Financial Risk Management Tutorial Class — Session 5

Thierry Roncalli* (Professor)
Irinah Ratsimbazafy* (Instructor)

*University of Paris-Saclay

December 2020

Exercise

We consider the bivariate Pareto distribution:

$$\mathbf{F}(x_1, x_2) = 1 - \left(\frac{\theta_1 + x_1}{\theta_1}\right)^{-\alpha} - \left(\frac{\theta_2 + x_2}{\theta_2}\right)^{-\alpha} + \left(\frac{\theta_1 + x_1}{\theta_1} + \frac{\theta_2 + x_2}{\theta_2} - 1\right)^{-\alpha}$$

where $x_1 \ge 0$, $x_2 \ge 0$, $\theta_1 > 0$, $\theta_2 > 0$ and $\alpha > 0$.

Question 1

Show that the marginal functions of $\mathbf{F}(x_1, x_2)$ correspond to univariate Pareto distributions.

We have:

$$\mathbf{F}_{1}(x_{1}) = \Pr\{X_{1} \leq x_{1}\}$$

$$= \Pr\{X_{1} \leq x_{1}, X_{2} \leq \infty\}$$

$$= \mathbf{F}(x_{1}, \infty)$$

We deduce that:

$$\mathbf{F}_{1}(x_{1}) = 1 - \left(\frac{\theta_{1} + x_{1}}{\theta_{1}}\right)^{-\alpha} - \left(\frac{\theta_{2} + \infty}{\theta_{2}}\right)^{-\alpha} + \left(\frac{\theta_{1} + x_{1}}{\theta_{1}} + \frac{\theta_{2} + \infty}{\theta_{2}} - 1\right)^{-\alpha}$$

$$= 1 - \left(\frac{\theta_{1} + x_{1}}{\theta_{1}}\right)^{-\alpha}$$

We conclude that \mathbf{F}_1 (and \mathbf{F}_2) is a Pareto distribution.

Question 2

Find the copula function associated to the bivariate Pareto distribution.

We have:

$$C(u_1, u_2) = F(F_1^{-1}(u_1), F_2^{-1}(u_2))$$

It follows that:

$$1 - \left(\frac{\theta_1 + x_1}{\theta_1}\right)^{-\alpha} = u_1$$

$$\Leftrightarrow \left(\frac{\theta_1 + x_1}{\theta_1}\right)^{-\alpha} = 1 - u_1$$

$$\Leftrightarrow \frac{\theta_1 + x_1}{\theta_1} = (1 - u_1)^{-1/\alpha}$$

We deduce that:

$$\mathbf{C}(u_1, u_2) = 1 - (1 - u_1) - (1 - u_2) + \left((1 - u_1)^{-1/\alpha} + (1 - u_2)^{-1/\alpha} - 1 \right)^{-\alpha}$$

$$= u_1 + u_2 - 1 + \left((1 - u_1)^{-1/\alpha} + (1 - u_2)^{-1/\alpha} - 1 \right)^{-\alpha}$$

Question 3

Deduce the copula density function.

We have:

$$\frac{\partial \mathbf{C}(u_1, u_2)}{\partial u_1} = 1 - \alpha \left((1 - u_1)^{-1/\alpha} + (1 - u_2)^{-1/\alpha} - 1 \right)^{-\alpha - 1} \times \left(-\frac{1}{\alpha} \right) (1 - u_1)^{-1/\alpha - 1} \times (-1)$$

$$= 1 - \left((1 - u_1)^{-1/\alpha} + (1 - u_2)^{-1/\alpha} - 1 \right)^{-\alpha - 1} \times (1 - u_1)^{-1/\alpha - 1}$$

We deduce that the probability density function of the copula is:

$$c(u_{1}, u_{2}) = \frac{\partial^{2} \mathbf{C}(u_{1}, u_{2})}{\partial u_{1} \partial u_{2}}$$

$$= -(-\alpha - 1) \left((1 - u_{1})^{-1/\alpha} + (1 - u_{2})^{-1/\alpha} - 1 \right)^{-\alpha - 2} \times \left(-\frac{1}{\alpha} \right) (1 - u_{2})^{-1/\alpha - 1} \times (-1) \times (1 - u_{1})^{-1/\alpha - 1}$$

$$= \left(\frac{\alpha + 1}{\alpha} \right) \left((1 - u_{1})^{-1/\alpha} + (1 - u_{2})^{-1/\alpha} - 1 \right)^{-\alpha - 2} \times (1 - u_{1} - u_{2} + u_{1}u_{2})^{-1/\alpha - 1}$$

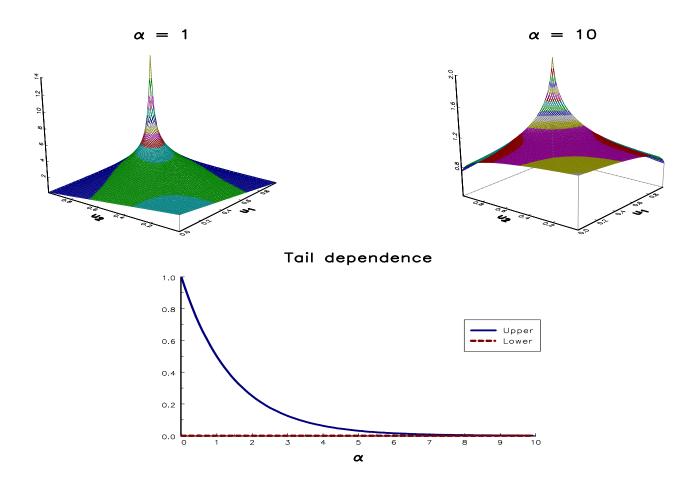
Remark

Another expression of $c(u_1, u_2)$ is:

$$c(u_1, u_2) = \left(\frac{\alpha + 1}{\alpha}\right) ((1 - u_1)(1 - u_2))^{1/\alpha} \times$$

$$\left((1 - u_1)^{1/\alpha} + (1 - u_2)^{1/\alpha} - (1 - u_1)^{1/\alpha}(1 - u_2)^{1/\alpha}\right)^{-\alpha - 2}$$

In this Figure, we have reported the density of the Pareto copula when α is equal to 1 and 10.



Question 4

Show that the bivariate Pareto copula function has no lower tail dependence, but an upper tail dependence.

We have:

$$\lambda^{-} = \lim_{u \to 0^{+}} \frac{\mathbf{C}(u, u)}{u}$$

$$= 2 \lim_{u \to 0^{+}} \frac{\partial \mathbf{C}(u, u)}{\partial u_{1}}$$

$$= 2 \lim_{u \to 0^{+}} 1 - \left((1 - u)^{-1/\alpha} + (1 - u)^{-1/\alpha} - 1 \right)^{-\alpha - 1} (1 - u)^{-1/\alpha - 1}$$

$$= 2 \lim_{u \to 0^{+}} (1 - 1)$$

$$= 0$$

We have:

$$\lambda^{+} = \lim_{u \to 1^{-}} \frac{1 - 2u + \mathbf{C}(u, u)}{1 - u}$$

$$= \lim_{u \to 1^{-}} \frac{\left((1 - u)^{-1/\alpha} + (1 - u)^{-1/\alpha} - 1 \right)^{-\alpha}}{1 - u}$$

$$= \lim_{u \to 1^{-}} \left(1 + 1 - (1 - u)^{1/\alpha} \right)^{-\alpha}$$

$$= 2^{-\alpha}$$

The tail dependence coefficients λ^- and λ^+ are given with respect to the parameter α in previous Figure. We deduce that the bivariate Pareto copula function has no lower tail dependence ($\lambda^-=0$), but an upper tail dependence ($\lambda^+=2^{-\alpha}$).

Question 5

Do you think that the bivariate Pareto copula family can reach the copula functions C^- , C^\perp and C^+ ? Justify your answer.

The bivariate Pareto copula family cannot reach C^- because λ^- is never equal to 1. We notice that:

$$\lim_{\alpha \to \infty} \lambda^+ = 0$$

and

$$\lim_{\alpha \to 0} \lambda^+ = 1$$

This implies that the bivariate Pareto copula may reach \mathbb{C}^{\perp} and \mathbb{C}^{+} for these two limit cases: $\alpha \to \infty$ and $\alpha \to 0$. In fact, $\alpha \to 0$ does not correspond to the copula \mathbb{C}^{+} because λ^{-} is always equal to 0.

Question 6

Let X_1 and X_2 be two Pareto-distributed random variables, whose parameters are (α_1, θ_1) and (α_2, θ_2) .

Question 6.a

Show that the linear correlation between X_1 and X_2 is equal to 1 if and only if the parameters α_1 and α_2 are equal.

We note $U_1 = \mathbf{F}_1(X_1)$ and $U_2 = \mathbf{F}_2(X_2)$. X_1 and X_2 are comonotonic if and only if:

$$U_2 = U_1$$

We deduce that:

$$1 - \left(\frac{\theta_2 + X_2}{\theta_2}\right)^{-\alpha_2} = 1 - \left(\frac{\theta_1 + X_1}{\theta_1}\right)^{-\alpha_1}$$

$$\Leftrightarrow \left(\frac{\theta_2 + X_2}{\theta_2}\right)^{-\alpha_2} = \left(\frac{\theta_1 + X_1}{\theta_1}\right)^{-\alpha_1}$$

$$\Leftrightarrow X_2 = \theta_2 \left(\left(\frac{\theta_1 + X_1}{\theta_1}\right)^{\alpha_1/\alpha_2} - 1\right)$$

We know that $\rho \langle X_1, X_2 \rangle = 1$ if and only if there is an increasing linear relationship between X_1 and X_2 . This implies that:

$$\frac{\alpha_1}{\alpha_2} = 1$$

Question 6.b

Show that the linear correlation between X_1 and X_2 can never reached the lower bound -1.

 X_1 and X_2 are countermonotonic if and only if:

$$U_2 = 1 - U_1$$

We deduce that:

$$\left(\frac{\theta_2 + X_2}{\theta_2}\right)^{-\alpha_2} = 1 - \left(\frac{\theta_1 + X_1}{\theta_1}\right)^{-\alpha_1}$$

$$\Leftrightarrow \left(\frac{\theta_2 + X_2}{\theta_2}\right)^{-\alpha_2} = 1 - \left(\frac{\theta_1 + X_1}{\theta_1}\right)^{-\alpha_1}$$

$$\Leftrightarrow X_2 = \theta_2 \left(\left(1 - \left(\frac{\theta_1 + X_1}{\theta_1}\right)^{-\alpha_1}\right)^{1/\alpha_2} - 1\right)$$

It is not possible to obtain a decreasing linear function between X_1 and X_2 . This implies that $\rho \langle X_1, X_2 \rangle > -1$.

Question 6.c

Build a new bivariate Pareto distribution by assuming that the marginal distributions are $\mathcal{P}(\alpha_1, \theta_1)$ and $\mathcal{P}(\alpha_2, \theta_2)$ and the dependence is a bivariate Pareto copula function with parameter α . What is the relevance of this approach for building bivariate Pareto distributions?

We have:

$$\mathbf{F}'(x_1, x_2) = \mathbf{C}(\mathbf{F}_1(x_1), \mathbf{F}_2(x_2))$$

$$= 1 - \left(\frac{\theta_1 + x_1}{\theta_1}\right)^{-\alpha_1} - \left(\frac{\theta_2 + x_2}{\theta_2}\right)^{-\alpha_2} + \left(\left(\frac{\theta_1 + x_1}{\theta_1}\right)^{\alpha_1/\alpha} + \left(\frac{\theta_2 + x_2}{\theta_2}\right)^{\alpha_2/\alpha} - 1\right)^{-\alpha}$$

The traditional bivariate Pareto distribution $\mathbf{F}(x_1, x_2)$ is a special case of $\mathbf{F}'(x_1, x_2)$ when:

$$\alpha_1 = \alpha_2 = \alpha$$

Using \mathbf{F}' instead of \mathbf{F} , we can control the tail dependence, but also the univariate tail index of the two margins.

Question 1

Give the mathematical definition of the copula functions C^- , C^\perp and C^+ . What is the probabilistic interpretation of these copulas?

We have:

$$\mathbf{C}^{-}(u_{1}, u_{2}) = \max(u_{1} + u_{2} - 1, 0)$$

 $\mathbf{C}^{\perp}(u_{1}, u_{2}) = u_{1}u_{2}$
 $\mathbf{C}^{+}(u_{1}, u_{2}) = \min(u_{1}, u_{2})$

Let X_1 and X_2 be two random variables. We have:

- (i) $\mathbf{C}\langle X_1, X_2 \rangle = \mathbf{C}^-$ if and only if there exists a non-increasing function f such that we have $X_2 = f(X_1)$;
- (ii) $\mathbf{C}\langle X_1,X_2\rangle=\mathbf{C}^{\perp}$ if and only if X_1 and X_2 are independent;
- (iii) $\mathbf{C}\langle X_1, X_2 \rangle = \mathbf{C}^+$ if and only if there exists a non-decreasing function f such that we have $X_2 = f(X_1)$.

Question 2

We note τ and LGD the default time and the loss given default of a counterparty. We assume that $\tau \sim \mathcal{E}(\lambda)$ and LGD $\sim \mathcal{U}_{[0,1]}$.

We note
$$U_1 = 1 - \exp(-\lambda \tau)$$
 and $U_2 = \text{LGD}$.

Question 2.a

Show that the dependence between au and LGD is maximum when the following equality holds:

$$LGD + e^{-\lambda \tau} - 1 = 0$$

The dependence between τ and LGD is maximum when we have $\mathbf{C} \langle \tau, \text{LGD} \rangle = \mathbf{C}^+$. Since we have $U_1 = U_2$, we conclude that:

$$LGD + e^{-\lambda \tau} - 1 = 0$$

Question 2.b

Show that the linear correlation $\rho(\tau, LGD)$ verifies the following inequality:

$$|\rho\langle \boldsymbol{\tau}, LGD\rangle| \leq \frac{\sqrt{3}}{2}$$

We know that:

$$\rho \langle \boldsymbol{\tau}, LGD \rangle \in [\rho_{\mathsf{min}} \langle \boldsymbol{\tau}, LGD \rangle, \rho_{\mathsf{max}} \langle \boldsymbol{\tau}, LGD \rangle]$$

where $\rho_{\min} \langle \boldsymbol{\tau}, LGD \rangle$ (resp. $\rho_{\max} \langle \boldsymbol{\tau}, LGD \rangle$) is the linear correlation corresponding to the copula \mathbf{C}^- (resp. \mathbf{C}^+). It comes that:

$$\mathbb{E}\left[oldsymbol{ au}
ight] = \sigma\left(oldsymbol{ au}
ight) = rac{1}{\lambda}$$

and:

$$\mathbb{E}[LGD] = \frac{1}{2}$$

$$\sigma(LGD) = \sqrt{\frac{1}{12}}$$

In the case $\mathbf{C} \langle \boldsymbol{\tau}, LGD \rangle = \mathbf{C}^-$, we have $U_1 = 1 - U_2$. It follows that $LGD = e^{-\lambda \boldsymbol{\tau}}$. We have:

$$\mathbb{E}\left[\tau \, \text{LGD}\right] = \mathbb{E}\left[\tau e^{-\lambda \tau}\right] = \int_{0}^{\infty} t e^{-\lambda t} \lambda e^{-\lambda t} \, dt$$

$$= \int_{0}^{\infty} t \lambda e^{-2\lambda t} \, dt$$

$$= \left[-\frac{t e^{-2\lambda t}}{2}\right]_{0}^{\infty} + \frac{1}{2} \int_{0}^{\infty} e^{-2\lambda t} \, dt$$

$$= 0 + \frac{1}{2} \left[-\frac{e^{-2\lambda t}}{2\lambda}\right]_{0}^{\infty}$$

$$= \frac{1}{4\lambda}$$

We deduce that:

$$ho_{\mathsf{min}} \left\langle oldsymbol{ au}, \mathrm{LGD} \right
angle = \left(\frac{1}{4\lambda} - \frac{1}{2\lambda} \right) \bigg/ \left(\frac{1}{\lambda} \sqrt{\frac{1}{12}} \right) = -\frac{\sqrt{3}}{2}$$

In the case $\mathbf{C} \langle \boldsymbol{\tau}, LGD \rangle = \mathbf{C}^+$, we have $LGD = 1 - e^{-\lambda \tau}$. We have:

$$\mathbb{E}\left[\tau \operatorname{LGD}\right] = \mathbb{E}\left[\tau \left(1 - e^{-\lambda \tau}\right)\right] = \int_{0}^{\infty} t \left(1 - e^{-\lambda t}\right) \lambda e^{-\lambda t} dt$$

$$= \int_{0}^{\infty} t \lambda e^{-\lambda t} dt - \int_{0}^{\infty} t \lambda e^{-2\lambda t} dt$$

$$= \left(\left[-te^{-\lambda t}\right]_{0}^{\infty} + \int_{0}^{\infty} e^{-\lambda t} dt\right) - \frac{1}{4\lambda}$$

$$= 0 + \left[-\frac{e^{-\lambda t}}{\lambda}\right]_{0}^{\infty} - \frac{1}{4\lambda}$$

$$= \frac{3}{4\lambda}$$

We deduce that:

$$ho_{\mathsf{max}} \langle \boldsymbol{ au}, \mathrm{LGD}
angle = \left(\frac{3}{4\lambda} - \frac{1}{2\lambda} \right) / \left(\frac{1}{\lambda} \sqrt{\frac{1}{12}} \right) = \frac{\sqrt{3}}{2}$$

We finally obtain the following result:

$$|\rho \langle \boldsymbol{\tau}, LGD \rangle| \leq \frac{\sqrt{3}}{2}$$

Question 2.c

Comment on these results.

We notice that $|\rho \langle \tau, LGD \rangle|$ is lower than 86.6%, implying that the bounds -1 and +1 can not be reached.

Question 3

We consider two exponential default times τ_1 and τ_2 with parameters λ_1 and λ_2 .

Question 3.a

We assume that the dependence function between τ_1 and τ_2 is \mathbf{C}^+ . Demonstrate that the following relation is true:

$$oldsymbol{ au}_1 = rac{\lambda_2}{\lambda_1} oldsymbol{ au}_2$$

If the copula function of (τ_1, τ_2) is the Fréchet upper bound copula, τ_1 and τ_2 are comonotone. We deduce that:

$$U_1 = U_2 \Longleftrightarrow 1 - e^{-\lambda_1 \boldsymbol{ au}_1} = 1 - e^{-\lambda_2 \boldsymbol{ au}_2}$$

and:

$$oldsymbol{ au}_1 = rac{\lambda_2}{\lambda_1} oldsymbol{ au}_2$$

Question 3.b

Show that there exists a function f such that $\tau_2 = f(\tau_2)$ when the dependence function is \mathbf{C}^- .

We have $U_1 = 1 - U_2$. It follows that $\mathbf{S}_1(\boldsymbol{\tau}_1) = 1 - \mathbf{S}_2(\boldsymbol{\tau}_2)$. We deduce that:

$$e^{-\lambda_1 \boldsymbol{\tau}_1} = 1 - e^{-\lambda_2 \boldsymbol{\tau}_2}$$

and:

$$oldsymbol{ au}_1 = rac{-\ln\left(1-e^{-\lambda_2oldsymbol{ au}_2}
ight)}{\lambda_1}$$

There exists then a function f such that $\tau_1 = f(\tau_2)$ with:

$$f(t) = \frac{-\ln\left(1 - e^{-\lambda_2 t}\right)}{\lambda_1}$$

Question 3.c

Show that the lower and upper bounds of the linear correlation satisfy the following relationship:

$$-1 < \rho \langle \boldsymbol{\tau}_1, \boldsymbol{\tau}_2 \rangle \leq 1$$

Using Question 2(b), we known that $\rho \in [\rho_{\min}, \rho_{\max}]$ where ρ_{\min} and ρ_{\max} are the correlations of (τ_1, τ_2) when the copula function is respectively \mathbf{C}^- and \mathbf{C}^+ . We also know that $\rho = 1$ (resp. $\rho = -1$) if there exists a linear and increasing (resp. decreasing) function f such that $\tau_1 = f(\tau_2)$. When the copula is \mathbf{C}^+ , we have $f(t) = \frac{\lambda_2}{\lambda_1}t$ and $f'(t) = \frac{\lambda_2}{\lambda_1} > 0$. As it is a linear and increasing function, we deduce that $\rho_{\max} = 1$. When the copula is \mathbf{C}^- , we have:

$$f(t) = \frac{-\ln\left(1 - e^{-\lambda_2 t}\right)}{\lambda_1}$$

and:

$$f'\left(t\right) = -\frac{\lambda_2 e^{-\lambda_2 t} \ln\left(1 - e^{-\lambda_2 t}\right)}{\lambda_1 \left(1 - e^{-\lambda_2 t}\right)} < 0$$

The function f(t) is decreasing, but it is not linear. We deduce that $\rho_{\min} \neq -1$ and:

$$-1 < \rho \le 1$$

Question 3.d

In the more general case, show that the linear correlation of a random vector (X_1, X_2) can not be equal to -1 if the support of the random variables X_1 and X_2 is $[0, +\infty]$.

When the copula is \mathbb{C}^- , we know that there exists a decreasing function f such that $X_2 = f(X_1)$. We also know that the linear correlation reaches the lower bound -1 if the function f is linear:

$$X_2 = a + bX_1$$

This implies that b < 0. When X_1 takes the value $+\infty$, we obtain:

$$X_2 = a + b \times \infty$$

As the lower bound of X_2 is equal to zero 0, we deduce that $a=+\infty$. This means that the function f(x)=a+bx does not exist. We conclude that the lower bound $\rho=-1$ can not be reached.

Question 4

We assume that (X_1, X_2) is a Gaussian random vector where $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$, $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ and ρ is the linear correlation between X_1 and X_2 . We note $\theta = (\mu_1, \sigma_1, \mu_2, \sigma_2, \rho)$ the set of parameters.

Question 4.a

Find the probability distribution of $X_1 + X_2$.

 $X_1 + X_2$ is a Gaussian random variable because it is a linear combination of the Gaussian random vector (X_1, X_2) . We have:

$$\mathbb{E}[X_1 + X_2] = \mu_1 + \mu_2$$

and:

$$\operatorname{var}(X_1 + X_2) = \sigma_1^2 + 2\rho\sigma_1\sigma_2 + \sigma_2^2$$

We deduce that:

$$X_1 + X_2 \sim \mathcal{N} \left(\mu_1 + \mu_2, \sigma_1^2 + 2\rho \sigma_1 \sigma_2 + \sigma_2^2 \right)$$

Question 4.b

Then show that the covariance between $Y_1 = e^{X_1}$ and $Y_2 = e^{X_2}$ is equal to:

$$\operatorname{cov}(Y_1, Y_2) = e^{\mu_1 + \frac{1}{2}\sigma_1^2} e^{\mu_2 + \frac{1}{2}\sigma_2^2} (e^{\rho\sigma_1\sigma_2} - 1)$$

We have:

$$\operatorname{cov}(Y_1, Y_2) = \mathbb{E}[Y_1 Y_2] - \mathbb{E}[Y_2] \mathbb{E}[Y_2]$$
$$= \mathbb{E}[e^{X_1 + X_2}] - \mathbb{E}[Y_2] \mathbb{E}[Y_2]$$

We know that $e^{X_1+X_2}$ is a lognormal random variable. We deduce that:

$$\mathbb{E}\left[e^{X_1 + X_2}\right] = \exp\left(\mathbb{E}\left[X_1 + X_2\right] + \frac{1}{2}\operatorname{var}\left(X_1 + X_2\right)\right)$$

$$= \exp\left(\mu_1 + \mu_2 + \frac{1}{2}\left(\sigma_1^2 + 2\rho\sigma_1\sigma_2 + \sigma_2^2\right)\right)$$

$$= e^{\mu_1 + \frac{1}{2}\sigma_1^2}e^{\mu_2 + \frac{1}{2}\sigma_2^2}e^{\rho\sigma_1\sigma_2}$$

We finally obtain:

$$\operatorname{cov}(Y_1, Y_2) = e^{\mu_1 + \frac{1}{2}\sigma_1^2} e^{\mu_2 + \frac{1}{2}\sigma_2^2} (e^{\rho\sigma_1\sigma_2} - 1)$$

Question 4.c

Deduce the correlation between Y_1 and Y_2 .

We have:

$$\rho \left\langle Y_{1}, Y_{2} \right\rangle = \frac{e^{\mu_{1} + \frac{1}{2}\sigma_{1}^{2}} e^{\mu_{2} + \frac{1}{2}\sigma_{2}^{2}} \left(e^{\rho\sigma_{1}\sigma_{2}} - 1 \right)}{\sqrt{e^{2\mu_{1} + \sigma_{1}^{2}} \left(e^{\sigma_{1}^{2}} - 1 \right)} \sqrt{e^{2\mu_{2} + \sigma_{2}^{2}} \left(e^{\sigma_{2}^{2}} - 1 \right)}}$$

$$= \frac{e^{\rho\sigma_{1}\sigma_{2}} - 1}{\sqrt{e^{\sigma_{1}^{2}} - 1} \sqrt{e^{\sigma_{2}^{2}} - 1}}$$

Question 4.d

For which values of θ does the equality $\rho \langle Y_1, Y_2 \rangle = +1$ hold? Same question when $\rho \langle Y_1, Y_2 \rangle = -1$.

 $\rho \langle Y_1, Y_2 \rangle$ is an increasing function with respect to ρ . We deduce that:

$$ho \left< Y_1, Y_2 \right> = 1 \Longleftrightarrow
ho = 1 \text{ and } \sigma_1 = \sigma_2$$

The lower bound of $\rho \langle Y_1, Y_2 \rangle$ is reached if ρ is equal to -1. In this case, we have:

$$ho \langle Y_1, Y_2 \rangle = \frac{e^{-\sigma_1 \sigma_2} - 1}{\sqrt{e^{\sigma_1^2} - 1} \sqrt{e^{\sigma_2^2} - 1}} > -1$$

It follows that $\rho \langle Y_1, Y_2 \rangle \neq -1$.

Question 4.e

We consider the bivariate Black-Scholes model:

$$\begin{cases} dS_1(t) = \mu_1 S_1(t) dt + \sigma_1 S_1(t) dW_1(t) \\ dS_2(t) = \mu_2 S_2(t) dt + \sigma_2 S_2(t) dW_2(t) \end{cases}$$

with $\mathbb{E}\left[W_1\left(t\right)W_2\left(t\right)\right] = \rho t$. Deduce the linear correlation between $S_1\left(t\right)$ and $S_2\left(t\right)$. Find the limit case $\lim_{t\to\infty}\rho\left\langle S_1\left(t\right),S_2\left(t\right)\right\rangle$.

It is obvious that:

$$ho\left\langle S_{1}\left(t
ight),S_{2}\left(t
ight)
ight
angle =rac{\mathrm{e}^{
ho\sigma_{1}\sigma_{2}t}-1}{\sqrt{\mathrm{e}^{\sigma_{1}^{2}t}-1}\sqrt{\mathrm{e}^{\sigma_{2}^{2}t}-1}}$$

In the case $\sigma_1 = \sigma_2$ and $\rho = 1$, we have $\rho \langle S_1(t), S_2(t) \rangle = 1$. Otherwise, we obtain:

$$\lim_{t\to\infty}\rho\left\langle S_{1}\left(t\right),S_{2}\left(t\right)\right\rangle =0$$

Question 4.f

Comment on these results.

In the case of lognormal random variables, the linear correlation does not necessarily range between -1 and +1.

Question 1

What is an extreme value (EV) copula **C**?

An extreme value copula **C** satisfies the following relationship:

$$\mathbf{C}\left(u_{1}^{t},u_{2}^{t}\right)=\mathbf{C}^{t}\left(u_{1},u_{2}\right)$$

for all t > 0.

Question 2

Show that C^{\perp} and C^{+} are EV copulas. Why C^{-} can not be an EV copula?

The product copula C^{\perp} is an EV copula because we have:

$$\mathbf{C}^{\perp} \left(u_1^t, u_2^t \right) = u_1^t u_2^t$$

$$= \left(u_1 u_2 \right)^t$$

$$= \left[\mathbf{C}^{\perp} \left(u_1, u_2 \right) \right]^t$$

For the copula C^+ , we obtain:

$$\mathbf{C}^{+} \begin{pmatrix} u_{1}^{t}, u_{2}^{t} \end{pmatrix} = \min \begin{pmatrix} u_{1}^{t}, u_{2}^{t} \end{pmatrix}$$

$$= \begin{cases} u_{1}^{t} & \text{if } u_{1} \leq u_{2} \\ u_{2}^{t} & \text{otherwise} \end{cases}$$

$$= \left(\min (u_{1}, u_{2})\right)^{t}$$

$$= \left[\mathbf{C}^{+} (u_{1}, u_{2})\right]^{t}$$

However, the EV property does not hold for the Fréchet lower bound copula \mathbf{C}^- :

$$\mathbf{C}^{-}\left(u_{1}^{t},u_{2}^{t}\right)=\max\left(u_{1}^{t}+u_{2}^{t}-1,0
ight)
eq\max\left(u_{1}+u_{2}-1,0
ight)^{t}$$

Indeed, we have $C^-(0.5, 0.8) = max(0.5 + 0.8 - 1, 0) = 0.3$ and:

$$\mathbf{C}^{-}(0.5^{2}, 0.8^{2}) = \max(0.25 + 0.64 - 1, 0)$$

$$= 0$$

$$\neq 0.3^{2}$$

Question 3

We define the Gumbel-Hougaard copula as follows:

$$\mathbf{C}(u_1, u_2) = \exp\left(-\left[\left(-\ln u_1\right)^{\theta} + \left(-\ln u_2\right)^{\theta}\right]^{1/\theta}\right)$$

with $\theta \geq 1$. Verify that it is an EV copula.

We have:

$$\mathbf{C} \left(u_1^t, u_2^t \right) = \exp \left(-\left[\left(-\ln u_1^t \right)^{\theta} + \left(-\ln u_2^t \right)^{\theta} \right]^{1/\theta} \right)$$

$$= \exp \left(-\left[\left(-t\ln u_1 \right)^{\theta} + \left(-t\ln u_2 \right)^{\theta} \right]^{1/\theta} \right)$$

$$= \exp \left(-t\left[\left(-\ln u_1 \right)^{\theta} + \left(-\ln u_2 \right)^{\theta} \right]^{1/\theta} \right)$$

$$= \left(e^{-\left[\left(-\ln u_1 \right)^{\theta} + \left(-\ln u_2 \right)^{\theta} \right]^{1/\theta}} \right)^t$$

$$= \mathbf{C}^t \left(u_1, u_2 \right)$$

Question 4

What is the definition of the upper tail dependence λ ? What is its usefulness in multivariate extreme value theory?

The upper tail dependence λ is defined as follows:

$$\lambda = \lim_{u \to 1^+} \frac{1 - 2u + \mathbf{C}(u_1, u_2)}{1 - u}$$

It measures the probability to have an extreme in one direction knowing that we have already an extreme in the other direction. If λ is equal to 0, extremes are independent and the EV copula is the product copula \mathbf{C}^{\perp} . If λ is equal to 1, extremes are comonotonic and the EV copula is the Fréchet upper bound copula \mathbf{C}^{+} . Moreover, the upper tail dependence of the copula between the random variables is equal to the upper tail dependence of the copula between the extremes.

Question 5

Let f(x) and g(x) be two functions such that $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$. If $g'(x_0) \neq 0$, L'Hospital's rule states that:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Deduce that the upper tail dependence λ of the Gumbel-Hougaard copula is $2-2^{1/\theta}$. What is the correlation of two extremes when $\theta=1$?

Using L'Hospital's rule, we have:

$$\lambda = \lim_{u \to 1^{+}} \frac{1 - 2u + e^{-\left[(-\ln u)^{\theta} + (-\ln u)^{\theta}\right]^{1/\theta}}}{1 - u}$$

$$= \lim_{u \to 1^{+}} \frac{1 - 2u + e^{-\left[2(-\ln u)^{\theta}\right]^{1/\theta}}}{1 - u}$$

$$= \lim_{u \to 1^{+}} \frac{1 - 2u + u^{2^{1/\theta}}}{1 - u}$$

$$= \lim_{u \to 1^{+}} \frac{0 - 2 + 2^{1/\theta}u^{2^{1/\theta} - 1}}{-1}$$

$$= \lim_{u \to 1^{+}} 2 - 2^{1/\theta}u^{2^{1/\theta} - 1}$$

$$= 2 - 2^{1/\theta}$$

If θ is equal to 1, we obtain $\lambda=0$. It comes that the EV copula is the product copula. Extremes are then not correlated. This result is not surprising because the Gumbel-Houggard copula is equal to the product copula when $\theta=1$:

$$e^{-\left[\left(-\ln u_1\right)^1+\left(-\ln u_2\right)^1\right]^1}=u_1u_2=\mathbf{C}^{\perp}\left(u_1,u_2\right)$$

Question 6

We define the Marshall-Olkin copula as follows:

$$\mathbf{C}(u_1, u_2) = u_1^{1-\theta_1} u_2^{1-\theta_2} \min \left(u_1^{\theta_1}, u_2^{\theta_2} \right)$$

with $\{\theta_1, \theta_2\} \in [0, 1]^2$.

Question 6.a

Verify that it is an EV copula.

We have:

$$\mathbf{C} \left(u_1^t, u_2^t \right) = u_1^{t(1-\theta_1)} u_2^{t(1-\theta_2)} \min \left(u_1^{t\theta_1}, u_2^{t\theta_2} \right)$$

$$= \left(u_1^{1-\theta_1} \right)^t \left(u_2^{1-\theta_2} \right)^t \left(\min \left(u_1^{\theta_1}, u_2^{\theta_2} \right) \right)^t$$

$$= \left(u_1^{1-\theta_1} u_2^{1-\theta_2} \min \left(u_1^{\theta_1}, u_2^{\theta_2} \right) \right)^t$$

$$= \mathbf{C}^t \left(u_1, u_2 \right)$$

Question 6.b

Find the upper tail dependence λ of the Marshall-Olkin copula.

If $\theta_1 > \theta_2$, we obtain:

$$\lambda = \lim_{u \to 1^{+}} \frac{1 - 2u + u^{1 - \theta_{1}} u^{1 - \theta_{2}} \min \left(u^{\theta_{1}}, u^{\theta_{2}}\right)}{1 - u}$$

$$= \lim_{u \to 1^{+}} \frac{1 - 2u + u^{1 - \theta_{1}} u^{1 - \theta_{2}} u^{\theta_{1}}}{1 - u}$$

$$= \lim_{u \to 1^{+}} \frac{1 - 2u + u^{2 - \theta_{2}}}{1 - u}$$

$$= \lim_{u \to 1^{+}} \frac{0 - 2 + (2 - \theta_{2}) u^{1 - \theta_{2}}}{-1}$$

$$= \lim_{u \to 1^{+}} 2 - 2u^{1 - \theta_{2}} + \theta_{2} u^{1 - \theta_{2}}$$

$$= \theta_{2}$$

If $\theta_2 > \theta_1$, we have $\lambda = \theta_1$. We deduce that the upper tail dependence of the Marshall-Olkin copula is min (θ_1, θ_2) .

Question 6.c

What is the correlation of two extremes when min $(\theta_1, \theta_2) = 0$?

If $\theta_1 = 0$ or $\theta_2 = 0$, we obtain $\lambda = 0$. It comes that the copula of the extremes is the product copula. Extremes are then not correlated.

Question 6.d

In which case are two extremes perfectly correlated?

Two extremes are perfectly correlated when we have $\theta_1 = \theta_2 = 1$. In this case, we obtain:

$$\mathbf{C}(u_1, u_2) = \min(u_1, u_2) = \mathbf{C}^+(u_1, u_2)$$

Question 1

We consider the following distributions of probability:

Distribution		F (x)
Exponential	$\mathcal{E}(\lambda)$	$1 - e^{-\lambda x}$
Uniform	$\mathcal{U}_{[0,1]}$	X
Pareto	$\mathcal{P}\left(lpha, heta ight)$	$1 - \left(\frac{\theta + x}{\theta}\right)^{-\alpha}$

Question 1

For each distribution, we give the normalization parameters a_n and b_n of the Fisher-Tippet theorem and the corresponding limit distribution distribution $\mathbf{G}(x)$:

Distribution	a _n	b_n	$\mathbf{G}\left(x\right)$
Exponential	λ^{-1}	$\lambda^{-1} \ln n$	$\Lambda(x) = e^{-e^{-x}}$
Uniform	n^{-1}	$1 - n^{-1}$	$\Psi_1(x-1)=e^{x-1}$
Pareto	$ heta lpha^{-1} \mathit{n}^{1/lpha}$	$\theta n^{1/\alpha} - \theta$	$\mathbf{\Phi}_{\alpha}\left(1+\frac{x}{\alpha}\right)=e^{-\left(1+\frac{x}{\alpha}\right)^{-\alpha}}$

We note $G(x_1, x_2)$ the asymptotic distribution of the bivariate random vector $(X_{1,n:n}, X_{2,n:n})$ where $X_{1,i}$ (resp. $X_{2,i}$) are *iid* random variables.

Let (X_{1}, X_{2}) be a bivariate random variable whose probability distribution is:

$$F(x_1, x_2) = C_{\langle X_1, X_2 \rangle} (F_1(x_1), F_2(x_2))$$

We know that the corresponding EV probability distribution is:

$$\mathbf{G}\left(x_{1},x_{2}\right)=\mathbf{C}_{\left\langle X_{1},X_{2}\right\rangle }^{\star}\left(\mathbf{G}_{1}\left(x_{1}\right),\mathbf{G}_{2}\left(x_{2}\right)\right)$$

where G_1 and G_2 are the two univariate EV probability distributions and $C^{\star}_{\langle X_1, X_2 \rangle}$ is the EV copula associated to $C_{\langle X_1, X_2 \rangle}$.

Question 1.a

What is the expression of $\mathbf{G}(x_1, x_2)$ when $X_{1,i}$ and $X_{2,i}$ are independent, $X_{1,i} \sim \mathcal{E}(\lambda)$ and $X_{2,i} \sim \mathcal{U}_{[0,1]}$?

We deduce that:

$$\mathbf{G}(x_{1}, x_{2}) = \mathbf{C}^{\perp}(\mathbf{G}_{1}(x_{1}), \mathbf{G}_{2}(x_{2}))$$

$$= \mathbf{\Lambda}(x_{1}) \mathbf{\Psi}_{1}(x_{2} - 1)$$

$$= \exp(-e^{-x_{1}} + x_{2} - 1)$$

Question 1.b

Same question when $X_{1,i} \sim \mathcal{E}(\lambda)$ and $X_{2,i} \sim \mathcal{P}(\theta, \alpha)$.

We have:

$$\mathbf{G}(x_1, x_2) = \mathbf{\Lambda}(x_1) \mathbf{\Phi}_{\alpha} \left(1 + \frac{x_2}{\alpha} \right)$$
$$= \exp \left(-e^{-x_1} - \left(1 + \frac{x_2}{\alpha} \right)^{-\alpha} \right)$$

Question 1.c

Same question when $X_{1,i} \sim \mathcal{U}_{[0,1]}$ and $X_{2,i} \sim \mathcal{P}(\theta, \alpha)$.

We have:

$$\mathbf{G}(x_1, x_2) = \mathbf{\Psi}_1(x_1 - 1) \mathbf{\Phi}_{\alpha} \left(1 + \frac{x_2}{\alpha} \right)$$
$$= \exp \left(x_1 - 1 - \left(1 + \frac{x_2}{\alpha} \right)^{-\alpha} \right)$$

Question 2

What becomes the previous results when the dependence function between $X_{1,i}$ and $X_{2,i}$ is the Normal copula with parameter $\rho < 1$?

We know that the upper tail dependence is equal to zero for the Normal copula when $\rho < 1$. We deduce that the EV copula is the product copula. We then obtain the same results as previously.

Question 3

Same question when the parameter of the Normal copula is equal to one.

When the parameter ρ is equal to 1, the Normal copula is the Fréchet upper bound copula \mathbf{C}^+ , which is an EV copula. We deduce the following results:

$$\mathbf{G}(x_1, x_2) = \min(\mathbf{\Lambda}(x_1), \mathbf{\Psi}_1(x_2 - 1))$$

$$= \min(\exp(-e^{-x_1}), \exp(x_2 - 1))$$
(a)

$$\mathbf{G}(x_1, x_2) = \min\left(\mathbf{\Lambda}(x_1), \mathbf{\Phi}_{\alpha}\left(1 + \frac{x_2}{\alpha}\right)\right)$$

$$= \min\left(\exp\left(-e^{-x_1}\right), \exp\left(-\left(1 + \frac{x_2}{\alpha}\right)^{-\alpha}\right)\right)$$
 (b)

$$\mathbf{G}(x_1, x_2) = \min\left(\mathbf{\Psi}_1(x_1 - 1), \mathbf{\Phi}_{\alpha}\left(1 + \frac{x_2}{\alpha}\right)\right)$$

$$= \min\left(\exp(x_2 - 1), \exp\left(-\left(1 + \frac{x_2}{\alpha}\right)^{-\alpha}\right)\right) \qquad (c)$$

Question 4

Find the expression of $G(x_1, x_2)$ when the dependence function is the Gumbel-Hougaard copula.

In the previous exercise, we have shown that the Gumbel-Houggard copula is an EV copula.

We deduce that:

$$\mathbf{G}(x_1, x_2) = e^{-\left[(-\ln \mathbf{\Lambda}(x_1))^{\theta} + (-\ln \mathbf{\Psi}_1(x_2 - 1))^{\theta}\right]^{1/\theta}}$$

$$= \exp\left(-\left[e^{-\theta x_1} + (1 - x_2)^{\theta}\right]^{1/\theta}\right)$$
 (a)

$$\mathbf{G}(x_1, x_2) = e^{-\left[\left(-\ln \mathbf{\Lambda}(x_1)\right)^{\theta} + \left(-\ln \mathbf{\Phi}_{\alpha}\left(1 + \frac{x_2}{\alpha}\right)\right)^{\theta}\right]^{1/\theta}}$$

$$= \exp\left(-\left[e^{-\theta x_1} + \left(1 + \frac{x_2}{\alpha}\right)^{-\alpha \theta}\right]^{1/\theta}\right)$$
 (b)

$$\mathbf{G}(x_1, x_2) = e^{-\left[\left(-\ln \Psi_1(x_1 - 1)\right)^{\theta} + \left(-\ln \Phi_{\alpha}\left(1 + \frac{x_2}{\alpha}\right)\right)^{\theta}\right]^{1/\theta}}$$

$$= \exp\left(-\left[\left(1 - x_1\right)^{\theta} + \left(1 + \frac{x_2}{\alpha}\right)^{-\alpha\theta}\right]^{1/\theta}\right)$$
 (c)

Exercise

Let $X = (X_1, X_2)$ be a standard Gaussian vector with correlation ρ . We note $U_1 = \Phi(X_1)$ and $U_2 = \Phi(X_2)$.

Question 1

We note Σ the matrix defined as follows:

$$\Sigma = \left(egin{array}{cc} 1 &
ho \
ho & 1 \end{array}
ight)$$

Calculate the Cholesky decomposition of Σ . Deduce an algorithm to simulate X.

P is a lower triangular matrix such that we have $\Sigma = PP^{\top}$. We know that:

$$P = \left(\begin{array}{cc} 1 & 0 \\ \rho & \sqrt{1 - \rho^2} \end{array}\right)$$

We verify that:

$$PP^{\top} = \begin{pmatrix} 1 & 0 \\ \rho & \sqrt{1-\rho^2} \end{pmatrix} \begin{pmatrix} 1 & \rho \\ 0 & \sqrt{1-\rho^2} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

We deduce that:

$$\left(\begin{array}{c}X_1\\X_2\end{array}\right) = \left(\begin{array}{cc}1&0\\\rho&\sqrt{1-\rho^2}\end{array}\right) \left(\begin{array}{c}N_1\\N_2\end{array}\right)$$

where N_1 and N_2 are two independent standardized Gaussian random variables. Let n_1 and n_2 be two independent random variates, whose probability distribution is $\mathcal{N}(0,1)$. Using the Cholesky decomposition, we deduce that can simulate X in the following way:

$$\begin{cases} x_1 \leftarrow n_1 \\ x_2 \leftarrow \rho n_1 + \sqrt{1 - \rho^2} n_2 \end{cases}$$

Question 2

Show that the copula of (X_1, X_2) is the same that the copula of the random vector (U_1, U_2) .

We have

$$\mathbf{C} \langle X_1, X_2 \rangle = \mathbf{C} \langle \Phi (X_1), \Phi (X_2) \rangle
= \mathbf{C} \langle U_1, U_2 \rangle$$

because the function $\Phi(x)$ is non-decreasing. The copula of $U=(U_1,U_2)$ is then the copula of $X=(X_1,X_2)$.

Question 3

Deduce an algorithm to simulate the Normal copula with parameter ρ .

We deduce that we can simulate U with the following algorithm:

$$\begin{cases} u_1 \leftarrow \Phi(x_1) = \Phi(n_1) \\ u_2 \leftarrow \Phi(x_2) = \Phi(\rho n_1 + \sqrt{1 - \rho^2} n_2) \end{cases}$$

Question 4

Calculate the conditional distribution of X_2 knowing that $X_1 = x$. Then show that:

$$\Phi_2(x_1, x_2; \rho) = \int_{-\infty}^{x_1} \Phi\left(\frac{x_2 - \rho x}{\sqrt{1 - \rho^2}}\right) \phi(x) dx$$

Let X_3 be a Gaussian random variable, which is independent from X_1 and X_2 . Using the Cholesky decomposition, we know that:

$$X_2 = \rho X_1 + \sqrt{1 - \rho^2} X_3$$

It follows that:

$$\Pr\left\{X_{2} \leq x_{2} \middle| X_{1} = x\right\} = \Pr\left\{\rho X_{1} + \sqrt{1 - \rho^{2}} X_{3} \leq x_{2} \middle| X_{1} = x\right\}$$

$$= \Pr\left\{X_{3} \leq \frac{x_{2} - \rho x}{\sqrt{1 - \rho^{2}}}\right\}$$

$$= \Phi\left(\frac{x_{2} - \rho x}{\sqrt{1 - \rho^{2}}}\right)$$

Then we deduce that:

$$\Phi_{2}(x_{1}, x_{2}; \rho) = \Pr \{X_{1} \leq x_{1}, X_{2} \leq x_{2}\}
= \Pr \left\{X_{1} \leq x_{1}, X_{3} \leq \frac{x_{2} - \rho X_{1}}{\sqrt{1 - \rho^{2}}}\right\}
= \mathbb{E} \left[\Pr \left\{X_{1} \leq x_{1}, X_{3} \leq \frac{x_{2} - \rho X_{1}}{\sqrt{1 - \rho^{2}}} \middle| X_{1}\right\}\right]
= \int_{-\infty}^{x_{1}} \Phi \left(\frac{x_{2} - \rho x}{\sqrt{1 - \rho^{2}}}\right) \phi(x) dx$$

Question 5

Deduce an expression of the Normal copula.

Using the relationships $u_1 = \Phi(x_1)$, $u_2 = \Phi(x_2)$ and $\Phi_2(x_1, x_2; \rho) = \mathbf{C}(\Phi(x_1), \Phi(x_2); \rho)$, we obtain:

$$\mathbf{C}(u_{1}, u_{2}; \rho) = \int_{-\infty}^{\Phi^{-1}(u_{1})} \Phi\left(\frac{\Phi^{-1}(u_{2}) - \rho x}{\sqrt{1 - \rho^{2}}}\right) \phi(x) dx$$

$$= \int_{0}^{u_{1}} \Phi\left(\frac{\Phi^{-1}(u_{2}) - \rho \Phi^{-1}(u)}{\sqrt{1 - \rho^{2}}}\right) du$$

Question 6

Calculate the conditional copula function $C_{2|1}$. Deduce an algorithm to simulate the Normal copula with parameter ρ .

We have:

$$\mathbf{C}_{2|1}(u_2 \mid u_1) = \partial_{u_1} \mathbf{C}(u_1, u_2)$$

$$= \Phi \left(\frac{\Phi^{-1}(u_2) - \rho \Phi^{-1}(u_1)}{\sqrt{1 - \rho^2}} \right)$$

Let v_1 and v_2 be two independent uniform random variates. The simulation algorithm corresponds to the following steps:

$$\begin{cases} u_1 = v_1 \\ \mathbf{C}_{2|1}(u_1, u_2) = v_2 \end{cases}$$

$$\begin{cases} u_1 \leftarrow v_1 \\ u_2 \leftarrow \Phi\left(\rho\Phi^{-1}\left(v_1\right) + \sqrt{1-\rho^2}\Phi^{-1}\left(v_2\right)\right) \end{cases}$$

Question 7

Show that this algorithm is equivalent to the Cholesky algorithm found in Question 3.

We obtain the same algorithm, because we have the following correspondence:

$$\begin{cases} v_1 = \Phi(n_1) \\ v_2 = \Phi(n_2) \end{cases}$$

The algorithm described in Question 6 is then a special case of the Cholesky algorithm if we take $n_1 = \Phi^{-1}(v_1)$ and $n_2 = \Phi^{-1}(v_2)$. Whereas n_1 and n_2 are directly simulated in the Cholesky algorithm with a Gaussian random generator, they are simulated using the inverse transform in the conditional distribution method

Question 1

We note a_n and b_n the normalization constraints and **G** the limit distribution of the Fisher-Tippet theorem.

We recall that:

$$\Pr\left\{\frac{X_{n:n} - b_n}{a_n} \le x\right\} = \Pr\left\{X_{n:n} \le a_n x + b_n\right\}$$
$$= \mathbf{F}^n \left(a_n x + b_n\right)$$

and:

$$\mathbf{G}(x) = \lim_{n \to \infty} \mathbf{F}^n (a_n x + b_n)$$

Question 1.a

Find the limit distribution **G** when $X \sim \mathcal{E}(\lambda)$, $a_n = \lambda^{-1}$ and $b_n = \lambda^{-1} \ln n$.

We have:

$$\mathbf{F}^{n}\left(a_{n}x+b_{n}\right) = \left(1-e^{-\lambda\left(\lambda^{-1}x+\lambda^{-1}\ln n\right)}\right)^{n}$$

$$= \left(1-\frac{1}{n}e^{-x}\right)^{n}$$

$$\mathbf{G}(x) = \lim_{n \to \infty} \left(1 - \frac{1}{n} e^{-x} \right)^n = e^{-e^{-x}} = \mathbf{\Lambda}(x)$$

Question 1.b

Same question when $X \sim \mathcal{U}_{[0,1]}$, $a_n = n^{-1}$ and $b_n = 1 - n^{-1}$.

We have:

$$\mathbf{F}^{n}(a_{n}x + b_{n}) = (n^{-1}x + 1 - n^{-1})^{n}$$

$$= \left(1 + \frac{1}{n}(x - 1)\right)^{n}$$

$$\mathbf{G}(x) = \lim_{n \to \infty} \left(1 + \frac{1}{n} (x - 1) \right)^n = e^{x - 1} = \mathbf{\Psi}_1 (x - 1)$$

Question 1.c

Same question when X is a Pareto distribution:

$$\mathbf{F}(x) = 1 - \left(\frac{\theta + x}{\theta}\right)^{-\alpha}$$
 ,

$$a_n = \theta \alpha^{-1} n^{1/\alpha}$$
 and $b_n = \theta n^{1/\alpha} - \theta$.

We have:

$$\mathbf{F}^{n}(a_{n}x + b_{n}) = \left(1 - \left(\frac{\theta}{\theta + \theta\alpha^{-1}n^{1/\alpha}x + \theta n^{1/\alpha} - \theta}\right)^{\alpha}\right)^{n}$$

$$= \left(1 - \left(\frac{1}{\alpha^{-1}n^{1/\alpha}x + n^{1/\alpha}}\right)^{\alpha}\right)^{n}$$

$$= \left(1 - \frac{1}{n}\left(1 + \frac{x}{\alpha}\right)^{-\alpha}\right)^{n}$$

$$\mathbf{G}(x) = \lim_{n \to \infty} \left(1 - \frac{1}{n} \left(1 + \frac{x}{\alpha} \right)^{-\alpha} \right)^n = e^{-\left(1 + \frac{x}{\alpha} \right)^{-\alpha}} = \mathbf{\Phi}_{\alpha} \left(1 + \frac{x}{\alpha} \right)^{-\alpha}$$

Question 2

We denote by **G** the GEV probability distribution:

$$\mathbf{G}(x) = \exp\left\{-\left[1 + \xi\left(\frac{x - \mu}{\sigma}\right)\right]^{-1/\xi}\right\}$$

What is the interest of this probability distribution? Write the log-likelihood function associated to the sample $\{x_1, \ldots, x_T\}$.

The GEV distribution encompasses the three EV probability distributions. This is an interesting property, because we have not to choose between the three EV distributions. We have:

$$g(x) = \frac{1}{\sigma} \left[1 + \xi \left(\frac{x - \mu}{\sigma} \right) \right]^{-\left(\frac{1+\xi}{\xi}\right)} \exp \left\{ -\left[1 + \xi \left(\frac{x - \mu}{\sigma} \right) \right]^{-\frac{1}{\xi}} \right\}$$

$$\ell = -\frac{n}{2} \ln \sigma^2 - \left(\frac{1+\xi}{\xi}\right) \sum_{i=1}^n \ln \left(1+\xi\left(\frac{x_i-\mu}{\sigma}\right)\right) - \sum_{i=1}^n \left[1+\xi\left(\frac{x_i-\mu}{\sigma}\right)\right]^{-\frac{1}{\xi}}$$

Question 3

Show that for $\xi \to 0$, the distribution **G** tends toward the Gumbel distribution:

$$\Lambda(x) = \exp\left(-\exp\left(-\left(\frac{x-\mu}{\sigma}\right)\right)\right)$$

We notice that:

$$\lim_{\xi \to 0} (1 + \xi x)^{-1/\xi} = e^{-x}$$

Then we obtain:

$$\lim_{\xi \to 0} \mathbf{G}(x) = \lim_{\xi \to 0} \exp \left\{ -\left[1 + \xi \left(\frac{x - \mu}{\sigma} \right) \right]^{-1/\xi} \right\}$$

$$= \exp \left\{ -\lim_{\xi \to 0} \left[1 + \xi \left(\frac{x - \mu}{\sigma} \right) \right]^{-1/\xi} \right\}$$

$$= \exp \left(-\exp \left(-\left(\frac{x - \mu}{\sigma} \right) \right) \right)$$

Question 4

We consider the minimum value of daily returns of a portfolio for a period of n trading days. We then estimate the GEV parameters associated to the sample of the opposite of the minimum values. We assume that ξ is equal to 1.

Question 4.a

Show that we can approximate the portfolio loss (in %) associated to the return period \mathcal{T} with the following expression:

$$r\left(\mathcal{T}\right)\simeq-\left(\hat{\mu}+\left(rac{\mathcal{T}}{n}-1
ight)\hat{\sigma}
ight)$$

where $\hat{\mu}$ and $\hat{\sigma}$ are the ML estimates of GEV parameters.

We have:

$$\mathbf{G}^{-1}(\alpha) = \mu - \sigma \xi^{-1} \left[1 - (-\ln \alpha)^{-\xi} \right]$$

When the parameter ξ is equal to 1, we obtain:

$$\mathbf{G}^{-1}\left(lpha
ight)=\mu-\sigma\left(1-\left(-\lnlpha
ight)^{-1}
ight)$$

By definition, we have $\mathcal{T} = (1 - \alpha)^{-1} n$. The return period \mathcal{T} is then associate to the confidence level $\alpha = 1 - n/\mathcal{T}$. We deduce that:

$$R\left(\mathcal{T}
ight) pprox -\mathbf{G}^{-1}\left(1-n/\mathfrak{t}
ight) \ = -\left(\mu-\sigma\left(1-\left(-\ln\left(1-n/\mathcal{T}
ight)
ight)^{-1}
ight)
ight) \ = -\left(\mu+\left(rac{\mathcal{T}}{n}-1
ight)\sigma
ight)$$

We then replace μ and σ by their ML estimates $\hat{\mu}$ and $\hat{\sigma}$.

Question 4.b

We set *n* equal to 21 trading days. We obtain the following results for two portfolios:

Portfolio	$\hat{\mu}$	$\hat{\sigma}$	$\overline{\xi}$
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	1%	3%	1
#2	10%	2%	1

Calculate the stress scenario for each portfolio when the return period is equal to one year. Comment on these results.

For Portfolio #1, we obtain:

$$R(1Y) = -\left(1\% + \left(\frac{252}{21} - 1\right) \times 3\%\right) = -34\%$$

For Portfolio #2, the stress scenario is equal to:

$$R(1Y) = -\left(10\% + \left(\frac{252}{21} - 1\right) \times 2\%\right) = -32\%$$

We conclude that Portfolio #1 is more risky than Portfolio #2 if we consider a stress scenario analysis.