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Abstract

In this article, we consider a new framework to understand risk-based portfolios
(GMV, EW, ERC and MDP). This framework is similar to the constrained minimum
variance model of Jurczenko et al. (2013), but with another definition of the diversi-
fication constraint. The corresponding optimization problem can then be solved using
the CCD algorithm. This allows us to extend the results of Cazalet et al. (2014) and
to better understand the trade-off relationships between volatility reduction, tracking
error and risk diversification. In particular, we show that the smart beta portfolios
differ because they implicitly target different levels of volatility reduction. We also
develop new smart beta strategies by managing the level of volatility reduction and
show that they present appealing properties compared with the traditional risk-based
portfolios.

Keywords: Smart beta, risk-based allocation, minimum variance portfolio, GMV, EW,
ERC, MDP, portfolio optimization, CCD algorithm.

JEL classification: C61, G11.

1 Introduction
The capital asset pricing model (CAPM) of Sharpe (1964) and the empirical study of Jensen
(1969) have been the backbone of passive management based on capitalization-weighted
(CW) portfolios. In this approach, there is a single market risk premium, measured by
the beta, and this risk premium compensates investors for holding non-diversifiable risk.
In the CAPM theory, an investor can capture the market risk premium by holding the
market portfolio. Applied to the universe of stocks, this justifies the strong development of
capitalization-weighed equity indices. But since CAPM was introduced, academic research
has put forward convincing evidence that CW portfolios are poorly diversified (1) and there
are systematic sources of return in the equity markets other than simply the market beta (2).
This justifies the strong development of smart beta in recent years. In fact, the term smart
beta refers to two different approaches. First, it includes alternative-weighted portfolios,
whose purpose is to be more diversified than CW portfolios. This smart beta approach
∗This article has been written for the book Risk-based and Factor Investing edited by Emmanuel Jur-

czenko.
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corresponds to the criticism (1) and it is also known as risk-based investing. Second, it
refers to portfolios that are designed intentionally to capture alternative risk premia other
the market risk premium, such as value, size, momentum, low beta or quality. This second
approach corresponds to the criticism (2) and it is also known as factor-based investing.

In this paper, we focus on risk-based portfolios1. The main objective of this smart beta
approach is to manage the risk more effectively than a CW index, and achieve a better
performance. At first sight, risk-based portfolios seem to be heterogeneous because there
are several notions of risk and each method considers one specific aspect of diversification.
However, we can show that both approaches aim to reduce the volatility compared with the
CW portfolio. This means that they are the solution to a minimum variance optimization
problem, but with a different weight constraint. Our paper highlights, therefore, the central
role of the minimum variance portfolio. Nevertheless, it is impossible to define a unique
minimum variance portfolio. In fact, there are many minimum variance portfolios as there
are smart beta products. In this situation, it is essential to have some metrics in order
to understand their differences. Using a global optimization program, we can measure the
different trade-off relationships between volatility reduction, tracking error, weight diversi-
fication and risk concentration. In particular, we can show that these minimum variance
portfolios behave differently because they do not target the same volatility reduction. Some
of them are very aggressive whereas others are closer to the CW portfolio. But once we
impose the same level of volatility reduction, the differences between smart beta portfolios
vanish even if they consider different weight constraints.

In risk-based investing, the key variable is then the level of volatility reduction. Because
the objective of the investor is (almost) always to obtain a better performance, the choice of
this parameter is crucial. This is why we also investigate how the performance of the portfolio
is related to the volatility reduction. We show that this relationship depends strongly on the
level of the market risk premium. Using this result, we can then build minimum variance
strategies by targeting a time-varying volatility reduction, which depends on the market
conditions.

The article is organized as follows. In section two, we show how the different risk-based
portfolios can be cast in a minimum variance problem. In section three, we propose a unique
optimization program in order to compare the diversification profile of smart beta strategies.
We then analyze their behavior and propose new smart beta strategies by dynamically
managing the objective of volatility reduction. Section five offers some concluding remarks.

2 Risk-based investing and variance minimization
Risk-based investing is generally associated with the concept of diversification. Because
diversification can not be measured by a single number, practitioners consider different
approaches. The most popular are the equally-weighted (EW) portfolio, the equal risk con-
tribution (ERC) portfolio and the most diversified portfolio (MDP). Each of these portfolios
maximizes a diversification measure. For instance, the MDP uses the diversification ra-
tio. The EW portfolio minimizes the concentration in terms of weights whereas the ERC
portfolio minimizes the concentration in terms of risk contributions.

1Even if the boundary between risk-based investing and factor-based investing is blurred in practice.
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Besides these three risk-based approaches, practitioners also consider the minimum vari-
ance (MV) portfolio2. In this case, the goal is to explicitly manage the volatility rather
than the diversification of the portfolio. But, as shown by Maillard et al. (2010), the EW
and ERC portfolios can also be interpreted as constrained MV portfolios. Jurczenko et al.
(2013) proposed a similar approach, which also encompasses the MDP. In particular, they
consider the following optimization problem:

x? (δ, γ) = arg min 1
2x
>Σx

u.c.
{ ∑n

i=1 σ
δ
i

(
x1−γ
i − 1

)
≥ c

1>x = 1

where Σ is the covariance matrix of asset returns and σi is the volatility of asset i. In this
optimization program, δ ≥ 0 and γ ≥ 0 are two given parameters and c is a scalar to be
determined. They obtain the following correspondence between the parameters (δ, γ) and
the risk-based portfolios x? (δ, γ):

Portfolio GMV EW ERC MDP
δ 0 0 0 1
γ 0 ∞ 1 0

In what follows, we consider an extension of the original optimization problem of Maillard
et al. (2010). Our model is related to the approach of Cazalet et al. (2014) and helps
to understand that risk-based portfolios are in fact minimum variance portfolios with a
diversification constraint. The goal of risk-based portfolios is then to reach a lower volatility
than the volatility of the capitalized-weighted portfolio. However, because each approach
consider a specific definition of the diversification, there is a trade-off between these different
measures of diversification.

2.1 MV portfolio
Global minimum variance (GMV) portfolios are never used by practitioners, because they
correspond to mathematical corner solutions that are concentrated in a few number of
assets. This is why minimum variance portfolios are always implemented by considering a
constrained optimization problem:

x? = arg min 1
2x
>Σx (1)

u.c.

 x ∈ C
1>x = 1
x ≥ 0

The constraints x ≥ 0 and 1>x = 1 imply that the portfolio is long-only. The management
of the weight concentration is specified by the constraint x ∈ C. There are of course different
ways to specify C. One of the popular approaches consists in using the Herfindahl index
defined by:

H (x) =
n∑
i=1

x2
i

2We note GMV the long-only global (or unconstrained) MV portfolio. This portfolio plays a special role
in limit cases of portfolio optimization.
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H (x) takes the value 1 if the portfolio is perfectly concentrated in one asset. Conversely,
H (x) takes the value 1/n if the portfolio is equally-weighted. We can therefore define the
weight diversification as:

Dw (x) = H−1 (x)
n

= 1
n
∑n
i=1 x

2
i

Using this diversification definition, the previous optimization problem becomes:

x? (c) = arg min 1
2x
>Σx (2)

u.c.

 Dw (x) ≥ c
1>x = 1
x ≥ 0

with c ∈ [1/n, 1]. We have x? (1/n) = xgmv and x? (1) = xew. Because σ (x? (c)) is an
increasing function of the parameter c, we deduce that:

σ (xgmv) ≤ σ (x? (c)) ≤ σ (xew)

Remark 1 We notice that the optimization program (2) is equivalent to solving this La-
grange problem:

y? (λ) = 1
2y
>Σy + λy>y (3)

u.c.
{

1>x = 1
x ≥ 0

with λ ≥ 0. In this case, the optimal solution x? (c) is equal to y? (λ) with the following
relationship:

c = 1
n
∑n
i=1 y

?
i (λ)2

If c ≤ cgmv =
(
nx>gmvxgmv

)−1, x? (c) = xgmv.

2.2 ERC portfolio
Let σ (x) =

√
x>Σx be the portfolio volatility. The risk contribution of asset i is defined by:

RCi = xi ·
∂ σ (x)
∂ xi

These risk contributions are key when performing risk allocation, because the sum of risk
contributions is exactly equal to the portfolio volatility:

n∑
i=1
RCi = σ (x)

In the ERC portfolio, the risk contributions are the same for all assets:

RCi = RCj
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Maillard et al. (2010) show that the ERC portfolio can be found by using the following
optimization program:

y? (c′) = arg min 1
2y
>Σy

u.c.
{ ∑n

i=1 ln yi ≥ c′
y ≥ 0

where c′ is a scalar. The ERC portfolio is then equal to the normalized portfolio y? (c′):

xerc = y? (c′)
1>y? (c′)

Let us now consider this second optimization program:

x? (c) = arg min 1
2x
>Σx (4)

u.c.


∑n
i=1 ln xi ≥ c

1>x = 1
x ≥ 0

where c ∈ ]−∞, n lnn]. Maillard et al. (2010) demonstrated that there exists a value of c
such that the optimized portfolio is the ERC portfolio. In this case, we have the following
relationship:

cerc = c′ − n ln
n∑
i=1

y?i (c′)

Roncalli (2013) also deduces that the optimized portfolio y? (c′) is a leveraged version of the
ERC portfolio:

y? (c′) = exp
(
c′ − cerc

n

)
· xerc

Because σ (x? (c)) is an increasing function of the parameter c, we obtain the same inequality
as in the case of constrained minimum variance portfolios:

σ (xgmv) ≤ σ (x? (c)) ≤ σ (xew)

We deduce that:
σ (xgmv) ≤ σ (xerc) ≤ σ (xew)

Remark 2 The Lagrange formulation of the optimization problem (4) is:

y? (λ) = 1
2y
>Σy − λ

n∑
i=1

ln yi (5)

u.c.
{

1>y = 1
y ≥ 0

with λ ≥ 0. In this case, the optimal solution x? (c) corresponds to the portfolio y? (λ) with:

c =
n∑
i=1

ln y?i (λ)
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According to this framework, a natural way to measure the diversification is to consider
the Herfindahl index applied to risk contributions:

Drc (x) = 1
n
∑n
i=1RC

2
i (x)

Let us consider portfolios with positive risk contributions3. It follows that Drc (x) ∈ [1/n, 1]
and we have Drc (xerc) = 1. This means that the ERC portfolio is then the one that
maximizes the risk diversification.

2.3 Most diversified portfolio
Choueifaty and Coignard (2008) introduce the concept of diversification ratio, which corre-
sponds to the following expression:

DR (x) = x>σ√
x>Σx

By construction, DR (x) is equal to one if the portfolio is fully invested in one asset or if
the correlations ρi,j are all equal to one. In the other cases, we have Dσ (x) > 1. The MDP
is then the portfolio which maximizes the diversification ratio:

xmdp = arg maxDR (x) (6)

u.c.
{

1>x = 1
x ≥ 0

2.3.1 A first route toward variance minimization

Let ρ be the correlation matrix deduced from Σ. We note xgmv (ρ) the long-only minimum
variance portfolio based only on the correlation matrix. The MDP is then a rescaled version
of the GMV portfolio:

xmdp,i ∝
xgmv,i (ρ)

σi

2.3.2 A second route

Let us consider the following optimization problem:

y? (c′) = arg min 1
2y
>Σy (7)

u.c.
{ ∑n

i=1 yiσi ≥ c′
y ≥ 0

with c′ > 0. We can demonstrate that the MDP corresponds to the normalized portfolio4:

xmdp = y? (c′)
1>y? (c′)

3It is always the case if the cross-correlations ρi,j are positive.
4Because we have the following property:

y? (c′)
c′

=
y? (c′′)
c′′
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It follows that the MDP is the solution of the following optimization program for a specific
value of c:

x? (c) = arg min 1
2x
>Σx (8)

u.c.


∑n
i=1 xiσi ≥ c

1>x = 1
x ≥ 0

where c ∈ [0,maxi σi]. Indeed, we have:

cmdp = c′∑n
i=1 y

?
i (c′)

It follows that:
σ (xgmv) ≤ σ (xmdp) ≤ max

i
σi

Remark 3 The Lagrange formulation of the optimization problem (8) is:

y? (λ) = 1
2y
>Σy − λy>σ (9)

u.c.
{

1>y = 1
y ≥ 0

with λ ≥ 0. In this case, the optimal solution x? (c) corresponds to the portfolio y? (λ) with:

c =
n∑
i=1

y?i (λ)σi

If we delete the constraint 1>y = 1, we obtain the solution y? (c′) given by the optimization
program (7). Let us consider the restricted universe of invested assets, that is the assets i
such that xmdp,i > 0. It follows that the MDP weights of this restricted universe are:

x̃mdp = Σ̃−1σ̃

1>Σ̃−1σ̃

where Σ̃ is the covariance matrix of the invested assets.

2.4 Comparing the trade-off relationships
Following Cazalet et al. (2014), we compare the different optimization programs (2), (4)
and (8) by changing the value of c. We consider the Eurostoxx 50 index and the one-year
empirical covariance matrix estimated in February 2013. The results are reported in Figures
1, 2 and 3. In each figure, the first panel represents the tracking error volatility σ (x | xcw)
with respect to the volatility reduction VR (x | xcw) defined by:

VR (x | xcw) = σ (xcw)− σ (x)
σ (xcw)

In the second panel, we consider the beta β (x | xcw) of the portfolio with respect to the
capitalization-weighted portfolio. The three panels at the bottom show the impact of the
volatility reduction on the diversification measures5. These results show that investors have
to puzzle out the trade-off between volatility, tracking error and diversification. However,
we notice that the trade-off relationships are very similar when comparing MV and ERC
portfolios (Figures 1 and 2), which is not the case when considering MDP (Figure 3).

5The diversification measure Dρ (x) is the ratio between the diversification ratio DR (x) of the portfolio
and the diversification ratio DR

(
xmdp

)
of the MDP.
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Figure 1: Trade-off relationships of Problem (2) (MV)

Figure 2: Trade-off relationships of Problem (4) (ERC)
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Figure 3: Trade-off relationships of Problem (8) (MDP)

3 Managing the diversification
3.1 Mixing the constraints
When we consider Figure 3, we observe that solutions are not very interesting because we
cannot manage the diversification in terms of weights or risk contributions. This is why
we can introduce these constraints into Problem (8). For instance, the MDP optimization
problem with the weight diversification becomes:

x? (c1, c2) = arg min 1
2x
>Σx (10)

u.c.


∑n
i=1 xiσi ≥ c1

Dw (x) ≥ c2
1>x = 1
x ≥ 0

In this case, we can build smart beta portfolios between the MDP (c1 = cmdp and c2 = 0)
and the EW portfolio (c1 = cmdp and c2 = 1). An example is given in Figure 4 by setting
c1 = cmdp. If we prefer to consider the risk diversification, we obtain:

x? (c1, c2) = arg min 1
2x
>Σx (11)

u.c.


∑n
i=1 xiσi ≥ c1∑n
i=1 ln xi ≥ c2

1>x = 1
x ≥ 0

9
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Figure 4: Trade-off relationships of Problem (10) with c1 = cmdp

3.2 A unified optimization framework
In fact, we can combine these different constraints in a unique variance minimization problem
with the following set of constraints:

1>x = 1∑n
i=1 x

2
i ≤ c1∑n

i=1 ln xi ≥ c2∑n
i=1 xiσi ≥ c3

The first and fourth constraints allow the GMV portfolio and the MDP respectively to be
obtained. The second and third constraints manage the diversification in terms of weights
(using the Herfindahl index) and risk contributions. Therefore, we can write the constrained
problem using Lagrange multipliers:

x? = arg min 1
2x
>Σx− (12)

λgmv

(
n∑
i=1

xi

)
+ λh

(
n∑
i=1

x2
i

)
−

λerc

(
n∑
i=1

ln xi

)
− λmdp

(
n∑
i=1

xiσi

)
u.c. x ≥ 0

with λh ≥ 0 and λerc ≥ 0. From a technical point of view, there are no restrictions on λgmv
and λmdp even if some cases are more relevant (λgmv ≥ 0 and λmdp ≥ 0).

Remark 4 The previous framework can be extended by replacing the variance minimization
problem by the tracking error minimization problem. In Appendix A.1, we show that it is
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equivalent to introducing a constraint in the form x>Σxcw ≥ c4. In this case, Problem (12)
must include a new penalty function which is equal to:

−λte

(
n∑
i=1

xi (Σxcw)i

)

The benefits of using the formulation (12) are twofold. First, this optimization problem
is very easy to solve using the CCD algorithm. This numerical method was used by Griveau-
Billion et al. (2013) to find the solution of the ERC portfolio. In Appendix A.2, we extend
this analysis to the general problem (12). The second interest lies in the explicit trade-
off relationships contained in the optimization problem. If the aim is to emphasize one
specific diversification measure, we have to use a larger value for the corresponding Lagrange
coefficient, but it is not possible to match all the different diversification constraints. This
means that even if there is no restriction between the Lagrange multipliers, only a subset of
them is interesting from a financial point of view. This is equivalent to imposing a structure
between the different constraints. Let us consider this specific problem for instance:

x? = arg min 1
2x
>Σx (13)

u.c.

 D (x; γ) ≥ c1
B (x; δ) = c2
x ≥ 0

where D (x; γ) = γ
∑n
i=1 ln xi− (1− γ)

∑n
i=1 x

2
i is a diversification constraint and B (x; δ) =

δ
∑n
i=1 xi + (1− δ)

∑n
i=1 xiσi is a budget constraint. The parameter γ ∈ [0, 1] controls the

trade-off between weighs and risk diversification whereas the parameter δ ∈ [0, 1] controls the
budget allocation. We can then restrict (c1, c2) by considering this optimization problem:

x? (λ, γ, δ) = arg min 1
2x
>Σx− λD (x; γ) + (λ− 1)B (x; δ) (14)

u.c. x ≥ 0

where λ ≥ 0 controls the impact on the diversification. Problem (14) is a spacial case of
Problem (12), but it is wide enough to include most of the solutions6.

Remark 5 If we include a tracking error constraint, the budget constraint becomes B (x; δ, κ) =∑n
i=1 xi (δ + κ (Σxcw)i + (1− δ − κ)σi) with 0 ≤ κ+ γ ≤ 1.

In Table 1 we indicate the parameters that give the different smart beta portfolios (see
Appendix A.2.3 for the definition of RP and BP portfolios). For instance (λ, γ, δ, κ) =
(1, 1, 0, 0) gives the ERC portfolio while (λ, γ, δ, κ) = (0, 1, 1, 0) gives the GMV portfolio.

Table 1: Limits of the smart beta portfolio x? (λ, γ, δ, κ)

Parameters GMV EW ERC MDP RP BP CW
λ 0 +∞ 1 0 +∞ +∞ 0
γ 0/1 1 1 1 1
δ 1 1 0 1 0
κ 0 0 0 0 1 1

6It is equivalent to impose that λgmv − λh + λerc + λmdp = 1 and λerc = λh + λ.
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With Problem (14), we can explore new risk-based portfolios by mixing different con-
straints. We consider the following set of parameters:

Set Achievable
λ γ δ κPortfolios

(1) RP-ERC-MDP ∈ R+ 1 0 0
(2) CW-ERC-MDP 0 1 0 ∈ [0, 1]
(3) CW-ERC ∈ R+ 1 0 1
(4) CW-GMV 0 0 1− κ ∈ [0, 1]
(5) EW-MDP ∈ R+ 1 1− e−λ 0

For each set, we indicate the achievable portfolios. For instance, if κ = 1 (and δ = 0), we
obtain the CW portfolio. Depending on the values of λ and γ, we can then build risk-based
portfolios between CW and another smart beta portfolio. For instance, if λ ∈ R+ and γ = 1,
we obtain solutions between the CW portfolio and the ERC portfolio. In Figure 5, we have
reported the paths of the different parameter sets.

Figure 5: Trade-off relationships of Problem (14)

3.3 Diversification profile of risk-based portfolios
Radar charts of the different objectives are reported in Figure 6. Each hexagonal chart
(represented by dashed lines) corresponds to an improvement of the measure by 15%. In
order to compare the different profiles, we use a benchmark profile which has the GMV
volatility reduction, a zero tracking error, a beta equal to one, the diversification ratio of
the MDP, the weight and risk diversifications of the EW and ERC portfolios. The GMV
portfolio focuses on minimizing the volatility but presents a poor diversification in terms of
weights and risk contributions. It is also the portfolio with the highest beta and tracking
error risk. The EW portfolio performs well to maximize the beta and minimize the tracking
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Figure 6: Diversification profile of smart beta portfolios

Figure 7: Diversification profile and weight diversification
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error while diversifying the weights. But this is done with no volatility reduction. The ERC
portfolio has a similar profile but pays more attention to volatility reduction. Finally, the
MDP profile is similar to the GMV profile, but has a lower beta and tracking error risk.

Figure 7 illustrates that the role of the parameter λ. κ is equal to zero and we fix the other
parameters in a balanced manner: γ = δ = 0.5. We observe that the volatility reduction
is done at the expense of the diversification. Moreover, the weight diversification decreases
more quickly than the risk diversification. Indeed, the volatility of the ERC portfolio is
always lower than the volatility of the EW portfolio. This means that the impact of the
volatility reduction on the diversification is weaker for the ERC.

In Figure 8, we have reported the diversification profile when we specifically target a
volatility reduction (5%, 10%, 20% and 30%). In this example, we confirm that the weight
diversification decreases more quickly than the risk diversification. The diversification ratio
is the less impacted measure by the change in the volatility reduction.

Figure 8: Diversification profile and volatility reduction

4 Understanding the behavior of smart beta portfolios
We consider here real-life applications with four different stock universes: the Eurostoxx 50
index (SX5E), the Topix 100 index (TPX100), the S&P 500 index (SPX) and the MSCI EM
index (MXEF). We have chosen these stock indices, because they correspond to different
regions and different sizes of the universe. For each universe, we compute smart beta port-
folios by using the one-year empirical covariance matrix of stock returns. The allocation is
rebalanced at a monthly frequency. We conduct backtests from January 2001 to December

14
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20147. Empirical results confirm that there are some trade-off principles. In particular, we
obtain a first rule of smart beta indexing:

Rule 1 There is no free lunch in smart beta. In particular, it is not possible to target high
volatility reduction, to be highly diversified and to take low beta risk.

In Figure 9, we have reported the relationship between the volatility reduction and the
beta for the four universes and the four smart beta portfolios (EW, GMV, ERC and MDP).
Each point corresponds to a rebalancing date. By reducing the volatility, the smart beta
portfolios increase the beta risk. We observe similar results for the other risk measures:
tracking error, weight diversification, risk diversification and diversification ratio.

Figure 9: Relationship between the volatility reduction and the beta

4.1 Volatility reduction
Rule 2 The smart beta portfolios have a time-varying objective of volatility reduction and
tracking error.

This rule shows that the behavior of traditional smart beta portfolios (EW, GMV, ERC,
MDP) is not homogeneous across time in terms of volatility reduction and tracking error.
We have reported the boxplots in Figures 10 and 11. The bottom and top of the box
indicate the first and third quartiles of the statistics, the line inside the box corresponds to
the median whereas the ends of whiskers are the minimum and the maximum. We notice
that the volatility reduction depends on the underlying index. However, we do not observe a
strong relationship with the size of the universe, except for the GMV portfolio. For instance,
the EW portfolio has a higher volatility, on average, than the CW portfolio in the case of

7For the MSCI EM index, the starting date is February 2005.
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Figure 10: Boxplot of the volatility reduction (in %)

Figure 11: Boxplot of the tracking error (in %)
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the S&P 500 index, but the volatility reduction is maximal for the MSCI EM index. If we
consider the tracking error, the behavior is even more complex with respect to the underlying
index. For instance, the Topix 100 universe presents the highest tracking error in the case
of ERC and GMV portfolios.

A statistical analysis shows that the level of the volatility reduction and the tracking
error, as well as their variations, cannot be explained by the level or the variation of the
volatility of the CW index. We can therefore obtain all the possible existing configurations:

σ (xcw) High Low
VR (x | xcw) or σ (x | xcw) High/Low High/Low

∆tσ (xcw) + −
∆tVR (x | xcw) or ∆tσ (x | xcw) +/− +/−

Even if there is no obvious relationship between the volatility of the CW portfolio and the
volatility or the tracking error of the smart beta portfolios, there is some similar behavior
between the smart beta portfolios themselves. For instance, we report the correlation be-
tween the variations during two consecutive rebalancing dates of the volatility reduction in
Table 2. We compute the statistic ρ∆tVR

i,j = ρ
(
∆tVR

(
x(i) | xcw

)
,∆tVR

(
x(j) | xcw

))
for all

pairs (i, j) of smart beta portfolios. We notice that the cross-correlations are high except
for the EW portfolio in the case of the S&P 500 universe. Results for the tracking error
correlation ρ∆tTE

i,j = ρ
(
∆tσ

(
x(i) | xcw

)
,∆tσ

(
x(j) | xcw

))
are also reported in Table 2. Like

the volatility reduction, the tracking error cross-correlations are high especially for the pairs
(GMV,MDP) and (ERC,MDP).

Table 2: Empirical correlations ρ∆tVR
i,j and ρ∆tTE

i,j (in %)

Volatility reduction Tracking error
(i, j) SX5E TPX100 SPX MXEF SX5E TPX100 SPX MXEF

(EW,GMV) 16.7 44.1 −0.5 37.1 25.0 44.4 44.7 76.3
(EW,ERC) 66.4 70.2 33.1 79.8 26.6 33.1 11.5 76.0
(EW,MDP) 26.9 44.3 5.6 37.9 38.1 37.6 42.0 75.5
(GMV,ERC) 69.2 77.7 49.2 64.5 62.8 41.1 48.1 87.4
(GMV,MDP) 74.7 79.9 45.6 80.3 76.3 90.7 75.5 98.2
(ERC,MDP) 71.9 79.2 66.0 64.8 82.4 53.0 63.0 90.2

Table 3: Empirical correlations ρ∆tDrc
i,j and ρ∆tDρ

i,j (in %)

Risk diversification Diversification ratio
(i, j) SX5E TPX100 SPX MXEF SX5E TPX100 SPX MXEF

(EW,GMV) 2.1 −35.4 −2.4 −20.8 73.7 77.1 54.9 87.5
(EW,ERC) −6.7 8.7 −8.2 −15.5 93.2 93.6 84.8 96.1
(EW,MDP) 0.5 −38.1 −22.5 −29.2 79.2 85.8 81.0 91.1
(GMV,ERC) 34.5 −14.2 −17.9 −7.4 75.5 85.4 65.7 92.4
(GMV,MDP) 25.6 12.9 14.1 42.6 75.3 86.2 74.0 96.2
(ERC,MDP) 23.0 −3.2 15.9 23.5 92.8 92.9 89.7 96.5
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If we consider the other risk statistics, we obtain similar results for the beta8 and the
diversification ratio, but not for the weight and risk diversifications. For these two last
statistics, the average correlation is close to zero. We report the results for ρ∆tDrc

i,j and
ρ

∆tDρ
i,j in Table 3. We notice that the cross-correlation Dρ is extremely high9.

4.2 Normalizing the smart beta portfolios
In Table 4, we report the average correlation between the three smart beta portfolios (GMV,
ERC and MDP) for the different statistics10. We notice that the average correlation between
returns is less than 90%, implying that the behavior of these smart beta portfolios may be
very different in some specific periods.

Table 4: Average correlation between GMV, ERC and MDP portfolios (in %)

Index VR TE β Dw Drc Dρ Rt
SX5E 67.4 81.9 73.0 39.2 26.5 95.8 89.6

TPX100 88.2 81.1 87.6 28.9 27.7 93.6 92.8
SX5E 79.9 80.2 82.9 21.3 32.6 97.3 83.2
MXEF 89.3 93.2 93.1 2.4 34.5 97.8 88.5
Average 81.2 84.1 84.1 23.0 30.3 96.1 88.5

We can ask if these differences come from the implied intrinsic constraint of each model,
or from the level of volatility reduction targeted by each model. This is why we investigate
the behavior of smart beta portfolios when we normalize them by targeting the same level of
volatility reduction. Therefore, we calibrate the set of parameters (λgmv,λh, λerc, λmdp, λte)
such that:

VR (x? (λgmv,λh, λerc, λmdp, λte) | xcw) = η?

where η? is the targeted volatility reduction. For each smart beta portfolio, the calibration
is done with one parameter (it is underlined) whereas the other parameters are fixed:

GMV λgmv = 1, λh ∈ [0,+∞), λerc = 0, λmdp = 0 and λte = 0;

ERC λgmv = −∞, λh = 0, λerc ∈ (0,+∞), λmdp = 0 and λte = 0;

MDP λgmv = 0, λh = 0, λerc = 1, λmdp ∈ (−∞,+∞) and λte = 0;

For instance, the calibration is done using the Herfindahl parameter λh in the case of the
GMV portfolio. Results are reported in Table 5. We notice that the average correlation
between the three smart beta methods has highly increased. This is particularly true for
the one-year performance, for which the average correlation is close to 100%. We conclude
that the differences between the smart beta methods (GMV, ERC and MDP) are mainly
explained by the different level of targeted volatility reduction, which is a consequence of
their intrinsic constraints. These results are also valid when we target a level of tracking
error. Therefore, we obtain a third rule of smart beta indexing:

Rule 3 When we impose an objective of volatility reduction or tracking error, the smart
beta portfolios becomes comparable.

8We have ρ∆tβ
i,j ' ρ

∆tVR
i,j .

9It is equal to 84% on average.
10For the risk statistics (VR, TE, β, Dw, Drc and Dρ), we consider the monthly series. The correlation

between returns Rt is computed using the daily series of the one-year performance.
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Table 5: Average correlation between GMV, ERC and MDP portfolios (in %)

Index η? VR TE β Dw Drc Dρ Rt
5% 100.0 99.2 100.0 99.3 99.5 99.8 100.0

SX5E 10% 100.0 92.1 99.5 86.7 71.6 98.9 99.8
15% 100.0 91.5 97.4 88.6 76.4 97.2 99.2
5% 100.0 99.8 100.0 99.7 99.8 99.9 100.0

TPX100 10% 100.0 88.3 98.9 89.1 65.0 98.2 100.0
15% 100.0 91.5 97.6 92.7 78.4 97.5 99.9
5% 100.0 96.8 99.8 86.4 63.6 98.2 99.8

SPX 10% 100.0 86.9 97.1 88.4 69.7 93.4 99.0
15% 100.0 85.6 90.8 88.9 77.6 88.4 97.6
5% 100.0 100.0 100.0 99.9 100.0 100.0 100.0

MXEF 10% 100.0 100.0 100.0 98.2 99.5 99.8 100.0
15% 100.0 99.9 100.0 96.1 95.0 99.5 100.0

Average 100.0 94.3 98.4 92.8 83.0 97.6 99.6

4.3 Performance of the smart beta portfolios
Rule 4 The performance of smart beta portfolios depends on the market risk premium.
When this is high, it is better to consider an objective of low volatility reduction (or tracking
error volatility). Conversely, it is preferable to target a high volatility reduction when the
market risk premium is weak or negative.

This rule is very logical and easy to understand. Indeed, when the performance of stocks
is high, it is better to invest in a more diversified portfolio than the CW portfolio, but with
a limited tracking error in order to fully benefit from the bull market. Conversely, in a bear
market, a concentrated portfolio of low volatility stocks will do a better job. In Figures 12,
13 and 14, we have reported the relationship11 between the volatility reduction (in %) of
smart beta portfolios and their excess return (in %) measured as the difference between the
annualized return and the risk-free rate. The excess return for the CW index corresponds
to the horizontal dashed line. Results for the entire study period (January 2001 – December
2014) are given in Figure 12. We notice that the rule is satisfied except for the MSCI EM
index. If we consider the financial crisis (July 2007 – February 2009), we observe a positive
relationship between volatility reduction and excess return (Figure 13). For this period, it
is therefore better to target a high volatility reduction. The opposite is true if we consider
the recent recovery period (March 2009 – December 2013).

4.4 Dynamic smart beta strategies
The previous rule can be used to build dynamic smart beta strategies. The idea is to fix the
level of volatility reduction with respect to market conditions. If the risk sentiment is high,
we would like to have an aggressive portfolio or to target a high level of volatility reduction.
If the risk sentiment is low, it is better to have a more diversified portfolio with low tracking
error with respect to the CW index.

11Because of the third rule, we know that the calibration method to target a given volatility reduction
has little impact, particularly on the performance. This is why we only report the results with the GMV
approach when the calibration is done by estimating λh. We obtain the same results if we consider other
calibrations schemes.
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Figure 12: Relationship between volatility reduction and excess return (2001-2014)

Figure 13: Relationship between volatility reduction and excess return (Jul. 2007–Feb.
2009)
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Figure 14: Relationship between volatility reduction and excess return (Mar. 2009–Dec.
2013)

We consider the optimization problem (14) with λ ∈ [0, 1], γ = 1 and δ = 1. In this case,
we obtain smart beta portfolios between the GMV portfolio (λ = 0) and the ERC portfolio
(λ = 1). At each date t, we estimate the market sentiment by computing the cross-sectional
volatility σcsv

t of stocks which belong to the CW index12. We then consider the following
rule to fix λ:

λ = 1− φσ
csv
t − σ−t
σ+
t − σ−t

where σ−t and σ+
t are the minimum and maximum values of σcsv

t observed for the window
period [t− h; t] and φ is a scalar between 0 and 1. We consider two strategies. D#1 corre-
sponds to the case φ = 1 and λ ∈ [0, 1]. For the second strategy D#2, φ is equal to 0.85
meaning that λ ∈ [0.15, 1]. Backtests13 for the study period 2001-2014 are reported in Table
6. For each strategy, we calculate the annualized return µ (x), the annual volatility σ (x),
the corresponding Sharpe ratio SR (x), the maximum drawdown DD (x) and the turnover
τ (x) of the allocation. We notice that the dynamic smart beta strategies D#1 and D#2
improve the performance of the GMV and ERC portfolios for three indices (Eurostoxx 50,
S&P 500 and MSCI EM). In particular, the second strategy D#2 is a considerable improve-
ment on the ERC strategy with a higher return, a lower volatility, a reduced drawdown and
a limited turnover14. Even this application is a toy model as it gives some indications about
the benefit of dynamically managing the volatility reduction with respect to the market
sentiment.

12In order to reduce the noise, we also apply an exponentially weighted moving average with a smoothing
coefficient of 0.98 to the cross-sectional volatility.

13The lag window h is equal to one year.
14On average, its turnover is twice the turnover of the ERC portfolio, but half that of the GMV portfolio.
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Table 6: Comparing GMV, ERC and dynamic smart beta strategies (2001-2014)

CW GMV ERC D#1 D#2 CW GMV ERC D#1 D#2
SX5E TPX100

µ (x) 0.6 3.8 3.4 5.1 4.7 0.4 6.3 3.3 3.6 3.2
σ (x) 24.5 19.1 23.1 21.3 22.4 24.4 16.3 21.3 18.9 19.8

SR (x) −0.1 0.1 0.1 0.1 0.1 0.0 0.4 0.1 0.2 0.1
DD (x) −59.6 −52.4 −54.4 −50.7 −51.5 −62.8 −49.4 −57.4 −51.1 −54.2
τ (x) 0.2 3.4 0.8 3.0 1.9 0.3 3.8 1.0 2.9 1.8

SPX MXEF
µ (x) 5.0 8.3 9.9 11.5 10.5 8.0 12.0 10.8 14.3 12.6
σ (x) 20.1 12.2 19.2 16.2 18.2 21.6 9.4 16.3 13.0 14.3

SR (x) 0.2 0.5 0.4 0.6 0.5 0.3 1.1 0.6 1.0 0.8
DD (x) −55.3 −33.3 −55.9 −44.7 −52.5 −65.1 −29.9 −53.8 −34.9 −44.9
τ (x) 0.1 5.9 1.0 3.5 1.6 0.5 5.6 1.6 4.2 2.8

5 Conclusion
Smart beta indexing is becoming increasingly popular with institutional investors and pen-
sion funds. It is perceived as a method of reducing risk and increasing performance with
respect to capitalization-weighted indexing. However, there are many ways to build a smart
beta portfolio. One interesting property is that these different alternative-weighted portfo-
lios belong to the same optimization problem family. They are minimum variance portfolios
and differ because of the implied constraint they consider. In this article, we develop a
unified analytical framework based on the CCD algorithm in order to show the trade-off
between the volatility reduction and the risks of such alternative-weighted solutions. Using
this approach, we can illustrate and understand the behaviorial differences of smart beta
portfolios. We can also develop new smart beta strategies by explicitly targeting a level of
volatility reduction or by dynamically linking this level to the market sentiment.
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A Appendix

A.1 Managing the tracking error volatility
Let xcw be the capitalization-weighted portfolio. The tracking error variance of the portfolio
x is:

σ2 (x | xcw) = (x− xcw)>Σ (x− xcw)
= x>Σx− 2x>Σxcw + x>cwΣxcw

Because x>cwΣxcw is constant, the optimization problem becomes

x? (c1, c2) = arg min 1
2x
>Σx− x>Σxcw (15)

We recognize a Markowitz optimization problem where the expected returns µ are equal to
Σxcw. We notice that these expected returns are exactly the implied expected returns in
the Black-Litterman model15. Following Roncalli (2013), we can transform the optimization
problem (15) into a µ-problem:

x? (c) = arg min 1
2x
>Σx (16)

u.c.


x ∈ C∑n
i=1 xi (Σxcw)i ≥ c

1>x = 1
x ≥ 0

with c ∈ [0, c+] with c+ = x>cwΣxcw. This problem is precisely the formulation (1) used in
this paper by adding the constraint

∑n
i=1 xi (Σxcw)i ≥ c. The limit cases are x? (0) = xgmv

and x? (c+) = xcw.

We can use this framework to introduce the tracking error constraint in the different
optimization problems considered in this study. For instance, we can mix this constraint
with the ERC constraint. In this case, we will obtain optimized portfolios with a trade-off
between the tracking error volatility and the diversification in terms of risk contributions.

15See Roncalli (2013) on page 23.
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A.2 Solving the general optimization problem using the CCD al-
gorithm

We consider the following optimization problem:

x? (λgmv,λh, λerc, λmdp, λte) = arg min 1
2x
>Σx− (17)

λgmv

(
n∑
i=1

xi

)
+ λh

(
n∑
i=1

x2
i

)
−

λerc

(
n∑
i=1

ln xi

)
− λmdp

(
n∑
i=1

xiσi

)
−

λte

(
n∑
i=1

xi (Σxcw)i

)
u.c. x ≥ 0

This formulation encompasses the different optimization problems presented in this article.
We notice that Problem (17) is of the form:

x? (λ) = arg min 1
2x
>Σx+ λP (x)

u.c. x ≥ 0

where P (x) is a penalty function combining different norms. This penalized optimization
is frequent in machine learning and is generally solved using the cyclical coordinate descent
algorithm.

A.2.1 CCD algorithm

The main idea behind the cyclical coordinate descent (CCD) algorithm is to minimize a
function f (x1, . . . , xn) by minimizing only one direction at each step, whereas classical
descent algorithms consider all the directions at the same time. In this case, we find the
value of xi which minimizes the objective function by considering the values taken by xj
for j 6= i as fixed. The procedure is repeated for each direction until the global minimum
is reached. This method uses the same principles as Gauss-Seidel or Jacobi algorithms for
solving linear systems. The main objective is then to find the update rule.

Convergence of coordinate descent methods requires that f (x) is strictly convex and
differentiable. However, Tseng (2001) has extended the convergence properties to a non-
differentiable class of functions:

f (x1, ..., xn) = f0 (x1, ..., xn) +
m∑
k=1

fk (x1, ..., xn)

where f0 is strictly convex and differentiable and the functions fk are non-differentiable.

Some properties make this algorithm very attractive. First of all, it is very simple to un-
derstand and implement. Moreover, the method is efficient for solving large-scale problems.
That is why it is used in machine learning theory for computing constrained regressions or
supporting vector machine problems (Friedman et al., 2010). A further advantage is that
the method does not need stepsize descent tuning as opposed to gradient based methods.
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A.2.2 Application to the smart beta problem

In Problem (17), f0(x) = 1
2x
>Σx is strictly convex and the functions fk are non-differentiable,

meaning that we can apply the CCD algorithm. Let L (x) be the Lagrange function (17).
We have:

∂ L (x)
∂ xi

= (Σx)i − λgmv + 2λhxi −
λerc

xi
− λmdpσi − λte (Σxcw)i

Let us assume that λerc > 0. At the optimum, we have ∂xi L (x) = 0 or:

xi (Σx)i − λgmvxi + 2λhx
2
i − λerc − λmdpxiσi − λtexi (Σxcw)i = 0 (18)

It follows that:

x2
i

(
σ2
i + 2λh

)
+ xi

σi∑
j 6=i

xjρi,jσj − λgmv − λmdpσi − λte (Σxcw)i

− λerc = 0

We notice that the polynomial function is convex because we have σ2
i + 2λh > 0. Since the

product of the roots is negative16, we always have two solutions with opposite signs. We
deduce that the solution is the positive root of the second degree equation:

x?i =
λgmv + λmdpσi + λte (Σxcw)i − σi

∑
j 6=i xjρi,jσj

2 (σ2
i + 2λh)

+

√(
σi
∑
j 6=i xjρi,jσj − λgmv − λmdpσi − λte (Σxcw)i

)2
+ 4 (σ2

i + 2λh)λerc

2 (σ2
i + 2λh) (19)

If the values of (x1, . . . , xn) are strictly positive, it follows that x?i is strictly positive. The
positivity of the solution is then achieved after each iteration if the starting values are
positive. The coordinate-wise descent algorithm consists in iterating Equation (19) until
convergence and normalizing the solution at the final step.

Remark 6 When the correlation of the assets is equal to zero, we obtain a closed-form
expression:

x?i = λgmv + λmdpσi + λtexcw,iσ
2
i

2 (σ2
i + 2λh)

+

√
(λgmv + λmdpσi + λtexcw,iσ2

i )2 + 4 (σ2
i + 2λh)λerc

2 (σ2
i + 2λh)

Remark 7 We can deduce the risk contributions of risk-based portfolios from Equation (18):

RCi ∝ λgmvxi − λhx
2
i + λerc + λmdpσixi + λtexi (Σxcw)i

We retrieve the different well-known results. For instance, the risk contributions are equal
for the ERC portfolio, correspond to the weights for the GMV portfolio and are proportional
to xiσi for the MDP, etc.

A.2.3 Special cases

In this section, we derive limit cases of Problem (17) by using the CCD formulation of the
solution.

16We have −
(
σ2
i + 2λh

)
λerc < 0.
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EW portfolio If we assume that λmdp = λte = λh = 0 and λerc > 0, the solution is
reduced to:

x?i = −
σi
∑
j 6=i xjρi,jσj − λgmv

2σ2
i

+

√(
σi
∑
j 6=i xjρi,jσj − λgmv

)2
+ 4σ2

i λerc

2σ2
i

We have σi
∑
j 6=i xjρi,jσj − λgmv ≈ |λgmv| when λgmv = −∞. Using a first-order Taylor

expansion in the neighborhood of zero, we obtain:

lim
λgmv→−∞

x?i = lim
λgmv→−∞

− |λgmv|+ |λgmv|
√

1 + 4σ2
i
λerc

|λgmv|2

2σ2
i

≈ lim
λgmv→−∞

− |λgmv|+ |λgmv|
(

1 + 2σ2
i λerc

|λgmv|2

)
2σ2

i

= λerc

|λgmv|

This means that all the weights are constant and equal. We finally obtain the equally-
weighted portfolio:

lim
λgmv→−∞

x? = xew = 1
n

There is another way to find the EW portfolio thanks to the Herfindahl index. If we assume
that λmdp = λte = λgmv = 0 and λerc > 0, the solution is reduced to:

x?i = −
σi
∑
j 6=i xjρi,jσj

2 (σ2
i + 2λh)

+

√(
σi
∑
j 6=i xjρi,jσj

)2
+ 4 (σ2

i + 2λh)λerc

2 (σ2
i + 2λh)

When λh � +∞ we obtain:

x?i ≈
√
λerc√
2λh

Again all the weights are constant and we obtain the equally-weighted portfolio.

RP portfolio If we assume that λgmv = λte = λh = 0 and λerc > 0, we have σi
∑
j 6=i xjρi,jσj−

λmdpσi ≈ |λmdp|σi when λmdp = −∞ and:

lim
λmdp→−∞

x?i = λerc

|λmdp|σi

This means that the weight is inversely proportional to the asset volatility. We then obtain
the risk parity portfolio:

lim
λmdp→−∞

x? = xrp = σ−1

1>σ−1
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BP portfolio If we assume that λgmv = λmdp = λh = 0 and λerc > 0, we have17

σi
∑
j 6=i xjρi,jσj − λte (Σxcw)i ≈ |λte| (Σxcw)i when λte = −∞ and:

lim
λte→−∞

x?i = λerc

|λte| (Σxcw)i

The beta βi (xcw) of the asset i with respect to the CW portfolio xcw is:

βi (xcw) =
(Σxcw)i
x>cwΣxcw

We deduce that the weight is inversely proportional to the asset beta. We finally obtain the
‘beta parity’ portfolio:

lim
λte→−∞

x? = xbp = β−1 (xcw)∑n
j=1 β

−1
j (xcw)

Summary Finally, the different limit cases are reported in Table 7 where λ ≥ 0 is an
arbitrary constant.

Table 7: Limits of the smart beta portfolio x? (λgmv, λh, λerc, λmdp, λte)

Parameters GMV EW ERC MDP RP BP CW
λgmv +∞ −∞ 0 0 0 0 0 0
λh 0 0 +∞ 0 0 0 0 0
λerc λ +∞ λ λ λ +∞ +∞ λ
λmdp 0 0 0 0 +∞ −∞ 0 0
λte 0 0 0 0 0 0 −∞ +∞

17We must also have (Σxcw)i ≥ 0.
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