
Operational Risk
Asset Liability Management Risk

Financial Risk Management
Tutorial Class — Session 4

Thierry Roncalli? (Professor)
Irinah Ratsimbazafy? (Instructor)

?University of Paris-Saclay

December 2020

Thierry Roncalli, Irinah Ratsimbazafy Financial Risk Management (Tutorial Class — Session 4) 1 / 87



Operational Risk
Asset Liability Management Risk

Estimation of the loss severity distribution
Estimation of the loss frequency distribution
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Exercise

We consider a sample of n individual losses {x1, . . . , xn}. We assume that they can be
described by different probability distributions:

(i) X follows a log-normal distribution LN
(
µ, σ2

)
.

(ii) X follows a Pareto distribution P
(
α, x−

)
defined by:

Pr {X ≤ x} = 1−
(

x

x−

)−α

with x ≥ x− and α > 0.

(iii) X follows a gamma distribution Γ (α, β) defined by:

Pr {X ≤ x} =

∫ x

0

βαtα−1e−βt

Γ (α)
dt

with x ≥ 0, α > 0 and β > 0.

(iv) The natural logarithm of the loss X follows a gamma distribution: lnX ∼ Γ (α;β).
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Question 1

We consider the case (i).

(i) X follows a log-normal distribution LN
(
µ, σ2

)
.
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Question 1.a

Show that the probability density function is:

f (x) =
1

xσ
√

2π
exp

(
−1

2

(
ln x − µ

σ

)2
)
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The density of the Gaussian distribution Y ∼ N
(
µ, σ2

)
is:

g (y) =
1

σ
√

2π
exp

(
−1

2

(
y − µ
σ

)2
)

Let X ∼ LN
(
µ, σ2

)
. We have X = expY . It follows that:

f (x) = g (y)

∣∣∣∣dydx
∣∣∣∣

with y = ln x . We deduce that:

f (x) =
1

σ
√

2π
exp

(
−1

2

(
y − µ
σ

)2
)
× 1

x

=
1

xσ
√

2π
exp

(
−1

2

(
ln x − µ

σ

)2
)
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Question 1.b

Calculate the two first moments of X . Deduce the orthogonal conditions
of the generalized method of moments.
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For m ≥ 1, the non-centered moment is equal to:

E [Xm] =

∫ ∞
0

xm
1

xσ
√

2π
exp

(
−1

2

(
ln x − µ

σ

)2
)

dx
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By considering the change of variables y = σ−1 (ln x − µ) and
z = y −mσ, we obtain:

E [Xm] =

∫ ∞
−∞

emµ+mσy 1√
2π

e−
1
2 y

2

dy

= emµ ×
∫ ∞
−∞

1√
2π

e−
1
2 y

2+mσy dy

= emµ × e
1
2 m

2σ2

×
∫ ∞
−∞

1√
2π

e−
1
2 (y−mσ)2

dy

= emµ+ 1
2 m

2σ2

×
∫ ∞
−∞

1√
2π

exp

(
−1

2
z2

)
dz

= emµ+ 1
2 m

2σ2
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We deduce that:
E [X ] = eµ+ 1

2σ
2

and:

var (X ) = E
[
X 2
]
− E2 [X ]

= e2µ+2σ2

− e2µ+σ2

= e2µ+σ2
(
eσ

2

− 1
)

We can estimate the parameters µ and σ with the generalized method of
moments by using the following empirical moments: hi,1 (µ, σ) = xi − eµ+ 1

2σ
2

hi,2 (µ, σ) =
(
xi − eµ+ 1

2σ
2
)2

− e2µ+σ2
(
eσ

2 − 1
)
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Question 1.c

Find the maximum likelihood estimators µ̂ and σ̂.
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The log-likelihood function of the sample {x1, . . . , xn} is:

` (µ, σ) =
n∑

i=1

ln f (xi )

= −n

2
lnσ2 − n

2
ln 2π −

n∑
i=1

ln xi −
1

2

n∑
i=1

(
ln xi − µ

σ

)2

To find the ML estimators µ̂ and σ̂, we can proceed in two different way.
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#1 X ∼ LN
(
µ, σ2

)
implies that Y = lnX ∼ N

(
µ, σ2

)
. We know that

the ML estimators µ̂ and σ̂ associated to Y are:

µ̂ =
1

n

n∑
i=1

yi

σ̂ =

√√√√1

n

n∑
i=1

(yi − µ̂)2

We deduce that the ML estimators µ̂ and σ̂ associated to the sample
{x1, . . . , xn} are:

µ̂ =
1

n

n∑
i=1

ln xi

σ̂ =

√√√√1

n

n∑
i=1

(ln xi − µ̂)2
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#2 We maximize the log-likelihood function. The first-order conditions
are ∂µ ` (µ, σ) = 0 and ∂σ ` (µ, σ) = 0. We deduce that:

∂µ ` (µ, σ) =
1

σ2

n∑
i=1

(ln xi − µ) = 0

and:

∂σ ` (µ, σ) = − n

σ
+

n∑
i=1

(ln xi − µ)2

σ3
= 0

We finally obtain:

µ̂ =
1

n

n∑
i=1

ln xi

and:

σ̂ =

√√√√1

n

n∑
i=1

(ln xi − µ̂)2
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Question 2

We consider the case (ii).

(ii) X follows a Pareto distribution P (α, x−) defined by:

Pr {X ≤ x} = 1−
(

x

x−

)−α
with x ≥ x− and α > 0.
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Question 2.a

Calculate the two first moments of X . Deduce the GMM conditions for
estimating the parameter α.
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The probability density function is:

f (x) =
∂ Pr {X ≤ x}

∂ x

= α
x−(α+1)

x−α−

For m ≥ 1, we have:

E [Xm] =

∫ ∞
x−

xmα
x−(α+1)

x−α−
dx

=
α

x−α−

∫ ∞
x−

xm−α−1 dx

=
α

x−α−

[
xm−α

m − α

]∞
x−

=
α

α−m
xm−
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We deduce that:
E [X ] =

α

α− 1
x−

and:

var (X ) = E
[
X 2
]
− E2 [X ]

=
α

α− 2
x2
− −

(
α

α− 1
x−

)2

=
α

(α− 1)2 (α− 2)
x2
−
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We can then estimate the parameter α by considering the following
empirical moments:

hi,1 (α) = xi −
α

α− 1
x−

hi,2 (α) =

(
xi −

α

α− 1
x−

)2

− α

(α− 1)2 (α− 2)
x2
−

The generalized method of moments can consider either the first moment
hi,1 (α), the second moment hi,2 (α) or the joint moments
(hi,1 (α) , hi,2 (α)). In the first case, the estimator is:

α̂ =

∑n
i=1 xi∑n

i=1 xi − nx−
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Question 2.b

Find the maximum likelihood estimator α̂.
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The log-likelihood function is:

` (α) =
n∑

i=1

ln f (xi ) = n lnα− (α + 1)
n∑

i=1

ln xi + nα ln x−

The first-order condition is:

∂α ` (α) =
n

α
−

n∑
i=1

ln xi +
n∑

i=1

ln x− = 0

We deduce that:

n = α
n∑

i=1

ln
xi
x−

The ML estimator is then:

α̂ =
n∑n

i=1 (ln xi − ln x−)
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Question 3

We consider the case (iii). Write the log-likelihood function associated to
the sample of individual losses {x1, . . . , xn}. Deduce the first-order
conditions of the maximum likelihood estimators α̂ and β̂.

(iii) X follows a gamma distribution Γ (α, β) defined by:

Pr {X ≤ x} =

∫ x

0

βαtα−1e−βt

Γ (α)
dt

with x ≥ 0, α > 0 and β > 0.
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The probability density function of (iii) is:

f (x) =
∂ Pr {X ≤ x}

∂ x
=
βαxα−1e−βx

Γ (α)

It follows that the log-likelihood function is:

` (α, β) =
n∑

i=1

ln f (xi ) = −n ln Γ (α) + nα lnβ + (α− 1)
n∑

i=1

ln xi − β
n∑

i=1

xi

The first-order conditions ∂α ` (α, β) = 0 and ∂β ` (α, β) = 0 imply that:

n

(
lnβ − Γ′ (α)

Γ (α)

)
+

n∑
i=1

ln xi = 0

and:

n
α

β
−

n∑
i=1

xi = 0
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Question 4

We consider the case (iv). Show that the probability density function of X
is:

f (x) =
βα (ln x)α−1

Γ (α) xβ+1

What is the support of this probability density function? Write the
log-likelihood function associated to the sample of individual losses
{x1, . . . , xn}.

(iv) The natural logarithm of the loss X follows a gamma distribution:
lnX ∼ Γ (α;β).
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Let Y ∼ Γ (α, β) and X = expY . We have:

fX (x) |dx | = fY (y) |dy |

where fX and fY are the probability density functions of X and Y . We
deduce that:

fX (x) =
βαyα−1e−βy

Γ (α)
× 1

ey

=
βα (ln x)α−1 e−β ln x

xΓ (α)

=
βα (ln x)α−1

Γ (α) xβ+1

The support of this probability density function is [0,+∞).
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The log-likelihood function associated to the sample of individual losses
{x1, . . . , xn} is:

` (α, β) =
n∑

i=1

ln f (xi )

= −n ln Γ (α) + nα lnβ + (α− 1)
n∑

i=1

ln (ln xi )− (β + 1)
n∑

i=1

ln xi
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Question 5

We now assume that the losses {x1, . . . , xn} have been collected beyond a
threshold H meaning that X ≥ H.
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Question 5.a

What becomes the generalized method of moments in the case (i).

(i) X follows a log-normal distribution LN
(
µ, σ2

)
.
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Using Bayes’ formula, we have:

Pr {X ≤ x | X ≥ H} =
Pr {H ≤ X ≤ x}

Pr {X ≥ H}

=
F (x)− F (H)

1− F (H)

where F is the cdf of X . We deduce that the conditional probability
density function is:

f (x | X ≥ H) = ∂x Pr {X ≤ x | X ≥ H}

=
f (x)

1− F (H)
× 1 {x ≥ H}
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For the log-normal probability distribution, we obtain:

f (x | X ≥ H) =
1

1− Φ
(

ln H−µ
σ

) × 1

σ
√

2π
e−

1
2 ( ln x−µ

σ )2

dx

= ϕ× 1

σ
√

2π
e−

1
2 ( ln x−µ

σ )2

dx
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We note Mm (µ, σ) the conditional moment E [Xm | X ≥ H]. We have:

Mm (µ, σ) = ϕ×
∫ ∞
H

xm−1

σ
√

2π
e−

1
2 ( ln x−µ

σ )2

dx

= ϕ×
∫ ∞

ln H

1

σ
√

2π
e−

1
2 ( x−µ

σ )2
+mx dx

= ϕ× emµ+ 1
2 m

2σ2

×
∫ ∞

ln H

1

σ
√

2π
e−

1
2

(x−(µ+mσ2))2

σ2 dx

=
1− Φ

(
ln H−µ−mσ2

σ

)
1− Φ

(
ln H−µ
σ

) emµ+ 1
2 m

2σ2

Thierry Roncalli, Irinah Ratsimbazafy Financial Risk Management (Tutorial Class — Session 4) 30 / 87



Operational Risk
Asset Liability Management Risk

Estimation of the loss severity distribution
Estimation of the loss frequency distribution

Estimation of the loss severity distribution

The first two moments of X | X ≥ H are then:

M1 (µ, σ) = E [X | X ≥ H] =
1− Φ

(
ln H−µ−σ2

σ

)
1− Φ

(
ln H−µ
σ

) eµ+ 1
2σ

2

and:

M2 (µ, σ) = E
[
X 2 | X ≥ H

]
=

1− Φ
(

ln H−µ−2σ2

σ

)
1− Φ

(
ln H−µ
σ

) e2µ+2σ2

Thierry Roncalli, Irinah Ratsimbazafy Financial Risk Management (Tutorial Class — Session 4) 31 / 87



Operational Risk
Asset Liability Management Risk

Estimation of the loss severity distribution
Estimation of the loss frequency distribution

Estimation of the loss severity distribution

We can therefore estimate µ and σ by considering the following empirical
moments:{

hi,1 (µ, σ) = xi −M1 (µ, σ)

hi,2 (µ, σ) = (xi −M1 (µ, σ))2 −
(
M2 (µ, σ)−M2

1 (µ, σ)
)
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Question 5.b

Calculate the maximum likelihood estimator α̂ in the case (ii).

(ii) X follows a Pareto distribution P (α, x−) defined by:

Pr {X ≤ x} = 1−
(

x

x−

)−α
with x ≥ x− and α > 0.
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We have:

f (x | X ≥ H) =
f (x)

1− F (H)
× 1 {x ≥ H}

=

(
α
x−(α+1)

x−α−

)/(
H−α

x−α−

)

= α
x−(α+1)

H−α

The conditional probability function is then a Pareto distribution with the
same parameter α but with a new threshold x− = H. We can then deduce
that the ML estimator α̂ is:

α̂ =
n(∑n

i=1 ln xi
)
− n lnH
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Question 5.c

Write the log-likelihood function in the case (iii).

(iii) X follows a gamma distribution Γ (α, β) defined by:

Pr {X ≤ x} =

∫ x

0

βαtα−1e−βt

Γ (α)
dt

with x ≥ 0, α > 0 and β > 0.
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The conditional probability density function is:

f (x | X ≥ H) =
f (x)

1− F (H)
× 1 {x ≥ H}

=

(
βαxα−1e−βx

Γ (α)

)/∫ ∞
H

βαtα−1e−βt

Γ (α)
dt

=
βαxα−1e−βx∫∞

H
βαtα−1e−βt dt

We deduce that the log-likelihood function is:

` (α, β) = nα lnβ − n ln

(∫ ∞
H

βαtα−1e−βt dt

)
+

(α− 1)
n∑

i=1

ln xi − β
n∑

i=1

xi
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Exercise

We consider a dataset of individual losses {x1, . . . , xn} corresponding to a
sample of T annual loss numbers {NY1 , . . . ,NYT

}. This implies that:

T∑
t=1

NYt = n

If we measure the number of losses per quarter {NQ1 , . . . ,NQ4T
}, we use

the notation:
4T∑
t=1

NQt = n
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Question 1

We assume that the annual number of losses follows a Poisson distribution
P (λY ). Calculate the maximum likelihood estimator λ̂Y associated to the
sample {NY1 , . . . ,NYT

}.

Thierry Roncalli, Irinah Ratsimbazafy Financial Risk Management (Tutorial Class — Session 4) 38 / 87



Operational Risk
Asset Liability Management Risk

Estimation of the loss severity distribution
Estimation of the loss frequency distribution

Estimation of the loss frequency distribution

We have:

Pr {N = n} = e−λY
λnY
n!

We deduce that the expression of the log-likelihood function is:

` (λY ) =
T∑
t=1

ln Pr {N = NYt} = −λYT +

(
T∑
t=1

NYt

)
lnλY −

T∑
t=1

ln (NYt !)

The first-order condition is:

∂ ` (λY )

∂ λY
= −T +

1

λY

(
T∑
t=1

NYt

)
= 0

We deduce that the ML estimator is:

λ̂Y =
1

T

T∑
t=1

NYt =
n

T
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Question 2

We assume that the quarterly number of losses follows a Poisson
distribution P (λQ). Calculate the maximum likelihood estimator λ̂Q
associated to the sample {NQ1 , . . . ,NQ4T

}.
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Using the same arguments, we obtain:

λ̂Q =
1

4T

4T∑
t=1

NQt =
n

4T
=
λ̂Y
4
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Question 3

What is the impact of considering a quarterly or annual basis on the
computation of the capital charge?
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Estimation of the loss frequency distribution

Considering a quarterly or annual basis has no impact on the capital
charge. Indeed, the capital charge is computed with a one-year time
horizon. If we use a quarterly basis, we have to find the distribution of the
annual loss number. In this case, the annual loss number is the sum of the
four quarterly loss numbers:

NY = NQ1 + NQ2 + NQ3 + NQ4

We know that each quarterly loss number follows a Poisson distribution

P
(
λ̂Q

)
and that they are independent. Because the Poisson distribution

is infinitely divisible, we obtain:

NQ1 + NQ2 + NQ3 + NQ4 ∼ P
(

4λ̂Q
)

We deduce that the annual loss number follows a Poisson distribution
P
(
λ̂Y

)
in both cases.
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Estimation of the loss frequency distribution

Question 4

What does this result become if we consider a method of moments based
on the first moment?
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Estimation of the loss frequency distribution

Since we have E [P (λ)] = λ, the MM estimator in the case of annual loss
numbers is:

λ̂Y =
1

T

T∑
t=1

NYt =
n

T

The MM estimator is exactly the ML estimator.
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Estimation of the loss frequency distribution

Question 5

Same question if we consider a method of moments based on the second
moment.
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Estimation of the loss frequency distribution

Since we have var (P (λ)) = λ, the MM estimator in the case of annual
loss numbers is:

λ̂Y =
1

T

T∑
t=1

N2
Yt
− n2

T 2

If we use a quarterly basis, we obtain:

λ̂Q =
1

4

(
1

T

4T∑
t=1

N2
Qt
− n2

4T 2

)

6= λ̂Y
4

There is no reason that λ̂Y = 4λ̂Q meaning that the capital charge will
not be the same.
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Computation of the amortization functions

Exercise

In what follows, we consider a debt instrument, whose remaining maturity
is equal to m. We note t the current date and T = t + m the maturity
date.
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Computation of the amortization functions

Question 1

We consider a bullet repayment debt. Define its amortization function
S (t, u). Calculate the survival function S? (t, u) of the stock. Show that:

S? (t, u) = 1 {t ≤ u < t + m} ·
(

1− u − t

m

)
in the case where the new production is constant. Comment on this result.
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Computation of the amortization functions

By definition, we have:

S (t, u) = 1 {t ≤ u < t + m} =

{
1 if u ∈ [t, t + m[
0 otherwise

This means that the survival function is equal to one when u is between
the current date t and the maturity date T = t + m. When u reaches T ,
the outstanding amount is repaid, implying that S (t,T ) is equal to zero.
It follows that:

S? (t, u) =

∫ t

−∞NP (s)S (s, u) ds∫ t

−∞NP (s)S (s, t) ds

=

∫ t

−∞NP (s) · 1 {s ≤ u < s + m} ds∫ t

−∞NP (s) · 1 {s ≤ t < s + m} ds
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Computation of the amortization functions

For the numerator, we have:

1 {s ≤ u < s + m} = 1 ⇒ u < s + m

⇔ s > u −m

and: ∫ t

−∞
NP (s) · 1 {s ≤ u < s + m} ds =

∫ t

u−m
NP (s) ds
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For the denominator, we have:

1 {s ≤ t < s + m} = 1 ⇒ t < s + m

⇔ s > t −m

and: ∫ t

−∞
NP (s) · 1 {s ≤ t < s + m} ds =

∫ t

t−m
NP (s) ds

We deduce that:

S? (t, u) = 1 {t ≤ u < t + m} ·
∫ t

u−m NP (s) ds∫ t

t−m NP (s) ds
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In the case where the new production is a constant, we have NP (s) = c
and:

S? (t, u) = 1 {t ≤ u < t + m} ·
∫ t

u−m ds∫ t

t−m ds

= 1 {t ≤ u < t + m} ·
[
s
]t
u−m[

s
]t
t−m

= 1 {t ≤ u < t + m} ·
(
t − u + m

t − t + m

)
= 1 {t ≤ u < t + m} ·

(
1− u − t

m

)
The survival function S? (t, u) corresponds to the case of a linear
amortization.
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Computation of the amortization functions

Question 2

Same question if we consider a debt instrument, whose amortization rate
is constant.
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If the amortization is linear, we have:

S (t, u) = 1 {t ≤ u < t + m} ·
(

1− u − t

m

)
We deduce that:

S? (t, u) = 1 {t ≤ u < t + m} ·

∫ t

u−m
NP (s)

(
1− u − s

m

)
ds∫ t

t−m
NP (s)

(
1− t − s

m

)
ds

In the case where the new production is a constant, we obtain:

S? (t, u) = 1 {t ≤ u < t + m} ·

∫ t

u−m

(
1− u − s

m

)
ds∫ t

t−m

(
1− t − s

m

)
ds
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For the numerator, we have:∫ t

u−m

(
1− u − s

m

)
ds =

[
s − su

m
+

s2

2m

]t
u−m

=

(
t − tu

m
+

t2

2m

)
−(

u −m − u2 −mu

m
+

(u −m)2

2m

)

=

(
t − tu

m
+

t2

2m

)
−
(
u − m

2
− u2

2m

)
=

m2 + u2 + t2 + 2mt − 2mu − 2tu

2m

=
(m − u + t)2

2m
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For the denominator, we use the previous result and we set u = t:∫ t

t−m

(
1− t − s

m

)
ds =

(m − t + t)2

2m

=
m

2
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We deduce that:

S? (t, u) = 1 {t ≤ u < t + m} ·

(m − u + t)2

2m
m

2

= 1 {t ≤ u < t + m} · (m − u + t)2

m2

= 1 {t ≤ u < t + m} ·
(

1− u − t

m

)2

The survival function S? (t, u) corresponds to the case of a parabolic
amortization.
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Question 3

Same question if we assumea that the amortization function is exponential
with parameter λ.

aBy definition of the exponential amortization, we have m = +∞.
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If the amortization is exponential, we have:

S (t, u) = e−
∫ u
t
λ ds = e−λ(u−t)

It follows that:

S? (t, u) =

∫ t

−∞NP (s) e−λ(u−s) ds∫ t

−∞NP (s) e−λ(t−s) ds

In the case where the new production is a constant, we obtain:

S? (t, u) =

∫ t

−∞ e−λ(u−s) ds∫ t

−∞ e−λ(t−s) ds

=

[
λ−1e−λ(u−s)

]t
−∞[

λ−1e−λ(t−s)
]t
−∞

= e−λ(u−t)

= S (t, u)

The stock amortization function is equal to the flow amortization function.
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Computation of the amortization functions

Question 4

Find the expression of D? (t) when the new production is constant.
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Computation of the amortization functions

We recall that the liquidity duration is equal to:

D (t) =

∫ ∞
t

(u − t) f (t, u) du

where f (t, u) is the density function associated to the survival function
S (t, u). For the stock, we have:

D? (t) =

∫ ∞
t

(u − t) f ? (t, u) du

where f ? (t, u) is the density function associated to the survival function
S? (t, u):

f ? (t, u) =

∫ t

−∞NP (s) f (s, u) ds∫ t

−∞NP (s)S (s, t) ds
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Computation of the amortization functions

In the case where the new production is constant, we obtain:

D? (t) =

∫∞
t

(u − t)
∫ t

−∞ f (s, u) ds du∫ t

−∞ S (s, t) ds

Since we have
∫ t

−∞ f (s, u) ds = S (t, u), we deduce that:

D? (t) =

∫∞
t

(u − t)S (t, u) du∫ t

−∞ S (s, t) ds
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Computation of the amortization functions

Question 5

Calculate the durations D (t) and D? (t) for the three previous cases.
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Computation of the amortization functions

In the case of the bullet repayment debt, we have:

D (t) = m

and:

D? (t) =

∫ t+m

t
(u − t) du∫ t

t−m ds

=

[
1
2 (u − t)2

]t+m

t[
s
]t
t−m

=
m

2

Thierry Roncalli, Irinah Ratsimbazafy Financial Risk Management (Tutorial Class — Session 4) 65 / 87



Operational Risk
Asset Liability Management Risk

Computation of the amortization functions S (t, u) and S? (t, u)
Impact of prepayment on the amortization scheme of the CAM
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In the case of the linear amortization, we have:

f (t, u) = 1 {t ≤ u < t + m} · 1

m

and:

D (t) =

∫ t+m

t

(u − t)

m
du

=
1

m

[
1

2
(u − t)2

]t+m

t

=
m

2
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Computation of the amortization functions

For the stock duration, we deduce that

D? (t) =

∫ t+m

t

(u − t)

(
1− u − t

m

)
du∫ t

t−m

(
1− t − s

m

)
ds

=

∫ t+m

t

(
u − t − u2

m
+ 2

tu

m
− t2

m

)
du∫ t

t−m

(
1− t

m
+

s

m

)
ds

=

[
u2

2
− tu − u3

3m
+

tu2

m
− t2u

m

]t+m

t[
s − st

m
+

s2

2m

]t
t−m

Thierry Roncalli, Irinah Ratsimbazafy Financial Risk Management (Tutorial Class — Session 4) 67 / 87



Operational Risk
Asset Liability Management Risk

Computation of the amortization functions S (t, u) and S? (t, u)
Impact of prepayment on the amortization scheme of the CAM

Computation of the amortization functions

The numerator is equal to:

(∗) =

[
u2

2
− tu − u3

3m
+

tu2

m
− t2u

m

]t+m

t

=
1

6m

[
3mu2 − 6mtu − 2u3 + 6tu2 − 6t2u

]t+m

t

=
1

6m

(
m3 − 3mt2 − 2t3

)
+

1

6m

(
3mt2 + 2t3

)
=

m2

6
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The denominator is equal to:

(∗) =

[
s − st

m
+

s2

2m

]t
t−m

=
1

2m

[
s2 − 2s (t −m)

]t
t−m

=
1

2m

(
t2 − 2t (t −m)− (t −m)2 + 2 (t −m)2

)
=

1

2m

(
t2 − 2t2 + 2mt + t2 − 2mt + m2

)
=

m

2
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We deduce that:
D? (t) =

m

3
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Computation of the amortization functions

For the exponential amortization, we have:

f (t, u) = λe−λ(u−t)

and1:

D (t) =

∫ ∞
t

(u − t)λe−λ(u−t) du =

∫ ∞
0

vλe−λv dv =
1

λ

For the stock duration, we deduce that:

D? (t) =

∫∞
t

(u − t) e−λ(u−t) du∫ t

−∞ e−λ(t−s) ds
=

∫∞
0

ve−λv dv∫∞
0

e−λv dv
=

1

λ

We verify that D (t) = D? (t) since we have demonstrated that
S? (t, u) = S (t, u).

1We use the change of variable v = u − t.
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Computation of the amortization functions

Question 6

Calculate the corresponding dynamics dN (t).
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In the case of the bullet repayment debt, we have:

dN (t) = (NP (t)−NP (t −m)) dt
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Computation of the amortization functions

In the case of the linear amortization, we have:

f (s, t) =
1 {s ≤ t < s + m}

m

It follows that:∫ t

−∞
NP (s) f (s, t) ds =

1

m

∫ t

−∞
1 {s ≤ t < s + m} ·NP (s) ds

=
1

m

∫ t

t−m
NP (s) ds

We deduce that:

dN (t) =

(
NP (t)− 1

m

∫ t

t−m
NP (s) ds

)
dt
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Computation of the amortization functions

For the exponential amortization, we have:

f (s, t) = λe−λ(t−s)

and: ∫ t

−∞
NP (s) f (s, t) ds =

∫ t

−∞
NP (s)λe−λ(t−s) ds

= λ

∫ t

−∞
NP (s) e−λ(t−s) ds

= λN (t)

We deduce that:
dN (t) = (NP (t)− λN (t)) dt
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Impact of prepayment

Exercise

We recall that the outstanding balance of a CAM (constant amortization
mortgage) at time t is given by:

N (t) = 1 {t < m} · N0 ·
1− e−i(m−t)

1− e−im

where N0 is the notional, i is the interest rate and m is the maturity.
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Impact of prepayment

Question 1

Find the dynamics dN (t).
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Impact of prepayment

We deduce that the dynamics of N (t) is equal to:

dN (t) = 1 {t < m} · N0
−ie−i(m−t)

1− e−im
dt

= −ie−i(m−t)

(
1 {t < m} · N0

1

1− e−im

)
dt

= − ie−i(m−t)

1− e−i(m−t)
N (t) dt
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Impact of prepayment

Question 2

We note Ñ (t) the modified outstanding balance that takes into account
the prepayment risk. Let λp (t) be the prepayment rate at time t. Write

the dynamics of Ñ (t).
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Impact of prepayment

The prepayment rate has a negative impact on dN (t) because it reduces
the outstanding amount N (t):

dÑ (t) = − ie−i(m−t)

1− e−i(m−t)
Ñ (t) dt − λp (t) Ñ (t) dt
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Impact of prepayment

Question 3

Show that Ñ (t) = N (t)Sp (t) where Sp (t) is the prepayment-based
survival function.
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It follows that:

d lnÑ (t) = −
(

ie−i(m−t)

1− e−i(m−t)
+ λp (t)

)
dt

and:

lnÑ (t)− lnÑ (0) =

∫ t

0

−ie−i(m−s)

1− e−i(m−s)
ds −

∫ t

0

λp (s) ds

=

[
ln
(

1− e−i(m−s)
)]t

0

−
∫ t

0

λp (s) ds

= ln

(
1− e−i(m−t)

1− e−im

)
−
∫ t

0

λp (s) ds
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We deduce that:

Ñ (t) =

(
N0

1− e−i(m−t)

1− e−im

)
e−

∫ t
0
λp(s) ds

= N (t)Sp (t)

where Sp (t) is the survival function associated to the hazard rate λp (t).
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Question 4

Calculate the liquidity duration D̃ (t) associated to the outstanding balance
Ñ (t) when the hazard rate of prepayments is constant and equal to λp.
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We have:

Ñ (t, u) = 1 {t ≤ u < t + m} · N (t)
1− e−i(t+m−u)

1− e−im
e−λp(u−t)

this implies that:

S̃ (t, u) = 1 {t ≤ u < t + m} · e
−λp(u−t) − e−im+(i−λp)(u−t)

1− e−im

and:

f̃ (t, u) = 1 {t ≤ u < t + m} · λpe
−λp(u−t) + (i − λp) e−im+(i−λp)(u−t)

1− e−im
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It follows that:

D̃ (t) =
λp

1− e−im

∫ t+m

t

(u − t) e−λp(u−t) du +

(i − λp) e−im

1− e−im

∫ t+m

t

(u − t) e(i−λp)(u−t) du

=
λp

1− e−im

∫ m

0

ve−λpv dv +
(i − λp) e−im

1− e−im

∫ m

0

ve(i−λp)v dv

=
λp

1− e−im

(
me−λpm

−λp
− e−λpm − 1

λ2
p

)
+

(i − λp) e−im

1− e−im

(
me(i−λp)m

(i − λp)
− e(i−λp)m − 1

(i − λp)2

)

=
1

1− e−im

(
e−im − e−λpm

i − λp
+

1− e−λpm

λp

)
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because we have:∫ m

0

veαv dv =

[
veαv

α

]m
0

−
∫ m

0

eαv

α
dv

=

[
veαv

α

]m
0

−
[
eαv

α2

]m
0

=
meαm

α
− eαm − 1

α2
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