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Abstract
In this paper, we consider 2D option pricing. Most of the problems come from the fact that only few

closed-form formulas are available. Numerical algorithms are also necessary to compute option prices.
This paper examines some topics on this subject.
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1 Introduction
With two-state option pricing models, there is in general no closed form solution except for some payo�s
and models, like the stochastic volatility model of Heston [1993] for a vanilla option or the pricing of an
excheangeable option in a Black and Scholes framework. Numerical algorithms are also a key point for 2D
option pricing. Three types of numerical methods are available: numerical integration (deterministic, Monte
Carlo and quasi-Monte Carlo), �nite di�erence and related �elds like �nite elements methods, and markov
methods (extension of binomial tree in a higher dimension). In this paper, we review these methods and
apply them to some option problems.

2 Numerical algorithms of 2D option pricing
In the M -factor arbitrage model which satis�es the standard regularity conditions, the price of the �nancial
asset1 P (t) = P (t,X (t)) satis�es the following Partial Di�erential Equation





1
2 trace

(
Σ(t,X)> PXX (t,X)Σ (t,X) ρ

)

+
[
µ (t,X)> − λ (t,X)>Σ(t,X)>

]
PX (t,X)

+Pt (t,X)− r (t,X)P (t,X) + g (t,X) = 0
P (T ) = G (T, X (T ))

(1)

The M -dimensional state vector X is a Markov di�usion process taking values in RX ⊂ RM de�ned by the
following stochastic di�erential equation system

{
dX (t) = µ (t,X (t)) dt + Σ (t,X (t)) dW (t)
X (t0) = X0

(2)

where W (t) is a N -dimensional Wiener process de�ned on the fundamental probability space (Ω,F ,P) with
the covariance matrix

E
[
W (t)W (t)>

]
= ρt (3)

Most of the two-state variable models impose N = 2. In this case, equation (2) becomes
[

dX1 (t)
dX2 (t)

]
=

[
µ1 (t,X1, X2)
µ2 (t,X1, X2)

]
dt +

[
σ1,1 (t, X1, X2) σ1,2 (t, X1, X2)
σ2,1 (t, X1, X2) σ2,2 (t, X1, X2)

] [
dW1 (t)
dW2 (t)

]
(4)

with
ρ =

[
1 ρ

1

]
(5)

and the fundamental equation takes the following form
[
1
2
σ2

1,1 + ρσ1,1σ1,2 +
1
2
σ2

1,2

]
PX1,X1 +

[
1
2
σ2

2,1 + ρσ2,1σ2,2 +
1
2
σ2

2,2

]
PX2,X2

+ [σ1,1σ2,1 + ρσ1,1σ2,2 + σ1,2σ2,2 + ρσ1,2σ2,1] PX1,X2 (6)
+ [µ1 − λ1σ1,1 − λ2σ1,2] PX1 + [µ2 − λ1σ2,1 − λ2σ2,2] PX2

+Pt − rP + g = 0

The solution of the equation (6) with the terminal value P (T ) = G (T, X (T )) is then given by the Feynman-
Kac representation theorem (Friedman [1975]) :

P (t0) = EQ

[
G (T, X (T )) exp

(
−

∫ T

t0

r (t, X (t)) dt

)
+

∫ T

t0

g (t,X (t)) exp
(
−

∫ t

t0

r (s,X (s)) ds

)
dt

∣∣∣∣∣Ft0

]

(7)
1The maturity date of the asset is T . The delivery value G depends on the values taken by the state variables at the

maturity date G = P (T ) = G (T, X (T )) and the asset pays a continuous dividend g which is a function of the state vector
g = g (t, X (t)).
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with Q the martingale probability measure. The pricing of European options could be done by solving the
PDE (6) or by integrating the formula (7). The case of path-dependent option is more complicated, but the
price could be found in general with the same techniques.

2.1 Numerical integration methods
We consider the example of a Basket/Spread option on two assets. Let Si (t) be the price process of the
stock i at time t. Under the unique equivalent martingale measure Q and according to the Black-Scholes
model, we assume that the dynamics of Si (t) is a log-normal di�usion

dSi (t) = biSi (t) dt + σiSi (t) dWi (t) (8)

where bi is the cost-of-carry parameter, σi the instantaneous volatility and E [W1 (t) W2 (t)] = ρt. Using the
Cholesky decomposition of the correlation matrix of {W1 (t) ,W2 (t)}, we could show that the price associated
to the payo� (α1S1 (T ) + α2S2 (T )−K)+ is given by

C (t0) = e−r(T−t0)

∫∫

R2

1
2π

g (ω1, ω2) exp
(
−1

2
(
ω2

1 + ω2
2

))
dω1 dω2 (9)

with

g (ω1, ω2) = (g1 (ω1, ω2) + g2 (ω1, ω2)−K)+

g1 (ω1, ω2) = α1S1 (t0) exp
((

b1 − 1
2
σ2

1

)
(T − t0) + σ1

√
T − t0ω1

)

g2 (ω1, ω2) = α2S2 (t0) exp
((

b2 − 1
2
σ2

2

)
(T − t0) + ρσ2

√
T − t0ω1 + σ2

√
1− ρ2

√
T − t0ω2

)
(10)

We could reduce the computational complexity because the formula (9) is equivalent to

C (t0) =
∫

R
BS

(
S?

2 ,K?, σ2

√
1− ρ2, T − t0, b2 − 1

2
ρ2σ2

2 , r

)
dΦ (ω1) (11)

with S?
2 = α2S2 (t0) exp

(
ρσ2

√
T − t0ω1

)
, K? = K − g1 (ω1, ω2). BS (S0,K, σ, τ, b, r) is the Black-Scholes

price of an European option of maturity τ and a premium K. S0, σ, b and r are respectively the current
price of the underlying asset, the volatility, the cost-of-carry parameter and the interest rate.

This �rst example requires to solve the integration problem (9) or (11) with numerical methods. One of
the most used methods are certainly quadrature rules (Golub and Welsch [1969]). The underlying idea
is to approximate the function by an appropriate polynomial. In the case of Gauss quadratures2, Golub
and Welsch show that if f (x) = B (x) p (x) with p ∈ P2n−1 (Pn is a set of order n polynomials), then there
exist nodes 0 < x1 < x2 < · · · < xn < 1 such that I =

∫ 1

0
f (x) dx =

∑n
i=1 wif (xi) where wi are positive

weights3. If f (x) is a not a polynomial, but is smooth relative to p ∈ P2n−1, G (f) =
∑n

i=1 wif (xi) is an
approximation of the integral. One of the major issue is of course the accuracy of the approximation. To
compute the weights and the nodes, we have to specify the basis function B (x) and the support. {wi, xi}
are also the solution of an eigenvalue problem of a Jacobi matrix4 and are associated to a speci�c class
of polynomials P2n−1 (see the �gure 1). For example, Legendre quadratures are used for �nite support
and B (x) = 1. An important point of quadrature methods is that the extension to higher dimensions is
straightforward (Davis and Rabinowitz [1984]).

We consider the function f (x) = 2π$ cos (2π$x) + 2x. In the �gure 2, we have plotted the function
f , the true value of the integral

∫ x

0
f (t) dt = x2 + sin (2π$x) and its numerical approximation for $ = 1.

We remark that the approximation depends both on the order n of the quadrature and the value x of the
2There are other quadrature rules, for example the Gauss-Radau, Gauss-Lobatto or Gauss-Kronod rules (Calvetti, Golub,

Gragg and Reichel [1998]).
3The extension to other supports is not a di�culty.
4Some numerical values could be found in Abramowitz and Stegun [1970].
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Figure 1: Gauss quadrature nodes and weights

Figure 2: Numerical integration with Gauss-Legendre quadrature
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bound. For a �xed n, the error is in general greater for a bigger value of the bound. In the third and fourth
quadrants, we have set $ to 8. To investigate the accuracy of the numerical solution for an order n, we
have to verify that f is smooth relative to the appropriate polynomial (see the �gure 3). For example, if
we use an order 200 quadrature rule, p ∈ P399. In our case, n = 16 is not appropriate because f could not
be `well-approximated' for x ∈ [0, 10]. We remark also that the error does not decrease systematically with
n (compare n = 10 and n = 16 in the �gure 3). Another key point is the problem of not �nite support.
We have reported in the table (1) the value taken by the last node xn for the Gauss-Laguerre and Gauss-
Hermite quadratures5. The use of such rules implies that the approximations

∫∞
0

f (x) dx ' ∫ xn

0
f (x) dx

and
∫∞
−∞ f (x) dx ' ∫ xn

−xn
f (x) dx must be valid6.

n Laguerre Hermite
4 9.395 1.650
8 22.86 2.930
16 51.70 4.688
32 111.7 7.125
100 374.9 13.40
200 767.8 19.33

Table 1: Value of the node xn

Figure 3: Legendre polynomial interpolation of the function

We consider the pricing of Basket/Spread options. We have reported in the �gure (4) the numerical
values7 given by the two-dimensional quadrature methods applied to the equation (9). We remark that a
small order n gives a poor accuracy. If n is high, there are some computer roundo�s and the price may

5The Laguerre and Hermite quadrature methods are used respectively when the support of the integral is [0,∞[ and ]−∞,∞[.
6In particular, we remark that if f is even, it would be not equivalent to compute the integral

R∞
−∞ f (x) dx by the two rules

with the same order.
7The parameters are S1 (t0) = 100, b1 = 6%, σ1 = 20%, S2 (t0) = 95, b2 = 3%, σ2 = 15%, T − t0 = 1 and r = 5%.
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not converge8. One di�culty is that for a �xed n, we could have a very good approximation for some
parameters, whereas the approximation is not good for other parameters. We note moreover that these
di�culties becomes harder for higher dimensions.

Figure 4: Basket/Spread option prices computation

2.2 Monte Carlo and quasi-Monte Carlo methods
Let H be a distribution on Ω and g a continuous function. We have also

E [g (X)] =
∫

Ω

g (x) dH (x) (12)

with X a random variable with distribution H. Then, we have

lim
1
n

n∑

i=1

g (xi) =
∫

Ω

g (x) dH (x) (13)

with x1, . . . ,xn n iid random variates. Monte Carlo methods are based on the idea that we could transform
the problem of integration by a problem of expectation. In the general case, we have I =

∫

Ω

f (x) dx. We
assume that we could decompose f (x) by g (x)h (x) with h a kernel density function. It is also equivalent
to compute I or

∫

Ω

g (x) dH (x) and we have the following property (Geweke [1995]):

plim n−1/2 (In − I) = N
(

0,

∫

Ω

(g (x)− I)2 dH (x)
)

(14)

with In = 1
n

∑n
i=1 g (Xi). In pratice, the sequence {x1, . . . ,xn} is generated by pseudo-random methods

such as linear congruential generators (see Entacher [1997] for a good review on PRNGs). In this case, the
8This comes from the fact that wiwj is very small for large n.
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good properties of Monte Carlo algorithm (�the convergence rate n−1/2 is independent of the dimension of
Ω and the convergence rate holds even for functions from L2�) are not always preserved (Traub and Wo¹-
niakowski [1989]). In practice, the e�ciency of Monte Carlo could be improved by using some accelerated
methods (by using control or antithetic variates). We take the previous Basket example with ρ = 0.5. In
the �gure 5, we have represented the probability density function of In for n = 100 and n = 200. Moreover,
we have reported the corresponding density when we use an antithetic variate (a.v.) with n = 100.

Figure 5: Density of the integral In

In 1992, Joseph Traub and his Ph.D. student Spassimir Paskov try to apply quasi-Monte Carlo methods
to value a collateralized mortgage obligation, which was a 360 dimensional problem. The project was the
following (see [60]):

Theory suggets that low discrepancy algorithms are sometimes superior to Monte Carlo algo-
rithms. However, a number of researchers report that their numerical tests show that this
theoretical advantage decreases with increasing dimension. Furthermore, they report that the
theoretical advantage of low discrepancy algorithms disappears for rather modest values of the
dimension, say, d ≤ 30. We decided to compare the e�cacy of low discrepancy and Monte Carlo
algorithms on the evaluation of �nancial derivatives.

The idea that �QMC is superior to MC for �nance computations� could be found in numerous publications
of Traub (see for example [58], [59] or [61]). Before doing some illustrations, we give a brief description of
the QMC underlying theory. Without loss of generality, we assume that Ω = [0, 1]d and h (x) = 1. With
MC methods, we generate uniform random points in the hypercube [0, 1]d. QMC methods use non-random
points in order to have a more nicely uniform distribution. A low discrepancy sequence U = {u1, . . . ,un} is
then a set of deterministic points distributed in the hypercube [0, 1]d. Let us de�ne the star discrepancy of
U by D?:

D?
n (U) = sup

x∈Ω

∣∣∣∣∣∣
1
n

n∑

j=1

d∏

i=1

χ
(
1 ≤ ui

j ≤ xi
)−

d∏

i=1

xi

∣∣∣∣∣∣
(15)
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We could interpret D? as a distance measure between the theoretical continous uniform distribution and
the discrete uniform distribution generated by the low discrepancy sequence U . We note that if U is really
uniform, then lim D?

n (U) = 0 for every dimension d. Moreover, the Koksma-Hlawka inequality implies that

|In − I| ≤ D?
n (U)V (f) (16)

where V (f) is the Hardy-Krause variation of f (this result is one of various Chelson's theorems � see
Spanier and Li [1998]). We could �nd low discrepancy sequences such that the error is of order n−1 (lnn)d

in probability (this is the best possible bound � see Morokoff and Caflisch [1994]). If we compare
this bound with the order convergence of MC O

(
n−1/2

)
, we remark that QMC is theoretically better than

MC for small dimensions9. For high dimensions, QMC requires a large number of points to be e�cient
(Morokoff and Caflisch [1995]). People have done some works to explain the fact that QMC could
be more accurate than MC even for large dimension d. Nevertheless, they present only partial answers
(Sloan and Wo¹niakowski [1998], Caflisch, Morokoff and Owen [1997]). Moreover, most of the
�nancial problems, which have been studied, are path-independent contingent claims pricing10.

Figure 6: Comparison of di�erent pseudo-random generators

Bouleau and Lépingle [1994] review di�erent quasi-random sequences11. The most known are the
Halton', Sobol' and Faure sequences and corresponding computational codes are available in di�erent pro-

9However, as noted by Lémieux and L'Ecuyer [2000], �the most useful property of (15) is not to give an idea of the
integration error, because the bound is usually too loose, but to derive criteria for choosing good sets U by providing a quantity
to minimize, namely D?

n (U)�.
10For example, Ökten [2000] reports some results on Asian options and European options with stochastic volatility, and the

conclusions are not very clear!
11There are di�erent methods to construct quasi-random sequences. The most used are lattice rules, digital sequences or

(t, m, s)-nets. Owen [1998a] de�nes these last sequences as following:
Let t and m be nonnegative integers. A �nite sequence U ∈ [0, 1)s with n = bm is a (t, m, s)-nets in base b if every
b-ary box of volume bt−m contains exactly bt points of the sequence.

We note also that we could construct `new' quasi-random sequences by using randomization techniques (see Owen [1998b] for
an application of LSS � Latin Supercube sampling).
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Figure 7: How the Sobol generator works ?

gramming languages (see [12], [13], [62] or [72]). The techniques to generate the sequences are based on
number theory. For example, the Halton's sequence is based on the p-adic expansion of integers n =
dkpk + · · · + d1p + d0 where di ∈ {0, . . . , p− 1} for i = 0, . . . , k and on the radical-inverse function
%b (n) =

∑k
i=0 dkp−(i+1) (Wang and Hickernell [2000]). The d-dimensional Halton % = {%n} sequence

is de�ned by %n = (%p1 (n) , . . . , %pd
(n)) where p1, . . . , pd are integers that are greater than 1 and pairwise

relatively prime12. We have represented this sequence and two others13 (Hammersley and Faure) in the
�gure 6. The idea is of course to add the new points not randomly, but `between the existing points'. For
example, we have added 256 points in the Sobol sequence in each quadrant of the �gure 7 � the new points
correspond to a square symbol. Now, suppose that the dimension d becomes larger. It will become more
and more di�cult to �ll the hypercube14. To illustrate this problem, we consider the 3D projection of a
d-dimensional normal variates obtained using the �rst 3072 points of the Faure sequences15. We remark that
we have to increase the number of points if we would like to map all the space. And we have to be careful
if we do not want to generate some `hole area' (see the �gure 9 which represents the �rst 1024 points of the
directional vectors on the unit sphere).

We now consider an illustration. The problem is the pricing of a vanilla option in the Black-Scholes
model. It assume that the price S (t) is a log-normal di�usion given by the equation (8). The value of the
Call option is then C (t0) = e−r(T−t0)EQ

[
(S (T )−K)+ | Ft0

]
. The process S (T ) | Ft0 is simulated by an

12In practice, they are the �rst n prime numbers.
13We have used p1 = 2 and p2 = 3.
14This phenomenon is called `the curse of dimensionality'.
15The mean vector is null and the covariance matrix Σ is

Σ =

2
4

1 0.5 0.25
0.5 1 0.25
0.25 0.25 1

3
5
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Figure 8: 3D projection of normal pseudo-random numbers with Faure generator

Figure 9: Quasi-random points on the unit sphere
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exact scheme (Kloeden and Platen [1992]) using this recursive formula

ln S (tm+1) = ln S (tm) +
(

b− 1
2
σ2

)
(tm+1 − tm) + σ

√
tm+1 − tmε (17)

with ε a N (0, 1) variate and the time discretisation16 t0 < t1 < · · · < tm < · · · < tNt
= T . We consider a 5

points discretisation17. We have plotted the convergence18 in the �gure 10. Because the Hammersley nets
are a closed sequence, we have reported only the last value. We remark the very good behaviour of the Sobol
sequence. For the random sequences, the convergence depends on the seed value and on the LCG parameters.
Now, we suppose that the BS option pricing is just one component of a bigger MC problem19.
In the �gure 10, we show the in�uence of the dimension d of the Faure sequence on the convergence. This
example is interesting because it illustrates the problem of the curse of dimensionality (see the convergence
for the dimension 5000).

Figure 10: Convergence of QMC methods

Another di�culty is the choice of the quasi-random sequence. For example, we have computed the
previous Basket/Spread prices with 32768 simulations and we obtain the results of the table 2. For this
example, the prices are the same with a 2 digits precision, because we have a low dimension problem.
However, it is not always the case with bigger dimension. The choice of the quasi-random sequence is then
important. But the best method does not exist. A sequence may have a very good behaviour
for one problem, and may be less performant for another problem (see Birge [1994] or Ökten
[2000] for some illustrations).

In concluding remarks, we could say that, even if there are a lot of works on this research area, we need
more research to obtain more convincing results on Quasi-Monte Carlo methods.

16Nt is the number of discretisation points for t.
17The dimension d is also equal to 5.
18The parameters are the following: S (t0) = 100, K = 100, b = 6%, σ = 20%, T − t0 = 1 and r = 5%.
19The simulated prices are computed with the �rst �ve coordinates of the sequence, whereas the dimension d of the problem

is large.
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Figure 11: In�uence of the dimension d on the convergence of the Faure QMC prices

Hermite 32 Hammersley Halton Sobol Faure
(α1 = 1, α2 = 1, ρ = 0.5,K = 200) 13.785 13.781 13.773 13.776 13.777
(α1 = 1, α2 = −1, ρ = 0.5,K = 0) 11.627 11.602 11.610 11.608 11.606
(α1 = 1, α2 = 1, ρ = −0.5,K = 200) 9.2368 9.2291 9.2248 9.2278 9.2277
(α1 = 1, α2 = −1, ρ = −0.5, K = 0) 11.627 11.602 11.610 11.608 11.606

Table 2: Basket/Spread QMC prices

2.3 Finite Di�erence methods
In this paragraph, we follow the paper of Kurpiel and Roncalli [1999]. We consider the linear parabolic
equation

∂ u (t, x, y)
∂ t

+ f (t, x, y)u (t, x, y) = Atu (t, x, y) + g (t, x, y) (18)

where At is the general two dimensional di�erential operator

Atu (t, x, y) = a (t, x, y)
∂2 u (t, x, y)

∂ x2
+ 2b (t, x, y)

∂2 u (t, x, y)
∂ x∂ y

+ c (t, x, y)
∂2 u (t, x, y)

∂ y2
+

d (t, x, y)
∂ u (t, x, y)

∂ x
+ e (t, x, y)

∂ u (t, x, y)
∂ y

(19)

The idea is to solve (18) in a region of the (t, x, y) space given by T ×R where R is a closed region of the
(x, y) plane with a continuous boundary ∂ R. In particular, for convenient computation, we assume that
R = [x−, x+] × [y−, y+] and T = [t−, t+]. To solve (18) numerically , we need to impose some boundary
conditions. For t = t−, we consider a Cauchy condition. For the other boundary, we could choose between
a Dirichlet or a Neumann condition. In order to develop a numerical solution for (18), we need to discretise
the process u (t, x, y) in both time and space dimensions. Let Nt, Nx and Ny be the number of discretisation
points for t, x and y respectively. We denote by k, hx and hy the mesh spacings in time and space in the

12



x and y directions respectively20. We note tm = t− + m · k, xi = x− + i · hx and yj = y− + j · hy. Let um
i,j

be the approximate solution to (18) at the grid point (tm, xi, yj) and u (tm, xi, yj) the exact solution of the
Partial Di�erencial Equation at this point. Let M be the matrix with (i, j) entry (Mi,j) and denote vec (M)
by m.

The explicit form of equation (18) is

um+1
i,j − um

i,j

k
+ fm

i,ju
m
i,j = Am

i,j + gm
i,j (20)

while the implicit form is
um+1

i,j − um
i,j

k
+ fm+1

i,j um+1
i,j = Am+1

i,j + gm+1
i,j (21)

Introducing theta-schemes gives
(
1 + kθm+1

i,j fm+1
i,j

)
um+1

i,j − kθm+1
i,j

(
Am+1

i,j + gm+1
i,j + pm+1

i,j

)

=
(
1− kθm

i,jf
m
i,j

)
um

i,j + kθm
i,j

(
Am

i,j + gm
i,j + pm

i,j

)
(22)

with
θm+1

i,j + θm
i,j = 1 (23)

We can show that there exists a square matrix Hm and a vector pm such that

Am = Hmum + pm (24)

We call pm
i,j the residual absorption function. Then, we have

[I + kΘm+1fm+1 − kΘm+1Hm+1]um+1 = [I − kΘmfm + kΘmHm]um +
k [Θm+1gm+1 + Θmgm] + k [Θm+1pm+1 + Θmpm] (25)

with
Θm = diag (θm)

and
θm =

(
θm

i,j

)

The equation (25) is the general vec form of �nite di�erence methods for two-dimensional Partial Di�erential
Equations. We have now to specify Am

i,j and Θm. The general form of Am
i,j is

Am
i,j =

2∑

ı̃=−2

2∑

̃=−2

δm
i,j,̃ı,̃u

m
i+ı̃,j+̃ (26)

Then, we can write the matrix Am with elements (Am
i,j) in the following form

Am = ∆mum + qm (27)

In fact, qm re�ects the boundary conditions. When we use them, we can split the vector qm and have

qm = Λmum + pm (28)

Then, it is clear that Hm in equation (25) is

Hm = ∆m + Λm (29)

The nature of the boundary conditions is important, because a Dirichlet condition will in�uence the pm

vector while a Neuman condition will a�ect the Λm matrix. This integration of the boundary conditions is
completely explained in Kurpiel and Roncalli [1999].

20Then, we have k = t+−t−
Nt−1

, hx = x+−x−
Nx−1

and hy = y+−y−
Ny−1

.
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Let τ = T − t be the time to maturity of the asset. We see that equation (6) could be put in the form
(18). In this case, τ takes the role of the variable t and X1 and X2 correspond to the x and y variables. We
have

a (τ, X1, X2) =
1
2
σ2

1,1 + ρ1,2σ1,1σ1,2 +
1
2
σ2

1,2

b (τ, X1, X2) =
1
2

(σ1,1σ2,1 + ρ1,2σ1,1σ2,2 + σ1,2σ2,2 + ρ1,2σ1,2σ2,1)

c (τ, X1, X2) =
1
2
σ2

2,1 + ρ1,2σ2,1σ2,2 +
1
2
σ2

2,2

d (τ, X1, X2) = µ1 − λ1σ1,1 − λ2σ1,2

e (τ, X1, X2) = µ2 − λ1σ2,1 − λ2σ2,2

f (τ, X1, X2) = r (T − τ, X1, X2)
g (τ, X1, X2) = g (T − τ, X1, X2)
u (0, X1, X2) = G (T,X1, X2)

2.3.1 Hopscotch methods
Gourlay [1970] introduced a class of, so called, Hopscotch algorithms to solve parabolic and elliptic partial
di�erential equations of the form (18). The reader could review the article of Kurpiel and Roncalli [1999]
for a complete exposition of these methods. An hopscotch algorithm is de�ned by a θ hopscotch method
for some choice of the Θm matrix and a �lling hopscotch method following from the δm

i,j,·,· de�nition. The
underlying idea is to introduce more sparcity into the linear system (25) � of the form Ψm+1um+1 = φm+1

� than the classical θ-schemes, and in the same time to verify the stability property21 (Gourlay and
McGuire [1971]). The most popular algorithms are the �ordered odd-even� and the �line� hopscotch schemes.
To illustrate them, we have reported `a spy plot' of the equation (25) in the �gure 12.

One of the big di�culty is of course to solve the linear system. Kurpiel and Roncalli [1999] propose
to code the matrices into a band form, and then to solve the system with a sparse solver. In the GAUSS
implementation [64], they use the LSQR algorithm of Paige and Saunders [1982]. LSQR is a conjugate
gradient method with re�nements which may solves linear equations, minimum length, least squares and
regularized least squares problems. The form of the general problem is

min ‖Ax− b‖2 + ‖δx‖2 (30)

with A a general matrix. With CG algorithms, the solution is given by an iterative method xi+1 = xi + ri

(Golub and Van Loan [1989]). The algorithm developped by Paige and Sauders is based on Krylov
methods (Ipsen and Meyer [1988]). It is not the fastest CG method, but it is consistent even if the linear
system is not well-conditioned. Moreover, under some assumptions on the mesh spacing, we know that
um+1 = um + O (k). We could also replace the system (25) by

[I + kΘm+1fm+1 − kΘm+1Hm+1]vm+1 = (k [Θm+1Hm+1 + Θm]− k [Θm+1fm+1 + Θmfm])um

k [Θm+1gm+1 + Θmgm] + k [Θm+1pm+1 + Θmpm] (31)

with um+1 = vm+1 + um. The form of the linear system is then Ψm+1vm+1 = Υm+1 with Υm+1 = φm+1−
Ψm+1um. This formulation does not reduce the dimension of the associated Krylov space Kϕ (Ψm+1,Υm+1),
but the convergence is faster because the null vector is a more appropriate starting value for this second
linear system.

2.3.2 Other numerical solvers
There are a lot of other numerical solvers (for example MoL, LOD, ADI or FEM). The Method of Lines
(MoL) converts the PDE problem into a system of �rst order ordinary di�erential equations. The Locally

21However, we have remarked that the �ordered odd-even� and the �line� hopscotch methods give di�erent results on parabolic
and elliptic problems. For parabolic problems, �ordered odd-even� and �line� schemes are comparable to a full Crank-Nicholson
scheme. For elliptic problems, the �ordered odd-even� method seems to be less accurate.
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Figure 12: `Spy Plot' of the PDE linear system

One-Dimensional (LOD) and Alternative Direction Implicit (ADI) algorithms are special cases of Operator
Splitting Methods (Press, Teukolsky, Vetterling and Flannery [1992]). To understand the basic
ideas behind these methods, we consider the classical heat equation

∂t u (t, x, y) = ∂xx u (t, x, y) + ∂yy u (t, x, y) (32)

Method of Lines � Using the centered di�erence approximation22, we have
dui,j (t)

dt
= δxxui,j (t) + δyyui,j (t) , for i = 1, . . . , Nx and j = 1, . . . , Ny (33)

The vec form of this equation is then
du (t)

dt
= Au (t) + b (t) (34)

We obtain also a system of Nx × Ny ODE's, which could be solve by numerical methods (Stoer and
Burlish [1993]). One of the sucess of the MoL algorithm is the possibility of mixing easily di�erent boundary
speci�cations. Moreover, if we use Runge-Kutta methods or explicit Predictor-Corrector methods, we remark
that solving the PDE problem requires just matrix-by-vector products, which could be done in a sparse
framework. One example of �nancial application of MoL is Meyer and Hoek [1997].

Locally One-Dimensional � A �nite di�erence approximation of (32) is

um+1
i,j − um

i,j

k
=

um
i+1,j − 2um

i,j + um
i−1,j

h2
x

+
um

i,j+1 − 2um
i,j + um

i,j−1

h2
y

(35)

LeVeque [1988] introduces LOD and ADI algorithms in the follwong way:
22We have δxxui,j (t) =

ui+1,j(t)−2ui,j(t)+ui−1,j(t)

h2
x

and δyyui,j (t) =
ui,j+1(t)−2ui,j(t)+ui,j−1(t)

h2
y

. Note that the method uses
in general more adapted �nite di�erence formulas (see Fornberg [1998]).
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Rather than solving the coupled sparse matrix equation for all the unknows on the grid simu-
lataneous as in (35), an alternative approach is to replace this fully-coupled single time step by
a sequence of steps, each of which is coupled in only one space direction, resulting in a set of
tridiagonal systems which can be solved much easily.

For the LOD method, we have




u
m+ 1

2
i,j −um

i,j
k
2

= um
i+1,j−2um

i,j+um
i−1,j

h2
x

+
u

m+ 1
2

i+1,j−2u
m+ 1

2
i,j +u

m+ 1
2

i−1,j

h2
x

um+1
i,j −u

m+ 1
2

i,j
k
2

=
u

m+ 1
2

i,j+1−2u
m+ 1

2
i,j +u

m+ 1
2

i,j−1
h2

y
+

um+1
i,j+1−2um+1

i,j +um+1
i,j−1

h2
y

(36)

Alternative Direction Implicit � There are di�erent ADI schemes. One of the most used is the
Peaceman-Rachford process:





u
m+ 1

2
i,j −um

i,j
k
2

= um
i,j+1−2um

i,j+um
i,j−1

h2
y

+
u

m+ 1
2

i+1,j−2u
m+ 1

2
i,j +u

m+ 1
2

i−1,j

h2
x

um+1
i,j −u

m+ 1
2

i,j
k
2

=
u

m+ 1
2

i+1,j−2u
m+ 1

2
i,j +u

m+ 1
2

i−1,j

h2
x

+
um+1

i,j+1−2um+1
i,j +um+1

i,j−1
h2

y

(37)

�With this method, each of the two steps involves di�usion in both the x- and y-directions. In the �rst step
the di�usion in x is modelled implicitely while di�usion in y is modelled explicitely, with the roles reversed in
the second step� (LeVeque [1988]). A �nancial application could be found in Villeneuve and Zanette
[1998].

Finite Element Method � Wilmott, Dewynne and Howison [1993] is a good introduction on
this subject. The main idea is to approximate u (t, x, y) by linear combinations of basis functions (or shape
functions)

u (t, x, y) =
L∑

l=1

clφl (t, x, y) (38)

Hence, we have to �nd the nodal values {cl} solution of a L × L linear system. This method is popular in
more than one dimensional PDE problem, because FEM could be used with irregular grids and gives smooth
solutions (see Busca [1999] for an application to optimal exercice policy for American options).

2.4 Parallel implementation
To �nish this section, we will give some remarks on parallel implementation, which is one of the big issue of 2D
(and more) option pricing. There is now a lot of numerical library specially designed for distributed memory
parallel computers (Golub and Ortega [1993]). In particular, the BLAS routines have been rewritten to
support distributed memory. PBLAS is now the core of many software, for example ScaLAPACK and IMSL
Fortran 90 MP. Parallel implementation of Quadrature and Monte Carlo methods23 are feasible � see the
book of Fox, Messina and Williams [1994] or the HPF implementation of path-integral of option pricing
described by Makivic [1995]. It seems that it could be also the case for some QMC methods (for example,
Halton' and Hammersley sequences). Even for parallel solution of PDE, there exist some codes and parallel
implementation of sparse methods are now available (see Saad [1996,1998]).

3 Some stopping time problems
In a fully parametrized two-state model, which veri�es the standard regularity conditions, the price of an
American option satis�es a two-dimensional variational inequality. The variational inequality can then be
solved by hopscotch, and the optimal boundary can be recovered from the solution ex post. Given the

23A brute method to implement LCG in parallel is just running independent generators with di�erent seed tables on di�erent
processors.
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optimal exercise boundary, it is then straightforward to compute the probability of early exercise and the
option expected lifetime as functions of time and current state.

This allows us to examine, in the �rst time, how the stochastic volatility a�ects the optimal exercise
policy of American options. More precisely, we investigate the links between the exercise boundary and the
shape of the risk neutral distribution of the underlying asset. In the second time, we study the optimal
stopping time problems of American BestOf/WorstOf options.

3.1 Optimal exercise boundary: general setting
We make the standard assumptions24. The price of an American option UA (t) is completely determined
by the vector X (t) of the M state variables. We have UA (t) = UA (t,X (t)). The risk-free interest rate
r (t) ≥ 0 is deterministic. For the notational simplicity, we will assume it constant. The exercise of an
American option at time τ procures for the holder a payo� % (τ, X (τ)). The payo� function g is continuous
and nonnegative. The option is issued at time t0 = 0, and the expiration date is T . The no arbitrage
argument imply that the price of an American option veri�es

UA (t,X) ≥ % (t,X) (39)

at each time t. The stopping region is therefore de�ned as

D =
{
(t,X) ∈ [0, T ]×RX | UA (t,X) = % (t,X)

}
(40)

The continuation region is the complement of D in [0, T ]×RX

C =
{
(t,X) ∈ [0, T ]×RX | UA (t,X) > % (t,X)

}
(41)

The stopping boundary is the frontier ∂C ⊂ D of C expressed in terms of the state vector. More formally, we
de�ne the critical state as the function X∗ : [0, T ] → RX by setting X∗ (t) = {X ∈ RX | (t,X) ∈ ∂C}. It is
sometimes convenient to express the frontier of C in terms of one state variable, for example the underlying
asset price only in the case of stocahstic volatility models. This de�nes the optimal exercise boundary as
the critical price S∗ which is a function of time t and of the M − 1 remaining state variables. The optimal
stopping time is the �rst time the state vector reaches the stopping boundary. It is thus de�ned by

τ∗ = inf
{
τ ∈ [t, T ] | UA (τ,X (τ)) = % (τ, X (τ))

}

= inf {τ ∈ [t, T ] | (τ, X (τ)) ∈ D} (42)

We note QT (u; t,X (t)) the time t probability of an American option UA with maturity T ≥ t to be exercised
before time u ∈ [t, T ]. It is de�ned as the probability that X leaves the continuation region before time u.
We have QT (u; t,X (t)) = Pr {τ∗ < u | Ft}. This probability depends on the current time and position as
well as of the residual maturity of the option. Taking u = T we de�ne the probability of premature exercise
of the option as

Q (t, X (t)) = QT (T ; t,X (t)) = Pr {τ∗ < T | Ft} (43)
This is the probability that X leaves the continuation region before expiration time T .

In order to de�ne the expected residual lifetime of an American option, we have to distinguish between
two possible events. The �rst is the event that the option is exercised before expiration time, which occurs
with a probability Q (t,X (t)). The second is the event that the option expires alive, which occurs with a
probability [1−Q (t,X (t))]. Consequently, the expected residual lifetime veri�es

T (t,X (t)) = E (u | u < T ) Q (t,X (t)) + (T − t) [1−Q (t,X (t))] (44)

with
E (u | u < T ) =

∫ T

t

udQT (u; t,X (t))− t (45)

24In particular, the market permits continuous and frictionless trading and no arbitrage opportunities exist.
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It is a function of of time t and of the current state X (t).

Let λ (t) = λ (t, X) denote the N -dimensional process of market prices of risk relative to the components
of W (t). Under suitable regularity conditions, the price of an American option satis�es the variational
inequality {

max
{
g (t,X)− UA (t,X) ,A∗UA (t,X) + UA

t (t,X)− rUA (t,X)
}

= 0
UA (T,X) = g (T, X) (46)

for any (t,X) ∈ [0, T ]×RX and with A∗ de�ned by

A∗f = [µ (t,X)− Σ(t,X) λ (t,X)]> fX +
1
2
trace

[
Σ(t,X) fXXΣ(t, X)> ρ

]
(47)

In contrast to the free boundary formulation, the variational inequality approach allows us to treat the
domain of the American option as an entire region. The optimal boundary can then be recovered from the
solution ex post. Given the optimal exercise boundary, it is then straightforward to compute the probability
of early exercise and the option expected lifetime as functions of t and X.

The probability of early exercise Q (t, X (t)) of an American option UA is showed to be the solution of
the following parabolic partial di�erential equation (Schuss [1980], Wilmott, Dewynne and Howison
[1993])

Qt (t, X) +AQ (t,X) = 0 (48)
with the boundary conditions

{
Q (T, X) = 0 ∀X ∈ RX (i)
Q (t,X) = 1 ∀ (t,X) ∈ D (ii) (49)

and where A is de�ned by Af = µ (t, X)> fX + 1
2 trace

[
Σ (t,X) fXXΣ(t,X)> ρ

]
. The terminal condition

(i) means that when t = T there is no time left for the state vector to exit from the continuation region.
The condition (ii) means that out of the continuation region the probability of leave the continuation region
before the maturity is of course 1.

The expected residual lifetime T (t,X (t)) of an American option UA is showed to satisfy the following
partial di�erential equation

Tt (t,X) +AT (t,X) = −1 (50)
with the boundary conditions

{
T (T, X) = 0 ∀X ∈ RX (iii)
T (T, X) = 1 ∀ (t, X) ∈ D (iv) (51)

At the maturity time T , the residual lifetime of an American option is zero, which explains the terminal
condition (iii). The condition (iv) means that when X leaves the continuation region, the option is exercised
immediately and its expected residual lifetime vanishes.

3.2 American options in SV framework
Stochastic volatility models were introduced in the �nancial literature by Hull and White [1987], Scott
[1987] and Wiggins [1987]. The idea is to generalize the Black and Scholes model by allowing the underlying
asset price's volatility itself to be varying. Typically, in a continuous-time framework, volatility is assumed to
follow a di�usion process. Standard stochastic volatility models impose M = 2 and N = 2. Several extensions
and special cases can be obtained by varying the number of state variables and sources of randomness.
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3.2.1 Standard stochastic volatility model
In a standard stochastic volatility model, the state vector is two-dimensional and corresponds to X (t) =[

S (t) V (t)
]>, where S (t) denotes the underlying asset's price and V (t) is an extra state variable directly

related to the underlying asset returns volatility process. The state di�usion is then
[

dS (t)
dV (t)

]
=

[
µS (t, S (t) , V (t))S (t)

µV (t, V (t))

]
dt +

[
σ (V (t))S (t) 0

0 σV (t, V (t))

] [
dW1 (t)
dW2 (t)

]
(52)

where W (t) =
[

W1 (t) W2 (t)
]ᵀ is a bivariate Wiener process, de�ned on the fundamental probability

space (Ω,F ,P), with E [W1 (t)W2 (t)] = ρ (t, V (t)) t. We note F = {Ft, t ∈ [0, T ]} the �ltration generated
by W (t) =

[
W1 (t) W2 (t)

]>. The volatility σ (t), de�ned as the instantaneous standard deviation of the
underlying asset returns, is a function of the second state variable V (t): σ (t) = σ (V (t)) , t ∈ [0, T ]. The
function σ : R→ R+ is non-decreasing, Lipschitz and of class C1. Moreover, we assume that the underlying
asset pays a continuous dividend at a constant rate d.

Because there is no asset that is clearly instantaneously perfectly correlated with the state variable V ,
the market composed of the underlying asset S and the nonrisky asset B is not complete. Consequently, the
arbitrage arguments are insu�cient to determine uniquely a probability measure Q equivalent to P, under
which the properly discounted asset prices become martingales (Harrison and Pliska [1981, 1983]).Let
λ (t) =

[
λ1 (t) λ2 (t)

]ᵀ be a vector of prices of risk relative to two sources of uncertainty W1 (t) and
W2 (t). We obtain

λ1 (t) =
µS (t, S, V )− r + d

σ (V )
(53)

On the other hand, it is not possible to determine the price of risk relative to the stochastic character of the
volatility without a general equilibrium model clearly specifying the investors' preferences. For any choice
of the price of risk process λ2 (t), there exists an equivalent martingale measure Q (λ2) de�ned by

dQ (λ2)
dP

= exp
(
−

∫ t

t0

λ1 (u) dW1 (u)− 1
2

∫ t

t0

λ2
1 (u) du−

∫ t

t0

λ2 (u) dW2 (u)− 1
2

∫ t

t0

λ2
2 (u) du

)
(54)

provided that the Novikov conditions E
[
exp 1

2

∫ t

t0
λ2

i (u) du
]

< +∞, i = 1, 2 are satis�ed. Romano and
Touzi [1996] show that for any risk premium process λ2 (t) satisfying

λ2 (t) = λ (t, V (t)) (55)
any European call option completes the market in the sense that the European option hedging problem is
solved by a continuously rebalanced delta-sigma strategy. Therefore, as stated in Touzi [1999], assuming
that some European option is traded on the market additionally to the underlying risky asset and the riskless
one, permits to extend the arbitrage arguments of Bensoussan [1984] and Karatzas [1988] and to justify
the American option valuation formula

UA
λ2

(t, S (t) , V (t)) = ess sup
τ∈T[t,T ]

EQ(λ2)

[
e−r(τ−t)g (τ, S (τ) , V (τ)) |Ft

]
(56)

where T[t,T ] is the set of all stopping times of the �ltration F with values in [t, T ]25. The valuation formula
(56) means that for any speci�cation of the risk premium process λ2 (t) satisfying the Novikov condition
and the assumption (55), UA

λ2
(t, S (t) , V (t)) is an admissible American option's price process. Thus, in a

standard stochastic volatility model, the price of an American option satisfy the variational inequality (46)
with

µ (t,X) =
[

µS (t, S (t) , V (t))S (t)
µV (t, V (t))

]
, Σ (t,X) =

[
σ (V (t)) S (t) 0

0 σV (t, V (t))

]

and λ (t) =

[
µS(t,S(t),V (t))−r+d

σ(V (t))

λ (t, V (t))

] (57)

25Given that the �ltration F corresponds under the assumption (55) to the �ltration FX =
n�

S (t) V (t)
�>

, t ∈ [0, T ]
o

generated by the vector of state variables, the optimal decision to exercise an American option at time τ is based on the
observation of the �uctuations of the underlying asset price and its volatility up to time τ .
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In this standard stochastic volatility setting, the stopping region D and the continuation region C are
de�ned in three dimensions. The critical state corresponds to

X∗ (t) = {(S, V ) ∈ RX | (t, S, V ) ∈ ∂C} (58)

with RX ≡ (
R∗+ ∪ {∞}

) × (R ∪ {−∞, +∞}). The critical price is de�ned as a function S∗ : [0, T ] ×
R→ (

R∗+ ∪ {∞}
)
. Considering the standard American put and call options, we have

{
Put : S∗ (t, V ) = sup

{
S ∈ R∗+ ∪ {∞} |UA

λ2
(t, S, V ) = max (K − S, 0)

}
Call : S∗ (t, V ) = inf

{
S ∈ R∗+ ∪ {∞} |UA

λ2
(t, S, V ) = max (S −K, 0)

} (59)

with standard conventions inf ∅ = ∞ and sup ∅ = 0. It is convenient to de�ne the optimal exercise
boundary as the function ϑ : [0, T ]× R→ (

R∗+ ∪ {∞}
)
given by the equality

ϑ (T − t, V ) = S∗ (t, V ) (60)

The optimal exercise boundary can be recovered from the solution of (46). Before applying the numerical FD
algorithm, we have to reformulate (46) in terms of τ = T−t as an initial value problem. Then, for convenient
computation, we have to specify the region R = [S−, S+]× [V −, V +] and impose conditions controlling the
behavior of UA (τ, S, V ) at the boundary of R. Typically one uses the mixed conditions on the S variable
and the usual Neumann conditions for the V variable. Given the choice of mesh spacings in the time and
space directions, k, hS and hV respectively, the problem in (46) is then solved by the hopscotch method in
the same manner as a standard linear parabolic equation, where at each iteration m, the solution um+1

i,j is
replaced by

max
(
um+1

i,j , g (τm, Si, Vj)
)

(61)
Appropriate coding of this operation permits us to recover ex post the optimal exercise boundary ϑ (τm, Vj)

corresponding to the solution process um+1
i,j . For any m ∈

{
1, . . . , 1 + τ+

k

}
and j ∈

{
1, . . . , 1 + V +−V −

hV

}
, we

have {
Put : ϑ (τm, Vj) = inf

{
Si ∈ {S−, . . . , S+} , um+1

i,j = f (τm, Si, Vj)
}

Call : ϑ (τm, Vj) = sup
{
Si ∈ {S−, . . . , S+} , um+1

i,j = f (τm, Si, Vj)
} (62)

Given the optimal exercise boundary ϑ (τm, Vj), it is then straightforward to compute the probability of
early exercise and the option expected lifetime. Althought, the Monte Carlo approach is possible, the �nite
di�erence methods applied to the problems (48) and (50) procure us at once the probability of early exercise
and the option expected lifetime as functions of t, S and V .

After reformulating (48) and (50) in terms of τ = T − t, the speci�cation of the conditions on the S
variable is in the case of a call option

{
Q (τ, S−, V ) = 0
Q (τ, S+, V ) = 1 and

{
TS (τ, S−, V ) = 0
T (τ, S+, V ) = 0 (63)

and in the case of a put option
{

Q (τ, S−, V ) = 1
Q (τ, S+, V ) = 0 and

{
T (τ, S−, V ) = 0
TS (τ, S+, V ) = 0 (64)

For the V variable, a general approach is to impose standard Neumann conditions. Given the choice of
mesh spacings and given ϑ (τm, Vj), the problems are solved by the hopscotch method in the same manner
as standard linear parabolic equations, but with the solutions Qm+1

i,j and Tm+1
i,j constrained to satisfy for any

m, i and j, Qm+1
i,j = 1 if Si ≥ ϑ (τm, Vj) and Tm+1

i,j = 0 if Si ≥ ϑ (τm, Vj) in the case of a call, and Qm+1
i,j = 1

if Si ≤ ϑ (τm, Vj)Tm+1
i,j = 0 if Si ≤ ϑ (τm, Vj) in the case of a put.

20



3.2.2 Optimal exercise boundary in Heston model
In this section, we illustrate how the random behavior of the underlying asset price volatility a�ects the
American option optimal exercise boundary. We adopt the fully parametrized stochastic volatility framework
of Heston [1993]. However, our qualitative results can easily be extended to other speci�cations of the
underlying asset price dynamics.

Di�erent speci�cations of the state vector dynamics (52) were proposed in the �nancial literature. Among
them, the model of Heston received considerable attention because of the existence of near-analytic solutions
to European options valuation formulas (see Bakshi, Cao and Chen [1997]). Moreover, all the parameters
of the model can be consistently estimated from a time series of the underlying asset price and of one
European option price (see Chernov and Ghysels [1999] and Kurpiel [2000] for empirical applications).

Heston de�nes the state variable V (t) as the instantaneous variance of the underlying asset returns and
assumes that V (t) follows a square root process. The state di�usion is then

[
dS (t)
dV (t)

]
=

[
µSS (t)

κ [θ − V (t)]

]
dt +

[ √
V (t)S (t) 0

0 σV

√
V (t)

] [
dW1 (t)
dW2 (t)

]
(65)

with E [W1 (t)W2 (t)] = ρt, κ > 0, θ > 0, σV > 0. Adopting the general CIR equilibrium framework and
assuming that investors' utility functions are of CRRA type, Heston derives the following market price of
risk process λ2 (t) = λ

σV

√
V (t), λ ∈ R. Under the equivalent martingale measure Q (λ2), the state vector

dynamics becomes
[

dS (t)
dV (t)

]
=

[
(r − d)S (t)

κ∗ [θ∗ − V (t)]

]
dt +

[ √
V (t)S (t) 0

0 σV

√
V (t)

] [
dW ∗

1 (t)
dW ∗

2 (t)

]
(66)

where by virtue of the Girsanov theorem, the process W ∗ (t) =
[

W ∗
1 (t) W ∗

2 (t)
]> de�ned by W ∗

i (t) =
Wi (t)+

∫ t

0
λi (u) du (i = 1, 2) is a two-dimensional Wiener process under Q (λ2), with E [W ∗

1 (t) W ∗
2 (t)] = ρt,

and where κ∗ = (κ + λ) and θ∗ = κθ
κ+λ . Given that λ2 (t) satis�es (55), all the regularity results by Touzi

[1999] hold. In particular, the optimal exercise boundary ϑ, as de�ned in (60), is a function of two variables:
the time to expiration of the option and the current instantaneous variance of the underlying asset returns.
For a given level of the current variance, it is rational to exercise the option at the �rst time the underlying
asset price crosses the optimal exercise boundary.

Figure (13) shows the optimal exercise boundary for an American put with K = 100 in a Heston stochastic
volatility model with the following parameter values : r = 0.08, d = 0, κ = 0.9, θ = 0.04, λ = 0, σV = 0.1
and ρ = −0.5. We can see that the optimal exercise boundary of an American put is decreasing in time to
expiration and in current variance26. Symmetrically, provided that the asset pays a positive dividend, the
optimal exercise boundary of an American call is increasing in the time to expiration and in the current level
of the volatility.

The shape of the optimal exercise boundary depends on the contractual characteristics of the American
option and on the shape of the state vector's risk neutral distribution. In a fully parametrized stochastic
volatility model, it is therefore interesting to distinguish between four groups of parameters

1. The parameters that determine the �rst moment of S (t) under Q (λ2), i.e. the risk free interest rate
r and the dividend yield d;

2. The parameters that a�ect the average second moment of S (t), i.e. the parameters that determine the
�rst moment of V (t) under Q (λ2);

3. The parameters that a�ect the third moment of S (t), i.e. the correlation between the underlying asset
returns and their volatility;

26Touzi [1999] demonstrates rigourously this result in the general standard stochastic volatility framework.
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Figure 13: Optimal exercise boundary for an American put

4. The parameters that determine the fourth moment of S (t), i.e. the volatility of the volatility.

The qualitative impact on the optimal exercise boundary of the contractual characteristics of the option
and of the parameters a�ecting the �rst moment of S (t) is the same in the constant volatility and in the
stochastic volatility environments. We refer to Moerbeke [1976], Kim [1990] and Barles, Burdeau,
Romano and Samsoen [1992] for basic properties of the optimal stopping boundary when the underlying
asset price is generated by a constant volatility di�usion process. Table 3 resumes the impact on ϑ of an
increase in exercise price, dividend yield and interest rate, all else remaining unchanged27.

Parameter Call Put
Exercise price K + +
Dividend yeld d − −
Interest rate r + +

Table 3: The impact of parameters on the optimal exercise boundary

An American option is exercised before expiration if the bene�ts outweight the cost associated with early
exercise. This explains the basic relations presented in table 3. Early exercise of an American put may be
interpreted as an exchange of dividends to be received from the asset for interest to be earned on the exercise
price. Symmetricaly, early exercise of an American call may be interpreted as an exchange of interest to
be earned on the exercise price for dividends to be received from the asset. Table 4 resumes the impact on
ϑ (T − t, V ) of an increase in di�erent parameters of the model of Heston, all else remaining unchanged. The
impact of θ∗ and κ∗ on the optimal exercise boundary follows from the way they a�ect the average variance
under Q (λ2). When κ∗ > 0, i.e. κ > −λ, the risk-neutralized instantaneous variance process has a steady-
state distribution with mean θ∗. Consequently, when θ∗ gets higher, the long-run mean under Q (λ2) of the
instantaneous variance increase and the optimal exercise boundary moves away from the exercise price for

27A + and a − signify respectively an upward and a downward shift of the optimal boundary, a 0 signi�es no impact.
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both calls and puts. The impact of κ∗ on the conditional mean of the V (t) under Q (λ2) changes according to
the position of the current variance with respect to θ∗. For the values of the current instantaneous variance
greater than θ∗ (lower than θ∗), an increase of κ∗ reduces (increases) the �rst conditional moment of V (t).
Thus, for both calls and puts, a greater mean-reversion speed κ∗ makes the optimal exercise surface less
steeply inclined in the V variable, keeping unchanged the central node corresponding to V = θ∗. It means
that a greater mean-reversion speed κ∗ reduces the sensitivity of the optimal exercise boundary with respect
to the current variance. The risk premium parameter λ a�ects the long-run mean and the mean-reversion
speed of the instantaneous variance process according to (66). For a lower value of λ, the long-run mean θ∗

is higher and the mean-reversion speed κ∗ is lower, which shifts the optimal exercise boundary away from
the exercise price and makes it more sensitive with respect to the current volatility changes.

Parameter Call Put
θ∗ + −
λ − +
ρ − −

V < θ∗ + −
κ∗ V = θ∗ 0 0

V > θ∗ − +
ρ < 0 + +

σV ρ = 0 + −
ρ > 0 − −

Table 4: The impact of parameters on the optimal exercise boundary

The impact of ρ on the American options optimal exercise boundary, is related to the way the correla-
tion between V (t) and S (t) a�ects the shape of the distribution of S (u), u > t. The parameter ρ being
signi�cantly di�erent from zero induces an asymmetry on the conditional distribution of S (u). A negative
(positive) correlation between the asset returns and their volatility corresponds to a negatively (positively)
skewed distribution of futures asset prices. Assymetries in the distribution of futures asset prices are con-
sistent with asymmetries in the European options implied volatility smiles. Typical patterns of implied
volatility smiles suggest ρ < 0 for stocks and stock indexes, ρ ' 0 for exchange rates and ρ > 0 for some
commodities. Figure28 (14) shows the impact of ρ on the optimal exercise boundary for an American put
with the exercise price K = 100.

One may regret early exercise of an American put if the underlying asset price increases substantially
later on. But the probability of a substantial increase in S (t) is relatively lower when ρ < 0. Consequently,
an unfavorable scenario following the early exercise of an American put is less likely when the underlying
asset returns are negatively correlated with their volatility. This explains why, for each t, the optimal exercise
boundary of an American put is nearer to the exercise price K when ρ < 0 compared to the case of ρ ≥ 0.
On the other hand, one may regret early exercise of an American call if the underlying asset price decreases
substantially later on. When ρ < 0, the probability that S (t) falls substantially is greater than in the case
of ρ ≥ 0. Thus, when the correlation between the underlying asset returns and their volatility is negative,
it is optimal to exercise an American call at a greater critical price compared to the case of the positive or
zero correlation.

The volatility of the instantaneous variance, measured in the model of Heston by the parameter σV ,
in�uences the tails of the conditional distribution of the underlying asset price. The greater is σV , the more
fat tailed is the distribution of S (u). Consequently, when ρ is signi�cantly di�erent from zero, σV reinforces
the impact of ρ on the optimal exercise surface. When S (t) is not correlated with V (t), the impact of σV on
the optimal exercise boundary may be viewed as the impact of the random behavior per se of the volatility.
Figure (15) shows the impact of σV on the optimal exercise boundary for an American put with the exercise
price K = 100.

28In order to make our graphical representations clear, we present only the central part of the optimal exercise boundary,
with V (t) = θ∗, ∀t ∈ [0, T ]. Figures (14) and (15) shows the optimal exercise boundaries of American puts in the model of
Heston with θ = 0.04, κ = 0.9, λ = 0, r = 0.08 and d = 0.

23



Figure 14: In�uence of the ρ parameter on the optimal exercise boundary for an American put

Figure 15: In�uence of the σV parameter on the optimal exercise boundary for an American put
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In the case of an American put, when ρ < 0, the probability that an unfavorable scenario occurs after the
early exercise of the option is all the lower as σV is higher, which explains the upward shift of the optimal
exercise boundary. In the case of an American call, when ρ < 0, the probability that the underlying asset
price falls substantially after the early exercise of the option is all the higher as σV is greater. Consequently,
the optimal exercise boundary of the American call on an asset with high volatile returns variability is located
at a greater distance from the exercise price K. When the underlying asset returns are not correlated with
their instantaneous variance (ρ = 0), a greater σV implies a higher probability of an extreme event (such as
a strong increase or a strong decrease of the underlying asset price after the early exercise of the option).
Consequently, the optimal exercise surface for both American calls and puts is located further from the
exercise price K when the variability of the underlying asset returns is more volatile.

Figure (15) presents also the case of σV = 0 which corresponds to the constant volatility model. For that
case, the optimal exercise boundary was computed using the implied volatility at time t0 obtained from the
�market� prices of at-the-money options29 given by the Heston stochastic volatility model with σV = 0.3.
In this way, we can visualize the general impact of the random behavior of volatility on the optimal exercise
boundary and observe the biases generated by the constant volatility model when one uses it in a stochastic
volatility environment.

Applying a standard constant volatility model is equivalent to assuming a log-normal conditional dis-
tribution for S (u), u > t. When the volatility of the underlying asset returns is stochastic (σV 6= 0), the
conditional distribution of S (u) has fat tails. Moreover, this distribution is skewed if ρ 6= 0. Consequently,
in the case of an American put, the use of the constant volatility model in a stochastic volatility environment
produces critical prices that are, for a given level of the current volatility, too distant from the exercise price
K if ρ < 0, i.e. exercise rule is too stringent, and that are too close to the exercise price K if ρ ≥ 0, i.e. the
exercise rule is too loose. In the case of an American call, assuming wrongly that the volatility is constant,
will lead to the critical prices located too far from K if ρ > 0 and too close to K if ρ ≤ 0.

3.3 American options with two-underlying assets
Multi-asset options market has been increasingly developping for some months. It enables to speculate or
to hedge against correlation moves. We present here an application of the Hopscotch method for the pricing
of the two asset options. This paragraph will focus on the standard following payo�s

BestOf max
[
max

[
α1

(
S1(T )
S1(t0)

−K1

)
, α2

(
S2(T )
S2(t0)

−K2

)]
, 0

]

WorstOf max
[
min

[
α1

(
S1(T )
S1(t0)

−K1

)
, α2

(
S2(T )
S2(t0)

−K2

)]
, 0

] (67)

where α1 and α2 are equal to 1 or -1, so that we will be interested by the best (or the worst) of two Call,
two Put, or one Call and one Put.

The European case is trivial since there is a quasi explicit formula to price such options. For instance, if
K1 = K2 = K, the price of a BestOf Call/Call may be given by

C (t0) = e−r(T−t0)EQ

(
max

[(
S1 (T )
S1 (t0)

−K

)+

,

(
S2 (T )
S2 (t0)

−K

)+
]
| F0

)

= e−r(T−t0)

∫ +∞

K

(1−G (x)) dx (68)

where G is the cumulative distribution function of max
(

S1(T )
S1(t0)

, S2(T )
S2(t0)

)

G(x) =
∫ +∞

−∞

2∏

i=1

Φ


 ln (x) +

(
r + σ2

i

2

)
(T − t0)

σi

√
T − t0

√
1− ρ2

− ρz√
1− ρ2


 dΦ (z) (69)

29In a stochastic volatility environment, the Black and Scholes implied volatility is a function of the current state. Conse-
quently, the magnitude and the sign of the exercise boundary bias is a�ected by the current underlying asset price, see Kurpiel
[1999] for further investigations in this direction.
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Those integrals will be computed in the following using a Gauss-Hermite quadrature and will enable us to
check the adequacy of our boundary conditions and the accuracy of our mesh when pricing with Hopscotch
method.

In this standard model, the state vector is obvious and the market is complete. Any option payo� may
be replicate using delta hedging strategy. Once again, the price of an American option written on these
two underlyings satis�es a two-dimensional variational inequality. We may then extract the optimal exercise
boundary from the solution. It is not useful to compute every American prices. Indeed, like in the single
underlying context, some American option prices are equal to their european prices. For instance, it is not
di�cult to show that the BestOf Call/Call American component price is equal to zero, since the price process
is a sub-martingale30. This property does not hold anymore for the price of BestOf Put/Put options. In
this case, it is more di�cult to compute the American prime and to describe the optimal exercise boundary.
Then, numerical procedures to solve this kind of problem are usually based on trees and PDE. As already
mentionned, our American price UA (t, S1 (t) , S2 (t)) is the solution of the variational inequality (46). To
solve it numerically, we need to limit (S1, S2) to R =

[
S−1 , S+

1

] × [
S−2 , S+

2

]
and to impose some boundary

conditions. In this case we will mix Dirichlet and Neumann conditions. Indeed, we have imposed




∂ UA(t,S−1 ,S2)
∂ S1

=
∂ UA(t,S1,S−2 )

∂ S2
= −1

UA
(
t, S+

1 , S2

)
= (K2 − S2)

+

UA
(
t, S1, S

+
2

)
= (K1 − S1)

+

(70)

In order to check the adequacy of these conditions and the accuracy of the mesh, we have compared prices
obtained using Hopscotch in the European case to the quasi-analytic expression. Tests have been carried out
pricing a one month BestOf Put/Put31 with a mesh �xed to Nt = 250 and Nx = Nx = 360. Errors observed
are inferior to 10−5%! We represent in the �gure 17 the optimal exercise boundary of such an option. This
�gures points out 2 important facts:

• There is a non negligible set where it is optimal to exercise for the holder. It means that the
american component price may play an important role in the price of such an option.

• The optimal exercise set of the BestOf Put/Put is smaller than the union of the two
optimal exercise set of the single american puts. In other words, one may observe that when
the two underlyings decrease so that they may both cross their optimal exercise boundary, it is not
always optimal to exercise the two-assets option. It may be worth waiting to know which Put will be
more interesting.

One may remark that for a given S2 the projection of this optimal exercise boundary is varying with time
in the same way as the usual single american put exercise boundary does. Finally, An illustration of the
relative di�erence32 between the European and American prices is represented in the �gure 16.

4 Some hedging problems
4.1 Managing the smile e�ect
4.1.1 General issue and approximation
It is not an easy task to measure e�ects of the so-called volatility smile on such �nancial products. Indeed,
information available in the market deals with vanilla options written on a single underlying, and even in
this simple case there is no general agreement to modelize this e�ect. Thus, the choice of the �fair� volatility
for multi-asset options may not be obvious. Professionals who think in a Black-Scholes framework have then
to look for some rules of pricing. Nevertheless, these rules are based on proxies and there is always some

30in the case b1 = b2 = r.
31The parameters are b1 = b2 = r = 5%, σ1 = σ2 = 15%, ρ = 1

2
, T − t0 = 1

12
and K0 = K1 = 1.

32The results are very sensible to the parameters. For example, with the parameters b1 = 2.5%, σ1 = 15%, b2 = 7.5%,
σ2 = 25%, ρ = − 1

2
, T − t0 = 3

12
, r = 5%, K1 = 1 and K2 = 1.1, we obtain the �gures 18 and 19.
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Figure 16: American price of a BestOf Put/Put option vs European price (I)

Figure 17: Optimal exercice policy of the American BestOf Put/Put option (I)
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Figure 18: American price of a BestOf Put/Put option vs European price (II)

Figure 19: Optimal exercice policy of the American BestOf Put/Put option (II)
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residual errors. Moreover, these rules are far from being always obvious. Indeed, consider a spread option
whose payo� is (S1 (T )− S2 (T ))+ where S1 (t) and S2 (t) follow a stochastic volatility model (for example
the Heston model), and try to guess which volatility we may have to input in a Black-Scholes pricer to get
the fair price. A natural approach may be to choose the at-the-money volatility for both assets. Monte-Carlo
simulations will show that this approach leads to relative errors about 15% for a quite pronounced smile33.
In practice, these residual errors are then compensated by the choice of a suitable correlation and depend
on traders' skills.

Let us remark that it is very di�cult to calibrate a multi-asset stochastic volatility model. Indeed, it
needs to estimate a lot of parameters whose some are not likely to be relevant with both option and asset
prices. It actually leads to high unstablitity of these parameters. Nevertheless, some proxies enable to
incorporate volatility smile into a quasi-analytical price of a spread option. A simple approach may be to
consider that the volatility risk does not a�ect the probability that S1 (T ) ≥ S2 (T ). That is why, one may
consider 2 assets:

• S1 whose volatility is stochastic (and follows for example Heston model);

• S̃2 which follows a classical log-normal di�usion.

So, one has to consider dynamics of S1 (t) such as
{

dS1 (t) = rS1 (t) dt + σ1 (t)S1 (t) dW1 (t)
dV1 (t) = κ1 (V1 (∞)− V1 (t)) dt + σV1σ1 (t) dW̃1 (t)

(71)

with σ1 (t) =
√

V1 (t). Furthermore, we have

dS̃2 (t) = rS̃2 (t) dt + σ2S̃2 (t) dW2 (t) (72)

We note η the correlation between W1 (t) and W̃1 (t), and ρ the correlation between the two asset returns.
Then we may introduce an option whose price may be an approximation of the call spread price, that is to
say

EQ
(
(S1 (T )− S2 (T ))+ | F0

)
' EQ

((
S1 (T )− S̃2 (T )

)+

| F0

)
(73)

One may decompose W1 (t) as follows

W1 (t) = ρW2 (t) +
√

1− ρ2W3 (t) (74)

where W3 (t) is a standard Brownian motion independant of W2 (t). The di�usion process (71) becomes
{

dS1 (t) = rS1 (t) dt + ρσ1 (t)S1 (t) dW2 (t) +
√

1− ρ2σ1 (t)S1 (t) dW3 (t)
dV1 (t) = κ1 (V1 (∞)− V1 (t)) dt + σV1σ1 (t) dW̃1 (t)

(75)

One may write S1 (t) as the product of two independant terms, i.e

S1 (t) = S1 (t0) exp
(

r (t− t0)− 1− ρ2

2

∫ t

t0

σ2
1 (s) ds +

√
1− ρ2

∫ t

t0

σ1 (s) dW3 (s)
)

︸ ︷︷ ︸
X1(t)

× exp
(
−ρ2

2

∫ t

t0

σ2
1 (s) ds + ρ

∫ t

t0

σ1 (s) dW2 (s)
)

︸ ︷︷ ︸
Y1(t)

(76)

33By quite pronounced smile, we mean
κ = 0.5

σV = 0.9

and the correlation between the brownian of the asset and the brownian of the volatility is about −0.5.
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The second term of this last expression enables to get some dependance between the two assets. As men-
tionned before, one may assume that the e�ect of stochastic volatility on this dependance is negligible. So
we may replace σ1 (t) which is stochastic by a suitable implied volatility σ̂1 (t) (at-the-money volatility for
instance) in the second term of S1 (t):

EQ
((

S1 (T )− S̃2 (T )
)+

| F0

)
= EQ




Y1 (T )EQ




(
X1 (T )− S̃2 (T )

Y1 (T )

)+

| W2




︸ ︷︷ ︸
CallHeston

�
t0,T,

S̃2(T )
Y1(T )

�

| F0




=
∫ +∞

−∞

1√
2π

y (x)CallHeston (t0, T, K (x)) exp
(
−1

2
x2

)
dx (77)

where
y (x) ' exp

(
−1

2
ρ2σ̂2

1 (T − t0) + ρσ̂1x
√

T − t0

)
(78)

and
K (x) ' S2 (t0) exp

(
r (T − t0)− 1

2
(
σ̂2

2 − ρ2σ̂2
1

)
(T − t0) + (σ̂2 − ρσ̂1) x

√
T − t0

)
(79)

Remark 1 We may notice that ρ plays some role in the term CallHeston (t0, T, K (x)). One may take it into
account in a more convenient way, writing the di�usion process of X1 (t) as follows

{
dX1 (t) = rX1 (t) dt + σX (t)X1 (t) dW3 (t)
dVX (t) = κX (VX (∞)− VX (t)) dt + σ̄σX (t) dW̃3 (t)

(80)

with σX (t) =
√

1− ρ2σ1 (t), so that one get the equivalence

κX = κ1

VX (∞) =
(
1− ρ2

)
V1 (∞)

σ̄ =
√

1− ρ2σV1 (81)

Remark 2 This approach may be useful when one observes enough vanilla prices on one of both assets in
the market, or when smile curve is smooth enough to interpolate missing values. Indeed, one may then
replace the integral by a �nite sum. Notice that this approach provide us with a natural hedging strategy
which consists in buying Vanillas. This hedge enables anyone to take into account volatility risk.

4.1.2 Application to BestOf/WorstOf Call/Put
One may use previous fomula to price other payo�s we are interested in. Indeed, considering that

(max (S1 (T ) , S2 (T ))−K)+ = (S2 (T )−K)+ + (S1 (T )−max (S2 (T ) ,K))+ (82)

it is possible to use results from the expression (77) so that one can get an approximation of a BestOf Call
by

EQ
((

S1 (T )−max
(
S̃2 (T ) ,K

))+

| F0

)
=

∫ +∞

−∞

1√
2π

y (x)CallHeston (t0, T, K (x)) exp
(
−1

2
x2

)
dx (83)

with
y (x) ' exp

(
−1

2
ρ2σ̂2

1 (T − t0) + ρσ̂1x
√

T − t0

)
(84)

and
K (x) ' y−1 (x)max

(
S2 (t0) exp

((
r − 1

2
σ̂2

2

)
(T − t0) + σ̂2x

√
T − t0

)
,K

)
(85)
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We have implemented this method when the smile is built with 36 Vanilla prices (from strike 70 to strike
140 with a step of 2). The integral is computed following Gauss-Hermite quadrature with 32 nodes. Results
and comparisons are presented in the �gure 20 for the WorstOf Put/Put option with two di�erent Risk
Reversal34. The proxy prices have been computed without using Heston formula. Furthermore, prices of
Vanilla have not been interpolated, so that these results could be improved. Nevertheless, this approach
seems quite interesting for the pricing of these options. They may reduce the few residual errors observed
with the B&S pricer for those options.

Figure 20: Test of the Proxy for the WorstOf Put/Put option

4.2 Greeks computing
One pay generally little attention of the computational aspect of the greek coe�cients. However, it is one of
the big issue to manage a contingent claims portfolio (El Karoui, Jeanblanc and Shreve [1998]). Let
C (t0) be a call option price. In the Black and Scholes model, we are interested for example in the delta,
gamma and vega coe�cients de�ned by the following derivatives

∆ =
∂ C (t0)
∂ S (t0)

34For those simulations, the smile have been generated with the Heston model with

κ = 0.5

V (∞) = 0.32

σV = 0.9

v ∈ {−0.5; 0}
Furthermore the maturity of those options have been �xed to one year, the riskless interest rate to 5% and the correlation
between the two asset returns to 50%.
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Γ =
∂2 C (t0)
∂ S2 (t0)

υ =
∂ C (t0)

∂ σ
(86)

with S (t0) the current price of the underlying asset and σ the volatility. Let c (t0, S (t0) , σ) be the function
corresponding to the price C (t0). If we use a central di�erence for the �rst order derivatives, the sensitivities
are computed by �nite di�erence as follows35

∆d =
c (t0, (1 + ε) S (t0) , σ)− c (t0, (1− ε)S (t0) , σ)

2εS (t0)

Γd =
c (t0, (1 + ε) S (t0) , σ)− 2c (t0, S (t0) , σ) + c (t0, (1− ε)S (t0) , σ)

ε2S2 (t0)

υd =
c (t0, S (t0) , (1 + ε)σ)− c (t0, S (t0) , (1− ε) σ)

2εσ
(88)

The theta coe�cient is then computed using the PDE formulation

θ = rC (t0)− bS (t0)∆− 1
2
σ2S2 (t0) Γ (89)

The use of the previous formula takes some problems when the numerical solution is obtained by MCmethods.
The �rst one concerns the optimal values of ε and ε. We consider an experiment with an European and a
Binary Call options. We use the values of the parameters of the footnote 18 page 11, and di�erent values for
ε. In some software, ε is set to 0.0001. With this value, the delta is well approximated for the vanilla option,
but we obtain bad results for the binary option. We remark that there is not a value that will give good
results for every option type and all derivatives. In our case, ε = 0.01 is a suitable choice for the European
option, whereas ε = 0.05 is a better choice for the Binary option.

The second problem concerns the computational time of the �nite di�erence approximation. For ex-
ample, the gamma needs three Monte Carlo replications. Fournié, Lasry, Lebuchoux, Lions and
Touzi [1999] present a method to compute the greeks which does not require to run di�erent Monte Carlo
replications. This method is based on the Malliavin calculus (Nualart [1995], ∅ksendal [1996]). Let

P (t0) = EQ

[
G (T, X (T )) exp

(
−

∫ T

t0

r (t,X (t)) dt

)∣∣∣∣∣Ft0

]
be the price of an option with the payo� func-

tional G. Fournié, Lasry, Lebuchoux, Lions and Touzi [1999] show that the di�erentials of P (t0) can
be expressed as

EQ

[
$αG (T, X (T )) exp

(
−

∫ T

t0

r (t, X (t)) dt

)∣∣∣∣∣Ft0

]
(90)

with $α a random variable and α the parameter of interest. For example, they obtain the following formulas
for the Black-Scholes model36

∆m = e−r(T−t0)EQ
[
G (T, S (T ))

W (T )
σTS (t0)

∣∣∣∣Ft0

]

Γm = e−r(T−t0)EQ

[
G (T, S (T ))

W 2 (T )− σTW (T )− T

[σTS (t0)]
2

∣∣∣∣∣Ft0

]

υm = e−r(T−t0)EQ
[
G (T, S (T ))

W 2 (T )− σTW (T )− T

σT

∣∣∣∣Ft0

]
(91)

35In the case of the single-sided forward di�erence, we have

∆ =
c (t0, (1 + ε) S (t0) , σ)− c (t0, S (t0) , σ)

εS (t0)

υ =
c (t0, S (t0) , (1 + ε) σ)− c (t0, S (t0) , σ)

εσ
(87)

36We note that the gamma and the vega are proportional with υm = σTS2 (t0) Γm.
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Figure 21: ∆ for an European Call option

Figure 22: Γ for an European Call option
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Figure 23: υ for an European Call option

Figure 24: θ for an European Call option
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Figure 25: ∆ for a Binary Call option

Figure 26: Γ for a Binary Call option
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Figure 27: υ for a Binary Call option

Figure 28: θ for a Binary Call option
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Fournié, Lasry, Lebuchoux, Lions and Touzi [1999] and Benhamou [1999b,1999c] remark that �the
Malliavin method turns out to be very e�cient in the case of discontinuous payo� functionals compared to
the Monte Carlo �nite di�erence approach�. The �gures (29) and (30) con�rm this fact. However, we argue
that the most interesting advantage of the Malliavin approach is not the e�ciency37, but the
computational time reduction.

Figure 29: FD vs Malliavin approach � the European Call option example

We could extend the previous results to the case of options with two assets. For example, we have for
the delta derivatives

∆1
m = e−r(T−t0)EQ

[
G (T, S1 (T ) , S2 (T ))

W1 (T )− ρW2 (T )
(1− ρ2)σ1TS1 (t0)

∣∣∣∣Ft0

]

∆2
m = e−r(T−t0)EQ

[
G (T, S1 (T ) , S2 (T ))

W2 (T )− ρW1 (T )
(1− ρ2)σ2TS2 (t0)

∣∣∣∣Ft0

]
(92)

We consider the previous example of the footnote 7 page 5. We consider a Basket option with α1 = 1,
α2 = 1 and K = 200. We have represented the delta, gamma and vega derivatives for di�erent values of the
correlation ρ � see the �gures 31�34. The QMC method uses the Sobol sequence. With this example, we
remark that the QMC method gives better results than the MC method. Moreover, the convergence appears
very slow for the gamma and vega greeks when ρ is high in absolute value.

5 Conclusion
This paper present di�erent problems on 2D option pricing. Most of the problems concern the numerical
algorithm. We have given some illustrations. The main idea is that there is not a unique solution, and that
it is not evident that there exist a better solution than others. For each product, we have to do a deep

37We have made di�erent simulations, and it is not evident that the Malliavin approach is superior to the �nite di�erence
approach.
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Figure 30: FD vs Malliavin approach � the Binary Call option example

Figure 31: FD vs Malliavin approach � ρ = 0.5
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Figure 32: FD vs Malliavin approach � ρ = −0.5

Figure 33: FD vs Malliavin approach � ρ = 0.95

39



Figure 34: FD vs Malliavin approach � ρ = −0.95

investigation before to choose the appropriate method. And of course, the previous problems become even
more complicated in multi-dimensional option pricing.

Appendix

A Proof of the Malliavin delta for the two-asset options
We remain that we have

[
dS1 (t)
dS2 (t)

]
=

[
b1S1 (t)
b2S2 (t)

]
dt +

[
σ1S1 (t) 0

0 σ2S2 (t)

] [
dW1 (t)
dW2 (t)

]
(93)

with E [W1 (t)W2 (t)] = ρt. Let S (t) =
[

S1 (t) S2 (t)
]> be the two dimensional process. Let Y (t) be

the related �rst variation process. The weighting function generator $ is given by the following expression
(Benhamou [1999a]) :

$ = δ
(
Y (t)Σ−1 (t, S (t)) λ (t)

)
(94)

with δ the Skorohod integral and ∫ T

t0

λ (t)X (t ≤ T ) dt = 1 (95)

One of the di�culty is that this result hold for ρ = 0. We also introduce the canonical Wiener Process
W⊥ (t) =

[
W⊥

1 (t) W⊥
2 (t)

]> with
{

W⊥
1 (t) = W1 (t)

W⊥
2 (t) =

(
1− ρ2

)− 1
2 (W2 (t)− ρW1 (t))

(96)
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Then we have38

$ =
1
T




(σ1S1 (t0))
−1 −ρ

(√
1− ρ2σ1S1 (t0)

)−1

0
(√

1− ρ2σ2S2 (t0)
)−1


 W⊥ (T )

=




(√
1− ρ2W⊥

1 (T )− ρW⊥
2 (T )

) (√
1− ρ2σ1TS1 (t0)

)−1

W⊥
2 (T )

(√
1− ρ2σ2S2 (t0)

)−1


 (97)

Using the relationship (96), we obtain the desired formula (92).
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