The fund size can double or triple, in particular when the investment
fund is young and small.

Nevertheless, the use of net flows is not foolish since the true liability risk of the fund is
on the net flows. If the fund manager faces a large redemption, which is offset by a large
subscription, there is no liquidity risk. The issue is that the use of net flows is difficult
to justify in stress periods. In these cases, inflows generally disappear and the probability
distribution of R ± (t) may not reflect the liability risk in a stress testing framework. For
example, let us consider an asset class that has experienced a bull market over the last
three years. Certainly, we will mainly observe positive net flows and a very small number
of observations with negative net flows. We may think that these data are not relevant for
building stress scenarios. More generally, if an asset manager uses net flow rates for stress
testing purposes, only the observations during historical stress periods are relevant, meaning
that the calibration is based on a small fraction of the dataset.

In fact, the use of net flows is motivated by other considerations. Indeed, the computation
of R (t) requires us to know the outflows F− (t) exactly. Moreover, as we will see later, R (t)
must be computed for all the investor categories that are present in the fund (retail, private
banking, institutional, etc.). This implies in-depth knowledge of the fund’s balance sheet
liability, meaning that the asset manager must have a database with all the flows of all the
investors on a daily basis. From an industrial point of view, this is a big challenge in terms of
IT systems between the asset manager and the custodian. This is why many asset managers
don’t have the disaggregated information on the liability flows. An alternative measure is
to compute the net redemption rate, which corresponds to the negative part of the net flow
rate:

R − (t) = max

(
0,− F (t)

TNA (t)

)
It has the good mathematical property that R − (t) ∈ [0, 1]. Indeed, we have:

R − (t) = max

(
0,
F− (t)−F+ (t)

TNA (t)

)
(7)

3In order to simplify the calculus, we do not take into account the daily performance of the fund.
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and its maximum value is reached when F− (t) = TNA (t) and F+ (t) = 0. Moreover, we
notice that the net redemption rate is equal to the gross redemption rate when there are no
inflows:

R − (t) = max

(
0,
F− (t)

TNA (t)

)
= R (t)

Otherwise, we have:
R − (t) < R (t)

From a risk management point of view, it follows that redemption shocks based on net re-
demptions may be underestimated compared to redemption shocks based on gross redemp-
tions. However, we will see later that the approximation R (t) ≈ R − (t) may be empirically
valid under some conditions.

2.2.3 Liability classification

The computation of redemption rates only makes sense if they are homogeneous, coherent
and comparable. Let us assume that we compute the redemption rate R (t) at the level of
the asset management company, and we have the historical data for the last ten years. By
assuming that there are 260 market days per year, we have a sample of 2 600 redemption
rates. We can compute the mean, the standard deviation, different quantiles, etc. Does it
help with building a stress scenario for a mutual fund? Certainly not, because redemptions
depend on the specific investor behavior at the fund level and not on the overall investor
behavior at the asset manager level. For instance, we can assume that an investor does
not have the same behavior if he is invested in an equity fund or a money market fund.
We can also assume that the redemption behavior is not the same for a central bank, a
retail investor, or a pension fund. Therefore, we must build categories that correspond
to homogenous behaviors. Otherwise, we will obtain categories, whose behavior is non-
stationary. But, without the stationarity property, risk measurement is impossible and
stress testing is a hazardous exercise.

Therefore, liability categorization is an important step before computing redemption
rates. For instance, ESMA (2019) considers four factors regarding investor behavior: in-
vestor category, investor concentration, investor location and investor strategy. Even though
the last three factors are significant, the most important factor remains the investor type.
For instance, AMF (2017, page 12) gives an example with the following investor types: large
institutional (tier one), small institutional (tier two), investment (or mutual) fund, private
banking network and retail investor. Other categories can be added: central bank, sovereign,
corporate, third-party distributor, employee savings plan, wealth management, etc. More-
over, it is also important to classify funds into homogeneous buckets such as balanced funds,
bond funds, equity funds, etc. An example of an investor/fund categorization matrix is
given in Table 1.

Remark 2 The granularity of the investor/fund classification is an important issue. It is
important to have a very detailed classification at the level of the database in order to group
categories together from a computational point of view. In order to calibrate stress scenarios,
we must have a sufficient number of observations in each cell of the classification matrix.
Let us for instance consider the case of central banks. We can suppose that their behavior
is very different to the other investors. Therefore, it is important for an asset manager to
be aware of the liabilities with respect to central banks. Nevertheless, there are few central
banks in the world, meaning we may not have enough observations for calibrating some cells
(e.g. central bank/equity or central bank/real asset), and we have to merge some cells (across
investor and fund categories).
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Table 1: An example of two-dimensional categorization matrix
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2.2.4 The arithmetic of redemption rates

We consider a fund. We note TNAi (t) the assets under management of the investor i for
this fund. By definition, we have:

TNAi (t) = Ni (t) ·NAV (t)

where NAV (t) is the net asset value of the fund and Ni (t) is the number of units held by
the investor i for the fund. The fund’s assets under management are equal to:

TNA (t) =
∑
k

TNA(k) (t)

where TNA(k) (t) =
∑
i∈IC(k)

TNAi (t), and IC(k) is the k th investor category. It follows

that:

TNA (t) =
∑
k

∑
i∈IC(k)

TNAi (t)

=
∑
k

∑
i∈IC(k)

Ni (t) ·NAV (t)

= N (t) ·NAV (t)

where N (t) =
∑
k

∑
i∈IC(k)

Ni (t) is the total number of units in issue. We retrieve the

definition of the assets under management (or total net assets) at the fund level. We can
obtain a similar breakdown for the outflows4:

F− (t) =
∑
k

∑
i∈IC(k)

F−i (t) =
∑
k

F−(k) (t)

The redemption rate for the investor category IC(k) is then equal to:

R (k) (t) =
F−(k) (t)

TNA(k) (t)
(8)

4We have F−k (t) =
∑
i∈IC(k)

F−i (t).
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We deduce that the relationship between the investor-based redemption rates and the fund-
based redemption rate is:

R (t) =
F− (t)

TNA (t)

=

∑
k F
−
(k) (t)

TNA (t)

=

∑
k TNA(k) (t) · R (k) (t)

TNA (t)

=
∑
k

ω(k) (t) · R (k) (t) (9)

where ω(k) (t) represents the weights of the investor category IC(k) in the fund:

ω(k) (t) =
TNA(k) (t)

TNA (t)

Equation (9) is very important, because it shows that the redemption rate at the fund level
is a weighted-average of the redemption rates of the different investor categories.

Let us now consider different funds. We note R (f,k) (t) as the redemption rate of the
investor category IC(k) for the fund f at time t. By relating the fund f to its fund category
FC(j), we obtain a database of redemption rates by investor category IC(k) and fund category
FC(j):

DB(j,k) (T ) =
{

R (f,k) (t) : f ∈ FC(j), t ∈ T
}

DB(j,k) (T ) is then the sample of all redemption rates of the investor category IC(k) for all the
funds that fall into the fund category FC(j) during the observation period T . We notice that
DB(j,k) (t) does not have a unique element for a given date t because we generally observe
several redemptions at the same date for different funds and the same investor category.

2.3 Calibration of historical redemption scenarios

The key parameter for computing the redemption flows is the redemption rate, which is
defined for an investor category and a fund category. It is not calibrated at the fund level,
because past redemption data for a given specific fund are generally not enough to obtain
a robust estimation. This is why we have pooled redemption data as described in the
previous paragraph. Using these data, we can estimate the probability distribution F of the
redemption rate and define several statistics that can help to build stress scenarios.

2.3.1 Data

In what follows, we consider the liability data provided by Amundi Asset Management from
January, 1st 2019 to August, 19th 2020. The database is called ‘Amundi Cube Database’ and
contains 1 617 403 observations if we filter based on funds with assets under management
greater than e5 mn. The breakdown by investor categories5 is given in Table 40 on page 92.
The number of observations is 464 399 for retail investors, 310 452 for third-party distribu-
tors, 267 600 for institutionals, etc. The investor category which is the smallest is central
banks with 15 523 observations. In terms of fund categories, bond, equity and balanced
funds dominate with respectively 452 942, 436 401 and 361 488 observations. The smallest

5The Amundi database contains 13 investor and 13 fund categories.
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categories are private loan funds and real estate funds. In terms of classification matrix, the
largest matrix cells are retail/balanced, third-party distributor/equity, retail/equity, insti-
tutional/bond, retail/bond, third-party distributor/bond, retail/structured, etc.

Remark 3 In what follows, we apply a filter that consists in removing observations that
corresponds to dedicated mutual funds (FCP and SICAV) and mandates (see Table 41 on
page 93). The motivation is to focus on mutual funds with several investors, and this issue
will be extensively discussed in Section 4.1.3 on page 44.

2.3.2 Net flow, net redemption and gross redemption rates

Figure 4: Retail investor
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We first begin by comparing the gross redemption rate R , the net flow rate R ± and the
net redemption rate R −. Some results are given in Figures 4 and 5 for retail and insurance
investors and bond and equity funds. In the case of insurance companies, we notice that the
approximation R ≈ R − ≈ −R ± is valid when the redemption rate is greater than 20%. This
is not the case for retail investors, where we observe that some large redemptions may be
offset by large subscriptions6. The difference between retail and insurance categories lies in
the investor concentration. When an investor category is concentrated, there is a low prob-
ability that this offsetting effect will be observed. This is not the case when the granularity
of the investor category is high. We also observe that the approximation R ≈ R − ≈ −R ±

depends on the fund category. For instance, it is not valid for money market funds. The
reason is that we generally observe subscriptions in a bull market and redemptions in a bear
market when the investment decision mainly depends on the performance of the asset class.
This is why large redemptions and subscriptions tend to be mutually exclusive (in the math-
ematical sense) in equity or bond funds. The mutual exclusivity property is more difficult

6We observe the same phenomenon when we consider the data of third-party distributors (see Figure 37
on page 94).
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Figure 5: Insurance
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Figure 6: Money market fund
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to observe for money market, enhanced treasury or balanced funds, because their inflows
are less dependent on market conditions. We conclude that net redemption rates may be
used in order to perform stress scenarios under some conditions regarding the concentration
of the investor category and the type of mutual fund.

2.3.3 Statistical risk measures

For a given investor/fund category, we note F as the probability distribution of the redemp-
tion rate. We can define several risk measures (Roncalli, 2020, pages 62-63):

• the mean:

M =

∫ 1

0

xdF (x)

• the standard deviation-based risk measure:

SD (c) = M + c

∫ 1

0

(
x−M2

)
dF (x)

• the quantile (or the value-at-risk) at the confidence level α:

Q (α) = F−1 (α)

• the average beyond the quantile (or the conditional value-at-risk):

C (α) = E
[
R | R ≥ F−1 (α)

]
The choice of a risk measure depends on its use. For instance, M can be used by the fund
manager daily, because it is the expected value of the daily redemption rate. If the fund
manager prefers to have a more conservative measure, he can use SD (1). M and SD (c) make
sense in normal periods from a portfolio management perspective, but they are less relevant
in a stress period. This is why it is better to use Q (α) and C (α) from a risk management
point of view. In the asset management industry, the consensus is to set α = 99%.

In Table 2, we have reported the values of M, Q (99%) and C (99%) by considering the
empirical distribution of gross redemption rates by client category. We do not consider the
SD-measure because we will see later that there is an issue when it is directly computed
from a sample of historical redemption rates. On average, the expected redemption rate is
roughly equal to 20 bps. It differs from one client category to another, since the lowest value
of M is observed for central banks whereas the highest value of M is observed for corporates.
The 99% value-at-risk is equal to 3.5%. This means that we observe a redemption rate
of 3.5% every 100 days, that is every five months. Again, there are some big differences
between the client categories. The riskiest category is corporate followed by sovereign and
auto-consumption. If we focus on the conditional value-at-risk, we are surprised by the high
values taken by C (99%). If we consider all investor categories, C (99%) is more than 15%,
and the ratio R (99%) between C (99%) and Q (99%) is equal to 4.51. This is a very high
figure since this ratio is generally less than 2 for market and credit risks. For example,
in the case of a Gaussian distribution N

(
0, σ2

)
, the ratio R (α) between the conditional

value-at-risk and the value-at-risk is equal to:

R (α) =
C (α)

Q (α)
=

φ
(
Φ−1 (α)

)
(1− α) Φ−1 (α)
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This ratio is respectively equal to 1.37 and 1.15 when α = 90% and α = 99%. Moreover,
Roncalli (2020, page 118) showed that it is a decreasing function of α and:

lim
α→1−

R (α) = 1

We deduce that the ratio is lower than 1.5 for reasonable values of the confidence level α.
Therefore, the previous figure R (99%) = 4.51 indicates that redemption risk is more skewed
than market and credit risks.

Table 2: Redemption statistical measures in % by investor category

Client M Q (99%) C (99%) R (99%)
Auto-consumption 0.38 7.44 24.86 3.34
Central bank 0.04 0.00 4.38 ∞
Corporate 0.54 12.71 28.21 2.22
Corporate pension fund 0.13 0.50 13.06 26.22
Employee savings plan 0.06 1.13 4.86 4.30
Institutional 0.27 5.11 22.79 4.46
Insurance 0.26 5.25 21.24 4.05
Other 0.23 3.41 20.22 5.92
Retail 0.15 1.92 9.18 4.77
Sovereign 0.45 8.28 39.85 4.81
Third-party distributor 0.23 3.90 13.72 3.52
Total 0.22 3.50 15.79 4.51

Table 3 reports the statistical measures by fund category. Again, we observe some big
differences. Money market and enhanced treasury funds face a high redemption risk followed
by bond and equity funds. This is normal because treasury funds can be converted to cash
very quickly, investors are motivated to redeem these funds when they need cash, and their
holding period is short. At the global level, we also notice that the redemption behavior
is similar between bond and equity funds. For instance, their 99% value-at-risk is close
to 3% (compared to 6% for the enhanced treasury category and 22% for money market
funds). Another interesting result is the lower redemption rate of balanced funds compared
to bond and equity funds. This result is normal because balanced funds are more diversified.
Therefore, investors in balanced funds are more or less protected by a bond crisis or an equity
crisis. Finally, structured funds are the least exposed category to redemption risk, because
they generally include a capital guarantee or protection option.

Table 3: Redemption statistical measures in % by fund category

Fund M Q (99%) C (99%) R (99%)
Balanced 0.14 1.77 8.14 4.61
Bond 0.20 3.18 14.23 4.47
Enhanced treasury 0.40 6.30 31.15 4.94
Equity 0.18 2.68 12.94 4.84
Money market 1.06 21.76 46.13 2.12
Other 0.11 1.19 9.32 7.84
Structured 0.04 0.45 3.52 7.88
Total 0.22 3.50 15.79 4.51
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Table 4: Historical M-statistic in % by investor/fund category

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 0.27 0.36 0.65 0.30 1.58 0.18 0.38
Central bank 0.01 0.06 0.11 0.04
Corporate 0.08 0.15 0.27 0.25 1.52 0.07 0.54
Corporate pension fund 0.17 0.05 0.10 0.10 0.55 0.00 0.13
Employee savings plan 0.03 0.05 0.13 0.06 0.06 0.08 0.06
Institutional 0.13 0.16 0.64 0.18 1.47 0.06 0.27
Insurance 0.17 0.15 0.12 0.16 0.90 0.08 0.26
Other 0.08 0.10 0.33 0.21 0.76 0.02 0.23
Retail 0.15 0.14 0.26 0.16 0.91 0.07 0.04 0.15
Sovereign 0.01 0.01 0.16 0.19 1.91 0.06 0.45
Third-party distributor 0.12 0.24 0.67 0.19 0.92 0.28 0.08 0.23
Total 0.14 0.20 0.40 0.18 1.06 0.11 0.04 0.22

Table 5: Historical Q-statistic in % by investor/fund category

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 2.93 7.57 12.62 5.46 25.98 3.23 7.44
Central bank 0.00 0.00 0.12 0.00
Corporate 0.30 1.58 4.90 3.88 24.14 0.00 12.71
Corporate pension fund 0.39 0.05 1.30 0.03 13.09 0.00 0.50
Employee savings plan 1.06 1.70 2.35 1.08 2.51 0.25 1.13
Institutional 0.84 1.94 8.68 3.10 34.82 0.00 5.11
Insurance 0.32 0.21 3.87 0.50 18.39 0.00 5.25
Other 0.73 0.56 2.40 2.20 14.75 0.05 3.41
Retail 2.01 1.50 4.72 1.65 18.36 1.17 0.45 1.92
Sovereign 0.11 0.14 7.98 0.22 66.36 0.00 8.28
Third-party distributor 1.32 4.59 11.13 3.38 14.66 3.96 1.11 3.90
Total 1.77 3.18 6.30 2.68 21.76 1.19 0.45 3.50

Table 6: Historical C-statistic in % by investor/fund category

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 21.08 23.37 40.73 21.24 54.96 15.50 24.86
Central bank 1.28 6.05 10.11 4.38
Corporate 7.31 14.98 22.80 22.48 38.37 6.52 28.21
Corporate pension fund 17.22 5.14 9.24 9.58 32.33 0.00 13.06
Employee savings plan 2.48 3.16 10.60 4.91 4.97 7.91 4.86
Institutional 10.99 15.40 62.30 16.27 58.10 6.26 22.79
Insurance 16.35 14.65 10.59 15.32 37.28 7.62 21.24
Other 7.45 9.84 32.56 18.61 46.88 2.17 20.22
Retail 7.02 8.34 15.99 8.95 44.38 5.03 3.03 9.18
Sovereign 0.39 1.35 15.20 17.97 86.47 5.73 39.85
Third-party distributor 6.69 14.53 42.24 11.22 32.68 20.16 6.85 13.72
Total 8.14 14.23 31.15 12.94 46.13 9.32 3.52 15.79

(1) = balanced, (2) = bond, (3) = enhanced treasury, (4) = equity, (5) = money market, (6) = other, (7)

= structured, (8) = total
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The historical statistical measures7 for the classification matrix are given in Tables 4,
5 and 6. We notice that the two dimensions are important, since one dimension does not
dominate the other. This means that a low-risk (resp. high-risk) investor category tends
to present the lowest (resp. highest) redemption statistics whatever the fund category. In
addition, the ranking of redemption statistics between fund categories is similar whatever
the investor category. Nevertheless, we observe some exceptions and new stylized facts. For
instance, we have previously noticed that bond and equity funds have similar redemption
rates on average. This is not the case for the corporate, corporate pension fund and sovereign
categories, for which historical C-statistics are more important for equity funds than bond
funds. For the corporate pension fund category, the risk is also higher for balanced funds
than for bond funds.

2.3.4 Defining historical stress scenarios

According to BCBS (2017, page 60), a historical stress scenario “aims at replicating the
changes in risk factor shocks that took place in an actual past episode”. If we apply this
definition to the redemption risk, the computation of the historical stress scenario is simple.
First, we have to choose a stress period T stress and second, we compute the maximum
redemption rate:

X
(
T stress

)
= max
t∈T stress

R (t)

For example, if we apply this definition to our study period, we obtain the results given
in Table 7. We recall that the study period runs from January 2019 to August 2020 and
includes the Coronavirus pandemic crisis, which was a redemption stress period. We observe
that the X-statistic is generally equal to 100%! This is a big issue, because it is not helpful
to consider that liquidity stress testing of liabilities leads to a figure of 100%. The problem is
that the X-statistic is not adapted to redemption risk. Let us consider an investor category
IC(k) and a fund category FC(j). The X-statistic is computed by taking the maximum of
all redemption rates for all funds that belong to the fund category:

X(j,k)

(
T stress

)
= max
t∈T stress

{
R (f,k) (t) : f ∈ FC(j)

}
If there is one fund with only one investor and if this investor redeems 100%, X(j,k) (T stress)
is equal to 100%. However, the asset manager does not really face a liquidity risk in this
situation, because there is no other investor in this fund. So, the other investors are not
penalized. We have excluded this type of fund. However, we face a similar situation in many
other cases: small funds with a large fund holder, funds with a low number of unitholders,
etc. Moreover, this type of approach penalizes big asset managers, which have hundreds of
funds. Let us consider an example. For a given investor/fund category, the fund manager A
has 100 funds of $100 million, whereas the fund manager B has one fund of $10 billion. From
a theoretical point of view, A and B face the same redemption risk, since they both manage
$10 billions for the same investor/fund category. However, it is obvious that XA � XB ,
meaning that the historical stress scenario for the fund manager A will be much higher than
the historical stress scenario for the fund manager B. This is just a probabilistic counting
principle as shown in Appendix A.1 on page 78. If we consider the previous example, the
historical stress scenario for the fund manager A is larger than 99.9% when the historical
stress scenario for the fund manager B is larger than 6.68% (see Figure 38 on page 95).
More generally, the two stress scenarios are related in the following manner:

Xn = 1− (1− X1)
n

where X1 is the X-measure for one fund and Xn is the X-measure for n funds.

7They are not calculated if the number of observations is less than 200.
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Table 7: Historical X-statistic in % by investor/fund category

(1) (2) (3) (4) (5) (6) (7)
Auto-consumption 100.00 100.00 100.00 100.00 99.65 100.00
Central bank 9.17 29.60 50.00
Corporate 78.64 83.44 100.00 94.14 97.72 100.00
Corporate pension fund 100.00 100.00 15.79 100.00 94.78 0.00
Employee savings plan 50.79 15.35 100.00 100.00 14.71 100.00
Institutional 99.09 100.00 100.00 100.00 100.00 100.00
Insurance 99.99 100.00 56.96 100.00 99.93 77.13
Other 50.00 100.00 100.00 100.00 100.00 100.00
Retail 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Sovereign 5.44 21.12 24.91 100.00 100.00 100.00
Third-party distributor 100.00 100.00 100.00 100.00 97.04 100.00 97.98

(1) = balanced, (2) = bond, (3) = enhanced treasury, (4) = equity, (5) = money market, (6) = other, (7)

= structured

Remark 4 Another approach consists in computing the average redemption rate daily:

R (j,k) (t) =
∑

f∈FC(j)

TNA(f)∑
f∈FC(j) TNA(f)

R (f,k) (t)

where the weights are proportional to the size of funds f that belong to the jth fund category
FC(j). In this case, we have:

X(j,k)

(
T stress

)
= max
t∈T stress

R (j,k) (t)

This method does not have the previous drawback, but it has other shortcomings such as an
information loss. However, the biggest disadvantage is that the historical stress scenario is
generally based on the largest fund, except when the funds have similar size.

Since X-measures can not be used to build redemption shocks, we propose using Q or
C-measures. Q (99%) is the daily value-at-risk at the 99% confidence level. This means
that its return period is 100 days. On average, we must observe that redemption shocks are
greater than Q (99%) two and a half times per year. We can also use the conditional value-
at-risk C (99%) if we want more severe redemption shocks. The drawback of C (99%) is that
we don’t know the return period of such event. However, it does make sense because it is a
very popular measure in risk management, and it is well received by regulatory bodies and
supervisors (Roncalli, 2020). Nevertheless, we must be cautious about the computed figures
obtained in Tables 5 and 6 on page 18. For example, we don’t have the same confidence
level between the matrix cells, because the estimates are not based on the same number
of observations. In the case of retail investors or third-party distributors, we generally use
a huge number of observations whereas this is not the case with the other categories. In
Table 8, we give an example of confidence level codification. We see that some cells are not
well estimated since the number of observations is less than 10 000. For some of them, the
number of observations is very low (less than 200), implying that the confidence on these
estimates is very poor.

Therefore, the estimated values cannot be directly used as redemption shocks. However,
they help risk managers and business experts to build redemption shocks. Starting from
these figures, they can modify them and build a table of redemption shocks that respect
the risk coherency Cinvestor between investor categories and the risk coherency Cfund between
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Table 8: Confidence in estimated values with respect to the number of observations

(1) (2) (3) (4) (5) (6) (7)
Auto-consumption • • • • • • • • • • • • • • • • ◦ ◦ ◦
Central bank • • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Corporate • • • • • • • • • • • • ◦ ◦ ◦
Corporate pension fund • • • • • • • • • • • ◦ ◦ ◦
Employee savings plan • • • • • • • • • • • ◦ ◦ ◦ • •
Institutional • • • • • • • • • • • • • • • ◦ ◦ ◦
Insurance • • • • • • • • • • • • • • ◦ ◦ ◦
Other • • • • • • • • • • • • • • ◦ ◦ ◦
Retail • • • • • • • • • • • • • • • • • • • •
Sovereign • • • • • • • • • • • ◦ ◦ ◦
Third-party distributor • • • • • • • • • • • • • • • • • • •

◦ ◦ ◦ 0− 10, ◦ ◦ 11− 50, ◦ 51− 200, • 201− 1 000, • • 1 001− 10 000, • • • +10 000

fund categories8. The risk coherency Cinvestor means that if one investor category is assumed
to be riskier than another, the global redemption shock of the first category must be greater
than the global redemption shock of the second category:

IC(k1) � IC(k2) ⇒ S(k1) ≥ S(k2)

For example, if we consider the Q-measure, we can propose the following risk ordering:

1. central bank, corporate pension fund

2. employee savings plan, retail

3. other, third-party distributor

4. institutional, insurance

5. auto-consumption, corporate, sovereign

In this case, the redemption shock S(j,k) for the (j, k)-cell depends on the global redemption
shock S(k) for the investor category IC(k). For instance, we can set the following rule of
thumb:

S(j,k) = m(j) · S(k) (10)

where m(j) is the multiplicative factor of the fund category FC(j). In a similar way, the risk
coherency Cfund means that if one fund category is assumed to be riskier than another, the
global redemption shock of the first category must be greater than the global redemption
shock of the second category:

FC(j1) � FC(j2) ⇒ S(j1) ≥ S(j2)

For example, if we consider the Q-measure, we can propose the following risk ordering:

1. structured

2. balanced, other

3. bond, equity

8For instance, if we consider the sovereign category, it is difficult to explain the big difference of C (99%)
between bond and equity funds
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4. enhanced treasury

5. money market

The redemption shock S(j,k) for the (j, k)-cell depends then on the redemption shock S(j)
for the fund category IC(j). Again, we can set the following rule of thumb:

S(j,k) = m(k) · S(j) (11)

where m(k) is the multiplicative factor of the investor category IC(k). We can also combine
the two rules of thumb and we obtain the mixed rule:

S(j,k) =
m(k) · S(j) +m(j) · S(k)

2
(12)

Let us illustrate the previous rules of thumb by considering the Q-measure. Table 9 gives an
example of S(j,k) by considering the risk coherency9 Cinvestor, whereas Table 10 corresponds
to the risk coherency10 Cfund. The mixed rule is reported in Table 11. These figures can then
be modified by risk managers and business experts by considering the specificity of some
matrix cells. For instance, it is perhaps not realistic to have the same redemption shock
for balanced funds between auto-consumption and corporates. Moreover, these redemption
shocks can also be modified by taking into account the C-measure. For instance, the con-
ditional value-at-risk for bond funds is much higher for third-party distributors than for
sovereigns. Perhaps we can modify the redemption shock of 3.3% and have a larger value
for third-party distributors. It is even more likely that the estimated values of Q and C
are based on 75 591 observations for the third-party distributor category, and 2 261 for the
sovereign category. Therefore, we can consider that the estimated value of 4.59% obtained
in Table 5 on page 18 does make more sense than the proposed value of 3.3% obtained in
Table 11 for the third-party distributor/bond matrix cell. In a similar way, we can consider
that the estimated value of 0.14% does make less sense than the proposed value of 7.0% for
the sovereign/bond matrix cell.

The previous analysis shows that building redemption shocks in a stress testing frame-
work is more of an art than a science. A pure quantitative approach is dangerous because
it is data-driven and it does not respect some coherency properties. However, historical
statistics are very important because they provide an anchor point for risk managers and
business experts in order to propose stress scenarios that are satisfactory from regulatory,
risk management and fund management points of view. Historical data are also important
because they help to understand the behavior of clients. It is different from one fund cate-
gory to another, it also depends on the granularity of the classification, it may depend on
the time period, etc. In what follows, we complete this pure historical analysis using more
theoretical models. These models are important, because an historical approach is limited
when we want to understand contagion effects between investors, correlation patterns be-
tween funds, time properties of redemption risk, the impact of the holding period, etc. The
idea is not to substitute one model with another, but to rely on several approaches, because
there is not just one single solution to the liability stress testing problem.

9We use the following values: S(k) = 0.5% for central banks and corporate pension funds, S(k) = 2%
for employee savings plans and retail, S(k) = 3.5% for other and third-party distributors, S(k) = 5% for
institutionals and insurance companies, and S(k) = 8% for auto-consumption, corporates and sovereigns.
For the multiplication factor, we assume that m(j) = 0.25 for structured, m(j) = 0.5 for balanced and other,
m(j) = 1 for bond and equity, m(j) = 1.75 for enhanced treasury, and m(j) = 6 for money market.

10We use the following values: S(j) = 0.5% for structured, S(j) = 1.5% for balanced and other, S(j) =
3% for bond and equity, S(j) = 5% for enhanced treasury, and S(j) = 20% for money market. For the
multiplication factor, we assume that m(k) = 0.25 for central banks and corporate pension funds, m(k) = 0.5
for employee savings plans and retail, m(k) = 1 for other and third-party distributors, m(k) = 1.5 for
institutionals and insurance companies, and m(k) = 2 for auto-consumption, corporates and sovereigns.
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Table 9: Redemption shocks in % computed with the rule of thumb (10)

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 4.0 8.0 14.0 8.0 48.0 4.0 2.0 8.0
Central bank 0.3 0.5 0.9 0.5 3.0 0.3 0.1 0.5
Corporate 4.0 8.0 14.0 8.0 48.0 4.0 2.0 8.0
Corporate pension fund 0.3 0.5 0.9 0.5 3.0 0.3 0.1 0.5
Employee savings plan 1.0 2.0 3.5 2.0 12.0 1.0 0.5 2.0
Institutional 2.5 5.0 8.8 5.0 30.0 2.5 1.3 5.0
Insurance 2.5 5.0 8.8 5.0 30.0 2.5 1.3 5.0
Other 1.8 3.5 6.1 3.5 21.0 1.8 0.9 3.5
Retail 1.0 2.0 3.5 2.0 12.0 1.0 0.5 2.0
Sovereign 4.0 8.0 14.0 8.0 48.0 4.0 2.0 8.0
Third-party distributor 1.8 3.5 6.1 3.5 21.0 1.8 0.9 3.5
Total 1.8 3.5 6.1 3.5 21.0 1.8 0.9 3.5

Table 10: Redemption shocks in % computed with the rule of thumb (11)

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 3.0 6.0 10.0 6.0 40.0 3.0 1.0 7.0
Central bank 0.4 0.8 1.3 0.8 5.0 0.4 0.1 0.9
Corporate 3.0 6.0 10.0 6.0 40.0 3.0 1.0 7.0
Corporate pension fund 0.4 0.8 1.3 0.8 5.0 0.4 0.1 0.9
Employee savings plan 0.8 1.5 2.5 1.5 10.0 0.8 0.3 1.8
Institutional 2.3 4.5 7.5 4.5 30.0 2.3 0.8 5.3
Insurance 2.3 4.5 7.5 4.5 30.0 2.3 0.8 5.3
Other 1.5 3.0 5.0 3.0 20.0 1.5 0.5 3.5
Retail 0.8 1.5 2.5 1.5 10.0 0.8 0.3 1.8
Sovereign 3.0 6.0 10.0 6.0 40.0 3.0 1.0 7.0
Third-party distributor 1.5 3.0 5.0 3.0 20.0 1.5 0.5 3.5
Total 1.5 3.0 5.0 3.0 20.0 1.5 0.5 3.5

Table 11: Redemption shocks in % computed with the rule of thumb (12)

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 3.5 7.0 12.0 7.0 44.0 3.5 1.5 7.5
Central bank 0.3 0.6 1.1 0.6 4.0 0.3 0.1 0.7
Corporate 3.5 7.0 12.0 7.0 44.0 3.5 1.5 7.5
Corporate pension fund 0.3 0.6 1.1 0.6 4.0 0.3 0.1 0.7
Employee savings plan 0.9 1.8 3.0 1.8 11.0 0.9 0.4 1.9
Institutional 2.4 4.8 8.1 4.8 30.0 2.4 1.0 5.1
Insurance 2.4 4.8 8.1 4.8 30.0 2.4 1.0 5.1
Other 1.6 3.3 5.6 3.3 20.5 1.6 0.7 3.5
Retail 0.9 1.8 3.0 1.8 11.0 0.9 0.4 1.9
Sovereign 3.5 7.0 12.0 7.0 44.0 3.5 1.5 7.5
Third-party distributor 1.6 3.3 5.6 3.3 20.5 1.6 0.7 3.5
Total 1.6 3.3 5.6 3.3 20.5 1.6 0.7 3.5

(1) = balanced, (2) = bond, (3) = enhanced treasury, (4) = equity, (5) = money market, (6) = other, (7)

= structured, (8) = total
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3 The frequency-severity modeling approach

The direct computation of value-at-risk, conditional value-at-risk and other statistics from
historical redemption rates is particularly problematic. Indeed, we observe a large proportion
of zeros in the redemption rate database. On average, we have 68.9% of zeros, this proportion
reaches 99.5% for some investors and it is more than 99.9% for some matrix cells. Therefore,
the data of redemption rates are “clumped-at-zero”, meaning that the redemption rate is a
semi-continuous random variable, and not a continuous random variable (Min and Agresti,
2002). This discontinuity is a real problem when estimating the probability distribution F.
This is why we consider that the redemption rate is not the right redemption risk factor. We
prefer to assume that the redemption risk is driven by two dimensions or two risk factors:

1. the redemption frequency, which measures the occurrence E of the redemption;

2. the redemption severity R ?, which measures the amount of the redemption.

It is obvious that this modeling approach finds its root in other risk models that deal with
extreme events or counting processes, such as operational and insurance risks (Roncalli,
2020).

3.1 Zero-inflated models

In the frequency-severity approach, we distinguish the redemption event E that indicates if
there is a redemption, and the redemption amount R ? that measures the redemption rate
in case of a redemption. An example is provided in Figure 7. The probability to observe
a redemption is equal to 5%, and in the case of a redemption, the amount can be 2%, 5%,
15% and 50%. It follows that the redemption rate is the convolution of two risk factors.

Figure 7: Zero-inflated modeling of the redemption risk
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Figure 8: Zero-inflated probability density function
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3.1.1 Zero-inflated probability distribution

We assume that the redemption event E follows a bernoulli distribution B (p), whereas the
redemption severity11 R ? follows a continuous probability distribution G. We have:

Pr {E = 1} = Pr {R > 0} = p

and:
Pr {R ≤ x | E = 1} = G (x)

We deduce that the unconditional probability distribution of the redemption rate is given
by:

F (x) = Pr {R ≤ x}
= 1 {x ≥ 0} · (1− p) + 1 {x > 0} · p ·G (x)

Its density probability function is singular at x = 0:

f (x) =

{
1− p if x = 0
p · g (x) otherwise

where g (x) is the density function of G. Some examples are provided in Figure 8 when
p = 5%. We observe that the density function is composed of a dirac measure and a
continuous function. In the case of G1, the distribution is right-skewed, meaning that the
probability to observe small redemptions is high. In the case of G2, we have a bell curve,
meaning that the redemption amount is located around the mean if there is a redemption.
Finally, the distribution is left-skewed in the case of G3, meaning that the probability to
observe high redemptions is high if there is of course a redemption, because we recall that
the probability to observe a redemption is only equal to 5%.

11It is defined as the non-zero redemption rate.
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From a probabilistic point of view, the redemption rate is then the product of the re-
demption event and the redemption severity:

R = E·R ?

In Appendix A.2.1 on page 78, we show that:

E [R ] = pE [R ?] (13)

and:
σ2 (R ) = pσ2 (R ?) + p (1− p)E2 [R ?] (14)

Moreover, the skewness coefficient is equal to:

γ1 (R ) =
ϑ1 (R ?)

(pσ2 (R ?) + p (1− p)E2 [R ?])
3/2

(15)

where:

ϑ1 (R ?) = pγ1 (R ?)σ3 (R ?) + 3p (1− p)σ2 (R ?)E [R ?] +

p (1− p) (1− 2p)E3 [R ?]

For the excess kurtosis coefficient, we obtain:

γ2 (R ) =
ϑ2 (R ?)

(pσ2 (R ?) + p (1− p)E2 [R ?])
2 (16)

where:

ϑ2 (R ?) = (pγ2 (R ?) + 3p (1− p))σ4 (R ?) + 4p (1− p) γ1 (R ?)σ3 (R ?)E [R ?] +

6p (1− p) (1− 2p)σ2 (R ?)E2 [R ?] + p (1− p)
(
1− 6p+ 6p2

)
E4 [R ?]

In Figure 9 we have reported the moments of the redemption rate R by considering the
following set of parameters:

#1 E [R ?] = 40%, σ (R ?) = 20%, γ1 (R ?) = 0 and γ2 (R ?) = 0;

#2 E [R ?] = 20%, σ (R ?) = 20%, γ1 (R ?) = 0 and γ2 (R ?) = 0;

#3 E [R ?] = 40%, σ (R ?) = 40%, γ1 (R ?) = −1 and γ2 (R ?) = 0;

#4 E [R ?] = 40%, σ (R ?) = 20%, γ1 (R ?) = 0 and γ2 (R ?) = 1.

We notice that the parameter values of R ? have a major impact on the statistical moments,
but the biggest effect comes from the frequency probability p. Indeed, we verify the following
properties: {

limp→0+ E [R ] = limp→0+ σ (R ) = 0
limp→0+ γ1 (R ) = limp→0+ γ2 (R ) =∞ (17)

This means that the redemption risk is very high for small frequency properties. In this
case, the expected redemption rate and its standard deviation are very low, but skewness
and kurtosis risk are very high! This creates a myopic situation where the asset manager
may have the feeling that redemption risk is not a concern because of historical data. Indeed,
when p is low, the probability of observing large redemption rates is small, implying that they
are generally not observed in the database. For instance, let us consider two categories that
have the same redemption severity distribution, but differ from their redemption frequency
probability. One has a probability of 50%, the other has a probability of 1%. It is not
obvious that the second category experienced sufficient severe redemption events such that
the historical data are representative of the severity risk.
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Figure 9: Statistical moments of the redemption rate R in zero-inflated models
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3.1.2 Statistical risk measures of the zero-inflated model

For the M-measure, we have:
M = pE [R ?] (18)

The formula of the value-at-risk is equal to:

Q (α) =

 0 if p ≤ 1− α

G−1
(
α+ p− 1

p

)
otherwise

(19)

We notice that computing the quantile α of the unconditional distribution F is equivalent
to compute the quantile αG of the severity distribution G:

αG = max

(
0,
α+ p− 1

p

)
The relationship between p, α and αG is illustrated in Figure 39 on page 95. Let us focus
on the 99% value-at-risk:

Q (99%) =

 0 if p ≤ 1%

G−1
(
p− 1%

p

)
otherwise

If the redemption frequency probability is greater than 1%, the value-at-risk corresponds
to the quantile (p− 1%) /p. The relationship between p and αG = (p− 1%) /p is shown
in Figure 10. If p is greater than 20%, αG is greater than 95%. If p is less than 5%, we
observe a high curvature of the relationship, implying that we face a high estimation risk.
For instance, if p is equal to 1.5%, the 99% value-at-risk corresponds to the quantile 3.33%
of the redemption severity. If p becomes 2.0%, the 99% value-at-risk is then equal to the
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quantile 50% of the redemption severity! Therefore, there is a high sensitivity of the 99%
value-at-risk when p is low, implying that a small error in the estimated value of p leads to
a high impact on the value-at-risk.

Figure 10: Relationship between p and αG for the 99% value-at-risk
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For the conditional value-at-risk, we obtain:

C (α) =
1

1− α

∫ 1

α

Q (u) du (20)

where Q (u) is the quantile function of R for the confidence level u. In the case where
p > 1− α, we obtain:

C (α) =
p

1− α

∫ 1

1−p−1(1−α)
G−1 (u) du

Another expression of the conditional value-at-risk is:

C (α) =
1

1− α

∫ 1

Q(α)

x dF (x)

In the case where p > 1− α, we obtain:

C (α) =
p

1− α

∫ 1

Q(α)

xg (x) dx

where g (x) is the probability density function of G (x). All these formulas can be computed
numerically thanks to Gauss-Legendre integration.

We now introduce a new risk measure which is very popular when considering parametric
model. Roncalli (2020) defines the distribution-based (or parametric-based) stress scenario

28



Liquidity Stress Testing in Asset Management

S (T ) for a given horizon time T such that the return time of this scenario is exactly equal
to T . From a mathematical point of view, we have:

1

Pr {R ≥ S (T )}
= T

Pr {R ≥ S (T )} is the exceedance probability of the stress scenario, implying that the quan-

tity Pr {R ≥ S (T )}−1 is the return time of the exceedance event. For example, if we set

S (T ) = Q (α), we have Pr {R ≥ S (T )} = 1 − α and T = (1− α)
−1

. The return time
associated to a 99% value-at-risk is then equal to 100 days, the return time associated to a
99.9% value-at-risk is equal to 1 000 days (or approximately 4 years), etc. This parametric
approach of stress testing is popular among professionals, regulators and academics when
they use the extreme value theory for modeling the risk factors.

By combining the two definitions S (T ) = Q (α) and T = (1− α)
−1

, we obtain the
mathematical expression of the parametric stress scenario:

S (T ) = Q
(

1− 1

T

)
(21)

If we consider the zero-inflated model, we deduce that:

S (T ) =

 0 if p ≤ T −1

G−1
(

1− 1

pT

)
otherwise

(22)

The magnitude of T is the year, but the unit of T is the day. For example, since one year
corresponds to 260 market days, the five-year stress scenario is equal to12:

S (5) = G−1
(

1− 1

1300 p

)
3.1.3 The zero-inflated beta model

The choice of the severity distribution is an important issue. Since R ? is a random variable
between 0 and 1, it is natural to use the two-parameter beta distribution B (a, b). We have:

G (x) = B (x; a, b)

where B (x; a, b) is the incomplete beta function. The corresponding probability density
function is equal to:

g (x) =
xa−1 (1− x)

b−1

B (a, b)

where B (a, b) is the beta function:

B (a, b) =
Γ (a) Γ (b)

Γ (a+ b)

Concerning the statistical moments, the formulas are given in Appendix A.2.2 on page 81.

We report some examples of density function in Figure 11. Instead of providing the
parameters a and b, we have indicated the value µ and σ of the mean and the volatility. The
first distribution is skewed, because the volatility is high compared to the mean. The other
three distributions have a mode. Figure 12 shows the corresponding statistical moments of
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Figure 11: Density function of the beta distribution
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Figure 12: Statistical moments of the zero-inflated beta distribution
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the associated zero-inflated model. We notice that the first and third distributions have the
largest skewness and kurtosis.

In Figure 13, we report the 99% value-at-risk of the redemption rate. As explained before,
the Q-measure highly depends on the redemption frequency p. Again, we observe that the
sensitivity of the value-at-risk is particularly important when p is small13. The ratio between
the 99% conditional value-at-risk and the 99% value-at-risk is given in Figure 14. When the
redemption frequency p is high, the ratio is less than 1.5 and we retrieve the typical figures
that we observe for market and credit risks14. When the redemption frequency p is small,
the ratio may be greater than 2.0. These results shows that the sensitivity to redemption
risk is very high when the observed redemption frequency is low. The stress scenarios S (T )
are given in Figure 15 when the redemption frequency p is equal to 1%. By definition, S (T )
increases with the return time T . From a theoretical point of view, the limit of the stress
scenario is 100%:

lim
T→∞

S (T ) = lim
T→∞

G−1
(

1− 1

pT

)
= 1

However, we observe that stress scenarios reach a plateau at five years, meaning that stress
scenarios beyond 5 years have no interest. This is true for small values of p, but it is even
more the case for larger values of p as shown in Figures 40 and 41 on page 96.

Figure 13: Q (99%)-measure in % with respect to the redemption frequency
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Remark 5 In order to better understand the use of the C-measure as a stress scenario,
we compute the implied return time such that the stress scenario is exactly equal to the

12We assume that the redemption frequency is greater than 1/1300 or 7.69 bps. Otherwise, the quantile
is equal to zero.

13Because of the impact of p on the confidence level αG — see Figure 10 on page 28.
14When p tends to one, the ratio is respectively equal to 1.15, 1.09, 1.06 and 1.03 for the four probability

distributions of the redemption severity.
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Figure 14: Ratio R (99%) with respect to the redemption frequency

0 2 4 6 8 10 12

1

1.5

2

2.5

3

3.5

4

Figure 15: Stress scenario S (T ) in % (p = 1%)
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conditional value-at-risk:
TC(α) = {T : S (T ) = C (α)}

Results are given in Table 12. We notice that the value is between 0.77 and 1.03. On average,
we can consider that the return time of the 99% conditional value-at-risk is about one year.
This is 2.6 times the return time of the 99% value-at-risk15.

Table 12: Implied return time TC(99%) in year

µ 10% 20% 30% 50%
σ 10% 10% 20% 20%

1% 1.03 0.86 0.87 0.77
2% 1.00 0.94 0.89 0.85
3% 0.99 0.95 0.90 0.86

p 5% 0.99 0.97 0.90 0.87
10% 0.99 0.98 0.90 0.88
50% 0.98 0.99 0.91 0.89
99% 0.98 0.99 0.91 0.89

3.1.4 Extension to other probability distributions

The choice of the beta distribution is natural since the support is [0, 1], but we can consider
other continuous probability distributions for modeling R ?. For example, the Kumaraswamy
distribution is another good candidate, but it is close to the beta distribution. When the
support of the probability distribution is [0,∞), we apply the truncation formula16:

G[0,1] (x) =
G (x)

G (1)

For instance, we can use the gamma or log-logistic distribution. However, our experience
shows that some continuous probability distributions are not adapted such as the log-gamma
and log-normal distributions, because the logarithm transform performs a bad scale for
random variables in [0, 1]. Finally, we can also use the logit transformation, which is very
popular for modeling the probability of default (PD) or the loss given default (LGD) in credit
risk. Following Roncalli (2020, page 910), we assume that R ? is a logit transformation of a
random variable X ∈ (−∞,∞), meaning that17:

X = logit (R ?) = ln

(
R ?

1− R ?

)
For instance, in the case of the logit-normal distribution, we have:

logit (R ?) ∼ N
(
a, b2

)
15We recall that the return time of the 99% value-at-risk is equal to 100 market days or

100

260
≈ 0.38 years.

16For the probability density function, we have:

g[0,1] (x) =
g (x)

G (1)

17We also have:

R ? = logit−1 (X) =
1

1 + e−X
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We deduce that:

G (x) = Pr (R ? ≤ x)

= Pr (X ≤ logit (x))

= Φ

(
logit (x)− a

b

)
and:

g (x) =
1

bx (1− x)
φ

(
logit (x)− a

b

)
A summary of these alternative approaches18 is given in Table 13. In the sequel, we continue
to use the beta distribution, because it is easy to calibrate and it is the most popular approach
when modeling a random variable in [0, 1]. However, we cannot claim that it is the best
fitting model. Such a debate has already taken place in operational risk with the log-
normal distribution and the modeling of the severity distribution of operational risk losses
(Roncalli, 2020). Nevertheless, we think that this debate is too early in the case of liability
stress testing, and can wait when we will have more comprehensive redemption databases.

Table 13: List of continuous probability distributions

Distribution Symbol G (x) g (x) Support

Beta B (a, b) B (x; a, b)
xa−1 (1− x)

b−1

B (a, b)
[0, 1]

Gamma G (a, b)
γ (a, bx)

Γ (a)

baxa−1e−bx

Γ (a)
[0,∞)

Kumaraswamy K (a, b) 1− (1− xa)
b

abxa−1 (1− xa)
b−1

[0, 1]

Log-logistic LL (a, b)
xb

ab + xb
b (x/a)

b−1

a
(

1 + (x/a)
b
)2 [0,∞)

Logit-normal LN
(
a, b2

)
Φ

(
logit (x)− a

b

)
1

bx (1− x)
φ

(
logit (x)− a

b

)
[0, 1]

3.2 Parametric stress scenarios

As explained previously, the zero-inflated beta model is appealing for producing stress sce-
narios. For that, we proceed in two steps. We first calibrate the parameters of the model,
and then we compute the stress scenarios for a given return time.

3.2.1 Estimation of the zero-inflated beta model

Let Ω = {R 1, . . . ,R n} be the sample of redemption rates for a given matrix cell. Three
parameters have to be estimated: the redemption frequency p and the parameters a and b
that control the shape of the beta distribution. We note n0 as the number of observations
that are equal to zero and n1 = n − n0 as the number of observations that are strictly
positive19. In Appendix A.3 on page 81, we show that the maximum likelihood estimates
are:

p̂ =
n1

n0 + n1

18γ (α, x) is the lower incomplete gamma function.
19We have n0 =

∑n
i=1 1 {R i = 0} = n− n1 and n1 =

∑n
i=1 1 {R i > 0} =

∑n
i=1 Ei.
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and: {
â, b̂
}

= arg max
a,b

− n1 lnB (a, b) +
∑

R i>0

(a− 1) ln R i +
∑

R i>0

(b− 1) ln (1− R i)

The estimates â and b̂ can be found by numerical optimization.

This is the traditional approach for estimating a zero-inflated model. However, it is not

convenient since the parameters
(
p̂, â, b̂

)
should be modified by risk managers and business

experts before computing redemption shocks. Indeed, the calibration process of parametric
stress scenarios follows the same process when one builds historical stress scenarios, and

estimated values
(
p̂, â, b̂

)
cannot be directly used because they do not necessarily respect

some risk coherency principles and their robustness varies across matrix cells.

A second approach consists in using the method of moments. In this case, the estimator
of p has the same expression:

p̂ =
n1

n0 + n1
(23)

For the parameters of the beta distribution, we first calculate the empirical mean µ̂ and the
standard deviation σ̂ of the positive redemption rates R ?, and then we use the following
relationships (Roncalli, 2020, page 193):

â =
µ̂2 (1− µ̂)

σ̂2
− µ̂ (24)

and:

b̂ =
µ̂ (1− µ̂)

2

σ2
− (1− µ̂) (25)

The differences between the two methods are the following:

• In the case of the method of maximum likelihood, a and b are explicit parameters.
Once the parameters p, a and b are estimated, we can calculate the mean µ and
standard deviation σ for the severity distribution. In this approach, µ and σ are
implicit, because they are deduced from a and b.

• In the case of the method of moments, a and b are implicit parameters. Indeed, they
are calculated after having estimated the mean µ and standard deviation σ for the
severity distribution. In this approach, µ and σ are explicit and define the severity
distribution.

The first approach is known as the p−a− b parameterization, whereas the second approach
corresponds to the p− µ− σ parameterization. By construction, this last approach is more
convenient in a liquidity stress testing framework, because the parameters µ and σ are
intuitive and self-explanatory measures, which is not the case of a and b. Therefore, they
can be manipulated by risk managers and business experts.

We have estimated the parameters p, a, b, µ and σ with the two methods. Table 14 shows
the redemption frequency. On average, p̂ is equal to 31%, but we observe large differences
between the matrix cells. For instance, p̂ is less than 5% for central banks, corporate
pension funds and employee savings plans, whereas the largest values of p̂ are observed for
retail investors and third-party distributors. The values of µ̂ and σ̂ are reported in Tables
15 and 16. The average redemption severity is 0.72%, whereas the redemption volatility is
4.55%. Again, we observe some large differences between the matrix cells.

Remark 6 In Tables 42 and 43 on page 97, we have also reported the implicit values of â
and b̂ that are deduced from µ̂ and σ̂. Moreover, we have reported the estimated values by
the method of maximum likelihood on pages 98 and 99.
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Table 14: Estimated value of p in %

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 21.63 19.41 30.00 25.46 50.60 6.39 22.16
Central bank 0.16 0.34 1.47 0.47
Corporate 15.04 6.19 6.25 2.87 39.81 0.21 14.54
Corporate pension fund 8.11 3.38 3.98 3.37 7.57 0.00 4.12
Employee savings plan 2.67 2.83 2.97 2.71 2.29 2.75 2.69
Institutional 19.36 6.28 1.96 6.51 32.83 1.04 8.23
Insurance 12.19 6.72 3.45 7.22 27.92 1.04 9.71
Other 9.67 3.87 3.68 19.35 21.52 2.22 8.82
Retail 44.59 45.04 58.76 70.50 45.75 17.51 27.32 45.61
Sovereign 16.30 3.18 1.05 10.07 18.23 0.06 10.14
Third-party distributor 33.77 37.36 45.97 45.94 65.94 32.86 6.52 40.61
Total 34.66 27.10 24.19 38.34 37.57 11.14 24.79 31.11

Table 15: Estimated value of µ in % (method of moments)

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 1.24 1.88 2.15 1.19 3.11 2.81 1.70
Central bank
Corporate 0.55 2.50 3.82 3.73
Corporate pension fund 1.54 2.84 7.26 3.21
Employee savings plan 1.29 2.08 2.10
Institutional 0.67 2.62 2.80 4.46 3.23
Insurance 1.36 2.20 2.19 3.21 2.66
Other 0.87 2.60 1.10 3.51 0.99 2.65
Retail 0.34 0.31 0.44 0.23 1.98 0.43 0.15 0.33
Sovereign 0.06 1.84 10.48 4.46
Third-party distributor 0.35 0.64 1.45 0.42 1.40 0.86 1.21 0.56
Total 0.40 0.73 1.64 0.48 2.82 0.98 0.18 0.72

Table 16: Estimated value of σ in % (method of moments)

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 7.38 6.86 9.73 5.98 8.80 9.10 7.09
Central bank
Corporate 5.55 9.57 7.49 8.70
Corporate pension fund 10.36 13.51 13.14 12.09
Employee savings plan 3.26 8.40 8.61
Institutional 5.46 9.99 9.23 11.46 10.86
Insurance 8.66 10.56 10.11 8.13 9.35
Other 3.61 9.36 7.27 11.88 6.70 10.68
Retail 2.80 2.58 3.32 2.10 7.52 3.22 2.64 2.88
Sovereign 0.25 9.90 21.63 14.94
Third-party distributor 2.68 3.48 7.63 2.58 4.71 5.84 6.98 3.37
Total 3.31 4.35 8.93 3.50 8.66 6.08 3.03 4.55

(1) = balanced, (2) = bond, (3) = enhanced treasury, (4) = equity, (5) = money market, (6) = other, (7)

= structured, (8) = total
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3.2.2 Stress scenarios based on the p− µ− σ parameterization

Using the previous estimates (p̂, µ̂, σ̂), risk managers and business experts can define the
triplet (p, µ, σ) for the different matrix cells. For that, they must assess the confidence in
estimated values with respect to the number of observations. For the frequency parameter,
we use the value of n, which has been already reported in Table 8 on page 21. For the
severity parameters µ̂ and σ̂, we use the value of n1, which is much smaller than n. Using
the data given in Table 41 on page 93, we have built the confidence measure in Table 17. We
confirm that the confidence measure in µ̂ and σ̂ is lower than the confidence measure in p̂. In
particular, there are many matrix cells, where the number n1 of observations is lower than
200. This explains why Tables 15 and 16 contain a lot of missing values. Therefore, except
for a few matrix cells, the estimated values µ̂ and σ̂ must be challenged by risk managers
and business experts. Again, they can use risk coherency principles20 Cinvestor and Cfund to
build their own figures of p, µ and σ.

Table 17: Confidence in estimated values µ̂ and σ̂ with respect to the number n1 of obser-
vations

(1) (2) (3) (4) (5) (6) (7)
Auto-consumption • • • • • • • • • • • • ◦ ◦ ◦
Central bank ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Corporate • • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦
Corporate pension fund ◦ • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦
Employee savings plan • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
Institutional • • • • ◦ • • • • ◦ ◦ ◦ ◦
Insurance • • ◦ • • • • ◦ ◦ ◦ ◦
Other • • ◦ • • • • ◦ ◦ ◦
Retail • • • • • • • • • • • • • • • • • •
Sovereign • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦
Third-party distributor • • • • • • • • • • • • • • • •

◦ ◦ ◦ 0− 10, ◦ ◦ 11− 50, ◦ 51− 200, • 201− 1 000, • • 1 001− 10 000, • • • +10 000

Once the triplet (p, µ, σ) is defined for each matrix cell, we compute stress scenarios using
the following formula:

S (T ; p, µ, σ) = B−1
(

1− 1

pT
;
µ2 (1− µ)

σ2
− µ, µ (1− µ)

2

σ2
− (1− µ)

)

where B−1 (α; a, b) is the α-quantile of the beta distribution with parameters a and b. The
parametric stress scenario S (T ; p, µ, σ) depends on the return time T and the three parame-
ters of the zero-inflated model. An example is provided in Figure 16. For each plot, we indi-
cate the triplet (p, µ, σ). For instance, the first plot corresponds to the triplet (2%, 1%, 2%),
meaning that the daily redemption frequency is 2%, the expected redemption severity is 1%
and the redemption volatility is 2%. In particular, these plots illustrate the high impact
of σ, which is the key parameter when computing parametric stress scenarios. The reason
is that the parameters p and µ determine the mean E [R ], whereas the uncertainty around
this number is mainly driven by the parameter σ. The redemption volatility controls then
the shape of the probability distribution of the redemption rate (both the skewness and the
kurtosis), implying that σ has a major impact on the stress scenario S (T ) when T is large.

20They are defined on page 20.
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Figure 16: Parametric stress scenarios S (T ; p, µ, σ) in %
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4 Behavioral modeling

In this section, we go beyond the zero-inflated model by considering the behavior of each
investor. In particular, we show that the redemption rate depends on the liability structure
of the mutual fund. Moreover, the behavior of investors may be correlated, in particular in
a stress period. In this case, the modeling of spillover effects is important to define stress
scenarios.

4.1 The individual-based model

The individual-based model and the zero-inflated model are highly connected. Indeed, the
zero-inflated model can be seen as a special case of the individual-based model when we
summarize the behavior of all unitholders by the behavior of a single client.

4.1.1 Definition

Let TNA (t) be the assets under management of an investment fund composed of n clients:

TNA (t) =

n∑
i=1

TNAi (t)

where TNAi (t) is the net asset of the individual i. The redemption rate of the fund is equal
to the redemption flows divided by the total net assets:

R =

∑n
i=1 TNAi ·R i

TNA

=

n∑
i=1

ωi · R i
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where ωi represents the weight of the client i in the fund:

ωi =
TNAi

TNA

Since we have R i = Ei · R ?
i , we obtain:

R =

n∑
i=1

ωi · Ei · R ?
i

Generally, we assume that the clients are homogenous, meaning that Ei and R ?
i are iid

random variables. If we denote by p̃ and G̃ the individual redemption probability and the
individual severity distribution. The individual-based model is then characterized by the

4-tuple
(
n, ω, p̃, G̃

)
, where n is the number of clients and ω = (ω1, . . . , ωn) is the vector of

weights. Like the zero-inflated model, we consider a µ̃− σ̃ parameterization of G̃, meaning
that the model is denoted by IM (n, ω, p̃, µ̃, σ̃).

Remark 7 When the individual severity distribution G̃ is no specified, we assume that it

is a beta distribution B
(
ã, b̃
)

, whose parameters ã and b̃ are calibrated with respect to the

severity mean µ̃ and the severity volatility σ̃ using the method of moments. In a similar
way, we assume that the vector of weights is equally-weighted when it is not specified. In
this case, the individual-based model is denoted by IM (n, p̃, µ̃, σ̃).

Figure 17: Histogram of the redemption rate in % (p̃ = 50%, µ̃ = 50%, σ̃ = 10%)

In Figure 17, we report the histogram of the redemption rate R in the case p̃ = 50%,
µ̃ = 50% and σ̃ = 10%. In the case n = 1, we obtain a singular distribution. Indeed,
there is a probability of 50% that there is no redemption. The singularity decreases with
respect to the number n of investors, because the probability to have a redemption increases.
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This is normal since the redemption frequency of a mutual fund depends on the number of
unitholders. This explains that the redemption frequency is larger for a retail fund than for
an institutional fund.

4.1.2 Statistical analysis

The skewness effect The singularity of the distribution function F at the point R = 0
is entirely explained by the two parameters p̃ and n as shown in Appendix A.4.1 on page
83, because we have:

Pr {R = 0} = (1− p̃)n

The fact that the probability distribution is not continuous has an impact on the skewness
and the kurtosis. In Table 18, we have reported the probability Pr {R = 0}. If there is a
few investors in the fund, the probability to observe no redemption in the fund is high. For
instance, if p̃ = 5% and n = 10, we have Pr {R = 0} = 59.87%. If p̃ = 1% and n = 10,
we have Pr {R = 0} = 90.44%. How to interpret these results? Since p̃ is the individual
redemption probability, 1/p̃ is the return time of a redemption at the investor level. For
example, p̃ = 5% (resp. p̃ = 1%) means that investors redeem every 20 days (resp. 100
days) on average. At the fund level, the return time to observe a redemption is equal to

(1− Pr {R = 0})−1. For instance, in the case p̃ = 5% and n = 10, we observe a redemption
two days per week in the fund on average21. This analysis may help to distinguish active
and passive investors. In the case of passive investors when the redemption event occurs
once a year or less, p̃ is less than 40 bps. In the case of active investors that redeem once a
month, p̃ is greater than 5%. Therefore, the skewness effect depends if the fund has active
investors or not, and if the fund is granular or not.

Table 18: Probability to observe no redemption Pr {R = 0} in %

p Number n of investors
(in %) 1 2 5 10 50 100 1000 10000

0.01 99.99 99.98 99.95 99.90 99.50 99.00 90.48 36.79
0.02 99.98 99.96 99.90 99.80 99.00 98.02 81.87 13.53
0.05 99.95 99.90 99.75 99.50 97.53 95.12 60.65 0.67
0.10 99.90 99.80 99.50 99.00 95.12 90.48 36.77 0.00
0.20 99.80 99.60 99.00 98.02 90.47 81.86 13.51 0.00
0.50 99.50 99.00 97.52 95.11 77.83 60.58 0.67 0.00
1.00 99.00 98.01 95.10 90.44 60.50 36.60 0.00 0.00
2.00 98.00 96.04 90.39 81.71 36.42 13.26 0.00 0.00
5.00 95.00 90.25 77.38 59.87 7.69 0.59 0.00 0.00

10.00 90.00 81.00 59.05 34.87 0.52 0.00 0.00 0.00
25.00 75.00 56.25 23.73 5.63 0.00 0.00 0.00 0.00
50.00 50.00 25.00 3.13 0.10 0.00 0.00 0.00 0.00

The mean effect The mean shape is easy to understand since it is the product of the
redemption probability and the mean of the redemption severity:

E [R ] = p̃µ̃

Curiously, it depends neither on the number of investors in the fund, nor on the liability
structure (see Figure 18). Since µ̃ ∈ [0, 1], we notice that E [R ] ≤ p̃, meaning that we must

21The exact value is equal to 1/ (1− 59.87%) = 2.4919.
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observe very low values of the redemption mean. And we verify this property if we consider
the results22 given in Table 4 on page 18. If we consider all investor and fund categories,
the mean is equal to 22 bps. The largest value is observed for the sovereign/money market
category and is equal to 1.91%.

Figure 18: Mean of the redemption rate R in %
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The volatility effect By assuming that the liability weights are equal (ωi = 1/n), the
volatility of the redemption rate is equal to:

σ2 (R ) =
p̃
(
σ̃2 + (1− p̃) µ̃2

)
n

Globally, we observe that σ2 (R ) is an increasing function of p̃, µ̃ and σ̃ as shown in Figure
19. When the redemption probability increases, we observe a convexity shape because we
have:

σ2 (R ) =
p̃
(
σ̃2 + µ̃2

)
n

− p̃2µ̃2

n

However, this is not realistic since p̃ ≤ 20% in practice. Another interesting property is
that σ2 (R ) tends to zero when the number of investors in the fund increases (Figure 20).
If we compute the volatility of the redemption rate, we obtain the figures given in Table 48
on page 100. We observe that σ (R ) � E [R ], implying that R is a high-skewed random
variable. This challenges the use of the SD (c) measure presented on page 16.

Correspondence between zero-inflated and individual-based models We notice
that the zero-inflated model ZI (p, µ, σ) is a special case of the individual-based model by

22Another way to compute the empirical mean of R is to calculate the product of the aggregate redemption
frequency p (Table 14 on page 36) and the aggregate severity mean (Table 15 on page 36).
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Figure 19: Volatility of the redemption rate R in % (n = 10)

0 20 40 60 80 100

0

5

10

15

0 20 40 60 80 100

0

5

10

15

0 20 40 60 80 100

0

5

10

15

0 20 40 60 80 100

0

5

10

15

Figure 20: Volatility of the redemption rate R in % (p = 10%, µ = 50%, σ = 30%)
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considering only one unitholder. Therefore, it is obvious that the zero-inflated model can
not be seen as an explanatory model. It is a reduced-form model or a parametric model
that can fit the data, but the interpretation of the p−µ−σ parameterization is not obvious,
because ZI (p, µ, σ) is an aggregate population model.

In this paragraph, we would like to find the relationships between the parameters of the
zero-inflated model and those of the individual-based model, such that the two models are
statistically equivalent:

ZI (p, µ, σ) ≡ IM (n, ω, p̃, µ̃, σ̃)

There are different approaches. A first one is to minimize the Kolmogorov-Smirnov statistics
between ZI (p, µ, σ) and IM (n, ω, p̃, µ̃, σ̃). Another approach consists in matching their
moments. We consider the second approach because we obtain analytical formulas, whereas
the solution of the first approach can only be numerical. In Appendix A.5 on page 85, we
show that:

p = 1− (1− p̃)n

and

µ =
p̃

1− (1− p̃)n
µ̃

whereas the parameter σ satisfies the following relationship:

σ2 =

(
p̃H (ω)

1− (1− p̃)n
)
σ̃2 +(

p̃ ((1− p̃)− (1− p̃)n)H (ω)− p̃2 (1− p̃)n (1−H (ω))

(1− (1− p̃)n)
2

)
µ̃2

whereH (ω) =
∑n
i=1 ω

2
i is the Herfindahl index. It is interesting to notice that p is a function

of n and p̃, µ is a function of n, p̃ and µ̃, but σ does not only depends on the parameters n,
p̃, µ̃ and σ̃:  p = ϕ1 (n, p̃)

µ = ϕ2 (n, p̃, µ̃)
σ = ϕ3 (n, p̃, µ̃, σ̃,H (ω))

Indeed, the aggregate severity volatility also depends on the Herfindahl index of the fund
liability structure.

Remark 8 The previous relationships can be inverted in order to define the parameters of
the individual-based model with respect to the parameters of the zero-inflated model: p̃ = ϕ′1 (p;n)

µ̃ = ϕ′2 (p, µ;n)
σ̃ = ϕ′3 (p, µ, σ;n,H (ω))

However, we notice that there are two degrees of freedom – n and H (ω) – that must be fixed.

In Tables 19 and 20, we report some examples of calibration when n is equal to 10
and ωi is equal to 10%. For instance, if the parameters of the individual-based model are
p̃ = 1.00%, µ̃ = 50% and σ̃ = 10%, we obtain p = 9.56%, µ = 5.23% and σ = 1.48% for the
zero-inflated model. If we know the weights of the investors in the investment fund, we can
therefore calibrate the zero-inflated model from the individual-based model (Table 19), but
also the individual-based model from the zero-inflated model (Table 20).
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Table 19: Calibration of the zero-inflated model from the individual-based model

Parameter IM (n, p̃, µ̃, σ̃) ZI (p, µ, σ)
set p̃ µ̃ σ̃ p µ σ

#1 0.20% 50.00% 10.00% 1.98% 5.05% 1.11%
#2 1.00% 50.00% 10.00% 9.56% 5.23% 1.48%
#3 1.00% 30.00% 20.00% 9.56% 3.14% 2.14%

Table 20: Calibration of the individual-based model from the zero-inflated model

Parameter ZI (p, µ, σ) IM (n, p̃, µ̃, σ̃)
set p µ σ p̃ µ̃ σ̃

#1 5.00% 2.00% 5.00% 0.51% 19.55% 49.34%
#2 10.00% 2.00% 5.00% 1.05% 19.08% 48.67%
#3 10.00% 5.00% 10.00% 1.05% 47.71% 97.14%

4.1.3 On the importance of the liability structure

We notice that the variance of the redemption rate depends on the Herfindahl index:

H (ω) =

n∑
i=1

ω2
i

This implies that the liability structure ω is an important parameter to understand the
probability distribution of the redemption rate.

The arithmetics of the Herfindahl index We know that the Herfindahl index is
bounded:

1

n
≤ H (ω) ≤ 1

H (ω) is equal to one when one investor holds 100% of the investment fund (∃i : ωi = 1),
whereas the lower bound is reached for an equally-weighted liability structure (ωi = n−1).
Therefore, H (ω) is a measure of concentration. A related statistic is the “effective number
of unitholders”:

N (ω) =
1

H (ω)

N (ω) indicates how many equivalent investors hold the investment fund. For instance, we
consider two funds with the following liability structures ω(1) = (25%, 25%, 25%, 25%) and
ω(2) = (42%, 17%, 15%, 13%, 9%, 3%, 1%). Since we have N

(
ω(1)

)
= 4 and N

(
ω(2)

)
= 3.94,

we may consider that the first fund is not more concentrated than the second fund even if
the second fund has 7 unitholders.

We assume that the liability weights follow a geometric series with ωi ∝ qi and 0 < q < 1.
We have23:

N (ω) =
1− q2

(1− q)2

23Because we have:

H (ω) =
(1− q)2

q2

∞∑
i=1

q2i =
(1− q)2

q2
q2

(1− q2)
=

(1− q)2

1− q2
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As shown in Figure 21, we have an infinite number of unitholders, but a finite number of
effective unitholders. For example, if q ≤ 0.98, then N (ω) < 100.

Figure 21: Effective number of unitholders with a geometric liability structure ωi ∝ qi
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Approximation of the probability distribution F̃ (x | ω) We recall that the uncondi-
tional probability distribution of the redemption rate is given by F (x) = Pr {R ≤ x}. Since
the redemption rate depends on the liability structure ω in the individual-based model
IM (n, ω, p̃, µ̃, σ̃), we note F̃ (x | ω) the associated probability distribution:

F̃ (x | ω) = Pr

{
n∑
i=1

ωi · Ei · R ?
i ≤ x

}

We now consider the model IM (N (ω) , p̃, µ̃, σ̃) and define F̃ (x | H) as follows:

F̃ (x | H) = Pr

 1

N (ω)

N (ω)∑
i=1

Ei · R ?
i ≤ x


= Pr

H (ω)

H(ω)−1∑
i=1

Ei · R ?
i ≤ x


The issue is to know under which conditions we can approximate F̃ (x | ω) by F̃ (x | H).

Let us consider some Monte Carlo experimentations. We assume that the liability weights
are geometric distributed: ωi ∝ qi. In Figure 22, we compare the two probability distribu-
tions F̃ (x | ω) and F̃ (x | H) for several sets of parameters24 (p̃, µ̃, σ̃). The weights ωi for

24We recall that G̃ is the beta distribution by default.
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q = 0.95 are given in Figure 42 on page 100. We notice that the approximation of F̃ (x | ω)
by F̃ (x | H) is good and satisfies the Kolmogorov-Smirnov test at the 99% confidence level.
This is not the case if we assume that q = 0.90 or q = 0.50 (see Figures 43 and 44 on page
101).

Figure 22: Comparison of F̃ (x | ω) and F̃ (x | H) (q = 0.95 and H (ω)
−1

= 38)
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To better understand these results, we assume that p̃ = 0.3, µ̃ = 0.5 and σ̃ = 0.4. When
q is equal to 0.50, the effective number of unitholders is low and is equal to 3. In this case,
the probability distribution F̃ (x | H) is far from the probability distribution F̃ (x | ω) as
shown in Figure 23. In fact, this case corresponds to an investment fund which is highly
concentrated. The risk is then to observe redemptions from the largest unitholders. In
particular, we notice that F̃ (x | H) presents some steps. The reason is that the redemption
rate can be explained by the redemption of one unitholder, the redemption of two unitholders
or the redemption of three unitholders. If we assume that q is equal to 0.90, the effective
number of unitholders is larger and becomes 38. In this case, the probability distribution
F̃ (x | H) is close to the probability distribution F̃ (x | ω), because the step effects disappear
(see Figure 24). To summarize, the approximation of F̃ (x | ω) by F̃ (x | H) cannot be good

when the effective number of unitholders (or H (ω)
−1

) is low.

Remark 9 In many cases, we don’t know the comprehensive liability structure ω, but only
the largest weights. In Appendix A.6 on page 86, we derive an upper bound H+

m (ω) of the
Herfindahl index H (ω) from the m largest weights. Therefore, we can deduce a lower bound
of the effective number of unitholders:

N (ω) > N−m (ω) =
1

H+
m (ω)

An example is provided in Table 21 when we assume that ωi ∝ qi. When the fund is
highly concentrated, we obtain a good approximation of N (ω) with the 10th or 20th largest
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Figure 23: The case H (ω)
−1

= 3
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Figure 24: The case H (ω)
−1

= 18

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

47



Liquidity Stress Testing in Asset Management

unitholders. Otherwise, N (ω) is underestimated. However, this is not a real issue because
we can think that generated stress scenarios will be overestimated. Indeed, using a lower
value N (ω) increases σ (R ) as shown in Figure 20 on page 42, implying that the redemption
risk is generally overestimated.

Table 21: Lower bound N−m (ω) of the effective number of unitholders

m q = 0.50 q = 0.90 q = 0.95 q = 0.97 q = 0.99 q = 0.995
5 3 14 24 37 104 204

10 3 17 28 42 109 209
20 3 19 34 50 119 219
50 3 19 39 63 145 248
∞ 3 19 39 66 199 399

Stress scenarios based on the largest unitholders The previous results show that
the main risk in a concentrated fund comes from the behavior of the largest unitholders. It
justifies the use of stress scenarios based on the order statistics ωk:n:

minωi = ω1:n ≤ · · · ≤ ωk:n ≤ ωk+1:n ≤ · · · ≤ ωn:n = maxωi

Then, we can define the stress scenario that corresponds to the full redemption of the m
largest unitholders:

S (m) =

m∑
k=1

ωn−k+1:n

An example is given in Table 22 when the liability structure is defined by ωi ∝ qi. Of course,
these stress scenarios S (m) make sense only if the fund presents some liability concentration.
Otherwise, they are not informative.

Table 22: Stress scenarios S (m) when ωi ∝ qi

m q = 0.50 q = 0.90 q = 0.95 q = 0.97 q = 0.99 q = 0.995
1 50.0% 10.0% 5.0% 3.0% 1.0% 0.5%
2 75.0% 19.0% 9.8% 5.9% 2.0% 1.0%
5 96.9% 41.0% 22.6% 14.1% 4.9% 2.5%

10 99.9% 65.1% 40.1% 26.3% 9.6% 4.9%

4.1.4 Calibration of stress scenarios

Using collective and mutual funds The calibration of the individual-based model is
much more complicated than the calibration of the zero-inflated model. The reason is that
it depends on the liability structure of the funds, which are not necessarily the same for the
different funds. Let us consider the case of a single fund f . We can estimate the parameters
p̃, µ̃ and σ̂ using the quadratic criterion:

{p̃?, µ̃?, σ̃?} = arg min$p̃

(
p̂(f) − 1 + (1− p̃)H

−1
(f)

)2
+$µ̃

(
p̂(f)µ̂(f) − p̃µ̃

)2
+

$σ̃

(
p̂(f)

(
σ̂2
(f) +

(
1− p̂(f)

)
µ̂2
(f)

)
− p̃

(
σ̃2 + (1− p̃) µ̃2

)
H(f)

)2
(26)
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where p̂(f), µ̂(f) and σ̂(f) are the empirical estimates of the parameters p, µ and σ, and H(f)

is the Herfindahl index associated with the fund. In practice, the liability structure changes
every day, meaning that the Herfindahl index is time-varying. Therefore, we can use the
average of Herfindahl indices. The weights $p̃, $µ̃ and $σ̃ indicate the relative importance
of each moment condition. If we consider several funds, the previous criterion becomes:

{p̃?, µ̃?, σ̃?} = arg min$p̃

∑
f

$(f)

(
p̂(f) − 1 + (1− p̃)H

−1
(f)

)2
+

$µ̃

∑
f

$(f)

(
p̂(f)µ̂(f) − p̃µ̃

)2
+

$σ̃

∑
f

$(f)

(
p̂(f)

(
σ̂2
(f) +

(
1− p̂(f)

)
µ̂2
(f)

)
− p̃

(
σ̃2 + (1− p̃) µ̃2

)
H(f)

)2
(27)

where $(f) is the relative weight of the fund f .

In practice, the estimates p̃?, µ̃? and σ̃? are very sensitive to the Herfindahl index be-
cause of the first and third moment conditions. To illustrate this point, we consider the
institutional category and we assume that there is only one fund. On page 36, we found
that p̂(f) = 8.23%, µ̂(f) = 3.23% and σ̂(f) = 10.86%. If H(f) = 5, we obtain p̃? = 1.70%,
µ̃? = 15.61% and σ̃? = 53.31%. If H(f) = 20, we obtain p̃? = 0.43%, µ̃? = 62.04% and
σ̃? = 212.48%. In the case of the retail category, we found that p̂(f) = 45.61%, µ̂(f) = 0.33%
and σ̂(f) = 2.88%. If H(f) = 1 000, we obtain p̃? = 0.06%, µ̃? = 247% and σ̃? = 2 489%. If
H(f) = 10 000, we obtain p̃? = 0.01%, µ̃? = 2 472% and σ̃? = 24 891%. These results are not
realistic since µ̃? > 1 and σ̃? > 1.

Using mandates and dedicated funds Collective investment and mutual funds are
pooled investment vehicles, meaning that they are held by several investors. We now consider
another type of funds with a single unitholder. They correspond to mandates and funds that
are dedicated to a unique investor. In this case, the Herfindahl index is equal to one, and
the solution of Problem (26) corresponds to the parameter set of the zero-inflated model:{

p̃? = p̂(f), µ̃
? = µ̂(f), σ̃

? = σ̂(f)
}

In our database, we can separate the observations between collective and mutual funds
on one side and mandates and dedicated funds on the other side. In Tables 23, 24 and 25,
we have estimated the parameters p̃, µ̃ and σ̃ by only considering mandates and dedicated
funds. These results highly differ than those obtained for collective and mutual funds (Tables
14, 15 and 16 on page 36). First, we can calibrate a smaller number of cells. Indeed, we
recall that the estimates are not calculated if the number of observations is less than 200.
Second, the magnitude of the estimates is very different. If we consider all fund and investor
categories, we obtain p̃ = 3.34%, µ̃ = 2.13% and σ̃ = 10.27%, whereas we have previously
found p = 31.11%, µ = 0.72% and σ = 4.55%. As expected, we verify that p̃� p and σ̃ � σ̃
because of the following reasons:

• the redemption probability is larger in a collective fund than in a dedicated fund
because they are several investors;

• the volatility of the redemption severity is smaller in a collective fund than in a ded-
icated fund because the behavior of the different investors is averaged, implying that
the dispersion of redemption is reduced.
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Table 23: Estimated value of p̃ in %

(1) (2) (3) (4) (5) (6) (7) (8)
Central bank 0.13 0.21 0.73 2.99 0.49
Corporate 0.49 1.14 0.13 0.57 0.71
Corporate pension fund 2.16 1.40 1.60 3.06 0.41 0.47 1.57
Institutional 1.47 1.35 0.41 2.13 1.65 0.40 0.00 1.46
Insurance 2.09 2.12 1.52 0.59 0.13 1.93
Sovereign 0.23 0.44 0.35 0.16 0.03 0.32
Third-party distributor 12.71 8.07 3.46 25.40 11.68 7.17 14.22
Total 3.95 2.63 1.73 5.82 2.92 0.68 7.46 3.34

Table 24: Estimated value of µ̃ in %

(1) (2) (3) (4) (5) (6) (7) (8)
Central bank
Corporate
Corporate pension fund 4.39 2.94 4.11
Institutional 3.88 4.05 3.29 4.00
Insurance 3.46 4.23
Sovereign
Third-party distributor 0.77 1.52 0.44 0.77
Total 1.89 2.47 1.48 2.64 3.91 2.13

Table 25: Estimated value of σ̃ in %

(1) (2) (3) (4) (5) (6) (7) (8)
Central bank
Corporate
Corporate pension fund 15.37 10.65 14.53
Institutional 16.42 13.88 12.30 14.64
Insurance 13.01 14.08
Sovereign
Third-party distributor 5.28 5.84 3.29 4.65
Total 9.61 10.35 8.29 10.39 15.06 10.27

(1) = balanced, (2) = bond, (3) = enhanced treasury, (4) = equity, (5) = money market, (6) = other, (7)

= structured, (8) = total

Curiously, we do not observe that µ̃ ≈ µ. One explanation may be that investors in mandates
are not the same as investors in collective funds. Indeed, we may consider that they are
more sophisticated and bigger when they are able to put in place a mandate or a dedicated
fund. For instance, they can be more active.

The results obtained with data from mandates and dedicated funds are more realistic
than those obtained with data from collective and mutual funds. The drawback is that they
are based on a smaller number of observations and there are many cells where we don’t
have enough observations for computing the estimates. Therefore, these estimates must be
completed by expert judgements.
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Computing the stress scenarios Once we have estimated the parameters p̃, µ̃ and σ̃,
we can compute the stress scenarios using the Monte Carlo method. Nevertheless, we face
an issue here, because the stress scenario is not unique to an investor category. Indeed, it
depends on the liability structure of the fund. While the individual-based model is more
realistic and relevant than the zero-inflated model, then it appears to be limited from a
practical point of view. Nevertheless, it is useful to understand the importance of the
liability structure on the redemption rate.

4.2 Correlation risk

4.2.1 Specification of the model

We now consider an extension of the previous model by introducing correlations between
the investors. We obtain the same expression of the redemption rate:

R =

n∑
i=1

ωi · Ei · R ?
i

However, the random variables (E1, . . . , En,R ?
1, . . . ,R ?

n) are not necessarily independent. We
discuss three different correlation patterns:

1. We can assume that Ei and Ej are correlated. This is the simplest and most un-
derstandable case. Indeed, we generally observe long periods with low redemption
frequencies followed by short periods with high redemption frequencies, in particular
when there is a crisis or a panic.

2. We can assume that the redemption severities R ?
i and R ?

j are correlated. For example,
it would mean that high (resp. low) redemptions are observed at the same time. Nev-
ertheless, this severity correlation is different from the previous frequency correlation.
Indeed, the severities are independent from the number of redemptions, implying that
the severity correlation only concerns the unitholders that have already decided to
redeem.

3. We can assume that Ei and R ?
i are correlated. We notice that we can write the

redemption rate for a given category as follows:

R =

n∑
i=1

ωi · R i

where R i = Ei·R ?
i is the individual redemption rate for the ith investor. The breakdown

between the binary variable Ei and the continuous variable R ?
i helps us to model

the “clumping-at-zero” pattern. But there is no reason that the value taken by the
redemption severity R ?

i depends whether Ei takes the value 0 or 1, because R ?
i is

observed only if Ei = 1.

Finally, only the first two correlation patterns are relevant from a financial point of view,
because the third correlation model has no statistical meaning. Nevertheless, it is obvious
that the first correlation model is more appropriate because the second correlation model
confuses low-severity and high-severity regimes. During a liquidity crisis, both the redemp-
tion frequency and the redemption severity increase (Coval and Stafford, 2007; Duarte and
Eisenbach, 2013; Kacperczyk and Schnabl, 2013; Roncalli and Weisang, 2015a; Schmidt et
al., 2016). The first effect may be obtained by stressing the parameter p̃ or by consider-
ing a high-frequency regime deduced from the first correlation model, but the second effect
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can only be obtained by stressing the parameter µ̃ and cannot be explained by the second
correlation model. Therefore, we only consider the first correlation pattern by modeling
the random vector (E1, . . . , En) with a copula decomposition. We continue to assume that
Ei ∼ B (p̃) are identically distributed, but the dependence function of (E1, . . . , En) is given
by the copula function C (u1, . . . , un). The individual-based model is then a special case of
this copula-based model when the copula function is the product copula C⊥.

In what follows, we consider the Clayton copula25:

C(θc) (u1, . . . , un) =
(
u−θc1 + · · ·+ u−θcn − n+ 1

)−1/θc
or the Normal copula:

C(θc) (u1, . . . , un) = Φ
(
Φ−1 (u1) + · · ·+ Φ−1 (un) ; Cn (θc)

)
The Clayton parameter satisfies θc ≥ 0 whereas the Normal parameter θc lies in the range
[−1, 1]. These two copula families are very interesting since they are positively ordered with
respect to the concordance stochastic ordering. For the Clayton copula, we have:

C(0) = C⊥ ≺ C(θc) ≺ C+ = C(∞)

meaning that the product copula is reached when θc = 0 and the upper Fréchet bound
corresponds to the limiting case θc → ∞. For the Normal copula, we restrict our analysis
to θc ∈ [0, 1] because there is no sense to obtain negative correlations. Therefore, we have:

C(0) = C⊥ ≺ C(θc) ≺ C+ = C(1)

The Normal parameter θc is easy to interpret because it corresponds to the Pearson
linear correlation between two Gaussian random variables. The interpretation of the Clayton
copula θc is more tricky. Nevertheless, we can compute the associated Kendall’s tau and
Spearman’s rho rank correlations26. Their expressions are given in Table 26. Therefore, we
can deduce the Pearson correlation ρ.

Table 26: Relationship between the copula parameter θc, the Kendall’s tau τ , the Spearman’s
rho % and the Pearson correlation ρ

τ % ρ

Clayton
θc

θc + 2
sin

(
πθc

2θc + 4

)
sin

(
πθc

2θc + 4

)
Normal

2

π
arcsin (θc)

6

π
arcsin

(
θc
2

)
θc

The previous formulas can be used to map the copula parameter space into the Kendall,
Spearman or Pearson correlation space. Some numeric values are given in Table 27. For
example, the Clayton copula θc = 2 corresponds to a Kendall’s tau of 50%, a Spearman’s rho
of 69% and a Pearson correlation of 70.7%. The following analyses will present the results
with respect to the Pearson correlation, which is the most readable and known parameter.

25We use the notations of Roncalli (2020, Chapter 11).
26For the Clayton copula, we calculate an approximation of the Spearman’s rho:

% ≈
6

π
arcsin

(
1

2
sin

(
πθc

2θc + 4

))
≈ sin

(
πθc

2θc + 4

)
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Table 27: Mapping of the copula parameter space

Clayton copula Normal copula
θc τ % ρ θc τ % ρ
0.00 0.00% 0.00% 0.00% 0.00 0.00% 0.00% 0.00%
1.00 33.33% 48.26% 50.00% 0.20 12.82% 19.13% 20.00%
2.00 50.00% 69.02% 70.71% 0.50 33.33% 48.26% 50.00%
5.00 71.43% 89.25% 90.10% 0.75 53.99% 73.41% 75.00%

10.00 83.33% 96.26% 96.59% 0.90 71.29% 89.15% 90.00%
50.00 96.15% 99.80% 99.82% 0.99 90.99% 98.90% 99.00%

Remark 10 We denote the copula-based model by CM (n, ω, p̃, µ̃, σ̃, ρ) (or CM (n, p̃, µ̃, σ̃, ρ)
when the vector of weights are equally-weighted). We have the following equivalence:

IM (n, ω, p̃, µ̃, σ̃) = CM (n, ω, p̃, µ̃, σ̃, 0)

4.2.2 Statistical analysis

The skewness effect In Appendix A.7.1 on page 87, we show that:

Pr {R = 0} = C(θc) (1− p̃, . . . , 1− p̃)

Since C⊥≺ C(θc)≺ C+, we obtain the following bounds27:

(1− p̃)n ≤ Pr {R = 0} ≤ 1− p̃

We notice that the probability to observe zero redemptions converges to zero only when the
number n of unitholders tends to∞ and the copula is the product copula. By assuming that
the redemption frequency p̃ is equal to 10%, we obtain the results given in Figure 45 on page
102 and we verify the previous statistical property. In Figure 25, we show the relationship
between the Pearson correlation ρ and the probability Pr {R = 0}. As expected, it is an
increasing function. We notice that the introduction of the correlation is very important
to understand the empirical results we have calculated in Table 14 on page 36 and some
unrealistic values we have obtained in Table 18 on page 40. For instance, the fact that
Pr {R = 0} is equal to 54.39% for the retail category can only be explained by a significant
frequency correlation since the number n of unitholders is high for this category.

By construction, the frequency correlation modifies the probability distribution of the
redemption frequency F , which is defined as the proportion of unitholders that redeem:

F =
1

n

n∑
i=1

1 {Ei = 1}

F is a random variable, whose range is between 0 and 1. F depends on the frequency
parameter p̃, the number n of unitholders and the copula function C(θc) (or the Pearson

27Because we have:

C⊥ (1− p̃, . . . , 1− p̃) =
n∏
i=1

(1− p̃) = (1− p̃)n

and:
C+ (1− p̃, . . . , 1− p̃) = min (1− p̃, . . . , 1− p̃) = 1− p̃
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Figure 25: Probability to observe no redemption Pr {R = 0} in % with respect to the fre-
quency correlation ρ (p̃ = 10%)
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Figure 26: Redemption frequencies in % with respect to the frequency correlation ρ (p̃ =
20%, n = 1 000)
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correlation ρ). When C(θc) is the product copula C⊥, the redemption events are independent
and we obtain:

F ∼ B (n, p̃)

n

because the sum of independent Bernoulli random variables is a binomial random variable.
Therefore, we obtain the following approximation when n is sufficiently large:

B (n, p̃)

n
≈ N (np̃, np̃ (1− p̃))

n

= N
(
p̃,
p̃ (1− p̃)

n

)
When the copula C(θc) corresponds to the upper Fréchet bound C+, the redemption fre-
quency follows the Bernoulli distribution and does not depend on the number of unitholders:

F ∼ B (p̃)

We have represented these two extreme cases in Figure 26 when p̃ = 20% and n = 1 000.
We have also reported the probability distribution of F when the Pearson correlation of the
copula function is equal to 25% and 50%. We notice that the skewness risk increases with
the frequency correlation. Therefore, the parameter ρ will have a high impact on the stress
testing results. In particular, when the frequency correlation is high, the risk is to observe
a large proportion of redemptions even if the number of unitholders is large. In this case,
the diversification effect across unitholders is limited. An illustration is provided in Figure
46 on page 102 that shows the probability to observe 100% of redemptions28 when n is set
to 20.

The mean effect In Appendix A.7.3 on page 88, we show that the frequency correlation
has no impact on the average redemption rate since we obtain the same expression as
previously:

E [R ] = p̃µ̃

Therefore, the redemption frequency changes the shape of the probability distribution of R ,
but not its mean.

The volatility effect The volatility of the redemption rate is equal to:

σ2 (R ) =
(
p̃σ̃2 +

(
p̃− C̆(θc) (p̃, p̃)

)
µ̃2
)
H (ω) +

(
C̆(θc) (p̃, p̃)− p̃2

)
µ̃2

where C̆(θc) is the survival copula associated to C(θc). Since we have C>≺ C(θc) ≺ C+, we
obtain the following inequalities:

p̃
(
σ̃2 + (1− p̃) µ̃2

)
H (ω) ≤ σ2 (R ) ≤ p̃σ̃2H (ω) + p̃ (1− p̃) µ̃2

If we consider the equally-weighted case and assume that n tends to infinity, we obtain:

0 ≤ σ2 (R ) =
(
C̆(θc) (p̃, p̃)− p̃2

)
µ̃2 ≤ p̃ (1− p̃) µ̃2

This implies that the volatility risk is not equal to zero for an infinitely fine-grained liability
structure if the frequency correlation is different from zero.

28It corresponds to the statistic Pr {F = 1}.
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Figure 27: Volatility of the redemption rate R in % with respect to the number n of unithold-
ers (p̃ = 10%, µ̃ = 50%, σ̃ = 30%)
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Figure 28: Volatility of the redemption rate R in % with respect to the frequency correlation
(p̃ = 10%, µ̃ = 50%, σ̃ = 10%)
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The impact of the frequency correlation is illustrated in Figures 27 and 28. We notice
that the decrease of the volatility risk highly depends on the correlation parameter ρ. These
figures confirm that the volatility risk is minimum when the frequency correlation is equal
to zero. The consequence is that the frequency correlation is a key parameter when build-
ing stress testing scenarios. This is perfectly normal since ρ can been seen as a parameter
that controls spillover effects and the magnitude of redemption contagion. All these results
corroborate the previous intuition that the individual-based model without redemption cor-
relation may be not appropriate for building a robust stress testing program.

The shape effect The impact of the frequency correlation on the skewness and the volatil-
ity can then change dramatically the shape of the probability distribution of the redemption
rate. In Figure 17 on page 39, we have already studied the histogram of the redemption
rate in the case p̃ = 50%, µ̃ = 50% and σ̃ = 10%. Let us reproduce the same exercise by
assuming that the frequency correlation is equal to 50%. The results are given in Figure
29. The shape of the probability distributions is completely different except in the case of a
single unitholder29. To better illustrate the impact of the frequency correlation, we report
in Figure 30 the histogram of the redemption rate by fixing n = 10. In the case of a per-
fect correlation of 100% and an equally-weighted liability structure, we obtain two different
cases:

1. there is zero redemption with a probability 1− p̃;

2. there are n redemptions with a probability p̃, and the redemption severity R ? is the
average of the individual redemption severities:

R ? =
1

n

n∑
i=1

R ?
i

It follows that the probability distribution of the redemption rate is equal to:

F (x) = 1 {x ≥ 0} · (1− p̃) + 1 {x > 0} · p̃ · Ḡ (x)

We retrieve the zero-inflated model ZI
(
p̃, µ̃, n−1/2σ̃

)
or the individual-based model with

a single unitholder IM
(
1, p̃, µ̃, n−1/2σ̃

)
. The only difference is the severity distribution

Ḡ, whose variance is divided by a factor n. Spillover and contagion risks come then from
the herd behavior of unitholders. Instead of having n different investors, we have a unique
investor in the fund, because the decision to redeem by one investor induces the decision to
redeem by all the other remaining investors.

4.2.3 Evidence of the correlation risk

Correlation risk within the same investor category In order to illustrate that re-
demption frequencies are correlated, we build the time series of the frequency rate F t for a
given category30:

F t =

n∑
i=1

ωi,t · 1 {Ei,t = 1} =

n∑
i=1

ωi,tEi,t

29Other illustrations are provided in Appendix C on page 103. Figures 47, 48 and 49 correspond to the
cases ρ = 25%, ρ = 75% and ρ = 90%.

30We can use an equally-weighted scheme ωi,t = 1/n.
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Figure 29: Histogram of the redemption rate in % with respect to the number n of unitholders
(p̃ = 50%, µ̃ = 50%, σ̃ = 10%, ρ = 50%)

Figure 30: Histogram of the redemption rate in % with respect to the frequency correlation
(p̃ = 50%, µ̃ = 50%, σ̃ = 10%, n = 10)
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where Ei,t is the redemption indicator for the investor i at time t. Using the sample
(F 1, . . . ,F T ), we compute the empirical mean F and the standard deviation σ̂ (F ). Then,
the copula parameter θc can be calibrated by solving the following nonlinear equation31:

C(θc)

(
F ,F

)
=
σ̂2 (F )− F

(
H (ω)− F

)
1−H (ω)

The copula parameter θc can be transformed into the Kendall, Spearman or Pearson corre-
lation using the standard formulas given in Table 26 on page 52. For instance, if C(θc) is
the Clayton copula, the Pearson correlation is equal to:

ρ = sin

(
πθc

2θc + 4

)
An example is provided in Table 28 when the fund liability structure is equally-weighted
and has 20 unitholders. For instance, if the empirical mean F and the standard deviation
σ̂ (F ) are equal to 25% and 20%, the calibrated Pearson correlation is equal to 44.5%.

Table 28: Calibrated Pearson correlation (Clayton copula, H (ω) = 1/20)

σ̂ (F )
F

10.0% 20.0% 25.0% 30.0% 40.0%

10.0% 39.1% 5.1% 1.1%
20.0% 93.9% 58.7% 44.5% 34.7% 23.5%
30.0% 100.0% 91.5% 82.3% 72.8% 57.7%
40.0% 100.0% 98.7% 95.6% 87.4%

Remark 11 At first sight, calibrating the frequency correlation seems to be an easy task.
However, it is very sensitive to the different parameters F , σ̂ (F ) and H (ω). Moreover, it
depends on the copula specification. For instance, we obtain the results given in Table 49 on
page 104 when the dependence function is the Normal copula. We observe that the Pearson
correlations calibrated with the Clayton copula are different from those calibrated with the
Normal copula.

Remark 12 Another way to illustrate the frequency correlation is to split a given investor
category into two subsamples S1 and S2 and calculate the time series of the redemption
frequency for the two subsamples Sk (k = 1, 2):

F k,t =
1∑

i∈Sk ωi,t

∑
i∈Sk

ωi,tEi,t

Then, we can calculate the Pearson correlation ρ (F 1,F 2) and calibrate the associated copula
parameter θc using Equation (58) on page 91.

Correlation risk between investor categories The correlation risk is present within
a given investor category, but it may also concern two different investor categories. In
order to distinguish them, we use the classical statistical jargon of inter-class and intra-
class correlations. In Table 29, we report the intra-class Spearman correlation32 for four

31See Equation (56) on page 90.
32The correlations of retail/insurance and institutional/insurance for balanced funds and the correlations

of retail/third-party distributor and retail/insurance for money market funds are not significant at the
confidence level of 95%.
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Table 29: Intra-class Spearman correlation

Category #1 Category #2 Balanced Bond Equity
Money
Market

Retail Third-party distributor 53.0% 52.9% 52.1% 3.3%
Retail Institutional 10.4% 23.2% 22.0% −6.5%
Retail Insurance 3.0% 18.8% 31.6% −12.3%
Third-party distributor Institutional 13.5% 48.0% 54.1% 24.0%
Third-party distributor Insurance 23.1% 21.5% 22.8% 39.2%
Institutional Insurance 2.5% 16.2% 16.4% 29.8%

Average 17.6% 30.1% 33.2% 12.9%

investor categories (retail, third-party distributor, institutional and insurance) and four
fund categories (balanced, bond, equity and money market). We observe a high inter-class
correlation between retail investors and third-party distributors except for money market
funds. We notice that equity and bond funds present very similar frequency correlations. On
average, it is equal to 30%. For balanced and money market funds, we obtain lower figures
less than 20%. These results are coherent with the academic research, since redemption
runs and contagions in bond and equity funds have been extensively studied and illustrated
(Lakonishok et al., 1992; Wermers, 1999; Sias, 2004; Wylie, 2005; Coval and Stafford, 2007;
Shleifer and Vishny, 2011; Cai et al., 2019).

Figure 31: Dependogram of redemption frequencies between retail investors and third-party
distributors
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Remark 13 Another way to illustrate the intra-class correlation is to report the dependo-
gram (or empirical copula) of redemption frequencies. An example is provided in Figure 31
for retail investors and third-party distributors. We observe that these dependogram does
not correspond to the product copula 33.

33Examples of dependogram with the Normal copula and different correlations are provided in Figure 50
on page 105.
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4.2.4 Computing the stress scenarios

The parameters of the copula-based model is made up by the parameters of the individual-
based model (p̃, µ̃ and σ̃) and the copula parameter θc (or the associated frequency correla-
tion). Once these parameters are estimated for a given investor/fund category, we transform
the µ̃ − σ̃ parameterization into the a − b parameterization of the beta distribution and
compute the risk measures M, Q (α), C (α) and S (T ) by using the following Monte Carlo
algorithm:

1. we set k ←− 1;

2. we generate34 (u1, . . . , un) ∼ C(θc);

3. we compute the redemption events (E1, . . . , En) such that:

Ei = 1 {ui ≥ 1− p̃}

4. we simulate the redemption severities (R ?
1, . . . ,R ?

n) from the beta distribution35 B (a, b);

5. we compute the redemption rate for the kth simulation iteration:

R (k) =

n∑
i=1

ωiEiR ?
i

6. if k is equal to nS , we return the simulated sample
(

R (1), . . . ,R (nS)

)
, otherwise we set

k ←− k + 1 and go back to step 2.

Figure 32 shows the relationship between the correlation frequency36 and C (99%) for dif-
ferent parameter sets when the liability structure has 20 equally-weighted unitholders. The
impact of the correlation risk is not negligible in some cases. This is particularly true when
the frequency correlation is close to 100%, but its impact is also significant when the fre-
quency correlation is larger than 20%. On average, we observe that the risk measure C (99%)
increases by 15%, 20% and 35% when the frequency correlation is respectively equal to 20%,
30% and 50% compared the independent case.

Remark 14 The algorithm to simulate the copula-based model CM (n, ω, p̃, µ̃, σ̃, ρ) can be
used to simulate the individual-based model IM (n, ω, p̃, µ̃, σ̃) by setting C(θc) = C⊥. This is
equivalent to replace step 2 and simulate n independent uniform random numbers (u1, . . . , un).

4.3 Time aggregation risk

In the case of daily redemptions, the correlation risk only concerns the cross-correlation
between investors for a given market day. When we consider fire sales or liquidity crisis,
the one-day study period is not adapted and must be extended to a weekly or monthly
basis. In this case, we may face time aggregation risk, meaning that redemption flows for
the subsequent market days may depend on the current redemption flows.

34Clayton and Normal copulas are easy to simulate using the method of transformation (Roncalli, 2020,
page 803).

35Generally, the generation of beta random numbers is present in mathematical programming languages
(Matlab, Python). Otherwise, we can use the method of rejection sampling (Roncalli, 2020, pages 886-887).

36It corresponds to the Pearson correlation of the Clayton copula.
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Figure 32: Conditional value-at-risk C (99%) with respect to the frequency correlation
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4.3.1 Analysis of non-daily redemptions

We recall that the total net assets at time t+ 1 can be decomposed as follows:

TNA (t+ 1) = (1 +R (t+ 1)) · TNA (t) + F+ (t+ 1)−F− (t+ 1)

By assuming that F+ (t+ 1) = 0, we obtain:

TNA (t+ 1) ≈ (1 +R (t+ 1)− R (t+ 1)) · TNA (t)

This formula is valid on a daily basis. If we consider a period of nh market days (e.g. a
weekly period), we have:

TNA (t+ nh) ≈ TNA (t)

nh∏
h=1

(1 +R (t+ h)− R (t+ h))

Therefore, it is not obvious to decompose the difference TNA (t+ nh) − TNA (t) into a
“performance” effect and a “redemption” effect since the two effects are related. Indeed, the
mathematical definition of the nh-day redemption rate is:

R (t; t+ nh) =

∑nh

h=1 F− (t+ h)

TNA (t)

whereas the fund return over the period [t, t+ nh] is given by the compound formula:

R (t; t+ h) =

nh∏
h=1

(1 +R (t+ h))− 1

Because of the cross-products (Brinson et al., 1991), we cannot separate the two effects:

TNA (t+ nh) 6= (1 +R (t; t+ nh)− R (t; t+ nh)) · TNA (t)
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4.3.2 The autocorrelation risk

In the case where the performance effect is negligible — R (t+ h)� R (t+ h), we have:

R (t, t+ nh) ≈ 1−
nh∏
h=1

(1− R (t+ h)) (28)

We can then calculate the probability distribution of R (t, t+ nh) by the Monte Carlo
method. A first solution is to consider that the redemption rates are time-independent.
A second solution is to consider that redemption rates are auto-correlated:

R (t) = ρtimeR (t− 1) + ε (t) (29)

where ρtime is the autocorrelation parameter and ε (t) is a random variable such that R (t) ∈
[0, 1]. Such modeling is complex because of the specification of ε (t). However, this approach
can be approximated by considering a time-series copula representation:

(R (t+ 1) , . . . ,R (t+ nn)) ∼ C
(
F̃ (x) , . . . , F̃ (x) ; Σtime (nh)

)
(30)

where F̃ is the probability distribution of R (t) defined by the individual-based (or copula-
based) model, C is the Normal copula, whose parameters are given by the Toeplitz cor-

relation matrix37 Σtime (nh) such that Σtime (nh)i,j = ρ
|i−j|
time . To calculate the probability

distribution of R (t, t+ nh), we first simulate the individual-based (or copula-based) model
in order to estimate the probability distribution F̃ (x) of daily redemptions. Then, we gen-
erate the sample of the time-series (R (t+ 1) , . . . ,R (t+ nn)) by using the method of the
empirical quantile function (Roncalli, 2020, pages 806-809). Finally, we calculate the re-
demption rate R (t, t+ nh) using Equation (28). An example is provided in Figure 33 when
the correlation between investors is equal to zero38. We have also measured the impact of
the autocorrelation value ρtime on the value-at-risk and the conditional value-at-risk. Re-
sults are given in Tables 30 and 31 for six different individual-based models IM (n, p̃, µ̃, σ̃).
When the value of the risk measure is small, we notice that the impact of ρtime is high.
For instance, when n = 500, p̃ = 1%, µ̃ = 25% and σ̃ = 10%, the value-at-risk Q (99%) is
equal to 1.9% in the independent case. This figure increases respectively by +9% and +19%
when ρtime is equal to 25% and 50%. We also notice that the impact on the conditional
value-at-risk is close to that on the value-at-risk.

Remark 15 The compound approach defined by Equation (28) certainly overestimates stress
scenarios. Indeed, we implicitly assume that the redemptions rates R (t+ h) are identically
distributed, meaning that there is no time effect on the individual redemption behaviour.
However, we can think that an investor that redeems at time t + 1 will not redeem at time
t + 2 and t + 3. In practice, we observe that redemptions of a given investor are mutually
exclusive during a short period of time. This property is not verified by Equation (28). At
time t + h, we notice IS (t+ h) the set of investors that have redeemed some units before

37 For instance, in the case of a weekly period, the Toeplitz correlation matrix is equal to:

Σtime (5) =


1 ρtime ρ2time ρ3time ρ4time

ρtime 1 ρtime ρ2time ρ3time
ρ2time ρtime 1 ρtime ρ2time
ρ3time ρ2time ρtime 1 ρtime

ρ4time ρ3time ρ2time ρtime 1


38The same example with a correlation of 50% between investors is given in Figure 52 on page 106.
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Figure 33: Histogram of the weekly redemption rate in % with respect to the autocorrelation
ρtime (p̃ = 50%, µ̃ = 50%, σ̃ = 10%, ρ = 0%, n = 10)

Table 30: Impact of the autocorrelation ρtime on the value-at-risk Q (99%)

n p̃ µ̃ σ̃
ρtime

0% 25% 50% 75% 100%
10 000 0.1% 25% 10% 0.2% +6% +14% +24% +36%

500 1.0% 25% 10% 1.9% +9% +19% +33% +50%
50 2.0% 50% 10% 10.5% +12% +29% +49% +79%

100 5.0% 50% 30% 18.2% +8% +18% +29% +45%
10 20.0% 50% 30% 65.8% +6% +13% +21% +28%
10 50.0% 50% 30% 90.1% +2% +4% +6% +8%

Table 31: Impact of the autocorrelation ρtime on the conditional value-at-risk C (99%)

n p̃ µ̃ σ̃
ρtime

0% 25% 50% 75% 100%
10 000 0.1% 25% 10% 0.2% +6% +16% +27% +41%

500 1.0% 25% 10% 2.0% +9% +21% +37% +56%
50 2.0% 50% 10% 11.4% +13% +32% +54% +84%

100 5.0% 50% 30% 19.2% +9% +20% +32% +50%
10 20.0% 50% 30% 68.8% +6% +13% +21% +28%
10 50.0% 50% 30% 91.3% +2% +4% +6% +7%
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t+ h. We have IS (t+ 1) = {1, . . . , n}. The mutually exclusive property implies that39:

i ∈ IS (t+ h)⇒ Ei (t+ 1) = . . . = Ei (t+ nh) = 0

It follows that:

R (t+ h) =
∑

i/∈IS(t+h)

ωi (t+ h) · Ei (t+ h) · R ?
i (t+ h)

and:

ωi (t+ h+ 1) =
ωi (t+ h)∑

i/∈IS(t+h)
ωi (t+ h)

Because ωi (t+ h− 1) 6= ωi (t+ h) and IS (t+ h− 1) 6= IS (t+ h), it is obvious that
R (t+ h− 1) 6= R (t+ h). Therefore, the redemption decisions taken in the recent past
(e.g. two or three days ago) have an impact on the future redemptions for the next days.
This is a limit of the compound approach. The solution would be to develop a comprehensive
individual-based model, whose random variables are replaced by stochastic processes. Never-
theless, the complexity of such model is not worth it with respect to the large uncertainty of
stress testing exercises.

4.3.3 The sell-herding behavior risk

Herding risk is related to momentum trading. According to Grinblatt et al. (1995), herding
behavior corresponds to the situation where investors buy and sell the same securities at
the same time. Herding risk happens during good and bad times, and is highly documented
in economic research (Wermers, 1999; O’Neal, 2004; Ivković and Weisbenner, 2009; Ferreira
et al., 2012; Lou, 2012; Cashman et al., 2014; Chen and Qin, 2017; Goldstein et al., 2017;
Choi et al., 2019; Dötz and Weth, 2019). However, we generally notice that sell herding may
have more impact on asset prices than buy herding. Therefore, the sell-herding behavior
risk may be associated to a price destabilizing or spillover effect. In the case of redemption
risk, the spillover mechanism corresponds to two related effects:

• A first spillover effect is that the unconditional probability of redemption is not equal
to the conditional probability of the redemption given the returns of the fund during
the recent past period:

Pr {R (t+ h) ≤ x} 6= Pr {R (t+ h) ≤ x | (R (t+ 1) , . . . , R (t+ h− 1))}

• A second spillover effect is that the unconditional probability of return is not equal to
the conditional probability of the return given the redemptions of the fund during the
recent past period:

Pr {R (t+ h) ≤ x} 6= Pr {R (t+ h) ≤ x | (R (t+ 1) , . . . ,R (t+ h− 1))}

This implies that the transmission of a negative shock on the redemption rate R (t+ 1)
may also impact the redemption rates {R (t+ 2) ,R (t+ 3) , . . .} because of the feedback

39For instance, if the investor has done a redemption at time t+ 1, the probability that he will perform a
new redemption at time t+ 2 is very small, meaning that:

Ei (t+ 1) = 1⇒ Ei (t+ 2) = . . . = Ei (t+ nh) = 0
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Figure 34: Spillover between fund redemptions and fund returns
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loop on the fund performance. An illustration is provided in Figure 34. A large negative
redemption R (t+ 1) may induce a negative abnormal performance R (t+ 1), and this neg-
ative performance may encourage the remaining investors of the fund to redeem, because
negative returns accelerate redemption flows. This type of behavior is generally observed in
the case of fire sales and less liquid markets.

As explained in the introduction, an integrated model that combines liability risk and
asset risk is too ambitious and too complex. Moreover, this means modeling the policy
reaction function of other investors and asset managers. Nevertheless, if we want to take
into account sell herding, spillover or fire sales, we must build an econometric model. For
example, the simplest way is to consider the linear dynamic model:{

R (t) = φ1R (t) + u1 (t)
R (t+ 1) = R + φ2R (t) + u2 (t+ 1)

We obtain an AR(1) process:

R (t) = R + φR (t− 1) + u (t)

where φ = φ1φ2 and u (t) = u2 (t) + φ2u1 (t− 1) is a white noise process. It follows that:

E [R (t+ h)] =
1

1− φ1φ2
R

Therefore, spillover scenarios can be estimated by applying a scaling factor to the initial
shock40.

4.3.4 Empirical results

In order to illustrate the time dependency between redemptions, we build the time series
of the redemption rate R (j,k) (t), the redemption frequency F (j,k) (t) and the redemption
severities R ?

(j,k) (t) for each classification matrix cell (j, k), which is defined by a fund cate-

gory FC(j) and an investor category IC(k). For that, we calculate R (f,k) (t) the redemption
rate of the fund f for the investor category IC(k) at time t. Then, we estimate the daily
redemption rate R (j,k) (t) as the average of the redemption rates of all funds that belong to
the fund category FC(j):

R (j,k) (t) =
1∣∣S(j,k) (t)

∣∣ ∑
f∈S(j,k)(t)

R (f,k) (t) (31)

where41 S(j,k) (t) =
{
f : f ∈ FC(j),TNA(f,k) (t) > 0

}
. We also estimate the daily redemp-

tion frequency as follows:

F (j,k) (t) =
1∣∣S(j,k) (t)

∣∣ ∑
f∈S(j,k)(t)

1
{

R (f,k) (t) > 0
}

(32)

40The previous analysis can be extended to more sophisticated process, e.g. VAR (p) processes.
41We only consider funds which have unitholders that belong to the investor category IC(k). This is

equivalent to impose that the assets under management held by the investor category IC(k) are strictly
positive: TNA(f,k) > 0.
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whereas the daily redemption severity is given by the following formula:

R ?
(j,k) (t) =

1∣∣∣S?(j,k) (t)
∣∣∣

∑
f∈S?

(j,k)
(t)

R (f,k) (t) (33)

where S?(j,k) (t) =
{
f : f ∈ FC(j),TNA(f,k) > 0,R (f,k) (t) > 0

}
.

Table 32: Autocorrelation of the redemption rate in %

Balanced Bond Equity Money market
Institutional 25.9∗∗ −2.2 −1.5 24.2∗∗

Insurance −1.5 9.9 5.4 17.8∗∗

Retail 1.9 −2.1 9.8 11.7∗∗

Third-party distributor 2.7 7.4 5.5 23.2∗∗

The computation of R (j,k) (t), F (j,k) (t) and R ?
(j,k) (t) does make sense only if there is

enough observations
∣∣S(j,k) (t)

∣∣ and
∣∣∣S?(j,k) (t)

∣∣∣ at time t. This is why we focus on the most

representative investor categories (retail, third-party distributor, institutional and insur-
ance) and fund categories (balanced, bond, equity and money market). In Table 32, we
report the maximum between the autocorrelation ρ (R (t) ,R (t− 1)) of order one and the
autocorrelation ρ (R (t) ,R (t− 2)) of order two. Moreover, we indicate with the symbol ∗∗

the matrix cells where the p-value of the autocorrelation is lower than 5%. Except for money
market funds and the institutional/balanced matrix cell, redemptions are not significantly
autocorrelated. If we consider redemption frequencies and severities, we observe more au-
tocorrelation (see Tables 50 and 51 on page 106). However, for bond and equity funds, the
results show that the autocorrelation is significant and high for the redemption frequency,
but low for the redemption severity.

5 Factor-based liquidity stress testing

The last section of this article is dedicated to the factors that may explain a redemption
stress. First, we investigate whether it is due to a redemption frequency shock or a redemp-
tion severity shock. Second, we study how market risk may explain extreme redemption
rates, and we focus on three factors: stock returns, bond returns and volatility levels.

5.1 Where does the stress come from?

We may wonder whether the time variation of redemption rates is explained by the time
variation of redemption frequencies or redemption severities. Using the time series built in
Section 4.3.4 on page 66, we consider three linear regression models: R (t) = β0 + β1F (t) + u (t)

R (t) = β0 + β1R ? (t) + u (t)
R (t) = β0 + β1F (t) + β2R ? (t) + u (t)

In the first model, we explain the redemption rate using the redemption frequency. In the
second model, the explanatory variable is the redemption severity. Finally, the third model
combines the two previous models. For each classification matrix cell (j, k), we have reported
the centered coefficient of determination R2

c in Tables 33, 34 and 35.
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Table 33: Coefficient of determination R2
c in % — R (t) = β0 + β1F (t) + u (t)

Balanced Bond Equity Money market
Institutional 2.4 36.2 53.4 17.2
Insurance 0.9 11.6 10.8 17.8
Retail 37.2 34.5 14.7 18.4
Third-party distributor 11.5 31.6 17.7 11.5

Table 34: Coefficient of determination R2
c in % — R (t) = β0 + β1R ? (t) + u (t)

Balanced Bond Equity Money market
Institutional 87.2 74.8 44.5 87.5
Insurance 99.2 84.0 83.3 90.1
Retail 77.6 88.4 98.1 80.8
Third-party distributor 93.1 91.5 92.1 95.0

Table 35: Coefficient of determination R2
c in % — R (t) = β0 + β1F (t) + β2R ? (t) + u (t)

Balanced Bond Equity Money market
Institutional 88.2 84.7 81.7 93.3
Insurance 99.3 86.2 86.4 94.9
Retail 92.5 95.4 99.3 92.3
Third-party distributor 97.0 96.3 95.7 97.3

If we consider the first linear regression model, we notice that R2
c is greater than 50% only

for the institutional/equity category. R2
c takes a value around 35% for the retail/balanced,

retail/bond and institutional/bond categories, otherwise it is less than 20%. Results for
the second linear regression are better. This indicates that the redemption severity is a
better explanatory variable than the redemption frequency. The only exception is the in-
stitutional/equity category. The combination of the two variables allows us to improve the
explanatory power of the model, but we also notice that the redemption severity is the
primary factor. The matrix cell with the highest R2

c is retail/equity, whereas the matrix
cell with the lowest R2

c is institutional/equity. The scatter plot between R (t), F (t) and
R ? (t) for these two extreme cases are reported in Figures 35 and 36. For the retail/equity
category, we verify that the redemption severity explains the redemption rate. For the in-
stitutional/equity category, the redemption severity is not able to explain the high values of
the redemption rate.

The previous results are very interesting since the redemption severity is the primary
factor for explaining the redemption shocks. Therefore, a high variation of the redemption
rate is generally due to an increase of the redemption severity. Nevertheless, there are
some exceptions where stress scenarios are also explained by an increase in the redemption
frequency.

Remark 16 We have used the coefficient R2
c to show the power explanation of the two

variables F (t) and R ? (t) without considering the effect of the constant. For some matrix
cells, we notice that the constant may be important (see Tables 52, 53 and 54 on page 106).
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Figure 35: Relationship between R (t), F (t) and R ? (t) (retail/equity)
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Figure 36: Relationship between R (t), F (t) and R ? (t) (institutional/equity)
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5.2 What market risk factors matter in stress testing?

5.2.1 The flow-performance relationship

Numerous academic research papers suggest that investor flows depend on past performance.
According to Sirri and Tufano (1998) and Huang et al. (2007), there is an asymmetry
concerning the flow-performance relationship: equity mutual funds with good performance
gain a lot of money inflows, while equity mutual funds with poor performance suffer smaller
outflows. However, this asymmetry concerns relative performance. Indeed, according to
Ivković and Weisbenner (2009), “inflows are related only to relative performance” while
“outflows are related only to absolute fund performance”. Therefore, these authors suggest
that investors sell the asset class when this one has a bad performance. In the case of
corporate bonds, Goldstein et al. (2017) find that relative performance also matters in
terms of explaining outflows. In order to better understand these results, we consider the
following analytical model42:{

Rf (t) = αf (t) + βf (t)Rmkt (t) + ε (t)
R f (t) = γf + δfαf (t− 1) + ϕfRf (t− 1) + η (t)

where Rf (t) is the return of the fund f , Rmkt (t) is the return of the market risk factor
and R f (t) is the redemption rate of the fund f . ε (t) and η (t) are two independent white
noise processes. Using the first equation, we can estimate the relative performance of the
fund, which is measured by its alpha component αf (t). The second equation states that the
redemption rate R f (t) of the fund depends on the past relative performance αf (t− 1) and
the past absolute performance Rf (t− 1). Then, we can test two assumptions: H1 : δf < 0
and H2 : ϕf < 0. Accepting H1 implies that outflows depend on the relative performance,
while acceptingH2 implies that outflows depend on the absolute performance. In both cases,
the value of the coefficient is negative, because we expect that a negative performance will
increase the redemption rate. The previous framework can be extended to take into account
a more sophisticated model for determining the relative performance43 αf (t) or to consider
lagged variables (Bellando and Tran-Dieu, 2011; Ferreira et al., 2012; Lou, 2012; Cashman
et al., 2014; Barber et al., 2016; Fricke and Fricke, 2017). More generally, we have:

R f (t) = γf +

p∑
h=1

(
φ
(h)
f R f (t− h) + δ

(h)
f αf (t− h) + ϕ

(h)
f Rf (t− h)

)
+ η (t) (34)

Even if this type of flow-performance relationship is interesting to understand the investor
behavior, it is however not adapted in the case of a stress testing program for two reasons.
The first reason is that Equation (34) is calibrated using low frequency data, e.g. quarterly
or monthly data. Therefore, the goal of Equation (34) is to describe long-term behavior
of investors, whereas stress testing of liabilities concerns short-term periods. The second
reason is the inadequacy of this approach with macro stress testing approaches developed
by regulators and institutional bodies.

5.2.2 The macro stress testing approach

If we consider stress testing programs developed in the banking sector (Roncalli, 2020, pages
893-922), we distinguish historical, probabilistic and macroeconomic approaches. While the
first two methods have been developed in the previous sections, we focus on the third method,
which is the approach used by the regulators (Board of Governors of the Federal Reserve

42See Arora et al. (2019).
43For instance, we can use the three-factor Fama-French model or the four-factor Carhart model.
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System, 2017; EBA, 2020a,b; ECB, 2019; Ong, 2014). The macroeconomic approach consists
in defining stress scenarios by a set of risk factors corresponding to some exogenous shocks.
In this article, we focus on three market risk factors:

• the performance of the bond market;

• the performance of the stock market;

• market volatility.

Therefore, we assume that there is a linear relationship between the redemption rate and
these factors:

R (t) = β0 + β1Fbond (t) + β2Fstock (t) + β3Fvol (t) + u (t) (35)

where Fbond (t) and Fstock (t) are the h-day total returns of the FTSE World Broad Investment-
Grade Bond index and the MSCI World index, Fvol (t) is the difference of the VIX index
between t− h and t, and h is the time horizon.

In Table 36, we report the coefficient of determination R2
c for the one-day time horizon.

These figures are disappointing since the impact of the market risk factors are very low44.
For instance, the highest R-squared is reached for the third-party distributor/money market
category, but it is equal to 4.4%. If we consider a longer time horizon, results do not improve
and we always have R2

c � 5% (see Tables 55 and 56 on page 107).

Table 36: Coefficient of determination R2
c in % — Equation (35), one-day time horizon

Balanced Bond Equity Money market
Institutional 0.3 0.8 1.6 1.9
Insurance 0.1 0.1 0.6 0.8
Retail 0.5 3.1 1.4 0.6
Third-party distributor 0.7 1.5 1.3 4.4

Remark 17 The previous results suggest that redemption rates do not depend on market
risk factors on a short-term basis. However, fund managers generally have the feeling that
redemption rates increase when there is a stress on market returns. Nevertheless, we know
that returns are more or less independent from one day to another. Therefore, we consider
another approach using market sentiment. For that, we compute the average redemption rate
when the VIX index is above 30, and calculate its relative variation with respect to the entire
period. Results are given in Table 37. We observe an impact in particular for bond/equity
funds and institutional/third-party distributor investors.

Table 37: Relative variation of the redemption rate R (t) when VIX ≥ 30

Balanced Bond Equity Money market
Institutional +17.3% +54.7% +74.3% +64.7%
Insurance −63.4% −1.1% −14.2% +75.7%
Retail +6.1% +21.5% +13.8% −4.5%
Third-party distributor +37.6% +43.6% +49.5% +22.7%

44Nevertheless, we verify that β2 is negative for equity funds, even though the relationship between
redemption rate and stock returns is not convincing as shown in Figure 53 on page 108.
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6 Conclusion

Liquidity stress testing is a recent topic in asset management, which has given rise to numer-
ous publications from regulators (AMF, 2017; BaFin, 2017; ESMA, 2019; FSB, 2017; IOSCO,
2015, 2018), investment management associations (AFG, 2015; EFAMA, 2020) and affiliated
researchers from central banks and international bodies (Arora et al., 2019; Baranova et al.,
2017; Bouveret, 2017; Fricke and Fricke, 2017; Gourdel et al., 2018). On the academic side,
few studies specifically concern liquidity stress testing in asset management45. Therefore,
we observe a gap between general concepts and specific measurement models. As such, the
purpose of our study is to propose several analytical approaches in order to implement LST
practical programs.

Besides the historical approach that considers non-parametric risk measures, we have
developed a frequency-severity model that is useful when building parametric risk measures
of liquidity stress testing. This statistical approach can be seen as a reduced-form model
based on three parameters: the redemption frequency, the expected redemption severity
and the redemption uncertainty. Like the historical approach, the frequency-severity model
requires some expert judgements to correct some data biases. Nevertheless, both historical
and analytical approaches are simple enough to verify properties of risk ordering coherency
between fund and investor categories.

We have also developed an individual-based behavioral model, which is an extension of
the frequency-severity model. We have shown that redemption risk depends on the fund
liability structure, and is related to the Herfindahl index of assets under management held
by unitholders. Even if this model is hard to implement because it requires knowing the
comprehensive liability structure, it allows us to justify liquidity stress testing based on
the largest fund holders. Moreover, this model shows the importance of cross-correlation
between unitholders of a same investor category, but also of several investor categories.
Nevertheless, the individual-based behavioral model is flexible enough that it can easily
take into account dependencies between investors by incorporating a copula model. Again,
the issue with this extended individual-based behavioral model lies in the knowledge of the
liability structure.

The production of stress scenarios can be obtained by considering a risk measure applied
to the redemption rate. For the historical approach, we can use a value-at-risk or a condi-
tional value-at-risk figure, which is estimated with non-parametric statistical methods. For
the frequency-severity and individual-based behavioral models, the estimation of the VaR
or CVaR is based on analytical formulas. Moreover, these models may produce parametric
stress scenarios for a given return time. Another issue concerns the choice of data between
gross or net redemption rates for calibrating these stress scenarios. For some categories, net
redemption rates may be used to proxy gross redemption rates, because they are very close
in stress periods. However, we also demonstrate that it is better to use gross redemption
rates for some investor or fund categories (e.g. retail investors or money market funds).

The design of macro stress testing programs is more complicated than expected. Since
the flow-performance relationship is extensively documented by academic research, it is
valid at low frequencies, typically on a quarterly or annual basis. In this case, we may
observe inflows towards the best fund managers. However, this relationship mainly concerns
relative performance, whereas macro stress testing programs deal with absolute performance.
Indeed, relative performance is a key parameter when we want to analyze the idiosyncratic
liability liquidity risk at the fund level. Nevertheless, the liquidity risk in asset management

45Because data on liabilities are not publicly available. However, we can cite Christoffersen and Xu
(2017) and Darolles et al. (2018), who specifically study asset management flows with respect to the liability
structure of the investment fund.
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primarily involves systemic periods of liquidity shortage that impact a given asset class.
Our empirical results are mixed since drawing a relationship between redemption rates and
market risk factors in stress periods is not obvious because there are lead/lag effects and
liquidity stress periods never look the same. For instance, the redemption stress scenario on
money market funds during the covid-19 crisis and the first quarter of 2020 is very different
from the redemption stress scenario during the Lehman Brothers’ bankruptcy in September
and October 2008. Indeed, we observe a significant lag of one/two months in the case of the
covid-19 crisis. In a similar way, the liquidity stress transmission to equity funds has not
been immediate and has been delayed by several weeks.

The current interest in liquidity stress testing is related to the Financial Stability Board’s
tasks on systemic risk (FSB, 2010, 2015) and shadow banking supervision (FSB, 2017, 2018).
As explained by Blanqué and Mortier (2019b), “regulation of asset managers has been
lagging behind that of banks since the global financial crisis”. The implementation of the
liquidity coverage ratio (LCR) and the net stable funding ratio (NSFR), the use of liquidity
and high-quality liquid assets (HQLA) buffers and the definition of regulatory monitoring
tools date back to 2010 for the banking industry46 (BCBS, 2010, 2013). The regulatory
framework on liquidity stress testing proposed by ESMA (2019) is an important step for the
development of liquidity measurement in the asset management industry. In this paper, we
develop an analytical framework and give some answers. However, it is still early days and
much remains to be done.

46The LCR became a minimum requirement for BCBS member countries in January 2015.
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Ivković, Z., and Weisbenner, S. (2009), Individual Investor Mutual Fund Flows, Journal
of Financial Economics, 92(2), pp. 223-237.

Kacperczyk, M., and Schnabl, P. (2013), How Safe are Money Market Funds?, Quarterly
Journal of Economics, 128(3), pp. 1073-1122.

Lakonishok, J., Shleifer, A., and Vishny, R.W. (1992) The Impact of Institutional
Trading on Stock Prices, Journal of Financial Economics, 32(1), pp. 23-43.

Lou, D. (2012), A Flow-based Explanation for Return Predictability, Review of Financial
Studies, 25(12), pp. 3457-3489.

Min, Y., and Agresti, A. (2002), Modeling Nonnegative Data with Clumping at Zero: A
Survey, Journal of the Iranian Statistical Society, 1(1-2), pp. 7-33

Nelsen, R.B. (2006), An Introduction to Copulas, Second edition, Springer.

76



Liquidity Stress Testing in Asset Management

O’Neal, E.S. (2004), Purchase and Redemption Patterns of US Equity Mutual Funds,
Financial Management, 33(1), pp. 63-90.

Ong, L.L. (2014), A Guide to IMF Stress Testing: Methods and Models, International
Monetary Fund.

Ospina, R., and Ferrari, S.L. (2010), Inflated Beta Distributions, Statistical papers, 51(1),
pp. 111-126.

Persaud, A.D. (2003), Liquidity Black Holes: Understanding, Quantifying and Managing
Financial Liquidity Risk, Risk Books.

Roncalli, T. (2020), Handbook of Financial Risk Management, Chapman & Hall/CRC
Financial Mathematics Series.

Roncalli, T., and Weisang, G. (2015a), Asset Management and Systemic Risk, SSRN,
www.ssrn.com/abstract=2610174.

Roncalli, T., and Weisang, G. (2015b), Response to FSB-IOSCO Second Consultative
Document, Assessment Methodologies for Identifying Non-Bank Non-Insurer Global Sys-
temically Important Financial Institutions, May 28, https://www.fsb.org/wp-content/
uploads/Thierry-Roncalli-and-Guillaume-Weisang.pdf.

Schmidt, L., Timmermann, A., and Wermers, R. (2016), Runs on Money Market Mutual
Funds, American Economic Review, 106(9), pp. 2625-2657.

Securities and Exchange Commission (2015), Open-End Fund Liquidity Risk Management
Programs; Swing Pricing; Re-Opening of Comment Period for Investment Company Re-
porting Modernization Release, Proposed Rule, 33-9922, September.

Securities and Exchange Commission (2016), Investment Company Liquidity Risk Manage-
ment Programs, Final Rule, 33-10233, October.

Securities and Exchange Commission (2018a), Investment Company Liquidity Disclosure,
Proposed Rule, IC-33046, March.

Securities and Exchange Commission (2018b), Investment Company Liquidity Disclosure,
Final Rule, IC-33142, June.

Shleifer, A., and Vishny, R. (2011), Fire Sales in Finance and Macroeconomics, Journal
of Economic Perspectives, 25(1), pp. 29-48.

Sias, R.W. (2004), Institutional Herding, Review of Financial Studies, 17(1), pp. 165-206.

Sirri, E.R., and Tufano, P. (1998), Costly Search and Mutual Fund Flows, Journal of
Finance, 53(5), pp. 1589-1622.

Thompson, J. (2019), H2O, Woodford and GAM Crises Highlight Liquidity Risk, Financial
Times, 29 June 2019.

Wermers, R. (1999), Mutual Fund Herding and the Impact on Stock Prices, Journal of
Finance, 54(2), pp. 581-622.

Wylie, S. (2005), Fund Manager Herding: A Test of the Accuracy of Empirical Results
using UK Data, Journal of Business, 78(1), pp. 381-403.

77

www.ssrn.com/abstract=2610174
https://www.fsb.org/wp-content/uploads/Thierry-Roncalli-and-Guillaume-Weisang.pdf
https://www.fsb.org/wp-content/uploads/Thierry-Roncalli-and-Guillaume-Weisang.pdf


Liquidity Stress Testing in Asset Management

Appendix

A Mathematical results

A.1 Granularity and the X-statistic

We consider n funds whose redemption rate is equal to p. The assets under management
of each fund are set to $1. The maximum redemption rate of n funds is equal to the
mathematical expectation of n Bernoulli random variables:

p (max) = E [max (B1 (p) , . . . ,Bn (p))]

= 1− (1− p)n

whereas the redemption rate of the sum of n funds is equal to the expected frequency of a
Binomial random variable:

p (sum) =
E [B (n, p)]

n
= p

In Table 38, we report the value taken by the ratio p (max) /p (sum). For example, this ratio
is equal to 3.71 if p = 5% and n = 4. To understand this ratio, we can consider a large fund
whose redemption probability is p. This fund is split into n funds of the same size. The ratio
indicates the multiplication factor to obtain the maximum of the redemption rates among
the n funds.

Table 38: Value of the ratio p (max) /p (sum)

n
Probability p

1 bp 10 bps 1% 5% 10% 20% 50%
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 2.00 2.00 1.99 1.95 1.90 1.80 1.50
3 3.00 3.00 2.97 2.85 2.71 2.44 1.75
4 4.00 3.99 3.94 3.71 3.44 2.95 1.88
5 5.00 4.99 4.90 4.52 4.10 3.36 1.94

10 10.00 9.96 9.56 8.03 6.51 4.46 2.00
50 49.88 48.79 39.50 18.46 9.95 5.00 2.00

100 99.51 95.21 63.40 19.88 10.00 5.00 2.00

A.2 Statistical moments of zero-inflated probability distribution

A.2.1 General formulas

A zero-inflated random variable Z can be written as the product of a Bernoulli random
variables X ∼ B (p) and a positive random variable Y :

Z = XY

Let µ′m (Z) for the m-th moment of Z. Using the previous relationship, we deduce that:

µ′m (Z) = E [Zm]

= E [XmY m]

= E [Xm]E [Y m]

= pµ′m (Y ) (36)
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because X and Y are independent by definition, and Xm = X, implying that Xm follows
a Bernoulli distribution B (p). From Equation (36), we can compute the m-th centered
moment µm (Z). For that, we recall that:

µ1 = µ′1

µ2 = µ′2 − µ2
1

µ3 = µ′3 − 3µ′2µ1 + 2µ3
1

µ4 = µ′4 − 4µ′3µ1 + 6µ′2µ
2
1 − 3µ4

1

We deduce the expression of the second moment:

µ′2 = µ2 + µ2
1

For the third moment, we have:

µ′3 = µ3 + 3µ′2µ1 − 2µ3
1

= µ3 + 3
(
µ2 + µ2

1

)
µ1 − 2µ3

1

= µ3 + 3µ2µ1 + µ3
1

= γ1µ
3/2
2 + 3µ2µ1 + µ3

1

where γ1 is the skewness coefficient. For the fourth moment, it follows that:

µ′4 = µ4 + 4µ′3µ1 − 6µ′2µ
2
1 + 3µ4

1

= µ4 + 4
(
γ1µ

3/2
2 + 3µ2µ1 + µ3

1

)
µ1 − 6

(
µ2 + µ2

1

)
µ2
1 + 3µ4

1

= µ4 + 4γ1µ
3/2
2 µ1 + 12µ2µ

2
1 + 4µ4

1 − 6µ2µ
2
1 − 6µ4

1 + 3µ4
1

= µ4 + 4γ1µ
3/2
2 µ1 + 6µ2µ

2
1 + µ4

1

= (γ2 + 3)µ2
2 + 4γ1µ

3/2
2 µ1 + 6µ2µ

2
1 + µ4

1

where γ2 is the excess kurtosis coefficient. We can then compute the moments of Z. For the
mean, we have:

µ1 (Z) = µ′1 (Z)

= pµ1 (Y ) (37)

We deduce that the variance of Z is equal to:

µ2 (Z) = µ′2 (Z)− µ2
1 (Z)

= pµ′2 (Y )− p2µ2
1 (Y )

= pµ2 (Y ) + p (1− p)µ2
1 (Y ) (38)

For the third moment, we have:

µ3 (Z) = µ′3 (Z)− 3µ′2 (Z)µ1 (Z) + 2µ3
1 (Z)

= pµ′3 (Y )− 3p2µ′2 (Y )µ1 (Y ) + 2p3µ3
1 (Y )

= p
(
γ1 (Y )µ

3/2
2 (Y ) + 3µ2 (Y )µ1 (Y ) + µ3

1 (Y )
)
−

3p2
(
µ2 (Y ) + µ2

1 (Y )
)
µ1 (Y ) + 2p3µ3

1 (Y )

= pγ1 (Y )µ
3/2
2 (Y ) + 3p (1− p)µ2 (Y )µ1 (Y ) + p (1− p) (1− 2p)µ3

1 (Y )
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It follows that the skewness coefficient is equal to:

γ1 (Z) =
µ3 (Z)

µ
3/2
2 (Z)

=
ϑ1 (Z)

(pµ2 (Y ) + p (1− p)µ2
1 (Y ))

3/2
(39)

where:

ϑ1 (Z) = pγ1 (Y )µ
3/2
2 (Y ) + 3p (1− p)µ2 (Y )µ1 (Y ) + p (1− p) (1− 2p)µ3

1 (Y )

For the fourth moment, we have:

µ4 (Z) = µ′4 (Z)− 4µ′3 (Z)µ1 (Z) + 6µ′2 (Z)µ2
1 (Z)− 3µ4

1 (Z)

= pµ′4 (Y )− 4p2µ′3 (Y )µ1 (Y ) + 6p3µ′2 (Y )µ2
1 (Y )− 3p4µ4

1 (Y )

= p (γ2 (Y ) + 3)µ2
2 (Y ) + 4pγ1 (Y )µ

3/2
2 (Y )µ1 (Y ) + 6pµ2 (Y )µ2

1 (Y ) + pµ4
1 (Y )−

4p2γ1 (Y )µ
3/2
2 (Y )µ1 (Y )− 12p2µ2 (Y )µ2

1 (Y )− 4p2µ4
1 (Y ) +

6p3µ2 (Y )µ2
1 (Y ) + 6p3µ4

1 (Y )− 3p4µ4
1 (Y )

= p (γ2 (Y ) + 3)µ2
2 (Y ) + 4p (1− p) γ1 (Y )µ

3/2
2 (Y )µ1 (Y ) +

6p (1− p)2 µ2 (Y )µ2
1 (Y ) + p (1− p)

(
1− 3p+ 3p2

)
µ4
1 (Y ) (40)

We deduce that the excess kurtosis coefficient is equal to:

γ2 (Z) =
µ4 (Z)

µ2
2 (Z)

− 3

=
ϑ2 (Z)

(pµ2 (Y ) + p (1− p)µ2
1 (Y ))

2 (41)

where:

ϑ2 (Z) = p (γ2 (Y ) + 3)µ2
2 (Y ) + 4p (1− p) γ1 (Y )µ

3/2
2 (Y )µ1 (Y ) +

6p (1− p)2 µ2 (Y )µ2
1 (Y ) + p (1− p)

(
1− 3p+ 3p2

)
µ4
1 (Y )−

3p2µ2
2 (Y )− 6p2 (1− p)µ2 (Y )µ2

1 (Y )− 3p2 (1− p)2 µ4
1 (Y )

= (pγ2 (Y ) + 3p (1− p))µ2
2 (Y ) + 4p (1− p) γ1 (Y )µ

3/2
2 (Y )µ1 (Y ) +

6p (1− p) (1− 2p)µ2 (Y )µ2
1 (Y ) + p (1− p)

(
1− 6p+ 6p2

)
µ4
1 (Y )

We can deduce the following properties:

1. The skewness of Z is equal to zero if and only if:

(a) the skewness of Y is equal to zero and the frequency probability p is equal to one;

(b) the frequency probability p is equal to zero, meaning that Z is always equal to
zero.

2. The excess kurtosis of Z is equal to zero if and only if:

(a) the kurtosis of Y is equal to 3 and the frequency probability p is equal to one;
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(b) the frequency probability p is equal to zero, meaning that Z is always equal to
zero.

In other cases, the skewness and excess kurtosis coefficients of Z are different from zero even
if the random variable Y is not skewed and has not fat tails.

Remark 18 The previous results seem to be contradictory with the properties given in Equa-
tion (17) on page 26. In fact, the limit case p → 0+ is not equal to p = 0, because there is
a singularity at the point p = 0.

A.2.2 Application to the beta distribution

We assume that Y ∼ B (a, b). Since we have:

µ1 (Y ) =
a

a+ b

we deduce that:
µ1 (Z) = p

a

a+ b

For the second moment, we have:

µ2 (Y ) =
ab

(a+ b)
2

(a+ b+ 1)

and:

µ2 (Z) = p
ab

(a+ b)
2

(a+ b+ 1)
+ p (1− p)

(
a

a+ b

)2

= p
ab+ (1− p) a2 (a+ b+ 1)

(a+ b)
2

(a+ b+ 1)

This formula has been already found by Ospina and Ferrari (2010). The skewness and excess
kurtosis coefficients of the beta distribution are equal to:

γ1 (Y ) =
2 (b− a)

√
a+ b+ 1

(a+ b+ 2)
√
ab

and:

γ2 (Y ) =
6 (a− b)2 (a+ b+ 1)

ab (a+ b+ 2) (a+ b+ 3)
− 6

(a+ b+ 3)

We plug these different expressions into the general formulas47 to obtain γ1 (Z) and γ2 (Z).

A.3 Maximum likelihood of the zero-inflated model

We consider a sample {x1, . . . , xn} of n observations, and we assume that X follows a
zero-inflated model, whose frequency and probability distributions are p and G (x; θ). The
log-likelihood of the ith observation is equal to:

`i (p, θ) = ln Pr {X = xi}
= ln f (xi)

= 1 {xi = 0} · ln (1− p) + 1 {xi > 0} · ln (pg (xi; θ))

= 1 {xi = 0} · ln (1− p) + 1 {xi > 0} · ln p+ 1 {xi > 0} · ln g (xi; θ)

47The formulas are not reported here because they don’t have a lot of interest.
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We deduce that the log-likelihood function is equal to:

` (p, θ) =

n∑
i=1

`i (p, θ)

= n0 ln (1− p) + (n− n0) ln p+
∑
xi>0

ln g (xi)

where n0 is the number of observations xi that are equal to zero. The maximum likelihood

estimator
(
p̂, θ̂
)

is defined as follows:{
p̂, θ̂
}

= arg max ` (p, θ)

and satisfies the first-order conditions: ∂p`
(
p̂; θ̂
)

= 0

∂θ`
(
p̂; θ̂
)

= 0

We deduce that:

∂p`
(
p̂; θ̂
)

= 0⇔ − n0
1− p̂

+
n− n0
p̂

= 0

⇔ p̂ =
n− n0
n

(42)

The concentrated log-likelihood function becomes:

` (p̂, θ) = n0 lnn0 + (n− n0) ln (n− n0)− n lnn+
∑
xi>0

ln g (xi)

Therefore, the ML estimator θ̂ corresponds to the ML estimator of θ when considering only
the observations xi that are strictly positive:

θ̂ = arg max ` (p̂, θ)

= arg max
∑
xi>0

ln g (xi) (43)

Remark 19 In the case of the zero-inflated beta model, we have θ = (a, b) and:{
â, b̂
}

= arg max
∑
xi>0

(
(a− 1) lnxi + (b− 1) ln (1− xi)− lnB (a, b)

)
(44)

A.4 Statistical properties of the individual-based model

We define the random variable Z̃ as the sum of products of two random variables:

Z̃ =

n∑
i=1

ωiX̃iỸi

where X̃i ∼ B (p̃) and Ỹi are iid random variables. Moreover, we assume that ωi > 0 and∑n
i=1 ωi = 1.
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A.4.1 Computation of Pr
{
Z̃ = 0

}
This case corresponds to the situation where no client redeems:

Pr
{
Z̃ = 0

}
= Pr

{
n∑
i=1

ωiX̃iỸi = 0

}
= Pr

{
X̃1 = 0, . . . , X̃n = 0

}
=

n∏
i=1

Pr
{
X̃i = 0

}
= (1− p̃)n (45)

A.4.2 Statistical moments

First moment For the mean, we have:

E
[
Z̃
]

= E

[
n∑
i=1

ωiX̃iỸi

]

=

n∑
i=1

ωiE
[
X̃i

]
E
[
Ỹi

]
We deduce that:

µ1

(
Z̃
)

= p̃µ1

(
Ỹ
)

(46)

Second moment Since we have E
[
X̃2
i

]
= p̃ and E

[
Ỹ 2
i

]
= µ′2

(
Ỹ
)

, it follows that:

E
[
Z̃2
]

= E

( n∑
i=1

ωiX̃iỸi

)2


= E

 n∑
i=1

ω2
i X̃

2
i Ỹ

2
i + 2

∑
j>i

ωiωjX̃iX̃j ỸiỸj


= p̃µ′2

(
Ỹ
) n∑
i=1

ω2
i + 2p̃2µ2

1

(
Ỹ
)∑
j>i

ωiωj

We notice that:

1 =

n∑
i=1

ωi

=

(
n∑
i=1

ωi

)2

=

n∑
i=1

ω2
i + 2

∑
j>i

ωiωj
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We deduce that:

µ2

(
Z̃
)

= E
[
Z̃2
]
− E2

[
Z̃
]

= p̃µ′2

(
Ỹ
) n∑
i=1

ω2
i + 2p̃2µ2

1

(
Ỹ
)∑
j>i

ωiωj − p̃2µ2
1

(
Ỹ
)

= p̃µ′2

(
Ỹ
) n∑
i=1

ω2
i + 2p̃2µ2

1

(
Ỹ
)∑
j>i

ωiωj −

p̃2µ2
1

(
Ỹ
) n∑

i=1

ω2
i + 2

∑
j>i

ωiωj


Therefore, the variance of Z̃ is equal to:

µ2

(
Z̃
)

=
(
p̃µ′2

(
Ỹ
)
− p̃2µ2

1

(
Ỹ
)) n∑

i=1

ω2
i

= p̃
(
µ2

(
Ỹ
)

+ (1− p̃)µ2
1

(
Ỹ
)) n∑

i=1

ω2
i (47)

Remark 20 In the equally-weighted case, we obtain:

µ2

(
Z̃
)

=
p̃
(
µ2

(
Ỹ
)

+ (1− p̃)µ2
1

(
Ỹ
))

n

Application to the beta severity distribution If we assume that Ỹi ∼ B
(
ã, b̃
)

, we

have:

µ1

(
Ỹ
)

=
ã

ã+ b̃

and:

µ2

(
Ỹ
)

=
ãb̃(

ã+ b̃
)2 (

ã+ b̃+ 1
)

We deduce that:

µ1

(
Z̃
)

= p̃
ã

ã+ b̃

and:

µ2

(
Z̃
)

=
p̃

n

 ãb̃(
ã+ b̃

)2 (
ã+ b̃+ 1

) + (1− p̃) ã2(
ã+ b̃

)2


= p̃
ã

n

 b̃+ (1− p̃) ã
(
ã+ b̃+ 1

)
(
ã+ b̃

)2 (
ã+ b̃+ 1

)
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A.5 Moment matching between the zero-inflated model and the
individual-based model

In order to calibrate the probability p, we match the redemption probability Pr {R > 0}.
Using the results in Appendix A.4.1 on page 83, we obtain:

p = 1− Pr {R = 0}
= 1− (1− p̃)n

For the first moment, we have:
E [R ] = pµ = p̃µ̃

We deduce that:

µ =
p̃

1− (1− p̃)n
µ̃

For the second moment, we have:

σ2 (R ) = pσ2 + p (1− p)µ2 = p̃
(
σ̃2 + (1− p̃) µ̃2

) n∑
i=1

ω2
i

It follows that:

σ2 =
p̃
(
σ̃2 + (1− p̃) µ̃2

)∑n
i=1 ω

2
i − p (1− p)µ2

p

=
p̃
(
σ̃2 + (1− p̃) µ̃2

)∑n
i=1 ω

2
i

1− (1− p̃)n
− (1− p̃)np̃2

(1− (1− p̃)n)
2 µ̃

2

=

(
p̃H (ω)

1− (1− p̃)n
)
σ̃2 +(

p̃ ((1− p̃)− (1− p̃)n)H (ω)− p̃2 (1− p̃)n (1−H (ω))

(1− (1− p̃)n)
2

)
µ̃2

where H (ω) =
∑n
i=1 ω

2
i is the Herfindahl index.

Remark 21 If we consider the equally-weighted case ωi = n−1, we have H (ω) = n−1 and:

σ2 =
1

n

(
p̃

1− (1− p̃)n
)
σ̃2 +

1

n

(
p̃ ((1− p̃)− (1− p̃)n)− p̃2 (1− p̃)n (n− 1)

(1− (1− p̃)n)
2

)
µ̃2

When p̃ 6= 0, the limit cases are:
lim
n→∞

p = 1

and:
lim
n→∞

µ = p̃µ̃

For the parameter σ, we obtain:

lim
n→∞

σ2 = p̃
(
σ̃2 + (1− p̃) µ̃2

)
H (ω)

For an infinitely fine-grained liability structure, we have:

lim
n→∞

σ2 = 0
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A.6 Upper bound of the Herfindahl index under partial informa-
tion

Let πk be a probability distribution, meaning that πk ≥ 0 and
∑n
k=1 πk = 1. The Herfindahl

index is equal to:

H =

n∑
k=1

π2
k

=

n∑
k=1

π2
k:n

=

n∑
k=1

π2
n−k+1:n

where:

0 ≤ minπk = π1:n ≤ π2:n ≤ · · · ≤ πk:n ≤ πk+1:n ≤ · · · ≤ πn:n = maxπk

We have:

H =

m∑
k=1

π2
n−k+1:n +

n∑
k=m+1

π2
n−k+1:n

where k = 1 : m denotes the largest contributions that are known, meaning that we don’t
know the values taken by {π1:n, . . . , πn−m:n}. Since we have πn−k:n ≤ πn−k+1:n, we deduce
that:

n∑
k=m+1

π2
n−k+1:n ≤

(
1−

∑m
k=1 πn−k+1:n

πn−m+1:n

)
π2
n−m+1:n

=

(
1−

m∑
k=1

πn−k+1:n

)
πn−m+1:n

and48:

H ≤ H+
m =

m∑
k=1

π2
n−k+1:n +

(
1−

m∑
k=1

πn−k+1:n

)
πn−m+1:n (48)

An example is given in Table 39. The Herfindahl index is equal to 17.96%. Using the first
three largest values, we obtain an estimate of 20.50%.

Table 39: Example of partial Herfindahl index computation

m 1 2 3 4 5 6 7 8
πm (in %) 30.00 20.00 15.00 10.00 9.00 7.00 5.00 4.00
H+
m (in %) 30.00 23.00 20.50 18.75 18.50 18.18 18.00 17.96

A.7 Correlated redemptions with copula functions

We define the random variable Z̃ as previously:

Z̃ =

n∑
i=1

ωiX̃iỸi

48We verify that H+
n = H.
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where Ỹi are iid random variables. We assume that X̃i ∼ B (p̃) are identically distributed,
but not independent. We note C (u1, . . . , un) the copula function of the random vector(
X̃1, . . . , X̃n

)
and B (x) the cumulative distribution function of the Bernoulli random vari-

able B (p̃). This means that B (0) = 1− p̃ and B (1) = 1.

In practice we use the Clayton copula:

C(θc) (u1, . . . , un) =
(
u−θc1 + · · ·+ u−θcn − n+ 1

)−1/θc
or the Normal copula49:

C(θc) (u1, . . . , un) = Φ
(
Φ−1 (u1) + · · ·+ Φ−1 (un) ; Cn (θc)

)
The Clayton parameter satisfies θc ≥ 0 whereas the Normal parameter θc lies in the range
[−1, 1]. Moreover, we notice that the expressions of the bivariate copula functions are:

C(θc) (u1, u2) = C(θc) (u1, u2, 1, . . . , 1) =
(
u−θc1 + u−θc2 − 1

)−1/θc
and:

C(θc) (u1, u2) = C(θc) (u1, u2, 1, . . . , 1) = Φ
(
Φ−1 (u1) + Φ−1 (u2) ; C2 (θc)

)
A.7.1 Joint probability of two X̃i’s

We consider the bivariate case. The probability mass function is described by the following
contingency table:

X̃2 = 0 X̃1 = 1

X̃1 = 0 π0,0 π0,1 π0 = 1− p̃
X̃1 = 1 π1,0 π1,1 π1 = p̃

π0 = 1− p̃ π1 = p̃ 1

(49)

Since we have Pr
{
X̃1 ≤ u1, X̃2 ≤ u2

}
= C(θc) (B (u1) ,B (u2)), we deduce that:

C(θc) (B (0) ,B (0)) = C(θc) (1− p̃, 1− p̃)
C(θc) (B (0) ,B (1)) = C(θc) (1− p̃, 1) = 1− p̃
C(θc) (B (1) ,B (0)) = C(θc) (1, 1− p̃) = 1− p̃
C(θc) (B (1) ,B (1)) = C(θc) (1, 1) = 1

and:

X̃2 = 0 X̃1 = 1

X̃1 = 0 C(θc) (1− p̃, 1− p̃) 1− p̃−C(θc) (1− p̃, 1− p̃) 1− p̃
X̃1 = 1 1− p̃−C(θc) (1− p̃, 1− p̃) C(θc) (1− p̃, 1− p̃) + 2p̃− 1 p̃

1− p̃ p̃ 1

(50)

In the case where C(θc) = C⊥, X̃1 and X̃2 are independent, we retrieve the results obtained
for the individual-based model:

X̃2 = 0 X̃1 = 1

X̃1 = 0 (1− p̃)2 (1− p̃) p̃ 1− p̃
X̃1 = 1 (1− p̃) p̃ p̃2 p̃

1− p̃ p̃ 1

(51)

49The Normal copula depends on the correlation matrix Σ. Here, we assume a uniform redemption
correlation, implying that Σ is the constant correlation matrix Cn (θc) where θc is the pairwise correlation.
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because C⊥ (u1, u2) = u1u2. In the case where C(θc) = C+, X̃1 and X̃2 are perfectly
dependent and we obtain the following contingency table:

X̃2 = 0 X̃1 = 1

X̃1 = 0 1− p̃ 0 1− p̃
X̃1 = 1 0 p̃ p̃

1− p̃ p̃ 1

(52)

because C+ (u1, u2) = min (u1, u2). The contingency tables (51) and (52) represent the two
extremes cases.

Remark 22 If we use a radially symmetric copula (Nelsen, 2006) such that:

C(θc) (u1, u2) = u1 + u2 − 1 + C(θc) (1− u1, 1− u2)

the contingency table (50) becomes:

X̃2 = 0 X̃1 = 1

X̃1 = 0 1− 2p̃+ C(θc) (p̃, p̃) p̃−C(θc) (p̃, p̃) 1− p̃
X̃1 = 1 p−C(θc) (p̃, p̃) C(θc) (p̃, p̃) p̃

1− p̃ p̃ 1

In the general case, we obtain a similar contingency table by replacing the copula function
C(θc) (u1, u2) by its corresponding survival function C̆(θc) (u1, u2) because we have (Nelsen,
2006):

C̆(θc) (u1, u2) = u1 + u2 − 1 + C(θc) (1− u1, 1− u2)

A.7.2 Computation of Pr
{
Z̃ = 0

}
This case corresponds to the situation where no client redeems:

Pr
{
Z̃ = 0

}
= Pr

{
n∑
i=1

ωiX̃iỸi = 0

}
= Pr

{
X̃1 = 0, . . . , X̃n = 0

}
= C(θc) (1− p̃, . . . , 1− p̃) (53)

In the case where C(θc) = C⊥, we retrieve the result Pr
{
Z̃ = 0

}
= (1− p̃)n. In the case

where C(θc) = C+, we obtain Pr
{
Z̃ = 0

}
= 1− p̃.

A.7.3 Statistical moments

First moment For the mean, we have:

E
[
Z̃
]

= E

[
n∑
i=1

ωiX̃iỸi

]

=

n∑
i=1

ωiE
[
X̃i

]
E
[
Ỹi

]
We deduce that:

µ1

(
Z̃
)

= p̃µ1

(
Ỹ
)

(54)
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Second moment Using the contingency table (50), we have:

E
[
X̃1X̃2

]
= C(θc) (1− p̃, 1− p̃) + 2p̃− 1

= C̆(θc) (p̃, p̃)

It follows that:

E
[
Z̃2
]

= E

( n∑
i=1

ωiX̃iỸi

)2


= E

 n∑
i=1

ω2
i X̃

2
i Ỹ

2
i + 2

∑
j>i

ωiωjX̃iX̃j ỸiỸj


= p̃µ′2

(
Ỹ
) n∑
i=1

ω2
i + 2C̆(θc) (p̃, p̃)µ2

1

(
Ỹ
)∑
j>i

ωiωj

and

µ2

(
Z̃
)

= E
[
Z̃2
]
− E2

[
Z̃
]

= p̃µ′2

(
Ỹ
) n∑
i=1

ω2
i + 2C̆(θc) (p̃, p̃)µ2

1

(
Ỹ
)∑
j>i

ωiωj − p̃2µ2
1

(
Ỹ
)

= p̃
(
µ2

(
Ỹ
)

+ µ2
1

(
Ỹ
))
H (ω) + C̆(θc) (p̃, p̃)µ2

1

(
Ỹ
)

(1−H (ω))− p̃2µ2
1

(
Ỹ
)

= p̃µ2

(
Ỹ
)
H (ω) +

(
p̃H (ω) + C̆(θc) (p̃, p̃) (1−H (ω))− p̃2

)
µ2
1

(
Ỹ
)

=
(
p̃µ2

(
Ỹ
)

+
(
p̃− C̆(θc) (p̃, p̃)

)
µ2
1

(
Ỹ
))
H (ω) +

(
C̆(θc) (p̃, p̃)− p̃2

)
µ2
1

(
Ỹ
)

(55)

In the case where C(θc) = C⊥, we have C̆(θc) (p̃, p̃) = p̃2. Therefore, we retrieve the result
found in Equation (47) on page 84:

µ2

(
Z̃
)

= p̃
(
µ2

(
Ỹ
)

+ (1− p̃)µ2
1

(
Ỹ
))
H (ω)

In the case where C(θc) = C+, we have C̆(θc) (p̃, p̃) = p̃ and we obtain:

µ2

(
Z̃
)

= p̃µ2

(
Ỹ
)
H (ω) + p̃ (1− p̃)µ2

1

(
Ỹ
)

A.8 Statistical moments of the redemption frequency

We recall that X̃i ∼ B (p̃), meaning that E
[
X̃i

]
= E

[
X̃2
i

]
= p̃. The weighted redemption

frequency is defined as follows:

F =

n∑
i=1

ωiX̃i

We have:

E [F ] = E

[
n∑
i=1

ωiX̃i

]
= p̃
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and:

E
[
F 2
]

= E

( n∑
i=1

ωiX̃i

)2


= E

 n∑
i=1

ω2
i X̃

2
i + 2

∑
j>i

ωiωjX̃iX̃j


= p̃H (ω) + C̆(θc) (p̃, p̃) (1−H (ω))

We deduce that:

µ2 (F ) = p̃H (ω) + C̆(θc) (p̃, p̃) (1−H (ω))− p̃2

Remark 23 We notice that the expected value and the volatility of the redemption frequency
are related in the following way:

µ2 (F ) = E [F ] (H (ω)− E [F ]) + C̆ (E [F ] ,E [F ]) (1−H (ω)) (56)

A.9 Pearson correlation between two redemption frequencies

We consider two redemption frequencies F 1 and F 2. The redemption frequency F k is
associated to the liability structure (ωk,1, . . . , ωk,nk

) and corresponds to an investor category,
whose redemption probability is p̃k and frequency correlation is characterized by the copula
function C(θk) (k = 1, 2). We also assume that the redemption correlation between the two
investor categories is defined by the copula function C(θ12). It follows that we have three
copula functions:

• C(θ1) is the copula function that defines the frequency correlation between the investors
of the first category;

• C(θ2) is the copula function that defines the frequency correlation between the investors
of the second category;

• C(θ12) is the copula function that defines the frequency correlation between the in-
vestors of the first category and those of the second category.

In the case where the two categories are the same, we have C(θ1) = C(θ2) = C(θ12) = C(θc).

To compute the covariance between F 1 and F 2, we calculate the mathematical expecta-
tion of the cross product:

E [F 1F 2] = E

( n1∑
i=1

ω1,iX̃1,i

) n2∑
j=1

ω2,jX̃2,j


= E

 n1∑
i=1

n2∑
j=1

ω1,iω2,jX̃1,iX̃2,j


= E

[
X̃1,iX̃2,j

] n1∑
i=1

n2∑
j=1

ω1,iω2,j


= C̆(θ12) (p̃1, p̃2)
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because
∑n1

i=1

∑n2

j=1 ω1,iω2,j = 1. We deduce the expression of the Pearson correlation:

ρ (F 1,F 2) =
C̆(θ12) (p̃1, p̃2)− p̃1p̃2√

µ2 (F 1)µ2 (F 2)
(57)

where:
µ2 (F k) = p̃k (H (ωk)− p̃k) + C̆(θk) (p̃k, p̃k) (1−H (ωk)) k = 1, 2

Remark 24 The Pearson correlation ρ (F 1,F 2) is equal to zero if only if 50 C(θk) is the

product copula C⊥.

Remark 25 In the case where the two investor categories are the same and the liability
structures are equally-weighted, we have p̃1 = p̃2 = p̃ and C(θ1) = C(θ2) = C(θ12) = C(θc),
and we obtain:

ρ (F 1,F 2) =
C̆(θc) (p̃, p̃)− p̃2√
µ2 (F 1)µ2 (F 2)

(58)

where:

µ2 (F k) = C̆(θc) (p̃, p̃)− p̃2 +
p̃− C̆(θc) (p̃, p̃)

nk
k = 1, 2

The limiting case nk → ∞ is equal to ρ (F 1,F 2) = 1. This is normal since F 1 and F 2

converges to p̃ when the liability structure is infinitely fine-grained.

B Data

50We recall that C(θk)
is the Clayton or the Normal copula. In the general case, this property does not

hold.
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Table 40: Breakdown of the liability dataset by investor and fund categories

Total number n
Balanced Bond

Enhanced
Equity

Money
Other Structured Total

of observations Treasury Market
Auto-consumption 22 762 46 651 3 784 46 678 6 175 34 064 0 160 114
Central bank 2 791 7 400 0 4 730 602 0 0 15 523
Corporate 10 780 13 457 2 305 6 962 7 812 6 164 0 47 480
Corporate pension fund 14 827 24 429 427 17 975 3 029 5 474 427 66 588
Employee savings plan 9 894 4 240 1 349 19 145 3 232 0 5 279 43 139
Institutional 50 813 95 013 3 961 76 057 9 542 31 973 241 267 600
Insurance 10 577 45 494 3 303 23 145 12 633 6 528 0 101 680
Other 27 938 29 817 5 816 4 898 9 347 18 717 0 96 533
Retail 140 023 86 937 7 531 99 624 15 418 31 370 83 496 464 399
Sovereign 7 291 12 788 854 14 183 3 471 5 308 0 43 895
Third-party distributor 63 792 86 716 5 247 123 004 11 160 15 407 5 126 310 452
Total 361 488 452 942 34 577 436 401 82 421 155 005 94 569 1 617 403

Total number n1 Balanced Bond
Enhanced

Equity
Money

Other Structured Total
of redemptions Treasury Market
Auto-consumption 3 744 8 796 1 135 11 871 3 040 883 0 29 469
Central bank 4 16 0 38 18 0 0 76
Corporate 324 484 144 159 3 110 20 0 4 241
Corporate pension fund 460 513 17 447 213 17 2 1 669
Employee savings plan 264 120 40 519 74 0 145 1 162
Institutional 1 973 3 098 74 3 422 2 754 229 0 11 550
Insurance 568 1 562 114 1 596 2 409 61 0 6 310
Other 1 145 926 219 805 2 009 278 0 5 382
Retail 54 095 36 018 3 932 67 862 6 882 5 030 22 783 196 602
Sovereign 494 118 9 381 521 2 0 1 525
Third-party distributor 19 837 29 140 2 277 54 689 7 127 4 569 334 117 973
Total 82 908 80 791 7 961 141 789 28 157 11 089 23 264 375 959

Source: Amundi Cube Database (2020) and authors’ calculation.
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Table 41: Breakdown of the liability dataset by investor and fund categories (without mandates and dedicated mutual funds)

Total number n
Balanced Bond

Enhanced
Equity

Money
Other Structured Total

of observations Treasury Market
Auto-consumption 16 147 43 189 3 783 43 737 6 008 13 793 0 126 657
Central bank 1 281 580 0 476 0 0 0 2 337
Corporate 1 862 6 542 2 305 5 468 7 812 4 235 0 28 224
Corporate pension fund 2 344 8 650 427 9 031 2 670 1 277 0 24 399
Employee savings plan 9 894 4 240 1 349 19 145 3 232 0 5 279 43 139
Institutional 6 858 36 792 3 716 41 104 8 329 16 029 0 112 828
Insurance 3 436 13 011 3 303 21 832 8 543 5 750 0 55 875
Other 7 577 12 751 5 428 4 155 9 333 11 788 0 51 032
Retail 115 394 77 879 6 692 95 393 14 798 27 834 83 118 421 108
Sovereign 2 969 2 261 854 3 405 2 853 1 746 0 14 088
Third-party distributor 55 696 75 591 4 929 114 171 10 732 13 483 5 126 279 728
Total 223 458 281 486 32 786 357 917 74 310 95 935 93 523 1 159 415

Total number n1 Balanced Bond
Enhanced

Equity
Money

Other Structured Total
of redemptions Treasury Market
Auto-consumption 3 492 8 385 1 135 11 137 3 040 881 0 28 070
Central bank 2 2 0 7 0 0 0 11
Corporate 280 405 144 157 3 110 9 0 4 105
Corporate pension fund 190 292 17 304 202 0 0 1 005
Employee savings plan 264 120 40 519 74 0 145 1 162
Institutional 1 328 2 312 73 2 677 2 734 166 0 9 290
Insurance 419 874 114 1 576 2 385 60 0 5 428
Other 733 493 200 804 2 008 262 0 4 500
Retail 51 454 35 079 3 932 67 250 6 770 4 875 22 707 192 067
Sovereign 484 72 9 343 520 1 0 1 429
Third-party distributor 18 808 28 242 2 266 52 445 7 077 4 431 334 113 603
Total 77 454 76 276 7 930 137 219 27 920 10 685 23 186 360 670

Source: Amundi Cube Database (2020) and authors’ calculation.

93



Liquidity Stress Testing in Asset Management

C Additional results

Figure 37: Third-party distributor
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Figure 38: Relationship between the stress scenario of the big fund and the stress scenario
of n equivalent small funds
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Figure 39: Relationship between the confidence level α of F−1 (α) and the confidence level
αG of G−1 (αG)
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Figure 40: Stress scenario S (T ) in % (p = 5%)
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Figure 41: Stress scenario S (T ) in % (p = 50%)
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Table 42: Estimated value of a (method of moments)

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 0.02 0.05 0.03 0.03 0.09 0.06 0.04
Central bank
Corporate 0.00 0.04 0.21 0.14
Corporate pension fund 0.01 0.01 0.21 0.04
Employee savings plan 0.14 0.04 0.04
Institutional 0.01 0.04 0.06 0.10 0.05
Insurance 0.01 0.02 0.02 0.12 0.05
Other 0.05 0.05 0.01 0.05 0.01 0.03
Retail 0.01 0.01 0.01 0.01 0.05 0.01 0.00 0.01
Sovereign 0.05 0.02 0.11 0.04
Third-party distributor 0.01 0.03 0.02 0.02 0.07 0.01 0.02 0.02
Total 0.01 0.02 0.02 0.01 0.07 0.02 0.00 0.02

(1) = balanced, (2) = bond, (3) = enhanced treasury, (4) = equity, (5) = money market, (6) = other, (7)

= structured, (8) = total

Table 43: Estimated value of b (method of moments)

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 1.23 2.86 1.20 2.25 2.81 2.23 2.28
Central bank
Corporate 0.78 1.62 5.34 3.61
Corporate pension fund 0.41 0.50 2.69 1.09
Employee savings plan 10.89 1.84 1.73
Institutional 1.21 1.52 2.13 2.15 1.60
Insurance 0.78 0.91 1.07 3.58 1.91
Other 5.58 1.84 1.04 1.35 1.17 1.23
Retail 3.29 3.56 2.98 4.11 2.39 3.07 1.11 3.00
Sovereign 86.69 0.83 0.90 0.87
Third-party distributor 3.83 4.21 1.44 5.22 5.14 1.48 1.43 3.89
Total 2.68 2.80 1.01 2.89 2.58 1.60 0.97 2.43

(1) = balanced, (2) = bond, (3) = enhanced treasury, (4) = equity, (5) = money market, (6) = other, (7)

= structured, (8) = total
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Table 44: Estimated value of a (method of maximum likelihood)

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 0.20 0.26 0.26 0.23 0.32 0.25 0.24
Central bank
Corporate 0.23 0.19 0.39 0.30
Corporate pension fund 0.13 0.13 0.37 0.16
Employee savings plan 1.03 0.52 0.57
Institutional 0.22 0.19 0.21 0.28 0.22
Insurance 0.14 0.15 0.17 0.28 0.19
Other 0.26 0.21 0.27 0.25 0.28 0.23
Retail 0.31 0.30 0.26 0.33 0.27 0.27 0.36 0.29
Sovereign 0.68 0.17 0.31 0.19
Third-party distributor 0.40 0.28 0.24 0.30 0.34 0.27 0.26 0.30
Total 0.29 0.25 0.23 0.27 0.29 0.24 0.32 0.25

(1) = balanced, (2) = bond, (3) = enhanced treasury, (4) = equity, (5) = money market, (6) = other, (7)

= structured, (8) = total

Table 45: Estimated value of b (method of maximum likelihood)

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 6.53 11.36 17.89 15.80 7.50 8.40 10.51
Central bank
Corporate 26.32 6.03 8.96 6.55
Corporate pension fund 1.66 3.12 4.14 2.70
Employee savings plan 74.62 24.41 30.29
Institutional 16.24 4.94 5.65 4.64 5.04
Insurance 3.56 5.42 5.26 7.14 5.46
Other 28.00 7.99 31.90 4.82 43.34 6.72
Retail 56.99 82.20 51.08 116.86 10.51 48.15 309.26 65.57
Sovereign 1225.65 4.84 2.06 2.92
Third-party distributor 111.38 39.19 15.23 64.70 21.61 36.15 12.11 47.77
Total 44.28 26.79 15.16 44.67 7.80 20.02 206.39 26.76

(1) = balanced, (2) = bond, (3) = enhanced treasury, (4) = equity, (5) = money market, (6) = other, (7)

= structured, (8) = total
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Table 46: Estimated value of µ in % (method of maximum likelihood)

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 2.92 2.23 1.45 1.43 4.08 2.91 2.20
Central bank
Corporate 0.87 3.10 4.12 4.43
Corporate pension fund 7.47 4.03 8.29 5.58
Employee savings plan 1.36 2.07 1.85
Institutional 1.32 3.78 3.55 5.77 4.11
Insurance 3.78 2.62 3.08 3.80 3.44
Other 0.93 2.56 0.83 4.99 0.64 3.26
Retail 0.54 0.36 0.51 0.28 2.47 0.56 0.12 0.44
Sovereign 0.06 3.47 13.01 6.08
Third-party distributor 0.36 0.72 1.55 0.46 1.55 0.75 2.13 0.62
Total 0.66 0.92 1.46 0.59 3.53 1.16 0.15 0.92

(1) = balanced, (2) = bond, (3) = enhanced treasury, (4) = equity, (5) = money market, (6) = other, (7)

= structured, (8) = total

Table 47: Estimated value of σ in % (method of maximum likelihood)

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 6.05 4.16 2.74 2.88 6.66 5.41 4.28
Central bank
Corporate 1.77 6.45 6.18 7.34
Corporate pension fund 15.74 9.53 11.74 11.68
Employee savings plan 1.32 2.80 2.39
Institutional 2.73 7.70 7.06 9.59 7.94
Insurance 8.80 6.23 6.82 6.58 7.07
Other 1.78 5.21 1.58 8.84 1.20 6.30
Retail 0.96 0.65 0.99 0.48 4.52 1.06 0.19 0.81
Sovereign 0.07 7.46 18.33 11.79
Third-party distributor 0.56 1.33 3.04 0.83 2.58 1.41 3.95 1.12
Total 1.20 1.80 2.97 1.13 6.13 2.33 0.27 1.81

(1) = balanced, (2) = bond, (3) = enhanced treasury, (4) = equity, (5) = money market, (6) = other, (7)

= structured, (8) = total
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Table 48: Volatility of the redemption rate in %

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 3.47 3.11 5.42 3.06 6.45 2.40 3.41
Central bank 0.33 1.25 2.29 1.23
Corporate 2.16 2.45 3.43 3.07 5.08 2.22 3.57
Corporate pension fund 3.02 1.92 1.03 2.53 4.09 0.00 2.53
Employee savings plan 0.57 0.41 2.75 1.42 0.59 2.65 1.45
Institutional 2.42 2.58 7.07 2.45 6.89 1.87 3.24
Insurance 3.05 2.79 1.49 2.77 4.53 1.89 3.02
Other 1.15 1.90 4.79 3.22 5.70 1.01 3.26
Retail 1.88 1.74 2.55 1.76 5.18 1.36 1.38 1.95
Sovereign 0.10 0.45 1.66 3.19 10.07 2.39 4.94
Third-party distributor 1.57 2.15 5.22 1.76 3.88 3.37 1.80 2.17
Total 1.96 2.29 4.45 2.18 5.48 2.05 1.51 2.56

(1) = balanced, (2) = bond, (3) = enhanced treasury, (4) = equity, (5) = money market, (6) = other, (7)

= structured, (8) = total

Figure 42: Liability weights in the case of the geometric liability structure ωi ∝ qi
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Figure 43: Comparison of F̃ (x | ω) and F̃ (x | H) (q = 0.9 and H (ω)
−1

= 18))
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Figure 44: Comparison of F̃ (x | ω) and F̃ (x | H) (q = 0.5 and H (ω)
−1

= 3))
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Figure 45: Probability to observe no redemption Pr {R = 0} in % with respect to the number
n of unitholders (p̃ = 10%)
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Figure 46: Probability to observe 100% of redemptions Pr {F = 1} in % (n = 20)
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Figure 47: Histogram of the redemption rate in % with respect to the number n of unitholders
(p̃ = 50%, µ̃ = 50%, σ̃ = 10%, ρ = 25%)

Figure 48: Histogram of the redemption rate in % with respect to the number n of unitholders
(p̃ = 50%, µ̃ = 50%, σ̃ = 10%, ρ = 75%)
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Figure 49: Histogram of the redemption rate in % with respect to the number n of unitholders
(p̃ = 50%, µ̃ = 50%, σ̃ = 10%, ρ = 90%)

Table 49: Calibrated Pearson correlation (Normal copula, H (ω) = 1/20)

σ̂ (F )
F

10.0% 20.0% 25.0% 30.0% 40.0%

10.0%
20.0% 39.88% 24.58%
30.0% 50.00% 42.83% 38.88% 35.70% 31.70%
40.0% 50.00% 49.20% 47.77% 45.30%
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Figure 50: Dependogram of the bivariate Normal copula
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Figure 51: Dependogram of redemption rate frequencies for equity funds
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Figure 52: Histogram of the weekly redemption rate in % with respect to the autocorrelation
ρtime (p̃ = 50%, µ̃ = 50%, σ̃ = 10%, ρ = 50%, n = 10)

Table 50: Autocorrelation of the redemption frequency in %

Balanced Bond Equity Money market
Institutional 26.3∗∗ 12.9∗∗ 3.8 33.9∗∗

Insurance 39.8∗∗ 10.5∗∗ 1.8 16.9∗∗

Retail 7.9 9.8 25.2∗∗ −0.1
Third-party distributor 15.0∗∗ 32.5∗∗ 42.4∗∗ 13.9∗∗

Table 51: Autocorrelation of the redemption severity in %

Balanced Bond Equity Money market
Institutional 16.9∗∗ 2.0 6.1 21.4∗∗

Insurance −1.1 8.4 8.5 18.3∗∗

Retail 13.5∗∗ 3.1 10.1∗∗ 12.5∗∗

Third-party distributor 1.6 13.4∗∗ 9.9∗∗ 21.3∗∗

Table 52: Coefficient of determination R2
c in % — R (t) = β0 + β1F (t) + u (t)

Balanced Bond Equity Money market
Institutional 9.2 45.2 59.1 55.1
Insurance 2.8 18.4 22.2 53.3
Retail 68.2 61.9 60.1 55.2
Third-party distributor 51.8 66.4 54.2 64.7
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Table 53: Coefficient of determination R2
c in % — R (t) = β0 + β1R ? (t) + u (t)

Balanced Bond Equity Money market
Institutional 88.1 78.3 51.3 93.2
Insurance 99.2 85.3 85.4 94.4
Retail 88.6 93.2 99.1 89.4
Third-party distributor 96.3 95.9 95.6 98.0

Table 54: Coefficient of determination R2
c in % — R (t) = β0 + β1F (t) + β2R ? (t) + u (t)

Balanced Bond Equity Money market
Institutional 89.0 86.8 84.0 96.4
Insurance 99.3 87.2 88.2 97.1
Retail 96.2 97.3 99.7 95.7
Third-party distributor 98.4 98.2 97.6 98.9

Table 55: Coefficient of determination R2
c in % — Equation (35), one-week time horizon

Balanced Bond Equity Money market
Institutional 0.3 0.7 1.0 1.4
Insurance 0.2 0.5 1.4 2.3
Retail 0.8 2.3 0.6 0.3
Third-party distributor 0.8 0.8 1.2 3.8

Table 56: Coefficient of determination R2
c in % — Equation (35), two-week time horizon

Balanced Bond Equity Money market
Institutional 1.3 0.7 2.8 2.8
Insurance 0.1 0.3 1.5 5.1
Retail 2.3 2.0 0.8 0.9
Third-party distributor 1.1 2.1 1.5 3.7
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Figure 53: Relationship between redemption rate and two-week stock returns (equity cate-
gory)
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