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Covariance matrix

Exercise

We consider a universe of three stocks A, B and C .
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Covariance matrix

Question 1

The covariance matrix of stock returns is:

Σ =

 4%
3% 5%
2% −1% 6%



Thierry Roncalli, Irinah Ratsimbazafy Financial Risk Management (Tutorial Class — Session 1) 9 / 413



Market Risk

Covariance matrix
Expected shortfall of an equity portfolio
Value-at-risk of a long/short portfolio
Risk management of exotic options

Covariance matrix

Question 1.a

Calculate the volatility of stock returns.
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Covariance matrix

We have:
σA =

√
Σ1,1 =

√
4% = 20%

For the other stocks, we obtain σB = 22.36% and σC = 24.49%.
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Question 1.b

Deduce the correlation matrix.

Thierry Roncalli, Irinah Ratsimbazafy Financial Risk Management (Tutorial Class — Session 1) 12 / 413



Market Risk

Covariance matrix
Expected shortfall of an equity portfolio
Value-at-risk of a long/short portfolio
Risk management of exotic options
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The correlation is the covariance divided by the product of volatilities:

ρ (RA,RB) =
Σ1,2√

Σ1,1 × Σ2,2

=
3%

20%× 22.36%
= 67.08%

We obtain:

ρ =

 100.00%
67.08% 100.00%
40.82% −18.26% 100.00%
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Covariance matrix

Question 2

We assume that the volatilities are 10%, 20% and 30%. whereas the
correlation matrix is equal to:

ρ =

 100%
50% 100%
25% 0% 100%
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Covariance matrix

Question 2.a

Write the covariance matrix.
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Covariance matrix

Using the formula Σi,j = ρi,jσiσj , it follows that:

Σ =

 1.00%
1.00% 4.00%
0.75% 0.00% 9.00%
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Question 2.b

Calculate the volatility of the portfolio (50%, 50%, 0).
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Covariance matrix

We deduce that:

σ2 (w) = 0.52 × 1% + 0.52 × 4% + 2× 0.5× 0.5× 1%

= 1.75%

and σ (w) = 13.23%.
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Question 2.c

Calculate the volatility of the portfolio (60%,−40%, 0). Comment on this
result.
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Covariance matrix

It follows that:

σ2 (w) = 0.62 × 1% + (−0.4)2 × 4% + 2× 0.6× (−0.4)× 1%

= 0.52%

and σ (w) = 7.21%. This long/short portfolio has a lower volatility than
the previous long-only portfolio, because part of the risk is hedged by the
positive correlation between stocks A and B.
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Covariance matrix

Question 2.d

We assume that the portfolio is long $150 in stock A, long $500 in stock B
and short $200 in stock C . Find the volatility of this long/short portfolio.
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Covariance matrix

We have:

σ2 (w) = 1502 × 1% + 5002 × 4% + (−200)2 × 9% +

2× 150× 500× 1% +

2× 150× (−200)× 0.75% +

2× 500× (−200)× 0%

= 14 875

The volatility is equal to $121.96 and is measured in USD contrary to the
two previous results which were expressed in %.
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Covariance matrix

Question 3

We consider that the vector of stock returns follows a one-factor model:

R = βF + ε

We assume that F and ε are independent. We note σ2
F the variance of F

and D = diag
(
σ̃2

1 , σ̃
2
2 , σ̃

2
3

)
the covariance matrix of idiosyncratic risks εt .

We use the following numerical values: σF = 50%, β1 = 0.9, β2 = 1.3,
β3 = 0.1, σ̃1 = 5%, σ̃2 = 5% and σ̃3 = 15%.
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Question 3.a

Calculate the volatility of stock returns.
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Covariance matrix

We have:
E [R] = βE [F ] + E [ε]

and:
R − E [R] = β (F−E [F ]) + ε− E [ε]

It follows that:

cov (R) = E
[
(R − E [R]) (R − E [R])>

]
= E

[
β (F−E [F ]) (F−E [F ])β>

]
+

2× E
[
β (F−E [F ]) (ε− E [ε])>

]
+

E
[
(ε− E [ε]) (ε− E [ε])>

]
= σ2

Fββ
> + D
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Covariance matrix

We deduce that:

σ (Ri ) =
√
σ2
Fβ

2
i + σ̃2

i

We obtain σ (RA) = 18.68%, σ (RB) = 26.48% and σ (RC ) = 15.13%.
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Covariance matrix

Question 3.b

Calculate the correlation between stock returns.
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Covariance matrix

The correlation between stocks i and j is defined as follows:

ρ (Ri ,Rj) =
σ2
Fβiβj

σ (Ri )σ (Rj)

We obtain:

ρ =

 100.00%
94.62% 100.00%
12.73% 12.98% 100.00%
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Expected shortfall of an equity portfolio

Exercise

We consider an investment universe, which is composed of two stocks A
and B. The current prices of the two stocks are respectively equal to $100
and $200. Their volatilities are equal to 25% and 20% whereas the
cross-correlation is equal to −20%. The portfolio is long of 4 stocks A and
3 stocks B.
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Expected shortfall of an equity portfolio

Question 1

Calculate the Gaussian expected shortfall at the 97.5% confidence level for
a ten-day time horizon.
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Expected shortfall of an equity portfolio

We have:

Π = 4 (PA,t+h − PA,t) + 3 (PB,t+h − PB,t)

= 4PA,tRA,t+h + 3PB,tRB,t+h

= 400× RA,t+h + 600× RB,t+h

where RA,t+h and RB,t+h are the stock returns for the period [t, t + h].
We deduce that the variance of the P&L is:

σ2 (Π) = 400× (25%)2 + 600× (20%)2 +

2× 400× 600× (−20%)× 25%× 20%

= 19 600
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Expected shortfall of an equity portfolio

We deduce that σ (Π) = $140. We know that the one-year expected
shortfall is a linear function of the volatility:

ESα (w ; one year) =
φ
(
Φ−1 (α)

)
1− α

× σ (Π)

= 2.34× 140

= $327.60

The 10-day expected shortfall is then equal to $64.25:

ESα (w ; ten days) =

√
10

260
× 327.60

= $64.25
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Expected shortfall of an equity portfolio

Question 2

The eight worst scenarios of daily stock returns among the last 250
historical scenarios are the following:

s 1 2 3 4 5 6 7 8
RA −3% −4% −3% −5% −6% +3% +1% −1%
RB −4% +1% −2% −1% +2% −7% −3% −2%

Calculate then the historical expected shortfall at the 97.5% confidence
level for a ten-day time horizon.
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Expected shortfall of an equity portfolio

We have:
Πs = 400× RA,s + 600× RB,s

We deduce that the value Πs of the daily P&L for each scenario s is:

s 1 2 3 4 5 6 7 8
Πs −36 −10 −24 −26 −12 −30 −14 −16

Πs:250 −36 −30 −26 −24 −16 −14 −12 −10
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Expected shortfall of an equity portfolio

The value-at-risk at the 97.5% confidence level correspond to the 6.25th

order statistic1. We deduce that the historical expected shortfall for a
one-day time horizon is equal to:

ESα (w ; one day) = −E [Π | Π ≤ −VaRα (Π)]

= −1

6

6∑
s=1

Πs:250

=
1

6
(36 + 30 + 26 + 24 + 16 + 14)

= 24.33

By considering the square-root-of-time rule, it follows that the 10-day
expected shortfall is equal to $76.95.

1We have 2.5%× 250 = 6.25.
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Value-at-risk of a long/short portfolio

Exercise

We consider a long/short portfolio composed of a long (buying) position in
asset A and a short (selling) position in asset B. The long exposure is $2
mn whereas the short exposure is $1 mn. Using the historical prices of the
last 250 trading days of assets A and B, we estimate that the asset
volatilities σA and σB are both equal to 20% per year and that the
correlation ρA,B between asset returns is equal to 50%. In what follows,
we ignore the mean effect.
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We note SA,t (resp. SB,t) the price of stock A (resp. B) at time t. The
portfolio value is:

Pt (w) = wASA,t + wBSB,t

where wA and wB are the number of stocks A and B. We deduce that the
P&L between t and t + 1 is:

Π (w) = Pt+1 − Pt

= wA (SA,t+1 − SA,t) + wB (SB,t+1 − SB,t)

= wASA,tRA,t+1 + wBSB,tRB,t+1

= WA,tRA,t+1 + WB,tRB,t+1

where RA,t+1 and RB,t+1 are the asset returns of A and B between t and
t + 1, and WA,t and WB,t are the nominal wealth invested in stocks A and
B at time t.
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Value-at-risk of a long/short portfolio

Question 1

Calculate the Gaussian VaR of the long/short portfolio for a one-day
holding period and a 99% confidence level.
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Value-at-risk of a long/short portfolio

We have WA,t = +2 and WB,t = −1. The P&L (expressed in USD
million) has the following expression:

Π (w) = 2RA,t+1 − RB,t+1

We have Π (w) ∼ N
(
0, σ2 (Π)

)
with:

σ (Π) =

√
(2σA)2 + (−σB)2 + 2ρA,B × (2σA)× (−σB)

=

√
4× 0.202 + (−0.20)2 − 4× 0.5× 0.202

=
√

3× 20%

' 34.64%
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Value-at-risk of a long/short portfolio

The annual volatility of the long/short portfolio is then equal to $346 400.
We consider the square-root-of-time rule to calculate the daily
value-at-risk:

VaR99% (w ; one day) =
1√
260
× Φ−1 (0.99)×

√
3× 20%

= 5.01%

The 99% value-at-risk is then equal to $50 056.
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Value-at-risk of a long/short portfolio

Question 2

How do you calculate the historical VaR? Using the historical returns of
the last 250 trading days, the five worst scenarios of the 250 simulated
daily P&L of the portfolio are −58 700, −56 850, −54 270, −52 170 and
−49 231. Calculate the historical VaR for a one-day holding period and a
99% confidence level.
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We use the historical data to calculate the scenarios of asset returns
(RA,t+1,RB,t+1). We then deduce the empirical distribution of the P&L
with the formula Π (w) = 2RA,t+1 − RB,t+1. Finally, we calculate the
empirical quantile. With 250 scenarios, the 1% decile is between the
second and third worst cases:

VaR99% (w ; one day) = −
[
−56 850 +

1

2
(−54 270− (−56 850))

]
= 55 560

The probability to lose $55 560 per day is equal to 1%. We notice that the
difference between the historical VaR and the Gaussian VaR is equal to
11%.
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Question 3

We assume that the multiplication factor mc is 3. Deduce the required
capital if the bank uses an internal model based on the Gaussian
value-at-risk. Same question when the bank uses the historical VaR.
Compare these figures with those calculated with the standardized
measurement method.
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If we assume that the average of the last 60 VaRs is equal to the current
VaR, we obtain:

KIMA = mc ×
√

10×VaR99% (w ; one day)

KIMA is respectively equal to $474 877 and $527 088 for the Gaussian and
historical VaRs. In the case of the standardized measurement method, we
have:

KSpecific = 2× 8% + 1× 8%

= $240 000

and:

KGeneral = |2− 1| × 8%

= $80 000
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We deduce that:

KSMM = KSpecific + KGeneral

= $320 000

The internal model-based approach does not achieve a reduction of the
required capital with respect to the standardized measurement method.
Moreover, we have to add the stressed VaR under Basel 2.5 and the IMA
regulatory capital is at least multiplied by a factor of 2.
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Question 4

Show that the Gaussian VaR is multiplied by a factor equal to
√

7/3 if the
correlation ρA,B is equal to −50%. How do you explain this result?
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If ρA,B = −0.50, the volatility of the P&L becomes:

σ (Π) =

√
4× 0.202 + (−0.20)2 − 4× (−0.5)× 0.202

=
√

7× 20%

We deduce that:

VaRα (ρA,B = −50%)

VaRα (ρA,B = +50%)
=
σ (Π; ρA,B = −50%)

σ (Π; ρA,B = +50%)
=

√
7

3
= 1.53

The value-at-risk increases because the hedging effect of the positive
correlation vanishes. With a negative correlation, a long/short portfolio
becomes more risky than a long-only portfolio.
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Question 5

The portfolio manager sells a call option on the stock A. The delta of the
option is equal to 50%. What does the Gaussian value-at-risk of the
long/short portfolio become if the nominal of the option is equal to $2
mn? Same question when the nominal of the option is equal to $4 mn.
How do you explain this result?
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The P&L formula becomes:

Π (w) = WA,tRA,t+1 + WB,tRB,t+1 − (CA,t+1 − CA,t)

where CA,t is the call option price. We have:

CA,t+1 − CA,t ' ∆t (SA,t+1 − SA,t)

where ∆t is the delta of the option. If the nominal of the option is USD 2
million, we obtain:

Π (w) = 2RA − RB − 2× 0.5× RA

= RA − RB (1)

and:

σ (Π) =

√
0.202 + (−0.20)2 − 2× 0.5× 0.202

= 20%
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If the nominal of the option is USD 4 million, we obtain:

Π (w) = 2RA − RB − 4× 0.5× RA

= −RB (2)

and σ (Π) = 20%. In both cases, we have:

VaR99% (w ; one day) =
1√
260
× Φ−1 (0.99)× 20%

= $28 900

The value-at-risk of the long/short portfolio (1) is then equal to the
value-at-risk of the short portfolio (2) because of two effects: the absolute
exposure of the long/short portfolio is higher than the absolute exposure
of the short portfolio, but a part of the risk of the long/short portfolio is
hedged by the positive correlation between the two stocks.
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Question 6

The portfolio manager replaces the short position on the stock B by selling
a call option on the stock B. The delta of the option is equal to 50%.
Show that the Gaussian value-at-risk is minimum when the nominal is
equal to four times the correlation ρA,B . Deduce then an expression of the
lowest Gaussian VaR. Comment on these results.
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Value-at-risk of a long/short portfolio

We have:
Π (w) = WA,tRA,t+1 − (CB,t+1 − CB,t)

and:
CB,t+1 − CB,t ' ∆t (SB,t+1 − SB,t)

where ∆t is the delta of the option. We note x the nominal of the option
expressed in USD million. We obtain:

Π (w) = 2RA − x ×∆t × RB

= 2RA −
x

2
RB

We have2:

σ2 (Π) = 4σ2
A +

x2σ2
B

4
+ 2ρA,B × (2σA)×

(
−x

2
σB

)
=

σ2
A

4

(
x2 − 8ρA,Bx + 16

)
2Because σA = σB = 20%.
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Value-at-risk of a long/short portfolio

Minimizing the Gaussian value-at-risk is equivalent to minimizing the
variance of the P&L. We deduce that the first-order condition is:

∂ σ2 (Π)

∂ x
=
σ2
A

4
(2x − 8ρA,B) = 0

We deduce that the minimum VaR is reached when the nominal of the
option is x = 4ρA,B . We finally obtain:

σ (Π) =
σA
2

√
16ρ2

A,B − 32ρ2
A,B + 16

= 2σA

√
1− ρ2

A,B

and:

VaR99% (w ; one day) =
1√
260
× 2.33× 2× 20%×

√
1− ρ2

A,B

' 5.78%×
√

1− ρ2
A,B
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Value-at-risk of a long/short portfolio

If ρA,B is negative (resp. positive), the exposure x is negative meaning
that we have to buy (resp. to sell) a call option on stock B in order to
hedge a part of the risk related to stock A. If ρA,B is equal to zero, the
exposure x is equal to zero because a position on stock B adds
systematically a supplementary risk to the portfolio.
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Risk management of exotic options

Exercise

Let us consider a short position on an exotic option, whose its current
value Ct is equal to $6.78. We assume that the price St of the underlying
asset is $100 and the implied volatility Σt is equal to 20%.
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Risk management of exotic options

Let Ct be the option price at time t. The P&L of the trader between t
and t + 1 is:

Π = − (Ct+1 − Ct)

The formulation of the exercise suggests that there are two main risk
factors: the price of the underlying asset St and the implied volatility Σt .
We then obtain:

Π = Ct (St ,Σt)− Ct+1 (St+1,Σt+1)
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Risk management of exotic options

Question 1

At time t + 1, the value of the underlying asset is $97 and the implied
volatility remains constant. We find that the P&L of the trader between t
and t + 1 is equal to $1.37. Can we explain the P&L by the sensitivities
knowing that the estimates of delta ∆t , gamma Γt and vegaa υt are
respectively equal to 49%, 2% and 40%?

ameasured in volatility points.
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Risk management of exotic options

We have:

Π = Ct (St ,Σt)− Ct+1 (St+1,Σt+1)

≈ −∆t (St+1 − St)−
1

2
Γt (St+1 − St)

2 − υt (Σt+1 − Σt)

Using the numerical values of ∆t , Γt and υt , we obtain:

Π ≈ −0.49× (97− 100)− 1

2
× 0.02× (97− 100)2

= 1.47− 0.09

= 1.38

We explain the P&L by the sensitivities very well.
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Risk management of exotic options

Question 2

At time t + 2, the price of the underlying asset is $97 while the implied
volatility increases from 20% to 22%. The value of the option Ct+2 is now
equal to $6.17. Can we explain the P&L by the sensitivities knowing that
the estimates of delta ∆t+1, gamma Γt+1 and vega υt+1 are respectively
equal to 43%, 2% and 38%?
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Risk management of exotic options

We have:

Π = Ct+1 (St+1,Σt+1)− Ct+2 (St+2,Σt+2)

≈ −∆t+1 (St+2 − St+1)− 1

2
Γt+1 (St+2 − St+1)2 −

υt+1 (Σt+2 − Σt+1)

Using the numerical values of ∆t+1, Γt+1 and υt+1, we obtain:

Π ≈ −0.49× 0− 1

2
× 0.02× 02 − 0.38× (22− 20)

= −0.76
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Risk management of exotic options

To compare this value with the true P&L, we have to calculate Ct+1:

Ct+1 = Ct − (Ct − Ct+1)

= 6.78− 1.37

= 5.41

We deduce that:

Π = Ct+1 − Ct+2

= 5.41− 6.17

= −0.76

Again, the sensitivities explain the P&L very well.
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Risk management of exotic options

Question 3

At time t + 3, the price of the underlying asset is $95 and the value of the
implied volatility is 19%. We find that the P&L of the trader between
t + 2 and t + 3 is equal to $0.58. Can we explain the P&L by the
sensitivities knowing that the estimates of delta ∆t+2, gamma Γt+2 and
vega υt+2 are respectively equal to 44%, 1.8% and 38%.
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Risk management of exotic options

We have:

Π = Ct+2 (St+2,Σt+2)− Ct+3 (St+3,Σt+3)

≈ −∆t+2 (St+3 − St+2)− 1

2
Γt+2 (St+3 − St+2)2 −

υt+2 (Σt+3 − Σt+2)

Using the numerical values of ∆t+2, Γt+2 and υt+2, we obtain:

Π ≈ −0.44× (95− 97)− 1

2
× 0.018× (95− 97)2 −

0.38× (19− 22)

= 0.88− 0.036 + 1.14

= 1.984

The P&L approximated by the Greek coefficients largely overestimate the
true value of the P&L.
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Risk management of exotic options

Question 4

What can we conclude in terms of model risk?
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Risk management of exotic options

We notice that the approximation using the Greek coefficients works very
well when one risk factor remains constant:

Between t and t + 1, the price of the underlying asset changes, but
not the implied volatility;

Between t + 1 and t + 2, this is the implied volatility that changes
whereas the price of the underlying asset is constant.

Therefore, we can assume that the bad approximation between t + 2 and
t + 3 is due to the cross effect between St and Σt . In terms of model risk,
the P&L is then exposed to the vanna risk, meaning that the Black-Scholes
model is not appropriate to price and hedge this exotic option.
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Single and multi-name credit default swaps

Question 1

We assume that the default time τ follows an exponential distribution
with parameter λ. Write the cumulative distribution function F, the
survival function S and the density function f of the random variable τ .
How do we simulate this default time?
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Single and multi-name credit default swaps

We have F (t) = 1− e−λt , S (t) = e−λt and f (t) = λe−λt . We know that
S (τ ) ∼ U[0,1]. Indeed, we have:

Pr {U ≤ u} = Pr {S (τ ) ≤ u}
= Pr

{
τ ≥ S−1 (u)

}
= S

(
S−1 (u)

)
= u

It follows that τ = S−1 (U) with U ∼ U[0,1]. Let u be a uniform random
variate. Simulating τ is then equivalent to transform u into t:

t = − 1

λ
ln u
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Single and multi-name credit default swaps

Question 2

We consider a CDS 3M with two-year maturity and $1 mn notional
principal. The recovery rate R is equal to 40% whereas the spread s is
equal to 150 bps at the inception date. We assume that the protection leg
is paid at the default time.
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Single and multi-name credit default swaps

Question 2.a

Give the cash flow chart. What is the P&L of the protection seller A if the
reference entity does not default? What is the PnL of the protection buyer
B if the reference entity defaults in one year and two months?
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Single and multi-name credit default swaps

The premium leg is paid quarterly. The coupon payment is then equal to:

PL (tm) = ∆tm × s × N

=
1

4
× 150× 10−4 × 106

= $3 750

In case of default, the default leg paid by protection seller is equal to:

DL = (1−R)× N

= (1− 40%)× 106

= $600 000
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Single and multi-name credit default swaps

The corresponding cash flow chart is given in Figure 1. If the reference
entity does not default, the P&L of the protection seller is the sum of
premium interests:

Πseller = 8× 3 750 = $30 000

If the reference entity defaults in one year and two months, the P&L of the
protection buyer is3:

Πbuyer = (1−R)× N −
∑
tm<τ

∆tm × s × N

= (1− 40%)× 106 −
(

4 +
2

3

)
× 3 750

= $582 500

3We include the accrued premium.
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Single and multi-name credit default swaps'

&

$

%

τ time

The protection buyer pays $3 750

each quarter if the defaults does not occur

The protection buyer receives $600 000

if the defaults occurs before the maturity

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Figure 1: Cash flow chart of the CDS contract
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Single and multi-name credit default swaps

Question 2.b

What is the relationship between s , R and λ? What is the implied
one-year default probability at the inception date?
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Single and multi-name credit default swaps

Using the credit triangle relationship, we have:

s ' (1−R)× λ

We deduce that4:

PD ' λ

' s
1−R

=
150× 10−4

1− 40%
= 2.50%

4We recall that the one-year default probability is approximately equal to λ:

PD = 1− S (1)

= 1− e−λ

' 1− (1− λ)

' λ
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Single and multi-name credit default swaps

Question 2.c

Seven months later, the CDS spread has increased and is equal to 450 bps.
Estimate the new default probability. The protection buyer B decides to
realize his P&L. For that, he reassigns the CDS contract to the
counterparty C . Explain the offsetting mechanism if the risky PV01 is
equal to 1.189.
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Single and multi-name credit default swaps

We denote by s ′ the new CDS spread. The default probability becomes:

PD =
s ′

1−R

=
450× 10−4

1− 40%
= 7.50%

The protection buyer is short credit and benefits from the increase of the
default probability. His mark-to-market is therefore equal to:

Πbuyer = N × (s ′ − s)× RPV01

= 106 × (450− 150)× 10−4 × 1.189

= $35 671

The offsetting mechanism is then the following: the protection buyer B
transfers the agreement to C , who becomes the new protection buyer; C
continues to pay a premium of 150 bps to the protection seller A; in
return, C pays a cash adjustment of $35 671 to B.
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Single and multi-name credit default swaps

Question 3

We consider the following CDS spread curves for three reference entities:

Maturity #1 #2 #3
6M 130 bps 1 280 bps 30 bps
1Y 135 bps 970 bps 35 bps
3Y 140 bps 750 bps 50 bps
5Y 150 bps 600 bps 80 bps
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Single and multi-name credit default swaps

Question 3.a

Define the notion of credit curve. Comment the previous spread curves.
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Single and multi-name credit default swaps

For a given date t, the credit curve is the relationship between the
maturity T and the spread st (T ). The credit curve of the reference entity
#1 is almost flat. For the entity #2, the spread is very high in the
short-term, meaning that there is a significative probability that the entity
defaults. However, if the entity survive, the market anticipates that it will
improve its financial position in the long-run. This explains that the credit
curve #2 is decreasing. For reference entity #3, we obtain opposite
conclusions. The company is actually very strong, but there are some
uncertainties in the future5. The credit curve is then increasing.

5An example is a company whose has a monopoly because of a strong technology,
but faces a hard competition because technology is evolving fast in its domain (e.g.
Blackberry at the end of 2000s).
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Single and multi-name credit default swaps

Question 3.b

Using the Merton Model, we estimate that the one-year default probability
is equal to 2.5% for #1, 5% for #2 and 2% for #3 at a five-year horizon
time. Which arbitrage position could we consider about the reference
entity #2?
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Single and multi-name credit default swaps

If we consider a standard recovery rate (40%), the implied default
probability is 2.50% for #1, 10% for #2 and 1.33% for #3. We can
consider a short credit position in #2. In this case, we sell the 5Y
protection on #2 because the model tells us that the market default
probability is over-estimated. In place of this directional bet, we could
consider a relative value strategy: selling the 5Y protection on #2 and
buying the 5Y protection on #3.
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Single and multi-name credit default swaps

Question 4

We consider a basket of n single-name CDS.
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Single and multi-name credit default swaps

Question 4.a

What is a first-to-default (FtD), a second-to-default (StD) and a
last-to-default (LtD)?
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Single and multi-name credit default swaps

Let τ k:n be the kth default among the basket. FtD, StD and LtD are three
CDS products, whose credit event is related to the default times τ 1:n, τ 2:n

and τ n:n.
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Single and multi-name credit default swaps

Question 4.b

Define the notion of default correlation˙What is its impact on three
previous spreads?
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Single and multi-name credit default swaps

The default correlation ρ measures the dependence between two default
times τ i and τ j . The spread of the FtD (resp. LtD) is a decreasing (resp.
increasing) function with respect to ρ.
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Single and multi-name credit default swaps

Question 4.c

We assume that n = 3. Show the following relationship:

sCDS
1 + sCDS

2 + sCDS
3 = sFtD + sStD + sLtD

where sCDS
i is the CDS spread of the i th reference entity.
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Single and multi-name credit default swaps

To fully hedge the credit portfolio of the 3 entities, we can buy the 3 CDS.
Another solution is to buy the FtD plus the StD and the LtD (or the
third-to-default). Because these two hedging strategies are equivalent, we
deduce that:

sCDS
1 + sCDS

2 + sCDS
3 = sFtD + sStD + sLtD
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Single and multi-name credit default swaps

Question 4.d

Many professionals and academics believe that the subprime crisis is due
to the use of the Normal copula. Using the results of the previous
question, what could you conclude?
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Single and multi-name credit default swaps

We notice that the default correlation does not affect the value of the
CDS basket, but only the price distribution between FtD, StD and LtD.
We obtain a similar result for CDO6. In the case of the subprime crisis, all
the CDO tranches have suffered, meaning that the price of the underlying
basket has dropped. The reasons were the underestimation of default
probabilities.

6The junior, mezzanine and senior tranches can be viewed as FtD, StD and LtD.
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Risk contribution in the Basel II model

Question 1

We note L the portfolio loss of n credit and wi the exposure at default of
the i th credit. We have:

L (w) = w>ε =
n∑

i=1

wi × εi (3)

where εi is the unit loss of the i th credit. Let F be the cumulative
distribution function of L (w).
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Risk contribution in the Basel II model

Question 1.a

We assume that ε = (ε1, . . . , εn) ∼ N (0,Σ). Compute the value-at-risk
VaRα (w) of the portfolio when the confidence level is equal to α.
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Risk contribution in the Basel II model

The portfolio loss L follows a Gaussian probability distribution:

L (w) ∼ N
(

0,
√
w>Σw

)
We deduce that:

VaRα (w) = Φ−1 (α)
√
w>Σw

Thierry Roncalli, Irinah Ratsimbazafy Financial Risk Management (Tutorial Class — Session 2) 94 / 413



Credit Risk
Single and multi-name credit default swaps
Risk contribution in the Basel II model
Modeling loss given default

Risk contribution in the Basel II model

Question 1.b

Deduce the marginal value-at-risk of the i th credit. Define then the risk
contribution RC i of the i th credit.
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Risk contribution in the Basel II model

We have:

∂ VaRα (w)

∂ w
=

∂

∂ w

(
Φ−1 (α)

(
w>Σw

) 1
2

)
= Φ−1 (α)

1

2

(
w>Σw

)− 1
2 (2Σw)

= Φ−1 (α)
Σw√
w>Σw

The marginal value-at-risk of the i th credit is then:

MRi =
∂ VaRα (w)

∂ wi
= Φ−1 (α)

(Σw)i√
w>Σw

The risk contribution of the i th credit is the product of the exposure by
the marginal risk:

RC i = wi ×MRi

= Φ−1 (α)
wi × (Σw)i√

x>Σx
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Risk contribution in the Basel II model

Question 1.c

Check that the marginal value-at-risk is equal to:

∂ VaRα (w)

∂ wi
= E

[
εi | L (w) = F−1 (α)

]
Comment on this result.
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Risk contribution in the Basel II model

By construction, the random vector (ε, L (w)) is Gaussian with:(
ε

L (w)

)
∼ N

((
0
0

)
,

(
Σ Σw

w>Σ w>Σw

))
We deduce that the conditional distribution function of ε given that
L (w) = ` is Gaussian and we have:

E [ε | L (w) = `] = 0 + Σw
(
w>Σw

)−1
(`− 0)

We finally obtain:

E
[
ε | L (w) = F−1 (α)

]
= Σw

(
w>Σw

)−1
Φ−1 (α)

√
w>Σw

= Φ−1 (α)
Σw√
w>Σw

=
∂ VaRα (w)

∂ w

The marginal VaR of the i th credit is then equal to the conditional mean
of the individual loss εi given that the portfolio loss is exactly equal to the
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Question 2

We consider the Basel II model of credit risk and the value-at-risk risk
measure. The expression of the portfolio loss is given by:

L =
n∑

i=1

EADi ×LGDi ×1 {τ i < Mi} (4)
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Question 2.a

Define the different parameters EADi , LGDi , τ i and Mi . Show that
Model (4) can be written as Model (3) by identifying wi and εi .

Thierry Roncalli, Irinah Ratsimbazafy Financial Risk Management (Tutorial Class — Session 2) 100 / 413



Credit Risk
Single and multi-name credit default swaps
Risk contribution in the Basel II model
Modeling loss given default

Risk contribution in the Basel II model

EADi is the exposure at default, LGDi is the loss given default, τ i is the
default time and Ti is the maturity of the credit i . We have:{

wi = EADi

εi = LGDi ×1 {τ i < Ti}

The exposure at default is not random, which is not the case of the loss
given default.
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Question 2.b

What are the necessary assumptions (H) to obtain this result:

E
[
εi | L = F−1 (α)

]
= E [LGDi ]× E

[
Di | L = F−1 (α)

]
with Di = 1 {τ i < Mi}.
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We have to make the following assumptions:

(i) the loss given default LGDi is independent from the default time τ i ;

(ii) the portfolio is infinitely fine-grained meaning that there is no
exposure concentration:

EADi∑n
i=1 EADi

' 0

(iii) the default times depend on a common risk factor X and the
relationship is monotonic (increasing or decreasing).

In this case, we have:

E
[
εi | L = F−1 (α)

]
= E [LGDi ]× E

[
Di | L = F−1 (α)

]
with Di = 1 {τ i < Ti}.
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Question 2.c

Deduce the risk contribution RC i of the i th credit and the value-at-risk of
the credit portfolio.
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It follows that:

RC i = wi ×MRi

= EADi ×E [LGDi ]× E
[
Di | L = F−1 (α)

]
The expression of the value-at-risk is then:

VaRα (w) =
n∑

i=1

RC i

=
n∑

i=1

EADi ×E [LGDi ]× E
[
Di | L = F−1 (α)

]
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Question 2.d

We assume that the credit i defaults before the maturity Mi if a latent
variable Zi goes below a barrier Bi :

τ i ≤ Mi ⇔ Zi ≤ Bi

We consider that Zi =
√
ρX +

√
1− ρεi where Zi , X and εi are three

independent Gaussian variables N (0, 1). X is the factor (or the systematic
risk) and εi is the idiosyncratic risk.
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Question 2.d (i)

Interpret the parameter ρ.
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We have

E [ZiZj ] = E
[(√

ρX +
√

1− ρεi
)(√

ρX +
√

1− ρεj
)]

= ρ

ρ is the constant correlation between assets Zi and Zj .

Thierry Roncalli, Irinah Ratsimbazafy Financial Risk Management (Tutorial Class — Session 2) 108 / 413



Credit Risk
Single and multi-name credit default swaps
Risk contribution in the Basel II model
Modeling loss given default

Risk contribution in the Basel II model

Question 2.d (ii)

Calculate the unconditional default probability:

pi = Pr {τ i ≤ Mi}
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We have:

pi = Pr {τi ≤ Ti}
= Pr {Zi ≤ Bi}
= Φ (Bi )
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Question 2.d (iii)

Calculate the conditional default probability:

pi (x) = Pr {τ i ≤ Mi | X = x}
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It follows that:

pi (x) = Pr {Zi ≤ Bi | X = x}

= Pr
{√

ρX +
√

1− ρεi ≤ Bi | X = x
}

= Pr

{
εi ≤

Bi −
√
ρX

√
1− ρ

∣∣∣∣X = x

}
= Φ

(
Bi −

√
ρx

√
1− ρ

)
= Φ

(
Φ−1 (pi )−

√
ρx

√
1− ρ

)
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Question 2.e

Show that, under the previous assumptions (H), the risk contribution RC i
of the i th credit is:

RC i = EADi ×E [LGDi ]× Φ

(
Φ−1 (pi ) +

√
ρΦ−1 (α)

√
1− ρ

)
(5)

when the risk measure is the value-at-risk.
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Under the assumptions (H), we know that:

L =
n∑

i=1

EADi ×E [LGDi ]× pi (X )

=
n∑

i=1

EADi ×E [LGDi ]× Φ

(
Φ−1 (pi )−

√
ρX

√
1− ρ

)
= g (X )

with g ′ (x) < 0. We deduce that:

VaRα (w) = F−1 (α) ⇔ Pr {g (X ) ≤ VaRα (w)} = α

⇔ Pr
{
X ≥ g−1 (VaRα (w))

}
= α

⇔ Pr
{
X ≤ g−1 (VaRα (w))

}
= 1− α

⇔ g−1 (VaRα (w)) = Φ−1 (1− α)

⇔ VaRα (w) = g
(
Φ−1 (1− α)

)
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It follows that:

VaRα (w) = g
(
Φ−1 (1− α)

)
=

n∑
i=1

EADi ×E [LGDi ]× pi
(
Φ−1 (1− α)

)
The risk contribution RC i of the ith credit is then:

RC i = EADi ×E [LGDi ]× pi
(
Φ−1 (1− α)

)
= EADi ×E [LGDi ]× Φ

(
Φ−1 (pi )−

√
ρΦ−1 (1− α)

√
1− ρ

)
= EADi ×E [LGDi ]× Φ

(
Φ−1 (pi ) +

√
ρΦ−1 (α)

√
1− ρ

)
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Question 3

We now assume that the risk measure is the expected shortfall:

ESα (w) = E [L | L ≥ VaRα (w)]
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Question 3.a

In the case of the Basel II framework, show that we have:

ESα (w) =
n∑

i=1

EADi ×E [LGDi ]× E
[
pi (X ) | X ≤ Φ−1 (1− α)

]
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We note Ω the event X ≤ g−1 (VaRα (w)) or equivalently
X ≤ Φ−1 (1− α). We have:

ESα (w) = E [L | L ≥ VaRα (w)]

= E [L | g (X ) ≥ VaRα (w)]

= E
[
L | X ≤ g−1 (VaRα (w))

]
= E

[
n∑

i=1

EADi ×E [LGDi ]× pi (X ) | Ω

]

=
n∑

i=1

EADi ×E [LGDi ]× E [pi (X ) | Ω]
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Question 3.b

By using the following result:∫ c

−∞
Φ(a + bx)φ(x)dx = Φ2

(
c ,

a√
1 + b2

;
−b√

1 + b2

)
where Φ2 (x , y ; ρ) is the cdf of the bivariate Gaussian distribution with
correlation ρ on the space [−∞, x ]× [−∞, y ], deduce that the risk
contribution RC i of the i th credit in the Basel II model is:

RC i = EADi ×E [LGDi ]×
C
(
1− α, pi ;

√
ρ
)

1− α
(6)

when the risk measure is the expected shortfall. Here C (u1, u2; θ) is the
Normal copula with parameter θ.
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It follows that:

E [pi (X ) | Ω] = E
[

Φ

(
Φ−1 (pi )−

√
ρX

√
1− ρ

)∣∣∣∣Ω

]
=

∫ Φ−1(1−α)

−∞
Φ

(
Φ−1 (pi )√

1− ρ
+
−√ρ
√

1− ρ
x

)
×

φ (x)

Φ (Φ−1 (1− α))
dx

=
Φ2

(
Φ−1 (1− α) ,Φ−1 (pi ) ;

√
ρ
)

1− α

=
C
(
1− α, pi ;

√
ρ
)

1− α
where C is the Gaussian copula. We deduce that:

RC i = EADi ×E [LGDi ]×
C
(
1− α, pi ;

√
ρ
)

1− α
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Question 3.c

What become the results (5) and (6) if the correlation ρ is equal to zero?
Same question if ρ = 1.
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If ρ = 0, we have:

Φ

(
Φ−1 (pi ) +

√
ρΦ−1 (α)

√
1− ρ

)
= Φ

(
Φ−1 (pi )

)
= pi

and:

C
(
1− α, pi ;

√
ρ
)

1− α
=

(1− α) pi
1− α

= pi

The risk contribution is the same for the value-at-risk and the expected
shortfall:

RC i = EADi ×E [LGDi ]× pi

= E [Li ]

It corresponds to the expected loss of the credit.
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If ρ = 1 and α > 50%, we have:

Φ

(
Φ−1 (pi ) +

√
ρΦ−1 (α)

√
1− ρ

)
= lim

ρ→1
Φ

(
Φ−1 (pi ) + Φ−1 (α)√

1− ρ

)
= 1

If ρ = 1 and α is high (α > 1− supi pi ), we have:

C
(
1− α, pi ;

√
ρ
)

1− α
=

min (1− α; pi )

1− α
= 1

In this case, the risk contribution is the same for the value-at-risk and the
expected shortfall:

RC i = EADi ×E [LGDi ]

However, it does not depend on the unconditional probability of default pi .
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Question 4

The risk contributions (5) and (6) were obtained considering the
assumptions (H) and the default model defined in Question 2(d). What
are the implications in terms of Pillar 2?
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Pillar 2 concerns the non-compliance of assumptions (H). In particular, we
have to understand the impact on the credit risk measure if the portfolio is
not infinitely fine-grained or if asset correlations are not constant.
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Question 1

What is the difference between the recovery rate and the loss given
default?
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The loss given default is equal to:

LGD = 1−R + c

where c is the recovery (or litigation) cost. Consider for example a $200
credit and suppose that the borrower defaults. If we recover $140 and the
litigation cost is $20, we obtain R = 70% and LGD = 40%, but not
LGD = 30%.
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Question 2

We consider a bank that grants 250 000 credits per year. The average
amount of a credit is equal to $50 000. We estimate that the average
default probability is equal to 1% and the average recovery rate is equal to
65%. The total annual cost of the litigation department is equal to $12.5
mn. Give an estimation of the loss given default?
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The amounts outstanding of credit is:

EAD = 250 000× 50 000

= $12.5 bn

The annual loss after recovery is equal to:

L = EAD× (1−R)× PD+C

= 43.75 + 12.5

= $56.25 mn

where C is the litigation cost.
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We deduce that:

LGD =
L

EAD×PD

=
54

12.5× 103 × 1%
= 45%

This figure is larger than 35%, which is the loss given default without
taking into account the recovery cost.
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Question 3

The probability density function of the beta probability distribution B (a, b)
is:

f (x) =
xa−1 (1− x)b−1

B (a, b)

where B (a, b) =
∫ 1

0
ua−1 (1− u)b−1

du.
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Question 3.a

Why is the beta probability distribution a good candidate to model the
loss given default? Which parameter pair (a, b) correspond to the uniform
probability distribution?
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The Beta distribution allows to obtain all the forms of LGD (bell curve,
inverted-U shaped curve, etc.). The uniform distribution corresponds to
the case α = 1 and β = 1. Indeed, we have:

f (x) =
xα−1 (1− x)β−1∫ 1

0
uα−1 (1− u)β−1

du

= 1
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Question 3.b

Let us consider a sample (x1, . . . , xn) of n losses in case of default. Write
the log-likelihood function. Deduce the first-order conditions of the
maximum likelihood estimator.
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We have:

` (α, β) =
n∑

i=1

ln f (xi )

= −n ln B (α, β) + (α− 1)
n∑

i=1

ln xi + (β − 1)
n∑

i=1

ln (1− xi )

The first-order conditions are:

∂ ` (α, β)

∂ α
= −n∂αB (α, β)

B (α, β)
+

n∑
i=1

ln xi = 0

and:
∂ ` (α, β)

∂ β
= −n∂βB (α, β)

B (α, β)
+

n∑
i=1

ln (1− xi ) = 0
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Question 3.c

We recall that the first two moments of the beta probability distribution
are:

E [X ] =
a

a + b

σ2 (X ) =
ab

(a + b)2 (a + b + 1)

Find the method of moments estimator.
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Let µLGD and σLGD be the mean and standard deviation of the LGD
parameter. The method of moments consists in estimating α and β such
that:

α

α + β
= µLGD

and:
αβ

(α + β)2 (α + β + 1)
= σ2

LGD

We have:

β = α
(1− µLGD)

µLGD

and:
(α + β)2 (α + β + 1)σ2

LGD = αβ
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It follows that:

(α + β)2 =

(
α + α

(1− µLGD)

µLGD

)2

=
α2

µ2
LGD

and:

αβ =
α2

µ2
LGD

(
α + α

(1− µLGD)

µLGD
+ 1

)
σ2

LGD = α2 (1− µLGD)

µLGD

We deduce that:

α

(
1 +

(1− µLGD)

µLGD

)
=

(1− µLGD)µLGD

σ2
LGD

− 1
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We finally obtain:

α̂MM =
µ2

LGD (1− µLGD)

σ2
LGD

− µLGD (7)

β̂MM =
µLGD (1− µLGD)2

σ2
LGD

− (1− µLGD) (8)

Thierry Roncalli, Irinah Ratsimbazafy Financial Risk Management (Tutorial Class — Session 2) 139 / 413



Credit Risk
Single and multi-name credit default swaps
Risk contribution in the Basel II model
Modeling loss given default

Modeling loss given default

Question 4

We consider a risk class C corresponding to a customer/product
segmentation specific to retail banking. A statistical analysis of 1 000 loss
data available for this risk class gives the following results:

LGDk 0% 25% 50% 75% 100%
nk 100 100 600 100 100

where nk is the number of data corresponding to LGDk .
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Question 4.a

We consider a portfolio of 100 homogeneous credits, which belong to the
risk class C. The notional is $10 000 whereas the annual default probability
is equal to 1%. Calculate the expected loss of this credit portfolio with a
one-year horizon time if we use the previous empirical distribution to
model the LGD parameter.
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The mean of the loss given default is equal to:

µLGD =
100× 0% + 100× 25% + 600× 50% + . . .

1000
= 50%

The expression of the expected loss is:

EL =
100∑
i=1

EADi ×E [LGDi ]× PDi

where PDi is the default probability of credit i . We finally obtain:

EL =
100∑
i=1

10 000× 50%× 1%

= $5 000
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Question 4.b

We assume that the LGD parameter follows a beta distribution B (a, b).
Calibrate the parameters a and b with the method of moments.
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Modeling loss given default

We have µLGD = 50% and:

σLGD =

√
100× (0− 0.5)2 + 100× (0.25− 0.5)2 + . . .

1000

=

√
2× 0.52 + 2× 0.252

10

=

√
0.625

10
= 25%

Using Equations (7) and (8), we deduce that:

α̂MM =
0.52 × (1− 0.5)

0.252
− 0.5 = 1.5

β̂MM =
0.5× (1− 0.5)2

0.252
− (1− 0.5) = 1.5
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Question 4.c

We assume that the Basel II model is valid. We consider the portfolio
described in Question 4(a) and calculate the unexpected loss. What is the
impact if we use a uniform probability distribution instead of the calibrated
beta probability distribution? Why does this result hold even if we consider
different factors to model the default time?
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Modeling loss given default

The previous portfolio is homogeneous and infinitely fine-grained. In this
case, we know that the unexpected loss depends on the mean of the loss
given default and not on the entire probability distribution. Because the
expected value of the calibrated Beta distribution is 50%, there is no
difference with the uniform distribution, which has also a mean equal to
50%. This result holds for the Basel model with one factor, and remains
true when they are more factors.
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Impact of netting agreements in counterparty credit risk

Question 1

The table below gives the current mark-to-market of 7 OTC contracts
between Bank A and Bank B:

Equity Fixed income FX
C1 C2 C3 C4 C5 C6 C7

A +10 −5 +6 +17 −5 −5 +1
B −11 +6 −3 −12 +9 +5 +1

The table should be read as follows: Bank A has a mark-to-market equal
to 10 for the contract C1 whereas Bank B has a mark-to-market equal to
−11 for the same contract, Bank A has a mark-to-market equal to −5 for
the contract C2 whereas Bank B has a mark-to-market equal to +6 for the
same contract, etc.
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Impact of netting agreements in counterparty credit risk

Question 1.a

Explain why there are differences between the MtM values of a same OTC
contract.
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Impact of netting agreements in counterparty credit risk

Let MtMA (C) and MTMB (C) be the MtM values of Bank A and Bank B
for the contract C. We must theoretically verify that:

MtMA+B (C) = MTMA (C) + MTMB (C)

= 0 (9)

In the case of listed products, the previous relationship is verified. In the
case of OTC products, there are no market prices, forcing the bank to use
pricing models for the valuation. The MTM value is then a mark-to-model
price. Because the two banks do not use the same model with the same
parameters, we note a discrepancy between the two mark-to-market prices:

MTMA (C) + MTMB (C) 6= 0
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Impact of netting agreements in counterparty credit risk

For instance, we obtain:

MTMA+B (C1) = 10− 11 = −1

MTMA+B (C2) = −5 + 6 = 1

MTMA+B (C3) = 6− 3 = 3

MTMA+B (C4) = 17− 12 = 5

MTMA+B (C5) = −5 + 9 = 4

MTMA+B (C6) = −5 + 5 = 0

MTMA+B (C7) = 1 + 1 = 2

Only the contract C6 satisfies the relationship (9).
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Impact of netting agreements in counterparty credit risk

Question 1.b

Calculate the exposure at default of Bank A.
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Impact of netting agreements in counterparty credit risk

We have:

EAD =
7∑

i=1

max (MTM (Ci ) , 0)

We deduce that:

EADA = 10 + 6 + 17 + 1 = 34

EADB = 6 + 9 + 5 + 1 = 21
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Impact of netting agreements in counterparty credit risk

Question 1.c

Same question if there is a global netting agreement.
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Impact of netting agreements in counterparty credit risk

If there is a global netting agreement, the exposure at default becomes:

EAD = max

(
7∑

i=1

MTM (Ci ) , 0

)

Using the numerical values, we obtain:

EADA = max (10− 5 + 6 + 17− 5− 5 + 1, 0)

= max (19, 0)

= 19

and:

EADB = max (−11 + 6− 3− 12 + 9 + 5 + 1, 0)

= max (−5, 0)

= 0
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Impact of netting agreements in counterparty credit risk

Question 1.d

Same question if the netting agreement only concerns equity products.
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Impact of netting agreements in counterparty credit risk

If the netting agreement only concerns equity contracts, we have:

EAD = max

(
3∑

i=1

MTM (Ci ) , 0

)
+

7∑
i=4

max (MTM (Ci ) , 0)

It follows that:

EADA = max(10− 5 + 6, 0) + 17 + 1 = 29

EADB = max(−11 + 6− 3, 0) + 9 + 5 + 1 = 15
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Impact of netting agreements in counterparty credit risk

Question 2

In the following, we measure the impact of netting agreements on the
exposure at default.
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Impact of netting agreements in counterparty credit risk

Question 2.a

We consider a first OTC contract C1 between Bank A and Bank B. The
mark-to-market MtM1 (t) of Bank A for the contract C1 is defined as
follows:

MtM1 (t) = x1 + σ1W1 (t)

where W1 (t) is a Brownian motion. Calculate the potential future
exposure of Bank A.

Thierry Roncalli, Irinah Ratsimbazafy Financial Risk Management (Tutorial Class — Session 3) 159 / 413



Counterparty Credit Risk and Collateral Risk
Impact of netting agreements in counterparty credit risk
Calculation of the capital charge for counterparty credit risk
Calculation of CVA and DVA measures

Impact of netting agreements in counterparty credit risk

The potential future exposure e1 (t) is defined as follows:

e1 (t) = max (x1 + σ1W1 (t) , 0)

We deduce that:

E [e1 (t)] =

∫ ∞
−∞

max (x , 0) f (x) dx

=

∫ ∞
0

xf (x) dx

where f (x) is the density function of MtM1 (t). As we have
MtM1 (t) ∼ N

(
x1, σ

2
1t
)
, we deduce that:

E [e1 (t)] =

∫ ∞
0

x

σ1

√
2πt

exp

(
−1

2

(
x − x1

σ1

√
t

)2
)

dx
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With the change of variable y = σ−1
1 t−1/2 (x − x1), we obtain:

E [e1 (t)] =

∫ ∞
−x1
σ1
√

t

x1 + σ1

√
ty√

2π
exp

(
−1

2
y2

)
dy

= x1

∫ ∞
−x1
σ1
√

t

φ (y) dy + σ1

√
t

∫ ∞
−x1
σ1
√

t

yφ (y) dy

= x1Φ

(
x1

σ1

√
t

)
+ σ1

√
t
[
− φ (y)

]∞
−x1
σ1
√

t

= x1Φ

(
x1

σ1

√
t

)
+ σ1

√
tφ

(
x1

σ1

√
t

)
because φ (−x) = φ (x) and Φ (−x) = 1− Φ (x).
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Impact of netting agreements in counterparty credit risk

Question 2.b

We consider a second OTC contract between Bank A and Bank B. The
mark-to-market is also given by the following expression:

MtM2 (t) = x2 + σ2W2 (t)

where W2 (t) is a second Brownian motion that is correlated with W1 (t).
Let ρ be this correlation such that E [W1 (t)W2 (t)] = ρt. Calculate the
expected exposure of bank A if there is no netting agreement.
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Impact of netting agreements in counterparty credit risk

When there is no netting agreement, we have:

e (t) = e1 (t) + e2 (t)

We deduce that:

E [e (t)] = E [e1 (t)] + E [e2 (t)]

= x1Φ

(
x1

σ1

√
t

)
+ σ1

√
tφ

(
x1

σ1

√
t

)
+

x2Φ

(
x2

σ2

√
t

)
+ σ2

√
tφ

(
x2

σ2

√
t

)
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Impact of netting agreements in counterparty credit risk

Question 2.c

Same question when there is a global netting agreement between Bank A
and Bank B.
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In the case of a netting agreement, the potential future exposure becomes:

e (t) = max (MtM1 (t) + MtM2 (t) , 0)

= max (MtM1+2 (t) , 0)

= max (x1 + x2 + σ1W1 (t) + σ2W2 (t) , 0)

We deduce that:

MtM1+2 (t) ∼ N
(
x1 + x2,

(
σ2

1 + σ2
2 + 2ρσ1σ2

)
t
)

Using results of Question 2(a), we finally obtain:

E [e (t)] = (x1 + x2) Φ

(
x1 + x2√

(σ2
1 + σ2

2 + 2ρσ1σ2) t

)
+

√
(σ2

1 + σ2
2 + 2ρσ1σ2) tφ

(
x1 + x2√

(σ2
1 + σ2

2 + 2ρσ1σ2) t

)
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Impact of netting agreements in counterparty credit risk

Question 2.d

Comment on these results.
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Impact of netting agreements in counterparty credit risk

We have represented the expected exposure E [e (t)] in Figure 2 when
x1 = x2 = 0 and σ1 = σ2. We note that it is an increasing function of the
time t and the volatility σ. We also observe that the netting agreement
may have a big impact, especially when the correlation is low or negative.
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Impact of netting agreements in counterparty credit risk

Figure 2: Expected exposure E [e (t)] when there is a netting agreement
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Calculation of the CCR capital charge

We denote by e (t) the potential future exposure of an OTC contract with
maturity T . The current date is set to t = 0. Let N and σ be the notional
and the volatility of the underlying contract. We assume that
e (t) = Nσ

√
tX with 0 ≤ X ≤ 1, Pr {X ≤ x} = xγ and γ > 0.
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Calculation of the CCR capital charge

Question 1

Calculate the peak exposure PEα (t), the expected exposure EE (t) and
the effective expected positive exposure EEPE (0; t).
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Calculation of the CCR capital charge

We have:

F[0,t] (x) = Pr {e (t) ≤ x}

= Pr
{
Nσ
√
tU ≤ x

}
= Pr

{
U ≤ x

Nσ
√
t

}
=

(
x

Nσ
√
t

)γ
with x ∈

[
0,Nσ

√
t
]
. We deduce that:

PEα (t) = F−1
[0,t] (α)

= Nσ
√
tα1/γ

Thierry Roncalli, Irinah Ratsimbazafy Financial Risk Management (Tutorial Class — Session 3) 171 / 413



Counterparty Credit Risk and Collateral Risk
Impact of netting agreements in counterparty credit risk
Calculation of the capital charge for counterparty credit risk
Calculation of CVA and DVA measures

Calculation of the CCR capital charge

For the expected exposure, we obtain:

EE (t) = E [e (t)]

=

∫ Nσ
√
t

0

x
γ(

Nσ
√
t
)γ xγ−1 dx

=
γ(

Nσ
√
t
)γ [ xγ+1

γ + 1

]Nσ√t

0

=
γ

γ + 1
Nσ
√
t
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We deduce that:
EEE (t) =

γ

γ + 1
Nσ
√
t

and:

EEPE (0; t) =
1

t

∫ t

0

EEE (s) ds

=
1

t

∫ t

0

γ

γ + 1
Nσ
√
s ds

=
γ

γ + 1
Nσ

1

t

[
2

3
s3/2

]t
0

=
2γ

3 (γ + 1)
Nσ
√
t
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Question 2

The bank manages the credit risk with the foundation IRB approach and
the counterparty credit risk with an internal model. We consider an OTC
contract with the following parameters: N is equal to $3 mn, the maturity
T is one year, the volatility σ is set to 20% and γ is estimated at 2.
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Calculation of the CCR capital charge

Question 2.a

Calculate the exposure at default EAD knowing that the bank uses the
regulatory value for the parameter α.
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When the bank uses an internal model, the regulatory exposure at default
is:

EAD = α× EEPE (0; 1)

Using the standard value α = 1.4, we obtain:

EAD = 1.4× 4

9
× 3× 106 × 0.20

= $373 333
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Question 2.b

The default probability of the counterparty is estimated at 1%. Calculate
then the capital charge for counterparty credit risk of this OTC contracta.

aWe will take a value of 70% for the LGD parameter and a value of 20% for the
default correlation. We can also use the approximations −1.06 ≈ −1 and
Φ(−1) ≈ 16%.
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While the bank uses the FIRB approach, the required capital is:

K = EAD×E [LGD]×
(

Φ

(
Φ−1 (PD) +

√
ρΦ−1 (99.9%)

√
1− ρ

)
− PD

)
When ρ is equal to 20%, we have:

Φ−1 (PD) +
√
ρΦ−1 (99.9%)

√
1− ρ

=
−2.33 +

√
0.20× 3.09√

1− 0.20
= −1.06

By using the approximations −1.06 ' 1 and Φ (−1) ' 0.16, we obtain:

K = 373 333× 0.70× (0.16− 0.01)

= $39 200

The required capital of this OTC product for counterparty credit risk is
then equal to $39 200.
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Calculation of CVA and DVA measures

We consider an OTC contract with maturity T between Bank A and Bank
B. We denote by MtM (t) the risk-free mark-to-market of Bank A. The
current date is set to t = 0 and we assume that:

MtM (t) = N · σ ·
√
t · X

where N is the notional of the OTC contract, σ is the volatility of the
underlying asset and X is a random variable, which is defined on the
support [−1, 1] and whose density function is:

f (x) =
1

2
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Calculation of CVA and DVA measures

Question 1

Define the concept of positive exposure e+ (t). Show that the cumulative
distribution function F[0,t] of e+ (t) has the following expression:

F[0,t] (x) = 1
{

0 ≤ x ≤ σ
√
t
}
·
(

1

2
+

x

2 · N · σ ·
√
t

)
where F[0,t] (x) = 0 if x ≤ 0 and F[0,t] (x) = 1 if x ≥ σ

√
t.
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Calculation of CVA and DVA measures

The positive exposure e+ (t) is the maximum between zero and the
mark-to-market value:

e+ (t) = max (0,MtM (t))

= max
(

0,Nσ
√
tX
)

We have:

F[0,t] (x) = Pr
{
e+ (t) ≤ x

}
= Pr

{
max

(
0,Nσ

√
tX
)
≤ x

}
We notice that:

max
(

0,Nσ
√
tX
)

=

{
0 if X ≤ 0
Nσ
√
tX otherwise
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By assuming that x ∈
[
0,Nσ

√
t
]
, we deduce that:

F[0,t] (x) = Pr
{
e+ (t) ≤ x ,X ≤ 0

}
+ Pr

{
e+ (t) ≤ x ,X > 0

}
= Pr {0 ≤ x ,X ≤ 0}+ Pr

{
Nσ
√
tX ≤ x ,X > 0

}
=

1

2
+

1

2
Pr
{
Nσ
√
tU ≤ x

}
=

1

2
+

1

2
Pr

{
U ≤ x

Nσ
√
t

}
where U is the standard uniform random variable. We finally obtain the
following expression:

F[0,t] (x) =
1

2
+

x

2Nσ
√
t

If x ≤ 0 or x ≥ Nσ
√
t, it is easy to show that F[0,t] (x) = 0 and

F[0,t] (x) = 1.
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Question 2

Deduce the value of the expected positive exposure EpE (t).
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The expected positive exposure EpE (t) is defined as follows:

EpE (t) = E
[
e+ (t)

]
Using the expression of F[0,t] (x), it follows that the density function of
e+ (t) is equal to:

f[0,t] (x) =
∂ F[0,t] (x)

∂ x

=
1

2Nσ
√
t
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We deduce that:

EpE (t) =

∫ Nσ
√
t

0

xf[0,t] (x) dx

=

∫ Nσ
√
t

0

x

2Nσ
√
t
dx

=

[
x2

4Nσ
√
t

]Nσ√t

0

=
Nσ
√
t

4
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Question 3

We note RB the fixed and constant recovery rate of Bank B. Give the
mathematical expression of the CVA.
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By definition, we have:

CVA = (1−RB)×
∫ T

0

−B0 (t)EpE (t) dSB (t)

Thierry Roncalli, Irinah Ratsimbazafy Financial Risk Management (Tutorial Class — Session 3) 187 / 413



Counterparty Credit Risk and Collateral Risk
Impact of netting agreements in counterparty credit risk
Calculation of the capital charge for counterparty credit risk
Calculation of CVA and DVA measures

Calculation of CVA and DVA measures

Question 4

By using the definition of the lower incomplete gamma function γ (s, x),
show that the CVA is equal to:

CVA =
N · (1−RB) · σ · γ

(
3
2 , λBT

)
4
√
λB

when the default time of Bank B is exponential with parameter λB and
interest rates are equal to zero.
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The interest rates are equal to zero meaning that B0 (t) = 1. Moreover,
we have SB (t) = e−λB t . We deduce that:

CVA = (1−RB)×
∫ T

0

Nσ
√
t

4
λBe

−λB t dt

=
NλB (1−RB)σ

4

∫ T

0

√
te−λB t dt

The definition of the incomplete gamma function is:

γ (s, x) =

∫ x

0

ts−1e−t dt
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By considering the change of variable y = λBt, we obtain:∫ T

0

√
te−λB t dt =

∫ λBT

0

√
y

λB
e−y

dy

λB

=
1

λ
3/2

B

∫ λBT

0

y
3/2−1e−y dy

=
γ
(

3
2 , λBT

)
λ

3/2

B

It follows that:

CVA =
N (1−RB)σγ

(
3
2 , λBT

)
4
√
λB
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Question 5

Comment on this result.
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The CVA is proportional to the notional N of the OTC contract, the loss
given default (1−RB) of the counterparty and the volatility σ of the
underlying asset. It is an increasing function of the maturity T because we
have γ

(
3
2 , λBT2

)
> γ

(
3
2 , λBT1

)
when T2 > T1. If the maturity is not

very large (less than 10 years), the CVA is an increasing function of the
default intensity λB .
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The limit cases are7:

lim
λB→∞

CVA = lim
λB→∞

N (1−RB)σγ
(

3
2 , λBT

)
4
√
λB

= 0

and:

lim
T→∞

CVA =
N (1−RB)σΓ

(
3
2

)
4
√
λB

When the counterparty has a high default intensity, meaning that the
default is imminent, the CVA is equal to zero because the mark-to-market
value is close to zero. When the maturity is large, the CVA is a decreasing
function of the intensity λB . Indeed, the probability to observe a large
mark-to-market in the future increases when the default time is very far
from the current date. We have illustrated these properties in Figure ??
with the following numerical values: N = $1 mn, RB = 40% and
σ = 30%.

7We have limx→∞ γ (s, x) = Γ (s).
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Figure 3: Evolution of the CVA with respect to maturity T and intensity λB
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Question 6

By assuming that the default time of Bank A is exponential with parameter
λA, deduce the value of the DVA without additional computations.
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We notice that the mark-to-market is perfectly symmetric about 0. We
deduce that the expected negative exposure EnE (t) is equal to the
expected positive exposure EpE (t). It follows that the DVA is equal to:

DVA =
N (1−RA)σγ

(
3
2 , λAT

)
4
√
λA
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Exercise

We consider a sample of n individual losses {x1, . . . , xn}. We assume that they can be
described by different probability distributions:

(i) X follows a log-normal distribution LN
(
µ, σ2

)
.

(ii) X follows a Pareto distribution P
(
α, x−

)
defined by:

Pr {X ≤ x} = 1−
(

x

x−

)−α

with x ≥ x− and α > 0.

(iii) X follows a gamma distribution Γ (α, β) defined by:

Pr {X ≤ x} =

∫ x

0

βαtα−1e−βt

Γ (α)
dt

with x ≥ 0, α > 0 and β > 0.

(iv) The natural logarithm of the loss X follows a gamma distribution: lnX ∼ Γ (α;β).
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Question 1

We consider the case (i).

(i) X follows a log-normal distribution LN
(
µ, σ2

)
.
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Question 1.a

Show that the probability density function is:

f (x) =
1

xσ
√

2π
exp

(
−1

2

(
ln x − µ

σ

)2
)
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The density of the Gaussian distribution Y ∼ N
(
µ, σ2

)
is:

g (y) =
1

σ
√

2π
exp

(
−1

2

(
y − µ
σ

)2
)

Let X ∼ LN
(
µ, σ2

)
. We have X = expY . It follows that:

f (x) = g (y)

∣∣∣∣dydx
∣∣∣∣

with y = ln x . We deduce that:

f (x) =
1

σ
√

2π
exp

(
−1

2

(
y − µ
σ

)2
)
× 1

x

=
1

xσ
√

2π
exp

(
−1

2

(
ln x − µ

σ

)2
)
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Question 1.b

Calculate the two first moments of X . Deduce the orthogonal conditions
of the generalized method of moments.
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For m ≥ 1, the non-centered moment is equal to:

E [Xm] =

∫ ∞
0

xm
1

xσ
√

2π
exp

(
−1

2

(
ln x − µ

σ

)2
)

dx
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By considering the change of variables y = σ−1 (ln x − µ) and
z = y −mσ, we obtain:

E [Xm] =

∫ ∞
−∞

emµ+mσy 1√
2π

e−
1
2 y

2

dy

= emµ ×
∫ ∞
−∞

1√
2π

e−
1
2 y

2+mσy dy

= emµ × e
1
2 m

2σ2

×
∫ ∞
−∞

1√
2π

e−
1
2 (y−mσ)2

dy

= emµ+ 1
2 m

2σ2

×
∫ ∞
−∞

1√
2π

exp

(
−1

2
z2

)
dz

= emµ+ 1
2 m

2σ2
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We deduce that:
E [X ] = eµ+ 1

2σ
2

and:

var (X ) = E
[
X 2
]
− E2 [X ]

= e2µ+2σ2

− e2µ+σ2

= e2µ+σ2
(
eσ

2

− 1
)

We can estimate the parameters µ and σ with the generalized method of
moments by using the following empirical moments: hi,1 (µ, σ) = xi − eµ+ 1

2σ
2

hi,2 (µ, σ) =
(
xi − eµ+ 1

2σ
2
)2

− e2µ+σ2
(
eσ

2 − 1
)
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Question 1.c

Find the maximum likelihood estimators µ̂ and σ̂.
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The log-likelihood function of the sample {x1, . . . , xn} is:

` (µ, σ) =
n∑

i=1

ln f (xi )

= −n

2
lnσ2 − n

2
ln 2π −

n∑
i=1

ln xi −
1

2

n∑
i=1

(
ln xi − µ

σ

)2

To find the ML estimators µ̂ and σ̂, we can proceed in two different way.
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#1 X ∼ LN
(
µ, σ2

)
implies that Y = lnX ∼ N

(
µ, σ2

)
. We know that

the ML estimators µ̂ and σ̂ associated to Y are:

µ̂ =
1

n

n∑
i=1

yi

σ̂ =

√√√√1

n

n∑
i=1

(yi − µ̂)2

We deduce that the ML estimators µ̂ and σ̂ associated to the sample
{x1, . . . , xn} are:

µ̂ =
1

n

n∑
i=1

ln xi

σ̂ =

√√√√1

n

n∑
i=1

(ln xi − µ̂)2
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#2 We maximize the log-likelihood function. The first-order conditions
are ∂µ ` (µ, σ) = 0 and ∂σ ` (µ, σ) = 0. We deduce that:

∂µ ` (µ, σ) =
1

σ2

n∑
i=1

(ln xi − µ) = 0

and:

∂σ ` (µ, σ) = − n

σ
+

n∑
i=1

(ln xi − µ)2

σ3
= 0

We finally obtain:

µ̂ =
1

n

n∑
i=1

ln xi

and:

σ̂ =

√√√√1

n

n∑
i=1

(ln xi − µ̂)2
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Question 2

We consider the case (ii).

(ii) X follows a Pareto distribution P (α, x−) defined by:

Pr {X ≤ x} = 1−
(

x

x−

)−α
with x ≥ x− and α > 0.
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Question 2.a

Calculate the two first moments of X . Deduce the GMM conditions for
estimating the parameter α.
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The probability density function is:

f (x) =
∂ Pr {X ≤ x}

∂ x

= α
x−(α+1)

x−α−

For m ≥ 1, we have:

E [Xm] =

∫ ∞
x−

xmα
x−(α+1)

x−α−
dx

=
α

x−α−

∫ ∞
x−

xm−α−1 dx

=
α

x−α−

[
xm−α

m − α

]∞
x−

=
α

α−m
xm−
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We deduce that:
E [X ] =

α

α− 1
x−

and:

var (X ) = E
[
X 2
]
− E2 [X ]

=
α

α− 2
x2
− −

(
α

α− 1
x−

)2

=
α

(α− 1)2 (α− 2)
x2
−
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We can then estimate the parameter α by considering the following
empirical moments:

hi,1 (α) = xi −
α

α− 1
x−

hi,2 (α) =

(
xi −

α

α− 1
x−

)2

− α

(α− 1)2 (α− 2)
x2
−

The generalized method of moments can consider either the first moment
hi,1 (α), the second moment hi,2 (α) or the joint moments
(hi,1 (α) , hi,2 (α)). In the first case, the estimator is:

α̂ =

∑n
i=1 xi∑n

i=1 xi − nx−
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Question 2.b

Find the maximum likelihood estimator α̂.
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The log-likelihood function is:

` (α) =
n∑

i=1

ln f (xi ) = n lnα− (α + 1)
n∑

i=1

ln xi + nα ln x−

The first-order condition is:

∂α ` (α) =
n

α
−

n∑
i=1

ln xi +
n∑

i=1

ln x− = 0

We deduce that:

n = α
n∑

i=1

ln
xi
x−

The ML estimator is then:

α̂ =
n∑n

i=1 (ln xi − ln x−)
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Question 3

We consider the case (iii). Write the log-likelihood function associated to
the sample of individual losses {x1, . . . , xn}. Deduce the first-order
conditions of the maximum likelihood estimators α̂ and β̂.

(iii) X follows a gamma distribution Γ (α, β) defined by:

Pr {X ≤ x} =

∫ x

0

βαtα−1e−βt

Γ (α)
dt

with x ≥ 0, α > 0 and β > 0.
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The probability density function of (iii) is:

f (x) =
∂ Pr {X ≤ x}

∂ x
=
βαxα−1e−βx

Γ (α)

It follows that the log-likelihood function is:

` (α, β) =
n∑

i=1

ln f (xi ) = −n ln Γ (α) + nα lnβ + (α− 1)
n∑

i=1

ln xi − β
n∑

i=1

xi

The first-order conditions ∂α ` (α, β) = 0 and ∂β ` (α, β) = 0 imply that:

n

(
lnβ − Γ′ (α)

Γ (α)

)
+

n∑
i=1

ln xi = 0

and:

n
α

β
−

n∑
i=1

xi = 0
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Question 4

We consider the case (iv). Show that the probability density function of X
is:

f (x) =
βα (ln x)α−1

Γ (α) xβ+1

What is the support of this probability density function? Write the
log-likelihood function associated to the sample of individual losses
{x1, . . . , xn}.

(iv) The natural logarithm of the loss X follows a gamma distribution:
lnX ∼ Γ (α;β).
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Let Y ∼ Γ (α, β) and X = expY . We have:

fX (x) |dx | = fY (y) |dy |

where fX and fY are the probability density functions of X and Y . We
deduce that:

fX (x) =
βαyα−1e−βy

Γ (α)
× 1

ey

=
βα (ln x)α−1 e−β ln x

xΓ (α)

=
βα (ln x)α−1

Γ (α) xβ+1

The support of this probability density function is [0,+∞).
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The log-likelihood function associated to the sample of individual losses
{x1, . . . , xn} is:

` (α, β) =
n∑

i=1

ln f (xi )

= −n ln Γ (α) + nα lnβ + (α− 1)
n∑

i=1

ln (ln xi )− (β + 1)
n∑

i=1

ln xi
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Question 5

We now assume that the losses {x1, . . . , xn} have been collected beyond a
threshold H meaning that X ≥ H.
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Question 5.a

What becomes the generalized method of moments in the case (i).

(i) X follows a log-normal distribution LN
(
µ, σ2

)
.
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Using Bayes’ formula, we have:

Pr {X ≤ x | X ≥ H} =
Pr {H ≤ X ≤ x}

Pr {X ≥ H}

=
F (x)− F (H)

1− F (H)

where F is the cdf of X . We deduce that the conditional probability
density function is:

f (x | X ≥ H) = ∂x Pr {X ≤ x | X ≥ H}

=
f (x)

1− F (H)
× 1 {x ≥ H}
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For the log-normal probability distribution, we obtain:

f (x | X ≥ H) =
1

1− Φ
(

ln H−µ
σ

) × 1

σ
√

2π
e−

1
2 ( ln x−µ

σ )2

dx

= ϕ× 1

σ
√

2π
e−

1
2 ( ln x−µ

σ )2

dx
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Estimation of the loss severity distribution

We note Mm (µ, σ) the conditional moment E [Xm | X ≥ H]. We have:

Mm (µ, σ) = ϕ×
∫ ∞
H

xm−1

σ
√

2π
e−

1
2 ( ln x−µ

σ )2

dx

= ϕ×
∫ ∞

ln H

1

σ
√

2π
e−

1
2 ( x−µ

σ )2
+mx dx

= ϕ× emµ+ 1
2 m

2σ2

×
∫ ∞

ln H

1

σ
√

2π
e−

1
2

(x−(µ+mσ2))2

σ2 dx

=
1− Φ

(
ln H−µ−mσ2

σ

)
1− Φ

(
ln H−µ
σ

) emµ+ 1
2 m

2σ2
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The first two moments of X | X ≥ H are then:

M1 (µ, σ) = E [X | X ≥ H] =
1− Φ

(
ln H−µ−σ2

σ

)
1− Φ

(
ln H−µ
σ

) eµ+ 1
2σ

2

and:

M2 (µ, σ) = E
[
X 2 | X ≥ H

]
=

1− Φ
(

ln H−µ−2σ2

σ

)
1− Φ

(
ln H−µ
σ

) e2µ+2σ2
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We can therefore estimate µ and σ by considering the following empirical
moments:{

hi,1 (µ, σ) = xi −M1 (µ, σ)

hi,2 (µ, σ) = (xi −M1 (µ, σ))2 −
(
M2 (µ, σ)−M2

1 (µ, σ)
)
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Question 5.b

Calculate the maximum likelihood estimator α̂ in the case (ii).

(ii) X follows a Pareto distribution P (α, x−) defined by:

Pr {X ≤ x} = 1−
(

x

x−

)−α
with x ≥ x− and α > 0.
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We have:

f (x | X ≥ H) =
f (x)

1− F (H)
× 1 {x ≥ H}

=

(
α
x−(α+1)

x−α−

)/(
H−α

x−α−

)

= α
x−(α+1)

H−α

The conditional probability function is then a Pareto distribution with the
same parameter α but with a new threshold x− = H. We can then deduce
that the ML estimator α̂ is:

α̂ =
n(∑n

i=1 ln xi
)
− n lnH

Thierry Roncalli, Irinah Ratsimbazafy Financial Risk Management (Tutorial Class — Session 4) 230 / 413



Operational Risk
Asset Liability Management Risk

Estimation of the loss severity distribution
Estimation of the loss frequency distribution

Estimation of the loss severity distribution

Question 5.c

Write the log-likelihood function in the case (iii).

(iii) X follows a gamma distribution Γ (α, β) defined by:

Pr {X ≤ x} =

∫ x

0

βαtα−1e−βt

Γ (α)
dt

with x ≥ 0, α > 0 and β > 0.
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The conditional probability density function is:

f (x | X ≥ H) =
f (x)

1− F (H)
× 1 {x ≥ H}

=

(
βαxα−1e−βx

Γ (α)

)/∫ ∞
H

βαtα−1e−βt

Γ (α)
dt

=
βαxα−1e−βx∫∞

H
βαtα−1e−βt dt

We deduce that the log-likelihood function is:

` (α, β) = nα lnβ − n ln

(∫ ∞
H

βαtα−1e−βt dt

)
+

(α− 1)
n∑

i=1

ln xi − β
n∑

i=1

xi
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Exercise

We consider a dataset of individual losses {x1, . . . , xn} corresponding to a
sample of T annual loss numbers {NY1 , . . . ,NYT

}. This implies that:

T∑
t=1

NYt = n

If we measure the number of losses per quarter {NQ1 , . . . ,NQ4T
}, we use

the notation:
4T∑
t=1

NQt = n
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Question 1

We assume that the annual number of losses follows a Poisson distribution
P (λY ). Calculate the maximum likelihood estimator λ̂Y associated to the
sample {NY1 , . . . ,NYT

}.
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We have:

Pr {N = n} = e−λY
λnY
n!

We deduce that the expression of the log-likelihood function is:

` (λY ) =
T∑
t=1

ln Pr {N = NYt} = −λYT +

(
T∑
t=1

NYt

)
lnλY −

T∑
t=1

ln (NYt !)

The first-order condition is:

∂ ` (λY )

∂ λY
= −T +

1

λY

(
T∑
t=1

NYt

)
= 0

We deduce that the ML estimator is:

λ̂Y =
1

T

T∑
t=1

NYt =
n

T
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Question 2

We assume that the quarterly number of losses follows a Poisson
distribution P (λQ). Calculate the maximum likelihood estimator λ̂Q
associated to the sample {NQ1 , . . . ,NQ4T

}.
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Using the same arguments, we obtain:

λ̂Q =
1

4T

4T∑
t=1

NQt =
n

4T
=
λ̂Y
4
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Question 3

What is the impact of considering a quarterly or annual basis on the
computation of the capital charge?
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Considering a quarterly or annual basis has no impact on the capital
charge. Indeed, the capital charge is computed with a one-year time
horizon. If we use a quarterly basis, we have to find the distribution of the
annual loss number. In this case, the annual loss number is the sum of the
four quarterly loss numbers:

NY = NQ1 + NQ2 + NQ3 + NQ4

We know that each quarterly loss number follows a Poisson distribution

P
(
λ̂Q

)
and that they are independent. Because the Poisson distribution

is infinitely divisible, we obtain:

NQ1 + NQ2 + NQ3 + NQ4 ∼ P
(

4λ̂Q
)

We deduce that the annual loss number follows a Poisson distribution
P
(
λ̂Y

)
in both cases.
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Question 4

What does this result become if we consider a method of moments based
on the first moment?
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Since we have E [P (λ)] = λ, the MM estimator in the case of annual loss
numbers is:

λ̂Y =
1

T

T∑
t=1

NYt =
n

T

The MM estimator is exactly the ML estimator.
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Question 5

Same question if we consider a method of moments based on the second
moment.
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Since we have var (P (λ)) = λ, the MM estimator in the case of annual
loss numbers is:

λ̂Y =
1

T

T∑
t=1

N2
Yt
− n2

T 2

If we use a quarterly basis, we obtain:

λ̂Q =
1

4

(
1

T

4T∑
t=1

N2
Qt
− n2

4T 2

)

6= λ̂Y
4

There is no reason that λ̂Y = 4λ̂Q meaning that the capital charge will
not be the same.
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Exercise

In what follows, we consider a debt instrument, whose remaining maturity
is equal to m. We note t the current date and T = t + m the maturity
date.
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Computation of the amortization functions

Question 1

We consider a bullet repayment debt. Define its amortization function
S (t, u). Calculate the survival function S? (t, u) of the stock. Show that:

S? (t, u) = 1 {t ≤ u < t + m} ·
(

1− u − t

m

)
in the case where the new production is constant. Comment on this result.
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By definition, we have:

S (t, u) = 1 {t ≤ u < t + m} =

{
1 if u ∈ [t, t + m[
0 otherwise

This means that the survival function is equal to one when u is between
the current date t and the maturity date T = t + m. When u reaches T ,
the outstanding amount is repaid, implying that S (t,T ) is equal to zero.
It follows that:

S? (t, u) =

∫ t

−∞NP (s) S (s, u) ds∫ t

−∞NP (s) S (s, t) ds

=

∫ t

−∞NP (s) · 1 {s ≤ u < s + m} ds∫ t

−∞NP (s) · 1 {s ≤ t < s + m} ds
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For the numerator, we have:

1 {s ≤ u < s + m} = 1 ⇒ u < s + m

⇔ s > u −m

and: ∫ t

−∞
NP (s) · 1 {s ≤ u < s + m} ds =

∫ t

u−m
NP (s) ds
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For the denominator, we have:

1 {s ≤ t < s + m} = 1 ⇒ t < s + m

⇔ s > t −m

and: ∫ t

−∞
NP (s) · 1 {s ≤ t < s + m} ds =

∫ t

t−m
NP (s) ds

We deduce that:

S? (t, u) = 1 {t ≤ u < t + m} ·
∫ t

u−m NP (s) ds∫ t

t−m NP (s) ds
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In the case where the new production is a constant, we have NP (s) = c
and:

S? (t, u) = 1 {t ≤ u < t + m} ·
∫ t

u−m ds∫ t

t−m ds

= 1 {t ≤ u < t + m} ·
[
s
]t
u−m[

s
]t
t−m

= 1 {t ≤ u < t + m} ·
(
t − u + m

t − t + m

)
= 1 {t ≤ u < t + m} ·

(
1− u − t

m

)
The survival function S? (t, u) corresponds to the case of a linear
amortization.
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Question 2

Same question if we consider a debt instrument, whose amortization rate
is constant.
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If the amortization is linear, we have:

S (t, u) = 1 {t ≤ u < t + m} ·
(

1− u − t

m

)
We deduce that:

S? (t, u) = 1 {t ≤ u < t + m} ·

∫ t

u−m
NP (s)

(
1− u − s

m

)
ds∫ t

t−m
NP (s)

(
1− t − s

m

)
ds

In the case where the new production is a constant, we obtain:

S? (t, u) = 1 {t ≤ u < t + m} ·

∫ t

u−m

(
1− u − s

m

)
ds∫ t

t−m

(
1− t − s

m

)
ds
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For the numerator, we have:∫ t

u−m

(
1− u − s

m

)
ds =

[
s − su

m
+

s2

2m

]t
u−m

=

(
t − tu

m
+

t2

2m

)
−(

u −m − u2 −mu

m
+

(u −m)2

2m

)

=

(
t − tu

m
+

t2

2m

)
−
(
u − m

2
− u2

2m

)
=

m2 + u2 + t2 + 2mt − 2mu − 2tu

2m

=
(m − u + t)2

2m
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For the denominator, we use the previous result and we set u = t:∫ t

t−m

(
1− t − s

m

)
ds =

(m − t + t)2

2m

=
m

2
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We deduce that:

S? (t, u) = 1 {t ≤ u < t + m} ·

(m − u + t)2

2m
m

2

= 1 {t ≤ u < t + m} · (m − u + t)2

m2

= 1 {t ≤ u < t + m} ·
(

1− u − t

m

)2

The survival function S? (t, u) corresponds to the case of a parabolic
amortization.
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Question 3

Same question if we assumea that the amortization function is exponential
with parameter λ.

aBy definition of the exponential amortization, we have m = +∞.
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If the amortization is exponential, we have:

S (t, u) = e−
∫ u
t
λ ds = e−λ(u−t)

It follows that:

S? (t, u) =

∫ t

−∞NP (s) e−λ(u−s) ds∫ t

−∞NP (s) e−λ(t−s) ds

In the case where the new production is a constant, we obtain:

S? (t, u) =

∫ t

−∞ e−λ(u−s) ds∫ t

−∞ e−λ(t−s) ds

=

[
λ−1e−λ(u−s)

]t
−∞[

λ−1e−λ(t−s)
]t
−∞

= e−λ(u−t)

= S (t, u)

The stock amortization function is equal to the flow amortization function.
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Question 4

Find the expression of D? (t) when the new production is constant.
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We recall that the liquidity duration is equal to:

D (t) =

∫ ∞
t

(u − t) f (t, u) du

where f (t, u) is the density function associated to the survival function
S (t, u). For the stock, we have:

D? (t) =

∫ ∞
t

(u − t) f ? (t, u) du

where f ? (t, u) is the density function associated to the survival function
S? (t, u):

f ? (t, u) =

∫ t

−∞NP (s) f (s, u) ds∫ t

−∞NP (s) S (s, t) ds
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In the case where the new production is constant, we obtain:

D? (t) =

∫∞
t

(u − t)
∫ t

−∞ f (s, u) ds du∫ t

−∞ S (s, t) ds

Since we have
∫ t

−∞ f (s, u) ds = S (t, u), we deduce that:

D? (t) =

∫∞
t

(u − t) S (t, u) du∫ t

−∞ S (s, t) ds
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Question 5

Calculate the durations D (t) and D? (t) for the three previous cases.
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In the case of the bullet repayment debt, we have:

D (t) = m

and:

D? (t) =

∫ t+m

t
(u − t) du∫ t

t−m ds

=

[
1
2 (u − t)2

]t+m

t[
s
]t
t−m

=
m

2
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In the case of the linear amortization, we have:

f (t, u) = 1 {t ≤ u < t + m} · 1

m

and:

D (t) =

∫ t+m

t

(u − t)

m
du

=
1

m

[
1

2
(u − t)2

]t+m

t

=
m

2
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For the stock duration, we deduce that

D? (t) =

∫ t+m

t

(u − t)

(
1− u − t

m

)
du∫ t

t−m

(
1− t − s

m

)
ds

=

∫ t+m

t

(
u − t − u2

m
+ 2

tu

m
− t2

m

)
du∫ t

t−m

(
1− t

m
+

s

m

)
ds

=

[
u2

2
− tu − u3

3m
+

tu2

m
− t2u

m

]t+m

t[
s − st

m
+

s2

2m

]t
t−m
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The numerator is equal to:

(∗) =

[
u2

2
− tu − u3

3m
+

tu2

m
− t2u

m

]t+m

t

=
1

6m

[
3mu2 − 6mtu − 2u3 + 6tu2 − 6t2u

]t+m

t

=
1

6m

(
m3 − 3mt2 − 2t3

)
+

1

6m

(
3mt2 + 2t3

)
=

m2

6
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The denominator is equal to:

(∗) =

[
s − st

m
+

s2

2m

]t
t−m

=
1

2m

[
s2 − 2s (t −m)

]t
t−m

=
1

2m

(
t2 − 2t (t −m)− (t −m)2 + 2 (t −m)2

)
=

1

2m

(
t2 − 2t2 + 2mt + t2 − 2mt + m2

)
=

m

2
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We deduce that:
D? (t) =

m

3
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Computation of the amortization functions

For the exponential amortization, we have:

f (t, u) = λe−λ(u−t)

and8:

D (t) =

∫ ∞
t

(u − t)λe−λ(u−t) du =

∫ ∞
0

vλe−λv dv =
1

λ

For the stock duration, we deduce that:

D? (t) =

∫∞
t

(u − t) e−λ(u−t) du∫ t

−∞ e−λ(t−s) ds
=

∫∞
0

ve−λv dv∫∞
0

e−λv dv
=

1

λ

We verify that D (t) = D? (t) since we have demonstrated that
S? (t, u) = S (t, u).

8We use the change of variable v = u − t.
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Computation of the amortization functions

Question 6

Calculate the corresponding dynamics dN (t).
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Computation of the amortization functions

In the case of the bullet repayment debt, we have:

dN (t) = (NP (t)−NP (t −m)) dt
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In the case of the linear amortization, we have:

f (s, t) =
1 {s ≤ t < s + m}

m

It follows that:∫ t

−∞
NP (s) f (s, t) ds =

1

m

∫ t

−∞
1 {s ≤ t < s + m} ·NP (s) ds

=
1

m

∫ t

t−m
NP (s) ds

We deduce that:

dN (t) =

(
NP (t)− 1

m

∫ t

t−m
NP (s) ds

)
dt
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For the exponential amortization, we have:

f (s, t) = λe−λ(t−s)

and: ∫ t

−∞
NP (s) f (s, t) ds =

∫ t

−∞
NP (s)λe−λ(t−s) ds

= λ

∫ t

−∞
NP (s) e−λ(t−s) ds

= λN (t)

We deduce that:
dN (t) = (NP (t)− λN (t)) dt
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Impact of prepayment

Exercise

We recall that the outstanding balance of a CAM (constant amortization
mortgage) at time t is given by:

N (t) = 1 {t < m} · N0 ·
1− e−i(m−t)

1− e−im

where N0 is the notional, i is the interest rate and m is the maturity.
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Impact of prepayment

Question 1

Find the dynamics dN (t).
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Impact of prepayment

We deduce that the dynamics of N (t) is equal to:

dN (t) = 1 {t < m} · N0
−ie−i(m−t)

1− e−im
dt

= −ie−i(m−t)

(
1 {t < m} · N0

1

1− e−im

)
dt

= − ie−i(m−t)

1− e−i(m−t)
N (t) dt

Thierry Roncalli, Irinah Ratsimbazafy Financial Risk Management (Tutorial Class — Session 4) 274 / 413



Operational Risk
Asset Liability Management Risk

Computation of the amortization functions S (t, u) and S? (t, u)
Impact of prepayment on the amortization scheme of the CAM

Impact of prepayment

Question 2

We note Ñ (t) the modified outstanding balance that takes into account
the prepayment risk. Let λp (t) be the prepayment rate at time t. Write

the dynamics of Ñ (t).
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Impact of prepayment

The prepayment rate has a negative impact on dN (t) because it reduces
the outstanding amount N (t):

dÑ (t) = − ie−i(m−t)

1− e−i(m−t)
Ñ (t) dt − λp (t) Ñ (t) dt
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Impact of prepayment

Question 3

Show that Ñ (t) = N (t) Sp (t) where Sp (t) is the prepayment-based
survival function.
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It follows that:

d lnÑ (t) = −
(

ie−i(m−t)

1− e−i(m−t)
+ λp (t)

)
dt

and:

lnÑ (t)− lnÑ (0) =

∫ t

0

−ie−i(m−s)

1− e−i(m−s)
ds −

∫ t

0

λp (s) ds

=

[
ln
(

1− e−i(m−s)
)]t

0

−
∫ t

0

λp (s) ds

= ln

(
1− e−i(m−t)

1− e−im

)
−
∫ t

0

λp (s) ds
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Impact of prepayment

We deduce that:

Ñ (t) =

(
N0

1− e−i(m−t)

1− e−im

)
e−

∫ t
0
λp(s) ds

= N (t) Sp (t)

where Sp (t) is the survival function associated to the hazard rate λp (t).
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Impact of prepayment

Question 4

Calculate the liquidity duration D̃ (t) associated to the outstanding balance
Ñ (t) when the hazard rate of prepayments is constant and equal to λp.
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Impact of prepayment

We have:

Ñ (t, u) = 1 {t ≤ u < t + m} · N (t)
1− e−i(t+m−u)

1− e−im
e−λp(u−t)

this implies that:

S̃ (t, u) = 1 {t ≤ u < t + m} · e
−λp(u−t) − e−im+(i−λp)(u−t)

1− e−im

and:

f̃ (t, u) = 1 {t ≤ u < t + m} · λpe
−λp(u−t) + (i − λp) e−im+(i−λp)(u−t)

1− e−im
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Impact of prepayment

It follows that:

D̃ (t) =
λp

1− e−im

∫ t+m

t

(u − t) e−λp(u−t) du +

(i − λp) e−im

1− e−im

∫ t+m

t

(u − t) e(i−λp)(u−t) du

=
λp

1− e−im

∫ m

0

ve−λpv dv +
(i − λp) e−im

1− e−im

∫ m

0

ve(i−λp)v dv

=
λp

1− e−im

(
me−λpm

−λp
− e−λpm − 1

λ2
p

)
+

(i − λp) e−im

1− e−im

(
me(i−λp)m

(i − λp)
− e(i−λp)m − 1

(i − λp)2

)

=
1

1− e−im

(
e−im − e−λpm

i − λp
+

1− e−λpm

λp

)
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because we have:∫ m

0

veαv dv =

[
veαv

α

]m
0

−
∫ m

0

eαv

α
dv

=

[
veαv

α

]m
0

−
[
eαv

α2

]m
0

=
meαm

α
− eαm − 1

α2
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Exercise

We consider the bivariate Pareto distribution:

F (x1, x2) = 1−
(
θ1 + x1

θ1

)−α
−
(
θ2 + x2

θ2

)−α
+(

θ1 + x1

θ1
+
θ2 + x2

θ2
− 1

)−α
where x1 ≥ 0, x2 ≥ 0, θ1 > 0, θ2 > 0 and α > 0.
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Question 1

Show that the marginal functions of F (x1, x2) correspond to univariate
Pareto distributions.
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The bivariate Pareto copula

We have:

F1 (x1) = Pr {X1 ≤ x1}
= Pr {X1 ≤ x1,X2 ≤ ∞}
= F (x1,∞)

We deduce that:

F1 (x1) = 1−
(
θ1 + x1

θ1

)−α
−
(
θ2 +∞
θ2

)−α
+(

θ1 + x1

θ1
+
θ2 +∞
θ2

− 1

)−α
= 1−

(
θ1 + x1

θ1

)−α
We conclude that F1 (and F2) is a Pareto distribution.
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Question 2

Find the copula function associated to the bivariate Pareto distribution.
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We have:
C (u1, u2) = F

(
F−1

1 (u1) ,F−1
2 (u2)

)
It follows that:

1−
(
θ1 + x1

θ1

)−α
= u1

⇔
(
θ1 + x1

θ1

)−α
= 1− u1

⇔ θ1 + x1

θ1
= (1− u1)−1/α

We deduce that:

C (u1, u2) = 1− (1− u1)− (1− u2) +(
(1− u1)−1/α + (1− u2)−1/α − 1

)−α
= u1 + u2 − 1 +

(
(1− u1)−1/α + (1− u2)−1/α − 1

)−α
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Question 3

Deduce the copula density function.
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We have:

∂ C (u1, u2)

∂ u1
= 1− α

(
(1− u1)−1/α + (1− u2)−1/α − 1

)−α−1

×(
− 1

α

)
(1− u1)−1/α−1 × (−1)

= 1−
(

(1− u1)−1/α + (1− u2)−1/α − 1
)−α−1

×

(1− u1)−1/α−1
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We deduce that the probability density function of the copula is:

c (u1, u2) =
∂2 C (u1, u2)

∂ u1 ∂ u2

= − (−α− 1)
(

(1− u1)−1/α + (1− u2)−1/α − 1
)−α−2

×(
− 1

α

)
(1− u2)−1/α−1 × (−1)× (1− u1)−1/α−1

=

(
α + 1

α

)(
(1− u1)−1/α + (1− u2)−1/α − 1

)−α−2

×

(1− u1 − u2 + u1u2)−1/α−1
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Remark

Another expression of c (u1, u2) is:

c (u1, u2) =

(
α + 1

α

)
((1− u1) (1− u2))1/α ×(

(1− u1)1/α + (1− u2)1/α − (1− u1)1/α (1− u2)1/α
)−α−2
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In this Figure, we have reported the density of the Pareto copula when α is
equal to 1 and 10.
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Question 4

Show that the bivariate Pareto copula function has no lower tail
dependence, but an upper tail dependence.
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We have:

λ− = lim
u→0+

C (u, u)

u

= 2 lim
u→0+

∂ C (u, u)

∂ u1

= 2 lim
u→0+

1−
(

(1− u)−1/α + (1− u)−1/α − 1
)−α−1

(1− u)−1/α−1

= 2 lim
u→0+

(1− 1)

= 0
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We have:

λ+ = lim
u→1−

1− 2u + C (u, u)

1− u

= lim
u→1−

(
(1− u)−1/α + (1− u)−1/α − 1

)−α
1− u

= lim
u→1−

(
1 + 1− (1− u)1/α

)−α
= 2−α

The tail dependence coefficients λ− and λ+ are given with respect to the
parameter α in previous Figure. We deduce that the bivariate Pareto
copula function has no lower tail dependence (λ− = 0), but an upper tail
dependence (λ+ = 2−α).
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Question 5

Do you think that the bivariate Pareto copula family can reach the copula
functions C−, C⊥ and C+? Justify your answer.
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The bivariate Pareto copula family cannot reach C− because λ− is never
equal to 1. We notice that:

lim
α→∞

λ+ = 0

and
lim
α→0

λ+ = 1

This implies that the bivariate Pareto copula may reach C⊥ and C+ for
these two limit cases: α→∞ and α→ 0. In fact, α→ 0 does not
correspond to the copula C+ because λ− is always equal to 0.
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Question 6

Let X1 and X2 be two Pareto-distributed random variables, whose
parameters are (α1, θ1) and (α2, θ2).
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Question 6.a

Show that the linear correlation between X1 and X2 is equal to 1 if and
only if the parameters α1 and α2 are equal.
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We note U1 = F1 (X1) and U2 = F2 (X2). X1 and X2 are comonotonic if
and only if:

U2 = U1

We deduce that:

1−
(
θ2 + X2

θ2

)−α2

= 1−
(
θ1 + X1

θ1

)−α1

⇔
(
θ2 + X2

θ2

)−α2

=

(
θ1 + X1

θ1

)−α1

⇔ X2 = θ2

((
θ1 + X1

θ1

)α1/α2

− 1

)
We know that ρ 〈X1,X2〉 = 1 if and only if there is an increasing linear
relationship between X1 and X2. This implies that:

α1

α2
= 1
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Question 6.b

Show that the linear correlation between X1 and X2 can never reached the
lower bound −1.
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X1 and X2 are countermonotonic if and only if:

U2 = 1− U1

We deduce that: (
θ2 + X2

θ2

)−α2

= 1−
(
θ1 + X1

θ1

)−α1

⇔
(
θ2 + X2

θ2

)−α2

= 1−
(
θ1 + X1

θ1

)−α1

⇔ X2 = θ2

(1−
(
θ1 + X1

θ1

)−α1
)1/α2

− 1


It is not possible to obtain a decreasing linear function between X1 and X2.
This implies that ρ 〈X1,X2〉 > −1.
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Question 6.c

Build a new bivariate Pareto distribution by assuming that the marginal
distributions are P (α1, θ1) and P (α2, θ2) and the dependence is a
bivariate Pareto copula function with parameter α. What is the relevance
of this approach for building bivariate Pareto distributions?
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The bivariate Pareto copula

We have:

F′ (x1, x2) = C (F1 (x1) ,F2 (x2))

= 1−
(
θ1 + x1

θ1

)−α1

−
(
θ2 + x2

θ2

)−α2

+((
θ1 + x1

θ1

)α1/α

+

(
θ2 + x2

θ2

)α2/α

− 1

)−α
The traditional bivariate Pareto distribution F (x1, x2) is a special case of
F′ (x1, x2) when:

α1 = α2 = α

Using F′ instead of F, we can control the tail dependence, but also the
univariate tail index of the two margins.
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Calculation of correlation bounds

Question 1

Give the mathematical definition of the copula functions C−, C⊥ and C+.
What is the probabilistic interpretation of these copulas?
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We have:

C− (u1, u2) = max (u1 + u2 − 1, 0)

C⊥ (u1, u2) = u1u2

C+ (u1, u2) = min (u1, u2)

Let X1 and X2 be two random variables. We have:

(i) C 〈X1,X2〉 = C− if and only if there exists a non-increasing function f
such that we have X2 = f (X1);

(ii) C 〈X1,X2〉 = C⊥ if and only if X1 and X2 are independent;

(iii) C 〈X1,X2〉 = C+ if and only if there exists a non-decreasing function
f such that we have X2 = f (X1).
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Question 2

We note τ and LGD the default time and the loss given default of a
counterparty. We assume that τ ∼ E (λ) and LGD ∼ U[0,1].
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Calculation of correlation bounds

We note U1 = 1− exp (−λτ ) and U2 = LGD.
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Question 2.a

Show that the dependence between τ and LGD is maximum when the
following equality holds:

LGD+e−λτ − 1 = 0
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Calculation of correlation bounds

The dependence between τ and LGD is maximum when we have
C 〈τ ,LGD〉 = C+. Since we have U1 = U2, we conclude that:

LGD+e−λτ − 1 = 0
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Question 2.b

Show that the linear correlation ρ (τ ,LGD) verifies the following
inequality:

|ρ 〈τ ,LGD〉| ≤
√

3

2
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Calculation of correlation bounds

We know that:

ρ 〈τ ,LGD〉 ∈ [ρmin 〈τ ,LGD〉 , ρmax 〈τ ,LGD〉]

where ρmin 〈τ ,LGD〉 (resp. ρmax 〈τ ,LGD〉) is the linear correlation
corresponding to the copula C− (resp. C+). It comes that:

E [τ ] = σ (τ ) =
1

λ

and:

E [LGD] =
1

2

σ (LGD) =

√
1

12
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In the case C 〈τ ,LGD〉 = C−, we have U1 = 1− U2. It follows that
LGD = e−λτ . We have:

E [τ LGD] = E
[
τ e−λτ

]
=

∫ ∞
0

te−λtλe−λt dt

=

∫ ∞
0

tλe−2λt dt

=

[
− te−2λt

2

]∞
0

+
1

2

∫ ∞
0

e−2λt dt

= 0 +
1

2

[
−e−2λt

2λ

]∞
0

=
1

4λ

We deduce that:

ρmin 〈τ ,LGD〉 =

(
1

4λ
− 1

2λ

)/(
1

λ

√
1

12

)
= −
√

3

2
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In the case C 〈τ ,LGD〉 = C+, we have LGD = 1− e−λτ . We have:

E [τ LGD] = E
[
τ
(
1− e−λτ

)]
=

∫ ∞
0

t
(
1− e−λt

)
λe−λt dt

=

∫ ∞
0

tλe−λt dt −
∫ ∞

0

tλe−2λt dt

=

([
−te−λt

]∞
0

+

∫ ∞
0

e−λt dt

)
− 1

4λ

= 0 +

[
−e−λt

λ

]∞
0

− 1

4λ

=
3

4λ

We deduce that:

ρmax 〈τ ,LGD〉 =

(
3

4λ
− 1

2λ

)/(
1

λ

√
1

12

)
=

√
3

2
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Calculation of correlation bounds

We finally obtain the following result:

|ρ 〈τ ,LGD〉| ≤
√

3

2
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Calculation of correlation bounds

Question 2.c

Comment on these results.
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Calculation of correlation bounds

We notice that |ρ 〈τ ,LGD〉| is lower than 86.6%, implying that the
bounds −1 and +1 can not be reached.
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Question 3

We consider two exponential default times τ 1 and τ 2 with parameters λ1

and λ2.
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Question 3.a

We assume that the dependence function between τ 1 and τ 2 is C+.
Demonstrate that the following relation is true:

τ 1 =
λ2

λ1
τ 2
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Calculation of correlation bounds

If the copula function of (τ 1, τ 2) is the Fréchet upper bound copula, τ 1

and τ 2 are comonotone. We deduce that:

U1 = U2 ⇐⇒ 1− e−λ1τ 1 = 1− e−λ2τ 2

and:

τ 1 =
λ2

λ1
τ 2
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Question 3.b

Show that there exists a function f such that τ 2 = f (τ 2) when the
dependence function is C−.
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We have U1 = 1− U2. It follows that S1 (τ 1) = 1− S2 (τ 2). We deduce
that:

e−λ1τ 1 = 1− e−λ2τ 2

and:

τ 1 =
− ln

(
1− e−λ2τ 2

)
λ1

There exists then a function f such that τ 1 = f (τ 2) with:

f (t) =
− ln

(
1− e−λ2t

)
λ1
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Question 3.c

Show that the lower and upper bounds of the linear correlation satisfy the
following relationship:

−1 < ρ 〈τ 1, τ 2〉 ≤ 1
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Using Question 2(b), we known that ρ ∈ [ρmin, ρmax] where ρmin and ρmax

are the correlations of (τ 1, τ 2) when the copula function is respectively
C− and C+. We also know that ρ = 1 (resp. ρ = −1) if there exists a
linear and increasing (resp. decreasing) function f such that τ 1 = f (τ 2).
When the copula is C+, we have f (t) = λ2

λ1
t and f ′ (t) = λ2

λ1
> 0. As it is

a linear and increasing function, we deduce that ρmax = 1. When the
copula is C−, we have:

f (t) =
− ln

(
1− e−λ2t

)
λ1

and:

f ′ (t) = −
λ2e
−λ2t ln

(
1− e−λ2t

)
λ1 (1− e−λ2t)

< 0

The function f (t) is decreasing, but it is not linear. We deduce that
ρmin 6= −1 and:

−1 < ρ ≤ 1
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Question 3.d

In the more general case, show that the linear correlation of a random
vector (X1,X2) can not be equal to −1 if the support of the random
variables X1 and X2 is [0,+∞].
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When the copula is C−, we know that there exists a decreasing function f
such that X2 = f (X1). We also know that the linear correlation reaches
the lower bound −1 if the function f is linear:

X2 = a + bX1

This implies that b < 0. When X1 takes the value +∞, we obtain:

X2 = a + b ×∞

As the lower bound of X2 is equal to zero 0, we deduce that a = +∞.
This means that the function f (x) = a + bx does not exist. We conclude
that the lower bound ρ = −1 can not be reached.
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Question 4

We assume that (X1,X2) is a Gaussian random vector where
X1 ∼ N

(
µ1, σ

2
1

)
, X2 ∼ N

(
µ2, σ

2
2

)
and ρ is the linear correlation between

X1 and X2. We note θ = (µ1, σ1, µ2, σ2, ρ) the set of parameters.
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Question 4.a

Find the probability distribution of X1 + X2.
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Calculation of correlation bounds

X1 +X2 is a Gaussian random variable because it is a linear combination of
the Gaussian random vector (X1,X2). We have:

E [X1 + X2] = µ1 + µ2

and:
var (X1 + X2) = σ2

1 + 2ρσ1σ2 + σ2
2

We deduce that:

X1 + X2 ∼ N
(
µ1 + µ2, σ

2
1 + 2ρσ1σ2 + σ2

2

)
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Question 4.b

Then show that the covariance between Y1 = eX1 and Y2 = eX2 is equal to:

cov (Y1,Y2) = eµ1+ 1
2σ

2
1eµ2+ 1

2σ
2
2 (eρσ1σ2 − 1)
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Calculation of correlation bounds

We have:

cov (Y1,Y2) = E [Y1Y2]− E [Y2]E [Y2]

= E
[
eX1+X2

]
− E [Y2]E [Y2]

We know that eX1+X2 is a lognormal random variable. We deduce that:

E
[
eX1+X2

]
= exp

(
E [X1 + X2] +

1

2
var (X1 + X2)

)
= exp

(
µ1 + µ2 +

1

2

(
σ2

1 + 2ρσ1σ2 + σ2
2

))
= eµ1+ 1

2σ
2
1eµ2+ 1

2σ
2
2eρσ1σ2

We finally obtain:

cov (Y1,Y2) = eµ1+ 1
2σ

2
1eµ2+ 1

2σ
2
2 (eρσ1σ2 − 1)

Thierry Roncalli, Irinah Ratsimbazafy Financial Risk Management (Tutorial Class — Session 5) 333 / 413



Copulas and Stochastic Dependence Modeling
Extreme Value Theory

Monte Carlo Simulation Methods
Stress Testing and Scenario Analysis

The bivariate Pareto copula
Calculation of correlation bounds

Calculation of correlation bounds

Question 4.c

Deduce the correlation between Y1 and Y2.
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Calculation of correlation bounds

We have:

ρ 〈Y1,Y2〉 =
eµ1+ 1

2σ
2
1eµ2+ 1

2σ
2
2 (eρσ1σ2 − 1)√

e2µ1+σ2
1

(
eσ

2
1 − 1

)√
e2µ2+σ2

2

(
eσ

2
2 − 1

)
=

eρσ1σ2 − 1√
eσ

2
1 − 1

√
eσ

2
2 − 1
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Question 4.d

For which values of θ does the equality ρ 〈Y1,Y2〉 = +1 hold? Same
question when ρ 〈Y1,Y2〉 = −1.
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Calculation of correlation bounds

ρ 〈Y1,Y2〉 is an increasing function with respect to ρ. We deduce that:

ρ 〈Y1,Y2〉 = 1⇐⇒ ρ = 1 and σ1 = σ2

The lower bound of ρ 〈Y1,Y2〉 is reached if ρ is equal to −1. In this case,
we have:

ρ 〈Y1,Y2〉 =
e−σ1σ2 − 1√

eσ
2
1 − 1

√
eσ

2
2 − 1

> −1

It follows that ρ 〈Y1,Y2〉 6= −1.
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Question 4.e

We consider the bivariate Black-Scholes model:{
dS1 (t) = µ1S1 (t) dt + σ1S1 (t) dW1 (t)
dS2 (t) = µ2S2 (t) dt + σ2S2 (t) dW2 (t)

with E [W1 (t)W2 (t)] = ρt. Deduce the linear correlation between S1 (t)
and S2 (t). Find the limit case limt→∞ ρ 〈S1 (t) ,S2 (t)〉.
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It is obvious that:

ρ 〈S1 (t) ,S2 (t)〉 =
eρσ1σ2t − 1√

eσ
2
1t − 1

√
eσ

2
2t − 1

In the case σ1 = σ2 and ρ = 1, we have ρ 〈S1 (t) ,S2 (t)〉 = 1. Otherwise,
we obtain:

lim
t→∞

ρ 〈S1 (t) ,S2 (t)〉 = 0
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Question 4.f

Comment on these results.
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In the case of lognormal random variables, the linear correlation does not
necessarily range between −1 and +1.
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Extreme value theory in the bivariate case

Question 1

What is an extreme value (EV) copula C?
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Extreme value theory in the bivariate case

An extreme value copula C satisfies the following relationship:

C
(
ut1, u

t
2

)
= Ct (u1, u2)

for all t > 0.
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Extreme value theory in the bivariate case

Question 2

Show that C⊥ and C+ are EV copulas. Why C− can not be an EV copula?
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Extreme value theory in the bivariate case

The product copula C⊥ is an EV copula because we have:

C⊥
(
ut1, u

t
2

)
= ut1u

t
2

= (u1u2)t

=
[
C⊥ (u1, u2)

]t
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Extreme value theory in the bivariate case

For the copula C+, we obtain:

C+
(
ut1, u

t
2

)
= min

(
ut1, u

t
2

)
=

{
ut1 if u1 ≤ u2

ut2 otherwise

= (min (u1, u2))t

=
[
C+ (u1, u2)

]t
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Extreme value theory in the bivariate case

However, the EV property does not hold for the Fréchet lower bound
copula C−:

C−
(
ut1, u

t
2

)
= max

(
ut1 + ut2 − 1, 0

)
6= max (u1 + u2 − 1, 0)t

Indeed, we have C− (0.5, 0.8) = max (0.5 + 0.8− 1, 0) = 0.3 and:

C−
(
0.52, 0.82

)
= max (0.25 + 0.64− 1, 0)

= 0

6= 0.32
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Question 3

We define the Gumbel-Hougaard copula as follows:

C (u1, u2) = exp

(
−
[
(− ln u1)θ + (− ln u2)θ

]1/θ
)

with θ ≥ 1. Verify that it is an EV copula.
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We have:

C
(
ut1, u

t
2

)
= exp

(
−
[(
− ln ut1

)θ
+
(
− ln ut2

)θ]1/θ
)

= exp

(
−
[
(−t ln u1)θ + (−t ln u2)θ

]1/θ
)

= exp

(
−t
[
(− ln u1)θ + (− ln u2)θ

]1/θ
)

=
(
e−[(− ln u1)θ+(− ln u2)θ]1/θ)t

= Ct (u1, u2)
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Question 4

What is the definition of the upper tail dependence λ? What is its
usefulness in multivariate extreme value theory?
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The upper tail dependence λ is defined as follows:

λ = lim
u→1+

1− 2u + C (u1, u2)

1− u

It measures the probability to have an extreme in one direction knowing
that we have already an extreme in the other direction. If λ is equal to 0,
extremes are independent and the EV copula is the product copula C⊥. If
λ is equal to 1, extremes are comonotonic and the EV copula is the
Fréchet upper bound copula C+. Moreover, the upper tail dependence of
the copula between the random variables is equal to the upper tail
dependence of the copula between the extremes.
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Question 5

Let f (x) and g (x) be two functions such that
limx→x0 f (x) = limx→x0 g (x) = 0. If g ′ (x0) 6= 0, L’Hospital’s rule states
that:

lim
x→x0

f (x)

g (x)
= lim

x→x0

f ′ (x)

g ′ (x)

Deduce that the upper tail dependence λ of the Gumbel-Hougaard copula
is 2− 21/θ. What is the correlation of two extremes when θ = 1?
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Using L’Hospital’s rule, we have:

λ = lim
u→1+

1− 2u + e−[(− ln u)θ+(− ln u)θ]1/θ

1− u

= lim
u→1+

1− 2u + e−[2(− ln u)θ]1/θ

1− u

= lim
u→1+

1− 2u + u21/θ

1− u

= lim
u→1+

0− 2 + 21/θu21/θ−1

−1

= lim
u→1+

2− 21/θu21/θ−1

= 2− 21/θ
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If θ is equal to 1, we obtain λ = 0. It comes that the EV copula is the
product copula. Extremes are then not correlated. This result is not
surprising because the Gumbel-Houggard copula is equal to the product
copula when θ = 1:

e−[(− ln u1)1+(− ln u2)1]1

= u1u2 = C⊥ (u1, u2)
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Question 6

We define the Marshall-Olkin copula as follows:

C (u1, u2) = u1−θ1
1 u1−θ2

2 min
(
uθ1

1 , u
θ2
2

)
with {θ1, θ2} ∈ [0, 1]2.

Thierry Roncalli, Irinah Ratsimbazafy Financial Risk Management (Tutorial Class — Session 5) 355 / 413



Copulas and Stochastic Dependence Modeling
Extreme Value Theory

Monte Carlo Simulation Methods
Stress Testing and Scenario Analysis

Extreme value theory in the bivariate case
Maximum domain of attraction in the bivariate case

Extreme value theory in the bivariate case

Question 6.a

Verify that it is an EV copula.
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We have:

C
(
ut1, u

t
2

)
= u

t(1−θ1)
1 u

t(1−θ2)
2 min

(
utθ1

1 , utθ2
2

)
=

(
u1−θ1

1

)t (
u1−θ2

2

)t (
min

(
uθ1

1 , u
θ2
2

))t
=

(
u1−θ1

1 u1−θ2
2 min

(
uθ1

1 , u
θ2
2

))t
= Ct (u1, u2)
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Question 6.b

Find the upper tail dependence λ of the Marshall-Olkin copula.
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If θ1 > θ2, we obtain:

λ = lim
u→1+

1− 2u + u1−θ1u1−θ2 min
(
uθ1 , uθ2

)
1− u

= lim
u→1+

1− 2u + u1−θ1u1−θ2uθ1

1− u

= lim
u→1+

1− 2u + u2−θ2

1− u

= lim
u→1+

0− 2 + (2− θ2) u1−θ2

−1

= lim
u→1+

2− 2u1−θ2 + θ2u
1−θ2

= θ2

If θ2 > θ1, we have λ = θ1. We deduce that the upper tail dependence of
the Marshall-Olkin copula is min (θ1, θ2).
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Question 6.c

What is the correlation of two extremes when min (θ1, θ2) = 0?
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If θ1 = 0 or θ2 = 0, we obtain λ = 0. It comes that the copula of the
extremes is the product copula. Extremes are then not correlated.
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Question 6.d

In which case are two extremes perfectly correlated?
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Two extremes are perfectly correlated when we have θ1 = θ2 = 1. In this
case, we obtain:

C (u1, u2) = min (u1, u2) = C+ (u1, u2)
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Question 1

We consider the following distributions of probability:

Distribution F (x)
Exponential E (λ) 1− e−λx

Uniform U[0,1] x

Pareto P (α, θ) 1−
(
θ+x
θ

)−α
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Question 1

For each distribution, we give the normalization parameters an and bn of
the Fisher-Tippet theorem and the corresponding limit distribution
distribution G (x):

Distribution an bn G (x)

Exponential λ−1 λ−1 ln n Λ (x) = e−e
−x

Uniform n−1 1− n−1 Ψ1 (x − 1) = ex−1

Pareto θα−1n1/α θn1/α − θ Φα

(
1 + x

α

)
= e−(1+ x

α )−α

We note G (x1, x2) the asymptotic distribution of the bivariate random
vector (X1,n:n,X2,n:n) where X1,i (resp. X2,i ) are iid random variables.
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Let (X1,X2) be a bivariate random variable whose probability distribution
is:

F (x1, x2) = C〈X1,X2〉 (F1 (x1) ,F2 (x2))

We know that the corresponding EV probability distribution is:

G (x1, x2) = C?〈X1,X2〉 (G1 (x1) ,G2 (x2))

where G1 and G2 are the two univariate EV probability distributions and
C?〈X1,X2〉 is the EV copula associated to C〈X1,X2〉.
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Question 1.a

What is the expression of G (x1, x2) when X1,i and X2,i are independent,
X1,i ∼ E (λ) and X2,i ∼ U[0,1]?
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We deduce that:

G (x1, x2) = C⊥ (G1 (x1) ,G2 (x2))

= Λ (x1) Ψ1 (x2 − 1)

= exp
(
−e−x1 + x2 − 1

)
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Question 1.b

Same question when X1,i ∼ E (λ) and X2,i ∼ P (θ, α).
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We have:

G (x1, x2) = Λ (x1) Φα

(
1 +

x2

α

)
= exp

(
−e−x1 −

(
1 +

x2

α

)−α)
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Question 1.c

Same question when X1,i ∼ U[0,1] and X2,i ∼ P (θ, α).
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We have:

G (x1, x2) = Ψ1 (x1 − 1) Φα

(
1 +

x2

α

)
= exp

(
x1 − 1−

(
1 +

x2

α

)−α)
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Question 2

What becomes the previous results when the dependence function between
X1,i and X2,i is the Normal copula with parameter ρ < 1?
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We know that the upper tail dependence is equal to zero for the Normal
copula when ρ < 1. We deduce that the EV copula is the product copula.
We then obtain the same results as previously.
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Question 3

Same question when the parameter of the Normal copula is equal to one.
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When the parameter ρ is equal to 1, the Normal copula is the Fréchet
upper bound copula C+, which is an EV copula. We deduce the following
results:

G (x1, x2) = min (Λ (x1) ,Ψ1 (x2 − 1))

= min
(
exp

(
−e−x1

)
, exp (x2 − 1)

)
(a)

G (x1, x2) = min
(

Λ (x1) ,Φα

(
1 +

x2

α

))
= min

(
exp

(
−e−x1

)
, exp

(
−
(

1 +
x2

α

)−α))
(b)

G (x1, x2) = min
(

Ψ1 (x1 − 1) ,Φα

(
1 +

x2

α

))
= min

(
exp (x2 − 1) , exp

(
−
(

1 +
x2

α

)−α))
(c)
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Question 4

Find the expression of G (x1, x2) when the dependence function is the
Gumbel-Hougaard copula.
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In the previous exercise, we have shown that the Gumbel-Houggard copula
is an EV copula.
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We deduce that:

G (x1, x2) = e−[(− ln Λ(x1))θ+(− ln Ψ1(x2−1))θ]1/θ

= exp

(
−
[
e−θx1 + (1− x2)θ

]1/θ
)

(a)

G (x1, x2) = e
−
[

(− ln Λ(x1))θ+(− ln Φα(1+
x2
α ))θ

]1/θ

= exp

(
−
[
e−θx1 +

(
1 +

x2

α

)−αθ]1/θ
)

(b)

G (x1, x2) = e
−
[

(− ln Ψ1(x1−1))θ+(− ln Φα(1+
x2
α ))θ

]1/θ

= exp

(
−
[

(1− x1)θ +
(

1 +
x2

α

)−αθ]1/θ
)

(c)
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Exercise

Let X = (X1,X2) be a standard Gaussian vector with correlation ρ. We
note U1 = Φ (X1) and U2 = Φ (X2).
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Question 1

We note Σ the matrix defined as follows:

Σ =

(
1 ρ
ρ 1

)
Calculate the Cholesky decomposition of Σ. Deduce an algorithm to
simulate X .
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P is a lower triangular matrix such that we have Σ = PP>. We know that:

P =

(
1 0

ρ
√

1− ρ2

)
We verify that:

PP> =

(
1 0

ρ
√

1− ρ2

)(
1 ρ

0
√

1− ρ2

)
=

(
1 ρ
ρ 1

)
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We deduce that: (
X1

X2

)
=

(
1 0

ρ
√

1− ρ2

)(
N1

N2

)
where N1 and N2 are two independent standardized Gaussian random
variables. Let n1 and n2 be two independent random variates, whose
probability distribution is N (0, 1). Using the Cholesky decomposition, we
deduce that can simulate X in the following way:{

x1 ← n1

x2 ← ρn1 +
√

1− ρ2n2
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Question 2

Show that the copula of (X1,X2) is the same that the copula of the
random vector (U1,U2).
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We have

C 〈X1,X2〉 = C 〈Φ (X1) ,Φ (X2)〉
= C 〈U1,U2〉

because the function Φ (x) is non-decreasing. The copula of U = (U1,U2)
is then the copula of X = (X1,X2).
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Question 3

Deduce an algorithm to simulate the Normal copula with parameter ρ.
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We deduce that we can simulate U with the following algorithm:{
u1 ← Φ (x1) = Φ (n1)

u2 ← Φ (x2) = Φ
(
ρn1 +

√
1− ρ2n2

)
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Question 4

Calculate the conditional distribution of X2 knowing that X1 = x . Then
show that:

Φ2 (x1, x2; ρ) =

∫ x1

−∞
Φ

(
x2 − ρx√

1− ρ2

)
φ (x) dx
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Let X3 be a Gaussian random variable, which is independent from X1 and
X2. Using the Cholesky decomposition, we know that:

X2 = ρX1 +
√

1− ρ2X3

It follows that:

Pr {X2 ≤ x2|X1 = x} = Pr
{
ρX1 +

√
1− ρ2X3 ≤ x2

∣∣∣X1 = x
}

= Pr

{
X3 ≤

x2 − ρx√
1− ρ2

}

= Φ

(
x2 − ρx√

1− ρ2

)
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Then we deduce that:

Φ2 (x1, x2; ρ) = Pr {X1 ≤ x1,X2 ≤ x2}

= Pr

{
X1 ≤ x1,X3 ≤

x2 − ρX1√
1− ρ2

}

= E

[
Pr

{
X1 ≤ x1,X3 ≤

x2 − ρX1√
1− ρ2

∣∣∣∣∣X1

}]

=

∫ x1

−∞
Φ

(
x2 − ρx√

1− ρ2

)
φ (x) dx
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Question 5

Deduce an expression of the Normal copula.
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Using the relationships u1 = Φ (x1), u2 = Φ (x2) and
Φ2 (x1, x2; ρ) = C (Φ (x1) ,Φ (x2) ; ρ), we obtain:

C (u1, u2; ρ) =

∫ Φ−1(u1)

−∞
Φ

(
Φ−1 (u2)− ρx√

1− ρ2

)
φ (x) dx

=

∫ u1

0

Φ

(
Φ−1 (u2)− ρΦ−1 (u)√

1− ρ2

)
du
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Question 6

Calculate the conditional copula function C2|1. Deduce an algorithm to
simulate the Normal copula with parameter ρ.
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We have:

C2|1 (u2 | u1) = ∂u1 C (u1, u2)

= Φ

(
Φ−1 (u2)− ρΦ−1 (u1)√

1− ρ2

)

Let v1 and v2 be two independent uniform random variates. The
simulation algorithm corresponds to the following steps:{

u1 = v1

C2|1 (u1, u2) = v2

We deduce that:{
u1 ← v1

u2 ← Φ
(
ρΦ−1 (v1) +

√
1− ρ2Φ−1 (v2)

)
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Question 7

Show that this algorithm is equivalent to the Cholesky algorithm found in
Question 3.
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We obtain the same algorithm, because we have the following
correspondence: {

v1 = Φ (n1)
v2 = Φ (n2)

The algorithm described in Question 6 is then a special case of the
Cholesky algorithm if we take n1 = Φ−1 (v1) and n2 = Φ−1 (v2). Whereas
n1 and n2 are directly simulated in the Cholesky algorithm with a Gaussian
random generator, they are simulated using the inverse transform in the
conditional distribution method.
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Question 1

We note an and bn the normalization constraints and G the limit
distribution of the Fisher-Tippet theorem.
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We recall that:

Pr

{
Xn:n − bn

an
≤ x

}
= Pr {Xn:n ≤ anx + bn}

= Fn (anx + bn)

and:
G (x) = lim

n→∞
Fn (anx + bn)
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Question 1.a

Find the limit distribution G when X ∼ E (λ), an = λ−1 and bn = λ−1 ln n.
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We have:

Fn (anx + bn) =
(

1− e−λ(λ−1x+λ−1 ln n)
)n

=

(
1− 1

n
e−x

)n

We deduce that:

G (x) = lim
n→∞

(
1− 1

n
e−x

)n

= e−e
−x

= Λ (x)
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Question 1.b

Same question when X ∼ U[0,1], an = n−1 and bn = 1− n−1.
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We have:

Fn (anx + bn) =
(
n−1x + 1− n−1

)n
=

(
1 +

1

n
(x − 1)

)n

We deduce that:

G (x) = lim
n→∞

(
1 +

1

n
(x − 1)

)n

= ex−1 = Ψ1 (x − 1)
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Question 1.c

Same question when X is a Pareto distribution:

F (x) = 1−
(
θ + x

θ

)−α
,

an = θα−1n1/α and bn = θn1/α − θ.
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We have:

Fn (anx + bn) =

(
1−

(
θ

θ + θα−1n1/αx + θn1/α − θ

)α)n

=

(
1−

(
1

α−1n1/αx + n1/α

)α)n

=

(
1− 1

n

(
1 +

x

α

)−α)n

We deduce that:

G (x) = lim
n→∞

(
1− 1

n

(
1 +

x

α

)−α)n

= e−(1+ x
α )−α = Φα

(
1 +

x

α

)
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Question 2

We denote by G the GEV probability distribution:

G (x) = exp

{
−
[

1 + ξ

(
x − µ
σ

)]−1/ξ
}

What is the interest of this probability distribution? Write the
log-likelihood function associated to the sample {x1, . . . , xT}.
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The GEV distribution encompasses the three EV probability distributions.
This is an interesting property, because we have not to choose between the
three EV distributions. We have:

g (x) =
1

σ

[
1 + ξ

(
x − µ
σ

)]−( 1+ξ
ξ )

exp

{
−
[

1 + ξ

(
x − µ
σ

)]− 1
ξ

}

We deduce that:

` = −n

2
lnσ2 −

(
1 + ξ

ξ

) n∑
i=1

ln

(
1 + ξ

(
xi − µ
σ

))
−

n∑
i=1

[
1 + ξ

(
xi − µ
σ

)]− 1
ξ
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Question 3

Show that for ξ → 0, the distribution G tends toward the Gumbel
distribution:

Λ (x) = exp

(
− exp

(
−
(
x − µ
σ

)))
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We notice that:
lim
ξ→0

(1 + ξx)−1/ξ = e−x

Then we obtain:

lim
ξ→0

G (x) = lim
ξ→0

exp

{
−
[

1 + ξ

(
x − µ
σ

)]−1/ξ
}

= exp

{
− lim
ξ→0

[
1 + ξ

(
x − µ
σ

)]−1/ξ
}

= exp

(
− exp

(
−
(
x − µ
σ

)))
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Question 4

We consider the minimum value of daily returns of a portfolio for a period
of n trading days. We then estimate the GEV parameters associated to the
sample of the opposite of the minimum values. We assume that ξ is equal
to 1.

Thierry Roncalli, Irinah Ratsimbazafy Financial Risk Management (Tutorial Class — Session 5) 409 / 413



Copulas and Stochastic Dependence Modeling
Extreme Value Theory

Monte Carlo Simulation Methods
Stress Testing and Scenario Analysis

Construction of a stress scenario with the GEV distribution

Construction of a stress scenario with the GEV distribution

Question 4.a

Show that we can approximate the portfolio loss (in %) associated to the
return period T with the following expression:

r (T ) ' −
(
µ̂+

(
T
n
− 1

)
σ̂

)
where µ̂ and σ̂ are the ML estimates of GEV parameters.
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We have:
G−1 (α) = µ− σξ−1

[
1− (− lnα)−ξ

]
When the parameter ξ is equal to 1, we obtain:

G−1 (α) = µ− σ
(

1− (− lnα)−1
)

By definition, we have T = (1− α)−1 n. The return period T is then
associate to the confidence level α = 1− n/T . We deduce that:

R (T ) ≈ −G−1 (1− n/t)

= −
(
µ− σ

(
1− (− ln (1− n/T ))−1

))
= −

(
µ+

(
T
n
− 1

)
σ

)
We then replace µ and σ by their ML estimates µ̂ and σ̂.
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Question 4.b

We set n equal to 21 trading days. We obtain the following results for two
portfolios:

Portfolio µ̂ σ̂ ξ
#1 1% 3% 1
#2 10% 2% 1

Calculate the stress scenario for each portfolio when the return period is
equal to one year. Comment on these results.
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For Portfolio #1, we obtain:

R (1Y) = −
(

1% +

(
252

21
− 1

)
× 3%

)
= −34%

For Portfolio #2, the stress scenario is equal to:

R (1Y) = −
(

10% +

(
252

21
− 1

)
× 2%

)
= −32%

We conclude that Portfolio #1 is more risky than Portfolio #2 if we
consider a stress scenario analysis.
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